WO2023012990A1 - Numerical control device - Google Patents

Numerical control device Download PDF

Info

Publication number
WO2023012990A1
WO2023012990A1 PCT/JP2021/029200 JP2021029200W WO2023012990A1 WO 2023012990 A1 WO2023012990 A1 WO 2023012990A1 JP 2021029200 W JP2021029200 W JP 2021029200W WO 2023012990 A1 WO2023012990 A1 WO 2023012990A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
command
work surface
point
movement path
Prior art date
Application number
PCT/JP2021/029200
Other languages
French (fr)
Japanese (ja)
Inventor
庸士 大西
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/029200 priority Critical patent/WO2023012990A1/en
Publication of WO2023012990A1 publication Critical patent/WO2023012990A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present disclosure relates to a numerical controller for machine tools.
  • Machine tools process workpieces of various shapes. 2. Description of the Related Art Machine tools process workpieces having tangent discontinuities such as protruding corners (Patent Document 1). When a work having such a shape is machined, the relative posture of the tool with respect to the work surface changes before and after the tool passes through the discontinuity of the tangential line.
  • An object of the present disclosure is to provide a numerical control device capable of maintaining the relative posture between a tool and a work surface before and after a tangent discontinuity in machining a work having a tangent discontinuity.
  • the numerical control device includes a calculation unit that analyzes the machining program and calculates the movement path of the tool, an identification unit that identifies the positions of discontinuous tangential points included in the movement path calculated by the calculation unit, and identification by the identification unit.
  • the position of the discontinuous tangent line is set as the cutting start point so that the relative posture of the tool with respect to the work surface on the first movement path is the same as the relative posture of the tool with respect to the work surface.
  • a command generation unit that generates a command specifying the relative posture of the tool with respect to the work surface on the movement path 2.
  • FIG. 4 is a diagram showing an example of a work including a tangent discontinuity; It is a figure explaining an example of the relative attitude
  • FIG. 1 is a block diagram showing an example of the hardware configuration of a machine tool equipped with a numerical controller.
  • Machine tool 1 includes a lathe, a machining center, and a multitasking machine.
  • the machine tool 1 includes a numerical controller 2, an input/output device 3, a servo amplifier 4, an X-axis servomotor 5, a Y-axis servomotor 6, a Z-axis servomotor 7, and a C-axis servomotor.
  • a motor 8, a spindle amplifier 9, a spindle motor 10, and an auxiliary device 11 are provided.
  • the numerical controller 2 is a device that controls the machine tool 1 as a whole.
  • the numerical controller 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 and a nonvolatile memory 205 .
  • the hardware processor 201 is a processor that controls the entire numerical controller 2 according to the system program.
  • a hardware processor 201 reads a system program or the like stored in a ROM 203 via a bus 202 and performs various processes based on the system program.
  • the hardware processor 201 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle motor 10 based on the machining program.
  • the hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the hardware processor 201 analyzes, for example, a machining program and analyzes the X-axis servomotor 5, Y-axis servomotor 6, Z-axis servomotor 7, C-axis servomotor 8, and spindle It outputs a control command to the motor 10 .
  • a bus 202 is a communication path that connects each piece of hardware in the numerical controller 2 to each other. Each piece of hardware within the numerical controller 2 exchanges data via the bus 202 .
  • the ROM 203 is a storage device that stores system programs and the like for controlling the numerical controller 2 as a whole.
  • a ROM 203 is a computer-readable storage medium.
  • the RAM 204 is a storage device that temporarily stores various data.
  • the RAM 204 functions as a work area for the hardware processor 201 to process various data.
  • the nonvolatile memory 205 is a storage device that retains data even when the machine tool 1 is powered off and power is not supplied to the numerical controller 2 .
  • the nonvolatile memory 205 stores, for example, machining programs and various parameters.
  • Non-volatile memory 205 is a computer-readable storage medium.
  • the nonvolatile memory 205 is composed of, for example, an SSD (Solid State Drive).
  • the numerical controller 2 further comprises an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • an interface 206 an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
  • the interface 206 connects the bus 202 and the input/output device 3 .
  • the interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
  • the input/output device 3 is a device that receives various data via the interface 206 and displays various data. The input/output device 3 also accepts input of various data and sends the various data to the hardware processor 201 via the interface 206 .
  • the input/output device 3 is, for example, a touch panel.
  • the touch panel is, for example, a capacitive touch panel. Note that the touch panel is not limited to the capacitive type, and may be a touch panel of another type.
  • the input/output device 3 is installed, for example, on a control panel (not shown) in which the numerical control device 2 is stored.
  • the axis control circuit 207 is a circuit that controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8.
  • the axis control circuit 207 receives control commands from the hardware processor 201 and drives the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8.
  • Various commands are output to the servo amplifier 4 .
  • the axis control circuit 207 sends torque commands for controlling the torques of the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8 to the servo amplifier 4, for example.
  • the servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8.
  • the X-axis servomotor 5 is driven by being supplied with current from the servo amplifier 4 .
  • the X-axis servomotor 5 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the X-axis direction.
  • the X-axis servomotor 5 may incorporate a speed detector (not shown) that detects the feed speed of the X-axis.
  • the Y-axis servo motor 6 is driven by being supplied with current from the servo amplifier 4 .
  • the Y-axis servomotor 6 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the Y-axis direction.
  • the Y-axis servomotor 6 may incorporate a speed detector (not shown) for detecting the Y-axis feed speed.
  • the Z-axis servomotor 7 is driven by being supplied with current from the servo amplifier 4 .
  • the Z-axis servomotor 7 is connected to, for example, a ball screw that drives the tool post.
  • a structure of the machine tool 1 such as a tool post moves in the Z-axis direction.
  • the Z-axis servomotor 7 may incorporate a speed detector (not shown) for detecting the Z-axis feed speed.
  • the C-axis servomotor 8 is driven by being supplied with current from the servo amplifier 4 .
  • the C-axis servomotor 8 is connected to, for example, a workpiece gripper.
  • the posture of the work is controlled by driving the C-axis servomotor 8 .
  • the C-axis servomotor 8 may incorporate an angle detector (not shown) that detects the rotation angle of the C-axis.
  • the C-axis servomotor 8 may be connected to a shaft that rotates the rotary table.
  • a spindle control circuit 208 is a circuit for controlling the spindle motor 10 .
  • a spindle control circuit 208 receives a control command from the hardware processor 201 and outputs a command for driving the spindle motor 10 to the spindle amplifier 9 .
  • the spindle control circuit 208 for example, sends a torque command for controlling the torque of the spindle motor 10 to the spindle amplifier 9 .
  • the spindle amplifier 9 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 10 .
  • the spindle motor 10 is driven by being supplied with current from the spindle amplifier 9 .
  • a spindle motor 10 is connected to the main shaft and rotates the main shaft.
  • the PLC 209 is a device that executes ladder programs and controls the auxiliary equipment 11 .
  • PLC 209 sends commands to auxiliary device 11 via I/O unit 210 .
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 11 .
  • the I/O unit 210 sends commands received from the PLC 209 to the auxiliary equipment 11 .
  • the auxiliary device 11 is a device that is installed in the machine tool 1 and performs an auxiliary operation in the machine tool 1.
  • the auxiliary equipment 11 operates based on commands received from the I/O unit 210 .
  • the auxiliary device 11 may be a device installed around the machine tool 1 .
  • the auxiliary device 11 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door driving device.
  • the numerical controller 2 processes a workpiece by controlling the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle motor .
  • FIG. 2 is a block diagram showing an example of functions of the numerical controller 2. As shown in FIG.
  • the numerical controller 2 includes a program storage section 21 , a calculation section 22 , a specification section 23 , a command generation section 24 and a control section 25 .
  • the program storage unit 21 is implemented by storing a machining program input from the input/output device 3 or the like in the RAM 204 or the non-volatile memory 205 .
  • the calculation unit 22, the identification unit 23, the command generation unit 24, and the control unit 25 are operated by the CPU 201 using, for example, a system program stored in the ROM 203 and various data stored in the nonvolatile memory 205. It is realized by
  • the program storage unit 21 stores machining programs.
  • the machining program includes at least one of a turning machining program and a milling program.
  • the machining program includes, for example, a machining program for a workpiece having tangent discontinuities.
  • FIG. 3 is a diagram showing an example of a work including tangent discontinuity points.
  • 3 shows the work W viewed from the positive direction of the Z axis, and the shape of the work W does not change along the Z axis.
  • the work W has a first work surface f1 that is flat, a second work surface f2 that is a concave curved surface extending from one end of the first work surface f1, and a surface that extends from one end of the second work surface f2. and a third work surface f3 formed of a convex curved surface extending to the other end of the first work surface f1.
  • the line of intersection between the first work surface f1 and the second work surface f2 is a set of discontinuous tangent points.
  • a line of intersection between the second work surface f2 and the third work surface f3 is a set of discontinuous tangent points.
  • a line of intersection between the third work surface f3 and the first work surface f1 is a set of discontinuous tangent points.
  • the discontinuous point of the tangent line is a point where the direction of the tangent line in contact with the work surface changes discontinuously.
  • the tangent discontinuity points are the first point c1 where the line indicating the first work surface f1 and the line indicating the second work surface f2 intersect, the line indicating the second work surface f2 and the third point c1.
  • the calculation unit 22 analyzes the machining program and calculates the movement path of the tool.
  • the calculation unit 22 also calculates the relative posture of the tool with respect to the work surface.
  • the relative posture can be represented, for example, by the angle at which the work surface intersects with a straight line extending in the longitudinal direction of the tool.
  • the calculator 22 calculates the first surface of the tool during machining so that, for example, the first work surface f1 and the blade of the tool are in vertical contact with each other. relative to the work surface f1.
  • the calculator 22 calculates the second work surface f2 of the tool during machining so that the tangential plane in contact with the second work surface f2 and the blade of the tool are perpendicular to each other.
  • the calculation unit 22 calculates the third work surface f3 of the tool during machining so that the tangential plane in contact with the third work surface f3 and the blade of the tool are perpendicular to each other. Calculate the relative attitude to
  • the identifying unit 23 identifies the positions of discontinuous tangent points included in the movement route calculated by the calculating unit 22 .
  • the identifying unit 23 identifies, for example, the coordinate values of the discontinuous tangent points.
  • the command generation unit 24 generates commands for moving the tool on the movement path while maintaining a predetermined relative posture with respect to the work surface.
  • the relative posture of the tool with respect to the work surface is maintained at a predetermined relative posture, for example, by controlling the position of the tool and the rotation angle of the C-axis.
  • FIG. 4 is a diagram illustrating an example of the relative posture of the tool with respect to the work surface during machining of the work W. Note that FIG. 4 shows an example in which the workpiece W is turned by rotating the C-axis.
  • the command generator 24 first generates a command to position the tool T at the positioning point P0.
  • the positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
  • the command generator 24 generates a command to move the tool T from the positioning point P0 toward the first point c1 by cutting feed. While the tool T is machining the first work surface f1, the tool T is maintained perpendicular to the first work surface f1 according to the command generated by the command generation unit 24 (see FIG. 4). (1)). That is, the relative posture of the tool T with respect to the work surface is maintained during machining of the work W.
  • the relative posture of the tool T is the same as the relative posture of the tool T with respect to the work surface on the first movement path with the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point.
  • the command generation unit 24 generates a command specifying the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuity of the tangent line as the cutting start point.
  • the tangent line discontinuity point is the first point c1.
  • the first moving path is a path for cutting the first work surface f1
  • the second moving path is a path for cutting the second work surface f2.
  • the command generating unit 24 when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
  • This command generated by the command generating unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the second movement path in the state where the tool T is arranged at the position of the tangent discontinuity point. (2), (3) and (4) in FIG. 4).
  • This command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
  • the command generation unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotational speed, and an arc centered on the Z-axis and having a radius equal to the distance between the Z-axis and the first point c1. to match the rotation speed of the C-axis to generate a command to move the tool T.
  • the command generation unit 24 generates a command to move the position of the tool T and rotate the C-axis until the relative posture of the tool T in vertical contact with the second work surface f2.
  • the relative posture of the tool T in vertical contact with the second work surface f2 is the relative posture of the tool T with respect to the work W in which the tool T and the tangent line at the first point c1 are in vertical contact.
  • the tangential line at the first point c1 is assumed to be a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moved to c1.
  • the command generator 24 generates a command to move the tool T from the first point c1 toward the second point c2 on the second work surface f2 by cutting feed. While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 4).
  • the command generator 24 moves the tool T from the second point c2 to the third point c3 by cutting feed on the third work surface f3. Generate commands to move. While the tool T is machining the third work surface f3, the tool T is maintained perpendicular to the third work surface f3.
  • the control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
  • FIG. 5 is a flow chart showing an example of the flow of processing executed by the numerical controller 2 when a workpiece W having discontinuous tangent points is machined.
  • the calculation unit 22 reads the machining program stored in the program storage unit 21 (step S1).
  • the calculation unit 22 analyzes the machining program and calculates the movement path of the tool T (step S2). Further, the calculator 22 calculates the relative orientation of the tool T with respect to the work surface.
  • the specifying unit 23 specifies the positions of discontinuous tangent points included in the moving route calculated by the calculating unit 22 (step S3).
  • the command generation unit 24 generates a command for moving the tool T along the movement path while maintaining a predetermined relative posture with respect to the work surface (step S4).
  • the command generating unit 24 sets the position of the discontinuous tangential line specified by the specifying unit 23 to the same relative posture as the relative posture of the tool T with respect to the work surface on the first movement path having the cutting end point.
  • control unit 25 controls the X-axis servomotor 5, Y-axis servomotor 6, Z-axis servomotor 7, C-axis servomotor 8, and
  • the spindle motor 10 is controlled to process the workpiece W (step S5), and the process is terminated.
  • the numerical control device 2 includes the calculation unit 22 that analyzes the machining program to calculate the movement path of the tool T, and the positions of the discontinuous tangential points included in the movement path calculated by the calculation unit 22. and the position of the discontinuous tangential line specified by the specifying unit 23, and the relative posture of the tool T with respect to the work surface on the first movement path having the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point. and a command generation unit 24 for generating a command specifying the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuity of the tangent line as the cutting start point.
  • the command generated by the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the position of the tool T on the second movement path when the tool T is arranged at the position of the discontinuous tangent line. It is a command to change the relative posture of the tool T with respect to the work surface in . Also, the command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
  • the numerical control device 2 can maintain the relative posture between the tool T and the work surface before and after the discontinuous point of the tangent line when machining the workpiece W having the discontinuous point of the tangent line. Therefore, the numerical control device 2 can process the workpiece W having discontinuous tangential points with high quality.
  • a command for changing the relative posture of the tool T with respect to the work surface on the first movement path to the relative posture of the tool T with respect to the work surface on the second movement path such an operation is performed by the machining program. desired machining can be achieved simply by instructing the machining path.
  • the example in which the tool T and the work surface are maintained in perpendicular contact during machining has been described, but the tool T and the work surface do not have to be in perpendicular contact.
  • the tool T and the work surface may be kept in contact with each other at an angle of 85°, 95°, or the like.
  • the command generation unit 24 generates a command to change the relative posture of the tool T with respect to the work surface when the tool T is placed at the position of the discontinuous tangent line.
  • the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the position of the tool T with respect to the work surface on the second movement path at a position different from the tangent discontinuity point.
  • a command to change the relative posture may be generated.
  • FIG. 6 is a diagram illustrating an example of the relative posture of the tool T with respect to the work surface during machining of the work W.
  • the command generator 24 first generates a command to position the tool T at the positioning point P0.
  • the positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
  • the command generator 24 generates a command to move the tool T from the positioning point P0 toward the first point c1 by cutting feed. While the tool T is processing the first work surface f1, the tool T is maintained in a state perpendicular to the first work surface f1 (see (1) in FIG. 6).
  • the command generation unit 24 causes the tool T to move toward the workpiece surface on the first movement path with the position of the discontinuous tangential line identified by the identification unit 23 as the cutting end point.
  • a command is generated that designates the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuous tangent line as the cutting start point so that the relative posture is the same as the relative posture.
  • the command generating unit 24 when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
  • This command generated by the command generator 24 changes the relative attitude of the tool T with respect to the work surface on the first movement path to the work surface on the second movement path at a position where the tool T is separated from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to (see (2), (3) and (4) in FIG. 6).
  • This command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
  • the command generating unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotational speed, and a command to rotate the C-axis counterclockwise on the tangential line at the first point c1 and radially outward of the workpiece W in accordance with the rotation of the C-axis. , and then generate a command to move the tool T radially inward of the workpiece W in accordance with the rotation of the C-axis.
  • the command generation unit 24 temporarily separates the tool T from the first point c1 to change the relative posture, and then changes the relative posture so that the tool T is in vertical contact with the second work surface f2.
  • a command is generated to bring the tool T into contact with the first point c1.
  • the relative posture of the tool T in vertical contact with the second work surface f2 is the relative posture of the tool T with respect to the work W in which the tool T and the tangent line at the first point c1 are in vertical contact.
  • the tangential line at the first point c1 is assumed to be a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moved to c1.
  • the command generator 24 generates a command to move the tool T from the first point c1 toward the second point c2 on the second work surface f2 by cutting feed. While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 6).
  • the command generator 24 moves the tool T from the second point c2 to the third point c3 by cutting feed on the third work surface f3. Generate commands to move. While the tool T is machining the third work surface f3, the tool T is maintained perpendicular to the third work surface f3.
  • the control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
  • the command generation unit 24 generates a command to stop the tool T at the point of discontinuity of the tangent line, and then move the tool T away from the point of discontinuity of the tangent line.
  • the command generator 24 may generate a command to pass the tool T without stopping at the discontinuous tangent point.
  • FIG. 7 is a diagram explaining an example of the relative posture of the tool T with respect to the surface of the work W when the work W is machined.
  • the command generator 24 first generates a command to position the tool T at the positioning point P0.
  • the positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
  • the command generator 24 generates a command to move the tool T from the positioning point P0 toward the target point P1 by cutting feed.
  • the target point P1 is a point on a straight line connecting the positioning point P0 and the first point c1, and is a position away from the first point c1 by a predetermined distance on the opposite side of the third point c3. It is a point in While the tool T is machining the first work surface f1, the tool T is maintained perpendicular to the first work surface f1 (see (1) in FIG. 7). That is, the relative posture of the tool T with respect to the work surface is maintained during machining of the work W.
  • the command generation unit 24 moves the tool to the first work surface f1 on the first movement path with the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point.
  • a command is generated that specifies the relative posture of the tool T with respect to the second work surface f2 on the second movement path with the position of the discontinuous tangent point as the cutting start point so that the relative posture of the tool T is the same as the relative posture of T. do.
  • the command generating unit 24 when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
  • This command generated by the command generation unit 24 changes the relative attitude of the tool T with respect to the work surface on the first movement path to the work surface on the second movement path at a position where the tool T is different from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to (see (2), (3) and (4) in FIG. 7).
  • the command generation unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotation speed.
  • the command generator 24 further generates a command to move the tool T to the target point P2 in accordance with the rotation of the C axis.
  • the target point P2 is a point on the tangential line to the first point c1 and is a point a predetermined distance away from the first point c1 to the outside in the radial direction of the workpiece W.
  • the tangent line at the first point c1 is a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moving to
  • the command generator 24 moves the tool T from the target point P2 to the first point c1, and furthermore, feeds the tool T from the first point c1 toward the target point P3 on the second workpiece surface f2.
  • a command to move the tool T is generated.
  • the target point P3 is a point on the tangential line to the second point c2, and is a point a predetermined distance away from the second point c2 to the outside in the radial direction of the workpiece W.
  • the tangent line at the second point c2 is a straight line connecting the second point c2 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moving to While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 7).
  • the command generation unit 24 generates a command to move the tool T from the target point P3 toward the next target point.
  • the control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
  • the command generated by the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the second movement path at a position where the tool T is different from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to the work surface above. Therefore, the vicinity of the discontinuous tangent line can be machined with high accuracy compared to the case where the relative posture of the tool T with respect to the surface of the workpiece changes while the tool T is placed at the discontinuous tangent line. Moreover, since the cutting load applied to the tool T when changing the relative posture of the tool T can be reduced, damage to the tool T can be prevented.
  • the relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity. Whether or not to change may be designated by a machining program, for example.
  • the relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity.
  • Whether to change may be determined according to the type of fixed cycle command. For example, in the rough machining canned cycle, the relative posture of the tool T with respect to the work surface may be changed while the tool T is positioned at the discontinuity of the tangential line. Further, in the finishing canned cycle, the relative posture of the tool T with respect to the work surface may be changed at a position different from the point of discontinuity of the tangential line.
  • the relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity.
  • Whether or not to change may be selected by the operator, for example, by setting a predetermined parameter.
  • the numerical control device 2 further includes a receiving section 26, and the receiving section 26 changes the relative posture of the tool T with respect to the work surface or Information is received indicating whether T changes the relative orientation of the tool T with respect to the work surface at a location other than the tangent discontinuity (see FIG. 8).
  • the command generation unit 24 moves the position of the tool T and generates a command to control the relative posture of the tool T with respect to the work surface by rotating the C-axis. Therefore, the controller 25 changes the position of the tool T and the attitude of the work W, thereby controlling the relative attitude of the tool T with respect to the surface of the work.
  • the command generator 24 may control the position of the tool T as well as the attitude of the tool T to generate a command specifying the relative attitude of the tool T with respect to the work surface.
  • the command generator 24 may generate a command specifying the relative attitude of the tool with respect to the work surface by rotating the A-axis.
  • the tool T is a turning tool
  • the tool T may be a milling tool
  • machine tool 2 numerical controller 201 hardware processor 202 bus 203 ROM 204 RAMs 205 non-volatile memory 206 interface 207 axis control circuit 208 spindle control circuit 209 PLC 210 I/O unit 21 program storage unit 22 calculation unit 23 identification unit 24 command generation unit 25 control unit 26 reception unit 3 input/output device 4 servo amplifier 5 X-axis servomotor 6 Y-axis servomotor 7 Z-axis servomotor 8 C-axis servo motor 9 Spindle amplifier 10 Spindle motor 11 Auxiliary device c1 First point c2 Second point c3 Third point f1 First workpiece surface f2 Second workpiece surface f3 Third workpiece surface P0 Positioning Point P1 Target point P2 Target point T Tool W Work

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

A numerical control device according to the present invention is provided with: a calculation unit that calculates a movement path for a machine tool by analyzing a machining program; an identification unit that identifies the position of a tangential discontinuity point included in the movement path calculated by the calculation unit; and an instruction generation unit that generates an instruction for specifying the orientation of the machine tool relative to the surface of a workpiece on a second movement path, with which the position of the tangential discontinuity point identified by the identification unit serves as a cutting start point, so that the relative orientation will become the same as the orientation of the machine tool relative to the surface of the workpiece on a first movement path, with which the position of the tangential discontinuity point serves as a cutting end point.

Description

数値制御装置Numerical controller
 本開示は、工作機械の数値制御装置に関する。 The present disclosure relates to a numerical controller for machine tools.
 工作機械では、様々な形状のワークが加工される。工作機械では、例えば、突出した角部などの接線不連続点を有するワークの加工が行われる(特許文献1)。このような形状のワークが加工される場合、工具が接線不連続点を通過する前後でワーク表面に対する工具の相対姿勢が変化する。 Machine tools process workpieces of various shapes. 2. Description of the Related Art Machine tools process workpieces having tangent discontinuities such as protruding corners (Patent Document 1). When a work having such a shape is machined, the relative posture of the tool with respect to the work surface changes before and after the tool passes through the discontinuity of the tangential line.
国際公開第2017/110236号WO2017/110236
 例えば、エンドミルを用いて接線不連続点を有するワークを加工する場合、接線不連続点においてワーク表面に対する工具の相対姿勢が変化して、周速が小さい工具の中心軸付近でワークの切削が行われるおそれがある。この場合、切削面の加工品質が低下するという問題がある。 For example, when machining a workpiece with a discontinuous tangent line using an end mill, the position of the tool relative to the surface of the workpiece changes at the discontinuous point of the tangent line, and the workpiece is cut near the central axis of the tool, which has a low peripheral speed. there is a risk of being In this case, there is a problem that the processing quality of the cut surface is deteriorated.
 また、旋削工具を用いて接線不連続点を有するワークの旋削加工をする場合も同様に、接線不連続点においてワーク表面に対する工具の相対姿勢が変化して、ワークに対する切刃のすくい角が変化してしまう。この場合、切削面の加工品質にむらが生じるという問題がある。 Similarly, when turning a workpiece with a tangent discontinuity using a turning tool, the relative position of the tool with respect to the workpiece surface changes at the tangent discontinuity, and the rake angle of the cutting edge with respect to the workpiece changes. Resulting in. In this case, there is a problem that the machining quality of the cut surface becomes uneven.
 本開示は、接線不連続点を有するワークの加工において、接線不連続点の前後で工具とワーク表面との相対姿勢を維持することが可能な数値制御装置を提供することを目的とする。 An object of the present disclosure is to provide a numerical control device capable of maintaining the relative posture between a tool and a work surface before and after a tangent discontinuity in machining a work having a tangent discontinuity.
 数値制御装置が、加工プログラムを解析して工具の移動経路を算出する算出部と、算出部によって算出された移動経路に含まれる接線不連続点の位置を特定する特定部と、特定部によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する工具の相対姿勢と同じ相対姿勢になるように、接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する工具の相対姿勢を指定する指令を生成する指令生成部と、を備える。 The numerical control device includes a calculation unit that analyzes the machining program and calculates the movement path of the tool, an identification unit that identifies the positions of discontinuous tangential points included in the movement path calculated by the calculation unit, and identification by the identification unit. The position of the discontinuous tangent line is set as the cutting start point so that the relative posture of the tool with respect to the work surface on the first movement path is the same as the relative posture of the tool with respect to the work surface. and a command generation unit that generates a command specifying the relative posture of the tool with respect to the work surface on the movement path 2.
 本開示の一態様により、接線不連続点を有するワークを高品質に加工することができる。 According to one aspect of the present disclosure, it is possible to process a work having discontinuous tangential points with high quality.
工作機械のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a machine tool. 数値制御装置の機能の一例を説明する図である。It is a figure explaining an example of the function of a numerical controller. 接線不連続点を含むワークの一例を示す図である。FIG. 4 is a diagram showing an example of a work including a tangent discontinuity; ワーク表面に対する工具の相対姿勢の一例を説明する図である。It is a figure explaining an example of the relative attitude|position of a tool with respect to a workpiece surface. 数値制御装置で実行される処理の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the flow of processing executed by a numerical control device; ワーク表面に対する工具の相対姿勢の一例を説明する図である。It is a figure explaining an example of the relative attitude|position of a tool with respect to a workpiece surface. ワーク表面に対する工具の相対姿勢の一例を説明する図である。It is a figure explaining an example of the relative attitude|position of a tool with respect to a workpiece surface. 数値制御装置の機能の一例を説明する図である。It is a figure explaining an example of the function of a numerical controller.
 以下、本開示の実施形態について図面を用いて説明する。なお、以下の実施形態で説明する特徴のすべての組み合わせが課題解決に必ずしも必要であるとは限らない。また、必要以上の詳細な説明を省略する場合がある。また、以下の実施形態の説明、および図面は、当業者が本開示を十分に理解するために提供されるものであり、特許請求の範囲を限定することを意図していない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that not all combinations of features described in the following embodiments are necessarily required to solve the problem. Also, more detailed description than necessary may be omitted. Also, the following description of the embodiments and drawings are provided for a full understanding of the present disclosure by those skilled in the art and are not intended to limit the scope of the claims.
 図1は、数値制御装置を備える工作機械のハードウェア構成の一例を示すブロック図である。工作機械1は、旋盤、マシニングセンタおよび複合加工機を含む。 FIG. 1 is a block diagram showing an example of the hardware configuration of a machine tool equipped with a numerical controller. Machine tool 1 includes a lathe, a machining center, and a multitasking machine.
 工作機械1は、数値制御装置2と、入出力装置3と、サーボアンプ4と、X軸用サーボモータ5と、Y軸用サーボモータ6と、Z軸用サーボモータ7と、C軸用サーボモータ8と、スピンドルアンプ9と、スピンドルモータ10と、補助機器11とを備える。 The machine tool 1 includes a numerical controller 2, an input/output device 3, a servo amplifier 4, an X-axis servomotor 5, a Y-axis servomotor 6, a Z-axis servomotor 7, and a C-axis servomotor. A motor 8, a spindle amplifier 9, a spindle motor 10, and an auxiliary device 11 are provided.
 数値制御装置2は、工作機械1全体を制御する装置である。数値制御装置2は、ハードウェアプロセッサ201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備えている。 The numerical controller 2 is a device that controls the machine tool 1 as a whole. The numerical controller 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 and a nonvolatile memory 205 .
 ハードウェアプロセッサ201は、システムプログラムに従って数値制御装置2全体を制御するプロセッサである。ハードウェアプロセッサ201は、バス202を介してROM203に格納されたシステムプログラムなどを読み出し、システムプログラムに基づいて各種処理を行う。ハードウェアプロセッサ201は、加工プログラムに基づいて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御する。ハードウェアプロセッサ201は、例えば、CPU(Central Processing Unit)、または電子回路である。 The hardware processor 201 is a processor that controls the entire numerical controller 2 according to the system program. A hardware processor 201 reads a system program or the like stored in a ROM 203 via a bus 202 and performs various processes based on the system program. The hardware processor 201 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle motor 10 based on the machining program. The hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
 ハードウェアプロセッサ201は、制御周期ごとに、例えば、加工プログラムの解析、ならびに、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10に対する制御指令の出力を行う。 For each control cycle, the hardware processor 201 analyzes, for example, a machining program and analyzes the X-axis servomotor 5, Y-axis servomotor 6, Z-axis servomotor 7, C-axis servomotor 8, and spindle It outputs a control command to the motor 10 .
 バス202は、数値制御装置2内の各ハードウェアを互いに接続する通信路である。数値制御装置2内の各ハードウェアはバス202を介してデータをやり取りする。 A bus 202 is a communication path that connects each piece of hardware in the numerical controller 2 to each other. Each piece of hardware within the numerical controller 2 exchanges data via the bus 202 .
 ROM203は、数値制御装置2全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。 The ROM 203 is a storage device that stores system programs and the like for controlling the numerical controller 2 as a whole. A ROM 203 is a computer-readable storage medium.
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、ハードウェアプロセッサ201が各種データを処理するための作業領域として機能する。 The RAM 204 is a storage device that temporarily stores various data. The RAM 204 functions as a work area for the hardware processor 201 to process various data.
 不揮発性メモリ205は、工作機械1の電源が切られ、数値制御装置2に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、加工プログラム、および各種パラメータを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、SSD(Solid State Drive)で構成される。 The nonvolatile memory 205 is a storage device that retains data even when the machine tool 1 is powered off and power is not supplied to the numerical controller 2 . The nonvolatile memory 205 stores, for example, machining programs and various parameters. Non-volatile memory 205 is a computer-readable storage medium. The nonvolatile memory 205 is composed of, for example, an SSD (Solid State Drive).
 数値制御装置2は、さらに、インタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210とを備える。 The numerical controller 2 further comprises an interface 206 , an axis control circuit 207 , a spindle control circuit 208 , a PLC (Programmable Logic Controller) 209 and an I/O unit 210 .
 インタフェース206は、バス202と入出力装置3とを接続する。インタフェース206は、例えば、ハードウェアプロセッサ201が処理した各種データを入出力装置3に送る。 The interface 206 connects the bus 202 and the input/output device 3 . The interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
 入出力装置3は、インタフェース206を介して各種データを受け、各種データを表示する装置である。また、入出力装置3は、各種データの入力を受け付けてインタフェース206を介して各種データをハードウェアプロセッサ201に送る。入出力装置3は、例えば、タッチパネルである。入出力装置3がタッチパネルである場合、タッチパネルは、例えば、静電容量方式のタッチパネルである。なお、タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、例えば、数値制御装置2が格納される操作盤(不図示)に設置される。 The input/output device 3 is a device that receives various data via the interface 206 and displays various data. The input/output device 3 also accepts input of various data and sends the various data to the hardware processor 201 via the interface 206 . The input/output device 3 is, for example, a touch panel. When the input/output device 3 is a touch panel, the touch panel is, for example, a capacitive touch panel. Note that the touch panel is not limited to the capacitive type, and may be a touch panel of another type. The input/output device 3 is installed, for example, on a control panel (not shown) in which the numerical control device 2 is stored.
 軸制御回路207は、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、およびC軸用サーボモータ8を制御する回路である。軸制御回路207は、ハードウェアプロセッサ201からの制御指令を受けてX軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、およびC軸用サーボモータ8を駆動させるための各種指令をサーボアンプ4に出力する。軸制御回路207は、例えば、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8のトルクを制御するトルクコマンドをサーボアンプ4に送る。 The axis control circuit 207 is a circuit that controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8. The axis control circuit 207 receives control commands from the hardware processor 201 and drives the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8. Various commands are output to the servo amplifier 4 . The axis control circuit 207 sends torque commands for controlling the torques of the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8 to the servo amplifier 4, for example.
 サーボアンプ4は、軸制御回路207からの指令を受けて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、およびC軸用サーボモータ8に電流を供給する。 The servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, and the C-axis servomotor 8.
 X軸用サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。X軸用サーボモータ5は、例えば、刃物台を駆動させるボールねじに連結される。X軸用サーボモータ5が駆動することにより、刃物台などの工作機械1の構造物がX軸方向に移動する。X軸用サーボモータ5は、X軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。 The X-axis servomotor 5 is driven by being supplied with current from the servo amplifier 4 . The X-axis servomotor 5 is connected to, for example, a ball screw that drives the tool post. By driving the X-axis servomotor 5, a structure of the machine tool 1 such as a tool post moves in the X-axis direction. The X-axis servomotor 5 may incorporate a speed detector (not shown) that detects the feed speed of the X-axis.
 Y軸用サーボモータ6は、サーボアンプ4から電流の供給を受けて駆動する。Y軸用サーボモータ6は、例えば、刃物台を駆動させるボールねじに連結される。Y軸用サーボモータ6が駆動することにより、刃物台などの工作機械1の構造物がY軸方向に移動する。Y軸用サーボモータ6は、Y軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。 The Y-axis servo motor 6 is driven by being supplied with current from the servo amplifier 4 . The Y-axis servomotor 6 is connected to, for example, a ball screw that drives the tool post. By driving the Y-axis servomotor 6, a structure of the machine tool 1 such as a tool post moves in the Y-axis direction. The Y-axis servomotor 6 may incorporate a speed detector (not shown) for detecting the Y-axis feed speed.
 Z軸用サーボモータ7は、サーボアンプ4から電流の供給を受けて駆動する。Z軸用サーボモータ7は、例えば、刃物台を駆動させるボールねじに連結される。Z軸用サーボモータ7が駆動することにより、刃物台などの工作機械1の構造物がZ軸方向に移動する。Z軸用サーボモータ7は、Z軸の送り速度を検出する速度検出器(不図示)を内蔵していてもよい。 The Z-axis servomotor 7 is driven by being supplied with current from the servo amplifier 4 . The Z-axis servomotor 7 is connected to, for example, a ball screw that drives the tool post. By driving the Z-axis servomotor 7, a structure of the machine tool 1 such as a tool post moves in the Z-axis direction. The Z-axis servomotor 7 may incorporate a speed detector (not shown) for detecting the Z-axis feed speed.
 C軸用サーボモータ8は、サーボアンプ4から電流の供給を受けて駆動する。C軸用サーボモータ8は、例えば、ワーク把持部に連結される。C軸用サーボモータ8が駆動することにより、ワークの姿勢が制御される。C軸用サーボモータ8は、C軸の回転角度を検出する角度検出器(不図示)を内蔵していてもよい。C軸用サーボモータ8は、回転テーブルを回転させる軸に連結されてもよい。 The C-axis servomotor 8 is driven by being supplied with current from the servo amplifier 4 . The C-axis servomotor 8 is connected to, for example, a workpiece gripper. The posture of the work is controlled by driving the C-axis servomotor 8 . The C-axis servomotor 8 may incorporate an angle detector (not shown) that detects the rotation angle of the C-axis. The C-axis servomotor 8 may be connected to a shaft that rotates the rotary table.
 スピンドル制御回路208は、スピンドルモータ10を制御するための回路である。スピンドル制御回路208は、ハードウェアプロセッサ201からの制御指令を受けてスピンドルモータ10を駆動させるための指令をスピンドルアンプ9に出力する。スピンドル制御回路208は、例えば、スピンドルモータ10のトルクを制御するトルクコマンドをスピンドルアンプ9に送る。 A spindle control circuit 208 is a circuit for controlling the spindle motor 10 . A spindle control circuit 208 receives a control command from the hardware processor 201 and outputs a command for driving the spindle motor 10 to the spindle amplifier 9 . The spindle control circuit 208 , for example, sends a torque command for controlling the torque of the spindle motor 10 to the spindle amplifier 9 .
 スピンドルアンプ9は、スピンドル制御回路208からの指令を受けて、スピンドルモータ10に電流を供給する。 The spindle amplifier 9 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 10 .
 スピンドルモータ10は、スピンドルアンプ9から電流の供給を受けて駆動する。スピンドルモータ10は、主軸に連結され、主軸を回転させる。 The spindle motor 10 is driven by being supplied with current from the spindle amplifier 9 . A spindle motor 10 is connected to the main shaft and rotates the main shaft.
 PLC209は、ラダープログラムを実行して補助機器11を制御する装置である。PLC209は、I/Oユニット210を介して補助機器11に対して指令を送る。 The PLC 209 is a device that executes ladder programs and controls the auxiliary equipment 11 . PLC 209 sends commands to auxiliary device 11 via I/O unit 210 .
 I/Oユニット210は、PLC209と補助機器11とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器11に送る。 The I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 11 . The I/O unit 210 sends commands received from the PLC 209 to the auxiliary equipment 11 .
 補助機器11は、工作機械1に設置され、工作機械1において補助的な動作を行う機器である。補助機器11は、I/Oユニット210から受けた指令に基づいて動作する。補助機器11は、工作機械1の周辺に設置される機器であってもよい。補助機器11は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。 The auxiliary device 11 is a device that is installed in the machine tool 1 and performs an auxiliary operation in the machine tool 1. The auxiliary equipment 11 operates based on commands received from the I/O unit 210 . The auxiliary device 11 may be a device installed around the machine tool 1 . The auxiliary device 11 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door driving device.
 次に、数値制御装置2の機能について説明する。数値制御装置2は、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御することによりワークを加工する。 Next, the functions of the numerical controller 2 will be explained. The numerical controller 2 processes a workpiece by controlling the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle motor .
 図2は、数値制御装置2の機能の一例を示すブロック図である。数値制御装置2は、プログラム記憶部21と、算出部22と、特定部23と、指令生成部24と、制御部25とを備える。 FIG. 2 is a block diagram showing an example of functions of the numerical controller 2. As shown in FIG. The numerical controller 2 includes a program storage section 21 , a calculation section 22 , a specification section 23 , a command generation section 24 and a control section 25 .
 プログラム記憶部21は、入出力装置3などから入力された加工プログラムが、RAM204、または不揮発性メモリ205に記憶されることにより実現される。 The program storage unit 21 is implemented by storing a machining program input from the input/output device 3 or the like in the RAM 204 or the non-volatile memory 205 .
 算出部22、特定部23、指令生成部24、および制御部25は、例えば、CPU201が、ROM203に記憶されているシステムプログラムならびに不揮発性メモリ205に記憶されている各種データを用いて演算処理することにより実現される。 The calculation unit 22, the identification unit 23, the command generation unit 24, and the control unit 25 are operated by the CPU 201 using, for example, a system program stored in the ROM 203 and various data stored in the nonvolatile memory 205. It is realized by
 プログラム記憶部21は、加工プログラムを記憶する。加工プログラムは、旋削加工用プログラム、およびミリング加工用のプログラムの少なくともいずれかを含む。加工プログラムは、例えば、接線不連続点を有するワークの加工プログラムを含む。 The program storage unit 21 stores machining programs. The machining program includes at least one of a turning machining program and a milling program. The machining program includes, for example, a machining program for a workpiece having tangent discontinuities.
 図3は、接線不連続点を含むワークの一例を示す図である。なお、図3は、Z軸のプラス方向から見たワークWであり、ワークWはZ軸に沿って形状が変化しないものとする。ワークWは、平面で構成される第1のワーク表面f1と、第1のワーク表面f1の一端から延びる凹曲面で構成される第2のワーク表面f2と、第2のワーク表面f2の一端から第1のワーク表面f1の他端まで延びる凸曲面で構成される第3のワーク表面f3とを有する。 FIG. 3 is a diagram showing an example of a work including tangent discontinuity points. 3 shows the work W viewed from the positive direction of the Z axis, and the shape of the work W does not change along the Z axis. The work W has a first work surface f1 that is flat, a second work surface f2 that is a concave curved surface extending from one end of the first work surface f1, and a surface that extends from one end of the second work surface f2. and a third work surface f3 formed of a convex curved surface extending to the other end of the first work surface f1.
 ここで、第1のワーク表面f1と第2のワーク表面f2とが交差して生じる交線が接線不連続点の集合である。また、第2のワーク表面f2と第3のワーク表面f3とが交差して生じる交線が接線不連続点の集合である。また、第3のワーク表面f3と第1のワーク表面f1とが交差して生じる交線が接線不連続点の集合である。つまり、接線不連続点は、ワーク表面に接する接線の方向が不連続で変化する点である。 Here, the line of intersection between the first work surface f1 and the second work surface f2 is a set of discontinuous tangent points. A line of intersection between the second work surface f2 and the third work surface f3 is a set of discontinuous tangent points. A line of intersection between the third work surface f3 and the first work surface f1 is a set of discontinuous tangent points. In other words, the discontinuous point of the tangent line is a point where the direction of the tangent line in contact with the work surface changes discontinuously.
 図3において接線不連続点は、第1のワーク表面f1を示す線と第2のワーク表面f2を示す線とが交わる第1の点c1、第2のワーク表面f2を示す線と第3のワーク表面f3を示す線とが交わる第2の点c2、および第3のワーク表面f3を示す線と第1のワーク表面f1を示す線とが交わる第3の点c3である。 In FIG. 3, the tangent discontinuity points are the first point c1 where the line indicating the first work surface f1 and the line indicating the second work surface f2 intersect, the line indicating the second work surface f2 and the third point c1. A second point c2 where the line indicating the work surface f3 intersects, and a third point c3 where the line indicating the third work surface f3 and the line indicating the first work surface f1 intersect.
 算出部22は、加工プログラムを解析して工具の移動経路を算出する。また、算出部22は、ワーク表面に対する工具の相対姿勢を算出する。相対姿勢は、例えば、ワーク表面と工具の長手方向に延びる直線とが交わる角度で表すことができる。 The calculation unit 22 analyzes the machining program and calculates the movement path of the tool. The calculation unit 22 also calculates the relative posture of the tool with respect to the work surface. The relative posture can be represented, for example, by the angle at which the work surface intersects with a straight line extending in the longitudinal direction of the tool.
 図3に示すワークWの第1のワーク表面f1が加工される場合、算出部22は、例えば、第1のワーク表面f1と工具の刃が垂直に接するように、加工中における工具の第1のワーク表面f1に対する相対姿勢を算出する。第2のワーク表面f2が加工される場合、算出部22は、第2のワーク表面f2に接する接平面と工具の刃とが垂直に接するように、加工中における工具の第2のワーク表面f2に対する相対姿勢を算出する。第3のワーク表面f3が加工される場合、算出部22は、第3のワーク表面f3に接する接平面と工具の刃とが垂直に接するように、加工中における工具の第3のワーク表面f3に対する相対姿勢を算出する。 When the first work surface f1 of the work W shown in FIG. 3 is to be machined, the calculator 22 calculates the first surface of the tool during machining so that, for example, the first work surface f1 and the blade of the tool are in vertical contact with each other. relative to the work surface f1. When the second work surface f2 is to be machined, the calculator 22 calculates the second work surface f2 of the tool during machining so that the tangential plane in contact with the second work surface f2 and the blade of the tool are perpendicular to each other. Calculate the relative attitude to When the third work surface f3 is machined, the calculation unit 22 calculates the third work surface f3 of the tool during machining so that the tangential plane in contact with the third work surface f3 and the blade of the tool are perpendicular to each other. Calculate the relative attitude to
 特定部23は、算出部22によって算出された移動経路に含まれる接線不連続点の位置を特定する。特定部23は、例えば、接線不連続点の座標値を特定する。 The identifying unit 23 identifies the positions of discontinuous tangent points included in the movement route calculated by the calculating unit 22 . The identifying unit 23 identifies, for example, the coordinate values of the discontinuous tangent points.
 指令生成部24は、ワーク表面に対して工具が所定の相対姿勢を維持しながら、移動経路上を移動するための指令を生成する。ワーク表面に対する工具の相対姿勢は、例えば、工具の位置とC軸の回転角度を制御することにより、所定の相対姿勢に維持される。 The command generation unit 24 generates commands for moving the tool on the movement path while maintaining a predetermined relative posture with respect to the work surface. The relative posture of the tool with respect to the work surface is maintained at a predetermined relative posture, for example, by controlling the position of the tool and the rotation angle of the C-axis.
 図4は、ワークWの加工時におけるワーク表面に対する工具の相対姿勢の一例を説明する図である。なお、図4は、C軸が回転することによってワークWを旋削加工する例を示している。 FIG. 4 is a diagram illustrating an example of the relative posture of the tool with respect to the work surface during machining of the work W. Note that FIG. 4 shows an example in which the workpiece W is turned by rotating the C-axis.
 指令生成部24は、まず、位置決め点P0に工具Tを位置決めさせる指令を生成する。位置決め点P0は、例えば、第1の点c1と第3の点c3とを結ぶ直線上にあり、第3の点c3から第1の点c1とは反対方向に所定距離だけ離れた位置にある点である。 The command generator 24 first generates a command to position the tool T at the positioning point P0. The positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
 次に、指令生成部24は、位置決め点P0から第1の点c1に向かって切削送りで工具Tを移動させる指令を生成する。指令生成部24が生成した指令により、工具Tが第1のワーク表面f1を加工している間、工具Tが第1のワーク表面f1に対して垂直となる状態で維持される(図4の(1)参照)。つまり、ワークWの加工時にワーク表面に対する工具Tの相対姿勢が維持される。 Next, the command generator 24 generates a command to move the tool T from the positioning point P0 toward the first point c1 by cutting feed. While the tool T is machining the first work surface f1, the tool T is maintained perpendicular to the first work surface f1 according to the command generated by the command generation unit 24 (see FIG. 4). (1)). That is, the relative posture of the tool T with respect to the work surface is maintained during machining of the work W.
 工具Tが第1の点c1に到達すると、特定部23によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢と同じ相対姿勢になるように、指令生成部24は、接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢を指定する指令を生成する。ここで、接線不連続点は、第1の点c1である。また、第1の移動経路は第1のワーク表面f1を切削する経路、第2の移動経路は第2のワーク表面f2を切削する経路である。 When the tool T reaches the first point c1, the relative posture of the tool T is the same as the relative posture of the tool T with respect to the work surface on the first movement path with the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point. The command generation unit 24 generates a command specifying the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuity of the tangent line as the cutting start point. Here, the tangent line discontinuity point is the first point c1. The first moving path is a path for cutting the first work surface f1, and the second moving path is a path for cutting the second work surface f2.
 つまり、指令生成部24は、第1のワーク表面f1に対して工具Tが垂直に接する相対位置を指定する指令を生成した場合は、第2のワーク表面f2に対しても工具Tが垂直に接する相対位置を指定する指令を生成する。 That is, when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
 指令生成部24によって生成されるこの指令は、工具Tが接線不連続点の位置に配置された状態において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令である(図4の(2)、(3)および(4)参照)。指令生成部24によって生成されるこの指令は、工具Tの姿勢およびワークWの姿勢の少なくともいずれかを変化させる指令を含む。 This command generated by the command generating unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the second movement path in the state where the tool T is arranged at the position of the tangent discontinuity point. (2), (3) and (4) in FIG. 4). This command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
 指令生成部24は、例えば、所定の回転速度でC軸を反時計回りに回転させる指令、および、Z軸を中心としZ軸と第1の点c1との間の距離を半径とする円弧上をC軸の回転速度に合わせて工具Tを移動させる指令を生成する。 The command generation unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotational speed, and an arc centered on the Z-axis and having a radius equal to the distance between the Z-axis and the first point c1. to match the rotation speed of the C-axis to generate a command to move the tool T.
 指令生成部24は、第2のワーク表面f2に対して工具Tが垂直に接する相対姿勢になるまで、工具Tの位置を移動させ、かつ、C軸を回転させる指令を生成する。第2のワーク表面f2に対して工具Tが垂直に接する相対姿勢とは、工具Tと第1の点c1における接線とが垂直に接する、工具TのワークWに対する相対的な姿勢である。ここで、第1の点c1における接線とは、第1の点c1と第2のワーク表面f2を示す線上の任意の点とを結ぶ直線を想定した場合において、任意の点を第1の点c1まで移動させたときの直線である。 The command generation unit 24 generates a command to move the position of the tool T and rotate the C-axis until the relative posture of the tool T in vertical contact with the second work surface f2. The relative posture of the tool T in vertical contact with the second work surface f2 is the relative posture of the tool T with respect to the work W in which the tool T and the tangent line at the first point c1 are in vertical contact. Here, the tangential line at the first point c1 is assumed to be a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moved to c1.
 次に、指令生成部24は、第1の点c1から第2の点c2に向かって第2のワーク表面f2上を切削送りで工具Tを移動させる指令を生成する。工具Tが第2のワーク表面f2を加工している間、工具Tは第2のワーク表面f2に対して垂直となる状態で維持される(図4の(5)参照)。 Next, the command generator 24 generates a command to move the tool T from the first point c1 toward the second point c2 on the second work surface f2 by cutting feed. While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 4).
 以降同様に、指令生成部24は、工具Tが第2の点c2に到達した後に第2の点c2から第3の点c3に向かって第3のワーク表面f3上を切削送りで工具Tを移動させる指令を生成する。工具Tが第3のワーク表面f3を加工している間、工具Tが第3のワーク表面f3に対して垂直となる状態で維持される。 Similarly, after the tool T reaches the second point c2, the command generator 24 moves the tool T from the second point c2 to the third point c3 by cutting feed on the third work surface f3. Generate commands to move. While the tool T is machining the third work surface f3, the tool T is maintained perpendicular to the third work surface f3.
 制御部25は、指令生成部24によって生成された指令に基づいて、ワークWを加工する。すなわち、制御部25は、指令生成部24によって生成された指令に基づいて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御する。 The control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
 次に、接線不連続点を有するワークWが加工される際に、数値制御装置2で実行される処理の流れについて説明する。 Next, a description will be given of the flow of processing executed by the numerical controller 2 when the workpiece W having discontinuous tangent points is processed.
 図5は、接線不連続点を有するワークWが加工される際に、数値制御装置2で実行される処理の流れの一例を示すフローチャートである。 FIG. 5 is a flow chart showing an example of the flow of processing executed by the numerical controller 2 when a workpiece W having discontinuous tangent points is machined.
 数値制御装置2では、まず、算出部22がプログラム記憶部21に記憶された加工プログラムを読み込む(ステップS1)。 In the numerical controller 2, first, the calculation unit 22 reads the machining program stored in the program storage unit 21 (step S1).
 次に、算出部22が加工プログラムを解析して工具Tの移動経路を算出する(ステップS2)。さらに、算出部22は、ワーク表面に対する工具Tの相対姿勢を算出する。 Next, the calculation unit 22 analyzes the machining program and calculates the movement path of the tool T (step S2). Further, the calculator 22 calculates the relative orientation of the tool T with respect to the work surface.
 次に、特定部23が、算出部22によって算出された移動経路に含まれる接線不連続点の位置を特定する(ステップS3)。 Next, the specifying unit 23 specifies the positions of discontinuous tangent points included in the moving route calculated by the calculating unit 22 (step S3).
 次に、指令生成部24が、ワーク表面に対して工具Tが所定の相対姿勢を維持しながら、移動経路上を移動するための指令を生成する(ステップS4)。また、指令生成部24は、特定部23によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢と同じ相対姿勢になるように、接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢を指定する指令を生成する。 Next, the command generation unit 24 generates a command for moving the tool T along the movement path while maintaining a predetermined relative posture with respect to the work surface (step S4). In addition, the command generating unit 24 sets the position of the discontinuous tangential line specified by the specifying unit 23 to the same relative posture as the relative posture of the tool T with respect to the work surface on the first movement path having the cutting end point. , a command specifying the relative attitude of the tool T with respect to the work surface on the second movement path with the position of the discontinuity of the tangent line as the cutting start point.
 次に、制御部25が、指令生成部24によって生成された指令に基づいて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御してワークWの加工を行い(ステップS5)、処理を終了する。 Next, based on the command generated by the command generation unit 24, the control unit 25 controls the X-axis servomotor 5, Y-axis servomotor 6, Z-axis servomotor 7, C-axis servomotor 8, and The spindle motor 10 is controlled to process the workpiece W (step S5), and the process is terminated.
 以上説明したように、数値制御装置2は、加工プログラムを解析して工具Tの移動経路を算出する算出部22と、算出部22によって算出された移動経路に含まれる接線不連続点の位置を特定する特定部23と、特定部23によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢と同じ相対姿勢になるように、接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢を指定する指令を生成する指令生成部24と、を備える。また、指令生成部24が生成する指令は、工具Tが接線不連続点の位置に配置された状態において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令である。また、指令生成部24が生成する指令は、工具Tの姿勢およびワークWの姿勢の少なくともいずれかを変化させる指令を含む。 As described above, the numerical control device 2 includes the calculation unit 22 that analyzes the machining program to calculate the movement path of the tool T, and the positions of the discontinuous tangential points included in the movement path calculated by the calculation unit 22. and the position of the discontinuous tangential line specified by the specifying unit 23, and the relative posture of the tool T with respect to the work surface on the first movement path having the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point. and a command generation unit 24 for generating a command specifying the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuity of the tangent line as the cutting start point. Further, the command generated by the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the position of the tool T on the second movement path when the tool T is arranged at the position of the discontinuous tangent line. It is a command to change the relative posture of the tool T with respect to the work surface in . Also, the command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
 したがって、数値制御装置2は、接線不連続点を有するワークWの加工において、接線不連続点の前後で工具Tとワーク表面との相対姿勢を維持することができる。そのため、数値制御装置2は、接線不連続点を有するワークWを高品質に加工することができる。また、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令を自動生成するため、加工プログラムでそのような動作を指令する必要がなく、加工経路を指令するだけで所望の加工を実現することができる。 Therefore, the numerical control device 2 can maintain the relative posture between the tool T and the work surface before and after the discontinuous point of the tangent line when machining the workpiece W having the discontinuous point of the tangent line. Therefore, the numerical control device 2 can process the workpiece W having discontinuous tangential points with high quality. In order to automatically generate a command for changing the relative posture of the tool T with respect to the work surface on the first movement path to the relative posture of the tool T with respect to the work surface on the second movement path, such an operation is performed by the machining program. desired machining can be achieved simply by instructing the machining path.
 上述した実施形態では、加工中に工具Tとワーク表面とが垂直に接する状態で維持される例について説明したが、工具Tとワーク表面とは垂直に接しなくてもよい。例えば、工具Tとワーク表面とが85°、95°などの角度で接した状態で維持されるようにしてもよい。 In the above-described embodiment, the example in which the tool T and the work surface are maintained in perpendicular contact during machining has been described, but the tool T and the work surface do not have to be in perpendicular contact. For example, the tool T and the work surface may be kept in contact with each other at an angle of 85°, 95°, or the like.
 また、上述した実施形態では、指令生成部24は、工具Tが接線不連続点の位置に配置された状態において、ワーク表面に対する工具Tの相対姿勢を変化させる指令を生成する。しかし、指令生成部24は、工具Tが接線不連続点とは異なる位置において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令を生成してもよい。 In addition, in the above-described embodiment, the command generation unit 24 generates a command to change the relative posture of the tool T with respect to the work surface when the tool T is placed at the position of the discontinuous tangent line. However, the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the position of the tool T with respect to the work surface on the second movement path at a position different from the tangent discontinuity point. A command to change the relative posture may be generated.
 図6は、ワークWの加工時におけるワーク表面に対する工具Tの相対姿勢の一例を説明する図である。 FIG. 6 is a diagram illustrating an example of the relative posture of the tool T with respect to the work surface during machining of the work W.
 指令生成部24は、まず、位置決め点P0に工具Tを位置決めさせる指令を生成する。位置決め点P0は、例えば、第1の点c1と第3の点c3とを結ぶ直線上にあり、第3の点c3から第1の点c1とは反対方向に所定距離だけ離れた位置にある点である。 The command generator 24 first generates a command to position the tool T at the positioning point P0. The positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
 次に、指令生成部24は、位置決め点P0から第1の点c1に向かって切削送りで工具Tを移動させる指令を生成する。工具Tが第1のワーク表面f1を加工している間、工具Tが第1のワーク表面f1に対して垂直となる状態で維持される(図6の(1)参照)。 Next, the command generator 24 generates a command to move the tool T from the positioning point P0 toward the first point c1 by cutting feed. While the tool T is processing the first work surface f1, the tool T is maintained in a state perpendicular to the first work surface f1 (see (1) in FIG. 6).
 工具Tが第1の点c1に到達すると、指令生成部24は、特定部23によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢と同じ相対姿勢になるように、接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢を指定する指令を生成する。 When the tool T reaches the first point c1, the command generation unit 24 causes the tool T to move toward the workpiece surface on the first movement path with the position of the discontinuous tangential line identified by the identification unit 23 as the cutting end point. A command is generated that designates the relative posture of the tool T with respect to the work surface on the second movement path with the position of the discontinuous tangent line as the cutting start point so that the relative posture is the same as the relative posture.
 つまり、指令生成部24は、第1のワーク表面f1に対して工具Tが垂直に接する相対位置を指定する指令を生成した場合は、第2のワーク表面f2に対しても工具Tが垂直に接する相対位置を指定する指令を生成する。 That is, when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
 指令生成部24によって生成されるこの指令は、工具Tが接線不連続点から離れた位置において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令である(図6の(2)、(3)および(4)参照)。指令生成部24によって生成されるこの指令は、工具Tの姿勢およびワークWの姿勢の少なくともいずれかを変化させる指令を含む。 This command generated by the command generator 24 changes the relative attitude of the tool T with respect to the work surface on the first movement path to the work surface on the second movement path at a position where the tool T is separated from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to (see (2), (3) and (4) in FIG. 6). This command generated by the command generation unit 24 includes a command to change at least one of the attitude of the tool T and the attitude of the work W.
 指令生成部24は、例えば、所定の回転速度でC軸を反時計回りに回転させる指令、および、C軸の回転に合わせて第1の点c1における接線上であってワークWの半径方向外側に工具Tを移動させ、その後、C軸の回転に合わせてワークWの半径方向内側に工具Tを移動させる指令を生成する。つまり、指令生成部24は、工具Tを第1の点c1から一旦離して相対姿勢を変化させ、その後、第2のワーク表面f2に対して工具Tが垂直に接する相対姿勢となるように、工具Tを第1の点c1に接触させる指令を生成する。 The command generating unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotational speed, and a command to rotate the C-axis counterclockwise on the tangential line at the first point c1 and radially outward of the workpiece W in accordance with the rotation of the C-axis. , and then generate a command to move the tool T radially inward of the workpiece W in accordance with the rotation of the C-axis. In other words, the command generation unit 24 temporarily separates the tool T from the first point c1 to change the relative posture, and then changes the relative posture so that the tool T is in vertical contact with the second work surface f2. A command is generated to bring the tool T into contact with the first point c1.
 第2のワーク表面f2に対して工具Tが垂直に接する相対姿勢とは、工具Tと第1の点c1における接線とが垂直に接する、工具TのワークWに対する相対的な姿勢である。ここで、第1の点c1における接線とは、第1の点c1と第2のワーク表面f2を示す線上の任意の点とを結ぶ直線を想定した場合において、任意の点を第1の点c1まで移動させたときの直線である。 The relative posture of the tool T in vertical contact with the second work surface f2 is the relative posture of the tool T with respect to the work W in which the tool T and the tangent line at the first point c1 are in vertical contact. Here, the tangential line at the first point c1 is assumed to be a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moved to c1.
 次に、指令生成部24は、第1の点c1から第2の点c2に向かって第2のワーク表面f2上を切削送りで工具Tを移動させる指令を生成する。工具Tが第2のワーク表面f2を加工している間、工具Tが第2のワーク表面f2に対して垂直となる状態で維持される(図6の(5)参照)。 Next, the command generator 24 generates a command to move the tool T from the first point c1 toward the second point c2 on the second work surface f2 by cutting feed. While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 6).
 以降同様に、指令生成部24は、工具Tが第2の点c2に到達した後に第2の点c2から第3の点c3に向かって第3のワーク表面f3上を切削送りで工具Tを移動させる指令を生成する。工具Tが第3のワーク表面f3を加工している間、工具Tが第3のワーク表面f3に対して垂直となる状態で維持される。 Similarly, after the tool T reaches the second point c2, the command generator 24 moves the tool T from the second point c2 to the third point c3 by cutting feed on the third work surface f3. Generate commands to move. While the tool T is machining the third work surface f3, the tool T is maintained perpendicular to the third work surface f3.
 制御部25は、指令生成部24によって生成された指令に基づいて、ワークWを加工する。すなわち、制御部25は、指令生成部24によって生成された指令に基づいて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御する。 The control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
 上述した実施形態では、指令生成部24は、工具Tを接線不連続点で停止させ、その後、工具Tを接線不連続点から離す動作をさせる指令を生成する。しかし、指令生成部24は、工具Tを接線不連続点で停止させずに通過させる指令を生成してもよい。 In the above-described embodiment, the command generation unit 24 generates a command to stop the tool T at the point of discontinuity of the tangent line, and then move the tool T away from the point of discontinuity of the tangent line. However, the command generator 24 may generate a command to pass the tool T without stopping at the discontinuous tangent point.
 図7は、ワークWの加工時におけるワーク表面に対する工具Tの相対姿勢の一例を説明する図である。 FIG. 7 is a diagram explaining an example of the relative posture of the tool T with respect to the surface of the work W when the work W is machined.
 指令生成部24は、まず、位置決め点P0に工具Tを位置決めさせる指令を生成する。位置決め点P0は、例えば、第1の点c1と第3の点c3とを結ぶ直線上にあり、第3の点c3から第1の点c1とは反対方向に所定距離だけ離れた位置にある点である。 The command generator 24 first generates a command to position the tool T at the positioning point P0. The positioning point P0 is, for example, on a straight line connecting the first point c1 and the third point c3, and is located at a predetermined distance from the third point c3 in the direction opposite to the first point c1. It is a point.
 次に、指令生成部24は、位置決め点P0から目標点P1に向かって工具Tを切削送りで移動させる指令を生成する。ここで、目標点P1とは、位置決め点P0と第1の点c1とを結ぶ直線上の点であって第1の点c1から第3の点c3とは反対側に所定距離だけ離れた位置にある点である。工具Tが第1のワーク表面f1を加工している間、工具Tが第1のワーク表面f1に対して垂直となる状態で維持される(図7の(1)参照)。つまり、ワークWの加工時にワーク表面に対する工具Tの相対姿勢が維持される。 Next, the command generator 24 generates a command to move the tool T from the positioning point P0 toward the target point P1 by cutting feed. Here, the target point P1 is a point on a straight line connecting the positioning point P0 and the first point c1, and is a position away from the first point c1 by a predetermined distance on the opposite side of the third point c3. It is a point in While the tool T is machining the first work surface f1, the tool T is maintained perpendicular to the first work surface f1 (see (1) in FIG. 7). That is, the relative posture of the tool T with respect to the work surface is maintained during machining of the work W.
 工具Tが目標点P1に到達すると、指令生成部24は、特定部23によって特定された接線不連続点の位置を切削終了点とする第1の移動経路上における第1のワーク表面f1に対する工具Tの相対姿勢と同じ相対姿勢になるように、接線不連続点の位置を切削開始点とする第2の移動経路上における第2のワーク表面f2に対する工具Tの相対姿勢を指定する指令を生成する。 When the tool T reaches the target point P1, the command generation unit 24 moves the tool to the first work surface f1 on the first movement path with the position of the tangent discontinuity specified by the specifying unit 23 as the cutting end point. A command is generated that specifies the relative posture of the tool T with respect to the second work surface f2 on the second movement path with the position of the discontinuous tangent point as the cutting start point so that the relative posture of the tool T is the same as the relative posture of T. do.
 つまり、指令生成部24は、第1のワーク表面f1に対して工具Tが垂直に接する相対位置を指定する指令を生成した場合は、第2のワーク表面f2に対しても工具Tが垂直に接する相対位置を指定する指令を生成する。 That is, when the command generating unit 24 generates a command specifying a relative position where the tool T is in contact with the first work surface f1 perpendicularly, the tool T is also perpendicular to the second work surface f2. Generate a command that specifies the relative position of contact.
 指令生成部24によって生成されるこの指令は、工具Tが接線不連続点とは異なる位置において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令である(図7の(2)、(3)および(4)参照)。 This command generated by the command generation unit 24 changes the relative attitude of the tool T with respect to the work surface on the first movement path to the work surface on the second movement path at a position where the tool T is different from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to (see (2), (3) and (4) in FIG. 7).
 指令生成部24は、例えば、所定の回転速度でC軸を反時計回りに回転させる指令を生成する。指令生成部24は、さらに、C軸の回転に合わせて工具Tを目標点P2まで移動させる指令を生成する。ここで、目標点P2は、第1の点c1における接線上の点であって、第1の点c1からワークWの半径方向外側に所定距離だけ離れた点である。また、第1の点c1における接線とは、第1の点c1と第2のワーク表面f2を示す線上の任意の点とを結ぶ直線を想定した場合において、任意の点を第1の点c1まで移動させたときの直線である。 The command generation unit 24 generates, for example, a command to rotate the C-axis counterclockwise at a predetermined rotation speed. The command generator 24 further generates a command to move the tool T to the target point P2 in accordance with the rotation of the C axis. Here, the target point P2 is a point on the tangential line to the first point c1 and is a point a predetermined distance away from the first point c1 to the outside in the radial direction of the workpiece W. As shown in FIG. The tangent line at the first point c1 is a straight line connecting the first point c1 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moving to
 次に、指令生成部24は、目標点P2から第1の点c1まで工具Tを移動させ、さらに、第1の点c1から目標点P3に向かって第2のワーク表面f2上を切削送りで工具Tを移動させる指令を生成する。ここで、目標点P3は、第2の点c2における接線上の点であって、第2の点c2からワークWの半径方向外側に所定距離だけ離れた点である。また、第2の点c2における接線とは、第2の点c2と第2のワーク表面f2を示す線上の任意の点とを結ぶ直線を想定した場合において、任意の点を第2の点c2まで移動させたときの直線である。工具Tが第2のワーク表面f2を加工している間、工具Tが第2のワーク表面f2に対して垂直となる状態で維持される(図7の(5)参照)。 Next, the command generator 24 moves the tool T from the target point P2 to the first point c1, and furthermore, feeds the tool T from the first point c1 toward the target point P3 on the second workpiece surface f2. A command to move the tool T is generated. Here, the target point P3 is a point on the tangential line to the second point c2, and is a point a predetermined distance away from the second point c2 to the outside in the radial direction of the workpiece W. As shown in FIG. The tangent line at the second point c2 is a straight line connecting the second point c2 and an arbitrary point on the line indicating the second work surface f2. It is a straight line when moving to While the tool T is machining the second work surface f2, the tool T is maintained perpendicular to the second work surface f2 (see (5) in FIG. 7).
 以降同様に、指令生成部24は、目標点P3から次の目標となる点に向かって工具Tを移動させる指令を生成する。 Thereafter, similarly, the command generation unit 24 generates a command to move the tool T from the target point P3 toward the next target point.
 制御部25は、指令生成部24によって生成された指令に基づいて、ワークWを加工する。すなわち、制御部25は、指令生成部24によって生成された指令に基づいて、X軸用サーボモータ5、Y軸用サーボモータ6、Z軸用サーボモータ7、C軸用サーボモータ8、およびスピンドルモータ10を制御する。 The control unit 25 processes the workpiece W based on the command generated by the command generation unit 24. That is, the control unit 25 controls the X-axis servomotor 5, the Y-axis servomotor 6, the Z-axis servomotor 7, the C-axis servomotor 8, and the spindle based on the command generated by the command generation unit 24. to control the motor 10;
 以上説明したように、指令生成部24が生成する指令は、工具Tが接線不連続点とは異なる位置において、第1の移動経路上におけるワーク表面に対する工具Tの相対姿勢を第2の移動経路上におけるワーク表面に対する工具Tの相対姿勢に変化させる指令である。したがって、接線不連続点に工具Tが配置された状態でワーク表面に対する工具Tの相対姿勢が変化する場合と比較して、接線不連続点付近が高精度に加工される。また、工具Tの相対姿勢を変化させる際の工具Tにかかる切削負荷を小さくすることができるため、工具Tの損傷を防止することができる。 As described above, the command generated by the command generation unit 24 changes the relative posture of the tool T with respect to the work surface on the first movement path to the second movement path at a position where the tool T is different from the tangent discontinuity point. It is a command to change the relative posture of the tool T with respect to the work surface above. Therefore, the vicinity of the discontinuous tangent line can be machined with high accuracy compared to the case where the relative posture of the tool T with respect to the surface of the workpiece changes while the tool T is placed at the discontinuous tangent line. Moreover, since the cutting load applied to the tool T when changing the relative posture of the tool T can be reduced, damage to the tool T can be prevented.
 なお、工具Tが接線不連続点に配置された状態で、ワーク表面に対する工具Tの相対姿勢を変化させるか、工具Tが接線不連続点とは異なる位置においてワーク表面に対する工具Tの相対姿勢を変化させるかは、例えば、加工プログラムで指定できるようにしてもよい。 The relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity. Whether or not to change may be designated by a machining program, for example.
 また、工具Tが接線不連続点に配置された状態で、ワーク表面に対する工具Tの相対姿勢を変化させるか、工具Tが接線不連続点とは異なる位置においてワーク表面に対する工具Tの相対姿勢を変化させるかは、固定サイクル指令の種類に応じて決定してもよい。例えば、荒加工用固定サイクルでは、工具Tが接線不連続点に配置された状態で、ワーク表面に対する工具Tの相対姿勢を変化させるようにしてもよい。また、仕上げ加工用固定サイクルでは、工具Tが接線不連続点とは異なる位置においてワーク表面に対する工具Tの相対姿勢を変化させるようにしてもよい。 Alternatively, the relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity. Whether to change may be determined according to the type of fixed cycle command. For example, in the rough machining canned cycle, the relative posture of the tool T with respect to the work surface may be changed while the tool T is positioned at the discontinuity of the tangential line. Further, in the finishing canned cycle, the relative posture of the tool T with respect to the work surface may be changed at a position different from the point of discontinuity of the tangential line.
 また、工具Tが接線不連続点に配置された状態で、ワーク表面に対する工具Tの相対姿勢を変化させるか、工具Tが接線不連続点とは異なる位置においてワーク表面に対する工具Tの相対姿勢を変化させるかは、作業者が、例えば、所定のパラメータを設定することによって選択できるようにしてもよい。この場合、数値制御装置2は、さらに、受付部26を備え、受付部26は、工具Tが接線不連続点に配置された状態で、ワーク表面に対する工具Tの相対姿勢を変化させるか、工具Tが接線不連続点とは異なる位置においてワーク表面に対する工具Tの相対姿勢を変化させるかを示す情報を受け付ける(図8参照)。 Alternatively, the relative posture of the tool T with respect to the work surface is changed while the tool T is placed at the tangent discontinuity, or the relative posture of the tool T with respect to the work surface is changed at a position different from the tangent discontinuity. Whether or not to change may be selected by the operator, for example, by setting a predetermined parameter. In this case, the numerical control device 2 further includes a receiving section 26, and the receiving section 26 changes the relative posture of the tool T with respect to the work surface or Information is received indicating whether T changes the relative orientation of the tool T with respect to the work surface at a location other than the tangent discontinuity (see FIG. 8).
 上述した実施形態では、指令生成部24は、工具Tの位置を移動させるとともに、C軸を回転させることによってワーク表面に対する工具Tの相対姿勢を制御する指令を生成する。したがって、制御部25は、工具Tの位置とともに、ワークWの姿勢を変化させることによりワーク表面に対する工具Tの相対姿勢を制御する。しかし、指令生成部24は、工具Tの位置とともに、工具Tの姿勢を制御してワーク表面に対する工具Tの相対姿勢を指定する指令を生成してもよい。例えば、指令生成部24は、A軸を回転させることによりワーク表面に対する工具の相対姿勢を指定する指令を生成するようにしてもよい。 In the above-described embodiment, the command generation unit 24 moves the position of the tool T and generates a command to control the relative posture of the tool T with respect to the work surface by rotating the C-axis. Therefore, the controller 25 changes the position of the tool T and the attitude of the work W, thereby controlling the relative attitude of the tool T with respect to the surface of the work. However, the command generator 24 may control the position of the tool T as well as the attitude of the tool T to generate a command specifying the relative attitude of the tool T with respect to the work surface. For example, the command generator 24 may generate a command specifying the relative attitude of the tool with respect to the work surface by rotating the A-axis.
 上述した実施形態では、工具Tが旋削工具である場合の例について説明したが、工具Tはミリング工具であってもよい。 In the above-described embodiment, an example in which the tool T is a turning tool has been described, but the tool T may be a milling tool.
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本開示では、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 It should be noted that the present disclosure is not limited to the above embodiments, and can be modified as appropriate without departing from the scope. In the present disclosure, modification of any component of the embodiment or omission of any component of the embodiment is possible.
  1     工作機械
  2     数値制御装置
  201   ハードウェアプロセッサ
  202   バス
  203   ROM
  204   RAM
  205   不揮発性メモリ
  206   インタフェース
  207   軸制御回路
  208   スピンドル制御回路
  209   PLC
  210   I/Oユニット
  21    プログラム記憶部
  22    算出部
  23    特定部
  24    指令生成部
  25    制御部
  26    受付部
  3     入出力装置
  4     サーボアンプ
  5     X軸用サーボモータ
  6     Y軸用サーボモータ
  7     Z軸用サーボモータ
  8     C軸用サーボモータ
  9     スピンドルアンプ
  10    スピンドルモータ
  11    補助機器
  c1    第1の点
  c2    第2の点
  c3    第3の点
  f1    第1のワーク表面
  f2    第2のワーク表面
  f3    第3のワーク表面
  P0    位置決め点
  P1    目標点
  P2    目標点
  T     工具
  W     ワーク
1 machine tool 2 numerical controller 201 hardware processor 202 bus 203 ROM
204 RAMs
205 non-volatile memory 206 interface 207 axis control circuit 208 spindle control circuit 209 PLC
210 I/O unit 21 program storage unit 22 calculation unit 23 identification unit 24 command generation unit 25 control unit 26 reception unit 3 input/output device 4 servo amplifier 5 X-axis servomotor 6 Y-axis servomotor 7 Z-axis servomotor 8 C-axis servo motor 9 Spindle amplifier 10 Spindle motor 11 Auxiliary device c1 First point c2 Second point c3 Third point f1 First workpiece surface f2 Second workpiece surface f3 Third workpiece surface P0 Positioning Point P1 Target point P2 Target point T Tool W Work

Claims (7)

  1.  加工プログラムを解析して工具の移動経路を算出する算出部と、
     前記算出部によって算出された前記移動経路に含まれる接線不連続点の位置を特定する特定部と、
     前記特定部によって特定された前記接線不連続点の位置を切削終了点とする第1の移動経路上におけるワーク表面に対する前記工具の相対姿勢と同じ相対姿勢になるように、前記接線不連続点の位置を切削開始点とする第2の移動経路上におけるワーク表面に対する前記工具の相対姿勢を指定する指令を生成する指令生成部と、
    を備える数値制御装置。
    a calculation unit that analyzes the machining program and calculates the movement path of the tool;
    a specifying unit that specifies positions of discontinuous points of tangential lines included in the movement path calculated by the calculating unit;
    The position of the discontinuous tangent line specified by the specifying unit is set so that the position of the discontinuous line of the tangent line is the same as the relative posture of the tool with respect to the work surface on the first movement path having the cutting end point. a command generation unit that generates a command specifying the relative posture of the tool with respect to the work surface on the second movement path with the position as the cutting start point;
    A numerical controller comprising
  2.  前記指令は、前記工具が前記接線不連続点の位置に配置された状態において、前記第1の移動経路上における前記ワーク表面に対する前記工具の前記相対姿勢を前記第2の移動経路上における前記ワーク表面に対する前記工具の前記相対姿勢に変化させる指令である請求項1に記載の数値制御装置。 The command changes the relative posture of the tool with respect to the work surface on the first movement path to the workpiece on the second movement path in a state where the tool is arranged at the position of the discontinuous tangential line. 2. A numerical controller according to claim 1, wherein the command is a command for changing the relative posture of the tool with respect to the surface.
  3.  前記指令は、前記工具が前記接線不連続点とは異なる位置において、前記第1の移動経路上における前記ワーク表面に対する前記工具の前記相対姿勢を前記第2の移動経路上における前記ワーク表面に対する前記工具の前記相対姿勢に変化させる指令である請求項1に記載の数値制御装置。 The command changes the relative attitude of the tool with respect to the work surface on the first movement path to the work surface on the second movement path at a position where the tool is different from the tangent discontinuity point. 2. The numerical controller according to claim 1, wherein the command is a command for changing the relative posture of the tool.
  4.  前記指令は、前記第1の移動経路の前記切削終了点における接線に沿って前記工具を移動させる指令を含む請求項3に記載の数値制御装置。 The numerical controller according to claim 3, wherein the command includes a command to move the tool along a tangent line at the cutting end point of the first movement path.
  5.  前記指令は、前記工具の姿勢およびワークの姿勢の少なくともいずれかを変化させる指令を含む請求項1~4のいずれか1項に記載の数値制御装置。 The numerical control device according to any one of claims 1 to 4, wherein the command includes a command to change at least one of the attitude of the tool and the attitude of the workpiece.
  6.  前記指令は、所定の軸を回転させる指令を含む請求項1~5のいずれか1項に記載の数値制御装置。 The numerical controller according to any one of claims 1 to 5, wherein the command includes a command to rotate a predetermined shaft.
  7.  前記工具が前記接線不連続点に配置された状態で、前記ワーク表面に対する前記工具の前記相対姿勢を変化させるか、あるいは、前記工具が前記接線不連続点とは異なる位置において前記ワーク表面に対する前記工具の前記相対姿勢を変化させるかを示す情報を受け付ける受付部をさらに備える請求項1~6のいずれか1項に記載の数値制御装置。 changing the relative attitude of the tool with respect to the work surface while the tool is located at the tangent discontinuity; The numerical controller according to any one of claims 1 to 6, further comprising a reception unit that receives information indicating whether to change the relative posture of the tool.
PCT/JP2021/029200 2021-08-05 2021-08-05 Numerical control device WO2023012990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029200 WO2023012990A1 (en) 2021-08-05 2021-08-05 Numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029200 WO2023012990A1 (en) 2021-08-05 2021-08-05 Numerical control device

Publications (1)

Publication Number Publication Date
WO2023012990A1 true WO2023012990A1 (en) 2023-02-09

Family

ID=85154498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029200 WO2023012990A1 (en) 2021-08-05 2021-08-05 Numerical control device

Country Status (1)

Country Link
WO (1) WO2023012990A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183557A (en) * 1990-11-15 1992-06-30 Toyota Motor Corp Control method for cutter feeding speed in nc machining
JPH054148A (en) * 1991-02-06 1993-01-14 Fanuc Ltd Method for preparing multi-shaft processing operation data
JP2001255920A (en) * 2000-03-09 2001-09-21 Mitsubishi Electric Corp Numerical control machine and numerical control method
JP2005157980A (en) * 2003-11-28 2005-06-16 Makino Milling Mach Co Ltd Machining method
JP2008186046A (en) * 2007-01-26 2008-08-14 Mitsubishi Heavy Ind Ltd Cutting path producing method, program, and apparatus
JP2013210926A (en) * 2012-03-30 2013-10-10 Bridgestone Corp Groove forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183557A (en) * 1990-11-15 1992-06-30 Toyota Motor Corp Control method for cutter feeding speed in nc machining
JPH054148A (en) * 1991-02-06 1993-01-14 Fanuc Ltd Method for preparing multi-shaft processing operation data
JP2001255920A (en) * 2000-03-09 2001-09-21 Mitsubishi Electric Corp Numerical control machine and numerical control method
JP2005157980A (en) * 2003-11-28 2005-06-16 Makino Milling Mach Co Ltd Machining method
JP2008186046A (en) * 2007-01-26 2008-08-14 Mitsubishi Heavy Ind Ltd Cutting path producing method, program, and apparatus
JP2013210926A (en) * 2012-03-30 2013-10-10 Bridgestone Corp Groove forming method

Similar Documents

Publication Publication Date Title
US8234958B2 (en) Toolholder
WO2011111088A1 (en) Numerical control device and control method of numerical control device
US9631632B2 (en) Impeller having blade having blade surface made up of line elements and method of machining the impeller
US20120065768A1 (en) Numerical controller and numerical control machining system
CN112068484B (en) Real-time interrupt processing method for CNC (computerized numerical control) system of numerical control machine tool
WO2023012990A1 (en) Numerical control device
US6163735A (en) Numerically controlled machine tool
JP5347421B2 (en) Numerical control device for NC and NC data analysis device
CN101893870B (en) Numerical value control device of four-shaft processor
JP2020003958A (en) Numerical control device
JP7007531B1 (en) Information processing equipment, machine tool control equipment, and computer programs
JPH11327624A (en) Numerical controller with feed speed controlling function
WO2023007662A1 (en) Numerical control device
US10564630B2 (en) Numerical controller
JP6836552B2 (en) Numerical control device
KR102641256B1 (en) Device for modifying axis shift of machine tool and method thereof
WO2023007664A1 (en) Inference device
JP6640822B2 (en) Numerical control unit
WO2023148986A9 (en) Control device and computer-readable storage medium
JPH05177480A (en) Controller of machining center equipped with automatic tool changer
WO2022102738A1 (en) Control device
WO2023162001A1 (en) Machining surface estimation device and computer-readable storage medium
WO2023127155A1 (en) Numerical control device, and computer-readable storage medium
WO2023276121A9 (en) Numerical control device
JP6919427B2 (en) Machine tools, machine tool control methods, and machine tool control programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE