WO2023011399A1 - 一种电池安全装置及集中式储能设备安全处理*** - Google Patents

一种电池安全装置及集中式储能设备安全处理*** Download PDF

Info

Publication number
WO2023011399A1
WO2023011399A1 PCT/CN2022/109385 CN2022109385W WO2023011399A1 WO 2023011399 A1 WO2023011399 A1 WO 2023011399A1 CN 2022109385 W CN2022109385 W CN 2022109385W WO 2023011399 A1 WO2023011399 A1 WO 2023011399A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
adsorption
cooling
chamber
gas
Prior art date
Application number
PCT/CN2022/109385
Other languages
English (en)
French (fr)
Inventor
刘毅
郑高峰
韩晓宇
雷政军
Original Assignee
陕西奥林波斯电力能源有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110883158.8A external-priority patent/CN113629306A/zh
Priority claimed from CN202110888172.7A external-priority patent/CN113629345A/zh
Priority claimed from CN202110888165.7A external-priority patent/CN113506932A/zh
Priority claimed from CN202110924025.0A external-priority patent/CN113571785A/zh
Priority claimed from CN202210473434.8A external-priority patent/CN114843645A/zh
Application filed by 陕西奥林波斯电力能源有限责任公司 filed Critical 陕西奥林波斯电力能源有限责任公司
Publication of WO2023011399A1 publication Critical patent/WO2023011399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the battery field, and in particular relates to a battery safety device and a centralized energy storage device safety processing system.
  • Lithium batteries have the characteristics of high voltage, large specific energy, and long charging and discharging life, and are widely used in many fields such as power and energy storage. Lithium batteries use lithium metal or lithium alloy as the negative electrode material and use non-aqueous electrolyte solution. During storage or circulation, the electrolyte will inevitably react with the positive active material and generate gas.
  • Patent CN109088109A discloses a safety battery, which includes a battery assembly and a safety airbag.
  • a collection airbag is provided at the pressure relief port of the battery assembly to collect the gas generated when the battery is thermally runaway, and then an inert gas is used to treat the thermal runaway gas. Dilute to make the mixed gas non-flammable.
  • the temperature resistance of the collecting air bag due to the high temperature of the gas ejected from the battery pressure relief port, there is a high requirement for the temperature resistance of the collecting air bag; in addition, once the large-capacity battery thermal runaway occurs, the amount of gas released is very large, and after passing through several After being diluted with twice the volume of inert gas, the airbag has a very large volume and complex structure, and the treatment of thermal runaway smoke is not thorough. Therefore, this method of collecting and diluting is not suitable for large-capacity batteries, but only for batteries with smaller capacities.
  • the lithium battery modules used in the energy storage field all adopt a modular protection mode.
  • a set of lithium battery modules is generally used to set up a set of heat dissipation protection units, and the protection after the thermal runaway of the lithium battery module also adopts a modular protection mode, so each lithium battery module
  • Each group needs to use a complete set of gas processing unit or fire protection system to deal with the gas processing problem after the thermal runaway of the lithium battery module.
  • the current processing method cannot take into account the surrounding lithium battery modules, which is likely to cause thermal runaway of a battery module.
  • the protective gas processing unit cannot solve the problem in time, it will cause its adjacent battery modules to also occur. Accidents such as combustion and explosion will affect the entire energy storage system; on the other hand, all battery modules are equipped with protective gas processing units after thermal runaway, which will also bear high economic costs.
  • Patent CN109671993A discloses an energy storage battery system.
  • the safety protection system injects flame retardant gas and/or retardant gas into the shell of the energy storage battery.
  • the flammable liquid prevents the battery from further reaction, thereby preventing the battery from burning and exploding.
  • the maintenance and regeneration system can be used to perform liquid replenishment, liquid replacement, and exhaust operations on a single or all energy storage batteries, thereby improving battery performance, prolonging battery life, and realizing energy storage battery maintenance and regeneration.
  • this patent belongs to the traditional fire extinguishing idea. When thermal runaway occurs, the fire extinguishing substance is released to the thermal runaway part of the battery pack. There is still a potential hazard of ignition to nearby battery packs.
  • the present application provides a battery safety device and a centralized energy storage equipment safety treatment system.
  • cooling chambers and/or adsorption chambers connected to the pressure relief port are arranged outside or inside the battery casing to effectively cool and/or adsorb the high-temperature mixed gas and high-temperature liquid generated in the battery.
  • the high-temperature mixed gas and high-temperature liquid enter the cooling chamber and/or adsorption chamber through the opened pressure relief port, the high-temperature liquid and most of the combustible and toxic gases, such as methane and carbon monoxide, are cooled and adsorbed, so that the concentration is greatly reduced and the residual The gas no longer has the ability to burn with oxygen, and finally it is safely evacuated through the one-way discharge valve at the end of the adsorption chamber.
  • this application also proposes a centralized energy storage equipment safety processing system.
  • This system detects and warns the danger of thermal runaway of the battery module in advance, and prevents the danger of high temperature released from the battery or battery box pressure relief port after thermal runaway.
  • the materials are collected in an orderly manner, guided to areas far away from battery modules that are not in danger, and processed in an orderly manner, and discharged in an orderly manner, thereby avoiding the damage of the entire energy storage system caused by a danger in one place.
  • a battery safety device including a cooling device and/or an adsorption device; the cooling device is arranged inside or outside the battery, connected to the battery pressure relief port, and used for cooling the battery or cooling the thermal runaway smoke discharged from the battery.
  • the adsorption device includes an adsorption chamber connected to the battery and a one-way pressure relief valve; the one-way pressure relief valve is connected to the upper end of the adsorption chamber through a first connecting pipe.
  • a buffer chamber and a multi-layer adsorption structure are provided in the adsorption chamber, and the multi-layer adsorption structure is arranged above the buffer chamber; the lower end of the buffer chamber is connected to the pressure relief port of the battery through a second connecting pipe.
  • the multi-layer adsorption structure includes an adsorption layer, a filter buffer layer arranged on both sides of the adsorption layer, and a metal mesh arranged outside the filter buffer layer.
  • the adsorption layer includes inorganic materials and organic materials; the inorganic materials and organic materials are mixed, or the inorganic materials and organic materials are layered.
  • the inorganic material is one or more of activated carbon, titanium oxide, graphite, aluminum oxide, clay mineral, silicate, phosphate, zeolite, magnesium oxide, silicon dioxide, porous glass, and the organic
  • the material is one or more of acrylic resin, cellulose acetate, polyethyleneimine, diacetylimide, sodium carboxylate, thiourea, sodium phenate, and benzidinediamine.
  • the filter buffer layer is double-layered with glass fiber wool and activated carbon wool, the thickness of the filter buffer layer is not less than 5 mm, and the thickness of the adsorption layer is not less than 20 mm.
  • the buffer chamber is trumpet-shaped, and an annular support part is provided between the buffer chamber and the multi-layer adsorption structure.
  • the cooling device includes a cooling chamber
  • the adsorption device includes an adsorption chamber
  • the cooling chamber communicates with the adsorption chamber
  • the cooling chamber is connected to the battery main body or the pressure relief port of the battery module, and the battery
  • the pressure relief port of the main body is sealed and isolated from the cooling cavity by a pressure relief film.
  • the cooling cavity is filled with a cooling material, and the cooling material is arranged in close contact with one or more outer surfaces of the battery body or the battery module.
  • the pressure relief port of the battery body or the battery module is arranged on a side away from the adsorption cavity.
  • a porous plate is provided between the cooling chamber and the adsorption chamber, the porous plate is one of porous metal mesh, porous metal plate, and inorganic fiber mesh, and the inorganic/organic fiber mesh is aluminum silicate fiber One or more of cotton, glass fiber wool, asbestos, and non-woven fabrics.
  • an exhaust port is provided on the adsorption chamber, and a moisture-proof film or a sealing film is provided on the exhaust port, or the exhaust port is connected to an exhaust pipe or an air bag.
  • the pressure relief membrane is a metal diaphragm.
  • the cooling cavity is filled with one or more combinations of ceramic balls, honeycomb ceramic sheets, porous ceramics, metal materials, and graphite rods
  • the adsorption cavity is filled with activated carbon, porous silica, molecular sieves, One or more combinations of porous ceramics and adsorbent resins.
  • the cooling device includes N cooling tanks, each cooling tank is filled with a cooling material, and N is an integer greater than or equal to 1;
  • the adsorption device includes M adsorption tanks, and each adsorption tank is filled with Adsorption material, M is an integer greater than or equal to 0;
  • N cooling tanks are connected in series, and the battery thermal runaway flue gas passes through multiple cooling tanks to reduce the temperature and flow; or, N cooling tanks and M adsorption tanks are selected Combined in series, the battery thermal runaway flue gas reduces the temperature and flow through the cooling tank, and is adsorbed through the adsorption tank.
  • N cooling tanks and M adsorption tanks are serially connected in series, so that the battery thermal runaway smoke reduces the temperature and flow through the cooling tanks, and then undergoes adsorption treatment through the adsorption tanks.
  • N cooling tanks and M adsorption tanks are linearly arranged in a row, or linearly arranged in a U shape, or linearly arranged in a V shape, or linearly arranged in an L shape.
  • each cooling tank is provided with X perforated plates, and two adjacent perforated plates form a cooling cavity with the inner wall of the cooling tank, and the cooling material is filled in part or all of the cooling cavity, and X is greater than or equal to An integer of 2;
  • each adsorption tank is provided with Y porous plates, and the two adjacent porous plates form an adsorption chamber with the inner wall of the adsorption tank, and the adsorption material is filled in part or all of the adsorption chambers, and Y is greater than An integer equal to 2.
  • the adjacent perforated plates are axially connected by connecting rods, and the cooling tank and the adsorption tank are provided with springs at the inlet section and/or outlet section of the battery thermal runaway smoke, and one end of the spring is limited by the porous plate. position, and the other end is limited by the elbow, which is used to compact and compact the cooling material and adsorption material, and has a buffering effect.
  • adjacent cooling tanks and/or adsorption tanks are connected in series through elbows, and a buffer return cavity is formed in the elbows through which the battery thermal runaway smoke passes.
  • the elbows are connected with the cooling tanks and adsorption tanks through flanges connect.
  • the cooling tank and the adsorption tank adopt circular tanks with good stress and pressure resistance
  • the cooling materials are ceramic balls, honeycomb ceramic bodies, silica, alumina, zirconia, oxide
  • One or more combinations of titanium, and the adsorption material is one or more combinations of activated carbon, graphite, alumina, montmorillonite, silicate, phosphate, and porous glass.
  • a gas collection bag is connected to the outlet of the last adsorption tank for collecting the treated battery thermal runaway smoke.
  • the application also provides a centralized energy storage device safety processing system, including an energy storage unit, a gas collection unit and a gas processing unit: the energy storage unit is at least one battery module or an energy storage container; the gas collection unit The unit includes a branch pipe connected to the energy storage unit, and a confluence pipe communicating with a plurality of the branch pipes, and the gas collection unit passes the branch pipe to the gas generated when the energy storage unit is thermally runaway The gas is collected and transported to the gas processing unit through the manifold for processing; the gas processing unit is the above-mentioned battery safety device, which is used to process the gas generated when the energy storage unit has thermal runaway.
  • branch pipeline communicates with the pressure relief port of the energy storage unit, and the other end communicates with the gas processing unit through a manifold.
  • a one-way valve is included, the one-way valve is arranged on each of the branch pipelines, and the one-way valve is a one-way liquid valve and/or a one-way gas valve, which only allows liquid or gas The unit flows in the direction of the gas processing unit.
  • a buffer tank is also included, and the buffer tank is arranged between the manifold and the gas processing unit.
  • a buffer isolation layer is also arranged in the cooling chamber, and an inert material layer is also arranged in the adsorption chamber.
  • a detection unit is also provided, and the detection unit includes a detection management system and a plurality of sensors, and the sensors are respectively arranged on the components that need to detect the working state in the energy storage unit, the gas collection unit, and the gas processing unit.
  • the sensors include temperature sensors, pressure sensors, infrared sensors, and video sensors.
  • control unit includes a control management system, and a control device connected to the control management system; the control device is connected to the gas collection unit and the gas processing unit; the The control management system is connected with the detection management system, and the alarm device is connected with the control management system.
  • This application provides a battery safety device.
  • the thermal runaway of the battery causes the pressure relief port to open, and various substances inside the battery are sprayed out, they first reach the cooling cavity and are sprayed by the cooling material in the cooling cavity. Cool down the material, so that part of the solid particles in the sprayed material and the gasified electrolyte re-condense, and cool down the gaseous material to create conditions for the adsorption of combustible gases in the subsequent sprayed material, and because this application uses physical cooling
  • the adsorption material filled in the adsorption cavity can adsorb the combustible gas, liquid and solid substances that have been cooled in the cooling cavity, thereby greatly reducing the amount of combustible gas and the total amount of gas discharged into the environment.
  • the temperature of the combustible gas in the gas discharged after passing through the cooling chamber and the adsorption chamber can be reduced below its autoignition point, and the gas concentration can be reduced below its explosion limit.
  • the small amount of gas discharged into the environment can achieve the effect of colorless, odorless and non-combustible, thereby avoiding secondary disasters such as explosion and fire caused by thermal runaway of the battery, and reducing pollution of the environment.
  • the battery safety device of this application there is a buffer chamber in the adsorption chamber, which can slow down the release speed of high-pressure mixed gas and high-temperature liquid.
  • the upper part of the adsorption chamber is provided with a filter buffer layer, which is made of glass fiber cotton or activated carbon cotton. , glass fiber cotton has a certain heat insulation effect, activated carbon cotton can absorb the released high-temperature liquid, and at the same time, the filter buffer layer can also block solid impurities, delay the spraying speed of mixed gas, increase its contact time in the adsorption layer, and improve adsorption. Adsorption efficiency of materials for mixed gases.
  • the inorganic-organic mixed adsorption material can effectively adsorb carbon monoxide, carbon dioxide, methane, etc. in the mixed gas released from the battery.
  • the residual gas will not be absorbed by high temperature. Ignite for safe discharge, reducing the risk of fire in the event of lithium battery thermal runaway.
  • the cooling material in the battery box can cool the battery when the battery is working normally, which can prevent the risk of thermal runaway of the battery.
  • placing the cooling material in the battery box can effectively reduce the volume of the battery box and save costs.
  • any combination of N cooling tanks and M adsorption tanks can be connected in series, and the thermal runaway smoke of the battery can reduce the temperature and flow through the cooling tanks, and carry out adsorption treatment through the adsorption tanks, so that The flue gas has a longer journey, and the treatment of the battery thermal runaway fume is more thorough, ensuring that the gas coming out of the gas outlet is not combustible, which greatly improves its safety.
  • the temperature and flow rate of the flue gas can be reduced by passing the flue gas from the thermal runaway of the battery through the cooling chamber, thereby helping to increase the adsorption capacity of the flue gas by the rear adsorption chamber and ensuring that the gas coming out of the gas outlet It is not combustible, which improves the purification effect.
  • the service life of the adsorption device at the rear end is increased.
  • N cooling tanks and M adsorption tanks can be arranged according to the requirements of the installation space, and can be arranged in a row, U shape, V shape or L shape, etc. form, meet various installation requirements, and save space.
  • N cooling tanks and M adsorption tank shells are assembled through bent pipes, which makes their installation and disassembly easy, and is suitable for most existing single batteries and assembled batteries, and There is no need to change the structure of the existing battery, the processing cost is low, and the application range is wide.
  • the safety gas processing unit provided by this application can collect and guide the high-temperature dangerous substances discharged after the thermal runaway of large-capacity lithium battery packs or lithium battery modules in different areas and different specifications in an orderly manner, and orderly guide them away from uncontrolled Safe area for battery packs in case of thermal runaway. And a set of gas processing unit is set up in the safe area to cool, inert and discharge various high-temperature dangerous substances collected, so as to achieve the orderly collection of the discharged substances after the lithium battery thermal runaway of the lithium energy storage station, and effectively Sequential processing prevents the energy storage station from affecting other adjacent battery packs when thermal runaway occurs due to a dangerous battery pack.
  • the safe centralized gas processing unit provided by this application eliminates the need to equip each large-capacity battery pack or lithium battery module with a separate set of gas processing units, but only equips the entire energy storage station system with a set of centralized gas processing units.
  • the gas processing unit can greatly save the cost of the energy storage station.
  • FIG. 1 is a schematic diagram of the overall structure of the battery safety device in Embodiment 1 of the present application;
  • Fig. 2 is a schematic structural diagram of the adsorption chamber of the battery safety device in Example 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a battery safety device in Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a battery safety device in Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of a battery safety device in Embodiment 4 of the present application.
  • FIG. 6 is a cross-sectional view of the battery safety device in Embodiment 5 of the present application.
  • Fig. 7 is a cross-sectional view of the structure of the battery center column of the battery safety device in Example 5 of the present application;
  • Fig. 8 is a plane sectional view of the battery safety device in Embodiment 6 of the present application.
  • Fig. 9 is a three-dimensional cross-sectional view of the battery safety device in Embodiment 6 of the present application.
  • Fig. 10 is a plane sectional view of the battery safety device in Embodiment 7 of the present application.
  • Fig. 11 is a three-dimensional sectional view of the battery safety device in Embodiment 7 of the present application.
  • FIG. 12 is a schematic diagram of the battery safety device in Embodiment 8 of the present application.
  • Fig. 13 is a schematic structural diagram of a porous plate provided in the cooling tank in Example 8 of the present application.
  • FIG 14 is a schematic diagram of the battery safety device in Embodiment 9 of the present application.
  • Fig. 15 is a schematic structural diagram of a porous plate arranged in the adsorption tank in Example 9 of the present application.
  • FIG. 16 is a schematic diagram of a battery safety device in Embodiment 10 of the present application.
  • Fig. 17 is a schematic diagram of the connection between the battery safety device and the battery case in Embodiment 13 of the present application;
  • Fig. 18 is a schematic diagram of a centralized energy storage device safety processing system in Embodiment 14 of the present application.
  • the present application provides a battery safety device, including an adsorption chamber 12 connected to a battery (the battery is not completely drawn, only a cover plate with a pressure relief port is drawn) 14, and the adsorption chamber 12 a one-way pressure relief valve 11 connected to the upper end; wherein, the one-way pressure relief valve 11 is connected to the upper end of the adsorption chamber 12 through a first connecting pipe 111 .
  • the adsorption chamber 12 is provided with a buffer chamber 121 and a multi-layer adsorption structure, and the multi-layer adsorption structure is arranged above the buffer chamber 121 ; wherein, the lower end of the buffer chamber 121 is connected to the pressure relief port 15 of the battery 14 through the second connecting pipe 13 .
  • the second connecting pipe 13 and the pressure relief port 15, the first connecting pipe 111 and the adsorption chamber 12 are all connected by welding or threading; the material of the adsorption chamber 12 is stainless steel or aluminum.
  • the valve opening pressure of the one-way pressure relief valve 11 is set between 0.7-1.0 MPa, and different valve opening pressures can also be selected according to actual conditions.
  • the multilayer adsorption structure includes an adsorption layer 125 , filter buffer layers 124 disposed on both sides of the adsorption layer 125 , and metal mesh 123 disposed outside the filter buffer layer 124 .
  • the adsorption layer 125 includes inorganic materials and organic materials; wherein, the inorganic materials and organic materials are mixed or the inorganic materials and organic materials are layered.
  • the inorganic material is one or more of activated carbon, titanium oxide, graphite, aluminum oxide, clay mineral, silicate, phosphate, zeolite, magnesium oxide, silicon dioxide, and porous glass.
  • the organic material is one or more of acrylic resin, cellulose acetate, polyethyleneimine, diacetylimide, sodium carboxylate, thiourea, sodium phenate, and benzidine diamine.
  • the thickness of the adsorption layer 125 is not less than 20 mm, which can ensure that the high-temperature mixed gas can stay in the adsorption layer for a certain period of time, and ensure that the adsorption layer can fully adsorb combustible, toxic and harmful substances in the high-temperature mixed gas.
  • the filter buffer layer 124 is double-layered with glass fiber wool and activated carbon wool. It should be pointed out that the presence of the filter buffer layer 124 can block the solid impurities inside the battery, absorb high-temperature liquid, and at the same time weaken the speed of the high-temperature mixed gas, which can delay the contact time of the high-temperature mixed gas in the adsorption layer, and further Improve gas adsorption efficiency.
  • the thickness of the filter buffer layer 124 is not less than 5 mm, which can effectively block the solid impurities inside the battery, absorb high-temperature liquid, and at the same time weaken the velocity of the high-temperature mixed gas.
  • the metal mesh 123 is stainless steel or aluminum that does not react with the electrolyte, and the metal mesh 123 is respectively arranged on the upper part of the buffer chamber and the top of the adsorption chamber, and the metal mesh below plays a role of supporting the multi-layer adsorption structure.
  • the upper metal mesh is used to isolate the adsorbent material and prevent it from entering the one-way discharge valve.
  • the buffer chamber 121 can be trumpet-shaped, and can initially slow down the release speed of the high-temperature mixed gas and high-temperature liquid.
  • An annular support part 122 is provided between the buffer chamber 121 and the multi-layer adsorption structure for supporting the multi-layer adsorption structure.
  • This application can realize safe and effective adsorption treatment of high-temperature mixed gas and high-temperature liquid generated in the battery.
  • the high-temperature mixed gas and high-temperature liquid in the battery can pass through the opened
  • the filtered buffer layer and the adsorption layer absorb high-temperature liquid and most of the combustible and toxic gases, such as methane, carbon monoxide, etc., so that the concentration is greatly reduced, and the residual gas no longer has the ability to burn with oxygen. Capacity, and finally evacuate safely through the one-way discharge valve at the end of the adsorption chamber.
  • the present application also provides another battery safety device, the main body of the battery is provided with a pressure relief port, the battery safety device includes a cooling chamber for cooling the combustible substances produced by the thermal runaway battery, and an adsorption chamber for adsorbing harmful substances ;
  • the cooling chamber communicates with the adsorption chamber, and a porous plate is arranged between the cooling chamber and the adsorption chamber.
  • the cooling chamber is connected to the pressure relief port, and the pressure relief port is sealed and isolated from the cooling chamber by a pressure relief film.
  • the cooling chamber and the adsorption chamber can be arranged outside the battery, and the combustible substances generated by the thermal runaway of the battery are sprayed out of the battery body through the pressure relief port and enter the cooling chamber outside the battery, or the cooling chamber and the adsorption chamber can also be arranged at the center of the battery.
  • the combustible substances produced by the thermal runaway of the battery enter the cooling cavity at the center of the battery through the pressure relief port.
  • the above-mentioned porous plate is one of porous metal mesh, porous metal plate and inorganic fiber net.
  • An exhaust port is arranged on the adsorption chamber.
  • a moisture-proof film or a sealing film is provided on the exhaust port.
  • the exhaust port is externally connected with an exhaust pipe or an air bag.
  • the pressure relief membrane is a metal diaphragm.
  • the cooling cavity is filled with one or more combinations of ceramic balls, honeycomb ceramic sheets and graphite rods.
  • the composition of ceramic balls and honeycomb ceramic sheets is silicon carbide.
  • the adsorption chamber is filled with one or more combinations of activated carbon, porous silicon dioxide, molecular sieve, porous ceramics and adsorption resin.
  • the cooling material in the cooling chamber of the present application cools down the sprayed substances, so that the solid particles in the sprayed substances are blocked, the gasified electrolyte recondenses, and the gaseous substances cannot be condensed to cool down.
  • the combustible gas, liquid and solid substances cooled in the cooling chamber are adsorbed, making the substances discharged from the subsequent discharge port non-flammable, thus avoiding secondary disasters such as explosion and fire caused by thermal runaway of the battery.
  • the battery safety device provided in this embodiment is suitable for cylindrical large-capacity batteries, which mainly includes a cooling cavity 216 and an adsorption cavity 218, wherein the positive electrode 211 and the negative electrode 212 of the battery 213 are located on the same side of the top surface of the battery,
  • the pressure relief port 214 is located on the bottom shell of the cylindrical battery.
  • the pressure relief port 214 seals the battery into a closed structure through the pressure relief film 215.
  • the cooling cavity 216 is arranged on the bottom of the battery 213 and is adjacent to the outside of the pressure relief port 214.
  • the lower part of the chamber 216 is provided with an adsorption chamber 218, wherein a perforated plate 217 is provided between the cooling chamber 216 and the adsorption chamber 218, and a discharge port 219 is provided at the lower part of the adsorption chamber.
  • a perforated plate 217 is provided between the cooling chamber 216 and the adsorption chamber 218, and a discharge port 219 is provided at the lower part of the adsorption chamber.
  • Fill the cooling chamber with ⁇ 5mm ceramic balls, fill the adsorption chamber with X13 molecular sieve pellets, and paste a moisture-proof film on the bottom discharge port.
  • the thermal runaway smoke inside the battery will enter the cooling chamber through the pressure relief port, and the ceramic balls in the cooling chamber will cool it down, so that part of the solid particles and gas in the sprayed material
  • the decondensed electrolyte re-condenses, creating conditions for the adsorption of combustible gases and liquids in the subsequent discharge materials.
  • various substances in the cooling chamber enter the adsorption chamber after being cooled down, and all liquids and most combustible gases are adsorbed by the molecular sieve adsorbent in the adsorption chamber, and the unadsorbed small molecular gases such as nitrogen, di Nitrogen oxides, etc. are discharged through the exhaust port.
  • the various substances produced after the thermal runaway of the battery are cooled, adsorbed and then discharged without causing dangers such as explosion and fire.
  • the battery safety device provided by this embodiment is suitable for square large-capacity batteries, and it mainly includes a cooling cavity 226 and an adsorption cavity 228, wherein the positive electrode 221 and the negative electrode 222 of the battery 225 are located on the same side of the top surface of the battery, and the leakage
  • the pressure port 224 is located on the upper part of the side shell of the square battery.
  • the pressure relief port 224 seals the battery into a closed structure through the pressure relief film 225.
  • the cooling chamber 226 is arranged on the upper side of the battery and is adjacent to the outside of the pressure relief port 224.
  • the cooling chamber 226 The lower part is provided with an adsorption chamber 28, wherein a porous plate 227 is provided between the cooling chamber 226 and the adsorption chamber 228, and a discharge port 229 is provided at the lower part of the adsorption chamber.
  • the cooling chamber is filled with honeycomb ceramic body, the adsorption chamber is filled with cylindrical activated carbon pellets, and the sealing film is pasted on the discharge port at the bottom.
  • the battery safety device provided by this embodiment is suitable for a square large-capacity battery, which mainly includes a cooling cavity 236 and an adsorption cavity 238, wherein the positive pole 231 and the negative pole 232 of the battery 235 are located on the same side of the top surface of the battery, and the positive pole The negative pole is led out from the side of the cooling chamber through the pole adapter.
  • the pressure relief port 234 is located on the top surface of the square battery on the same side as the positive pole and the negative pole. The pressure relief port seals the battery into a closed structure through the pressure relief film 233.
  • the cooling chamber 236 is set on the top surface of the battery adjacent to the outside of the pressure relief port 234, the upper part of the cooling chamber is provided with an adsorption chamber 238, wherein a perforated plate 237 is provided between the cooling chamber 236 and the adsorption chamber 238, and a discharge port 239 is provided on the upper part of the adsorption chamber.
  • Exhaust pipe 2310 the mouth of the exhaust pipe is arranged in a safe zone away from combustibles, and the mouth of the exhaust pipe is blocked with a plug.
  • the cooling chamber is filled with graphite rods, and the adsorption chamber is filled with activated carbon powder.
  • this embodiment provides a battery safety device for a cylindrical large-capacity battery.
  • the structure of the positive electrode 241 , negative electrode 242 and wound battery 2411 of the cylindrical large-capacity battery 245 is shown in the figure.
  • the battery safety device is set on the center column of the cylindrical battery, and the bottom net is followed by the detonation hole 2410, the pressure relief port 244, the cooling cavity 246, the porous plate 247, the adsorption cavity 248, and the discharge port 249.
  • the pressure relief port 244 seals the battery into a closed structure through the pressure relief film 243.
  • the cooling chamber 246 is arranged on the upper part of the central column pressure relief port and immediately outside the pressure relief port 244.
  • the upper part of the cooling chamber 246 is provided with an adsorption chamber 248, wherein the cooling chamber 246 A porous plate 247 is arranged between the adsorption chamber 248, the porous plate is a porous fiber net, and a discharge port 249 is arranged on the upper part of the adsorption chamber.
  • the honeycomb ceramic body is filled in the cooling chamber, the cylindrical activated carbon pellets are filled in the adsorption chamber, and the sealing film is pasted on the discharge port on the upper part of the central column.
  • the pressure relief port at the bottom of the center column opens, and the thermal runaway smoke inside the battery will pass through the detonation hole in the lower part and enter the cooling chamber from the pressure relief port, and then enter the cooling chamber from the cooling chamber.
  • the ceramic ball cools it down, so that part of the solid particles in the sprayed material and the gasified electrolyte recondense, creating conditions for the subsequent adsorption of combustible gases and liquids in the sprayed material.
  • the present application also provides a battery safety device for the battery module.
  • the battery module is arranged in the battery box.
  • the battery safety device includes a cooling chamber connected to the pressure relief port of the battery module and an adsorption chamber connected to the cooling chamber; Wherein, both the cooling chamber and the adsorption chamber can be arranged inside or outside the battery box.
  • the cooling material in the battery box of this application can cool down the battery module when the battery is working normally. When a substance is sprayed outward, the cooling material in the cooling chamber cools down the sprayed substance, so that part of the solid particles in the sprayed substance and the gasified electrolyte are condensed again, and the gaseous substance is cooled for subsequent spraying. Create conditions for the adsorption of combustible gases in substances.
  • the cooling cavity when the cooling cavity is arranged inside the battery box, the cooling cavity covers the battery module; the cooling cavity can not only cool down the normal working battery module, but also cool down the high-temperature gas generated when the battery is thermally out of control.
  • the battery module can also be arranged inside the cooling cavity; the cooling material filled in the cooling cavity covers the battery module; the cooling material is arranged in close contact with one or more outer surfaces of the battery module.
  • the cooling material wraps the battery module.
  • the cooling material can not only cool down the normal working battery module, but also cool down the high-temperature gas generated when the battery is thermally out of control; placing the battery inside the adsorption chamber can further reduce the structure of the battery box.
  • the pressure relief port of the battery module is set on the side away from the adsorption chamber, that is, the distance between the through hole of the battery module entering the cooling chamber and the through hole of the cooling chamber entering the adsorption chamber is as large as possible, which helps the battery module The high-temperature gas generated by the group is effectively cooled by the cooling chamber.
  • the porous plate is one or more of porous metal mesh, porous metal plate, and inorganic/organic fiber mesh; the inorganic/organic fiber mesh is aluminum silicate fiber cotton, glass One or more of fiber cotton, asbestos, and non-woven fabrics.
  • the cooling material is one or more of ceramic balls, honeycomb ceramic sheets, porous ceramics, metal materials, and graphite rods; the composition of ceramic balls, honeycomb ceramic sheets, and porous ceramics is silicon carbide.
  • the adsorption cavity is filled with one or more of activated carbon, porous silica, molecular sieve, porous ceramics, alumina, zeolite, and adsorption resin.
  • the adsorption chamber is provided with an exhaust port, and the distance between the exhaust port and the porous plate between the cooling chamber and the adsorption chamber should be as far as possible, which will help the adsorption chamber to adsorb toxic and harmful substances in the gas;
  • the air port is provided with a moisture-proof film capable of sealing the adsorption cavity; the external exhaust port of the air port is connected with an exhaust pipe or an air bag.
  • the battery safety device provided in this embodiment is suitable for battery boxes with double rows of battery module pressure relief outlets arranged in reverse.
  • the battery module 324 is arranged in the battery box 321.
  • the battery safety device includes The cooling chambers 3251 and 3252, the adsorption chamber 326, and the cooling material in the battery box cover the battery modules in the battery box.
  • the pressure relief port 322 of the battery module is arranged in double rows facing the back, and separates two independent cooling chambers 3251 and 3252.
  • the adsorption chamber 326 is located on the upper part of the battery box and is adjacent to the cooling chambers 251 and 252 and passes through the porous plates 3281 and 3282.
  • the porous plate is a combination of porous metal mesh and glass fiber mesh
  • the cooling chamber is filled with ⁇ 5mm ceramic balls
  • the adsorption chamber is filled with X13 molecular sieve balls
  • the upper part of the cooling chamber is provided with a discharge port 327
  • the discharge pipe 329 is arranged on the discharge port, and the discharge pipe can be provided with an air bag or lead to a safe zone.
  • the cooling material in the battery box cools down the battery module.
  • the thermal runaway of the battery causes the pressure relief port to open, the thermal runaway smoke inside the battery module will enter the cooling chamber through the pressure relief port, and the cooling chamber will The ceramic ball in it cools down, so that part of the solid particles in the sprayed material and the gasified electrolyte recondense, creating conditions for the subsequent adsorption of combustible gases and liquids in the sprayed material.
  • the battery safety device provided by this embodiment is suitable for battery boxes with a single row of battery module pressure relief ports arranged in the same direction.
  • the battery module 314 is arranged in the battery box 311.
  • the battery safety device includes The cooling cavity 315, the adsorption cavity 316, and the cooling material in the battery box cover the battery modules in the battery box.
  • the pressure relief port 312 of the battery module is arranged in a single row in the same direction.
  • the adsorption chamber 316 is located on the upper part of the battery box 311 and is adjacent to the cooling chamber 315 and separated by a porous plate 318.
  • the porous plate 318 is a combination of a porous metal plate and an asbestos fiber net.
  • the cooling chamber is filled with ceramic balls of ⁇ 2-3mm
  • the adsorption chamber 316 is filled with activated carbon particles
  • the upper part of the cooling chamber is provided with a discharge port 317
  • a sealable moisture-proof film is pasted on the discharge port 317.
  • the cooling material in the battery box cools down the battery module.
  • the thermal runaway of the battery causes the pressure relief port to open, the thermal runaway smoke inside the battery module will enter the cooling chamber through the pressure relief port, and the cooling chamber will The ceramic ball in it cools down, so that part of the solid particles in the sprayed material and the gasified electrolyte recondense, and the combustible gas and liquid in the subsequent sprayed material absorb to create conditions;
  • the present application also provides another battery safety device, which includes a connected cooling device and an adsorption device;
  • the cooling device includes N cooling tanks, each cooling tank is filled with a cooling material, and N is an integer greater than or equal to 1;
  • the adsorption device includes M adsorption tanks, each of which is filled with adsorption material, and M is an integer greater than or equal to 0;
  • N cooling tanks are connected in series in sequence, and the battery thermal runaway flue gas passes through multiple cooling tanks to reduce the temperature and flow rate; or, any combination of N cooling tanks and M adsorption tanks can be connected in series, and the battery thermal runaway flue gas can reduce the temperature and flow rate through the cooling tanks, and then undergo adsorption treatment through the adsorption tanks.
  • This structure makes the stroke of flue gas flow long, saves space and is convenient for assembly.
  • This application does not limit the arrangement and internal structure of the cooling tank and the adsorption tank, as long as it can meet the use requirements, the cooling material and the adsorption material inside the cooling tank and the adsorption tank can be filled partially or completely.
  • the flue gas from battery thermal runaway passes through the cooling chamber to reduce the temperature and flow rate of the flue gas, which helps to increase the adsorption capacity of the flue gas in the rear-end adsorption chamber and ensures that the gas coming out of the gas outlet is not combustible.
  • the battery safety device provided by this embodiment includes a connected cooling device and an adsorption device; the cooling device includes four cooling tanks 41, the adsorption device includes eight adsorption tanks 42, and four cooling tanks 41 and 8 adsorption tank bodies 42 are linearly arranged in a row.
  • the adjacent cooling tank body 41 and adsorption tank body 42 are connected in series through an elbow 47 , and a flue gas buffering return cavity is formed in the elbow 47 .
  • two perforated plates 43 are arranged in each cooling tank body 41, and the two perforated plates 43 are axially connected by connecting rods 46 with threads at both ends, that is, the two ends of the connecting rods 46 respectively pass through
  • the porous plate 43 is fixed by nuts, and the adjacent two porous plates 43 and the inner wall of the adsorption tank body 42 form a cooling cavity 44, and ceramic balls are filled in the cooling cavity 44; similarly, each adsorption tank body 42 is provided with two Porous plate, two adjacent porous plates form an adsorption cavity with the inner wall of the adsorption tank, and activated carbon is filled in the adsorption cavity.
  • the battery thermal runaway flue gas passes through the cooling tank 41 to reduce the temperature and flow rate, then enters the adsorption tank 42 for adsorption treatment, cools the tank 41 again to reduce the temperature and flow rate, and finally enters the adsorption tank 42 for adsorption treatment, so that the final out The gas is not combustible, which improves the purification effect.
  • the shapes of the cooling tank body 41 and the adsorption tank body 42 are not limited, as long as the cooling material and the adsorption material can be filled inside it, in this embodiment, the cooling tank body 41 and the adsorption tank body 42 are preferably The best use of circular tanks with better stress and pressure resistance.
  • the battery safety device includes a connected cooling device and an adsorption device; the cooling device includes 12 cooling tanks 41 arranged in sequence and connected in series; The adsorption tanks 42, 12 cooling tanks 41 and 13 adsorption tanks 42 are linearly arranged in a U-shape or an L-shape.
  • adjacent cooling tanks 41 and adsorption tanks 42 are connected in series through an elbow 47, and a flue gas buffer return chamber is formed in the elbow 47, and each cooling tank 41 is provided with two porous plates, Two adjacent porous plates form a cooling chamber with the inner wall of the adsorption tank, and silicon dioxide or alumina is filled in part or all of the cooling chamber; as shown in Figure 15, each adsorption tank body 42 is provided with four The porous plate 43, two adjacent porous plates 43 and the inner wall of the adsorption tank body 42 form an adsorption cavity 45, and graphite and alumina are filled in part of the adsorption cavity 45 or all of the adsorption cavity 45.
  • the battery thermal runaway fume passes through the cooling tank 41 to reduce the temperature and flow rate, and then enters the adsorption tank 42 for adsorption treatment.
  • the battery thermal runaway fume passes through the cooling chamber to reduce the temperature and flow rate of the flue gas, thereby helping to improve the adsorption capacity of the adsorption chamber.
  • the adsorption capacity of the body on the flue gas ensures that the gas coming out of the gas outlet is not combustible, and the purification effect is improved.
  • the service life of the adsorption device at the rear end is increased.
  • the cooling tank body 41 and the adsorption tank body 42 are provided with springs 48 at the inlet section and/or outlet section of the flue gas, and the diameter of the opening of the elbow 47 is smaller than the size of the porous plate 43, One end of the spring 48 is limited by the porous plate 43, and the other end is limited by the elbow 47, which is used to compact and compact the cooling material and the adsorption material, and has a buffering effect, and will not Loosen the cooling material and the absorbent material.
  • the battery safety device provided in this embodiment includes a connected cooling device and an adsorption device; the cooling device includes four cooling tanks 41 arranged in sequence and in series, and the adsorption device includes eight The adsorption tank body 42; 2 cooling tank bodies 41 and 6 adsorption tank bodies 42 are linearly arranged in a row.
  • adjacent cooling tanks 41 and adsorption tanks 42 are connected in series through an elbow 47, and a buffer return chamber for flue gas is formed in the elbow 47, and each cooling tank 41 is provided with four porous plates.
  • each adsorption tank body 42 is provided with four porous plates, adjacent to each other.
  • the two porous plates and the inner wall of the adsorption tank body 42 form an adsorption cavity, and montmorillonite and silicate are filled in part or all of the adsorption cavity.
  • the flue gas from the thermal runaway of the battery passes through the cooling tank 41 to reduce the temperature and flow rate, and then enters the adsorption tank 42 for adsorption treatment.
  • the inlet of the first cooling tank 41 is provided with a first pressure gauge
  • the outlet of the last adsorption tank 42 is provided with a second pressure gauge, which is used to control the inlet of the cooling tank 41 and the outlet of the adsorption tank 41.
  • the pressure of the gas in tank 42 is monitored.
  • a gas collection bag is also connected to the flue gas outlet of the last adsorption tank body 42 for collecting the treated flue gas from thermal runaway of the battery. In this way, secondary disasters such as explosion and fire caused by the leakage of combustible gas caused by thermal runaway of the battery are avoided.
  • the battery safety device provided in this embodiment includes a cooling device; the cooling device includes six cooling tanks 41 arranged in sequence and connected in series. In this embodiment, adjacent cooling tanks 41 are connected in series through elbows 47, and a buffer return chamber for flue gas is formed in the elbows 47. Two perforated plates are arranged in each cooling tank 41, and the adjacent two The perforated plate and the inner wall of the adsorption tank 42 form a cooling cavity, and alumina is filled in part or all of the cooling cavity; the battery thermal runaway flue gas passes through the cooling tank 41 to reduce the temperature and flow rate, and then enters the adsorption device installed at the rear for adsorption In this embodiment, there is no specific requirement for the adsorption device, and the existing device can be used.
  • the temperature and flow rate of the flue gas can be reduced by the battery thermal runaway smoke passing through the cooling chamber, thereby helping to improve the absorption of the smoke by the rear adsorption device.
  • the adsorption capacity ensures that the gas coming out of the gas outlet is not combustible, which improves the purification effect.
  • this embodiment provides a battery casing 411 or a battery box, including the battery safety device in Embodiment 8, Embodiment 9, Embodiment 10 or Embodiment 11 above.
  • the battery safety device is connected to the pressure relief port or the explosion relief pipe provided on the battery case 411 .
  • the thermal runaway of the battery cells in the battery case 411 causes the pressure relief port to open, the high-temperature material inside the battery will enter the cooling chamber through the pressure relief port or explosion pipe, and the cooling material in the cooling chamber will cool it down, making the high temperature Part of the solid particles in the substance and the gasified electrolyte are condensed again, and the various substances in the cooling chamber 44 are cooled down and then enter the adsorption chamber, and all the liquid and most of the combustible gases are adsorbed by the adsorption material in the adsorption chamber. Adsorbed small molecular gases such as nitrogen, nitrogen dioxide, etc. are discharged through the exhaust port. The device cools, adsorbs and discharges various substances produced after the thermal runaway of the battery without causing dangers such as explosion and fire.
  • the device of this application uses physical cooling materials to cool down the substances ejected when the battery is thermally out of control, such substances have a better cooling effect, stable properties, and more importantly, no gas generation, so that the subsequent adsorption materials are adsorbed. The dosage and adsorption load are greatly reduced.
  • This embodiment also provides a battery, including the above-mentioned battery casing or battery box, and the battery safety device is connected to the pressure relief port or the explosion relief pipe provided on the battery casing or battery box.
  • the smoke from the thermal runaway of the battery enters multiple cooling tanks 41 and multiple adsorption tanks 42 from the pressure relief port or the explosion relief pipe.
  • the cooling material and the adsorption material are compressed and compacted by the spring.
  • the adjacent cooling tank body 41 and the adsorption tank body 42 are connected by an elbow 47. This setting is conducive to gas buffering, and the flue gas can reduce the temperature of the flue gas through the cooling chamber.
  • the flow rate which helps to increase the adsorption capacity of the back-end adsorption chamber for the flue gas, and ensures that the gas coming out of the gas outlet is not combustible.
  • the gas outlet can be connected with an external gas collection bag to collect the treated flue gas.
  • the adsorption material filled in the adsorption chamber of the present application adsorbs the combustible gas, liquid and solid substances that have been cooled in the cooling chamber, thereby greatly reducing the amount of combustible gas and the total amount of gas discharged into the environment.
  • the temperature of the combustible gas in the gas discharged after passing through the cooling chamber and the adsorption chamber can be reduced below its autoignition point, and the gas concentration can be reduced below its explosion limit.
  • the less gas discharged into the environment can achieve the effect of colorless, odorless and non-combustible, thus avoiding secondary disasters such as explosion and fire caused by thermal runaway of the battery, and reducing pollution to the environment.
  • the present application provides a centralized energy storage device safety processing system, including an energy storage unit 51, a gas collection unit 57 for collecting the gas after the thermal runaway of the energy storage unit 51, and a gas collection unit 57 for disposing the gas collection unit
  • a gas processing unit 513 for processing the collected gas a detection unit for recording the parameters of the energy storage unit 51, the gas collection unit 57 and the gas processing unit 513, and controlling the energy storage unit 51, the gas collection unit 57 and the gas processing unit 513 control unit.
  • the above-mentioned energy storage unit 51 is at least one battery module or an energy storage container.
  • the gas collection unit 57 includes a branch pipe 55 connected to the energy storage unit 51 and a manifold 58 communicating with a plurality of branch pipes 55.
  • the gas collection The unit 57 collects the gas generated during the thermal runaway of the energy storage unit through the branch pipeline 55 , and transfers it to the gas processing unit 513 through the manifold 58 for processing.
  • the gas collection unit 57 is a pipeline and related accessories for collecting thermal runaway substances after a certain large battery module or energy storage container in the energy storage unit 51;
  • the high-temperature dangerous substances sprayed after the thermal runaway of battery modules or energy storage containers of the specified specifications are collected in an orderly manner and guided to a gas processing unit far away from the battery pack area where thermal runaway does not occur.
  • One end of the branch pipe 55 communicates with the pressure relief port 53 of the energy storage unit, and the other end communicates with the gas processing unit 513 through the manifold 58 .
  • the capacity of the buffer tank 515 is adjusted according to the quantity, type and capacity of battery modules or energy storage containers in the connected battery units.
  • a one-way valve 56 is also arranged on the branch pipeline 55, and the one-way valve 56 is arranged on the branch pipeline.
  • the one-way valve 56 is a one-way liquid valve and/or a one-way gas valve, which only allows liquid or gas to flow from the energy storage unit to the gas processing unit.
  • the gas processing unit 513 cools, inerts, and discharges various high-temperature dangerous substances collected by the gas collection unit, so as to achieve the orderly collection of the discharged substances after the thermal runaway of the energy storage unit, Orderly processing avoids thermal runaway of the energy storage station due to danger of a single battery module or energy storage container, affecting other adjacent battery modules or energy storage containers.
  • Each battery module or energy storage container is equipped with a separate set of gas processing units, which saves costs and has higher processing efficiency.
  • the gas processing unit is used to process the gas generated when the energy storage unit undergoes thermal runaway;
  • the gas processing unit 513 includes a processing device 514;
  • the processing device 514 is connected to the buffer tank 515;
  • the inside of the processing device is provided with a cooling layer, a buffer isolation layer, and a gas processing layer in sequence according to the airflow direction.
  • the buffer isolation layer can be an isolation cavity.
  • two porous plates with an interval of about 10 cm are arranged in the isolation cavity, and porous honeycomb ceramics are filled between the two isolation plates.
  • the gas treatment layer is an inert material layer or an adsorption material layer.
  • Inertization refers to the treatment or retention of combustible substances and toxic substances in the aforementioned substances by means of absorption, adsorption, decomposition, transformation, etc. or retention in the treatment device.
  • a discharge port is also provided above the processing device.
  • the above-mentioned adsorption layer can be set as a multi-layer activated carbon layer.
  • two porous plates with an interval of about 10 cm are arranged between the activated carbon layers, and the space between the porous plates forms a buffer cavity.
  • the materials in the cooling material layer are: one or more of carbonate compounds, ceramic balls set in the lower layer, bicarbonate compounds, and crystal hydrates; the materials in the inert material layer are gas fire extinguishing agents: heptafluoropropane, carbon dioxide; Or liquid fire extinguishing agent: one or more of perfluoroheptane and perfluorohexanone.
  • the processing device can simultaneously meet the processing and purification requirements of a group of large-capacity lithium battery packs or lithium battery modules in the energy storage unit for the treatment and purification of combustion substances ejected after thermal runaway.
  • a discharge port 512 is also provided above the processing device 514 .
  • the above-mentioned gas collection unit collects the gas generated when the thermal runaway of multiple battery packs is collected through the branch pipeline and is uniformly transported to the gas processing unit through the manifold for processing; the gas collection unit is used to process the gas collected by the gas collection unit; this application Early detection and early warning of the danger of thermal runaway of the battery module, and orderly collection of high-temperature hazardous substances released from the battery pack or battery box pressure relief port after thermal runaway, orderly guide them to an area away from the battery pack that is not in danger, The orderly treatment and orderly discharge avoid the situation that the whole energy storage system is damaged due to a danger in one place of the energy storage equipment.
  • the detection unit is used to control the working status, parameters and indicators of the energy storage unit, the gas collection unit, and the gas processing unit when they are in use or after thermal runaway.
  • the detection unit includes a detection management system 59 and a plurality of sensors 54 , and the sensors 54 are respectively arranged on the components in the energy storage unit 51 , the gas collection unit 57 , and the gas processing unit 513 that need to detect the working state.
  • the sensor 54 includes a temperature sensor, a pressure sensor, an infrared sensor, and a video sensor.
  • control unit is used to prompt, alarm or control the gas processing unit, related personnel and other systems when the operating parameters of the energy storage battery unit and the gas collection unit are outside the normal set values.
  • the control unit includes a control management system 510 and control equipment connected to the control management system; the control equipment is also connected to the gas collection unit and the gas processing unit; the control management system is also connected to the detection management system. Further, an alarm device 511 is also included, and the alarm device 511 is connected with the control management system 510 .
  • this embodiment provides a centralized energy storage device safety processing system, which includes an energy storage unit 51 , a gas collection unit 57 , and a gas processing unit 513 .
  • the energy storage unit 51 is composed of 20 large-capacity battery packs 52 with a single capacity of 300KWh. Each large-capacity battery pack is scattered and assembled in its own box.
  • a pipeline is directly arranged on the pressure relief port to connect with the branch pipeline 55 of the gas collection unit 57.
  • a temperature sensor and a pressure sensor 54 are arranged on the branch pipeline, and a one-way valve 6 is set.
  • the 20 large-capacity battery packs of this system are controlled by the branch
  • the pipes are collected into the manifold 58, and the manifold communicates with the treatment device.
  • the gas passes through the cooling material layer filled at the bottom of the processing device for cooling, the isolation cavity, the inerting material layer for inerting, and finally discharges safely through the discharge port.
  • a buffer tank 515 is provided between the manifold and the gas processing unit. If the buffer tank is not installed, when the thermal runaway of the energy storage unit occurs, a large amount of high-temperature substances will rush directly to the gas processing unit through the pipeline, which will easily cause the instantaneous load of the gas processing unit to be too large, and the pressure will be uneven, which will lead to discharge The temperature of the gas discharged from the port is high, and the mixed gas injected is flammable due to incomplete treatment.
  • a buffer tank is installed between the manifold and the gas processing unit.
  • the buffer tank maintains a negative pressure and vacuum state at ordinary times, when the energy storage unit is thermally out of control, the instantaneous peak load of the high-temperature material sprayed to the gas processing unit is greatly reduced. After treatment After the device is processed, the gas flow rate to the environment is uniform, the temperature is low, and it is completely non-combustible.
  • two layers of porous plates are arranged in the isolation cavity of the processing device, and a buffer cavity of about 10 cm is left between the two layers of porous plates, and porous honeycomb ceramics are filled in the buffer cavity;
  • Three layers of activated carbon layers are arranged on the top, and the thickness of a single layer of activated carbon layer is 30cm.
  • a buffer cavity of 10 cm is set between the multi-layer activated carbon layers, and the buffer space and the activated carbon are supported by porous plates and porous cotton.
  • the high-temperature substances after the thermal runaway of the large-capacity battery pack pass through the buffer tank and the gas discharged to the environment after the above-mentioned treatment system has a uniform flow rate, a small amount of gas, and is colorless, odorless, low in temperature, and completely non-combustible.
  • a detection unit and a control unit can also be added to the system.
  • the detection unit is used to detect the working status, parameters and indicators of the energy storage battery unit, gas collection unit, and gas processing unit when they are in use or after thermal runaway;
  • the control unit is used to act as the operating parameters of the energy storage battery unit and gas collection unit Prompt, alarm or control the gas processing unit or related personnel and other systems when the value is outside the normal setting.
  • the detection unit includes a detection management system 59 and a plurality of sensors 54 , and the sensors 54 are respectively arranged on components in the energy storage unit 51 , the gas collection unit 57 , and the gas processing unit 513 that need to detect working states.
  • the sensor 54 includes a temperature sensor, a pressure sensor, an infrared sensor, and a video sensor.
  • the control unit includes a control management system 510, and a control device connected to the control management system; the control device is also connected to the gas collection unit and the gas processing unit; the control management system is also connected to the detection management system.
  • An alarm device 511 is also included, and the alarm device 511 is connected with the control management system 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电池安全装置及集中式储能设备安全处理***,解决现有技术对电池排出的热失控烟气存在处理不彻底,且处理装置体积较大、结构复杂等缺陷等问题。该电池安全装置包括冷却装置和/或吸附装置;所述冷却装置设置在电池内部或电池外部,与电池泄压口连接,用于对电池进行降温或对电池排出的热失控烟气进行冷却;吸附装置设置在电池内部或电池外部,与电池泄压口或冷却装置的出口连接,用于对电池排出的热失控烟气进行吸附。

Description

一种电池安全装置及集中式储能设备安全处理*** 技术领域
本申请属于电池领域,具体涉及一种电池安全装置及集中式储能设备安全处理***。
背景技术
锂电池具有电压高、比能量大、充放寿命长等特点,被广泛应用于动力、储能等多个领域。锂电池是以锂金属或锂合金为负极材料,使用非水电解质溶液的电池,在存储或循环过程中,电解液会不可避免地与正极活性物质反应并产生气体。同时电池的过充、过放、短路、高温等其它使用不当的原因,使得电池内部会积聚大量的热量,有机类电解液被高温分解,产生大量气体,如CO、CO 2、CH 4、C 2H 4、C 2H 6、C 3H 6、H 2等,电池内压会急剧增加,导致电池壳体变形甚至破裂。同时,电池的热平衡会被破坏,引发一连串的自加热副反应,产生大量的可燃气体,出现“热失控”现象,最终会导致电池内部着火,严重时引发***,对使用者的人身安全造成隐患。
专利CN109088109A公开了一种安全电池,其包括电池组件和安全气囊,在电池组件的泄压口处设置收集气囊,用于对电池热失控时产生的气体进行收集,随后采用惰性气体对热失控气体进行稀释,使得混合气体具有不燃性。但是,由于电池泄压口喷出的气体温度较高,因此对收集气囊的耐温性有较高的要求;此外,大容量电池一旦发生热失控,其释放的气体量非常大,在通过数倍体积的惰性气体稀释后,其气囊体积非常大,且结构复杂,对热失控烟气处理不彻底。因此该种收集加稀释的方式不适合大容量电池,仅仅适用于容量较小的电池。
目前,储能领域使用的锂电池模组均是采用模组式的防护模式。针对锂电池组工作时的散热防护大都采用一套锂电池模组设置一套散热防护单元,而针对锂电池模组热失控后的防护同样采用模组式的防护模式,因此每个锂电池模 组均需采用一套完整的气体处理单元或消防***来应对此锂电池模组热失控后的气体处理问题。目前的处理方式不能兼顾其周边的锂电池模组,这样很有可能导致一套电池模组热失控后防护气体处理单元一旦不能及时处理解决问题,会导致其相邻的电池模组也会发生燃烧、***等事故,从而殃及整个储能***;另一方面,对所有的电池模组均设置热失控后的防护气体处理单元,其经济上也会承担较高的费用。
专利CN109671993A公开了一种储能电池***,当检测装置检测到某储能电池发生故障、特别是温度急剧升高时,安全保护***向该储能电池的壳体内注入阻燃气体和/或阻燃液体,阻止该电池进一步发生反应,从而防止电池发生燃烧***。另外,可通过维护再生***对单个或全部储能电池进行补液、换液、排气等操作,从而提高电池的使用性能、延长电池寿命,实现储能电池的维护以及再生。但该专利是属于传统的灭火思路,当发生热失控后对电池组热失控部位释放灭火物质,其灭火地点或者说电池热失控的气体处理地点仍然在发生热失控的电池组所在之地,其对附近电池组仍然有引燃的潜在危险。
发明内容
为解决现有技术对电池排出的高温物质存在处理不彻底,且处理装置体积较大、结构复杂等缺陷等问题,本申请提供一种电池安全装置及集中式储能设备安全处理***。
本申请通过在电池壳体外部或内部设置与泄压口相连通的冷却腔和/或吸附腔,对电池内产生的高温混合气体和高温液体进行有效的冷却和/或吸附处理,电池内的高温混合气体及高温液体通过打开的泄压口进入冷却腔和/或吸附腔后,冷却和吸附高温液体及大部分的可燃气体和有毒气体,如甲烷,一氧化碳等,使其浓度大大降低,残余的气体已经不具备与氧气燃烧的能力,最后通过吸附腔末端的单向泄放阀安全排空。
此外,本申请还提出了一种集中式储能设备安全处理***,本***将电池模组发生热失控的危险提前探测预警,并将热失控后从电池或者电池箱泄压口释放的高温危险物质有序收集、有序引导至远离没有发生危险的电池模组的区 域,进行有序处理、有序排放从而避免了一处发生危险而导致整个储能***损毁的情况。
为达到上述目的,本申请的技术方案是:
一种电池安全装置,包括冷却装置和/或吸附装置;所述冷却装置设置在电池内部或电池外部,与电池泄压口连接,用于对电池进行降温或对电池排出的热失控烟气进行冷却;所述吸附装置设置在电池内部或电池外部,与电池泄压口或冷却装置的出口连接,用于对电池排出的热失控烟气进行吸附。
进一步地,所述吸附装置包括与电池连接的吸附腔和单向泄压阀;所述单向泄压阀通过第一连接管与吸附腔的上端连接。
进一步地,所述吸附腔内设有缓冲室和多层吸附结构,所述多层吸附结构设置在所述缓冲室上方;所述缓冲室下端通过第二连接管与电池的泄压口连接。
进一步地,所述多层吸附结构包括吸附层,设置在吸附层两侧的过滤缓冲层,设置在所述过滤缓冲层外侧的金属网。
进一步地,所述吸附层包括无机材料和有机材料;所述无机材料和有机材料混合设置,或,所述无机材料和有机材料分层设置。
进一步地,所述无机材料为活性炭、氧化钛、石墨、氧化铝、粘土矿物、硅酸盐、磷酸盐、沸石、氧化镁、二氧化硅、多孔玻璃中的一种或多种,所述有机材料为丙烯酸树脂、醋酸纤维素、聚乙烯亚胺、二乙酰亚胺、羧酸钠、硫脲、苯酚钠、联苯二胺中的一种或多种。
进一步地,所述过滤缓冲层为玻璃纤维棉和活性炭棉双层设置,所述过滤缓冲层的厚度不小于5毫米,所述吸附层的厚度不小于20毫米。
进一步地,所述缓冲室为喇叭状,所述缓冲室和多层吸附结构之间设有环状支撑部。
进一步地,所述冷却装置包括冷却腔,所述吸附装置包括吸附腔,所述冷却腔与所述吸附腔连通;所述冷却腔与电池主体或电池模组的泄压口连接,所述电池主体的泄压口与冷却腔通过泄压膜密封隔离。
进一步地,所述冷却腔内填充有冷却材料,所述冷却材料与所述电池主体或电池模组的一个或多个外表面紧贴设置。
进一步地,所述电池主体或电池模组的泄压口设置在远离所述吸附腔的一侧。
进一步地,所述冷却腔与吸附腔之间设有多孔板,所述多孔板为多孔金属网、多孔金属板、无机纤维网中的一种,所述无机/有机纤维网为硅酸铝纤维棉、玻璃纤维棉、石棉、无纺布中的一种或几种。
进一步地,所述吸附腔上设有排气口,所述排气口上设有防潮膜或密封膜,或者,所述排气口连接排气管道或气囊。
进一步地,所述泄压膜为金属膜片。
进一步地,所述冷却腔中填充有陶瓷球、蜂窝陶瓷片、多孔陶瓷、金属材料、石墨棒中的一种或者多种组合,所述吸附腔中填充有活性炭、多孔二氧化硅、分子筛、多孔陶瓷、吸附树脂中的一种或者多种组合。
进一步地,所述冷却装置包括N个冷却罐体,每个冷却罐体内填充有冷却材料,N为大于等于1的整数;所述吸附装置包括M个吸附罐体,每个吸附罐体内填充有吸附材料,M为大于等于0的整数;N个冷却罐体依次串联,电池热失控烟气依次通过多个冷却罐体降低温度与流量;或者,N个冷却罐体和M个吸附罐体任意组合串联,电池热失控烟气通过冷却罐体降低温度与流量,并通过吸附罐体进行吸附处理。
进一步地,N个冷却罐体和M个吸附罐体依次串联,使得电池热失控烟气通过冷却罐体降低温度与流量后,再通过吸附罐体进行吸附处理,N个冷却罐体和M个吸附罐体线性排布为一排,或者线性排布为U形,或者线性排布为V形,或者线性排布为L形。
进一步地,每个冷却罐体内设置有X个多孔板,相邻的两个多孔板与冷却罐体内壁形成冷却腔,所述冷却材料填充在部分冷却腔或全部冷却腔内,X为大于等于2的整数;每个吸附罐体内设置有Y个多孔板,相邻的两个多孔板与吸附罐体内壁形成吸附腔,所述吸附材料填充在部分吸附腔或全部吸附腔内,Y为 大于等于2的整数。
进一步地,相邻多孔板通过连接杆轴向连接,所述冷却罐体和吸附罐体在电池热失控烟气的进口段和/或出口段还设置弹簧,所述弹簧的一端通过多孔板限位,另一端通过弯管限位,用于压紧和密实冷却材料和吸附材料,且具有缓冲作用。
进一步地,相邻的冷却罐体和/或吸附罐体通过弯管串联,弯管内形成电池热失控烟气通过的缓冲回流腔,所述弯管与冷却罐体、吸附罐体通过法兰连接。
进一步地,所述冷却罐体和吸附罐体采用受力、耐压性较好的圆形罐体,所述冷却材料为陶瓷球、蜂窝陶瓷体、二氧化硅、氧化铝、氧化锆、氧化钛中的一种或者多种的组合,所述吸附材料为活性炭、石墨、氧化铝、蒙脱石、硅酸盐、磷酸盐、多孔玻璃中的一种或多种的组合。
进一步地,最后一个吸附罐体的出口处还连接有气体采集袋,用于收集处理过的电池热失控烟气。
同时,本申请还提供一种集中式储能设备安全处理***,包括储能单元、气体收集单元和气体处理单元:所述储能单元为至少一个电池模组或储能集装箱;所述气体收集单元包括与所述储能单元连接的支路管道,和,与多个所述支路管道连通的汇流管,所述气体收集单元通过支路管道对所述储能单元热失控时产生的气体进行收集,并经汇流管统一传输至所述气体处理单元进行处理;所述气体处理单元为上述电池安全装置,用于对所述储能单元发生热失控时产生的气体进行处理。
进一步地,所述支路管道的一端与所述储能单元的泄压口连通,另一端通过汇流管与气体处理单元连通。
进一步地,包括单向阀,所述单向阀设置在每个所述支路管道上,所述单向阀为单向液体阀和/或单向气体阀,只允许液体或者气体沿储能单元向气体处理单元的方向流动。
进一步地,还包括缓冲罐,所述缓冲罐设置在所述汇流管和气体处理单元 之间。
进一步地,所述冷却腔内还设置有缓冲隔离层,所述吸附腔内还设置有惰化材料层。
进一步地,还设有探测单元,所述探测单元包括探测管理***和多个传感器,所述传感器分别设置在储能单元、气体收集单元、气体处理单元中的需要探测工作状态的部件上,所述传感器包括温度传感器、压力传感器、红外传感器、视频传感器。
进一步地,还设有控制单元和报警设备,所述控制单元包括控制管理***,和与所述控制管理***连接的控制设备;所述控制设备与所述气体收集单元、气体处理单元连接;所述控制管理***与所述探测管理***连接,所述报警设备与所述控制管理***连接。
和现有技术相比,本申请技术方案具有如下优点:
1.本申请提供一种电池安全装置,当电池发生热失控而导致泄压口打开,电池内部的各种物质向外喷放时,首先到达冷却腔,通过冷却腔中的冷却材料对喷放的物质进行降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,并对气态物质进行降温为后续喷放物质中的可燃气体吸附创造条件,而且由于本申请均采用物理冷却的材料对电池热失控时喷出的物质进行降温,这类物质降温效果较好,性质稳定,更重要的是无气体产生,因此使得的后续的吸附材料吸附时的用量及吸附负荷大大降低。
2.本申请电池安全装置中,吸附腔填充的吸附材料对冷却腔经过降温的可燃气体、液体以及固体物质进行吸附,从而大幅减少了排放到环境中的可燃气体量以及总气量。这样经过冷却腔以及吸附腔的后排放的气体中可燃气体温度可以降低到其自燃点以下,气体浓度降低到其***极限以下。而在冷却材料和吸附材料合适的用量组合下,其排放到环境中的少量气体可以达到无色无味不燃的效果,从而避免了电池因为热失控导致的***、着火等二次灾害,也降低了对环境的污染。
3.本申请电池安全装置中,吸附腔中设有缓冲室,可减缓高压混合气体和 高温液体的释放速度,同时,吸附腔上部设有过滤缓冲层,过滤缓冲层为玻璃纤维棉或活性炭棉,玻璃纤维棉具有一定的隔热效果,活性炭棉可以吸收释放的高温液体,同时过滤缓冲层还能阻隔固体杂质,延缓混合气体的喷放速度,增加其在吸附层中的接触时间,提高吸附材料对混合气体的吸附效率。
4.本申请电池安全装置中,无机有机混合吸附材料可对电池释放出来的混合气体中的一氧化碳、二氧化碳、甲烷等进行有效吸附,通过有机无机材料的协同吸附效应,残余的气体不会被高温点燃,可安全排放,降低了锂电池热失控时起火的风险。
5.本申请电池安全装置中,电池箱中的冷却材料在电池正常工作时,可以对电池进行冷却降温处理,能够起到预防电池发生热失控的风险,不用单独设置对电池降温的结构和高温气体冷却腔,将冷却材料设置在电池箱能够有效地减小电池箱体积和节省成本。
6.本申请电池安全装置中,当电池箱中的电池组发生热失控而导致电池组的泄压口打开,电池内部的各种物质向外喷放时,首先到达冷却腔,通过冷却腔中的冷却材料对喷放的物质进行降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,并对气态物质进行降温为后续喷放物质中的可燃气体吸附创造条件,而且由于本申请均采用物理冷却的材料对电池热失控时喷出的物质进行降温,这类物质降温效果较好,性质稳定,更重要的是无气体产生,因此使得的后续的吸附材料吸附时的用量及吸附负荷大大降低。
7.本申请提供的电池安全装置中,N个冷却罐体和M个吸附罐体任意组合串联,电池热失控烟气通过冷却罐体降低温度与流量,并通过吸附罐体进行吸附处理,使得烟气流过的行程较长,对电池热失控烟气的处理更加彻底,确保出气口出来的气体不可燃烧,使得其安全性大幅提升。
8.本申请提供的电池安全装置中,电池热失控烟气经过冷却腔可以降低烟气的温度与流量,从而有助于提高后方吸附腔体对烟气的吸附量,确保出气口出来的气体不可燃烧,提高了净化效果。同时,对电池热失控烟气在前端进行冷却处理后,使得后端的吸附装置的使用寿命增加。
9.本申请提供的电池安全装置中,N个冷却罐体和M个吸附罐体可根据安装空间的要求进行排布,可排布为一排、U形、V形或L形等多种形式,满足各种安装要求,且节省空间。
10.本申请提供的电池安全装置中,N个冷却罐体和M个吸附罐体壳通过弯管进行组装,使得其安装和拆卸方便,适用于现有大部分单体电池和组装电池,且无需对现有电池的结构进行更改,处理成本较低,适用范围较广。
11.本申请提供的安全气体处理单元可以将多个不同区域、不同规格的大容量锂电池组或者锂电池模组热失控后喷放的高温危险物质进行有序收集、有序引导至远离未发生热失控的电池组的安全区域。并在安全区域设置了一套气体处理单元来对收集而来的各种高温危险物质进行冷却、惰化、排放,达到锂储能站锂电池热失控后喷放物质的有序化收集,有序化处理,避免了储能站因某个电池组出现危险而发生热失控时,影响到紧邻的其他电池组。
12.本申请提供的安全集中式气体处理单元,省去了给每个大容量电池组或者锂电池模组单独配备一套气体处理单元,而是对整个储能站***只配备一套集中式气体处理单元,可以大大节约储能站的成本。
本申请的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本申请的研究和实践而为本领域的技术人员所理解。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1中电池安全装置的整体结构示意图;
图2为本申请实施例1中电池安全装置吸附腔的结构示意图;
图3为本申请实施例2中电池安全装置的结构示意图;
图4为本申请实施例3中电池安全装置的结构示意图;
图5为本申请实施例4中电池安全装置的结构示意图;
图6为本申请实施例5中电池安全装置的剖视图;
图7为本申请实施例5中电池安全装置的电池中心柱结构剖视图;
图8为本申请实施例6中电池安全装置的平面剖视图;
图9为本申请实施例6中电池安全装置的立体剖视图;
图10为本申请实施例7中电池安全装置的平面剖视图;
图11为本申请实施例7中电池安全装置的立体剖视图;
图12本申请实施例8中电池安全装置的示意图;
图13本申请实施例8中冷却罐体内设置多孔板的结构示意图;
图14本申请实施例9中电池安全装置的示意图;
图15本申请实施例9中吸附罐体内设置多孔板的结构示意图;
图16为本申请实施例10中电池安全装置的示意图;
图17为本申请实施例13中电池安全装置与电池壳体连接的示意图;
图18为本申请实施例14中集中式储能设备安全处理***示意图。
附图标记:11-单向泄压阀,12-吸附腔,13-连接管,14-电池,15-泄压口,111-第一连接管,121-缓冲室,122-环状支撑部,123-金属网,124-过滤缓冲层,125-吸附层,211/221/231/241-正极,212/222/232/242-负极,213/225/235/245-电池,214/224/234/244-泄压口,215/223/233/243-泄压膜,216/226/236/246-冷却腔,217/227/237/247-多孔板,218/228/238/248-吸附腔,219/229/239/249-排放口,2310-排放管道,2410-导爆孔,2411-卷绕式电芯,311/321-电池箱,314/324-电池模组,312/322-泄压口,313/323-泄压膜,315/3251/3252-冷却腔,318/3281/3282-多孔板,316/326-吸附腔,317/327-排放口,329-排放管道,41-冷却罐体,42-吸附罐体,43-多孔板,44-冷却腔,45-吸附腔,46-连接杆,47-弯管,48-弹簧,411-电池壳体;51-储能单元,52-大容量电池组,53-泄压口,54-传感器,55-支路管道,56-单向阀,57-气体收集单元,58-汇流管,59-探测管理***,510控制管理***,511-报警设备,512-排放口,513-气体处理单元,514-处理装置,515-缓冲罐。
具体实施方式
下面结合附图和具体实施方式对本申请进行详细说明。本领域技术人员应当理解的是,这些实施方式仅仅用来解释本申请的技术原理,目的并不是用来限制本申请的保护范围。
实施例1
如图1和图2所示,本申请提供一种电池安全装置,包括与电池(电池未完全画出,仅画出带有泄压口的盖板)14连接的吸附腔12,与吸附腔12上端连接的单向泄压阀11;其中,单向泄压阀11通过第一连接管111与吸附腔12上端连接。吸附腔12内设有缓冲室121和多层吸附结构,多层吸附结构设置在缓冲室121上方;其中,缓冲室121下端通过第二连接管13与电池14的泄压口15连接。优选的,第二连接管13与泄压口15、第一连接管111与吸附腔12均是采用焊接或者螺纹连接的;吸附腔12的材质为不锈钢或铝。单向泄压阀11的开阀压力设置在0.7~1.0MPa之间,也可以根据实际情况选择不同的开阀压力。
如图2所示,在本实施例中,多层吸附结构包括吸附层125,设置在吸附层125两侧的过滤缓冲层124,设置在过滤缓冲层124外侧的金属网123。吸附层125包括无机材料和有机材料;其中,无机材料和有机材料混合设置或无机材料和有机材料分层设置。在本实施例中,无机材料为活性炭、氧化钛、石墨、氧化铝、粘土矿物、硅酸盐、磷酸盐、沸石、氧化镁、二氧化硅、多孔玻璃中的一种或多种。有机材料为丙烯酸树脂、醋酸纤维素、聚乙烯亚胺、二乙酰亚胺、羧酸钠、硫脲、苯酚钠、联苯二胺中的一种或多种。
在本实施例中,吸附层125的厚度不小于20毫米,这样可以保证高温混合气体能够在吸附层中停留一定时间,保证吸附层对高温混合气体中可燃、有毒有害物质进行充分的吸附。过滤缓冲层124为玻璃纤维棉和活性炭棉双层设置。需要指出的是,过滤缓冲层124的存在可以阻隔电池内部的固体杂质,吸附高温液体,同时对高温混合气体的速度起到削弱作用,可延缓高温混合气体在吸附层中的接触时间,进一步地提高气体的吸附效率。过滤缓冲层124的厚 度不小于5毫米,可以对有效的阻隔电池内部的固体杂质,吸附高温液体,同时对高温混合气体的速度进行削弱。
在本实施例中,金属网123为与电解液不反应的不锈钢或铝,金属网123分别设于缓冲室的上部和吸附腔的顶部,下方的金属网片起到承托多层吸附结构的作用,上部的金属网片用来隔离吸附材料,防止其进入单向泄放阀。缓冲室121可为喇叭状,可初步减缓高温混合气体和高温液体的释放速度。缓冲室121和多层吸附结构之间设有环状支撑部122,用于支撑多层吸附结构。
本申请可实现对电池内产生的高温混合气体和高温液体的安全有效吸附处理,通过在电池壳体外部设置与泄压口相连通的吸附腔,电池内的高温混合气体及高温液体通过打开的泄压口进入吸附腔后,被过滤缓冲层和吸附层吸收高温液体及大部分的可燃气体和有毒气体,如甲烷,一氧化碳等,使其浓度大大降低,残余的气体已经不具备与氧气燃烧的能力,最后通过吸附腔末端的单向泄放阀安全排空。
本申请还提供另一种电池安全装置,电池主体上设有泄压口,该电池安全装置包括用于对热失控电池产生的可燃物质进行降温的冷却腔,以及对有害物质进行吸附的吸附腔;冷却腔与吸附腔连通,且冷却腔与吸附腔之间设有多孔板。冷却腔与泄压口连接,泄压口与冷却腔通过泄压膜密封隔离。该冷却腔和吸附腔可以设置在电池外部,电池热失控产生的可燃物质通过泄压口喷出电池主体进入电池外部的冷却腔中,或者,冷却腔和吸附腔还可以设置在电池中心位置,电池热失控产生的可燃物质通过泄压口进入电池中心位置的冷却腔中。
上述多孔板为多孔金属网、多孔金属板、无机纤维网中的一种。吸附腔上设有排气口。排气口上设有防潮膜或密封膜。同时,该排气口外部连接排气管道或气囊。泄压膜为金属膜片。冷却腔中填充有陶瓷球、蜂窝陶瓷片、石墨棒中的一种或者多种组合。陶瓷球和蜂窝陶瓷片的成分为碳化硅。吸附腔中填充有活性炭、多孔二氧化硅、分子筛、多孔陶瓷、吸附树脂中的一种或者多种组合。本申请冷却腔中的冷却材料对喷放的物质进行降温,使得喷放物质中的固 体颗粒被阻挡,气化的电解液重新冷凝,无法冷凝气态物质进行降温,吸附腔填充的吸附材料对经过冷却腔降温的可燃气体、液体以及固体物质进行吸附,使得后续排放口排放的物质具有不燃性,从而避免了电池因为热失控导致的***、着火等二次灾害。
实施例2
如图3所示,本实施例提供的电池安全装置适用于圆柱形大容量电池,其主要包括冷却腔216和吸附腔218,其中电池213的正极211、负极212位于电池的顶面同侧,泄压口214位于此圆柱形电池的底面外壳之上,泄压口214通过泄压膜215将电池密封为一个封闭结构,冷却腔216设置于电池213的底部紧邻泄压口214的外侧,冷却腔216下部设置吸附腔218,其中冷却腔216与吸附腔218之间设有多孔板217,吸附腔下部设置排放口219。在冷却腔填满φ5mm的陶瓷球,在吸附腔填充X13型分子筛小球,在最底部的排放口上粘贴防潮膜。
当电池发生热失控导致泄压口打开时,电池内部的热失控烟气会通过泄压口进入冷却腔,由冷却腔中的陶瓷球对其降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,后续喷放物质中的可燃气体、液体吸附创造条件。另一方面,经过冷却腔的各种物质降温后进入吸附腔,并通过吸附腔中的分子筛吸附剂对全部的液体,对大部分可燃气体进行吸附,没有被吸附的小分子气体如氮气、二氧化氮等通过排气口排放。将电池热失控后产生的各种物质通过冷却、吸附后再排放而不会引发***、着火等危险。
实施例3
如图4所示,本实施例提供的电池安全装置适用于方形大容量电池,其主要包括冷却腔226和吸附腔228,其中电池225的正极221、负极222位于电池的顶面同侧,泄压口224位于此方形电池的侧面外壳的上部,泄压口224通过泄压膜225将电池密封为一个封闭结构,冷却腔226设置于电池的侧面上部紧 邻泄压口224的外侧,冷却腔226下部设置吸附腔28,其中冷却腔226与吸附腔228之间设有多孔板227,吸附腔下部设置排放口229。在冷却腔填满蜂窝陶瓷体,在吸附腔填充圆柱形活性炭粒料,在底部的排放口上粘贴密封膜。
实施例4
如图5所示,本实施例提供的电池安全装置适用于方形大容量电池,其主要包括冷却腔236和吸附腔238,其中电池235的正极231、负极232位于电池的顶面同侧,正极与负极通过极柱转接头从冷却腔的侧面引出,泄压口234位于此方形电池与正极、负极同侧的顶面,泄压口通过泄压膜233将电池密封为一个封闭结构,冷却腔236设置于电池的顶面紧邻泄压口234的外侧,冷却腔上部设置吸附腔238,其中冷却腔236与吸附腔238之间设有多孔板237,吸附腔上部设置排放口239,排放口上安装排气管道2310,排气管道的口部设置在远离可燃物的安全地带,排气管口部用堵头封堵。在冷却腔中填满石墨棒,在吸附腔填充活性炭粉末。
实施例5
如图6、图7所示,本实施例提供电池安全装置使用于圆柱形大容量电池,圆柱形大容量电池245的正极241、负极242和卷绕式电芯2411的结构如图所示。电池安全装置设置于圆柱形电池的中心柱上,由下网上依次为导爆孔2410、泄压口244、冷却腔246、多孔板247、吸附腔248、排放口249。泄压口244通过泄压膜243将电池密封为一个封闭结构,冷却腔246设置于中心柱泄压口的上部紧邻泄压口244的外侧,冷却腔246上部设置吸附腔248,其中冷却腔246与吸附腔248之间设有多孔板247,多孔板为多孔纤维网,吸附腔上部设置排放口249。在冷却腔填满蜂窝陶瓷体,在吸附腔填充圆柱形活性炭粒料,在中心柱上部的排放口粘贴密封膜。
当电池发生热失控导致电芯内部压力增大时,中心柱底部的泄压口打开,电池内部的热失控烟气会通过下部的导爆孔后从泄压口进入冷却腔,由冷却腔 中的陶瓷球对其降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,后续喷放物质中的可燃气体、液体吸附创造条件。另一方面,经过冷却腔的各种物质降温后进入吸附腔,并通过吸附腔中的分子筛吸附剂对全部的液体,对大部分可燃气体进行吸附,没有被吸附的小分子气体如氮气、二氧化氮等通过排气口排放。将电池热失控后产生的各种物质通过冷却、吸附后再排放而不会引发***、着火等危险。
本申请还提供一种用于电池模组的电池安全装置,电池模组设置在电池箱内,该电池安全装置包括与电池模组泄压口连接的冷却腔,与冷却腔连接的吸附腔;其中,冷却腔和吸附腔均可以设置在电池箱内部或设置在电池箱外部。本申请电池箱中的冷却材料在电池正常工作时,可以对电池模组进行冷却降温处理,当电池箱中的电池模组发生热失控而导致电池模组的泄压口打开,电池内部的各种物质向外喷放时,冷却腔中的冷却材料对喷放的物质进行降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,并对气态物质进行降温为后续喷放物质中的可燃气体吸附创造条件。
在本申请中,冷却腔设置在电池箱内部时,冷却腔将电池模组包覆;冷却腔既可以对正常工作的电池模组降温,也可以对电池热失控时产生的高温气体进行降温。电池模组还可以设置在冷却腔内部;冷却腔内填充的冷却材料将电池模组包覆;冷却材料与电池模组的一个或多个外表面紧贴设置。可选地,冷却材料将电池模组进行包裹。冷却材料既可以对正常工作的电池模组降温,也可以对电池热失控时产生的高温气体进行降温;将电池设置在吸附腔内部,可以进一步地缩小电池箱的结构。电池模组泄压口设置在远离吸附腔的一侧,也就是电池模组进入冷却腔的通孔与冷却腔进入吸附腔的通孔之间的距离尽可能的最大化,有助于电池模组产生的高温气体被冷却腔有效的降温。
上述冷却腔与吸附腔之间设有多孔板;多孔板为多孔金属网、多孔金属板、无机/有机纤维网中的一种或几种;无机/有机纤维网为硅酸铝纤维棉、玻璃纤维棉、石棉、无纺布中的一种或几种。在本实施例中,冷却材料为陶瓷 球、蜂窝陶瓷片、多孔陶瓷、金属材料、石墨棒中的一种或者多种;陶瓷球、蜂窝陶瓷片和多孔陶瓷的成分为碳化硅。吸附腔中填充有活性炭、多孔二氧化硅、分子筛、多孔陶瓷、氧化铝、沸石、吸附树脂中的一种或者多种。
在本申请中,吸附腔上设有排气口,排气口与冷却腔和吸附腔之间多孔板的距离越远越好,有助于吸附腔对气体中的有毒有害物质进行吸附;排气口上设有能够密封吸附腔的防潮膜;的排气口外部连接排气管道或气囊。
实施例6
如图8和图9所示,本实施例提供的电池安全装置适用于电池模组泄压口双排背向排列的电池箱,电池模组324设置在电池箱321内,该电池安全装置包括冷却腔3251及3252、吸附腔326,并且电池箱内的冷却材料将电池箱内电池模组包覆。电池模组的泄压口322为双排向背排列,并隔出两个独立的冷却腔3251和3252,吸附腔326位于电池箱的上部与冷却腔251以及252都紧邻并通过多孔板3281及3282隔开,多孔板为多孔金属网与玻璃纤维网的组合,冷却腔填满φ5mm的陶瓷球,在吸附腔填充X13型分子筛小球,冷却腔上部设置排放口327,在排放口上粘贴能够密封的防潮膜,排放口上同时设置排放管道329,排放管道可以设置气囊或者通往安全地带。
正常工作时,电池箱内的冷却材料对电池模组进行降温,当电池发生热失控导致泄压口打开时,电池模组内部的热失控烟气会通过泄压口进入冷却腔,由冷却腔中的陶瓷球对其降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,后续喷放物质中的可燃气体、液体吸附创造条件。
另一方面,经过冷却腔的各种物质降温后进入吸附腔,并通过吸附腔中的分子筛吸附剂对全部的液体,对大部分可燃气体进行吸附,没有被吸附的小分子气体如氮气等通过排气口排放。将电池热失控后产生的各种物质通过冷却、吸附后再排放而不会引发***、着火等危险。
实施例7
如图10和图11所示,本实施例提供的电池安全装置适用于电池模组泄压口单排同向排列的电池箱,电池模组314设置在电池箱311内,该电池安全装置包括冷却腔315、吸附腔316,并且电池箱内的冷却材料将电池箱内电池模组包覆。电池模组的泄压口312为单排同向排列,吸附腔316位于电池箱311的上部与冷却腔315紧邻并通过多孔板318隔开,多孔板318为多孔金属板与石棉纤维网的组合,冷却腔填满φ2~3mm的陶瓷球,在吸附腔316填充活性炭颗粒,冷却腔上部设置排放口317,在排放口317上粘贴能够密封的防潮膜。
正常工作时,电池箱内的冷却材料对电池模组进行降温,当电池发生热失控导致泄压口打开时,电池模组内部的热失控烟气会通过泄压口进入冷却腔,由冷却腔中的陶瓷球对其降温,使得喷放物质中的部分固体颗粒以及气化的电解液重新冷凝,后续喷放物质中的可燃气体、液体吸附创造条件;
另一方面,经过冷却腔的各种物质降温后进入吸附腔,并通过吸附腔中的分子筛吸附剂对全部的液体,对大部分可燃气体进行吸附,没有被吸附的小分子气体如氮气等通过排气口排放,将电池热失控后产生的各种物质通过冷却、吸附后再排放而不会引发***、着火等危险。
本申请还提供另一种电池安全装置,该装置包括相连接的冷却装置和吸附装置;冷却装置包括N个冷却罐体,每个冷却罐体内填充有冷却材料,N为大于等于1的整数;吸附装置包括M个吸附罐体,每个吸附罐体内填充有吸附材料,M为大于等于0的整数;N个冷却罐体依次串联,电池热失控烟气依次通过多个冷却罐体降低温度与流量;或者,N个冷却罐体和M个吸附罐体任意组合串联,电池热失控烟气通过冷却罐体降低温度与流量,并通过吸附罐体进行吸附处理。该结构使得烟气流过的行程长,节省空间,组装方便。本申请对冷却罐体和吸附罐体的排布方式、内部结构不进行限定,只要能够满足使用需求即可,冷却罐体和吸附罐体内部的冷却材料和吸附材料可以部分填充或全部填充,以满足不同的使用要求。电池热失控烟气经过冷却腔可以降低烟气的温度与流量,从而有助于提高后端吸附腔体对烟气的吸附量,确保出气口出来的气 体不可燃烧。
实施例8
如图12所示,本实施例提供的电池安全装置包括相连接的冷却装置和吸附装置;冷却装置包括4个冷却罐体41,吸附装置包括8个吸附罐体42,4个冷却罐体41和8个吸附罐体42线性排布为一排。
在本实施例中,相邻的冷却罐体41和吸附罐体42通过弯管47串联,弯管47内形成烟气的缓冲回流腔。如图13所示,每个冷却罐体41内设置有2个多孔板43,2个多孔板43通过两端设有螺纹的连接杆46轴向连接,即连接杆46的两端分别穿过多孔板43,通过螺母固定,相邻的两个多孔板43与吸附罐体42内壁形成冷却腔44,陶瓷球填充在冷却腔44内;同样的,每个吸附罐体42内设置有2个多孔板,相邻的两个多孔板与吸附罐体内壁形成吸附腔,活性炭填充在吸附腔内。电池热失控烟气通过冷却罐体41降低温度与流量,随后进入吸附罐体42进行吸附处理,再次冷却罐体41降低温度与流量后,最后进入吸附罐体42进行吸附处理,使得最后出来的气体不可燃烧,提高了净化效果。
本本实施例中对冷却罐体41和吸附罐体42的形状不进行限定,只要能够在其内部填充冷却材料和吸附材料即可,在本实施例中,冷却罐体41和吸附罐体42优选的采用受力、耐压性较好的圆形罐体。
实施例9
如图14所示,本实施例提供的电池安全装置包括相连接的冷却装置和吸附装置;冷却装置包括12个依次排布且串联的冷却罐体41;吸附装置包括12个依次排布且串联的吸附罐体42,12个冷却罐体41和13个吸附罐体42线性排布为U形或L形。在本实施例中,相邻的冷却罐体41和吸附罐体42通过弯管47串联,弯管47内形成烟气的缓冲回流腔,每个冷却罐体41内设置有2个多孔板,相邻的两个多孔板与吸附罐体内壁形成冷却腔,二氧化硅或氧化铝填充在部分冷却腔或全部冷却腔内;如图15所示,每个吸附罐体42内设置有4个多 孔板43,相邻的两个多孔板43与吸附罐体42内壁形成吸附腔45,石墨、氧化铝填充在部分吸附腔45或全部吸附腔45内。电池热失控烟气通过冷却罐体41降低温度与流量后,再进入吸附罐体42进行吸附处理,电池热失控烟气经过冷却腔可以降低烟气的温度与流量,从而有助于提高吸附腔体对烟气的吸附量,确保出气口出来的气体不可燃烧,提高了净化效果。同时,对电池热失控烟气在前端进行冷却处理后,使得后端的吸附装置的使用寿命增加。
如图15所示,在本实施例中,冷却罐体41和吸附罐体42在烟气的进口段和/或出口段还设置弹簧48,弯管47开口的口径小于多孔板43的尺寸,弹簧48的一端通过多孔板43限位,另一端通过弯管47限位,用于压紧和密实冷却材料和吸附材料,且具有缓冲作用,在温度变化,移动运输和震动等情况下不会使冷却材料和吸附材料松散。
实施例10
如图16所示,本实施例提供的电池安全装置包括相连接的冷却装置和吸附装置;冷却装置包括4个依次排布且串联的冷却罐体41,吸附装置包括8个依次排布且串联的吸附罐体42;2个冷却罐体41和6个吸附罐体42线性排布为一排。在本实施例中,相邻的冷却罐体41和吸附罐体42通过弯管47串联,弯管47内形成烟气的缓冲回流腔,每个冷却罐体41内设置有4个多孔板,相邻的两个多孔板43与吸附罐体42内壁形成冷却腔,氧化铝填充在部分冷却腔或全部冷却腔内;同样的,每个吸附罐体42内设置有4个多孔板,相邻的两个多孔板与吸附罐体42内壁形成吸附腔,蒙脱石、硅酸盐填充在部分吸附腔或全部吸附腔内。电池热失控烟气通过冷却罐体41降低温度与流量后,再进入吸附罐体42进行吸附处理。
在本实施例中,第一个冷却罐体41的进口处设置有第一压力表,最后一个吸附罐体42的出口处设置有第二压力表,用于对进入冷却罐体41和流出吸附罐体42的气体的压力进行监控。在本实施例中,最后一个吸附罐体42的烟气出口处还连接有气体采集袋,用于收集处理过的电池热失控烟气。这样避免了 电池因为热失控导致的可燃气体泄露而导致的***、着火等二次灾害。
实施例12
本实施例提供的电池安全装置包括冷却装置;冷却装置包括6个依次排布且串联的冷却罐体41。在本实施例中,相邻的冷却罐体41通过弯管47串联,弯管47内形成烟气的缓冲回流腔,每个冷却罐体41内设置有2个多孔板,相邻的两个多孔板与吸附罐体42内壁形成冷却腔,氧化铝填充在部分冷却腔或全部冷却腔内;电池热失控烟气通过冷却罐体41降低温度与流量后,再进入后方设置的吸附装置进行吸附处理,该实施例中对吸附装置不做具体要求,采用现有的装置即可,电池热失控烟气经过冷却腔可以降低烟气的温度与流量,从而有助于提高后方吸附装置对烟气的吸附量,确保出气口出来的气体不可燃烧,提高了净化效果。
实施例13
如图17所示,本实施例提供一种电池壳体411或电池箱体,包括上述实施例8、实施例9、实施例10或实施例11中的电池安全装置。该电池安全装置与电池壳体411上设置的泄压口或泄爆管连接。当电池壳体411内的电芯发生热失控而导致泄压口打开,电池内部的高温物质会通过泄压口或泄爆管进入冷却腔,由冷却腔中的冷却材料对其降温,使得高温物质中的部分固体颗粒以及气化的电解液重新冷凝,经过冷却腔44的各种物质降温后进入吸附腔,并通过吸附腔中的吸附材料对全部的液体以及大部分可燃气体进行吸附,没有被吸附的小分子气体如氮气、二氧化氮等通过排气口排放。该装置将电池热失控后产生的各种物质通过冷却、吸附后再排放而不会引发***、着火等危险。
由于本申请装置采用物理冷却的材料对电池热失控时喷出的物质进行降温,这类物质降温效果较好,性质稳定,更重要的是无气体产生,因此使得的后续的吸附材料吸附时的用量及吸附负荷大大降低。
本实施例还提供一种电池,包括上述电池壳体或电池箱体,该电池安全装 置与电池壳体或电池箱体上设置的泄压口或泄爆管连接。电池热失控烟气从泄压口或泄爆管进入多个冷却罐体41和多个吸附罐体42,冷却罐体41和吸附罐体42内通过上下多孔板夹紧冷却材料和吸附材料,并通过弹簧压紧和密实冷却材料和吸附材料,同时,相邻冷却罐体41和吸附罐体42通过弯管47连接,此种设置利于气体缓冲,烟气经过冷却腔可以降低烟气的温度与流量,从而有助于提高后端吸附腔体对烟气的吸附量,确保出气口出来的气体不可燃烧,出气口可以外接气体采集袋,收集处理过的烟气。
本申请吸附腔填充的吸附材料对冷却腔经过降温的可燃气体、液体以及固体物质进行吸附,从而大幅减少了排放到环境中的可燃气体量以及总气量。这样经过冷却腔以及吸附腔的后排放的气体中可燃气体温度可以降低到其自燃点以下,气体浓度降低到其***极限以下。而在冷却材料和吸附材料合适的用量组合下,其排放到环境中的少了气体可以达到无色无味不燃的效果,从而避免了电池因为热失控导致的***、着火等二次灾害,也降低了对环境的污染。
如图18所示,本申请提供了一种集中式储能设备安全处理***,包括储能单元51,用于收集储能单元51热失控后气体的气体收集单元57,用于将气体收集单元57收集的气体进行处理的气体处理单元513,用于记录储能单元51、气体收集单元57和气体处理单元513参数的探测单元,以及控制储能单元51、气体收集单元57和气体处理单元513的控制单元。
上述储能单元51为至少一个的电池模组或储能集装箱,气体收集单元57包括与储能单元51连接的支路管道55、以及与多个支路管道55连通的汇流管58,气体收集单元57通过支路管道55对储能单元热失控时产生的气体进行收集,并经汇流管58统一传输至气体处理单元513进行处理。气体收集单元57是储能单元51中的某个大电池模组或储能集装箱在热失控后对热失控物质进行收集的管路以及相关附件;气体收集单元57可以将多个不同区域、不同规格的电池模组或储能集装箱热失控后喷放的高温危险物质进行有序收集、有序引导 至远离未发生热失控的电池组区域的一个气体处理单元。支路管道55的一端与储能单元的泄压口53连通,另一端通过汇流管58与气体处理单元513连通。具体的,缓冲罐515的容量根据所连接的电池单元中电池模组或储能集装箱的数量、类型、容量调整。支路管道55上还设置有单向阀56,单向阀56设置在支路管道上。单向阀56为单向液体阀和/或单向气体阀,只允许液体或者气体沿储能单元向气体处理单元的方向流动。
在本实施例中,气体处理单元513是对气体收集单元收集而来的各种高温危险物质进行冷却、惰化、排放,从而达到了储能单元热失控后喷放物质的有序化收集,有序化处理,避免了储能站因单个电池模组或储能集装箱出现危险而发生热失控时,影响到紧邻的其他电池模组或储能集装箱,这种集中处理的方式省去了给每个电池模组或储能集装箱单独配备一套气体处理单元,节约了成本,且处理效率更高。
气体处理单元用于对储能单元发生热失控时产生的气体进行处理;气体处理单元513包括处理装置514;处理装置514与缓冲罐515连接;处理装置514具有冷却、惰化锂电池热失控后喷出的各种物质的功能,处理装置内部按气流方向依次设有冷却层、缓冲隔离层、气体处理层。缓冲隔离层可以为隔离空腔,在本实施例中,隔离空腔内设置有间隔10cm左右的两个多孔板,且在两个隔板中间填充多孔蜂窝陶瓷。气体处理层为惰化材料层或吸附材料层,惰化是指将前述物质中的可燃物质、有毒物质通过吸收、吸附、分解、转化等手段或处理或使其滞留在处理装置之中。处理装置上方还设有排放口。
上述吸附层可以设置成多层活性炭层。在本实施例中,在活性炭层之间设置有间隔10cm左右的两个多孔板,多孔板之间的空间形成缓冲空腔。冷却材料层中的材料为:碳酸盐化合物、低层设置陶瓷球、碳酸氢盐化合物、结晶水化合物中的一种或者多种;惰化材料层中的材料为气体灭火剂:七氟丙烷、二氧化碳;或液体灭火剂:全氟庚烷、全氟己酮中的一种或者多种。处理装置可以同时满足储能单元中一组大容量锂电池组或锂电池模组热失控后喷出的燃烧物质的处理净化要求。处理装置514上方还设有排放口512。
上述气体收集单元通过支路管道将多个电池组热失控时产生的气体收集并经过汇流管统一传输至气体处理单元进行处理;气体收集单元用于将气体收集单元收集的气体进行处理;本申请将电池模组发生热失控的危险提前探测预警,并将热失控后从电池组或者电池箱泄压口释放的高温危险物质有序收集、有序引导至远离没有发生危险的电池组的区域,进行有序处理、有序排放从而避免了储能设备一处发生危险而导致整个储能***损毁的情况。
在本实施例中,探测单元用于控制储能单元、气体收集单元、气体处理单元在使用时或者热失控后的部件的工作状态、参数及指标。探测单元包括探测管理***59和多个传感器54,传感器54分别设置在储能单元51、气体收集单元57、气体处理单元513中的需要探测工作状态的部件上。传感器54包括温度传感器、压力传感器、红外传感器、视频传感器。
在本实施例中,控制单元用于当储能电池单元及气体收集单元的运行参数在正常设置值之外时对气体处理单元或者相关人员及其他***进行提示、报警或者控制。控制单元包括控制管理***510、与控制管理***连接的控制设备;控制设备还与气体收集单元、气体处理单元连接;控制管理***还与探测管理***连接。进一步地,还包括报警设备511,报警设备511与控制管理***510连接。
实施例14
如图18所示,本实施例提供了一种集中式储能设备安全处理***,此***包括储能单元51、气体收集单元57、气体处理单元513。其中储能单元51由20个单体容量为300KWh的大容量电池组52组成,每个大容量电池组分散装配于各自的箱体之中,20个电池组的箱体在其上部均设置泄压口53。泄压口上直接设置管道与气体收集单元57的支路管道55连接,支路管道上设置温度传感器和压力传感器54,并且设置了单向阀门6,此***的20个大容量电池组由支路管道汇总到汇流管58,并由汇流管连通处理装置。气体依次经过填充在处理装置底部的冷却材料层进行冷却、隔离空腔、惰化材料层进行惰化,最后通过 排放口安全排放。
在本实施例中,在汇流管与气体处理单元之间设置一个缓冲罐515。若未设置该缓冲罐,当储能单元发生热失控后,大量的高温物质通过管路直接冲向气体处理单元,容易导致气体处理单元的瞬间负荷过大,且压力不均匀,进而导致从排放口排放的气体温度较高,且喷出的混合气体由于处理不完全而具有可燃性。在汇流管与气体处理单元之间设置缓冲罐,由于缓冲罐在平时保持负压真空状态,则当储能单元热失控时,喷向气体处理单元的高温物质的瞬时负荷峰值大大降低,经过处理装置处理后排向环境中的气体流速均匀,温度较低,完全不燃。
在本实施例中,处理装置的隔离腔中设置有两层多孔板,该两层多孔板之间留有10cm左右的缓冲空腔,在该缓冲空腔中填充多孔蜂窝陶瓷;在多孔蜂窝陶瓷上设置三层活性炭层,单层活性炭层厚度为30cm。在多层活性炭层之间设置10cm的缓冲空腔,缓冲空间与活性炭之间通过多孔板和多孔棉支撑。这样,对大容量电池组热失控后的高温物质通过缓冲罐、以及上述处理***后排向环境中的气体流速均匀,气体量较少,且无色无味,温度较低,完全不燃。
在本实施例中,本***中还可增设探测单元和控制单元。探测单元用于探测储能电池单元、气体收集单元、气体处理单元在使用时或者热失控后的部件的工作状态、参数及指标;控制单元用于当储能电池单元及气体收集单元的运行参数在正常设置值之外时对气体处理单元或者相关人员及其他***进行提示、报警或者控制。具体地,探测单元包括探测管理***59和多个传感器54,传感器54分别设置在储能单元51、气体收集单元57、气体处理单元513中的需要探测工作状态的部件上。传感器54包括温度传感器、压力传感器、红外传感器、视频传感器。控制单元包括控制管理***510,和,与控制管理***连接的控制设备;控制设备还与气体收集单元、气体处理单元连接;控制管理***还与探测管理***连接。还包括报警设备511,报警设备511与控制管理***10连接。

Claims (29)

  1. 一种电池安全装置,其特征在于:包括冷却装置和/或吸附装置;
    所述冷却装置设置在电池内部或电池外部,与电池泄压口连接,用于对电池进行降温或对电池排出的热失控烟气进行冷却;
    所述吸附装置设置在电池内部或电池外部,与电池泄压口或冷却装置的出口连接,用于对电池排出的热失控烟气进行吸附。
  2. 根据权利要求1所述的电池安全装置,其特征在于,所述吸附装置包括与电池连接的吸附腔和单向泄压阀;所述单向泄压阀通过第一连接管与吸附腔的上端连接。
  3. 根据权利要求2所述的电池安全装置,其特征在于,所述吸附腔内设有缓冲室和多层吸附结构,所述多层吸附结构设置在所述缓冲室上方;所述缓冲室下端通过第二连接管与电池的泄压口连接。
  4. 根据权利要求3所述的电池安全装置,其特征在于,所述多层吸附结构包括吸附层,设置在吸附层两侧的过滤缓冲层,设置在所述过滤缓冲层外侧的金属网。
  5. 根据权利要求4所述的电池安全装置,其特征在于,所述吸附层包括无机材料和有机材料;所述无机材料和有机材料混合设置,或,所述无机材料和有机材料分层设置。
  6. 根据权利要求5所述的电池安全装置,其特征在于,所述无机材料为活性炭、氧化钛、石墨、氧化铝、粘土矿物、硅酸盐、磷酸盐、沸石、氧化镁、二氧化硅、多孔玻璃中的一种或多种,所述有机材料为丙烯酸树脂、醋酸纤维素、聚乙烯亚胺、二乙酰亚胺、羧酸钠、硫脲、苯酚钠、联苯二胺中的一种或多种。
  7. 根据权利要求4所述的电池安全装置,其特征在于,所述过滤缓冲层为玻璃纤维棉和活性炭棉双层设置,所述过滤缓冲层的厚度不小于5毫米,所述吸附层的厚度不小于20毫米。
  8. 根据权利要求3所述的电池安全装置,其特征在于,所述缓冲室为喇叭状,所述缓冲室和多层吸附结构之间设有环状支撑部。
  9. 根据权利要求1所述的电池安全装置,其特征在于,所述冷却装置包括 冷却腔,所述吸附装置包括吸附腔,所述冷却腔与所述吸附腔连通;
    所述冷却腔与电池主体或电池模组的泄压口连接,所述电池主体的泄压口与冷却腔通过泄压膜密封隔离。
  10. 根据权利要求9所述的电池安全装置,其特征在于,所述冷却腔内填充有冷却材料,所述冷却材料与电池主体或电池模组的一个或多个外表面紧贴设置。
  11. 根据权利要求10所述的电池安全装置,其特征在于,所述电池主体或电池模组的泄压口设置在远离所述吸附腔的一侧。
  12. 根据权利要求9所述的电池安全装置,其特征在于,所述冷却腔与吸附腔之间设有多孔板,所述多孔板为多孔金属网、多孔金属板、无机纤维网中的一种,所述无机/有机纤维网为硅酸铝纤维棉、玻璃纤维棉、石棉、无纺布中的一种或几种。
  13. 根据权利要求9所述的电池安全装置,其特征在于,所述吸附腔上设有排气口,所述排气口上设有防潮膜或密封膜,或者,所述排气口连接排气管道或气囊。
  14. 根据权利要求9所述的电池安全装置,其特征在于,所述泄压膜为金属膜片。
  15. 根据权利要求9所述的电池安全装置,其特征在于,所述冷却腔中填充有陶瓷球、蜂窝陶瓷片、多孔陶瓷、金属材料、石墨棒中的一种或者多种组合,所述吸附腔中填充有活性炭、多孔二氧化硅、分子筛、多孔陶瓷、吸附树脂中的一种或者多种组合。
  16. 根据权利要求1所述的电池安全装置,其特征在于,所述冷却装置包括N个冷却罐体,每个冷却罐体内填充有冷却材料,N为大于等于1的整数;所述吸附装置包括M个吸附罐体,每个吸附罐体内填充有吸附材料,M为大于等于0的整数;N个冷却罐体依次串联,电池热失控烟气依次通过多个冷却罐体降低温度与流量;或者,N个冷却罐体和M个吸附罐体任意组合串联,电池热失控烟气通过冷却罐体降低温度与流量,并通过吸附罐体进行吸附处理。
  17. 根据权利要求16所述的电池安全装置,其特征在于:N个冷却罐体和M个吸附罐体依次串联,使得电池热失控烟气通过冷却罐体降低温度与流量后,再通过吸附罐体进行吸附处理,N个冷却罐体和M个吸附罐体线性排布为一排, 或者线性排布为U形,或者线性排布为V形,或者线性排布为L形。
  18. 根据权利要求16所述的电池安全装置,其特征在于:每个冷却罐体内设置有X个多孔板,相邻的两个多孔板与冷却罐体内壁形成冷却腔,所述冷却材料填充在部分冷却腔或全部冷却腔内,X为大于等于2的整数;每个吸附罐体内设置有Y个多孔板,相邻的两个多孔板与吸附罐体内壁形成吸附腔,所述吸附材料填充在部分吸附腔或全部吸附腔内,Y为大于等于2的整数。
  19. 根据权利要求18所述的电池安全装置,其特征在于:相邻的冷却罐体和/或吸附罐体通过弯管串联,弯管内形成电池热失控烟气通过的缓冲回流腔,所述弯管与冷却罐体、吸附罐体通过法兰连接。
  20. 根据权利要求19所述的电池安全装置,其特征在于:相邻多孔板通过连接杆轴向连接,所述冷却罐体和吸附罐体在电池热失控烟气的进口段和/或出口段还设置弹簧,所述弹簧的一端通过多孔板限位,另一端通过弯管限位,用于压紧和密实冷却材料和吸附材料,且具有缓冲作用。
  21. 根据权利要求16所述的电池安全装置,其特征在于:所述冷却罐体和吸附罐体采用受力、耐压性较好的圆形罐体,所述冷却材料为陶瓷球、蜂窝陶瓷体、二氧化硅、氧化铝、氧化锆、氧化钛中的一种或者多种的组合,所述吸附材料为活性炭、石墨、氧化铝、蒙脱石、硅酸盐、磷酸盐、多孔玻璃中的一种或多种的组合。
  22. 根据权利要求16所述的电池安全装置,其特征在于:最后一个吸附罐体的出口处还连接有气体采集袋,用于收集处理过的电池热失控烟气。
  23. 一种集中式储能设备安全处理***,其特征在于,包括储能单元、气体收集单元和气体处理单元:
    所述储能单元为至少一个电池模组或储能集装箱;
    所述气体收集单元包括与所述储能单元连接的支路管道,和,与多个所述支路管道连通的汇流管,所述气体收集单元通过支路管道对所述储能单元热失控时产生的气体进行收集,并经汇流管统一传输至所述气体处理单元进行处理;
    所述气体处理单元为权利要求1至22任一所述的电池安全装置,用于对所述储能单元发生热失控时产生的气体进行处理。
  24. 根据权利要求23所述的集中式储能设备安全处理***,其特征在于,所述支路管道的一端与所述储能单元的泄压口连通,另一端通过汇流管与气体 处理单元连通。
  25. 根据权利要求24所述的集中式储能设备安全处理***,其特征在于,包括单向阀,所述单向阀设置在每个所述支路管道上,所述单向阀为单向液体阀和/或单向气体阀,使得液体或者气体沿储能单元向气体处理单元的方向流动。
  26. 根据权利要求25所述的集中式储能设备安全处理***,其特征在于,还包括缓冲罐,所述缓冲罐设置在所述汇流管和气体处理单元之间。
  27. 根据权利要求25所述的集中式储能设备安全处理***,其特征在于,所述冷却腔内还设置有缓冲隔离层,所述吸附腔内还设置有惰化材料层。
  28. 根据权利要求23所述的集中式储能设备安全处理***,其特征在于,还设有探测单元,所述探测单元包括探测管理***和多个传感器,所述传感器分别设置在储能单元、气体收集单元、气体处理单元中的需要探测工作状态的部件上,所述传感器包括温度传感器、压力传感器、红外传感器、视频传感器。
  29. 根据权利要求28所述的集中式储能设备安全处理***,其特征在于,还设有控制单元和报警设备,所述控制单元包括控制管理***,和与所述控制管理***连接的控制设备;所述控制设备与所述气体收集单元、气体处理单元连接;所述控制管理***与所述探测管理***连接,所述报警设备与所述控制管理***连接。
PCT/CN2022/109385 2021-08-02 2022-08-01 一种电池安全装置及集中式储能设备安全处理*** WO2023011399A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202110883158.8A CN113629306A (zh) 2021-08-02 2021-08-02 一种大容量电池的吸附结构
CN202110883158.8 2021-08-02
CN202110888172.7A CN113629345A (zh) 2021-08-03 2021-08-03 一种大容量电池的安全结构
CN202110888165.7 2021-08-03
CN202110888172.7 2021-08-03
CN202110888165.7A CN113506932A (zh) 2021-08-03 2021-08-03 一种用于锂电池的电池箱安全结构
CN202110924025.0A CN113571785A (zh) 2021-08-12 2021-08-12 一种集中式储能设备安全处理***
CN202110924025.0 2021-08-12
CN202210473434.8 2022-04-29
CN202210473434.8A CN114843645A (zh) 2022-04-29 2022-04-29 电池热失控烟气吸附装置、电池壳体、电池及电池箱体

Publications (1)

Publication Number Publication Date
WO2023011399A1 true WO2023011399A1 (zh) 2023-02-09

Family

ID=85154436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109385 WO2023011399A1 (zh) 2021-08-02 2022-08-01 一种电池安全装置及集中式储能设备安全处理***

Country Status (1)

Country Link
WO (1) WO2023011399A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296877A (zh) * 2023-05-19 2023-06-23 苏州精控能源科技有限公司 一种储能电池包箱体质量检测方法以及装置
CN116565440A (zh) * 2023-07-11 2023-08-08 宁德时代新能源科技股份有限公司 电池及用电设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312947A1 (en) * 2012-05-22 2013-11-28 Lawerence Livermore National Security, Llc Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections
CN207398297U (zh) * 2017-11-15 2018-05-22 深圳市飞狮电池有限公司 一种环保型镍氢电池
CN109524592A (zh) * 2018-12-30 2019-03-26 固德电材***(苏州)股份有限公司 一种电池组散热装置
CN111129371A (zh) * 2019-12-24 2020-05-08 奇瑞新能源汽车股份有限公司 一种电动汽车动力电池热失控的防护装置和方法
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能***
CN113506932A (zh) * 2021-08-03 2021-10-15 陕西奥林波斯电力能源有限责任公司 一种用于锂电池的电池箱安全结构
CN113571785A (zh) * 2021-08-12 2021-10-29 陕西奥林波斯电力能源有限责任公司 一种集中式储能设备安全处理***
CN113629306A (zh) * 2021-08-02 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的吸附结构
CN113629345A (zh) * 2021-08-03 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的安全结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312947A1 (en) * 2012-05-22 2013-11-28 Lawerence Livermore National Security, Llc Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections
CN207398297U (zh) * 2017-11-15 2018-05-22 深圳市飞狮电池有限公司 一种环保型镍氢电池
CN109524592A (zh) * 2018-12-30 2019-03-26 固德电材***(苏州)股份有限公司 一种电池组散热装置
CN111129371A (zh) * 2019-12-24 2020-05-08 奇瑞新能源汽车股份有限公司 一种电动汽车动力电池热失控的防护装置和方法
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能***
CN113629306A (zh) * 2021-08-02 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的吸附结构
CN113506932A (zh) * 2021-08-03 2021-10-15 陕西奥林波斯电力能源有限责任公司 一种用于锂电池的电池箱安全结构
CN113629345A (zh) * 2021-08-03 2021-11-09 陕西奥林波斯电力能源有限责任公司 一种大容量电池的安全结构
CN113571785A (zh) * 2021-08-12 2021-10-29 陕西奥林波斯电力能源有限责任公司 一种集中式储能设备安全处理***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296877A (zh) * 2023-05-19 2023-06-23 苏州精控能源科技有限公司 一种储能电池包箱体质量检测方法以及装置
CN116296877B (zh) * 2023-05-19 2023-07-25 苏州精控能源科技有限公司 一种储能电池包箱体质量检测方法以及装置
CN116565440A (zh) * 2023-07-11 2023-08-08 宁德时代新能源科技股份有限公司 电池及用电设备
CN116565440B (zh) * 2023-07-11 2023-11-03 宁德时代新能源科技股份有限公司 电池及用电设备

Similar Documents

Publication Publication Date Title
WO2023011399A1 (zh) 一种电池安全装置及集中式储能设备安全处理***
KR102625883B1 (ko) 일종 배터리 팩의 소화시스템
CN113571785A (zh) 一种集中式储能设备安全处理***
CN212700167U (zh) 被动式灭火装置以及电池包
CN113506932A (zh) 一种用于锂电池的电池箱安全结构
CN114010988A (zh) 被动式灭火装置以及电池包
CN113629306A (zh) 一种大容量电池的吸附结构
CN218516399U (zh) 一种电池热失控烟气冷却装置、冷却***及电池
CN110299486A (zh) 电池安全箱及具有其的安全充电柜
CN209947989U (zh) 一种用于大容量锂离子电池动力***的灭火装置
CN112599924A (zh) 一种电池包用泄压防爆通道
CN216071276U (zh) 一种锂离子电池安全存储保护装置
CN219440501U (zh) 一种储能***
CN219144402U (zh) 一种含有电池热失控烟气处理装置的储能***
CN211024884U (zh) 一种电池储能***
CN216133901U (zh) 一种集中式储能设备安全处理***
CN218957958U (zh) 一种电池热失控烟气处理装置和电池
CN216133908U (zh) 一种用于锂电池的电池箱安全结构
AU2022355963A1 (en) Thermal Runaway Flue Gas Treatment Apparatus for Battery, Treatment Method, Battery Group, and Battery Pack
CN217361716U (zh) 一种大容量电池的安全保护结构
CN113629345A (zh) 一种大容量电池的安全结构
CN113921981A (zh) 一种大容量电池的安全保护结构
CN214336857U (zh) 一种电池包用泄压防爆通道
CN114221085A (zh) 大容量电池的热失控安全保护结构
CN114984743A (zh) 一种电池热失控烟气处理装置和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE