WO2023011362A1 - 一种北斗通信***中出站传输控制方法、***及相关装置 - Google Patents

一种北斗通信***中出站传输控制方法、***及相关装置 Download PDF

Info

Publication number
WO2023011362A1
WO2023011362A1 PCT/CN2022/109123 CN2022109123W WO2023011362A1 WO 2023011362 A1 WO2023011362 A1 WO 2023011362A1 CN 2022109123 W CN2022109123 W CN 2022109123W WO 2023011362 A1 WO2023011362 A1 WO 2023011362A1
Authority
WO
WIPO (PCT)
Prior art keywords
slc
terminal
frame
network device
pdu
Prior art date
Application number
PCT/CN2022/109123
Other languages
English (en)
French (fr)
Inventor
甘雯昱
钱锋
朱旭东
姚振东
林力新
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22852075.5A priority Critical patent/EP4358430A1/en
Publication of WO2023011362A1 publication Critical patent/WO2023011362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]

Definitions

  • the present application relates to the technical field of satellite communication, and in particular to a method, system and related device for outbound transmission control in the Beidou communication system.
  • the Beidou satellite navigation system is a major infrastructure independently developed by my country that integrates positioning, timing, and communication.
  • the Beidou short message communication service is one of the characteristics of the Beidou satellite navigation system that distinguishes it from other global navigation systems such as GPS, GLONASS, and GALILEO.
  • the Beidou short message communication service is especially suitable for communication in areas where mobile communication is not covered, or cannot be covered, or the communication system is damaged, such as oceans, deserts, grasslands, and uninhabited areas.
  • the communication system of the Beidou-3 satellite has upgraded the short-message technology system, and opened some necessary resources of the Beidou communication system to civilian use. According to the characteristics of civilian business and equipment, the communication protocol needs to be designed according to the characteristics of the Beidou communication system.
  • This application provides an outbound transmission control method, system and related devices in the Beidou communication system. Through the method provided by the embodiment of this application, reliable and effective transmission of outbound services can be realized under the limitation of low outbound data capacity.
  • the present application provides a method for controlling outbound transmission in the Beidou communication system
  • the method may include: Beidou network equipment generates a first user frame sent to the first terminal at the satellite link control SLC layer, and sends to The second user frame of the second terminal; wherein, the frame header information of the first user frame includes a first user ID field and a first frame type field; the first user ID field is used to indicate the terminal receiving the first user frame; the first The ID information of the first terminal is included in the user ID field; the first frame type field is used to indicate the frame type of the first user frame; the frame header information of the second user frame includes a second user ID field and a second frame type field; The second user ID field is used to indicate the terminal receiving the second user frame; the second user ID field contains the ID information of the second terminal; the second frame type field is used to indicate the frame type of the second user frame; The PHY layer generates the first physical frame based on the first user frame and the second user frame; the Beidou network device sends the first
  • the first user frame includes a satellite link control layer protocol data unit SLC PDU and an acknowledgment character ACK frame, and an application layer receipt frame.
  • the SLC PDU can be used to transmit data
  • the confirmation character ACK frame can be used to indicate whether the Beidou network equipment has successfully received the SLC PDU of the terminal.
  • the application layer receipt frame is used to indicate whether the Beidou network equipment successfully parses the received application layer message.
  • Beidou network equipment can transmit user frames of multiple end users at the same time, thereby achieving reliable and efficient transmission of outbound services under the limitation of low outbound data capacity. Moreover, Beidou network equipment can also send different types of user frames. In this way, the requirements of different outbound services may not be met.
  • the first user frame is the first satellite link control layer protocol data unit SLC PDU in the first satellite link control layer service data unit SLC SDU, and the first user frame
  • the frame header information also includes the AM enable field, the frame total number field, and the frame sequence number field of the confirmation mode; among them, the AM enable field is used to indicate that the first terminal responds to ACK or not to reply ACK; the frame total number field is used to indicate that Beidou network equipment sends The number of SLC PDUs for the first terminal; the frame sequence number field is used to indicate the sequence number of the SLC PDU sent by Beidou network equipment.
  • the AM enable field of the first SLC PDU is the first value, and the first value is used to indicate that the first terminal does not reply ACK.
  • the AM enable field of the first SLC PDU is a second value, and the second value is used to indicate that the first terminal replies with an ACK.
  • the device receiving the first SLC PDU can know whether it needs to reply ACK through the frame header information, and does not need to know whether it needs to reply ACK through separate signaling interaction.
  • the first user frame is the first SLC PDU
  • the method further includes: the Beidou network device continues to send the first SLC SDU One or more SLC PDUs in the first SLC SDU; after the Beidou network equipment sends all the SLC PDUs in the first SLC SDU, the Beidou network equipment receives the first ACK sent by the first terminal, and the first ACK is used to indicate that the first terminal is successful Receive all SLC PDUs in the first SLC SDU.
  • the Beidou network device can know that the first terminal has successfully received the SLC SDU through the ACK returned by the first terminal. In this way, Beidou network equipment continues to send the next SLC SDU.
  • the first user frame is the first SLC PDU
  • the method further includes: after the Beidou network device sends the first SLC PDU, The Beidou network device receives the second ACK sent by the first terminal, and the second ACK is used to indicate that the first terminal has not successfully received the first SLC PDU; the Beidou network device allocates the resources of one or more SLC PDUs in the first SLC SDU To one or more SLC PDUs in the second SDU sent to the second terminal. In this way, the resources of Beidou network equipment can be saved and the recycling of resources can be realized.
  • the first user frame is the first SLC PDU
  • the method further includes: the Beidou network device continues to send the first SLC SDU One or more SLC PDUs; after the Beidou network equipment has sent all the SLC PDUs in the first SLC SDU, the Beidou network equipment receives the third ACK sent by the first terminal, and the third ACK indicates that the first terminal failed to receive the first SLC PDU. All SLC PDUs in the SLC SDU.
  • the Beidou network device can determine the next operation according to the ACK replied by the first terminal, for example, end this sending.
  • the frame header information of the first physical frame includes a rate indication field or a version number field; wherein, the rate indication field is used to indicate the transmission rate of the first physical frame; the version The number field is used to indicate the current version information of the first physical frame.
  • the device receiving the physical frame can know the rate and version information of the physical frame.
  • the first user frame is the first SLC PDU
  • the Beidou network device generates the first user frame sent to the first terminal at the satellite link control layer SLC, and sends it to the first user frame
  • the method also includes: the Beidou network equipment obtains the message data of the Beidou network equipment at the satellite link control SLC layer and aggregates multiple satellite link control layer service data units SLC SDU sent by the MDCP layer , wherein the multiple SLC SDUs include the first SLC SDU; the Beidou network equipment splits the first SLC SDU into N SLC PDUs at the SLC layer.
  • the method further includes: the Beidou network device
  • the MDCP layer obtains the application layer message sent by the application layer of the Beidou network device;
  • the Beidou network device uses the application layer message as the MDCP SDU at the MDCP layer, and after adding the padding data and the redundant length indication field to the MDCP SDU, Split into multiple MDCP PDUs; among them, the redundant length indication field is used to indicate the data length of the padding data,
  • the multiple MDCP PDUs include the first MDCP PDU, the header information of the first MDCP PDU includes the successor indication field, and the successor indication field It is used to indicate the order of the first MDCP PDU in multiple MDCP PDUs;
  • Beidou network equipment sends multiple MDCP PDUs from the MDCP layer to the SLC layer as multiple SLC SDUs of the SLC layer.
  • the method further includes: the Beidou network device obtains the original data; the Beidou network device obtains the original data; The network device compresses the original data at the application layer to obtain compressed data; the Beidou network device encrypts the compressed data at the application layer to obtain encrypted data; the Beidou network device adds header information to the encrypted data header to obtain Application layer message; wherein, the message header information includes a compression indication field and an encryption indication field, the compression indication field is used to indicate the compression algorithm used when compressing the original data, and the encryption indication field is used to indicate the encryption used when encrypting the compressed data algorithm.
  • the Beidou network device splits the first SLC SDU into N SLC PDUs at the SLC layer, specifically including: the Beidou network device splits the first SLC PDU among the N SLC PDUs and the second SLC PDU to the PHY layer; the Beidou network equipment generates the first physical frame from the first SLC PDU at the PHY layer, and generates the second physical frame from the second SLC PDU; the Beidou network equipment sends the first physical frame and the second physics frame.
  • the Beidou network device sending the first physical frame includes: the Beidou network device adds the first check digit information at the end of the first physical frame at the PHY layer, and The first physical frame and the first check digit information are encoded to obtain the first encoded data; the Beidou network equipment modulates the first encoded data and the first reserved field of the first encoded data at the PHY layer to obtain the first modulated data; the Beidou network The device spreads the first modulated data at the PHY layer to obtain the first spread spectrum modulated data; the Beidou network device sends the first spread spectrum modulated data and the first pilot information of the first spread spectrum modulated data at the PHY layer.
  • the method may further include: the Beidou network device sends the last SLC PDU in the first SLC SDU based on the Beidou network device, the first terminal receives the first SLC The processing delay from the last SLC PDU in the SDU to sending the ACK and the air interface propagation delay determine the starting moment of the ACK receiving time window; Beidou network equipment starts to receive the ACK at the starting moment of the ACK receiving time window.
  • the Beidou network equipment can determine the starting time of receiving the ACK.
  • the method may further include: the Beidou network device sends the last SLC PDU in the first SLC SDU based on the Beidou network device, the first terminal receives the first SLC The processing delay from the last SLC PDU in the SDU to sending the ACK, the time length of the ACK sent by the first terminal, and the air interface propagation delay determine the end time of the ACK receiving time window; Stop receiving ACK at the end time.
  • the Beidou network device can determine the end time of receiving the ACK.
  • a method for controlling outbound transmission in the Beidou communication system may include: the first terminal receives the first physical frame sent by the Beidou network equipment; the first physical frame contains the first physical frame sent to the first terminal A user frame and a second user frame sent to the second terminal, wherein the frame header information of the first user frame includes a first user ID field and a first frame type field; the first user ID field is used to indicate the reception of the first user frame The terminal of the frame; the first user ID field contains the ID information of the first terminal; the first terminal parses the first user frame from the first physical frame, and discards the second user frame.
  • the first user frame includes a satellite link control layer protocol data unit SLC PDU and an acknowledgment character ACK frame, and an application layer receipt frame.
  • the SLC PDU can be used to transmit data
  • the confirmation character ACK frame can be used to indicate whether the Beidou network equipment has successfully received the SLC PDU of the terminal.
  • the application layer receipt frame is used to indicate whether the Beidou network equipment successfully parses the received application layer message.
  • Beidou network equipment can transmit user frames of multiple end users at the same time, thereby achieving reliable and efficient transmission of outbound services under the limitation of low outbound data capacity. Moreover, Beidou network equipment can also send different types of user frames. In this way, the requirements of different outbound services may not be met. The first terminal may also receive different types of user frames.
  • the first user frame is the first satellite link control layer protocol data unit SLC PDU in the first satellite link control layer service data unit SLC SDU, and the first user frame
  • the frame header information also includes the AM enable field, the frame total number field, and the frame sequence number field of the confirmation mode; among them, the AM enable field is used to indicate that the first terminal responds to ACK or not to reply ACK; the frame total number field is used to indicate that Beidou network equipment sends The number of SLC PDUs for the first terminal; the frame sequence number field is used to indicate the sequence number of the SLC PDU sent by Beidou network equipment.
  • the AM enable field of the first SLC PDU is the first value, and the first value is used to indicate that the first terminal does not reply ACK.
  • the AM enable field of the first SLC PDU is a second value, and the second value is used to indicate that the first terminal replies with an ACK.
  • the first terminal receiving the first SLC PDU can know whether it needs to reply ACK through the frame header information, and does not need to know whether it needs to reply ACK through separate signaling interaction.
  • the first user frame is the first SLC PDU
  • the first terminal parses the first user frame from the first physical frame, and after discarding the second user frame
  • the method further Including: the first terminal receives one or more SLC PDUs in the first SLC SDU; when the first terminal receives all the SLC PDUs in the first SLC SDU, the first terminal sends the first ACK to the Beidou network equipment, and the first The ACK is used to indicate that the first terminal has successfully received all the SLC PDUs in the first SLC SDU.
  • the value of the first ACK may be 1.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the first terminal parses the first user frame from the first physical frame, and discards the second user frame
  • the method also includes: when the first SLC PDU analyzed by the first terminal is not the first SLC PDU in the first SLC SDU; the first terminal sends a second ACK to the Beidou network device and stops receiving the first SLC For the second SLC PDU in the SDU, the second ACK is used to indicate that the first terminal has not successfully received the first SLC PDU.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the first terminal parses the first user frame from the first physical frame, and discards the second user frame
  • the method also includes: the first terminal receives one or more SLC PDUs in the first SLC SDU; when the first terminal does not collect all the SLC PDUs in the first SLC SDU within the SLC PDU receiving time window Afterwards, the first terminal sends a third ACK to the Beidou network device, and the third ACK is used to indicate that the first terminal has not successfully received all the SLC PDUs in the first SLC SDU.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the first terminal parses the first user frame from the first physical frame
  • Discarding the second user frame includes: the first terminal obtains at the PHY layer the first spread spectrum modulation data sent by the terminal; the first terminal despreads the first spread spectrum modulation data at the PHY layer, Obtain the first modulation data and the first modulation synchronization header; the first terminal demodulates the first modulation data and the first modulation synchronization header at the PHY layer to obtain the first pilot data and the first synchronization header; the first terminal The PHY layer removes the pilot information in the first pilot data to obtain the first encoded data; the Beidou network device decodes the first encoded data at the PHY layer to obtain the physical frame of the first encoded block and the first verification information; the first The terminal verifies the first coding block based on the first verification information at the PHY layer, and after the verification succeeds, uses the first user frame whose
  • the first terminal verifies the first coded block based on the first verification information at the PHY layer, and after the verification is successful, the After the first user frame with the same ID field as the ID of the first terminal is presented as the first SLC PDU in the first SLC SDU in the SLC layer of the first terminal to the SLC layer of the first terminal from the PHY layer, the method further includes: A terminal splices the received M SLC PDUs into a first SLC SDU at the SLC layer, and reports the first SLC SDU as the first MDCP PDU of the MDCP layer from the SLC layer of the first terminal to the MDCP layer of the first terminal, The packet header information of the first MDCP PDU includes a successor indication field, and the successor indication field is used to indicate the order of the first MDCP PDU in multiple MDCP PDUs sent by the Beidou network equipment.
  • the method further includes: the first terminal obtains at the MDCP layer the second MDCP PDU reported from the first terminal SLC layer; when the second MDCP PDU in the second MDCP PDU When indicating that the second MDCP PDU is the last one of multiple MDCP PDUs sent by Beidou network equipment, the first terminal splices the first MDCP PDU and the second MDCP PDU into an MDCP SDU at the MDCP layer, and reports the MDCP SDU as an application layer The text is reported from the MDCP layer to the application layer.
  • the application layer message includes message header information and encrypted data
  • the message header information includes an encryption indication field and a compression indication field
  • the compression indication field is used to instruct the terminal to convert the original
  • the encryption indication field is used to indicate the encryption algorithm used when the terminal encrypts the compressed data into encrypted data
  • the method also includes: the first terminal encrypts in the application layer message through the application layer The encryption algorithm indicated by the indication field decrypts the encrypted data in the application layer message to obtain compressed data; the first terminal decompresses the compressed data at the application layer through the compression algorithm indicated by the compression indication field in the application layer message, get the raw data.
  • the method further includes: the first terminal based on the frame sequence number of the received SLC PDU, the time length of the SLC PDU sent by the Beidou network device, and an SLC sent by the Beidou network device The total number of SLC PDU frames in the SDU and the sending interval between the SLC PDUs determine the time length of the SLC PDU receiving window in the first terminal.
  • the method further includes: the first terminal is based on the time length of the SLC PDU receiving window, the receiving moment of the first SLC PDU, the signal processing delay of the first terminal, and the second The time length of the ACK sent by a terminal determines the time point when the first terminal sends the ACK.
  • a Beidou communication system including Beidou network equipment and a first terminal, wherein:
  • the Beidou network equipment is used to generate the first user frame sent to the first terminal and the second user frame sent to the second terminal at the satellite link control layer SLC; wherein, the frame header information of the first user frame includes the first user frame ID field and first frame type field; the first user ID field is used to indicate the terminal receiving the first user frame; the first user ID field contains the ID information of the first terminal; the first frame type field is used to indicate the first user The frame type of the frame; the frame header information of the second user frame includes a second user ID field and a second frame type field; the second user ID field is used to indicate the terminal receiving the second user frame; the second user ID The field includes ID information of the second terminal; the second frame type field is used to indicate the frame type of the second user frame;
  • the Beidou network device is used to generate the first physical frame based on the first user frame and the second user frame at the physical PHY layer;
  • the Beidou network device is used to send the first physical frame
  • the first terminal is configured to receive the first physical frame sent by the Beidou network device; parse the first user frame from the first physical frame, and discard the second user frame.
  • Beidou network equipment can transmit user frames of multiple end users at the same time, thereby achieving reliable and efficient transmission of outbound services under the limitation of low outbound data capacity. Moreover, Beidou network equipment can also send different types of user frames. In this way, the requirements of different outbound services may not be met.
  • the Beidou communication system may further include a second terminal, where the second terminal is configured to receive the first physical frame sent by the Beidou network device; from the first physical frame Parsing out the second user frame.
  • the Beidou network device may also execute the method in any possible implementation manner of the foregoing first aspect.
  • the terminal may also execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the foregoing first aspect.
  • the communication device may be Beidou network equipment, or any network element or a combination of multiple network elements in the Beidou network equipment.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the second aspect above.
  • the communication device may be a terminal or other product form equipment.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a chip or a chip system, which is applied to a terminal, and includes a processing circuit and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to run the code instructions To execute the method in any possible implementation manner of the second aspect above.
  • FIG. 1 is a schematic structural diagram of a Beidou communication system 10 provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a data outbound transmission process in a Beidou communication system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a protocol encapsulation framework for outbound data of a Beidou communication system 10 provided in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a protocol analysis framework for outbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a data format of outbound data provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another outbound data data format provided by the embodiment of the present application.
  • FIG. 7A is a schematic diagram of a frame format of an SLC frame provided by an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a frame format of another SLC frame provided by an embodiment of the present application.
  • FIG. 7C is a schematic diagram of a frame format of another SLC frame provided by the embodiment of the present application.
  • FIG. 7D is a schematic diagram of a frame format of another SLC frame provided by the embodiment of the present application.
  • FIG. 8A is a schematic diagram of a successful transmission scenario of the first transmission mechanism of the SLC layer when data is outbound provided by an embodiment of the present application;
  • FIG. 8B is a schematic diagram of a transmission failure scenario of SLC layer transmission mechanism 1 when data is outbound provided by an embodiment of the present application;
  • FIG. 9A is a schematic diagram of a successful transmission scenario of the second transmission mechanism of the SLC layer when data is outbound provided by the embodiment of the present application;
  • FIG. 9B is a schematic diagram of a transmission failure scenario of the second transmission mechanism of the SLC layer when data is outbound provided by the embodiment of the present application;
  • FIG. 10A is a schematic diagram of a successful transmission scenario of the third transmission mechanism of the SLC layer when data is outbound provided by the embodiment of the present application;
  • FIG. 10B is a schematic diagram of a successful transmission scenario of another transmission mechanism 3 of the SLC layer when the data is outbound provided by the embodiment of the present application;
  • FIG. 10C is a schematic diagram of a transmission failure scenario of the third transmission mechanism of the SLC layer when data is outbound provided by the embodiment of the present application;
  • FIG. 11A is a schematic diagram of a transmission failure scenario of SLC layer transmission mechanism 4 when data is outbound provided by an embodiment of the present application;
  • FIG. 11B is a schematic flow diagram of a method for controlling outbound transmission in the Beidou communication system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal 100 provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • a Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • Fig. 1 shows a schematic diagram of a Beidou communication system 10 provided in an embodiment of the present application.
  • the Beidou communication system 10 may include a terminal 100 , a Beidou short message satellite 21 , a Beidou network device 200 , a short message center 25 and a terminal 300 .
  • the Beidou communication system 10 may also include an emergency rescue platform 26 and an emergency rescue center 27 .
  • the terminal 100 can send the short message information to the Beidou short message satellite 21, and the Beidou short message satellite 21 only relays and directly forwards the short message information sent by the terminal 100 to the Beidou network equipment 200 on the ground.
  • the Beidou network device 200 can analyze the short message information forwarded by the satellite according to the Beidou communication protocol, and forward the content of the general message type parsed from the short message information to the short message center (short message service center, SMSC) 25.
  • SMSC short message service center
  • the short message center 25 can forward the content of the message to the terminal 300 through a traditional cellular communication network.
  • the Beidou network device 200 can also send the emergency distress message sent by the terminal 100 to the emergency rescue center 27 through the emergency rescue platform 26.
  • the terminal 300 can also send the short message to the short message center 25 through a traditional cellular communication network.
  • the short message center 25 can forward the short message of the terminal 300 to the Beidou network device 200 .
  • the Beidou network device 200 can relay the short message of the terminal 300 to the terminal 100 through the Beidou short message satellite 21 .
  • the above-mentioned Beidou network equipment 200 may include a Beidou ground transceiver station 22 , a Beidou central station 23 and a Beidou short message integrated communication platform 24 .
  • the Beidou ground transceiver station 22 may include one or more devices with a sending function and one or more devices with a receiving function, or may include one or more devices with a sending function and a receiving function, which is not limited herein .
  • the Beidou ground transceiver station 22 can be used for the data processing function of the Beidou network equipment 200 in the physical layer (physical layer protocol, PHY).
  • the Beidou central station 23 can be used for the Beidou network device 200 to process data at the satellite link control layer (satellite link control protocol, SLC) layer and the message convergence layer (message data convergence protocol, MDCP).
  • the Beidou short message fusion communication platform 24 can be used to process data at the application layer (application layer protocol, APP).
  • the Beidou communication system 10 since the Beidou communication system 10 communicates through satellite links, its main characteristics are: time extension (about 270 ms in one direction) and large link loss.
  • the services currently supported by the Beidou communication system 10 are mainly burst short message services, and do not support link state management, mobility management, and broadcast control information.
  • the working mode of the Beidou network device 200 may be a duplex mode, and data may be sent and received at the same time.
  • the Beidou network device 200 can send data to the terminal 100 through the Beidou short message satellite 21 .
  • the outbound service packet of the Beidou network device 200 needs to be divided into multiple physical layer frames for transmission.
  • the civil terminal for example, terminal 300 in FIG. 1
  • there are various types of services for example, short message, large amount of text information, picture information, voice information, etc.
  • Different business types have different requirements for the underlying packet transmission mode of Beidou network equipment.
  • the embodiment of the present application provides a method for outbound transmission control in the Beidou communication system.
  • the Beidou network device 200 can split the application layer message into multiple protocol data units (protocol data unit, PDU) at the MDCP layer, which can be called It is an MDCP PDU.
  • the MDCP PDU can contain a successor indication field, where the successor indication field can be used for the current MDCP PDU to be the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or an MDCP PDU sent separately PDUs.
  • the Beidou network device 200 can sequentially deliver MDCP PDUs to the SLC layer as service data units (service data units, SDUs) of the SLC layer, which can be called SLC SDUs, and split the SLC SDUs into N SLC PDUs at the SLC layer.
  • SLC PDUs in various formats are provided to meet different business needs.
  • the PHY layer can obtain SLC PDUs of one user or multiple users from the SLC layer.
  • the PHY will splice the SLC PDUs of multiple users or one user together to form outbound data of a fixed-length physical time slot.
  • Beidou network device 200 can send outbound data to one or more terminals.
  • Beidou network device 200 can realize multi-frame (one physical time slot can contain multiple user frames) transmission, which can meet the needs of outbound data of different business types, and can optimize outbound resource configuration and improve outbound resource allocation. utilization rate.
  • Fig. 2 shows a data outbound transmission process in a Beidou communication system provided by an embodiment of the present application.
  • outbound data may refer to the BDS network device 200 sending data to the terminal 100 .
  • the Beidou short message integrated communication platform 24 in the Beidou network device 200 can send outbound data to the Beidou central station 23; then the Beidou central station 23 can send the outbound data to the Beidou ground transceiver station 22, and the The message is sent to the terminal 100 after being relayed by the satellite 21 .
  • the terminal 100 may return an acknowledgment character (acknowledge character, ACK) of the SLC layer to the Beidou central station 23.
  • the ACK can be used for whether the terminal 100 successfully receives the outbound data sent by the Beidou network device 200.
  • a protocol encapsulation framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 3 shows a schematic diagram of a protocol encapsulation architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer in the Beidou network device 200 can be an application layer protocol, a message convergence layer (message data convergence protocol, MDCP), a satellite link control layer (satellite link control protocol) , SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network device 200 may include a Beidou ground transceiver station 22 , a Beidou central station 23 and a Beidou short message integrated communication platform 24 .
  • the Beidou ground transceiver station 22 can be used to be responsible for the protocol processing of the PHY layer.
  • the Beidou central station 23 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message fusion communication platform 24 can be used to be responsible for the protocol processing of the APP layer.
  • the workflow of the Beidou short message transmission protocol in the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can compress the original data into compressed data through a compression algorithm, and add a compression indication field in front of the compressed data, where the compression indication field can be used to indicate the compression algorithm type of the compressed data. Afterwards, the Beidou network device 200 can encrypt the compressed data to obtain encrypted data, and add an encryption algorithm field to the header of the encrypted data, and the encryption algorithm field is used to indicate the encryption algorithm type of the encrypted data. The Beidou network device 200 can encapsulate the encrypted data, the compressed indication field, and the encrypted indication field into an application layer message and send it to the MDCP layer.
  • the application layer message may include a message header and message data.
  • the packet header may include a compression indication field, an encryption indication field, and the like.
  • the message data includes the above-mentioned encrypted data.
  • the Beidou network device 200 may also encrypt the compression indication field and the compressed data together to obtain encrypted data.
  • the Beidou network device 200 can obtain the application layer message sent by the APP layer through the interlayer interface, and use the application layer message as an MDCP SDU.
  • Beidou network device 200 can split an MDCP SDU into one or more fixed-length MDCP segment data (M_segement), and add a follow-up indication field to the header of each MDCP segment data to obtain an MDCP PDU , that is, the MDCP PDU includes M_segment and successor indication fields.
  • M_segement fixed-length MDCP segment data
  • the follow-up indication field can be used to indicate that the current MDCP PDU is the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the Beidou network device 200 can obtain the MDCP PDU sent by the MDCP layer through the interlayer interface as the SLC SDU.
  • the Beidou network device 200 can segment the SLC SDU into one or more (up to 4) fixed-length SLC segment data (S_segement), and add frame header information to each S_segment header to obtain the SLC PDU .
  • the SLC layer needs to segment the data.
  • one SLC SDU can only be divided into 4 SLC PDUs at most, so the MDCP layer also needs to segment the data.
  • the Beidou network device 200 can obtain the SLC PDU delivered by the SLC layer through the interlayer interface.
  • the Beidou network device 200 can obtain the SLC PDUs of one user or multiple users from the SLC layer.
  • the Beidou network device 200 can splice the SLC PDUs of multiple users together, add the frame header of the physical frame (such as the version number) as the code block (code block) of the PHY layer, and add a check digit at the end of the code block (for example, cyclic redundancy check (cyclic redundancy check, CRC) code), and encode the code block and CRC code (for example, polar encoding), the encoded physical frame plus the reserved segment can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the Beidou network device 200 can put multiple SLC PDUs of a user into different physical frames respectively. Then, the Beidou network device 200 composes the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch) into pilot coded data, that is, outbound data. The Beidou network device 200 can send the outbound data to the Beidou short message satellite 21 , and forward it to the terminal 100 via the Beidou short message satellite 21 .
  • the pilot information of the S2C_p branch is related to the satellite beam.
  • the pilot information of the S2C_p branch is also known and does not need to be decoded.
  • the coded data of the S2C_d branch needs to be decoded.
  • a protocol analysis framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • Fig. 4 shows a schematic diagram of a protocol analysis architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of terminal 100 can be divided into application layer protocol (application layer protocol), message convergence layer (message data convergence protocol, MDCP), satellite link control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • application layer protocol application layer protocol
  • message convergence layer messages data convergence protocol
  • satellite link control layer satellite link control protocol
  • physical layer physical layer protocol, PHY.
  • the workflow of the Beidou short message transmission protocol layer of the terminal 100 can be as follows:
  • the terminal 100 can obtain the modulated and spread-spectrum coded pilot data sent by the Beidou network device 200 .
  • the terminal 100 may despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data). Then, the terminal 100 may demodulate the modulated data to obtain pilot coded data (pilot+data). Next, the terminal 100 may remove the pilot information in the pilot coded data to obtain coded data (code data). Then, the terminal 100 can decode the coded data, and verify the integrity of the code block (code block) through the check data in the check bit field. If it is complete, the terminal 100 can extract the code block (code block), and present it to the SLC layer through the interlayer interface as the SLC PDU of the SLC layer.
  • the pilot coded data is the outbound data sent by the Beidou network device 200, and the outbound data is composed of the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch).
  • the terminal 100 can splice the SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the terminal 100 can present the SLC SDU to the MDCP layer through the interlayer interface as the MDCP PDU of the MDCP layer.
  • the terminal 100 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the terminal 100 can present the MDCP SDU to the APP layer through the interlayer interface as an application layer message received by the APP layer.
  • the terminal 100 may decrypt and decompress the application layer message based on the message header of the application layer message to obtain original data.
  • FIG. 5 shows a data format of outbound data provided by the embodiment of the present application.
  • the outbound data is pilot coded data of the physical layer.
  • the pilot coding data may include pilot data of the S2C_p branch (pilot branch) and data of the S2C_d branch (text branch).
  • the pilot data of the S2C_p branch is used to assist the terminal to parse out the user frame in the text branch.
  • the S2C_d branch may include data (user frames) sent by the station side to multiple terminals, as well as reserved fields, rate indication fields, and CRC check code fields.
  • the terminal 100 can obtain the data sent to the terminal 100 from the station side from the S2C_d branch. In short, the terminal 100 can search for the S2C_p branch, and then demodulate the S2C_d branch through the S2C_p branch. After receiving the outbound data, the terminal 100 can parse the user frame data in the S2C_d branch into an SLC PDU of the SLC layer (which may be called an SLC frame or a user frame).
  • an SLC PDU of the SLC layer which may be called an SLC frame or a user frame.
  • the SLC PDU may include a user frame header field and a user information field.
  • the user frame header field may include a start identification field, a frame length field, and a user ID field.
  • the user information field may include a user frame type field and a user text field.
  • the start identification field is used to identify the start part of the user frame, and the length of the start identification field may be 8 bits.
  • the frame length field is used to identify the length of the user frame, and the length of the frame length field can be 8 bits or 9 bits.
  • the user ID field is used to indicate the terminal equipment receiving the user frame, and the length of the user ID field may be 44 bits. It can be understood that the embodiment of the present application does not limit the lengths of the start identification field, the frame length field, and the user ID field.
  • the terminal 100 can combine one or more SLC PDUs in the SLC layer into SLC SDU packets, and then transmitted to the MDCP layer for analysis. If the user ID field in the SLC PDU analyzed by the terminal 100 from the user frame data in the S2C_d branch is not the same as the user ID of the terminal, the terminal 100 can discard the SLC PDU.
  • the user message field may contain specific content sent from the station side to the terminal.
  • the content may be an overview of the mailbox of the terminal, a letter message, or an ACK frame or a NACK frame, etc., which is not limited here.
  • the user frame type field may be used to indicate the type of the user frame, and the length of the user frame type field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the user frame type field.
  • the service type indicated by the user frame type field may be shown in Table 1 below.
  • the user frame type field of the user frame is "00", it indicates that the user frame is a general data frame; when the user frame type field of the user frame is "01”, it indicates that the user frame is an ACK frame ; When the user frame type field of the user frame is "10”, it indicates that the user frame is a receipt frame.
  • the user frame type field "11" is a reserved field.
  • the terminal 100 can blindly decode the received physical frame, it is not necessary to design the rate indication field, saving bits of this field.
  • a field is required to indicate different versions of the protocol. Therefore, an alternative data format for outbound data is provided.
  • FIG. 6 shows another data format of outbound data provided by the embodiment of the present application.
  • the outbound data is pilot coded data of the physical layer.
  • the pilot encoded data may include pilot data of the S2C_p branch (pilot branch) and data of the S2C_d branch (data branch).
  • the pilot data of the S2C_p branch is used to assist the terminal in analyzing the user frames in the data branch.
  • the S2C_d branch may include data (user frames) sent by the station side to multiple terminals, as well as reserved fields, version number fields, and CRC check code fields.
  • the version number field may be 3 bits, and the embodiment of the present application does not limit the length of the version number field.
  • the terminal 100 can obtain the data sent to the terminal 100 from the station side from the S2C_d branch. In short, the terminal 100 can search for the S2C_p branch, and then demodulate the S2C_d branch through the S2C_p branch. After receiving the outbound data, the terminal 100 can parse the user frame data in the S2C_d branch into an SLC PDU of the SLC layer (which may be called an SLC frame or a user frame).
  • an SLC PDU of the SLC layer which may be called an SLC frame or a user frame.
  • the SLC PDU may include a user frame header field and a user information field.
  • frame formats of four types of SLC PDUs are provided.
  • the frame formats of the SLC frames are also different. Specifically, reference may be made to the description below, and details will not be repeated here.
  • FIG. 7A shows a frame format of a type of SLC frame provided by the embodiment of the present application.
  • the SLC frame may be a general data frame of 2K rate.
  • the general data frame of the 2K rate can be used for mailbox profile query and letter message sending.
  • the SLC frame that the Beidou network device 200 replies to the terminal 100 may be a general data frame at a rate of 2K.
  • the general data at the 2K rate may include a single user frame header and user information.
  • the single user frame header of the user frame may include a frame type field, an acknowledgment mode enable (acknowledge mode enable, AM enable) field, a frame length field, a user ID field, a frame total number field and a frame sequence number field.
  • the frame type field may be used to indicate the type of the SLC frame.
  • the length of the frame type field may be 2 bits. The embodiment of the present application does not limit the length of the frame type field.
  • the AM enable field indicates whether the terminal receiving the SLC frame needs to reply ACK to the Beidou network device 200.
  • the length of the AM enable field may be 1 bit. If the value in the AM enable field is the first value (for example: 1), it indicates that the terminal 100 needs to reply ACK to the Beidou network device 200 after receiving the user frame. If the value in the AM enable field is the second value (for example: 0), it indicates that the terminal 100 does not need to reply ACK to the Beidou network device 200 after receiving the SLC frame.
  • the embodiment of the present application does not limit the length of the AM enable field and the specific value of the AM enable field.
  • the value in the AM enable field is the first value, that is, the mode in which the terminal 100 needs to reply an ACK to the Beidou network device 200 after receiving the user frame, it can be called an acknowledgment mode ( acknowledgment mode, AM mode for short).
  • the value in the AM enable field is the second value, that is, the mode in which the terminal does not need to reply ACK to the Beidou network device 200 after receiving the SLC frame, can be called an unacknowledge mode (UM mode for short).
  • the frame length field is used to identify the length of the SLC frame, and the length of the frame length field may be 8 bits.
  • the embodiment of the present application does not limit the length of the frame length field.
  • the user ID field may indicate that the SLC frame is sent by the Beidou network device 200 to the first terminal, and the ID of the first terminal is the same as the ID shown in the user ID field.
  • the length of the user ID field may be 44 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the total number of frames field is used to indicate the number of SLC frames sent by the Beidou network device 200 to a single user terminal.
  • the length of the frame total number field may be 2 bits. The embodiment of the present application does not limit the length of the total number of frames field.
  • the frame sequence number field is used to indicate that the SLC frame is the Nth frame among all SLC frames sent by the Beidou network device 200 to the terminal of a single user.
  • the value of N is the value described in the specific content of the frame number field.
  • the length of the frame sequence number field may be 2 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the format of a single user frame header in the SLC frame shown in FIG. 7A is only an example.
  • the embodiment of the present application does not limit the order of the fields in the single user frame header and the number of fields contained in the single user frame header.
  • FIG. 7B shows a frame format of another type of SLC frame provided by the embodiment of the present application.
  • the SLC frame is a general data frame of 4K rate.
  • the general data frame at the 4K rate may include a single user frame header and user information.
  • the single user frame header of the user frame can include frame type field, AM enable (open AM mode) field, frame length field, user ID field, frame total number field and frame sequence number field.
  • the frame type field may be used to indicate the type of the user frame.
  • the length of the frame type field may be 2 bits.
  • the AM enable field indicates whether the terminal receiving the SLC frame needs to reply ACK to the Beidou network device 200.
  • the length of the AM enable field may be 1 bit. If the value in the AM enable field is D1 (for example: binary value 1), it indicates that the terminal needs to reply ACK to the Beidou network device 200 after receiving the user frame. If the value in the AM enable field is D2 (for example: binary value 0), it indicates that the terminal does not need to reply ACK to the Beidou network device 200 after receiving the SLC frame.
  • D1 for example: binary value 1
  • D2 for example: binary value 0
  • the embodiment of the present application does not limit the length of the AM enable field and the specific value of the AM enable field.
  • the frame length field is used to identify the length of the SLC frame, and the length of the frame length field is determined by a physical layer decoding parameter (ie, decoding rate).
  • a physical layer decoding parameter ie, decoding rate
  • the length of the frame length field may be 9 bits.
  • the embodiment of the present application does not limit the length of the frame length field.
  • the user ID field may indicate that the SLC frame is sent by the Beidou network device 200 to the first terminal, and the ID of the first terminal is the same as the ID shown in the user ID field.
  • the length of the user ID field may be 44 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the total number of frames field is used to indicate the number of SLC frames sent by the Beidou network device 200 to a single user terminal.
  • the length of the frame total number field may be 2 bits. The embodiment of the present application does not limit the length of the total number of frames field.
  • the frame sequence number field is used to indicate that the SLC frame is the Nth frame among all user frames sent by the Beidou network device 200 to the terminal 100 .
  • the value of N is the value described in the specific content of the frame number field.
  • the length of the frame sequence number field may be 2 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the format of a single user frame header in the SLC frame shown in FIG. 7B is only an example.
  • the embodiment of the present application does not limit the order of the fields in the single user frame header and the number of fields contained in the single user frame header.
  • the first field in the single user frame header can be any one of the frame type field, AM enable (open AM mode) field, frame length field, user ID field, frame total number field and frame sequence number field.
  • the terminal can blindly decode the received SLC frame, that is, the terminal can use each rate that the terminal can parse to parse the SLC frame, if the terminal can parse the SLC frame at the first rate SLC frame, the rate of the SLC frame is the first rate. Then, the terminal can determine the length of the frame header information in the SLC frame according to the rate.
  • FIG. 7C shows the frame format of another type of SLC frame provided by the embodiment of the present application.
  • the SLC frame is an ACK frame, and the ACK frame is only used at the SLC layer.
  • the ACK frame may include a single user frame header and user information.
  • the length of the single user frame header may be 36 bits, and the length of the user information may be 4 bits.
  • the embodiment of the present application does not limit the length of the single user frame and the length of the user information.
  • the single user frame header may include a frame type field and a user ID field.
  • a frame type field may be used to indicate the type of the SLC frame.
  • the length of the frame type field may be 2 bits. The embodiment of the present application does not limit the length of the frame type field.
  • the user ID field may indicate that the SLC frame is sent by the Beidou network device 200 to the first terminal, and the ID of the first terminal is the same as the ID shown in the user ID field.
  • the length of the user ID field may be 44 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the user information may include an acknowledgment character bitmap ACK bitmap.
  • the ACK bitmap is used to indicate whether the Beidou network device 200 has successfully received the SLC frame sent by the terminal 100 to the Beidou network device 200.
  • the length of the ACK bitmap in the ACK frame sent by the Beidou network device 200 to the terminal 100 can be divided into the largest SLC PDU according to the SLC SDU sent by the terminal 100 to the Beidou network device 200 The number is determined. Since the maximum number of SLC PDUs that can be divided into one SLC SDU is fixed, the length of the ACK bitmap is also fixed. For example, the SLC SDU sent by the terminal 100 to the Beidou network device 200 can be divided into 4 SLC PDUs at most, and the length of the ACK bitmap can be 4 bits.
  • the Nth bit in the ACK bitmap is the value D3 (for example: binary value 1), which indicates that the Beidou network device 200 has successfully received the terminal 100 sent to the Beidou network device 100 The Nth frame of .
  • the user information of the SLC frame returned by the Beidou network device 200 to the terminal 100 may be an ACK bitmap of "1111". If the terminal 100 sends 4 SLC frames to the Beidou network device 200, the Beidou network device 200 only successfully receives the first SLC frame of the user's current SLC SDU, and the next three inbound SLC frames are not successfully received, then the Beidou network The user information of the SLC frame returned by the device 200 to the terminal 100 may be an ACK bitmap of "1000".
  • the user information in the ACK frame can be designed as an ACK bitmap with a fixed length and very short content, so the ACK does not need to distinguish the rate.
  • FIG. 7D shows the frame format of another type of SLC frame provided by the embodiment of the present application.
  • the SLC frame may be an application layer receipt frame, which is translated into information 1 (for example, all 1 indication) at the SLC layer, and continues to be parsed at the application layer.
  • the application layer receipt frame may include a single user frame header and user information.
  • the terminal 100 can parse the single user frame header of the application layer receipt frame at the SLC layer.
  • the user information in the application layer receipt frame can be parsed by the application layer.
  • the length of the single user frame header may be 36 bits, and the length of the user information may be 4 bits. The embodiment of the present application does not limit the length of the single user frame and the length of the user information.
  • a single user frame header may include a frame type field and a user ID field.
  • a frame type field may be used to indicate the type of the user frame.
  • the length of the frame type field may be 2 bits. The embodiment of the present application does not limit the length of the frame type field.
  • the user ID field may indicate that the SLC frame is sent by the Beidou network device 200 to the first terminal, and the ID of the first terminal is the same as the ID shown in the user ID field.
  • the length of the user ID field may be 44 bits. The embodiment of the present application does not limit the length of the user ID field.
  • the user information may be an Error code field, and the Error code field may be parsed by the application layer.
  • the length of the Error code field can be 4 bits. The embodiment of this application does not limit the length of the Error code field.
  • the following describes the transmission mechanism of the SLC layer when data is outbound in the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou network device 200 does not have the functions of reclaiming outbound resources and reallocating them. That is, the Beidou network device 200 reclaims the resources allocated to each SLC PDU in an SLC SDU, and redistributes them to the SLC SDUs sent by the Beidou network device 200 to other users.
  • the Beidou network device 200 sends the SLC PDU in one SLC SDU to the terminal 100.
  • the terminal 100 receives the first SLC PDU, it starts to calculate the maximum waiting time for the terminal 100 to receive the SLC PDU in the SLC SDU, that is, the time window length for the terminal 100 to receive the SLC PDU.
  • Beidou network device 200 sends the last frame of SLC PDU in an SLC SDU, Beidou network device 200 can calculate the maximum waiting time for Beidou network device 200 to receive the ACK replied by the terminal, that is, the duration window for Beidou network device 200 to receive the ACK length.
  • the terminal 100 When the terminal 100 successfully receives the SLC SDU sent by the Beidou network device 200, it can send an ACK to the Beidou network device 200. When the terminal 100 fails to receive the SLC SDU sent by the Beidou network device 200, it does not reply NACK to the Beidou network device 200.
  • the terminal 100 successfully receiving the SLC SDU sent by the Beidou network device 200 may refer to: the terminal 100 has received all the SLC PDUs in the SLC SDU sent by the Beidou network device 200, and can correctly parse out the SLC SDU in the SLC SDU. All SLC PDUs.
  • the failure of the terminal 100 to receive the SLC SDU sent by the Beidou network device 200 may refer to: the terminal 100 has not received all the SLC PDUs in the SLC SDU sent by the Beidou network device 200, or failed to correctly parse the SLC SDU. All SLC PDUs in the SLC SDU.
  • the character returned by the terminal 100 can be referred to as ACK for short.
  • the character can be referred to simply as NACK.
  • the terminal 100 does not need to report to The Beidou network device 200 replies with ACK or NACK.
  • FIG. 8A shows a schematic diagram of a transmission success scenario of an SLC layer transmission mechanism when data is outbound provided in an embodiment of the present application.
  • the communication interaction process of the Beidou communication system 10 at the SLC layer can be as follows:
  • the Beidou network device 200 can send N SLC PDUs among the SLC SDUs at equal intervals in the order of frame sequence numbers from small to large.
  • N ⁇ M M is the maximum number of segments of SLC SDU.
  • M is 4 as an example for illustration.
  • the terminal 100 after the terminal 100 receives the first SLC PDU sent by the Beidou network device 200, it starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window ), and feed back an ACK to the Beidou network device 200 after the SLC SDU receiving window ends.
  • tUeRevWindow maximum waiting time
  • the data part of the ACK may occupy 1 bit. Since the Beidou network device 200 does not have the retransmission function, the terminal 100 does not need to notify the Beidou network device 200 which SLC PDU has not been received, and the terminal 100 only needs to notify the Beidou network 200 of the success or failure of reception.
  • the data part of the ACK may be character C1 or character C2.
  • the character C1 can be used to indicate that the terminal 100 has successfully received an SLC SDU sent by the Beidou network device 200.
  • the character C2 can be used to indicate that the terminal 100 has not successfully received an SLC SDU sent by the Beidou network device 200.
  • the character C1 may be character 1
  • the character C2 may be character 0.
  • the Beidou network device 200 After sending the Nth SLC PDU, the Beidou network device 200 receives the ACK fed back by the terminal 100 within the ACK receiving window.
  • tUeProcess refers to the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • the typical value of tUeProcess may be 60 ms as measured by experimental data.
  • tPropagate refers to the air interface propagation delay between the terminal 100 and the Beidou network device 200 .
  • the typical value of tPropagate may be 270 ms as measured by experimental data.
  • tStationStartRcvAck refers to the start time when the Beidou network device 200 receives the ACK.
  • tStationEndRcvAck refers to the end time when the Beidou network device 200 receives the ACK.
  • tStationRevAckWindow refers to the length of the duration window for the Beidou network device 200 to receive the ACK.
  • tUeRevWindow refers to the length of the time window for the terminal 100 to receive the SLC PDU, referred to as the SLC PDU receiving window.
  • nUeRevFrameSN refers to the frame sequence number of the SLC PDU currently received by the terminal 100.
  • the SLC SDU can include at most 4 frames of the SLC PDU, therefore, 0 ⁇ nStationRevFrameSN ⁇ 3, and nStationRevFrameSN is an integer.
  • tStationFrameLen refers to the length of the SLC PDU sent by the Beidou network device 200.
  • the value of tStationFrameLen may be 125ms.
  • nStationTotalFrameNum refers to the total number of frames that the Beidou network device 200 divides the SLC SDU into segments, that is, the total number of frames including the SLC PDU in one SLC SDU.
  • tStationTxInterval refers to the time interval for the Beidou network device 200 to send the SLC PDU.
  • the sending interval (tStationTxInterval) of the SLC PDU may refer to the interval between the initial sending moments of two adjacent SLC PDUs.
  • tStationTxInterval is a preset value, wherein, exemplary, a typical value of tStationTxInterval may be 2s.
  • tUeSendAck refers to the time when the terminal 100 sends an ACK to the Beidou network device 200 .
  • tStationTxEnd refers to the moment when the Beidou network device 200 sends the last SLC PDU.
  • tUeUlFrameLen refers to the time length of the ACK sent by the terminal 100 . Among them, 128ms ⁇ tUeUlFrameLen ⁇ 512ms.
  • refers to the sending time alignment deviation of the outbound physical frame on the Beidou network device 200 .
  • the Beidou network device 200 completes signal processing and scheduling, it may not be exactly at the sending time of the outbound physical frame, and it needs to wait for the sending time of the next outbound physical frame before sending the physical frame. Among them, 0 ⁇ 125ms.
  • the terminal 100 determines the length of the SLC PDU receiving window in the embodiment of the present application, and how the Beidou network device 200 determines the start time of the ACK receiving window and the end time of the ACK window.
  • the terminal 100 starts the session after receiving the first frame of the SLC SDU.
  • the terminal 100 can determine the SLC PDU receiving window on the terminal 100 based on the frame sequence number of the currently received SLC PDU, the time length for the Beidou network device 200 to send the SLC PDU, the total number of frames of the SLC PDU in the current SLC SDU session, and the sending interval of the SLC PDU length of time.
  • the terminal 100 can determine the time length of the SLC PDU receiving window through the following formula (1):
  • tUeRevWindow is the time window length for the terminal 100 to receive the SLC PDU.
  • nStationTotalFrameNum is the total number of SLC PDU frames in the current SLC SDU session.
  • nStationRevFrameSN is the frame sequence number of the SLC PDU currently received by the terminal 100.
  • tStationTxInterval is the SLC PDU sending interval on Beidou network device 200.
  • nRevFrameSN ⁇ 0, 1, . . . , nStationTotalFrameNum-1 ⁇ .
  • tStationFrameLen is the length of the SLC PDU sent by the Beidou network device 200.
  • the length of tStationFrameLen is variable, and in the embodiment of the present application, the value of tStationFrameLen may be 125ms.
  • is the sending time alignment deviation of the outbound physical frame on the Beidou network device 200 .
  • the value of ⁇ can take 125ms.
  • the terminal 100 performs information processing and Ack_Bit information construction after the receiving window for the terminal 100 to receive the SLC PDU ends. Finally, the terminal 100 carries the Ack_Bit information in the ACK frame and sends it to the Beidou network device 200 .
  • the terminal 100 can determine the time point of sending the ACK based on the length of the SLC PDU receiving window and the processing delay from receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • the terminal 100 can determine the time point of returning the ACK through the following formula (2):
  • tUeSendAck is the time when the terminal 100 sends an ACK to the Beidou network device 200 .
  • tUeRevWindow is the time window length for the terminal 100 to receive the SLC PDU.
  • tUeProcess represents the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • the Beidou network device 200 can be based on the moment when the Beidou network device 200 has sent the last SLC PDU in the SLC SDU, the processing delay of the terminal 100 from receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK, and the terminal 100
  • the air interface propagation delay with the Beidou network device 200 determines the starting moment when the Beidou network device 200 receives the ACK.
  • the Beidou network device 200 can determine the starting time of receiving the ACK through the following formula (3):
  • tStationStartRcvAck is the starting moment when the Beidou network device 200 receives the ACK
  • tStationTxEnd is the moment when the Beidou network device 200 sends the last SLC PDU.
  • tUeProcess is the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • tPropagate is the air interface propagation delay between the terminal 100 and the Beidou network device 200 .
  • tUeProcess takes the minimum value of the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • the Beidou network device 200 can determine the moment when the Beidou network device 200 sends the last SLC PDU according to the total number of frames that the Beidou network device 200 divides the SLC SDU into segments and the time interval for the Beidou network device 200 to send the SLC PDU.
  • the Beidou network device can determine the moment when the Beidou network device 200 sends the last SLC PDU through the following formula (4):
  • tStationTxEnd (nStationTotalFrameNum-1)*(tStationTxInterval+tStationFrameLen)+ ⁇ formula (4)
  • tStationTxEnd is the moment when the Beidou network device 200 sends the last SLC PDU.
  • nStationTotalFrameNum is the total number of frames that the Beidou network device 200 segments the SLC SDU into.
  • tStationTxInterval is the time interval for the Beidou network device 200 to send the SLC PDU.
  • tStationFrameLen is the length of the SLC PDU sent by the Beidou network device 200.
  • the length of tStationFrameLen is variable, and in the embodiment of the present application, the value of tStationFrameLen may be 125ms.
  • is the sending time alignment deviation of the outbound physical frame on the Beidou network device 200 . The value of ⁇ can take 125ms.
  • the Beidou network device 200 can transmit the last SLC PDU according to the time when the Beidou network device 200 sends the last SLC PDU, the air interface propagation delay between the terminal 100 and the Beidou network device 200, and the terminal 100 from receiving the SLC PDU sent by the Beidou network device 200 to sending
  • the processing delay of the ACK and the time length of the ACK sent by the terminal 100 determine the end time when the Beidou network device 200 receives the ACK.
  • the Beidou network device 200 can determine the end time when the Beidou network device 200 receives the ACK through the following formula (5):
  • tStationEndRcvAck is the end time when the Beidou network device 200 receives the ACK.
  • tStationTxEnd is the moment when Beidou network device 200 sends the last SLC PDU.
  • tUeProcess is the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • tPropagate is the air interface propagation delay between the terminal 100 and the Beidou network device 200 .
  • tUeUlFrameLen is the time length of the ACK sent by the terminal 100 .
  • tUeProcess takes the maximum value of the processing delay of the terminal 100 from receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • the terminal 100 has not received all the SLC PDUs in one SLC SDU sent by the Beidou network device 200.
  • the terminal 100 does not feed back ACK information to the Beidou network device 200 .
  • the Beidou network device 200 has not received the ACK fed back by the terminal 100 after the ACK receiving window expires (the ACK information has not been received after the time tStationEndRcvAck is reached), and the Beidou network device 200 ends the transmission of this SLC SDU.
  • FIG. 8B shows a schematic diagram of a transmission failure scenario in the first transmission mechanism of the SLC layer when data is outbound provided in the embodiment of the present application.
  • the terminal 100 has not received the last frame of SLC PDU in the SLC SDU sent by the Beidou network device 200.
  • Terminal 100 does not reply ACK to Beidou network device 200 .
  • the Beidou network device 200 does not receive the ACK fed back by the terminal 100 within the ACK receiving window, and the Beidou network device 200 ends the transmission of this SLC SDU.
  • Beidou network equipment does not have the functions of reclaiming outbound resources and reallocating them.
  • the terminal 100 calculates the receiving window for the terminal to receive the SLC SDU according to the maximum transmission time interval.
  • the terminal 100 successfully receives the SLC SDU within the receiving window, it may not reply ACK to the Beidou network device 200.
  • the terminal 100 fails to receive the SLC SDU within the receiving window, the terminal 100 may not reply a NACK to the Beidou network device 200.
  • FIG. 9A shows a schematic diagram of a successful transmission scenario in the second transmission mechanism of the SLC layer when data is outbound provided in the embodiment of the present application.
  • the Beidou network device 200 can send four SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window.
  • tUeRevWindow the maximum waiting time
  • FIG. 9B shows a schematic diagram of a transmission failure scenario in the second transmission mechanism of the SLC layer when data is outbound provided in the embodiment of the present application.
  • the Beidou network device 200 sends the four SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window.
  • Terminal 100 has not received the last frame of SLC PDU in one SLC SDU sent by Beidou network device 200.
  • the terminal 100 may not reply NACK to the Beidou network device 200 .
  • Beidou network equipment has the functions of recycling outbound resources and redistribution.
  • the terminal 100 calculates the receiving window for the terminal to receive the SLC SDU according to the maximum transmission time interval.
  • the terminal 100 successfully receives the SLC SDU within the receiving window, it can reply an ACK to the Beidou network device 200.
  • the terminal 100 When the first frame received by the terminal 100 is not the first SLC PDU among the SLC SDUs sent by the Beidou network device 200, the terminal 100 immediately returns a NACK to the Beidou network device 200, and ends this reception.
  • FIG. 10A shows a schematic diagram of a successful transmission scenario in the third transmission mechanism of the SLC layer when data is outbound provided in the embodiment of the present application.
  • the Beidou network device 100 starts to calculate the receiving window of the ACK fed back by the receiving terminal 100 when it starts to send the first SLC PDU in the SLC SDU.
  • the Beidou network device 200 can send the 4 SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window. After the terminal 100 successfully receives all the SLC PDUs in the SLC SDU within the time window tUeRevWindow, it returns an ACK to the Beidou network device 200.
  • the Beidou network device 200 can start sending the first SLC PDU in an SLC SDU according to the time when the Beidou network device 200 starts to send the first SLC PDU in an SLC SDU, when the Beidou network device 200 finishes sending the SLC The moment of the last SLC PDU in the SDU, the processing delay from receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK by the terminal 100, and the air interface propagation delay between the terminal 100 and the Beidou network device 200 determine the Beidou network device 200 The start time of receiving ACK.
  • the Beidou network device 200 can determine the starting time of receiving the ACK through the following formula (6):
  • tStationStartRcvAck is the starting moment when the Beidou network device 200 receives the ACK
  • tStationTxStart is the moment when the Beidou network device 200 starts sending the first SLC PDU in an SLC SDU
  • tStationTxEnd is the moment when Beidou network device 200 sends the last SLC PDU.
  • tUeProcess is the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • tPropagate is the air interface propagation delay between the terminal 100 and the Beidou network device 200 .
  • the ACK returned by the terminal 100 to the Beidou network device 200 may be the first character, such as the character "1".
  • FIG. 10B shows a schematic diagram of a successful transmission scenario in another SLC layer transmission mechanism 3 when data is outbound provided in the embodiment of the present application.
  • the Beidou network device 100 starts to calculate the receiving window of the ACK fed back by the receiving terminal 100 after sending the first SLC PDU in the SLC SDU.
  • the Beidou network device 200 can send the 4 SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window.
  • the terminal 100 replies ACK to the Beidou network device 200.
  • the Beidou network device 200 can start sending the first SLC PDU in an SLC SDU according to the time when the Beidou network device 200 starts to send the first SLC PDU in an SLC SDU, the output data sent by the Beidou network device 200 The length of the station frame, the moment when the Beidou network device 200 sends the last SLC PDU in the SLC SDU, the processing delay of the terminal 100 from receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK, and the distance between the terminal 100 and the Beidou network device 200 The air interface propagation delay determines the starting time when the Beidou network device 200 receives the ACK.
  • the Beidou network device 200 can determine the starting time of receiving the ACK through the following formula (6):
  • tStationStartRcvAck is the starting moment when the Beidou network device 200 receives the ACK
  • tStationTxStart is the moment when the Beidou network device 200 starts sending the first SLC PDU in an SLC SDU
  • tStationTxEnd is the moment when Beidou network device 200 sends the last SLC PDU.
  • tUeProcess is the processing delay from the terminal 100 receiving the SLC PDU sent by the Beidou network device 200 to sending the ACK.
  • tPropagate is the air interface propagation delay between the terminal 100 and the Beidou network device 200 .
  • tStationFrameLen is the length of the SLC PDU sent by the Beidou network device 200, generally, tStationFrameLen is 125ms.
  • FIG. 10C shows a schematic diagram of a transmission failure scenario in a third transmission mechanism of the SLC layer when data is outbound provided in an embodiment of the present application.
  • the Beidou network device 100 starts to calculate the receiving window of the ACK fed back by the receiving terminal 100 after sending the first SLC PDU in the SLC SDU.
  • the Beidou network device 200 can send the 4 SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • the Beidou network device 200 has sent the first SLC PDU (that is, the SLC PDU with the sequence number 0 in FIG. 10C ) and the second SLC PDU (that is, the SLC PDU with the sequence number 1 in FIG. 10C ).
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window.
  • the terminal 100 has received the first SLC PDU sent by the Beidou network device 200.
  • the first frame parsed by the terminal 100 is not the first SLC PDU in one SLC SDU sent by the Beidou network device 200.
  • the terminal 100 directly replies NACK to the Beidou network equipment.
  • the NACK may be used to indicate that the first frame parsed by the terminal 100 is not the first SLC PDU in one SLC SDU sent by the Beidou network device 200.
  • the Beidou network device 200 may no longer send the unsent SLC PDUs among the SLC SDUs.
  • the Beidou network device 200 can close the ACK receiving time window of the SLC SDU.
  • the Beidou network device 200 has not sent the third SLC PDU (that is, the SLC PDU with the sequence number 2 in FIG. 10C ) and the fourth SLC PDU (that is, the SLC PDU with the sequence number 3 in FIG. 10C ).
  • the Beidou network device 200 can allocate the resources of the unsent SLC PDUs among the sent SLC SDUs to the SLC SDUs that the Beidou network device 200 will send to other users.
  • the Beidou network device 200 can allocate the resources of the third SLC PDU (that is, the SLC PDU with the serial number 2 in Figure 10C) and the fourth SLC PDU (that is, the SLC PDU with the serial number 3 in Figure 10C) to the Beidou network device 200 SLC SDUs to be sent to other users are used. In this way, the utilization rate of outbound resources of the BeiDou network device 200 can be improved.
  • the terminal 100 can also enter the low power consumption process as soon as possible without waiting for other SLC PDUs in the SLC SDU.
  • Beidou network equipment has the functions of recycling outbound resources and redistribution.
  • the Beidou network device 200 sends the SLC SDU to the terminal 100
  • the terminal 100 calculates the receiving window for the terminal to receive the SLC SDU according to the maximum transmission time interval.
  • the terminal 100 successfully receives the SLC SDU within the receiving window, it can reply an ACK to the Beidou network device 200.
  • Terminal 100 has not received the last frame of SLC PDU in one SLC SDU sent by Beidou network device 200. And the received first SLC PDU analyzed by the terminal 100 is not the first SLC PDU in a SLC SDU sent by the Beidou network device 200. The terminal 100 evaluates that the possibility of resource recovery by the Beidou network device 200 is low according to the number of received SLC PDUs, and does not reply NACK.
  • the Beidou network device 200 does not receive the NACK fed back by the terminal 100 after the ACK receiving window expires (the NACK information has not been received after the time tStationEndRcvAck is reached), the Beidou network device 200 determines that the transmission of the SLC SDU has failed, and ends the transmission of the SLC SDU.
  • the scenario of successful transmission in transmission mechanism 4 may be the same as the scenario of successful transmission in transmission mechanism 3.
  • For the scenario of successful transmission in the fourth transmission mechanism reference may be made to the above description of FIG. 10A and FIG. 10B , which will not be repeated here.
  • FIG. 11A shows a schematic diagram of a transmission failure scenario in a transmission mechanism 4 of an SLC layer when data is outbound provided in an embodiment of the present application.
  • the Beidou network device 100 starts to calculate the receiving window of the ACK fed back by the receiving terminal 100 after sending the first SLC PDU in the SLC SDU.
  • the Beidou network device 200 can send the 4 SLC PDUs in the SLC SDU at equal intervals in the order of frame sequence numbers from small to large.
  • Beidou network device 200 has sent the first SLC PDU (that is, the SLC PDU with sequence number 0 in FIG. 10C ), the second SLC PDU (that is, the SLC PDU with sequence number 1 in FIG. 10C ) and the third SLC PDU (that is SLC PDU with sequence number 2 in Figure 10C).
  • the terminal 100 After receiving the first SLC PDU sent by the Beidou network device 200, the terminal 100 starts the SLC layer receiving session (session) at time t0, and calculates the maximum waiting time (tUeRevWindow) for the terminal 100 to receive the outbound SLC SDU receiving window.
  • the terminal 100 has received the first SLC PDU sent by the Beidou network device 200. However, the first frame parsed by the terminal 100 is not the first SLC PDU in one SLC SDU sent by the Beidou network device 200. Since the Beidou network device 200 has sent three SLC PDUs in one SLC SDU. The possibility that the terminal evaluates that the Beidou network card device 200 recovers resources is not high.
  • the terminal 100 may not reply NACK to the Beidou network equipment.
  • the Beidou network device 200 does not receive a NACK within the ACK receiving window, and ends this SLC SDU transmission.
  • a method for controlling outbound transmission in the Beidou communication system provided in the embodiment of the present application is introduced below.
  • FIG. 11B shows a schematic flowchart of a method for controlling outbound transmission in the Beidou communication system provided in the embodiment of the present application.
  • the outbound transmission control method in the Beidou communication system includes the following steps:
  • the Beidou network device 200 generates a first user frame to be sent to the first terminal and a second user frame to be sent to the second terminal at the satellite link control layer SLC.
  • the frame header information of the first user frame includes a first user ID field and a first frame type field; the first user ID field is used to indicate the terminal receiving the first user frame; the first user ID field includes the first terminal ID information; the first frame type field is used to indicate the frame type of the first user frame; the frame header information of the second user frame includes a second user ID field and a second frame type field; the second user ID field is used to indicate receiving the second user frame
  • the terminal of the second user frame; the second user ID field includes ID information of the second terminal; the second frame type field is used to indicate the frame type of the second user frame.
  • the first user frame includes a satellite link control layer protocol data unit SLC PDU and an acknowledgment character ACK frame, and an application layer receipt frame.
  • the SLC PDU can be used to transmit data
  • the confirmation character ACK frame can be used to indicate whether the Beidou network equipment has successfully received the SLC PDU of the terminal.
  • the application layer receipt frame is used to indicate whether the Beidou network equipment successfully parses the received application layer message.
  • the Beidou network device 200 generates a first physical frame based on the first user frame and the second user frame at the physical PHY layer.
  • the Beidou network device 200 sends the first physical frame to the terminal 100.
  • the terminal 100 receives the first physical frame.
  • the terminal 100 parses out the first user frame from the first physical frame.
  • the first user frame is the first satellite link control layer protocol data unit SLC PDU in the first satellite link control layer service data unit SLC SDU, and the frame header information of the first user frame is also Including the confirmation mode enabling AM enable field, frame total number field, and frame sequence number field; among them, the AM enable field is used to indicate that the first terminal responds to ACK or not to reply ACK; the frame total number field is used to indicate the Beidou network equipment sends to the first terminal The number of SLC PDUs; the frame sequence number field is used to indicate the sequence number of the SLC PDU sent by the Beidou network device 200.
  • the AM enable field of the first SLC PDU is the first value, and the first value is used to indicate that the first terminal does not reply ACK.
  • the AM enable field of the first SLC PDU is a second value, and the second value is used to indicate that the first terminal replies with an ACK.
  • the device receiving the first SLC PDU can know whether it needs to reply ACK through the frame header information, and does not need to know whether it needs to reply ACK through separate signaling interaction.
  • the first user frame is the first SLC PDU
  • the method further includes: the Beidou network device 200 continues to send one of the first SLC SDUs or multiple SLC PDUs; after the Beidou network device 200 has sent all the SLC PDUs in the first SLC SDU, the Beidou network device 200 receives the first ACK sent by the first terminal, and the first ACK is used to indicate that the first terminal has successfully received All SLC PDUs in the first SLC SDU.
  • the Beidou network device 200 can know through the ACK returned by the first terminal that the first terminal has successfully received the SLC SDU. In this way, the Beidou network device 200 continues to send the next SLC SDU.
  • the first user frame is the first SLC PDU
  • the method further includes: after the Beidou network device 200 sends the first SLC PDU, the Beidou network device 200 receives the second ACK sent by the first terminal, and the second ACK is used to indicate that the first terminal has not successfully received the first SLC PDU; Beidou network device 200 allocates resources of one or more SLC PDUs in the first SLC SDU to One or more SLC PDUs in the second SDU sent to the second terminal. In this way, resources of the Beidou network device 200 can be saved, and resources can be recycled.
  • the first user frame is the first SLC PDU
  • the method further includes: the Beidou network device 200 continues to send one or more of the first SLC SDUs SLC PDU; after the Beidou network device 200 has sent all the SLC PDUs in the first SLC SDU, the Beidou network device 200 receives the third ACK sent by the first terminal, and the third ACK indicates that the first terminal failed to receive the first SLC All SLC PDUs in the SDU.
  • the Beidou network device 200 can determine the next operation according to the ACK replied by the first terminal, for example, end this sending.
  • the frame header information of the first physical frame includes a rate indication field or a version number field; wherein, the rate indication field is used to indicate the transmission rate of the first physical frame; the version number field is used to indicate Current version information of the first physical frame.
  • the device receiving the physical frame can know the rate and version information of the physical frame.
  • the first user frame is the first SLC PDU
  • the Beidou network device 200 generates the first user frame sent to the first terminal at the satellite link control layer SLC, and the first user frame sent to the second terminal.
  • the method also includes: the Beidou network device 200 acquires the message data of the Beidou network device 200 at the satellite link control SLC layer and aggregates multiple satellite link control layer service data units SLC SDUs delivered by the MDCP layer, wherein , the multiple SLC SDUs include the first SLC SDU; the Beidou network device 200 splits the first SLC SDU into N SLC PDUs at the SLC layer.
  • the method further includes: the Beidou network device 200 at the MDCP layer
  • the application layer message sent by the application layer of the Beidou network device 200 is obtained; the Beidou network device 200 uses the application layer message as the MDCP SDU at the MDCP layer, and after adding the padding data and the redundant length indication field to the MDCP SDU, Split into multiple MDCP PDUs; among them, the redundant length indication field is used to indicate the data length of the padding data, the multiple MDCP PDUs include the first MDCP PDU, the header information of the first MDCP PDU includes the successor indication field, and the successor indication field It is used to indicate the order of the first MDCP PDU in multiple MDCP PDUs; Beidou network device 200 sends multiple MDCP PDUs from the MDCP layer to the SLC layer as multiple SLC SDUs of the SLC layer.
  • the method further includes: the Beidou network device 200 obtains the original data; the Beidou network device 200 compresses the original data at the application layer to obtain compressed data; the Beidou network device 200 encrypts the compressed data at the application layer to obtain encrypted data; the Beidou network device 200 adds message header information to the encrypted data header, Obtain the application layer message; wherein, the message header information includes a compression indication field and an encryption indication field, the compression indication field is used to indicate the compression algorithm used when compressing the original data, and the encryption indication field is used to indicate the compression algorithm used when encrypting the compressed data Encryption Algorithm.
  • the Beidou network device 200 splits the first SLC SDU into N SLC PDUs at the SLC layer, specifically including: Beidou network device 200 splits the first SLC PDU and the second SLC PDU in the N SLC PDUs
  • the SLC PDU is delivered to the PHY layer; the Beidou network device 200 generates the first physical frame from the first SLC PDU at the PHY layer, and generates the second physical frame from the second SLC PUD; the Beidou network device 200 sends the first physical frame and the second physical frame frame.
  • the Beidou network device 200 sending the first physical frame includes: the Beidou network device 200 adds the first check bit information at the end of the first physical frame at the PHY layer, and adds the first physical frame
  • the frame and the first parity bit information are encoded to obtain the first coded data;
  • the Beidou network device 200 modulates the first coded data and the first reserved field of the first coded data at the PHY layer to obtain the first modulated data;
  • the Beidou network device 200 The first spread spectrum modulation data is spread at the PHY layer to obtain the first spread spectrum modulation data;
  • the Beidou network device 200 sends the first spread spectrum modulation data and the first pilot information of the first spread spectrum modulation data at the PHY layer.
  • the method may further include: the Beidou network device 200 is based on the moment when the Beidou network device 200 finishes sending the last SLC PDU in the first SLC SDU, the first terminal receives the last SLC PDU in the first SLC SDU The processing delay from an SLC PDU to sending the ACK and the air interface propagation delay determine the starting moment of the ACK receiving time window; the Beidou network device 200 starts to receive the ACK at the starting moment of the ACK receiving time window.
  • the Beidou network device 200 can determine the starting time of receiving the ACK.
  • the method may further include: the Beidou network device 200 is based on the moment when the Beidou network device 200 finishes sending the last SLC PDU in the first SLC SDU, the first terminal receives the last SLC PDU in the first SLC SDU The processing delay from one SLC PDU to sending ACK, the time length of the ACK sent by the first terminal, and the air interface propagation delay determine the end moment of the ACK reception time window; the Beidou network device 200 at the end moment of the ACK reception time window Stop receiving ACKs.
  • the Beidou network device 200 can determine the end time of receiving the ACK.
  • the first user frame is the first satellite link control layer protocol data unit SLC PDU in the first satellite link control layer service data unit SLC SDU
  • the frame header information of the first user frame is also Including acknowledgment mode enabling AM enable field, frame total number field, and frame sequence number field; among them, AM enable field is used to indicate terminal 100 to reply ACK or not to reply ACK; frame total number field is used to indicate the SLC PDU sent by Beidou network equipment to terminal 100 The number of frames; the frame sequence number field is used to indicate the sequence number of the SLC PDU sent by the Beidou network equipment.
  • the AM enable field of the first SLC PDU is the first value, and the first value is used to indicate that the terminal 100 does not reply ACK.
  • the AM enable field of the first SLC PDU is a second value, and the second value is used to instruct terminal 100 to reply ACK.
  • the terminal 100 receiving the first SLC PDU can know whether it needs to reply ACK through the frame header information, and does not need to know whether it needs to reply ACK through separate signaling interaction.
  • the first user frame is the first SLC PDU
  • the terminal 100 parses the first user frame from the first physical frame
  • the method further includes: the terminal 100 receives the first user frame One or more SLC PDUs in one SLC SDU; when the terminal 100 receives all the SLC PDUs in the first SLC SDU, the terminal 100 sends the first ACK to the Beidou network equipment, and the first ACK is used to indicate that the terminal 100 has successfully received the first SLC PDU All SLC PDUs in an SLC SDU.
  • the value of the first ACK may be 1.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the terminal 100 parses the first user frame from the first physical frame, and after discarding the second user frame, the method further Including: when the first SLC PDU analyzed by the terminal 100 is not the first SLC PDU in the first SLC SDU; the terminal 100 sends the second ACK to the Beidou network device and stops receiving the second SLC PDU in the first SLC SDU, The second ACK is used to indicate that the terminal 100 has not successfully received the first SLC PDU.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the terminal 100 parses the first user frame from the first physical frame, and after discarding the second user frame, the method further Including: the terminal 100 receives one or more SLC PDUs in the first SLC SDU; when the terminal 100 fails to receive all the SLC PDUs in the first SLC SDU within the SLC PDU receiving time window, the terminal 100 sends a notification to the Beidou network equipment Sending a third ACK, where the third ACK is used to indicate that the terminal 100 has not successfully received all the SLC PDUs in the first SLC SDU.
  • the first user frame is the first SLC PDU in the first SLC SDU
  • the terminal 100 parses the first user frame from the first physical frame, and discards the second user frame.
  • the frame includes: the terminal 100 acquires the first spread spectrum modulation data sent by the terminal at the PHY layer; the terminal 100 despreads the first spread spectrum modulation data at the PHY layer to obtain the first modulation data and the first Modulate the sync header; the terminal 100 demodulates the first modulated data and the first modulated sync header at the PHY layer to obtain the first pilot data and the first sync header; the terminal 100 removes the first pilot data at the PHY layer Pilot information to obtain the first coded data; Beidou network equipment decodes the first coded data at the PHY layer to obtain the physical frame of the first coded block and the first check information; the terminal 100 based on the first check information at the PHY layer
  • the first coding block is verified, and after the verification is successful, the first user frame whose ID field in the first coding block is the same as
  • the terminal 100 verifies the first coded block based on the first verification information at the PHY layer, and after the verification succeeds, combines the ID field in the first coded block with the ID field of the terminal 100.
  • the method further includes: the terminal 100 will receive at the SLC layer M SLC PDUs are spliced into the first SLC SDU, and the first SLC SDU is reported as the first MDCP PDU of the MDCP layer from the SLC layer of the terminal 100 to the MDCP layer of the terminal 100, and the header information of the first MDCP PDU includes a follow-up indication Field, the successor indication field is used to indicate the order of the first MDCP PDU in multiple MDCP PDUs sent by Beidou network equipment.
  • the method further includes: the terminal 100 obtains at the MDCP layer the second MDCP PDU reported from the terminal 100 SLC layer; when the second MDCP PDU indicates that the second MDCP PDU is a Beidou network When the last of multiple MDCP PDUs sent by the device, the terminal 100 splices the first MDCP PDU and the second MDCP PDU into an MDCP SDU at the MDCP layer, and reports the MDCP SDU as an application layer message from the MDCP layer to the application layer.
  • the application layer message includes message header information and encrypted data
  • the message header information includes an encryption indication field and a compression indication field
  • the compression indication field is used to instruct the terminal to compress the original data into compressed data
  • the method also includes: the terminal 100 uses the encryption algorithm indicated by the encryption indication field in the application layer message at the application layer , decrypting the encrypted data in the application layer message to obtain compressed data; at the application layer, the terminal 100 decompresses the compressed data through the compression algorithm indicated by the compression indication field in the application layer message to obtain the original data.
  • the method further includes: the terminal 100 based on the frame sequence number of the received SLC PDU, the time length of the SLC PDU sent by the Beidou network device, and the frame of the SLC PDU in a SLC SDU sent by the Beidou network device The total number and the sending interval between the SLC PDUs determine the time length of the SLC PDU receiving window in the terminal 100.
  • the method further includes: the terminal 100 based on the time length of the SLC PDU receiving window, the receiving moment of the first SLC PDU, the signal processing delay of the terminal 100, and the time length of the ACK sent by the terminal 100 , to determine the time point when the terminal 100 sends the ACK.
  • the terminal 100 can refer to the above description for determining the time length of the SLC PDU receiving window and the time point for sending the ACK, and details will not be repeated here.
  • the terminal 100 After receiving N SLC PDUs in one SLC SDU sent by the Beidou network device 200, the terminal 100 can determine the Beidou network device based on the AM enable field, the total number of frames field and the frame sequence number field of the frame header information in the received SLC PDU. 200 request to reply ACK, and use parallel confirmation mode to reply ACK. Therefore, after the receiving window of the SLC PDU ends, the terminal 100 generates an ACK based on the receiving results of the N SLC PDUs. And return the ACK to the Beidou network device 200.
  • the ACK sent by the terminal 100 does not need to indicate the frame sequence number of the SLC PDU that has not been received, but only needs to notify the Beidou network equipment 200 to receive Collect all N SLC PDUs or not receive all N SLC PDUs. Therefore, the length of the Bitmap part of the ACK may be 1 bit, and the 1 bit is used to indicate whether the terminal 100 has received all the N SLC PDUs of the current SLC SDU.
  • the Beidou network device 200 may also support data retransmission, and the ACK sent by the terminal 100 may also notify the Beidou network device 200 of the uncompleted frame numbers. Therefore, the length of the Bitmap part of the ACK can be Nbit, and the Nbit is used to indicate whether the terminal 100 has not received all the frame numbers of the N SLC PDUs in the current SLC SDU.
  • the terminal 100 may start the SLC SDU session after receiving the first SLC SDU among the SLC SDUs.
  • Terminal 100 can be based on the frame sequence number (nStationRevFrameSN) of the latest SLC PDU received, the moment of receiving the latest SLC PDU (tUeRevRctSP), the total number of SLC PDU frames in the SLC SDU (nStationTotalFrameNum), and the interval at which Beidou network equipment 200 sends SLC PDUs (tStationTxInterval) and the time length (tStationD1FrameLen) of the physical frame sent by the Beidou network equipment 200 determines the remaining time length (tUeRevWindow) of the SLC PDU receiving window on the terminal 100.
  • nStationRevFrameSN the frame sequence number of the latest SLC PDU received
  • tUeRevRctSP the moment of receiving the latest SLC PDU
  • nStationTotalFrameNum the interval at
  • the terminal 100 can determine the remaining time length (tUeRevWindow) of the SLC PDU receiving window by the following formula:
  • the value of tStationTxInterval is preset on the terminal 100 .
  • the above nStationRevFrameSN ⁇ 0, 1, . . . , nStationTotalFrameNum-1 ⁇ , the value of ⁇ may be 125ms.
  • the terminal 100 After the receiving window of the SLC PDU ends, the terminal 100 generates an ACK based on the receiving results of the N SLC PDUs. And return the ACK to the Beidou network device 200.
  • the terminal 100 can be based on the air interface propagation delay (tPropagate), the signal processing scheduling delay of the terminal 100 (tUeProcess), the switching time of the terminal 100 from the receiving state to the transmitting state (tRx2TxSwitch), and the receiving time when the terminal 100 receives the latest SLC PDU (tUeRevRctSP), determine the time point (tUeSendAck) at which the terminal 100 sends the ACK.
  • tPropagate the air interface propagation delay
  • tUeProcess the signal processing scheduling delay of the terminal 100
  • tRx2TxSwitch the switching time of the terminal 100 from the receiving state to the transmitting state
  • tUeRevRctSP the receiving time when the terminal 100 receives the latest SLC P
  • the terminal 100 can determine the time point (tUeSendAck) when the terminal 100 sends the ACK through the following formula:
  • is the physical frame transmission time alignment deviation of the terminal 100 .
  • the Beidou network device 200 can be based on the moment when the Beidou network device 200 sends the last SLC PDU in the SLC SDU (tStationTxEnd), the air interface propagation delay (tPropagate), the switching time from the receiving state to the sending state of the terminal 100 (tRx2TxSwitch), the terminal 100
  • the signal processing scheduling delay (tUeProcess) determines the start time (tStationStartRcvAck) of the ACK reception window (tStationRevAckWindow) and the end time (tStationEndRcvAck) of the ACK reception window.
  • the Beidou network device 200 can determine the start time (tStationStartRcvAck) of the ACK receiving window (tStationRevAckWindow) through the following formula:
  • tUeProcess takes the minimum value t_MinUeProc.
  • the Beidou network device 200 can determine the end time (tStationEndRcvAck) of the ACK receiving window (tStationRevAckWindow) through the following formula:
  • tUeProcess can take the maximum value t_MaxUeProc.
  • the exemplary terminal 100 provided by the embodiment of the present application is firstly introduced below.
  • FIG. 12 is a schematic structural diagram of a terminal 100 provided by an embodiment of the present application.
  • terminal 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194 and user An identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SLC).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the SIM interface can be used to communicate with the SIM card interface 195 to realize the function of transmitting data to the SIM card or reading data in the SIM card.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the terminal 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR), Beidou communication and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, and Beidou communication technology, etc.
  • GSM global system for mobile communications
  • general packet radio service general packet radio service
  • CDMA code division multiple access
  • WCDMA broadband Code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long term evolution
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 can communicate with the Beidou network device 200 through the Beidou communication technology.
  • the Beidou communication technology may exist in an independent chip, or may be integrated in the wireless communication module 160 .
  • the terminal 100 realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the terminal 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the terminal 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the internal memory 121 may include one or more random access memories (random access memory, RAM) and one or more non-volatile memories (non-volatile memory, NVM).
  • RAM random access memory
  • NVM non-volatile memory
  • Random access memory can include static random-access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (synchronous dynamic random access memory, SDRAM), double data rate synchronous Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, such as the fifth generation DDR SDRAM is generally called DDR5 SDRAM), etc.;
  • Non-volatile memory may include magnetic disk storage devices, flash memory (flash memory).
  • flash memory can include NOR FLASH, NAND FLASH, 3D NAND FLASH, etc.
  • it can include single-level storage cells (single-level cell, SLC), multi-level storage cells (multi-level cell, MLC), three-level storage unit (triple-level cell, TLC), fourth-level storage unit (quad-level cell, QLC), etc.
  • can include universal flash storage English: universal flash storage, UFS) according to storage specifications , embedded multimedia memory card (embedded multi media Card, eMMC), etc.
  • the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (such as machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
  • the non-volatile memory can also store executable programs and data of users and application programs, etc., and can be loaded into the random access memory in advance for the processor 110 to directly read and write.
  • the terminal 100 may implement an audio function through an audio module 170 , a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 can be set in the processor 110 , or some functional modules of the audio module 170 can be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals. Terminal 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to listen to the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, which may also implement a noise reduction function in addition to collecting sound signals.
  • the terminal 100 can also be equipped with three, four or more microphones 170C to realize sound signal collection, noise reduction, identify sound sources, realize directional recording functions, and the like.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the terminal 100 determines the strength of the pressure from the change in capacitance.
  • the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the terminal 100 .
  • the angular velocity of the terminal 100 around three axes ie, x, y and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the terminal 100, and calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the terminal 100 when the terminal 100 is a clamshell machine, the terminal 100 can detect the opening and closing of the clamshell according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the terminal 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the terminal 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the terminal 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the terminal 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light through the light emitting diode.
  • the terminal 100 detects infrared reflected light from nearby objects using a photodiode. When sufficient reflected light is detected, it may be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect that the user holds the terminal 100 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the terminal 100 may adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access to the application lock, take pictures with fingerprints, answer incoming calls with fingerprints, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to implement a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the terminal 100 executes reducing the performance of a processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid abnormal shutdown of the terminal 100 due to low temperature.
  • the terminal 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100 , which is different from the position of the display screen 194 .
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 may also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the terminal 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the terminal 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the above content elaborates the method provided by the present application in detail.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • the embodiment of the present application can divide the functional modules of the terminal 100 and the Beidou network device 200 according to the above-mentioned method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be the terminal 100 in the foregoing embodiments.
  • the communication device 1300 may be a chip/chip system, for example, a Beidou communication chip.
  • the communication device 1300 may include a transceiver unit 1310 and a processing unit 1320 .
  • the transceiver unit 1310 may be configured to receive the first physical frame sent by the Beidou network device 200; the first physical frame includes the first user frame sent to the terminal 100 and the second user frame sent to the second terminal, wherein, the frame header information of the first user frame includes a first user ID field and a first frame type field; the first user ID field is used to indicate the terminal receiving the first user frame; the first user ID field includes the ID of terminal 100 Information; parse out the first user frame from the first physical frame, and discard the second user frame.
  • the processing unit 1320 is configured to send the first ACK to the Beidou network device after the terminal 100 has received all the SLC PDUs in the first SLC SDU.
  • the first ACK is used to indicate that the terminal 100 has successfully received all the SLC PDUs in the first SLC SDU. SLC PDUs.
  • the processing unit 1320 is further configured to: when the first SLC PDU analyzed by the terminal 100 is not the first SLC PDU in the first SLC SDU; the terminal 100 sends a second ACK to the Beidou network device and stops receiving the first SLC SDU In the second SLC PDU, the second ACK is used to indicate that the terminal 100 has not successfully received the first SLC PDU.
  • the processing unit 1320 can also be used to send a third ACK to the Beidou network equipment after the terminal 100 has not received all the SLC PDUs in the first SLC SDU within the SLC PDU receiving time window, and the third ACK is used to indicate that the terminal 100 All SLC PDUs in the first SLC SDU were unsuccessfully received.
  • the transceiver unit 1310 may also be configured to perform the functional steps related to sending and receiving performed by the terminal 100 in the method embodiment shown in FIG. 11B above.
  • the processing unit 1320 may also be configured to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the terminal 100 in the method embodiment shown in the above figure.
  • the communication device 1300 in this design can correspondingly perform the method steps performed by the terminal 100 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be the Beidou network device 200 in the foregoing embodiments.
  • the communication device 1400 can be a specific network element in the Beidou network equipment 200, for example, one or more network elements in the Beidou ground transceiver station 22, the Beidou central station 23, and the Beidou short message fusion communication platform 24 The combination.
  • the communication device 1400 may include a transceiver unit 1410 and a processing unit 1420 .
  • the transceiver unit 1410 can be used to generate a first user frame sent to the terminal 100 at the satellite link control layer SLC, and a second user frame sent to the second terminal; at the physical PHY layer, based on the first user frame generating a first physical frame with the second user frame; and sending the first physical frame.
  • the frame header information of the first user frame includes a first user ID field and a first frame type field; the first user ID field is used to indicate the terminal receiving the first user frame; the first user ID field includes the ID of terminal 100 Information; the first frame type field is used to indicate the frame type of the first user frame; the frame header information of the second user frame includes the second user ID field and the second frame type field; the second user ID field is used to indicate receiving the second The terminal of the user frame; the second user ID field includes ID information of the second terminal; the second frame type field is used to indicate the frame type of the second user frame.
  • the processing unit 1420 can be used to receive the second ACK sent by the terminal 100 after the Beidou network equipment has sent the first SLC PDU, and the second ACK is used to indicate that the terminal 100 has not successfully received the first SLC PDU; Beidou network
  • the device allocates resources of one or more SLC PDUs in the first SLC SDU to one or more SLC PDUs in the second SDU sent to the second terminal.
  • the transceiver unit 1410 may also be configured to perform the functional steps related to sending and receiving performed by the Beidou network device 200 in the method embodiment shown in FIG. 11B above.
  • the processing unit 1420 may also be configured to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the method embodiment shown in FIG. 11B above.
  • the communication device 1400 in this design can correspondingly perform the method steps performed by the Beidou network device 200 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • the terminal 100 and the Beidou network device 200 of the embodiment of the present application have been introduced above. It should be understood that any product of any form having the functions of the terminal 100 described above in FIG. Products of any form with functions fall within the scope of protection of the embodiments of the present application.
  • the terminal 100 described in the embodiment of the present application may be implemented by a general bus architecture.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may be the terminal 100, or a device therein.
  • the communication device 1500 includes a processor 1501 and a transceiver 1502 internally connected and communicating with the processor.
  • the processor 1501 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data
  • the central processing unit can be used to control communication devices (such as baseband chips, terminals, terminal chips, etc.), execute computer programs, and process computer Program data.
  • the transceiver 1502 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1502 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1500 may further include an antenna 1503 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1503 and/or the radio frequency unit may be located inside the communication device 1500, or may be separated from the communication device 1400, that is, the antenna 1403 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1500 may include one or more memories 1504, on which instructions may be stored, the instructions may be computer programs, and the computer programs may be run on the communication device 1500, so that the communication device 1500 executes the above-mentioned Methods described in the Methods Examples.
  • data may also be stored in the memory 1504 .
  • the communication device 1500 and the memory 1504 can be set separately or integrated together.
  • the processor 1501, the transceiver 1502, and the memory 1504 may be connected through a communication bus.
  • the communication device 1500 can be used to perform the functions of the terminal 100 in the foregoing embodiments: the processor 1501 can be used to perform the functions related to protocol analysis and encapsulation and operation determination performed by the terminal 100 in the embodiment shown in FIG. 11B Steps and/or other processes used in the technology described herein; the transceiver 1502 may be used to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the terminal 100 in the embodiment shown in FIG. 11B and/or used to Other procedures of the techniques described herein.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1501 may store instructions, and the instructions may be computer programs, and the computer programs run on the processor 1501 to enable the communication device 1500 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be fixed in the processor 1500, and in this case, the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • Communications apparatus 1500 may be a stand-alone device or may be part of a larger device.
  • the communication device 1500 may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • any network element for example, Beidou ground transceiver station 22, Beidou central station 23, Beidou short message fusion communication platform 24
  • Beidou network equipment 200 described in the embodiment of the application can Implemented by a generic bus architecture.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 may be the Beidou network device 200, or a device therein.
  • the communication device 1600 includes a processor 1601 and a transceiver 1602 internally connected and communicating with the processor.
  • the processor 1601 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data
  • the central processing unit can be used to control communication devices (such as baseband chips, etc.), execute computer programs, and process data of computer programs.
  • the transceiver 1602 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1602 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1600 may further include an antenna 1603 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1603 and/or the radio frequency unit may be located inside the communication device 1600, or may be separated from the communication device 1600, that is, the antenna 1603 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1600 may include one or more memories 1604, on which instructions may be stored.
  • the instructions may be computer programs, and the computer programs may be run on the communication device 1600, so that the communication device 1600 executes the above-mentioned Methods described in the Methods Examples.
  • data may also be stored in the memory 1604 .
  • the communication device 1600 and the memory 1604 can be set separately or integrated together.
  • processor 1601, the transceiver 1602, and the memory 1604 may be connected through a communication bus.
  • the communication device 1600 can be used to perform the functions of the Beidou network device 200 in the foregoing embodiments: the processor 1601 can be used to perform the related protocol parsing and encapsulation performed by the Beidou network device 200 in the embodiment shown in FIG. 11B and The functional steps determined by calculation and/or other processes used in the technology described herein; the transceiver 1602 can be used to perform the functions related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the embodiment shown in FIG. 11B steps and/or other processes for the techniques described herein.
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1601 may store instructions, which may be computer programs, and the computer programs run on the processor 1601 to enable the communication device 1600 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be fixed in the processor 1600, and in this case, the processor 1601 may be implemented by hardware.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the above-mentioned processor executes the computer program code, the communication device executes the method in any of the above-mentioned embodiments .
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the foregoing embodiments.
  • the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method in any of the examples.
  • the embodiment of the present application also provides a Beidou communication system, including a terminal 100 and a Beidou network device 200.
  • the terminal 100 and the Beidou network device 200 can execute the method in any of the foregoing embodiments.
  • This application fully introduces the communication function of short messages in the Beidou communication system. It is understandable that there may be communication functions supporting short messages in other satellite systems. Therefore, it is not limited to the Beidou communication system. If other satellite systems also support the short message communication function, the method introduced in this application is also applicable to the communication of other satellite systems.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting".
  • the phrases “in determining” or “if detected (a stated condition or event)” may be interpreted to mean “if determining" or “in response to determining" or “on detecting (a stated condition or event)” or “in response to detecting (a stated condition or event)”.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state hard disk), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种北斗通信***中出站传输控制方法、***及相关装置。在该方法中,北斗网络设备将应用层报文在MDCP层拆分成多个MDCP PDU。北斗网络设备顺序下发MDCP PDU到SLC层作为SLC层的SLC SDU,并在SLC层将SLC SDU拆分成N个SLC PDU。PHY层从SLC层获取到一个用户或多个用户的SLC PDU。PHY会将多个用户或者一个用户的SLC PDU拼接在一起组成一个固定长度的物理时隙的出站数据。最终,北斗网络设备将出站数据发送给一个或多个终端。实施本申请提供的技术方案,北斗网络设备可以实现多帧传输,可以满足不同业务类型的出站数据的需求,可以优化出站资源配置,提高出站资源利用率。

Description

一种北斗通信***中出站传输控制方法、***及相关装置
本申请要求于2021年07月31日提交中国专利局、申请号为202110877279.1、申请名称为“一种北斗通信***中出站传输控制方法、***及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信技术领域,尤其涉及一种北斗通信***中出站传输控制方法、***及相关装置。
背景技术
北斗卫星导航***是我国自主研制的集定位、授时、通信于一体的重大基础设施。北斗短报文通信业务是北斗卫星导航***区别于GPS、GLONASS、GALILEO等其他全球导航***的特色之一。北斗短报文通信业务特别适用于在海洋、沙漠、草原、无人区等移动通信未覆盖、或覆盖不了、或通信***被破坏的区域进行通信。北斗三号卫星的通信***对短报文技术体制进行了升级,将北斗通信***一些必要的资源开放给民用,针对民用业务和设备特性,需要依据北斗通信***的特性设计通信协议。
由于北斗通信***开放的民用资源有限,当前北斗设备的发送能力也有限,导致北斗通信***中出站的数据容量较低。因此,如何在出站数据容量低的限制下实现出站业务的可靠有效传输是亟待解决的问题。
发明内容
本申请提供了一种北斗通信***中出站传输控制方法、***及相关装置,通过本申请实施例提供的方法,可以在出站数据容量低的限制下实现出站业务的可靠有效传输。
第一方面,本申请提供了一种北斗通信***中出站传输控制方法,该方法可以包括:北斗网络设备在卫星链路控制SLC层生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧;其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字段用于指示接收第一用户帧的终端;第一用户ID字段中包含第一终端的ID信息;第一帧类型字段用于指示第一用户帧的帧类型;第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;第二用户ID字段用于指示接收第二用户帧的终端;第二用户ID字段中包含第二终端的ID信息;第二帧类型字段用于指示第二用户帧的帧类型;北斗网络设备在物理PHY层基于第一用户帧和第二用户帧生成第一物理帧;北斗网络设备发送第一物理帧。
其中,第一用户帧包括卫星链路控制层协议数据单元SLC PDU和确认字符ACK帧、以及应用层回执帧。SLC PDU可以用于传输数据,确认字符ACK帧可以用于指示北斗网络设备是否成功接收终端的SLC PDU。应用层回执帧用于指示北斗网络设备是否成功解析接收到的应用层报文。
这样,北斗网络设备可以同时发送多个终端用户的用户帧,从而在出站数据容量低的限制下实现出站业务的可靠有效传输。并且,北斗网络设备还可以发送不同类型的用户帧。这样,可以不满足不同出站业务的需求。
结合第一方面,在一种可能的实现方式中,第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,第一用户帧的帧头信息还包括确认模式使能AM enable字段、帧总数字段、帧序号字段;其中,AM enable字段用于指示第一终端回复ACK或不回复ACK;帧总数字段用于指示北斗网络设备发送给第一终端的SLC PDU的数量;帧序号字段用于指示北斗网络设备发送的SLC PDU的序号。
其中,第一SLC PDU的AM enable字段为第一值,第一值用于指示第一终端不回复ACK。第一SLC PDU的AM enable字段为第二值,第二值用于指示第一终端回复ACK。
这样,接收第一SLC PDU的设备通过帧头信息就可以知道是否需要回复ACK,不需要通过单独信令交互获知是否需要回复ACK。
结合第一方面,在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备发送第一物理帧之后,该方法还包括:北斗网络设备继续发送所述第一SLC SDU中的一个或多个SLC PDU;在北斗网络设备发送完第一SLC SDU中的所有SLC PDU后,北斗网络设备接收到第一终端发送的第一ACK,第一ACK用于表示第一终端成功接收第一SLC SDU中的所有SLC PDU。
这样,北斗网络设备可以通过第一终端回复的ACK知道第一终端已经成功接收SLC SDU。这样,北斗网络设备继续发送下一个SLC SDU。
结合第一方面,在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备发送第一物理帧之后,方法还包括:当北斗网络设备发送完第一SLC PDU后,北斗网络设备接收到第一终端发送的第二ACK,第二ACK用于表示第一终端未成功接收第一SLC PDU;北斗网络设备将第一SLC SDU中的一个或多个SLC PDU的资源分配给发送给第二终端的第二SDU中的一个或多个SLC PDU。这样,可以节约北斗网络设备的资源,实现资源的回收利用。
结合第一方面,在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备发送第一物理帧之后,该方法还包括:北斗网络设备继续发送第一SLC SDU中的一个或多个SLC PDU;在北斗网络设备发送完第一SLC SDU中的所有SLC PDU后,北斗网络设备接收到第一终端发送的第三ACK,第三ACK表示第一终端未成功接收第一SLC SDU中的所有SLC PDU。
这样,北斗网络设备可以根据第一终端回复的ACK确定可以确定下一步的操作,例如,结束本次发送。
结合第一方面,在一种可能的实现方式中,第一物理帧的帧头信息包括速率指示字段或版本号字段;其中,速率指示字段用于指示所述第一物理帧的传输速率;版本号字段用于指示所述第一物理帧当前的版本信息。
这样,接收到该物理帧的设备可以获知该物理帧的速率,以及版本信息。
结合第一方面,在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧之前,该方法还包括:北斗网络设备在卫星链路控制SLC层获取到北斗网络设备的消息数据汇聚MDCP层下发的多个卫星链路控制层服务数据单元SLC SDU,其中,多个SLC SDU中包括第一SLC SDU;北斗网络设备在SLC层将第一SLC SDU拆分成N个SLC PDU。
结合第一方面,在一种可能的实现方式中,北斗网络设备在SLC层获取到所述北斗网络设备的MDCP层下发的多个SLC SDU之前,该方法还包括:北斗网络设备在所述MDCP层 获取到北斗网络设备的应用层下发的应用层报文;北斗网络设备在所述MDCP层将应用层报文作为MDCP SDU,并在MDCP SDU加入填充数据和冗余长度指示字段后,拆分成多个MDCP PDU;其中,冗余长度指示字段用于指示填充数据的数据长度,多个MDCP PDU中包括第一MDCP PDU,第一MDCP PDU的包头信息包括后继指示字段,后继指示字段用于指示第一MDCP PDU在多个MDCP PDU中的顺序;北斗网络设备将多个MDCP PDU从MDCP层下发至所述SLC层,作为SLC层的多个SLC SDU。
结合第一方面,在一种可能的实现方式中,北斗网络设备在MDCP层获取到北斗网络设备的应用层下发的应用层报文之前,该方法还包括:北斗网络设备获取原始数据;北斗网络设备在应用层将所述原始数据,进行压缩得到压缩数据;北斗网络设备在应用层将压缩数据进行加密得到加密后数据;北斗网络设备在加密后数据头部加上报文头信息,得到应用层报文;其中,报文头信息包括压缩指示字段和加密指示字段,压缩指示字段用于指示对原始数据压缩时使用的压缩算法,加密指示字段用于指示对压缩数据加密时使用的加密算法。
结合第一方面,在一种可能的实现方式中,北斗网络设备在SLC层将第一SLC SDU拆分成N个SLC PDU,具体包括:北斗网络设备将N个SLC PDU中的第一SLC PDU和第二SLC PDU下发至PHY层;北斗网络设备在PHY层将第一SLC PDU生成第一物理帧,将第二SLC PUD生成第二物理帧;北斗网络设备发送第一物理帧和第二物理帧。
结合第一方面,在一种可能的实现方式中,北斗网络设备发送所述第一物理帧,包括:北斗网络设备在PHY层在第一物理帧的尾部添加第一校验位信息,并对第一物理帧和第一校验位信息进行编码得到第一编码数据;北斗网络设备在PHY层对第一编码数据和第一编码数据的第一保留字段进行调制得到第一调制数据;北斗网络设备在PHY层对第一调制数据进行扩频得到第一扩频调制数据;北斗网络设备在PHY层发送第一扩频调制数据和第一扩频调制数据的第一导频信息。
结合第一方面,在一种可能的实现方式中,该方法还可以包括:北斗网络设备基于北斗网络设备发送完第一SLC SDU中最后一个SLC PDU的时刻、第一终端从接收完第一SLC SDU中最后一个SLC PDU到发送ACK的处理时延、以及空口传播时延确定出ACK接收时间窗的起始时刻;北斗网络设备在ACK接收时间窗的起始时刻开始接收ACK。
这样,北斗网络设备可以确定出接收ACK的起始时刻。
结合第一方面,在一种可能的实现方式中,该方法还可以包括:北斗网络设备基于北斗网络设备发送完第一SLC SDU中最后一个SLC PDU的时刻、第一终端从接收完第一SLC SDU中最后一个SLC PDU到发送ACK的处理时延、第一终端发送的ACK的时间长度、以及空口传播时延确定出ACK接收时间窗的结束时刻;北斗网络设备在所述ACK接收时间窗的结束时刻停止接收ACK。
这样,北斗网络设备可以确定出接收ACK的结束时刻。
第二方面,提供了一种北斗通信***中出站传输控制方法,该方法可以包括:第一终端接收北斗网络设备发送的第一物理帧;第一物理帧中包含发送给第一终端的第一用户帧和发送给第二终端的第二用户帧,其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字段用于指示接收第一用户帧的终端;第一用户ID字段中包含第一终端的ID信息;第一终端从第一物理帧中解析出第一用户帧,丢弃第二用户帧。
其中,第一用户帧包括卫星链路控制层协议数据单元SLC PDU和确认字符ACK帧、以及应用层回执帧。SLC PDU可以用于传输数据,确认字符ACK帧可以用于指示北斗网络设 备是否成功接收终端的SLC PDU。应用层回执帧用于指示北斗网络设备是否成功解析接收到的应用层报文。
这样,北斗网络设备可以同时发送多个终端用户的用户帧,从而在出站数据容量低的限制下实现出站业务的可靠有效传输。并且,北斗网络设备还可以发送不同类型的用户帧。这样,可以不满足不同出站业务的需求。第一终端也可以接收到不同类型的用户帧。
结合第二方面,在一种可能的实现方式中,第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,第一用户帧的帧头信息还包括确认模式使能AM enable字段、帧总数字段、帧序号字段;其中,AM enable字段用于指示第一终端回复ACK或不回复ACK;帧总数字段用于指示北斗网络设备发送给第一终端的SLC PDU的数量;帧序号字段用于指示北斗网络设备发送的SLC PDU的序号。
其中,第一SLC PDU的AM enable字段为第一值,第一值用于指示第一终端不回复ACK。第一SLC PDU的AM enable字段为第二值,第二值用于指示第一终端回复ACK。
这样,接收第一SLC PDU的第一终端通过帧头信息就可以知道是否需要回复ACK,不需要通过单独信令交互获知是否需要回复ACK。
结合第二方面,在一种可能的实现方式中,第一用户帧为第一SLC PDU,第一终端从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:第一终端接收第一SLC SDU中的一个或多个SLC PDU;当第一终端收齐第一SLC SDU中的所有SLC PDU后,第一终端向北斗网络设备发送第一ACK,第一ACK用于表示第一终端成功接收第一SLC SDU中的所有SLC PDU。
其中第一ACK的值可以取1。
结合第二方面,在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,第一终端从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:当第一终端解析出的第一SLC PDU非第一SLC SDU中的第一个SLC PDU时;第一终端向北斗网络设备发送第二ACK并停止接收第一SLC SDU中的第二SLC PDU,第二ACK用于表示第一终端未成功接收第一SLC PDU。
结合第二方面,在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,第一终端从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:所述第一终端接收第一SLC SDU中的一个或多个SLC PDU;当第一终端在SLC PDU接收时间窗内未收齐第一SLC SDU中的所有SLC PDU后,第一终端向北斗网络设备发送第三ACK,第三ACK用于表示第一终端未成功接收第一SLC SDU中的所有SLC PDU。
第二ACK和第三ACK的值可以取0。
结合第二方面,在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧,包括:第一终端在所述PHY层获取到终端发送的第一扩频调制数据;第一终端在所述PHY层对第一扩频调制数据进行解扩频,得到第一调制数据和第一调制同步头;第一终端在PHY层对第一调制数据和所述第一调制同步头解调,得到第一导频数据和第一同步头;第一终端在PHY层去除第一导频数据中的导频信息,得到第一编码数据;北斗网络设备在PHY层对第一编码数据进行解码,得到第一编码块物理帧和第一校验信息;第一终端在PHY层基于第一校验信息对第一编码块进行校验,并在校验成功后,将第一编码块中ID字段与第一终端ID相同的第一用户帧作为第一终端的SLC层中第一SLC SDU中的第一SLC PDU从PHY层呈递给第 一终端的SLC层。
结合第二方面,在一种可能的实现方式中,第一终端在所述PHY层基于第一校验信息对第一编码块进行校验,并在校验成功后,将第一编码块中ID字段与第一终端ID相同的第一用户帧作为第一终端的SLC层中第一SLC SDU中的第一SLC PDU从PHY层呈递给第一终端的SLC层之后,该方法还包括:第一终端在SLC层将接收到的M个SLC PDU拼接成第一SLC SDU,并将第一SLC SDU作为MDCP层的第一MDCP PDU从第一终端的SLC层上报给第一终端的MDCP层,第一MDCP PDU的包头信息中包括后继指示字段,后继指示字段用于指示第一MDCP PDU在北斗网络设备发送的多个MDCP PDU中的顺序。
结合第二方面,在一种可能的实现方式中,该方法还包括:第一终端在MDCP层获取到从第一终端SLC层上报的第二MDCP PDU;当第二MDCP PDU中的后继指示字段指示第二MDCP PDU为北斗网络设备发送的多个MDCP PDU中的最后一个时,第一终端在MDCP层将第一MDCP PDU与第二MDCP PDU拼接成MDCP SDU,并将MDCP SDU作为应用层报文从MDCP层上报给应用层。
结合第二方面,在一种可能的实现方式中,应用层报文包括报文头信息和加密后数据,报文头信息包括加密指示字段和压缩指示字段,压缩指示字段用于指示终端将原始数据压缩成压缩数据时使用的压缩算法,加密指示字段用于指示终端将压缩数据加密成加密后数据时使用的加密算法;该方法还包括:第一终端在应用层通过应用层报文中加密指示字段指示的加密算法,对应用层报文中加密后数据进行解密,得到压缩数据;第一终端在应用层通过应用层报文中压缩指示字段指示的压缩算法,对压缩数据进行解压缩,得到原始数据。
结合第二方面,在一种可能的实现方式中,该方法还包括:第一终端基于接收到的SLC PDU的帧序号、北斗网络设备发送的SLC PDU的时间长度、北斗网络设备发送的一个SLC SDU中SLC PDU的帧总数、以及SLC PDU之间的发送间隔,确定出第一终端中SLC PDU接收窗的时间长度。
结合第二方面,在一种可能的实现方式中,该方法还包括:第一终端基于SLC PDU接收窗的时间长度、第一SLC PDU的接收时刻,第一终端的信号处理时延、以及第一终端发送的ACK的时间长度,确定出第一终端发送出ACK的时间点。
第三方面,提供一种北斗通信***,包括北斗网络设备和第一终端,其中:
北斗网络设备用于在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧;其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字段用于指示接收第一用户帧的终端;第一用户ID字段中包含第一终端的ID信息;第一帧类型字段用于指示第一用户帧的帧类型;第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;所述第二用户ID字段用于指示接收所述第二用户帧的终端;第二用户ID字段中包含第二终端的ID信息;第二帧类型字段用于指示第二用户帧的帧类型;
北斗网络设备用于在物理PHY层基于第一用户帧和第二用户帧生成第一物理帧;
北斗网络设备用于发送所述第一物理帧;
第一终端用于接收北斗网络设备发送的第一物理帧;从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧。
这样,北斗网络设备可以同时发送多个终端用户的用户帧,从而在出站数据容量低的限制下实现出站业务的可靠有效传输。并且,北斗网络设备还可以发送不同类型的用户帧。这样,可以不满足不同出站业务的需求。
结合第三方面,在一种可能实现方式中,所述北斗通信***还可以包括第二终端,其中,第二终端用于接收北斗网络设备发送的第一物理帧;从所述第一物理帧中解析出所述第二用户帧。
在一种可能的实现方式中,北斗网络设备还可以执行上述第一方面中任一种可能的实现方式中的方法。
在一种可能的实现方式中,终端还可以执行上述第二方面中任一种可能的实现方式中的方法。
第四方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第一方面任一项可能的实现方式中的方法。
其中,该通信装置可以为北斗网络设备,或北斗网络设备中的任一网元或多个网元的组合。
第五方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第二方面任一项可能的实现方式中的方法。
其中,该通信装置可以为终端或其他产品形态的设备。
第六方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第七方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第八方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第十方面,本申请提供了一种芯片或芯片***,应用于终端,包括处理电路和接口电路,接口电路用于接收代码指令并传输至所述处理电路,处理电路用于运行所述代码指令以执行上述第二方面任一项可能的实现方式中的方法。
附图说明
图1是本申请实施例提供的一种北斗通信***10的架构示意图;
图2是本申请实施例提供的一种北斗通信***中数据出站的传输过程示意图;
图3是本申请实施例提供的一种北斗通信***10的出站数据的协议封装架构示意图;
图4是本申请实施例提供的一种北斗通信***10的出站数据的协议解析架构示意图;
图5是本申请实施例提供的一种出站数据的数据格式示意图;
图6是本申请实施例提供的另一种出站数据的数据格式示意图;
图7A是本申请实施例提供的一种SLC帧的帧格式示意图;
图7B是本申请实施例提供的另一种SLC帧的帧格式示意图;
图7C是本申请实施例提供的又一种SLC帧的帧格式示意图;
图7D是本申请实施例提供的又一种SLC帧的帧格式示意图;
图8A是本申请实施例提供的一种数据出站时SLC层的传输机制一的传输成功场景示意图;
图8B是本申请实施例提供的一种数据出站时SLC层的传输机制一的传输失败场景示意图;
图9A本申请实施例提供的一种数据出站时SLC层的传输机制二的传输成功场景示意图;
图9B本申请实施例提供的一种数据出站时SLC层的传输机制二的传输失败场景示意图;
图10A本申请实施例提供的一种数据出站时SLC层的传输机制三的传输成功场景示意图;
图10B本申请实施例提供的另一种数据出站时SLC层的传输机制三的传输成功场景示意图;
图10C本申请实施例提供的一种数据出站时SLC层的传输机制三的传输失败场景示意图;
图11A本申请实施例提供的一种数据出站时SLC层的传输机制四的传输失败场景示意图;
图11B是本申请实施例提供的一种北斗通信***中出站传输控制方法流程示意图;
图12是本申请实施例提供的终端100的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的另一种通信装置的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图;
图16为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例中提供的一种北斗通信***10。
图1示出了本申请实施例中提供的一种北斗通信***10的架构示意图。
如上图1所示,北斗通信***10可以包括终端100、北斗短报文卫星21、北斗网络设备200、短消息中心25和终端300。可选的,该北斗通信***10还可以包括紧急救援平台26、紧急救援中心27。
其中,终端100可以发送短报文信息给北斗短报文卫星21,北斗短报文卫星21只进行中继,直接将终端100发送的短报文信息转发给地面的北斗网络设备200。北斗网络设备200可以根据北斗通信协议解析卫星转发的短报文信息,并将从短报文信息中解析出的通用报文类型的报文内容转发给短消息中心(short message service center,SMSC)25。短消息中心25可以通过传统的蜂窝通信网络,将报文内容转发给终端300。北斗网络设备200也可以将终 端100发送的紧急求救类型的报文,通过紧急救援平台26发送给紧急救援中心27。
终端300也可以通过传统的蜂窝通信网络,将短消息发送给短消息中心25。短消息中心25可以将终端300的短消息转发给北斗网络设备200。北斗网络设备200可以将终端300的短消息通过北斗短报文卫星21中继发送给终端100。
其中,上述北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。其中,北斗地面收发站22可以包括分别具有发送功能的一个或多个设备和具有接收功能的一个或多个设备,或者可以包括具有发送功能和接收功能的一个或多个设备,此处不作限定。北斗地面收发站22可用于北斗网络设备200在物理层(physical layer protocol,PHY)对数据的处理功能。北斗中心站23可用于北斗网络设备200在卫星链路控制层(satellite link control protocol,SLC)层和消息汇聚层(message data convergence protocol,MDCP)对数据的处理功能。北斗短报文融合通信平台24可用于在应用层(application layer protocol,APP)对数据的处理功能。
其中,由于北斗通信***10是通过卫星链路进行通信,其主要特性是:时延长(单向约270ms),链路损耗大。当前北斗通信***10支持的业务主要是突发短消息业务,不支持链接状态管理、移动性管理和广播控制信息等。
其中,北斗网络设备200的工作模式可以是双工模式,可以同时收发数据。
北斗网络设备200可以通过北斗短报文卫星21给终端100发送数据。但是,受限于当前北斗网络设备200的发送能力,北斗网络设备200的出站业务包需要切分成多个物理层帧进行传输。另外,由于民用终端(例如,图1中的终端300)通过北斗网络设备发送给终端100的业务有多种类型(例如,短消息,大量文字信息,图片信息、语音信息等等)。不同的业务类型对北斗网络设备底层的分组传输模式的需求不同。
因此,本申请实施例提供一种北斗通信***中出站传输控制方法,北斗网络设备200可以将应用层报文在MDCP层拆分成多个协议数据单元(protocol data unit,PDU),可以称为MDCP PDU。MDCP PDU中可以包含后继指示字段,其中,后继指示字段可用于当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。北斗网络设备200可以顺序下发MDCP PDU到SLC层作为SLC层的服务数据单元(service data unit,SDU),可以称为SLC SDU,并在SLC层将SLC SDU拆分成N个SLC PDU。其中,提供多种格式的SLC PDU,以满足不同的业务需求。PHY层可以从SLC层获取到一个用户或多个用户的SLC PDU。PHY会将多个用户或者一个用户的SLC PDU拼接在一起组成一个固定长度的物理时隙的出站数据。最终,北斗网络设备200可以将出站数据发送给一个或多个终端。
这样,北斗网络设备200可以实现多帧(一个物理时隙中可以包含多个用户帧)传输,可以满足不同业务类型的出站数据的需求,并且,可以优化出站资源配置,提高出站资源利用率。
图2示出了本申请实施例提供的一种北斗通信***中数据出站的传输过程。
如图2所述,数据出站可以指北斗网络设备200将数据发送给终端100。例如,北斗网络设备200中的北斗短报文融合通信平台24可以将出站数据发送给北斗中心站23;然后北斗中心站23可以将该出站数据发送给北斗地面收发站22,由北斗短报文卫星21中继后发送给终端100。终端100接收到数据可以向北斗中心站23返回SLC层的确认字符(acknowledge character,ACK)。该ACK可用于终端100是否成功接收到北斗网络设备200发送的出站数 据。
下面介绍本申请实施例中提供的一种北斗通信***10的出站数据的协议封装架构。
图3示出了本申请实施例中提供的一种北斗通信***10的出站数据的协议封装架构示意图。
如图3所示,北斗网络设备200中的北斗短报文传输协议层可以应用层(application layer protocol)、消息汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中,北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。北斗地面收发站22可用于负责PHY层的协议处理。北斗中心站23可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台24可用于负责APP层的协议处理。
北斗网络设备200发送数据给终端100时,北斗网络设备200中的北斗短报文传输协议的工作流程可以如下:
在APP层,北斗网络设备200可以将原始数据通过压缩算法,压缩成压缩数据,并在压缩数据前面添加压缩指示字段,其中,压缩指示字段可用于表示该压缩数据的压缩算法类型。之后,北斗网络设备200可以将压缩数据加密,得到加密后数据,并在加密后数据的头部添加加密算法字段,该加密算法字段用于表示该加密后的数据的加密算法类型。北斗网络设备200可以将加密后数据、压缩指示字段、加密指示字段封装成应用层报文下发给MDCP层。其中,该应用层报文可以包括报文头和报文数据。该报文头中可以包括压缩指示字段和加密指示字段等等。该报文数据包括上述加密后数据。
可选的,北斗网络设备200也可以将压缩指示字段和压缩数据一起进行加密,得到加密后数据。
在MDCP层,北斗网络设备200可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP SDU。在MDCP层,北斗网络设备200可以将一个MDCP SDU拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP PDU,即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。
在SLC层,北斗网络设备200可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,北斗网络设备200可以将SLC SDU分段成一个或多个(最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。
这里,可以理解的是,为了适应物理层的帧长,SLC层需要将数据进行分段。而SLC层的设计一个SLC SDU最多只能分成4个SLC PDU,因此MDCP层也需要将数据进行分段。
在PHY层,北斗网络设备200可以通过层间接口获取到SLC层下发的SLC PDU。北斗网络设备200可以从SLC层获取到一个用户或多个用户的SLC PDU。北斗网络设备200可以将多个用户的SLC PDU拼接在一起,再加上物理帧的帧头(例如版本号)作为PHY层的编码块(code block),并在code block的尾部添加校验位(例如,循环冗余校验(cyclic redundancy check,CRC)码),并对code block和CRC码进行编码(例如polar编码),编码 后的物理帧加上保留段可以组成一个固定长度的物理时隙的电文支路(S2C_d支路)的编码数据。其中,北斗网络设备200可以将一个用户的多个SLC PDU分别放到不同的物理帧中。然后,北斗网络设备200将S2C_d支路的编码数据和导频支路(S2C_p支路)的导频信息组成导频编码数据,即出站数据。北斗网络设备200可以将出站数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给终端100。
可以理解的是,S2C_p支路的导频信息与卫星波束相关。当卫星波束号时已知信息时,S2C_p支路的导频信息也是已知的,无需解码的。而S2C_d支路的编码数据是需要解码的。
下面介绍本申请实施例中提供的一种北斗通信***10的出站数据的协议解析架构。
图4示出了本申请实施例中提供的一种北斗通信***10的出站数据的协议解析架构示意图。
如图4所示,终端100的北斗短报文传输协议层可以分为应用层(application layer protocol)、消息汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100在接收到北斗网络设备发送的数据时,终端100的北斗短报文传输协议层的工作流程可以如下:
在PHY层,终端100可以获取到北斗网络设备200发送的经过调制和扩频后的导频编码数据。终端100可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,终端100可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,终端100可以去除导频编码数据中的导频信息,得到编码数据(code data)。然后,终端100可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则终端100可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
这里,该导频编码数据即为上述北斗网络设备200发送的出站数据,该出站数据由S2C_d支路的编码数据和导频支路(S2C_p支路)的导频信息组成。
在SLC层,终端100可以基于SLC PDU的帧头信息,将属于同一个SLC SDU的SLC PDU拼接成一个SLC SDU。终端100可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,终端100可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。终端100可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,终端100可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
接下来,对本申请实施例中出站数据的数据格式进行详细介绍。
图5示出了本申请实施例提供的一种出站数据的数据格式。
如图5所示,该出站数据为物理层的导频编码数据。该导频编码数据可以包括S2C_p支路(导频支路)的导频数据和S2C_d支路(电文支路)的数据。S2C_p支路的导频数据用于辅助 终端解析出电文支路中的用户帧。S2C_d支路中可以包含站侧发送给多个终端的数据(用户帧)以及保留字段、速率指示字段、以及CRC校验码字段。
终端100可以从S2C_d支路中可以获取到站侧发送给该终端100的数据。简单地说,终端100可以搜索S2C_p支路,然后,通过S2C_p支路解调S2C_d支路。终端100接收到出站数据后可以将S2C_d支路中的用户帧数据解析成SLC层的SLC PDU(可以称为SLC帧或者用户帧)。
如图5所示,该SLC PDU可以包括用户帧头字段和用户信息字段。用户帧头字段中可以包括起始标识字段、帧长字段以及用户ID字段。用户信息字段中可以包括用户帧类型字段、以及用户电文字段。
其中,起始标识字段用于标识该用户帧的起始部分,该起始标识字段的长度可以是8bit。帧长字段用于标识用户帧的长度,帧长字段的长度可以是8bit或9bit。用户ID字段用于表明接收该用户帧的终端设备,用户ID字段的长度可以是44bit。可以理解的是,本申请实施例对起始标识字段、帧长字段以及用户ID字段的长度不作限定。
若终端100的SLC层从S2C_d支路中的用户帧数据解析出的SLC PDU中的用户ID字段与该终端100的用户ID相同,则终端100可以在SLC层中将一个或多个SLC PDU组合成SLC SDU包,然后再传输至MDCP层进行解析。若终端100从S2C_d支路中的用户帧数据解析出的SLC PDU中的用户ID字段与该终端的用户ID不相同,则该终端100可以舍弃该SLC PDU。
用户电文字段中可以包含站侧发送给终端的具体内容。该内容可以是终端的信箱概况,可以是信件消息,也可以是ACK帧或NACK帧等等,此处不作限定。用户帧类型字段可以用来指示该用户帧的类型,该用户帧类型字段的长度可以是2bit。可以理解的是,本申请实施例对用户帧类型字段的长度不作限定。用户帧类型字段指示的业务类型可以如下表1所示。
表1
Figure PCTCN2022109123-appb-000001
如表1所示,当用户帧的用户帧类型字段为“00”时,表明该用户帧为通用数据帧;当用户帧的用户帧类型字段为“01”时,表明该用户帧为ACK帧;当用户帧的用户帧的用户帧类型字段为“10”,表明该用户帧是回执帧。用户帧类型字段“11”为预留字段。
由于终端100可以对接收到的物理帧进行盲解,因此可以不需要设计速率指示字段,节约该字段的比特位。由于出站数据协议在不断发展,这样,需要一个字段来指示不同版本的协议。因此,提供了另一种出站数据的数据格式。
图6示出了本申请实施例提供的另一种出站数据的数据格式。
如图6所示,该出站数据为物理层的导频编码数据。该导频编码数据可以包括S2C_p支路(导频支路)的导频数据和S2C_d支路(数据支路)的数据。S2C_p支路的导频数据用于辅助终端解析出数据支路中的用户帧。S2C_d支路中可以包含站侧发送给多个终端的数据(用户帧)以及保留字段、版本号字段、以及CRC校验码字段。其中,该版本号字段可以是3bit,本申请实施例对该版本号字段的长度不作限定。
终端100可以从S2C_d支路中可以获取到站侧发送给该终端100的数据。简单地说,终端100可以搜索S2C_p支路,然后,通过S2C_p支路解调S2C_d支路。终端100接收到出站数据后可以将S2C_d支路中的用户帧数据解析成SLC层的SLC PDU(可以称为SLC帧或者用户帧)。
如图6所示,该SLC PDU可以包括用户帧头字段和用户信息字段。在本申请实施例中,提供了四种类型的SLC PDU的帧格式。当SLC帧的类型不同时,其SLC帧的帧格式也不相同。具体地,可以参考下文中的描述,此处先不赘述。
图7A示出了本申请实施例提供的一种类型的SLC帧的帧格式。
如图7A所示,SLC帧可以为2K速率的通用数据帧。该2K速率的通用数据帧可以用于信箱概况查询和信件消息发送。例如,当终端100向北斗网络设备200发送信箱概况查询请求时,北斗网络设备200回复给终端100的SLC帧可以是2K速率的通用数据帧。
如图7A所示,该2K速率的通用数据中可以包括单个用户帧头和用户信息。其中,该用户帧的单个用户帧头中可以包括帧类型字段、开启确认模式(acknowledge mode enable,AM enable)字段、帧长字段、用户ID字段、帧总数字段和帧序号字段。
其中,帧类型字段可以用于指示该SLC帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对帧类型字段的长度不作限定。
AM enable字段指示接收到该SLC帧的终端是否需要向北斗网络设备200回复ACK。该AM enable字段的长度可以是1bit。若该AM enable字段中数值为第一数值(例如:1),则表明终端100在接收到用户帧后需要向北斗网络设备200回复ACK。若该AM enable字段中数值为第二数值(例如:0),则表明终端100在接收到SLC帧后不需要向北斗网络设备200回复ACK。本申请实施例对该AM enable字段的长度以及该AM enable字段的具体数值不作限定。
可以理解的是,在本申请实施例中,若该AM enable字段中数值为第一数值,即终端100在接收到用户帧后需要向北斗网络设备200回复ACK的模式,可以称为确认模式(acknowledge mode,简称AM模式)。若该AM enable字段中数值为第二数值,即终端在接收到SLC帧后不需要向北斗网络设备200回复ACK的模式,可以称为非确认模式(unacknowledge mode,简称UM模式)。
帧长字段用于标识该SLC帧的长度,该帧长字段的长度可以是8bit。本申请实施例对该帧长字段的长度不作限定。
用户ID字段可以指示该SLC帧是北斗网络设备200发送给第一终端的,该第一终端的ID与该用户ID字段中示出的ID相同。该用户ID字段的长度可以是44bit。本申请实施例对用户ID字段的长度不作限定。
帧总数字段用于指示北斗网络设备200发送个单个用户的终端的SLC帧的数量。该帧总数字段的长度可以是2bit。本申请实施例对帧总数字段的长度不作限定。
帧序号字段用于指示该SLC帧为北斗网络设备200发送给单个用户的终端的所有SLC帧中的第N帧。N的数值为帧序号字段中具体内容描述的数值。该帧序号字段的长度可以是2bit。本申请实施例对用户ID字段的长度不作限定。
可以理解的是,图7A示出SLC帧中的单个用户帧头的格式仅为示例。本申请实施例对该单个用户帧头中的字段的排列顺序以及该单个用户帧头包含字段数量不作限定。
图7B示出了本申请实施例提供的又一种类型的SLC帧的帧格式。
如图7B所示,该SLC帧为4K速率的通用数据帧。该4K速率的通用数据帧可以包括单 个用户帧头和用户信息。其中,该用户帧的单个用户帧头中可以包括帧类型字段、AM enable(开启AM模式)字段、帧长字段、用户ID字段、帧总数字段和帧序号字段。
其中,帧类型字段可以用于指示该用户帧的类型。该帧类型字段的长度可以是2bit。
AM enable字段指示接收到该SLC帧的终端是否需要向北斗网络设备200回复ACK。该AM enable字段的长度可以是1bit。若该AM enable字段中数值为D1(例如:二进制数值1),则表明终端在接收到用户帧后需要向北斗网络设备200回复ACK。若该AM enable字段中数值为D2(例如:二进制数值0),则表明终端在接收到SLC帧后不需要向北斗网络设备200回复ACK。本申请实施例对该AM enable字段的长度以及该AM enable字段的具体数值不作限定。
帧长字段用于标识该SLC帧的长度,该帧长字段的长度由物理层解码参数(即解码速率)决定。例如,该帧长字段的长度可以是9bit。本申请实施例对该帧长字段的长度不作限定。
用户ID字段可以指示该SLC帧是北斗网络设备200发送给第一终端的,该第一终端的ID与该用户ID字段中示出的ID相同。该用户ID字段的长度可以是44bit。本申请实施例对用户ID字段的长度不作限定。
帧总数字段用于指示北斗网络设备200发送个单个用户终端的SLC帧的数量。该帧总数字段的长度可以是2bit。本申请实施例对帧总数字段的长度不作限定。
帧序号字段用于指示该SLC帧为北斗网络设备200发送给终端100的所有用户帧中的第N帧。N的数值为帧序号字段中具体内容描述的数值。该帧序号字段的长度可以是2bit。本申请实施例对用户ID字段的长度不作限定。
可以理解的是,图7B示出SLC帧中的单个用户帧头的格式仅为示例。本申请实施例对该单个用户帧头中的字段的排列顺序以及该单个用户帧头包含字段数量不作限定。例如,该单个用户帧头中的第一个字段可以是帧类型字段、AM enable(开启AM模式)字段、帧长字段、用户ID字段、帧总数字段和帧序号字段中的任一个。
这里,在一种可能的实现方式中,终端可以对接收到的SLC帧进行盲解,即终端可以用终端能够解析的每一种速率去解析SLC帧,若终端用第一速率可以解析出该SLC帧,则该SLC帧的速率即为该第一速率。然后,终端可以根据速率确定SLC帧中帧头信息的长度。
图7C示出了本申请实施例提供的又一种类型的SLC帧的帧格式。
如图7C所示,该SLC帧为ACK帧,该ACK帧只在SLC层使用。该ACK帧可以包括单个用户帧头和用户信息。该单个用户帧头的长度可以是36bit,该用户信息的长度可以是4bit。本申请实施例对该单个用户帧的长度以及用户信息的长度不作限定。
其中,该单个用户帧头中可以包括帧类型字段和用户ID字段。帧类型字段可以用于指示该SLC帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对该帧类型字段的长度不作限定。
用户ID字段可以指示该SLC帧是北斗网络设备200发送给第一终端的,第一终端的ID与该用户ID字段中示出的ID相同。该用户ID字段的长度可以是44bit。本申请实施例对用户ID字段的长度不作限定。
其中,用户信息中可以包含确认字符位图ACK bitmap。该ACK bitmap用于指示北斗网络设备200是否成功接收终端100发送给北斗网络设备200的SLC帧。
进一步地,在一种可能的实现方式中,北斗网络设备200发送给终端100的ACK帧中的ACK bitmap的长度可以根据终端100发送给北斗网络设备200的SLC SDU能被分割成SLC PDU的最大个数确定。由于一个SLC SDU能被分割成SLC PDU的最大个数是固定的,因此, 该ACK bitmap的长度也是固定的。例如,终端100发送给北斗网络设备200的SLC SDU最多可以分成4个SLC PDU,那么ACK bitmap的长度可以是4bit。
进一步地,在一种可能的实现方式中,ACK bitmap中的第N个bit位为数值D3(例如:二进制数值1),则表明北斗网络设备200成功接收到终端100发送给该北斗网络设备100的第N帧。
举例来说,如北斗网络设备200成功收到终端100发送的四个SLC帧,则北斗网络设备200回复给终端100的SLC帧的用户信息可以是“1111”的ACK bitmap。若终端100发送4个SLC帧给北斗网络设备200,北斗网络设备200只成功收到该用户的当前SLC SDU的第一个SLC帧,后面三个入站SLC帧均未成功接收,那么北斗网络设备200回复给终端100的SLC帧的用户信息可以是“1000”的ACK bitmap。
可以理解的是,ACK帧中的用户信息可以被设计为固定长度且内容很短的ACK bitmap,因此ACK可以不用区分速率。
图7D示出了本申请实施例提供的另一种类型的SLC帧的帧格式。
如图7D所示,该SLC帧可以是应用层回执帧,该应用层回执帧在SLC层转译为信息1(例如,全1指示),在应用层继续解析。该应用层回执帧可以包括单个用户帧头和用户信息。当终端100接收到北斗网络设备200发送的应用层回执帧后,终端100可以在SLC层解析该应用层回执帧的单个用户帧头。该应用层回执帧中的用户信息可以由应用层解析。该单个用户帧头的长度可以是36bit,该用户信息的长度可以是4bit。本申请实施例对该单个用户帧的长度以及用户信息的长度不作限定。
其中,单个用户帧头中可以包括帧类型字段和用户ID字段。帧类型字段可以用于指示该用户帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对该帧类型字段的长度不作限定。
用户ID字段可以指示该SLC帧是北斗网络设备200发送给第一终端的,第一终端的ID与该用户ID字段中示出的ID相同。该用户ID字段的长度可以是44bit。本申请实施例对用户ID字段的长度不作限定。
其中,用户信息可以是错误码Error code字段,该Error code字段可以由应用层解析。该Error code字段的长度可以是4bit。本申请实施例对该Error code字段的长度不作限定。
下面介绍本申请实施例中提供的北斗通信***10中数据出站时SLC层的传输机制。
1.传输机制一
北斗网络设备200无回收出站资源和重分配的功能。即北斗网络设备200分配给一个SLC SDU中每个SLC PDU的资源回收,重新分配给北斗网络设备200发送给其他用户的SLC SDU使用。
北斗网络设备200向终端100发送一个SLC SDU中的SLC PDU。当终端100接收到第一个SLC PDU时,开始计算终端100接收该SLC SDU中SLC PDU的最大等待时间,即终端100接收SLC PDU的时间窗长度。当北斗网络设备200发送完一个SLC SDU中的最后一帧SLC PDU时,北斗网络设备200可以计算北斗网络设备200接收终端回复的ACK的最大等待时间,即北斗网络设备200接收ACK的持续时间窗长度。当终端100在成功接收北斗网络设备200发送的SLC SDU时,可以向北斗网络设备200发送ACK。当终端100未成功接收北斗网络设备200发送的SLC SDU,不向北斗网络设备200回复NACK。
在本申请实施例中,终端100成功接收北斗网络设备200发送的SLC SDU可以指:终端100收齐北斗网络设备200发送的SLC SDU中所有的SLC PDU,且可以正确地解析出该SLC SDU中所有的SLC PDU。
在本申请实施例中,终端100未成功接收北斗网络设备200发送的SLC SDU可以指:终端100未收齐北斗网络设备200发送的SLC SDU中所有的SLC PDU,或者未能正确地解析出该SLC SDU中所有的SLC PDU。
可以理解的是,当终端100成功接收北斗网络设备200发送的SLC SDU,终端100回复的字符可以简称为ACK,当终端100未成功北斗网络设备200发送的SLC SDU,即接收失败时终端回复的字符可以简称为NACK。
可以理解的是,若北斗网络设备200发送给终端100的SLC SDU的SLC PDU中为UM模式,则终端100接收到北斗网络设备200的SLC SDU后,无论接收成功或者接收失败,都不需要向北斗网络设备200回复ACK或NACK。
1.1传输成功
图8A示出了本申请实施例中提供的一种数据出站时SLC层的传输机制一种传输成功场景示意图。
如图8A所示,北斗通信***10在SLC层的通信交互过程可以如下:
(1)、北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的N个SLC PDU。其中N≤M,M为SLC SDU的最大分段数。本申请实施例中,以M等于4为例进行示例性说明。
(2)、终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow),并在SLC SDU接收窗结束后反馈ACK给北斗网络设备200。
可选地,该ACK的数据部分可以占用1bit。由于北斗网络设备200不具备重传功能,因此终端100不需要通知北斗网络设备200哪一个SLC PDU未收到,终端100只需要通知北斗网络200接收成功或接收失败。
可选地,ACK的数据部分可以为字符C1或字符C2。该字符C1可以用于表示终端100成功接收北斗网络设备200发送的一个SLC SDU。该字符C2可以用于表示终端100未成功接收北斗网络设备200发送的一个SLC SDU。例如,该字符C1可以是字符1,该字符C2可以是字符0。
(3)、北斗网络设备200在发送完第N个SLC PDU后,在ACK接收窗内接收终端100反馈的ACK。
接下来介绍上述图8A中示出的参数及其含义。
(1)tUeProcess:指终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。其中,经实验数据测得,tUeProcess的典型值可以是60ms。
(2)tPropagate:指终端100与北斗网络设备200的空口传播时延。其中,经实验数据测得,tPropagate的典型值可以为270ms。
(3)tStationStartRcvAck:指北斗网络设备200接收ACK的起始时刻。
(4)tStationEndRcvAck:指北斗网络设备200接收ACK的结束时刻。
(5)tStationRevAckWindow:指北斗网络设备200接收ACK的持续时间窗长度。
(6)tUeRevWindow:指终端100接收SLC PDU的时间窗长度,简称,SLC PDU接收窗。
(7)nUeRevFrameSN:指终端100当前接收到的SLC PDU的帧序号。其中,由于在本申请实施例中,SLC SDU最多可以包括4帧SLC PDU,因此,0≤nStationRevFrameSN≤3,nStationRevFrameSN为整数。
(8)tStationFrameLen:指北斗网络设备200发送的SLC PDU的长度。在本申请实施例中,tStationFrameLen的值可以取125ms。
(9)nStationTotalFrameNum:指北斗网络设备200将SLC SDU分段的总帧数,即,一个SLC SDU中包括SLC PDU的总帧数。
(10)tStationTxInterval:指北斗网络设备200发送SLC PDU的时间间隔。SLC PDU的发送间隔(tStationTxInterval)可以指相邻两个SLC PDU的起始发送时刻之间的间隔。tStationTxInterval为预设值,其中,示例性的,tStationTxInterval的典型值可以为2s。
(11)tUeSendAck:指终端100向北斗网络设备200发送ACK的时间。
(12)tStationTxEnd:指北斗网络设备200发送最后一个SLC PDU的时刻。
(13)tUeUlFrameLen:指终端100发送的ACK的时间长度。其中,128ms≤tUeUlFrameLen≤512ms。
(14)δ:指北斗网络设备200上出站物理帧的发送时间对齐偏差。北斗网络设备200在完成信号处理和调度时不一定刚好在出站物理帧发送时刻,需要等待下一个出站物理帧的发送时刻时才能发送物理帧。其中,0<δ≤125ms。
接下来,具体介绍本申请实施例中终端100如何确定出SLC PDU接收窗长度,北斗网络设备200如何确定出ACK接收窗的启动时刻以及ACK窗结束时刻。
(1)、终端100接收到SLC SDU的第一帧开始启动会话。终端100可以基于当前接收到SLC PDU的帧序号、北斗网络设备200发送SLC PDU的时间长度、当前SLC SDU会话中SLC PDU的帧总数和SLC PDU的发送间隔,确定出终端100上SLC PDU接收窗的时间长度。
其中,终端100可以通过如下公式(1)确定出SLC PDU接收窗的时间长度:
Figure PCTCN2022109123-appb-000002
其中,在上述公式(1)中,tUeRevWindow为终端100接收SLC PDU的时间窗长度。
nStationTotalFrameNum为当前SLC SDU会话中SLC PDU的帧总数。nStationRevFrameSN为终端100当前接收到SLC PDU的帧序号。tStationTxInterval为北斗网络设备200上SLC PDU发送间隔。上述nRevFrameSN={0,1,…,nStationTotalFrameNum-1}。一般地,nStationTotalFrameNum可以取4,那么nRevFrameSN={0,1,2,3}。tStationFrameLen为北斗网络设备200发送的SLC PDU的长度。tStationFrameLen的长度是可变的,在本申请实施例中,tStationFrameLen的值可以取125ms。δ为北斗网络设备200上出站物理帧的发送时间对齐偏差。δ的值可以取125ms。
(2)、终端100在终端100接收SLC PDU的接收窗结束后,进行信息处理和Ack_Bit信息构造。最后终端100将该Ack_Bit信息承载在ACK帧中发送给北斗网络设备200。终端100可以基于SLC PDU接收窗的长度、以及指终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延,确定出发送ACK的时间点。
其中,终端100可以通过如下公式(2)确定出返回ACK的时间点:
tUeSendAck=tUeRevWindow+tUeProcess 公式(2)
其中,在上述公式(2)中,tUeSendAck为终端100向北斗网络设备200发送ACK的时间。tUeRevWindow为终端100接收SLC PDU的时间窗长度。tUeProcess表示终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。
(3)、北斗网络设备200可以根据北斗网络设备200发送完SLC SDU中最后一个SLC PDU的时刻、终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延、以及终端100与北斗网络设备200的空口传播时延,确定出北斗网络设备200接收ACK的起始时刻。
其中,北斗网络设备200可以通过如下公式(3)确定出接收ACK的起始时刻:
tStationTxEnd<tStationStartRcvAck<tStationTxEnd+2*tPropagate+tUeProcess 公式(3)
其中,在上述公式(3)中,tStationStartRcvAck为北斗网络设备200接收ACK的起始时刻,tStationTxEnd为北斗网络设备200发送最后一个SLC PDU的时刻。tUeProcess为终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。tPropagate为终端100与北斗网络设备200的空口传播时延。
在上述公式(3)中,tUeProcess取终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延的最小值。
北斗网络设备200可以根据北斗网络设备200将SLC SDU分段的总帧数、以及北斗网络设备200发送SLC PDU的时间间隔,确定出北斗网络设备200发送最后一个SLC PDU的时刻。
其中,北斗网络设备可以通过如下公式(4)确定北斗网络设备200发送最后一个SLC PDU的时刻:
tStationTxEnd=(nStationTotalFrameNum-1)*(tStationTxInterval+tStationFrameLen)+δ 公式(4)
其中,上述公式(4)中,tStationTxEnd为北斗网络设备200发送最后一个SLC PDU的时刻。nStationTotalFrameNum为北斗网络设备200将SLC SDU分段的总帧数。tStationTxInterval为北斗网络设备200发送SLC PDU的时间间隔。tStationFrameLen为北斗网络设备200发送的SLC PDU的长度。tStationFrameLen的长度是可变的,在本申请实施例中,tStationFrameLen的值可以取125ms。δ为北斗网络设备200上出站物理帧的发送时间对齐偏差。δ的值可以取125ms。
(4)、北斗网络设备200可以根据北斗网络设备200发送最后一个SLC PDU的时刻、终端100与北斗网络设备200的空口传播时延、终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延、终端100发送的ACK的时间长度,确定出北斗网络设备200接收ACK的结束时刻。
其中,北斗网络设备200可以通过如下公式(5)确定出北斗网络设备200接收ACK的结束时刻:
tStationEndRcvAck=tStationTxEnd+2*tPropagate+tUeProcess+tUeUlFrameLen 公式(5)
其中,在上述公式(5)中,tStationEndRcvAck为北斗网络设备200接收ACK的结束时刻。tStationTxEnd为北斗网络设备200发送最后一个SLC PDU的时刻。tUeProcess为终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。tPropagate为终端100与北斗网络设备200的空口传播时延。tUeUlFrameLen为终端100发送的ACK的时间长度。
在上述公式(5)中,tUeProcess取终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延的最大值。
1.2传输失败
在一种可能的实现方式中,终端100未收齐北斗网络设备200发送的一个SLC SDU中所有的SLC PDU。终端100不向北斗网络设备200反馈ACK信息。北斗网络设备200在ACK接收窗超时后未收到终端100反馈的ACK(在时刻tStationEndRcvAck达到后还未收到ACK信息),北斗网络设备200结束本次SLC SDU的传输。
图8B示出了本申请实施例中提供的一种数据出站时SLC层的传输机制一中传输失败场景示意图。
如图8B所示,终端100未收到北斗网络设备200发送的SLC SDU中最后一帧SLC PDU。终端100不向北斗网络设备200回复ACK。北斗网络设备200在ACK接收窗内未收到终端100反馈的ACK,北斗网络设备200结束本次SLC SDU的传输。
2.传输机制二
北斗网络设备无回收出站资源和重分配的功能。当北斗网络设备200向终端100发送SLC SDU,终端100按照最大传输时间间隔计算终端接收SLC SDU的接收窗。终端100在接收窗内成功接收SLC SDU时,可以不向北斗网络设备200回复ACK。终端100在接收窗内未成功接收该SLC SDU时,终端100可以不向北斗网络设备200回复NACK。
2.1传输成功
图9A示出了本申请实施例中提供的一种数据出站时SLC层的传输机制二中传输成功场景示意图。
如图9A所示,北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。终端100在时间窗tUeRevWindow内成功接收SLC SDU中的所有SLC PDU后,不向北斗网络设备200回复ACK。
2.2传输失败
图9B示出了本申请实施例中提供的一种数据出站时SLC层的传输机制二中传输失败场景示意图。
如图9B所示,北斗网络设备200按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。终端100未接收到北斗网络设备200发送的一个SLC SDU中最后一帧SLC PDU。终端100可以不向北斗网络设备200回复NACK。
3.传输机制三
北斗网络设备具备回收出站资源和重分配的功能。当北斗网络设备200向终端100发送SLC SDU,终端100按照最大传输时间间隔计算终端接收SLC SDU的接收窗。终端100在接收窗内成功接收SLC SDU时,可以向北斗网络设备200回复ACK。当终端100接收到的第一帧不是北斗网络设备200中发送的SLC SDU中的第一个SLC PDU时,终端100立即向 北斗网络设备200回复NACK,并结束本次接收。
3.1传输成功
图10A示出了本申请实施例中提供的一种数据出站时SLC层的传输机制三中传输成功场景示意图。
如图10A所示,北斗网络设备100在开始发送SLC SDU中第一个SLC PDU时开始计算接收终端100反馈的ACK的接收窗。北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。终端100在时间窗tUeRevWindow内成功接收SLC SDU中的所有SLC PDU后,向北斗网络设备200回复ACK。
如图10A所示,可选地,在一种可能的实现方式中,北斗网络设备200可以根据北斗网络设备200开始发送一个SLC SDU中第一个SLC PDU的时刻、北斗网络设备200发送完SLC SDU中最后一个SLC PDU的时刻、终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延、以及终端100与北斗网络设备200的空口传播时延,确定出北斗网络设备200接收ACK的起始时刻。
其中,北斗网络设备200可以通过如下公式(6)确定出接收ACK的起始时刻:
tStationTxStart<tStationStartRcvAck<tStationTxEnd+2*tPropagate+tUeProcess 公式(6)
其中,在上述公式(6)中,tStationStartRcvAck为北斗网络设备200接收ACK的起始时刻,tStationTxStart为北斗网络设备200开始发送一个SLC SDU中第一个SLC PDU的时刻。tStationTxEnd为北斗网络设备200发送最后一个SLC PDU的时刻。tUeProcess为终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。tPropagate为终端100与北斗网络设备200的空口传播时延。
可以理解的是,当终端100成功接收北斗网络设备200发送的SLC SDU中的最后的一个SLC PDU时,终端100向北斗网络设备200回复的ACK可以是第一字符,例如字符“1”。
图10B示出了本申请实施例中提供的另一种数据出站时SLC层的传输机制三中传输成功场景示意图。
如图10B所示,北斗网络设备100在发送完SLC SDU中第一个SLC PDU后开始计算接收终端100反馈的ACK的接收窗。北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。终端100在时间窗tUeRevWindow内成功接收SLC SDU中的所有SLC PDU后,向北斗网络设备200回复ACK。
如图10B所示,可选地,在一种可能的实现方式中,北斗网络设备200可以根据北斗网络设备200开始发送一个SLC SDU中第一个SLC PDU的时刻、北斗网络设备200发送的出站帧长度、北斗网络设备200发送完SLC SDU中最后一个SLC PDU的时刻、终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延、以及终端100与北斗网络设备200的空口传播时延,确定出北斗网络设备200接收ACK的起始时刻。
其中,北斗网络设备200可以通过如下公式(6)确定出接收ACK的起始时刻:
Figure PCTCN2022109123-appb-000003
其中,在上述公式(7)中,tStationStartRcvAck为北斗网络设备200接收ACK的起始时刻,tStationTxStart为北斗网络设备200开始发送一个SLC SDU中第一个SLC PDU的时刻。tStationTxEnd为北斗网络设备200发送最后一个SLC PDU的时刻。tUeProcess为终端100从接收完北斗网络设备200发送的SLC PDU到发送ACK的处理时延。tPropagate为终端100与北斗网络设备200的空口传播时延。tStationFrameLen为北斗网络设备200发送的SLC PDU的长度,一般地,tStationFrameLen为125ms。
3.2传输失败
图10C示出了本申请实施例中提供的一种数据出站时SLC层的传输机制三中传输失败场景示意图。
如图10C所示,北斗网络设备100在发送完SLC SDU中第一个SLC PDU后开始计算接收终端100反馈的ACK的接收窗。北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。北斗网络设备200已经发送了第一个SLC PDU(即图10C中序号为0的SLC PDU)和第二个SLC PDU(即图10C中序号为1的SLC PDU)。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。终端100已经接收到了北斗网络设备200已经发送的第一个SLC PDU。但是,终端100解析对的第一帧不是北斗网络设备200中发送的一个SLC SDU中的第一个SLC PDU。终端100直接向北斗网络设备回复NACK。该NACK可以用于表示终端100解析对的第一帧不是北斗网络设备200中发送的一个SLC SDU中的第一个SLC PDU。
北斗网络设备200接收到NACK后,可以不再发送SLC SDU中还未发送的SLC PDU。北斗网络设备200可以关闭该SLC SDU的ACK接收时间窗。北斗网络设备200还未发送第三个SLC PDU(即图10C中序号为2的SLC PDU)和第四个SLC PDU(即图10C中序号为3的SLC PDU)。北斗网络设备200可以将发送SLC SDU中的未发送的SLC PDU的资源分配给北斗网络设备200要发送给其他用户的SLC SDU使用。即北斗网络设备200可以将第三个SLC PDU(即图10C中序号为2的SLC PDU)和第四个SLC PDU(即图10C中序号为3的SLC PDU)的资源,分配给北斗网络设备200要发送给其他用户的SLC SDU使用。这样,可以提高北斗网络设备200的出站资源的利用率。终端100也可以无需等待SLC SDU中的其他的SLC PDU,可以尽快进入低功耗流程。
4.传输机制四
北斗网络设备具备回收出站资源和重分配的功能。当北斗网络设备200向终端100发送SLC SDU,终端100按照最大传输时间间隔计算终端接收SLC SDU的接收窗。终端100在接收窗内成功接收SLC SDU时,可以向北斗网络设备200回复ACK。
终端100未接收到北斗网络设备200发送的一个SLC SDU中最后一帧SLC PDU。且终端100解析出来的接收到的第一个SLC PDU不是北斗网络设备200中发送的一个SLC SDU中的第一个SLC PDU。终端100根据接收到的SLC PDU的数量评估北斗网络设备200资源回收的可能性低,则不回复NACK。北斗网络设备200在ACK接收窗超时后未收到终端100 反馈的NACK(在时刻tStationEndRcvAck达到后还未收到NACK信息),北斗网络设备200确定SLC SDU传输失败,结束本次SLC SDU的传输。
4.1传输成功
传输机制四中的传输成功的场景可以与传输机制三中的传输成功的场景相同。该传输机制四中的传输成功的场景可以参考上文中对图10A和图10B的描述,此处不再赘述。
4.2传输失败
图11A示出了本申请实施例中提供的一种数据出站时SLC层的传输机制四中传输失败场景示意图。
如图11A所示,北斗网络设备100在发送完SLC SDU中第一个SLC PDU后开始计算接收终端100反馈的ACK的接收窗。北斗网络设备200可以按照帧序号从小到大的顺序等间隔发送SLC SDU中的4个SLC PDU。北斗网络设备200已经发送了第一个SLC PDU(即图10C中序号为0的SLC PDU)和第二个SLC PDU(即图10C中序号为1的SLC PDU)和第三个SLC PDU(即图10C中序号为2的SLC PDU)。终端100在接收到北斗网络设备200发送的首个SLC PDU后,在t0时刻启动SLC层接收会话(session),计算终端100接收出站的SLC SDU接收窗的最大等待时间(tUeRevWindow)。
终端100已经接收到了北斗网络设备200已经发送的第一个SLC PDU。但是,终端100解析对的第一帧不是北斗网络设备200中发送的一个SLC SDU中的第一个SLC PDU。由于北斗网络设备200已经发送了一个SLC SDU中三个SLC PDU。终端评估北斗网卡设备200回收资源的可能性不高。终端100可以不向北斗网络设备回复NACK。北斗网络设备200在ACK接收窗内未接收到NACK,结束本次SLC SDU传输。
下面介绍本申请实施例中提供的一种北斗通信***中出站传输控制方法。
图11B示出了本申请实施例中提供的一种北斗通信***中出站传输控制方法的流程示意图。
如图11B所示,该北斗通信***中出站传输控制方法包括如下步骤:
S1101、北斗网络设备200在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧。
其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字段用于指示接收第一用户帧的终端;第一用户ID字段中包含第一终端的ID信息;第一帧类型字段用于指示第一用户帧的帧类型;第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;第二用户ID字段用于指示接收第二用户帧的终端;第二用户ID字段中包含第二终端的ID信息;第二帧类型字段用于指示第二用户帧的帧类型。
其中,第一用户帧包括卫星链路控制层协议数据单元SLC PDU和确认字符ACK帧、以及应用层回执帧。SLC PDU可以用于传输数据,确认字符ACK帧可以用于指示北斗网络设备是否成功接收终端的SLC PDU。应用层回执帧用于指示北斗网络设备是否成功解析接收到的应用层报文。
S1102、北斗网络设备200在物理PHY层基于第一用户帧和第二用户帧生成第一物理帧。
S1103、北斗网络设备200发送第一物理帧给终端100。
S1104、终端100接收第一物理帧。
S1105、终端100从第一物理帧中解析出第一用户帧。
下面介绍北斗网络设备200执行的一些可能的实现方式。
在一种可能的实现方式中,第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,第一用户帧的帧头信息还包括确认模式使能AM enable字段、帧总数字段、帧序号字段;其中,AM enable字段用于指示第一终端回复ACK或不回复ACK;帧总数字段用于指示北斗网络设备发送给第一终端的SLC PDU的数量;帧序号字段用于指示北斗网络设备200发送的SLC PDU的序号。
其中,第一SLC PDU的AM enable字段为第一值,第一值用于指示第一终端不回复ACK。第一SLC PDU的AM enable字段为第二值,第二值用于指示第一终端回复ACK。
这样,接收第一SLC PDU的设备通过帧头信息就可以知道是否需要回复ACK,不需要通过单独信令交互获知是否需要回复ACK。
在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备200发送第一物理帧之后,该方法还包括:北斗网络设备200继续发送所述第一SLC SDU中的一个或多个SLC PDU;在北斗网络设备200发送完第一SLC SDU中的所有SLC PDU后,北斗网络设备200接收到第一终端发送的第一ACK,第一ACK用于表示第一终端成功接收第一SLC SDU中的所有SLC PDU。
这样,北斗网络设备200可以通过第一终端回复的ACK知道第一终端已经成功接收SLC SDU。这样,北斗网络设备200继续发送下一个SLC SDU。
在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备200发送第一物理帧之后,方法还包括:当北斗网络设备200发送完第一SLC PDU后,北斗网络设备200接收到第一终端发送的第二ACK,第二ACK用于表示第一终端未成功接收第一SLC PDU;北斗网络设备200将第一SLC SDU中的一个或多个SLC PDU的资源分配给发送给第二终端的第二SDU中的一个或多个SLC PDU。这样,可以节约北斗网络设备200的资源,实现资源的回收利用。
在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备200发送第一物理帧之后,该方法还包括:北斗网络设备200继续发送第一SLC SDU中的一个或多个SLC PDU;在北斗网络设备200发送完第一SLC SDU中的所有SLC PDU后,北斗网络设备200接收到第一终端发送的第三ACK,第三ACK表示第一终端未成功接收第一SLC SDU中的所有SLC PDU。
这样,北斗网络设备200可以根据第一终端回复的ACK确定可以确定下一步的操作,例如,结束本次发送。
在一种可能的实现方式中,第一物理帧的帧头信息包括速率指示字段或版本号字段;其中,速率指示字段用于指示所述第一物理帧的传输速率;版本号字段用于指示所述第一物理帧当前的版本信息。
这样,接收到该物理帧的设备可以获知该物理帧的速率,以及版本信息。
在一种可能的实现方式中,第一用户帧为第一SLC PDU,北斗网络设备200在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧之前,该方法还包括:北斗网络设备200在卫星链路控制SLC层获取到北斗网络设备200的消息数据汇聚MDCP层下发的多个卫星链路控制层服务数据单元SLC SDU,其中,多个SLC SDU中包括第一SLC SDU;北斗网络设备200在SLC层将第一SLC SDU拆分成N个SLC PDU。
在一种可能的实现方式中,北斗网络设备200在SLC层获取到所述北斗网络设备200的 MDCP层下发的多个SLC SDU之前,该方法还包括:北斗网络设备200在所述MDCP层获取到北斗网络设备200的应用层下发的应用层报文;北斗网络设备200在所述MDCP层将应用层报文作为MDCP SDU,并在MDCP SDU加入填充数据和冗余长度指示字段后,拆分成多个MDCP PDU;其中,冗余长度指示字段用于指示填充数据的数据长度,多个MDCP PDU中包括第一MDCP PDU,第一MDCP PDU的包头信息包括后继指示字段,后继指示字段用于指示第一MDCP PDU在多个MDCP PDU中的顺序;北斗网络设备200将多个MDCP PDU从MDCP层下发至所述SLC层,作为SLC层的多个SLC SDU。
在一种可能的实现方式中,北斗网络设备200在MDCP层获取到北斗网络设备200的应用层下发的应用层报文之前,该方法还包括:北斗网络设备200获取原始数据;北斗网络设备200在应用层将所述原始数据,进行压缩得到压缩数据;北斗网络设备200在应用层将压缩数据进行加密得到加密后数据;北斗网络设备200在加密后数据头部加上报文头信息,得到应用层报文;其中,报文头信息包括压缩指示字段和加密指示字段,压缩指示字段用于指示对原始数据压缩时使用的压缩算法,加密指示字段用于指示对压缩数据加密时使用的加密算法。
在一种可能的实现方式中,北斗网络设备200在SLC层将第一SLC SDU拆分成N个SLC PDU,具体包括:北斗网络设备200将N个SLC PDU中的第一SLC PDU和第二SLC PDU下发至PHY层;北斗网络设备200在PHY层将第一SLC PDU生成第一物理帧,将第二SLC PUD生成第二物理帧;北斗网络设备200发送第一物理帧和第二物理帧。
在一种可能的实现方式中,北斗网络设备200发送所述第一物理帧,包括:北斗网络设备200在PHY层在第一物理帧的尾部添加第一校验位信息,并对第一物理帧和第一校验位信息进行编码得到第一编码数据;北斗网络设备200在PHY层对第一编码数据和第一编码数据的第一保留字段进行调制得到第一调制数据;北斗网络设备200在PHY层对第一调制数据进行扩频得到第一扩频调制数据;北斗网络设备200在PHY层发送第一扩频调制数据和第一扩频调制数据的第一导频信息。
在一种可能的实现方式中,该方法还可以包括:北斗网络设备200基于北斗网络设备200发送完第一SLC SDU中最后一个SLC PDU的时刻、第一终端从接收完第一SLC SDU中最后一个SLC PDU到发送ACK的处理时延、以及空口传播时延确定出ACK接收时间窗的起始时刻;北斗网络设备200在ACK接收时间窗的起始时刻开始接收ACK。
这样,北斗网络设备200可以确定出接收ACK的起始时刻。
在一种可能的实现方式中,该方法还可以包括:北斗网络设备200基于北斗网络设备200发送完第一SLC SDU中最后一个SLC PDU的时刻、第一终端从接收完第一SLC SDU中最后一个SLC PDU到发送ACK的处理时延、第一终端发送的ACK的时间长度、以及空口传播时延确定出ACK接收时间窗的结束时刻;北斗网络设备200在所述ACK接收时间窗的结束时刻停止接收ACK。
这样,北斗网络设备200可以确定出接收ACK的结束时刻。
这里,北斗网络设备具体如何确定接收ACK的起始时刻和结束时刻可以参见上文中的描述,此处不再赘述。
下面介绍终端100执行的一些可能的实现方式。
在一种可能的实现方式中,第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,第一用户帧的帧头信息还包括确认模式使能 AM enable字段、帧总数字段、帧序号字段;其中,AM enable字段用于指示终端100回复ACK或不回复ACK;帧总数字段用于指示北斗网络设备发送给终端100的SLC PDU的数量;帧序号字段用于指示北斗网络设备发送的SLC PDU的序号。
其中,第一SLC PDU的AM enable字段为第一值,第一值用于指示终端100不回复ACK。第一SLC PDU的AM enable字段为第二值,第二值用于指示终端100回复ACK。
这样,接收第一SLC PDU的终端100通过帧头信息就可以知道是否需要回复ACK,不需要通过单独信令交互获知是否需要回复ACK。
在一种可能的实现方式中,第一用户帧为第一SLC PDU,终端100从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:终端100接收第一SLC SDU中的一个或多个SLC PDU;当终端100收齐第一SLC SDU中的所有SLC PDU后,终端100向北斗网络设备发送第一ACK,第一ACK用于表示终端100成功接收第一SLC SDU中的所有SLC PDU。
其中第一ACK的值可以取1。
在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,终端100从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:当终端100解析出的第一SLC PDU非第一SLC SDU中的第一个SLC PDU时;终端100向北斗网络设备发送第二ACK并停止接收第一SLC SDU中的第二SLC PDU,第二ACK用于表示终端100未成功接收第一SLC PDU。
在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,终端100从第一物理帧中解析出第一用户帧,丢弃第二用户帧之后,该方法还包括:所述终端100接收第一SLC SDU中的一个或多个SLC PDU;当终端100在SLC PDU接收时间窗内未收齐第一SLC SDU中的所有SLC PDU后,终端100向北斗网络设备发送第三ACK,第三ACK用于表示终端100未成功接收第一SLC SDU中的所有SLC PDU。
第二ACK和第三ACK的值可以取0。
在一种可能的实现方式中,第一用户帧为第一SLC SDU中的第一SLC PDU,终端100从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧,包括:终端100在所述PHY层获取到终端发送的第一扩频调制数据;终端100在所述PHY层对第一扩频调制数据进行解扩频,得到第一调制数据和第一调制同步头;终端100在PHY层对第一调制数据和所述第一调制同步头解调,得到第一导频数据和第一同步头;终端100在PHY层去除第一导频数据中的导频信息,得到第一编码数据;北斗网络设备在PHY层对第一编码数据进行解码,得到第一编码块物理帧和第一校验信息;终端100在PHY层基于第一校验信息对第一编码块进行校验,并在校验成功后,将第一编码块中ID字段与终端100的ID相同的第一用户帧作为终端100的SLC层中第一SLC SDU中的第一SLC PDU从PHY层呈递给终端100的SLC层。
在一种可能的实现方式中,终端100在所述PHY层基于第一校验信息对第一编码块进行校验,并在校验成功后,将第一编码块中ID字段与终端100的ID相同的第一用户帧作为终端100的SLC层中第一SLC SDU中的第一SLC PDU从PHY层呈递给终端100的SLC层之后,该方法还包括:终端100在SLC层将接收到的M个SLC PDU拼接成第一SLC SDU,并将第一SLC SDU作为MDCP层的第一MDCP PDU从终端100的SLC层上报给终端100的MDCP层,第一MDCP PDU的包头信息中包括后继指示字段,后继指示字段用于指示第一 MDCP PDU在北斗网络设备发送的多个MDCP PDU中的顺序。
在一种可能的实现方式中,该方法还包括:终端100在MDCP层获取到从终端100SLC层上报的第二MDCP PDU;当第二MDCP PDU中的后继指示字段指示第二MDCP PDU为北斗网络设备发送的多个MDCP PDU中的最后一个时,终端100在MDCP层将第一MDCP PDU与第二MDCP PDU拼接成MDCP SDU,并将MDCP SDU作为应用层报文从MDCP层上报给应用层。
在一种可能的实现方式中,应用层报文包括报文头信息和加密后数据,报文头信息包括加密指示字段和压缩指示字段,压缩指示字段用于指示终端将原始数据压缩成压缩数据时使用的压缩算法,加密指示字段用于指示终端将压缩数据加密成加密后数据时使用的加密算法;该方法还包括:终端100在应用层通过应用层报文中加密指示字段指示的加密算法,对应用层报文中加密后数据进行解密,得到压缩数据;终端100在应用层通过应用层报文中压缩指示字段指示的压缩算法,对压缩数据进行解压缩,得到原始数据。
在一种可能的实现方式中,该方法还包括:终端100基于接收到的SLC PDU的帧序号、北斗网络设备发送的SLC PDU的时间长度、北斗网络设备发送的一个SLC SDU中SLC PDU的帧总数、以及SLC PDU之间的发送间隔,确定出终端100中SLC PDU接收窗的时间长度。
在一种可能的实现方式中,该方法还包括:终端100基于SLC PDU接收窗的时间长度、第一SLC PDU的接收时刻,终端100的信号处理时延、以及终端100发送的ACK的时间长度,确定出终端100发送出ACK的时间点。
终端100确定SLC PDU接收窗的时间长度以及发出ACK的时间点可以参考上文中的描述,此处不再赘述。
终端100在接收到北斗网络设备200发送的一个SLC SDU中N个SLC PDU后,可以基于收到的SLC PDU中帧头信息的AM enable字段、帧总数字段以及帧序号字段,确定出北斗网络设备200请求回复ACK,并采用并行确认模式回复ACK。因此,终端100在SLC PDU的接收窗结束后,基于这个N个SLC PDU的接收结果,生成ACK。并将ACK返回给北斗网络设备200。其中,由于在北斗短报文业务的通信***中,北斗网络设备200不支持数据的重传,终端100发送的ACK不需要指示未收齐SLC PDU的帧序号,只需要通知北斗网络设备200收齐N个SLC PDU还是未收齐N个SLC PDU即可。因此,该ACK的Bitmap部分的长度可以为1bit,该1bit用于表示终端100是否收齐当前SLC SDU的N个SLC PDU。
可选的,在北斗短报文业务的后期演进版通信***中,北斗网络设备200也可能支持数据的重传,终端100发送的ACK也可以通知北斗网络设备200的未收齐帧序号。因此,该ACK的Bitmap部分的长度可以为Nbit,该Nbit用于表示终端100是否未收齐当前SLC SDU中N个SLC PDU的帧序号。
其中,终端100可以在接收到SLC SDU中的第1个SLC SDU后,启动SLC SDU会话。终端100可以基于接收到最近一个SLC PDU的帧序号(nStationRevFrameSN)、接收到最近一个SLC PDU的时刻(tUeRevRctSP)、SLC SDU中SLC PDU的帧总数(nStationTotalFrameNum)、北斗网络设备200发送SLC PDU的间隔(tStationTxInterval)和北斗网络设备200发送的物理帧的时间长度(tStationDlFrameLen),确定终端100上SLC PDU接收窗的剩余时间长度(tUeRevWindow)。
其中,终端100可以通过如下公式确定出SLC PDU接收窗的剩余时间长度 (tUeRevWindow):
tUeRevWindow=
(nStationTotalFrameNum-nStationRevFrameSN-1)
*(tStationTxInterval+tStationDlFrameLen)
其中,在上述公式中,该tStationTxInterval的值预设在终端100上。上述nStationRevFrameSN={0,1,…,nStationTotalFrameNum-1},δ的值可以为125ms。
终端100在SLC PDU的接收窗结束后,基于这个N个SLC PDU的接收结果,生成ACK。并将ACK返回给北斗网络设备200。终端100可以基于空口传播时延(tPropagate)、终端100的信号处理调度时延(tUeProcess)、终端100的接收态至发送态的切换时长(tRx2TxSwitch)、终端100接收到最近一个SLC PDU的接收时刻(tUeRevRctSP),确定终端100发送ACK的时间点(tUeSendAck)。
其中,终端100可以通过如下公式确定终端100发送ACK的时间点(tUeSendAck):
tUeSendAck=tUeRevRctSP+
tUeRevWindow+tUeProcess+tRx2TxSwitch+Δ
其中,在公式中,Δ为终端100的物理帧发送时间对齐偏差。
北斗网络设备200可以基于北斗网络设备200发送SLC SDU中最后一个SLC PDU的时刻(tStationTxEnd)、空口传播时延(tPropagate)、终端100的接收态至发送态的切换时长(tRx2TxSwitch)、终端100的信号处理调度时延(tUeProcess),确定出ACK接收窗(tStationRevAckWindow)的启动时刻(tStationStartRcvAck)和ACK接收窗的结束时刻(tStationEndRcvAck)。
其中,北斗网络设备200可以通过如下公式确定出ACK接收窗(tStationRevAckWindow)的启动时刻(tStationStartRcvAck):
tStationTxEnd<tStationStartRcvAck<tStationTxEnd+tRx2TxSwitch
+2*tPropagate+tUeProcess
在上述公式中,tUeProcess以取最小值t_MinUeProc。
其中,北斗网络设备200可以通过如下公式确定出ACK接收窗(tStationRevAckWindow)的结束时刻(tStationEndRcvAck):
tStationEndRcvAck=
tStationTxEnd+tUeProcess+tRx2TxSwitch+2*tPropagate+
tUeUlFrameLen+Δ
在上述公式中,tUeProcess可以取最大值t_MaxUeProc。
下面首先介绍本申请实施例提供的示例性终端100。
图12是本申请实施例提供的终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,终端100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SLC)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170 也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
SIM接口可以被用于与SIM卡接口195通信,实现传送数据到SIM卡或读取SIM卡中数据的功能。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150 的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)、北斗通信等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术、以及北斗通信技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
其中,终端100可以通过该北斗通信技术与北斗网络设备200进行通信。可选地,该北斗通信技术可存在于一个独立的芯片中,也可以集成在该无线通信模块160中。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,颜色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5 SDRAM)等;
非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作***或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110 中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光 二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对终端100和北斗网络设备200进行功能模块的划 分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面将结合图13至图16详细描述本申请实施例的通信装置。
在采用集成的单元的情况下,参见图13,图13是本申请实施例提供的通信装置1300的结构示意图。该通信装置1300可以为上述实施例中的终端100。可选的,通信装置1300可以为一种芯片/芯片***,例如,北斗通信芯片。如图13所示,该通信装置1300可以包括收发单元1310和处理单元1320。
一种设计中,收发单元1310,可用于接收北斗网络设备200发送的第一物理帧;第一物理帧中包含发送给终端100的第一用户帧和发送给第二终端的第二用户帧,其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字段用于指示接收第一用户帧的终端;第一用户ID字段中包含终端100的ID信息;从第一物理帧中解析出第一用户帧,丢弃第二用户帧。
处理单元1320,可用于当终端100收齐第一SLC SDU中的所有SLC PDU后,终端100向北斗网络设备发送第一ACK,第一ACK用于表示终端100成功接收第一SLC SDU中的所有SLC PDU。
处理单元1320,还可用于当终端100解析出的第一SLC PDU非所述第一SLC SDU中的第一个SLC PDU时;终端100向北斗网络设备发送第二ACK并停止接收第一SLC SDU中的第二SLC PDU,第二ACK用于表示终端100未成功接收第一SLC PDU。
处理单元1320,还可用于当终端100在SLC PDU接收时间窗内未收齐第一SLC SDU中的所有SLC PDU后,终端100向北斗网络设备发送第三ACK,第三ACK用于表示终端100未成功接收第一SLC SDU中的所有SLC PDU。
可选的,收发单元1310,还可用于执行上述图11B所示方法实施例中终端100执行的有关发送和接收的功能步骤。
可选的,处理单元1320,还可用于执行上述图所示方法实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1300可对应执行前述实施例中终端100执行的方法步骤,为了简洁,在此不再赘述。
在采用集成的单元的情况下,参见图14,图14是本申请实施例提供的通信装置1400的结构示意图。该通信装置1400可以为上述实施例中的北斗网络设备200。可选的,通信装置1400可以为北斗网络设备200中的具体网元,例如,北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24中的一个网元或多个网元的组合。如图14所示,该通信装置1400可以包括收发单元1410和处理单元1420。
一种设计中,收发单元1410,可用于在卫星链路控制层SLC生成发送给终端100的第一用户帧,和发送给第二终端的第二用户帧;在物理PHY层基于第一用户帧和第二用户帧生成第一物理帧;发送第一物理帧。
其中,第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;第一用户ID字 段用于指示接收第一用户帧的终端;第一用户ID字段中包含终端100的ID信息;第一帧类型字段用于指示第一用户帧的帧类型;第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;第二用户ID字段用于指示接收第二用户帧的终端;第二用户ID字段中包含第二终端的ID信息;第二帧类型字段用于指示第二用户帧的帧类型。
处理单元1420,可以用于当北斗网络设备发送完第一SLC PDU后,北斗网络设备接收到终端100发送的第二ACK,第二ACK用于表示终端100未成功接收第一SLC PDU;北斗网络设备将第一SLC SDU中的一个或多个SLC PDU的资源分配给发送给第二终端的第二SDU中的一个或多个SLC PDU。
可选的,收发单元1410,还可用于执行上述图11B所示方法实施例中北斗网络设备200执行的有关发送和接收的功能步骤。
可选的,处理单元1420,还可用于执行上述图11B所示方法实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1400可对应执行前述实施例中北斗网络设备200执行的方法步骤,为了简洁,在此不再赘述。
以上介绍了本申请实施例的终端100和北斗网络设备200,应理解,但凡具备上述图12所述的终端100的功能的任何形态的产品,但凡具备上述图13所述的北斗网络设备200的功能的任何形态的产品,都落入本申请实施例的保护范围。
作为一种可能的产品形态,本申请实施例所述的终端100,可以由一般性的总线体系结构来实现。
参见图15,图15是本申请实施例提供的通信装置1500的结构示意图。该通信装置1500可以是终端100,或其中的装置。如图15所示,该通信装置1500包括处理器1501和与所述处理器内部连接通信的收发器1502。其中,处理器1501是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片,终端、终端芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1502可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1502可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1500还可以包括天线1503和/或射频单元(图未示意)。所述天线1503和/或射频单元可以位于所述通信装置1500内部,也可以与所述通信装置1400分离,即所述天线1403和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1500中可以包括一个或多个存储器1504,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1500上被运行,使得通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1504中还可以存储有数据。通信装置1500和存储器1504可以单独设置,也可以集成在一起。
其中,处理器1501、收发器1502、以及存储器1504可以通过通信总线连接。
一种设计中,通信装置1500可以用于执行前述实施例中终端100的功能:处理器1501可以用于执行上述图11B所示实施例中终端100执行的有关协议解析与封装以及运算确定的 功能步骤和/或用于本文所描述的技术的其它过程;收发器1502可以用于执行上述图11B所示实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1501可以存有指令,该指令可为计算机程序,计算机程序在处理器1501上运行,可使得通信装置1500执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1500中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置1500可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置1500可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的北斗网络设备200中的任一网元(例如、北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24),可以由一般性的总线体系结构来实现。
参见图16,图16是本申请实施例提供的通信装置1600的结构示意图。该通信装置1600可以是北斗网络设备200,或其中的装置。如图16所示,该通信装置1600包括处理器1601和与所述处理器内部连接通信的收发器1602。其中,处理器1601是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯 片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1602可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1602可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1600还可以包括天线1603和/或射频单元(图未示意)。所述天线1603和/或射频单元可以位于所述通信装置1600内部,也可以与所述通信装置1600分离,即所述天线1603和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1600中可以包括一个或多个存储器1604,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1600上被运行,使得通信装置1600执行上述方法实施例中描述的方法。可选的,所述存储器1604中还可以存储有数据。通信装置1600和存储器1604可以单独设置,也可以集成在一起。
其中,处理器1601、收发器1602、以及存储器1604可以通过通信总线连接。
一种设计中,通信装置1600可以用于执行前述实施例中北斗网络设备200的功能:处理器1601可以用于执行上述图11B所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程;收发器1602可以用于执行上述图11B所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1601可以存有指令,该指令可为计算机程序,计算机程序在处理器1601上运行,可使得通信装置1600执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1600中,该种情况下,处理器1601可能由硬件实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,使得通信装置执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种北斗通信***,包括终端100和北斗网络设备200,该终端100和北斗网络设备200可以执行前述任一实施例中的方法。
本申请全文介绍了北斗通信***中短报文的通信功能,可以理解的是,其他卫星***中也可能存在支持短报文的通信功能。因此,不限制在北斗通信***中,若有其他卫星***也支持短报文的通信功能,本申请中介绍的方法,也同样适用于其他卫星***的通信。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者 替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (37)

  1. 一种北斗通信***中出站传输控制方法,其特征在于,包括:
    北斗网络设备在卫星链路控制SLC层生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧;其中,所述第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;所述第一用户ID字段用于指示接收所述第一用户帧的终端;所述第一用户ID字段中包含所述第一终端的ID信息;所述第一帧类型字段用于指示所述第一用户帧的帧类型;所述第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;所述第二用户ID字段用于指示接收所述第二用户帧的终端;所述第二用户ID字段中包含所述第二终端的ID信息;所述第二帧类型字段用于指示所述第二用户帧的帧类型;
    所述北斗网络设备在物理PHY层基于所述第一用户帧和所述第二用户帧生成第一物理帧;
    所述北斗网络设备发送所述第一物理帧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一用户帧包括卫星链路控制层协议数据单元SLC PDU和确认字符ACK帧、以及应用层回执帧,所述应用层回执帧用于指示所述北斗网络设备是否成功解析接收到的应用层报文。
  3. 根据权利要求2所述的方法,其特征在于,所述第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,所述第一用户帧的帧头信息还包括确认模式使能AM enable字段、帧总数字段、帧序号字段;其中,所述AM enable字段用于指示所述第一终端回复ACK或不回复ACK;所述帧总数字段用于指示所述北斗网络设备发送给第一终端的SLC PDU的数量;所述帧序号字段用于指示所述北斗网络设备发送的所述SLC PDU的序号。
  4. 根据权利要求3所述的方法,其特征在于,所述第一SLC PDU的AM enable字段为第一值,所述第一值用于指示所述第一终端不回复ACK。
  5. 根据权利要求3所述的方法,其特征在于,所述第一SLC PDU的AM enable字段为第二值,所述第二值用于指示所述第一终端回复ACK。
  6. 根据权利要求5所述的方法,其特征在于,所述第一用户帧为所述第一SLC PDU,所述北斗网络设备发送所述第一物理帧之后,所述方法还包括:
    所述北斗网络设备继续发送所述第一SLC SDU中的一个或多个SLC PDU;
    在所述北斗网络设备发送所述完第一SLC SDU中的所有SLC PDU后,所述北斗网络设备接收到所述第一终端发送的第一ACK,所述第一ACK用于表示所述第一终端成功接收所述第一SLC SDU中的所有SLC PDU。
  7. 根据权利要求5所述的方法,其特征在于,所述第一用户帧为所述第一SLC PDU,所述北斗网络设备发送所述第一物理帧之后,所述方法还包括:
    当所述北斗网络设备发送完所述第一SLC PDU后,所述北斗网络设备接收到所述第一终端发送的第二ACK,所述第二ACK用于表示所述第一终端未成功接收所述第一SLC PDU;
    所述北斗网络设备将所述第一SLC SDU中的一个或多个SLC PDU的资源分配给发送给所述第二终端的第二SDU中的一个或多个SLC PDU。
  8. 根据权利要求5所述的方法,其特征在于,所述第一用户帧为所述第一SLC PDU,所述北斗网络设备发送所述第一物理帧之后,所述方法还包括:
    所述北斗网络设备继续发送所述第一SLC SDU中的一个或多个SLC PDU;
    在所述北斗网络设备发送所述完第一SLC SDU中的所有SLC PDU后,所述北斗网络设备接收到所述第一终端发送的第三ACK,所述第三ACK表示所述第一终端未成功接收所述第一SLC SDU中的所有SLC PDU。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一物理帧的帧头信息包括速率指示字段或版本号字段;其中,所述速率指示字段用于指示所述第一物理帧的传输速率;所述版本号字段用于指示所述第一物理帧当前的版本信息。
  10. 根据权利要求3所述的方法,其特征在于,所述第一用户帧为所述第一SLC PDU,所述北斗网络设备在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧之前,所述方法还包括:
    所述北斗网络设备在卫星链路控制SLC层获取到所述北斗网络设备的消息数据汇聚MDCP层下发的多个卫星链路控制层服务数据单元SLC SDU,其中,所述多个SLC SDU中包括所述第一SLC SDU;
    所述北斗网络设备在所述SLC层将所述第一SLC SDU拆分成N个SLC PDU。
  11. 根据权利要求10所述的方法,其特征在于,所述北斗网络设备在SLC层获取到所述北斗网络设备的MDCP层下发的多个SLC SDU之前,所述方法还包括:
    所述北斗网络设备在所述MDCP层获取到所述北斗网络设备的应用层下发的应用层报文;
    所述北斗网络设备在所述MDCP层将所述应用层报文作为MDCP SDU,并在所述MDCP SDU加入填充数据和冗余长度指示字段后,拆分成多个MDCP PDU;其中,所述冗余长度指示字段用于指示所述填充数据的数据长度,所述多个MDCP PDU中包括第一MDCP PDU,所述第一MDCP PDU的包头信息包括后继指示字段,所述后继指示字段用于指示所述第一MDCP PDU在所述多个MDCP PDU中的顺序;
    所述北斗网络设备将所述多个MDCP PDU从所述MDCP层下发至所述SLC层,作为所述SLC层的所述多个SLC SDU。
  12. 根据权利要求11所述的方法,其特征在于,所述北斗网络设备在所述MDCP层获取到所述北斗网络设备的应用层下发的应用层报文之前,所述方法还包括:
    所述北斗网络设备获取原始数据;
    所述北斗网络设备在所述应用层将所述原始数据,进行压缩得到压缩数据;
    所述北斗网络设备在所述应用层将所述压缩数据进行加密得到加密后数据;
    所述北斗网络设备在所述加密后数据头部加上报文头信息,得到所述应用层报文;其中,所述报文头信息包括压缩指示字段和加密指示字段,所述压缩指示字段用于指示对所述原始数据压缩时使用的压缩算法,所述加密指示字段用于指示对所述压缩数据加密时使用的加密算法。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述北斗网络设备在所述SLC层将所述第一SLC SDU拆分成N个SLC PDU,具体包括:
    所述北斗网络设备将所述N个SLC PDU中的第一SLC PDU和第二SLC PDU下发至PHY层;
    所述北斗网络设备在PHY层将所述第一SLC PDU生成第一物理帧,将所述第二SLC PUD生成第二物理帧;
    所述北斗网络设备发送所述第一物理帧和所述第二物理帧。
  14. 根据权利要求13所述的方法,其特征在于,所述北斗网络设备发送所述第一物理帧,包括:
    所述北斗网络设备在所述PHY层在所述第一物理帧的尾部添加第一校验位信息,并对所述第一物理帧和所述第一校验位信息进行编码得到第一编码数据;
    所述北斗网络设备在所述PHY层对所述第一编码数据和所述第一编码数据的第一保留字段进行调制得到第一调制数据;
    所述北斗网络设备在所述PHY层对所述第一调制数据进行扩频得到第一扩频调制数据;
    所述北斗网络设备在所述PHY层发送所述第一扩频调制数据和所述第一扩频调制数据的第一导频信息。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述方法还可以包括:
    所述北斗网络设备基于所述北斗网络设备发送完所述第一SLC SDU中最后一个SLC PDU的时刻、所述第一终端从接收完所述第一SLC SDU中最后一个SLC PDU到发送ACK的处理调度时延、所述第一终端的接收态至发送态的切换时长、以及空口传播时延确定出ACK接收时间窗的起始时刻;
    所述北斗网络设备在所述ACK接收时间窗的起始时刻开始接收ACK。
  16. 根据权利要求1-14任一项所述的方法,其特征在于,所述方法还可以包括:
    所述北斗网络设备基于所述北斗网络设备发送完所述第一SLC SDU中最后一个SLC PDU的时刻、所述第一终端从接收完所述第一SLC SDU中最后一个SLC PDU到发送ACK的处理时延、所述第一终端发送的ACK的时间长度、所述第一终端的接收态至发送态的切换时长、以及空口传播时延确定出ACK接收时间窗的结束时刻;
    所述北斗网络设备在所述ACK接收时间窗的结束时刻停止接收ACK。
  17. 一种北斗通信***中出站传输控制方法,其特征在于,包括:
    第一终端接收北斗网络设备发送的第一物理帧;所述第一物理帧中包含发送给所述第一终端的第一用户帧和发送给第二终端的第二用户帧,其中,所述第一用户帧的帧头信息包括 第一用户ID字段和第一帧类型字段;所述第一用户ID字段用于指示接收所述第一用户帧的终端;所述第一用户ID字段中包含所述第一终端的ID信息;
    所述第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧。
  18. 根据权利要求17所述的方法,其特征在于,所述第一用户帧为第一卫星链路控制层服务数据单元SLC SDU中的第一卫星链路控制层协议数据单元SLC PDU,所述第一用户帧的帧头信息还包括确认模式使能AM enable字段、帧总数字段、帧序号字段;其中,所述AM enable字段用于指示所述第一终端回复ACK或不回复ACK;所述帧总数字段用于指示所述北斗网络设备发送给第一终端的SLC PDU的数量;所述帧序号字段用于指示所述北斗网络设备发送的所述SLC PDU的序号。
  19. 根据权利要求18所述的方法,其特征在于,所述第一SLC PDU的AM enable字段为第一值,所述第一值用于指示所述第一终端不回复ACK。
  20. 根据权利要求18所述的方法,其特征在于,所述第一SLC PDU的AM enable字段为第二值,所述第二值用于指示所述第一终端回复ACK。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,所述第一用户帧为第一SLC PDU,所述第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧之后,所述方法还包括:
    所述第一终端接收所述第一SLC SDU中的一个或多个SLC PDU;
    当所述第一终端收齐所述第一SLC SDU中的所有SLC PDU后,所述第一终端向所述北斗网络设备发送第一ACK,所述第一ACK用于表示所述第一终端成功接收所述第一SLC SDU中的所有SLC PDU。
  22. 根据权利要求17-20任一项所述的方法,其特征在于,所述第一用户帧为第一SLC SDU中的第一SLC PDU,所述第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧之后,所述方法还包括:
    当所述第一终端解析出的所述第一SLC PDU非所述第一SLC SDU中的第一个SLC PDU时;所述第一终端向所述北斗网络设备发送第二ACK并停止接收所述第一SLC SDU中的第二SLC PDU,所述第二ACK用于表示所述第一终端未成功接收所述第一SLC PDU。
  23. 根据权利要求17-20任一项所述的方法,其特征在于,所述第一用户帧为第一SLC SDU中的第一SLC PDU,所述第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧之后,所述方法还包括:
    所述第一终端接收所述第一SLC SDU中的一个或多个SLC PDU;
    当所述第一终端在SLC PDU接收时间窗内未收齐所述第一SLC SDU中的所有SLC PDU后,所述第一终端向所述北斗网络设备发送第三ACK,所述第三ACK用于表示所述第一终端未成功接收所述第一SLC SDU中的所有SLC PDU。
  24. 根据权利要求17-23任一项所述的方法,其特征在于,所述第一用户帧为第一SLC SDU中的第一SLC PDU,所述第一终端从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧,包括:
    所述第一终端在所述PHY层获取到终端发送的第一扩频调制数据;
    所述第一终端在所述PHY层对所述第一扩频调制数据进行解扩频,得到第一调制数据和第一调制同步头;
    所述第一终端在所述PHY层对所述第一调制数据和所述第一调制同步头解调,得到第一导频数据和第一同步头;
    所述第一终端在所述PHY层去除所述第一导频数据中的导频信息,得到第一编码数据;
    所述北斗网络设备在所述PHY层对所述第一编码数据进行解码,得到第一编码块物理帧和第一校验信息;
    所述第一终端在所述PHY层基于所述第一校验信息对所述第一编码块进行校验,并在校验成功后,将所述第一编码块中ID字段与所述第一终端ID相同的第一用户帧作为所述第一终端的SLC层中所述第一SLC SDU中的所述第一SLC PDU从所述PHY层呈递给所述第一终端的SLC层。
  25. 根据权利要求24中所述的方法,其特征在于,所述第一终端在所述PHY层基于所述第一校验信息对所述第一编码块进行校验,并在校验成功后,将所述第一编码块中ID字段与所述第一终端ID相同的第一用户帧作为所述第一终端的SLC层中所述第一SLC SDU中的所述第一SLC PDU从所述PHY层呈递给所述第一终端的SLC层之后,所述方法还包括:
    所述第一终端在SLC层将接收到的M个SLC PDU拼接成所述第一SLC SDU,并将所述第一SLC SDU作为MDCP层的第一MDCP PDU从所述第一终端的SLC层上报给所述第一终端的MDCP层,所述第一MDCP PDU的包头信息中包括后继指示字段,所述后继指示字段用于指示所述第一MDCP PDU在所述北斗网络设备发送的多个MDCP PDU中的顺序。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述第一终端在所述MDCP层获取到从所述第一终端SLC层上报的第二MDCP PDU;
    当所述第二MDCP PDU中的后继指示字段指示所述第二MDCP PDU为所述北斗网络设备发送的多个MDCP PDU中的最后一个时,所述第一终端在所述MDCP层将所述第一MDCP PDU与所述第二MDCP PDU拼接成MDCP SDU,并将所述MDCP SDU作为应用层报文从所述MDCP层上报给应用层。
  27. 根据权利要求26所述的方法,其特征在于,所述应用层报文包括报文头信息和加密后数据,所述报文头信息包括加密指示字段和压缩指示字段,所述压缩指示字段用于指示所述终端将原始数据压缩成压缩数据时使用的压缩算法,所述加密指示字段用于指示所述终端将所述压缩数据加密成加密后数据时使用的加密算法;
    所述方法还包括:
    所述第一终端在所述应用层通过所述应用层报文中加密指示字段指示的加密算法,对所述应用层报文中所述加密后数据进行解密,得到所述压缩数据;
    所述第一终端在所述应用层通过所述应用层报文中压缩指示字段指示的压缩算法,对所 述压缩数据进行解压缩,得到所述原始数据。
  28. 根据权利要求17-27任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端基于当前接收到的SLC PDU的帧序号、当前接收到的SLC PDU的时刻、所述北斗网络设备发送的物理帧的时间长度、所述北斗网络设备发送的一个SLC SDU中SLC PDU的帧总数、以及SLC PDU之间的发送间隔,确定出所述第一终端中SLC PDU接收窗的剩余时间长度。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    所述第一终端基于所述SLC PDU接收窗的时间长度、所述第一SLC PDU的接收时刻,所述第一终端的信号处理时延、以及所述第一终端发送的ACK的时间长度,确定出所述第一终端发送出ACK的时间点。
  30. 一种北斗通信***,其特征在于,包括第一终端和北斗网络设备;其中,
    所述北斗网络设备用于在卫星链路控制层SLC生成发送给第一终端的第一用户帧,和发送给第二终端的第二用户帧;其中,所述第一用户帧的帧头信息包括第一用户ID字段和第一帧类型字段;所述第一用户ID字段用于指示接收所述第一用户帧的终端;所述第一用户ID字段中包含所述第一终端的ID信息;所述第一帧类型字段用于指示所述第一用户帧的帧类型;所述第二用户帧的帧头信息包括第二用户ID字段和第二帧类型字段;所述第二用户ID字段用于指示接收所述第二用户帧的终端;所述第二用户ID字段中包含所述第二终端的ID信息;所述第二帧类型字段用于指示所述第二用户帧的帧类型;
    所述北斗网络设备用于在物理PHY层基于所述第一用户帧和所述第二用户帧生成第一物理帧;
    所述北斗网络设备用于发送所述第一物理帧;
    所述第一终端用于接收北斗网络设备发送的第一物理帧;从所述第一物理帧中解析出所述第一用户帧,丢弃所述第二用户帧。
  31. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器和收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求1-16任一项所述的方法。
  32. 根据权利要求31所述的通信装置,其特征在于,所述通信装置为北斗网络设备。
  33. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器、收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求17-29任一项所述的方法。
  34. 根据权利要求33所述的通信装置,其特征在于,所述通信装置为终端。
  35. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-16任一项所述的方法。
  36. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求17-29任一项所述的方法。
  37. 一种芯片或芯片***,应用于终端,其特征在于,包括处理电路和接口电路,所述接口电路用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求17-29任一项所述的方法。
PCT/CN2022/109123 2021-07-31 2022-07-29 一种北斗通信***中出站传输控制方法、***及相关装置 WO2023011362A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22852075.5A EP4358430A1 (en) 2021-07-31 2022-07-29 Control method and system for outbound transport in beidou communication system, and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877279.1A CN115694595A (zh) 2021-07-31 2021-07-31 一种北斗通信***中出站传输控制方法、***及相关装置
CN202110877279.1 2021-07-31

Publications (1)

Publication Number Publication Date
WO2023011362A1 true WO2023011362A1 (zh) 2023-02-09

Family

ID=85059899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109123 WO2023011362A1 (zh) 2021-07-31 2022-07-29 一种北斗通信***中出站传输控制方法、***及相关装置

Country Status (3)

Country Link
EP (1) EP4358430A1 (zh)
CN (1) CN115694595A (zh)
WO (1) WO2023011362A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116527122A (zh) * 2023-07-03 2023-08-01 中国人民解放军海军工程大学 一种北斗短报文/电话语音互联服务***、方法及设备
CN117278949A (zh) * 2023-11-17 2023-12-22 中国人民解放军国防科技大学 一种针对低功耗用户终端的北斗短报文通信方法和***
CN118101028A (zh) * 2024-02-01 2024-05-28 北斗应用发展研究院 支持民用手机的北斗短报文***出站资源均衡方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905443A (en) * 1995-10-02 1999-05-18 Motorola, Inc. Paging system employing delivery schedule combining and method of operation thereof
US6157621A (en) * 1991-10-28 2000-12-05 Teledesic Llc Satellite communication system
CN1753545A (zh) * 2004-09-20 2006-03-29 上海贝尔阿尔卡特股份有限公司 处理多用户/多业务的方法及设备
CN111903237B (zh) * 2009-03-10 2013-01-02 中国电子科技集团公司第五十四研究所 低轨卫星移动通信***星载交换机的设计方法
CN104506267A (zh) * 2014-10-15 2015-04-08 上海欧科微航天科技有限公司 一种低轨卫星通信的上行链路准同步接入方法及装置
CN105934897A (zh) * 2014-01-29 2016-09-07 Lg电子株式会社 配置用于d2d通信***的macpdu的方法及其装置
CN110784255A (zh) * 2019-10-24 2020-02-11 北京卫星导航中心 一种北斗用户终端通信资源共享***
CN112954665A (zh) * 2021-03-16 2021-06-11 西安电子科技大学 一种基于动态服务域的卫星网络移动性管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157621A (en) * 1991-10-28 2000-12-05 Teledesic Llc Satellite communication system
US5905443A (en) * 1995-10-02 1999-05-18 Motorola, Inc. Paging system employing delivery schedule combining and method of operation thereof
CN1753545A (zh) * 2004-09-20 2006-03-29 上海贝尔阿尔卡特股份有限公司 处理多用户/多业务的方法及设备
CN111903237B (zh) * 2009-03-10 2013-01-02 中国电子科技集团公司第五十四研究所 低轨卫星移动通信***星载交换机的设计方法
CN105934897A (zh) * 2014-01-29 2016-09-07 Lg电子株式会社 配置用于d2d通信***的macpdu的方法及其装置
CN104506267A (zh) * 2014-10-15 2015-04-08 上海欧科微航天科技有限公司 一种低轨卫星通信的上行链路准同步接入方法及装置
CN110784255A (zh) * 2019-10-24 2020-02-11 北京卫星导航中心 一种北斗用户终端通信资源共享***
CN112954665A (zh) * 2021-03-16 2021-06-11 西安电子科技大学 一种基于动态服务域的卫星网络移动性管理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116527122A (zh) * 2023-07-03 2023-08-01 中国人民解放军海军工程大学 一种北斗短报文/电话语音互联服务***、方法及设备
CN116527122B (zh) * 2023-07-03 2023-08-29 中国人民解放军海军工程大学 一种北斗短报文/电话语音互联服务***、方法及设备
CN117278949A (zh) * 2023-11-17 2023-12-22 中国人民解放军国防科技大学 一种针对低功耗用户终端的北斗短报文通信方法和***
CN117278949B (zh) * 2023-11-17 2024-01-30 中国人民解放军国防科技大学 一种针对低功耗用户终端的北斗短报文通信方法和***
CN118101028A (zh) * 2024-02-01 2024-05-28 北斗应用发展研究院 支持民用手机的北斗短报文***出站资源均衡方法和装置

Also Published As

Publication number Publication date
EP4358430A1 (en) 2024-04-24
CN115694595A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023011362A1 (zh) 一种北斗通信***中出站传输控制方法、***及相关装置
WO2023025075A1 (zh) 北斗通信***中出站数据传输方法、***及相关装置
WO2023011376A1 (zh) 一种北斗通信***中密钥更新方法、***及相关装置
WO2023011379A1 (zh) 一种北斗通信***中入站传输控制方法、***及相关装置
WO2023011380A1 (zh) 一种北斗通信***中多帧融合传输方法及相关装置
CN115696237A (zh) 一种北斗通信***中加密方法、***及相关装置
WO2023185893A1 (zh) 一种卫星信号捕获方法及相关装置
CN115734303A (zh) 一种切换网络的方法及相关装置
WO2023011605A1 (zh) 北斗通信***中的信件下载查询方法、***及相关装置
WO2023124186A1 (zh) 通信方法和通信装置
CN115706603A (zh) 北斗通信***中紧凑传输方法、***及相关装置
CN116032336A (zh) 北斗通信***中波束选择方法、***及相关装置
CN115842799A (zh) 北斗通信***中的信箱概况查询方法、***及相关装置
WO2023011329A1 (zh) 一种北斗通信***中数据传输控制方法、***及相关装置
WO2023011377A1 (zh) 一种北斗通信***中应用层回执传输方法、***及装置
WO2023011478A1 (zh) 一种北斗通信***中的数据压缩方法、***及相关装置
CN113678481B (zh) 无线音频***、音频通讯方法及设备
WO2023083027A1 (zh) 一种北斗通信***中的参数更新方法、***及相关装置
WO2023011594A1 (zh) 北斗通信***中的信箱概况查询方法、***及相关装置
CN115842800B (zh) 北斗通信***中的信件下载查询方法、***及相关装置
WO2023011603A1 (zh) 一种北斗通信***中位置上报方法、***及相关装置
CN115941016A (zh) 北斗通信***中紧凑反馈方法、***及相关装置
CN115706605A (zh) 北斗通信***中入站调度方法及相关装置
CN115707034A (zh) 一种北斗通信***中的数据压缩方法、***及相关装置
CN117424678A (zh) 北斗通信***中入站压缩传输方法、***及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022852075

Country of ref document: EP

Ref document number: 22852075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18293640

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022852075

Country of ref document: EP

Effective date: 20240116

NENP Non-entry into the national phase

Ref country code: DE