WO2023011337A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023011337A1
WO2023011337A1 PCT/CN2022/108872 CN2022108872W WO2023011337A1 WO 2023011337 A1 WO2023011337 A1 WO 2023011337A1 CN 2022108872 W CN2022108872 W CN 2022108872W WO 2023011337 A1 WO2023011337 A1 WO 2023011337A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
electronic device
status message
status
collected
Prior art date
Application number
PCT/CN2022/108872
Other languages
English (en)
French (fr)
Inventor
崔焘
孙晨
Original Assignee
索尼集团公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔焘 filed Critical 索尼集团公司
Priority to CN202280053053.2A priority Critical patent/CN117751591A/zh
Publication of WO2023011337A1 publication Critical patent/WO2023011337A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present application relates to the field of wireless communication technology, in particular to the vehicle-road coordination application technology based on mobile smart terminals. More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • V2X intelligent networked vehicles in full swing, rapidly increasing the penetration rate of V2X has become one of the key challenges in the industry. Even if the V2X network has been deployed on a large scale, there will still be a large number of non-V2X terminals in the consumer-side (C-side) travel scenario, and there will be a mix of V2X terminals and non-V2X terminals for a long time.
  • an electronic device for wireless communication including: a processing circuit configured to: based on the vehicle-related information collected by the mobile intelligent application subsystem and/or the vehicle auxiliary collector generating a vehicle status message; and sending the vehicle status message to a central subsystem and/or a roadside unit via a 4G mobile communication network or a 5G mobile communication network.
  • a mobile smart application subsystem including the above-mentioned electronic device.
  • a method for wireless communication including: generating a vehicle status message based on vehicle-related information collected by a mobile intelligent application subsystem and/or a vehicle auxiliary collector; and by The 4G mobile communication network or the 5G mobile communication network sends the vehicle status message to the central subsystem and/or the roadside unit.
  • the electronic device and method according to the embodiments of the present application conveniently realize the vehicle-road collaborative application by using the 4G or 5G universal network interface to transmit the vehicle status information collected by the vehicle-mounted mobile intelligent subsystem and/or the vehicle auxiliary collector.
  • FIG. 1 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the system architecture of the mobile intelligent terminal-oriented vehicle road system according to this embodiment
  • Fig. 3 shows the schematic diagram of the hardware connection system architecture of the mobile intelligent application subsystem and the vehicle auxiliary collector
  • FIG. 4 shows a schematic diagram of functional units of the mobile intelligent application subsystem
  • FIG. 5 shows an example of an application scenario of an electronic device according to the present application
  • FIG. 6 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 9 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present disclosure can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 includes: a generating unit 101 configured to collect The information related to the vehicle generates a vehicle status message; and the communication unit 102 is configured to send the vehicle status message to the central subsystem and/or the roadside unit (Road Side Unit) through the 4G mobile communication network or the 5G mobile communication network , RSU).
  • a generating unit 101 configured to collect The information related to the vehicle generates a vehicle status message
  • the communication unit 102 is configured to send the vehicle status message to the central subsystem and/or the roadside unit (Road Side Unit) through the 4G mobile communication network or the 5G mobile communication network , RSU).
  • the roadside unit Road Side Unit
  • the generation unit 101 and the communication unit 102 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example.
  • the processing circuits may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 1 is only a logic module divided according to a specific function realized by it, and is not used to limit a specific implementation manner.
  • the electronic device 100 may be disposed on the UE side or be communicably connected to the UE.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a UE itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that need to be executed by the user equipment to realize various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base station, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the electronic device 100 may be implemented as various UEs.
  • the UE may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the UE may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • the electronic device 100 herein or a UE including the electronic device 100 may be implemented as a mobile smart terminal.
  • the electronic device 100 or the UE including the electronic device 100 can be installed or placed on the vehicle. On the one hand, it can collect information related to the vehicle, and on the other hand, it can provide vehicle status information to the central subsystem or RSU through a common 4G or 5G interface.
  • non-intelligent networked vehicles that originally did not have communication capabilities become equipped with 4G and 5G universal Uu access capabilities, which enhances users' perception of vehicle-road coordination and further promotes the penetration rate of V2X terminals.
  • 5G and edge computing technology also provides a solid underlying technical support for the development of mobile Internet and cloud computing, achieving low latency, wide coverage, and high speed, and also provides support for the development of V2X mobile Internet applications on mobile smart terminals. Guaranteed.
  • Fig. 2 shows a schematic diagram of the system architecture of the mobile smart terminal-oriented vehicle road system according to this embodiment.
  • the mobile intelligent application subsystem is introduced as a logical unit, which can provide users with V2X services through the V2X mobile application (APP) installed on it or other application forms based on APP.
  • the mobile smart application subsystem may include one of the following: smart phones, smart rearview mirrors, smart driving recorders, etc., for example, the mobile smart application subsystem may include or be implemented as the electronic device of this embodiment 100.
  • the mobile intelligent application subsystem can also provide users with V2X services by installing V2X applications on the vehicle's in-vehicle information interaction system.
  • the mobile intelligent application subsystem communicates with the central subsystem and the multi-access edge computing platform (MEC) through interfaces A13 and A14 respectively.
  • the mobile intelligent application subsystem also communicates with the RSU through the interface A15.
  • the interfaces A13, A14 and A15 are all implemented based on a 4G or 5G mobile communication network.
  • the mobile intelligent application subsystem itself can have a perception function to collect information related to the vehicle, such as vehicle special event status, vehicle historical trajectory, route prediction, body lighting status, door trunk status, etc. Such information can be provided, for example, through the mobile navigation function of the mobile intelligent application subsystem and the APP associated with the vehicle.
  • vehicle-related information may also include relatively fixed vehicle attribute information, such as license plate information, vehicle type, etc., and such information may be manually input by the user.
  • information related to the vehicle can also be collected through the vehicle auxiliary collector, such as vehicle driving status information, including but not limited to vehicle speed, driving direction, head orientation, engine speed, accelerator position, instantaneous fuel consumption , average fuel consumption, state of charge, etc.
  • vehicle driving status information including but not limited to vehicle speed, driving direction, head orientation, engine speed, accelerator position, instantaneous fuel consumption , average fuel consumption, state of charge, etc.
  • the generating unit 101 generates the vehicle status message based on the above-mentioned various information collected by the mobile intelligent application subsystem and/or the vehicle auxiliary collector.
  • the communication unit 102 sends the generated vehicle status message to the central subsystem and/or the RSU to inform itself of its real-time status, thereby supporting a series of coordinated safety applications.
  • the vehicle status message includes a vehicle basic safety message and a vehicle extended safety message.
  • the basic safety message of the vehicle is used to transmit the basic safety status data of the vehicle.
  • the basic safety message of the vehicle includes one or more of the following: the speed of the vehicle, the geographic location of the vehicle, the three-axis acceleration information of the vehicle, the information of the vehicle position Confidence, license plate information, vehicle type, head orientation, timestamp, etc.
  • the driving data of the vehicle itself may include one or more of the following: engine speed, engine load, accelerator position, instantaneous fuel consumption, average fuel consumption, state of charge, battery life, intake air temperature.
  • the vehicle extended safety message includes, for example, one or more of the following: vehicle special event status, vehicle historical track, route prediction, vehicle body lighting status, vehicle door trunk status, and vehicle driving data.
  • vehicle special event status for example, one or more of the following: vehicle special event status, vehicle historical track, route prediction, vehicle body lighting status, vehicle door trunk status, and vehicle driving data.
  • vehicle driving data for example, one or more of the following: vehicle special event status, vehicle historical track, route prediction, vehicle body lighting status, vehicle door trunk status, and vehicle driving data.
  • vehicle extended safety message is used as a supplement to the vehicle basic safety message, wherein individual information items are optional.
  • vehicle status message may also appropriately include other information items related to the status of the vehicle.
  • Non-limiting examples of corresponding ASN.1 codes for vehicle status messages are given below.
  • Non-limiting examples of ASN.1 codes for Vehicle Extended Security Messages are as follows:
  • each field in the above vehicle status message is obtained through the mobile intelligent application subsystem and/or vehicle auxiliary collector, not the information of the Internet of Vehicles obtained through the vehicle CAN bus in the traditional sense.
  • the communication unit 102 is also configured to obtain the collected vehicle-related information from the vehicle auxiliary collector via one or more of the following methods: PC5 interface, in-car WiFi, and Bluetooth connection.
  • the vehicle auxiliary collector described here is used to assist in the collection of vehicle-related information, such as on-board diagnostics (On Board Diagnostics, OBD), driving recorder, vehicle information collection APP, various vehicle sensors, etc.
  • OBD On Board Diagnostics
  • driving recorder driving recorder
  • vehicle information collection APP vehicle information collection APP
  • various vehicle sensors etc.
  • These vehicle auxiliary collectors do not have the networking function of the 4G and 5G universal Uu interfaces, so they can be connected to the mobile intelligent application subsystem through the PC5 interface, in-vehicle WiFi or Bluetooth connection to transmit the collected vehicle-related information such as The vehicle's own driving data, some environmental data, etc.
  • Fig. 3 shows a schematic diagram of the hardware connection system architecture of the mobile intelligent application subsystem and the vehicle auxiliary collector.
  • a type II on-board diagnostic system (OBD II) is shown as an example of a vehicle auxiliary collector.
  • OBD II on-board diagnostic system
  • the mobile intelligent application subsystem uploads the vehicle status message to the enterprise/personal cloud platform through the communication unit 102 of this embodiment, and then transmits it to the public cloud platform.
  • the mobile intelligent application subsystem and the vehicle auxiliary collector independently perform the collection of information related to the vehicle.
  • the vehicle auxiliary collector can collect information related to the vehicle under the control of the mobile intelligent application subsystem, for example, the mobile intelligent application subsystem sends an instruction to execute data collection to the vehicle auxiliary collector Or specify the cycle and timing of data collection, etc.
  • the communication unit 102 may be configured to separately transmit the vehicle-related information collected by the mobile smart application subsystem and the vehicle-related information collected by the vehicle auxiliary collector.
  • the two types of information can be fused at the enterprise/personal cloud platform or the public cloud platform shown in FIG. 3 to obtain a comprehensive understanding of the vehicle status.
  • the above two types of information can be fused at the mobile intelligent application subsystem so as to be sent in a unified sending cycle.
  • the generating unit 101 is configured to generate the vehicle status message by fusing the data collected by the mobile intelligent application subsystem and the data collected by the vehicle auxiliary collector.
  • the generation unit 101 and the communication unit 102 are configured to generate and send the vehicle status message at a higher frequency among them.
  • the update frequency (acquisition frequency) of the data related to the vehicle history track and route prediction field is high, while the update frequency of the data related to the door trunk state and charge state field is low, then the generation unit 101 will follow the vehicle history track and route
  • the update frequency of the field-related data is predicted to generate the vehicle status message, and accordingly, the communication unit 102 sends the vehicle status message at the same frequency.
  • the generation unit 101 is configured to set the field corresponding to the data item with low collection frequency in the vehicle status message sent in the sending cycle to empty or set the Field is set to an invalid field.
  • the door trunk status and charge status fields may be periodically missing.
  • the mobile intelligent application subsystem may have three functional units: a perception unit, a calculation unit and a communication unit, as shown in FIG. 4 .
  • the perception unit performs the function of collecting information related to the vehicle
  • the calculation unit performs the fusion of two types of information and the generation of vehicle status messages
  • the communication unit performs communication with other subsystems or devices.
  • the communication unit described here is for example Realized by the communication unit 102 of this embodiment.
  • the communication unit 102 sends the generated vehicle state message to the central subsystem, such as the cloud platform shown in FIG. 3, so that the central subsystem performs vehicle notification, scheduling, etc. according to the received vehicle state message Vehicle-road collaborative operation.
  • the central subsystem such as the cloud platform shown in FIG. 3, so that the central subsystem performs vehicle notification, scheduling, etc. according to the received vehicle state message Vehicle-road collaborative operation.
  • the communication unit 102 can also send the vehicle status message to the RSU through local broadcast.
  • the RSU can also send the collected environmental and road anomaly information to the communication unit 102 .
  • the information exchange between the communication unit 102 and the RSU can be realized through the interface A15 shown in FIG. 2 .
  • the process of uploading to the cloud and re-delivery can be omitted, the delay can be reduced, and emergency warning can be realized as soon as possible.
  • the vehicle status message can also be uploaded to the central subsystem by the RSU.
  • the central subsystem can update existing data accordingly.
  • Fig. 5 shows a schematic diagram of the host vehicle (Host Vehicle, HV) overtaking active warning.
  • HV host vehicle
  • the electronic device 100 according to this embodiment is installed or placed on the HV, and the electronic device 100 generates the vehicle state based on the vehicle-related information collected by the mobile intelligent application subsystem and the vehicle auxiliary collector. Messages, which include information such as vehicle speed and heading.
  • the HV when the HV is at an intersection or on a channel with narrow roads, it can enter the collision warning mode for vulnerable traffic participants, that is, the electronic device 100 provides vehicle status information to vulnerable traffic participants such as pedestrians, bicycles, and electric vehicles through V2N2P. Bicycles, etc., to remind them to be careful about the rear or left-turning vehicles approaching.
  • the V2N2P method refers to that the electronic device 100 sends the vehicle status message to the central subsystem, and then the central subsystem sends it to the individual.
  • the HV when the HV is a special vehicle such as an ambulance, it can enter the emergency vehicle yield warning mode, that is, the electronic device 100 broadcasts the vehicle status information of the HV, including vehicle attributes and route predictions, to the RSU to achieve the maximum degree of early avoidance .
  • the electronic device 100 conveniently realizes the vehicle-road coordination by using the 4G or 5G universal network interface to send the vehicle status information collected by the vehicle-mounted mobile intelligent subsystem and/or the vehicle-use auxiliary collector. application.
  • Fig. 6 shows a flow chart of a method for wireless communication according to an embodiment of the present application, the method includes: generating an The vehicle status message (S11); and the vehicle status message is sent to the central subsystem and/or the roadside unit through the 4G mobile communication network or the 5G mobile communication network (S12). This method can be performed, for example, at the UE side.
  • S11 The vehicle status message
  • S12 5G mobile communication network
  • vehicle status messages may include vehicle basic safety messages and vehicle extended safety messages.
  • vehicle basic safety message includes, for example, one or more of the following: vehicle speed, vehicle geographic location, vehicle three-axis acceleration information, vehicle position confidence, license plate information, vehicle type, vehicle head orientation, and time stamp.
  • vehicle extended safety message includes, for example, one or more of the following: vehicle special event status, vehicle historical track, route prediction, vehicle body lighting status, vehicle door trunk status, and vehicle driving data.
  • step S11 includes: merging the data collected by the mobile intelligent application subsystem and the data collected by the vehicle auxiliary collector to generate a vehicle status message.
  • vehicle status messages can be generated and sent at a higher frequency.
  • the field corresponding to the data item with low collection frequency in the vehicle status message sent in the sending cycle is set to be empty or set as an invalid field.
  • the mobile intelligent application subsystem may include one of the following: a smart phone, a smart rearview mirror, and a smart driving recorder.
  • the collected vehicle-related information can be obtained from the vehicle auxiliary collector via one or more of the following methods: PC5 interface, in-car WiFi, and Bluetooth connection.
  • vehicle status messages can be sent to the RSU via local broadcast.
  • the vehicle status message can be uploaded to the central subsystem by the RSU.
  • the techniques of this disclosure can be applied to a variety of products.
  • the electronic device 100 may be implemented as various user devices.
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900 .
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 910 , a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 910 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts an audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which a BB processor 913 and an RF circuit 914 are integrated. As shown in FIG. 7 , the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 . Although FIG. 7 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914 , the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 . While FIG. 7 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 7 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in a sleep mode.
  • the communication unit 102 and the transceiver of the electronic device 100 can be realized by the wireless communication interface 912 .
  • At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 can execute the functions of the generation unit 101 and the communication unit 102 to transmit the vehicle state collected by the vehicle mobile intelligent subsystem and/or the vehicle auxiliary collector by using a 4G or 5G general network interface Information, conveniently realize the vehicle-road collaborative application.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930 , and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935 .
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 8 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 , such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 8 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920 .
  • the battery 938 supplies power to the various blocks of the car navigation device 920 shown in FIG. 8 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the communication unit 102 and the transceiver of the electronic device 100 can be realized by the wireless communication interface 933 .
  • At least part of the functions can also be implemented by the processor 921 .
  • the processor 921 can implement the functions of the generation unit 101 and the communication unit 102 to transmit the vehicle state information collected by the vehicle-mounted mobile intelligent subsystem and/or the vehicle-use auxiliary collector through a 4G or 5G universal network interface, so as to conveniently implement Vehicle-road collaborative application.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941.
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiments of the present disclosure can be executed.
  • a storage medium for carrying the program product storing the above-mentioned machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 900 shown in FIG. 9 ), where various programs are installed. , various functions and the like can be performed.
  • a central processing unit (CPU) 901 executes various processes according to programs stored in a read only memory (ROM) 902 or programs loaded from a storage section 908 to a random access memory (RAM) 903 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 901 executes various processing and the like is also stored as necessary.
  • the CPU 901, ROM 902, and RAM 903 are connected to each other via a bus 904.
  • An input/output interface 905 is also connected to the bus 904 .
  • the following components are connected to the input/output interface 905: an input section 906 (including a keyboard, a mouse, etc.), an output section 907 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), A storage section 908 (including a hard disk, etc.), a communication section 909 (including a network interface card such as a LAN card, a modem, etc.). The communication section 909 performs communication processing via a network such as the Internet.
  • a driver 910 may also be connected to the input/output interface 905 as needed.
  • a removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is mounted on the drive 910 as necessary, so that a computer program read therefrom is installed into the storage section 908 as necessary.
  • the programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 911 .
  • a storage medium is not limited to the removable medium 911 shown in FIG. 9 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 911 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including trademark)) and semiconductor memory.
  • the storage medium may be a ROM 902, a hard disk contained in the storage section 908, etc., in which the programs are stored and distributed to users together with devices containing them.
  • each component or each step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present disclosure. Also, the steps for executing the series of processes described above may naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及通过第4代移动通信网络或第5代移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2021年8月6日提交中国专利局、申请号为202110902439.3、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及基于移动智能终端的车路协同应用技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在V2X智能网联汽车如火如荼的开展下,快速提升V2X的渗透率成为行业关键挑战之一。即使V2X网络已有规模化的部署,在消费者端(C端)出行场景下依然会存在大量的非V2X终端,并长期面临V2X终端和非V2X终端混存的情况。
另一方面,以智能手机为代表的第4代(4G)、第5代(5G)移动智能终端已几乎成为每个人的必需品,也是出行场景下的重要承载。不具备V2X功能但具备4G、5G通信能力的前后装车机也是市场上的重要产品类型。
因此,期望能充分发挥4G、5G终端的普及性,加强4G、5G网络和V2X网络、路侧感知设备的协同,使得广大的4G、5G存量用户可以通过智能手机、后装4G、5G车载终端等快速的体验部分车路协同应用。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公 开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及通过4G移动通信网络或5G移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元。
根据本申请的另一个方面,还提供了一种移动智能应用子***,包括上述电子设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及通过4G移动通信网络或5G移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法通过利用4G或5G通用网络接口来发送由车载移动智能子***和/或车用辅助采集器采集的车辆状态信息,方便地实现了车路协同应用。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了根据本实施例的面向移动智能终端的车路******架构的示意图;
图3示出了移动智能应用子***和车用辅助采集器的硬件连接***架构的示意图;
图4示出了移动智能应用子***的功能单元的示意图;
图5示出了根据本申请的电子设备的一个应用场景的示例;
图6示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图7是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图8是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图9是其中可以实现根据本公开的实施例的方法和/或装置和/或***的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与***及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的电子设备100的功能模块框图,该电子设备100包括:生成单元101,被配置为基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及通信单元102,被配置为通过4G移动通信网络或5G移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元(Road Side Unit,RSU)。
其中,生成单元101和通信单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
例如,电子设备100可以被实现为各种UE。UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
此外,本文中的电子设备100或包括电子设备100的UE可以被实现为移动智能终端。电子设备100或包括电子设备100的UE可以安装或放置在车辆上,一方面可以采集与车辆有关的信息,另一方面可以通过通用4G或5G接口来向中心子***或RSU提供车辆状态消息。
这样,原来不具备通信能力的非智能网联车辆变得具备4G、5G通用Uu接入能力,增强了用户对车路协同的感知,进而促进V2X终端的渗透率。此外,5G、边缘计算技术的发展也为移动互联网、云计算的发 展提供了坚实的底层技术支撑,实现低延时、广覆盖、高速率、也为在移动智能终端上开展V2X移动互联网应用提供了保障。
图2示出了根据本实施例的面向移动智能终端的车路******架构的示意图。其中,移动智能应用子***作为逻辑单元被引入,其可以通过安装在其上的V2X移动应用程序(APP)或基于APP的其他应用形态来为用户提供V2X服务。例如,在实体层面上,移动智能应用子***可以包括如下之一:智能手机、智能后视镜、智能行车记录仪等,例如,移动智能应用子***可以包括或实现为本实施例的电子设备100。或者,移动智能应用子***也可以通过在车辆的车载信息交互***上安装V2X应用的方式来为用户提供V2X服务。
如图2所示,移动智能应用子***分别通过接口A13、A14与中心子***和多接入边缘计算平台(MEC)通信。此外,移动智能应用子***还通过接口A15与RSU进行通信。在本实施例中,接口A13、A14和A15均基于4G或5G移动通信网络实现。
移动智能应用子***本身可以具有感知功能,来采集与车辆有关的信息,例如车辆特殊事件状态、车辆历史轨迹、路线预测、车身灯光状态、车门后备箱状态等。这些信息例如可以通过移动智能应用子***的移动导航功能、关联车机的APP来提供。此外,与车辆有关的信息还可以包括相对固定的车辆属性类信息,例如车牌信息、车辆类型等,这些信息可以由用户手动输入。
此外,作为补充或替代,还可以通过车用辅助采集器来采集与车辆有关的信息,例如车辆行驶状态信息,包括但不限于车辆速度、行驶方向、车头朝向、发动机转速、油门位置、瞬时油耗、平均油耗、充电状态等等。
生成单元101基于通过移动智能应用子***和/或车用辅助采集器采集的上述各种信息生成车辆状态消息。通信单元102将生成的车辆状态消息发送给中心子***和/或RSU,以告知自身的实时状态,从而支持一系列协同安全应用。
示例性地,车辆状态消息包括车辆基本安全消息和车辆扩展安全消息。其中,车辆基本安全消息用于传递车辆的基本安全状态数据,例如,车辆基本安全消息包括如下中的一个或多个:车辆的速度,车辆的地理 位置,车辆的三轴加速度信息,车辆位置的置信度,车牌信息,车辆类型,车头朝向,时间戳等等。其中,所述车辆自身的行驶数据可以包括以下中的一个或多个:发动机转速,发动机负荷,油门位置,瞬时油耗,平均油耗,充电状态,电池寿命,进气温度。
车辆扩展安全消息例如包括如下中的一个或多个:车辆特殊事件状态,车辆历史轨迹,路线预测,车身灯光状态,车门后备箱状态,车辆自身的行驶数据。车辆扩展安全消息用作车辆基本安全消息的补充,其中,各个信息项都是可选的。
应该理解,以上给出的信息项均是示例,车辆状态消息还可以适当地包括其他与车辆的状态有关的信息项。以下给出车辆状态消息的相应的ASN.1代码的非限制性示例。
[ASN.1代码]
VehicleStatusMessage::=SEQUENCE{
msgCnt MsgCount,--消息计数器
plateNo OCTET STRING(SIZE(4…16))OPTIONAL,--车牌信息
secMark DSecond,--时间戳
pos Position3D,--车辆3D位置信息
accuracy PositionConfidenceSet,--车辆位置的置信度
speed Speed,--车速
heading Heading,--车头朝向
accelSet AccelerationSet4Way,--加速度
vehicleClass VehicleClassification,--车辆类型
safetyExt VehicleSafetyExtentions OPTIONAL,--车辆扩展安全消息
}
车辆扩展安全消息的ASN.1代码的非限制性示例如下:
[ASN.1代码]
VehicleSafetyExtentions::=SEQUENCE{
Events VehicleEventFlags OPTIONAL,--车辆特殊事件状态
pathHistory PathHistory OPTIONAL,--车辆历史轨迹
pathPrediction PathPrediction OPTIONAL,--路线预测
lights ExteriorLights OPTIONAL,--车身灯光状态
doors DoorStatus,OPTIONAL,--车门后备箱状态
batterylife Battery,OPTIONAL,--电池寿命
charge Charge,OPTIONAL,--充电状态
enginerpm Enginerpm,OPTIONAL,--发动机转速
engineload Engineload,OPTIONAL,--发动机负荷
fuel FuelEconomy,OPTIONAL,--油耗
throttlepossition ThrottlePosition,OPTIONAL,--油门位置
airintaketemp AirintakeTemperature,OPTIONAL,--进气温度
}
应该注意,以上车辆状态消息中的各个字段均是通过移动智能应用子***和/或车用辅助采集器获取的,并不是传统意义上通过车辆CAN总线获取的车联网信息。
例如,通信单元102还被配置为经由如下中的一种或多种方式从车用辅助采集器获取所采集的与车辆有关的信息:PC5接口,车内WiFi,蓝牙连接。这里所述的车用辅助采集器用于辅助采集车辆相关信息,例如为车载诊断***(On Board Diagnostics,OBD)、行车记录仪、车辆信息采集APP、各种车用传感器等等。这些车用辅助采集器并不具备4G、5G通用Uu接口的联网功能,因此可以通过PC5接口、车内WiFi或者蓝牙连接等与移动智能应用子***连接,以传递所采集到的车辆相关信息比如车辆自身行驶数据、部分环境数据等。
图3示出了移动智能应用子***和车用辅助采集器的硬件连接***架构的示意图。其中,示出了Ⅱ型车载诊断***(OBD II)作为车用辅 助采集器的示例。移动智能应用子***例如通过本实施例的通信单元102将车辆状态消息上传到企业/个人云平台,进而传递到公共云平台。
在一个示例中,移动智能应用子***和车用辅助采集器独立执行与车辆有关的信息的采集。在另一个示例中,车用辅助采集器可以在移动智能应用子***的控制下执行与车辆有关的信息的采集,例如,由移动智能应用子***向车用辅助采集器发送执行数据采集的指令或者指定数据采集的周期和定时等。
然而,可能存在移动智能应用子***的信息采集频率和车用辅助采集器的信息采集频率不一致的情形。在这种情况下,通信单元102可以被配置为分开发送通过移动智能应用子***采集的与车辆有关的信息和通过车用辅助采集器采集的与车辆有关的信息。例如,可以在图3中所示的企业/个人云平台或公共云平台处对两类信息进行融合,以获得对于车辆状态的全面认知。
此外,可以在移动智能应用子***处对上述两类信息进行融合,从而以统一的发送周期进行发送。具体地,生成单元101被配置为通过对通过移动智能应用子***采集的数据与通过车用辅助采集器采集的数据进行融合来生成车辆状态消息。
例如,在不同的数据项的采集频率不同的情况下,生成单元101和通信单元102被配置为以其中较高的频率生成和发送车辆状态消息。示例性地,车辆历史轨迹和路线预测字段相关的数据的更新频率(采集频率)高,而车门后备箱状态以及充电状态字段相关的数据的更新频率低,则生成单元101按照车辆历史轨迹和路线预测字段相关的数据的更新频率来生成车辆状态消息,相应地,通信单元102以同样的频率发送车辆状态消息。
其中,在采集频率低的数据项没有更新的发送周期中,生成单元101被配置为将在该发送周期中发送的车辆状态消息中与采集频率低的数据项对应的字段设置为空或者将该字段设置为无效字段。例如,在上述示例中,车门后备箱状态以及充电状态字段可以定期地缺失。
在上述情况下,移动智能应用子***可以具有三个功能单元:感知单元、计算单元和通信单元,如图4所示。其中,感知单元执行与车辆有关的信息的采集的功能,计算单元执行两类信息的融合以及车辆状态 消息的生成功能,通信单元执行与其他子***或设备的通信,这里所述的通信单元例如由本实施例的通信单元102实现。
如前所述,通信单元102将所生成的车辆状态消息发送至中央子***,例如图3中所示的云平台,以使得中央子***根据所收到的车辆状态消息进行车辆通知、调度等车路协同操作。
此外,在发生紧急事件的情况下,通信单元102还可以将车辆状态消息通过局部广播发送至RSU。RSU还可以将采集到的环境和道路异常信息发送给通信单元102。例如,可以通过图2中所示的接口A15来实现通信单元102与RSU之间的信息交互。这样,可以省去上云再下发的过程,降低时延,能够尽快地实现紧急状态预警。另外,在这种情况下,车辆状态消息还可以由RSU上传至中心子***。例如,中心子***可以相应地更新已有数据。
为了便于理解,下面参照图5给出电子设备100的一个应用场景的示例。图5示出了主车(Host Vehicle,HV)超车主动预警的示意图。在图5的场景中,例如,HV上安装有或放置有根据本实施例的电子设备100,电子设备100基于移动智能应用子***和车用辅助采集器采集的与车辆有关的信息生成车辆状态消息,其中包括例如车辆速度和车头朝向的信息。在HV例如在十字路口或道路较窄的通道上时,可以进入弱势交通参与者碰撞预警模式,即,电子设备100通过V2N2P的方式将车辆状态消息提供给弱势交通参与者比如行人、自行车、电动自行车等,以提醒其小心后方或左转车辆接近。其中,V2N2P的方式指的是电子设备100将车辆状态消息发送至中心子***,然后由中心子***下发至个人。
例如,在HV是特殊车辆比如救护车时,可以进入紧急车辆让行预警模式,即,电子设备100将HV的车辆状态消息比如包括车辆属性和路线预测广播至RSU,以实现最大程度的提前避让。
应该理解,以上仅给出了电子设备100的应用场景示例,并不是限制性的。
综上所述,根据本实施例的电子设备100通过利用4G或5G通用网络接口来发送由车载移动智能子***和/或车用辅助采集器采集的车辆状态信息,方便地实现了车路协同应用。
<第二实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图6示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息(S11);以及通过4G移动通信网络或5G移动通信网络将车辆状态消息发送至中心子***和/或路侧单元(S12)。该方法例如可以在UE侧执行。
例如,车辆状态消息可以包括车辆基本安全消息和车辆扩展安全消息。车辆基本安全消息例如包括如下中的一个或多个:车辆的速度,车辆的地理位置,车辆的三轴加速度信息,车辆位置的置信度,车牌信息,车辆类型,车头朝向,时间戳。车辆扩展安全消息例如包括如下中的一个或多个:车辆特殊事件状态,车辆历史轨迹,路线预测,车身灯光状态,车门后备箱状态,车辆自身的行驶数据。
例如,步骤S11包括:对通过移动智能应用子***采集的数据与通过车用辅助采集器采集的数据进行融合来生成车辆状态消息。在不同的数据项的采集频率不同的情况下,可以以较高的频率生成和发送车辆状态消息。
例如,在采集频率低的数据项没有更新的发送周期中,将在该发送周期中发送的车辆状态消息中与采集频率低的数据项对应的字段设置为空或者将该字段设置为无效字段。
移动智能应用子***可以包括如下之一:智能手机、智能后视镜、智能行车记录仪。可以经由如下中的一种或多种方式从车用辅助采集器获取所采集的与车辆有关的信息:PC5接口,车内WiFi,蓝牙连接。
此外,在发生紧急事件的情况下,可以将车辆状态消息通过局部广 播发送至RSU。该车辆状态消息可以由RSU上传至中心子***。
注意,上述方法的细节在第一实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。如前所述,电子设备100可以被实现为各种用户设备。
[关于用户设备的应用示例]
(第一应用示例)
图7是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上***(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913 和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图7所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图7示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图7所示,智能电话900可以包括多个天线916。虽然图7示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图7所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图7所示的智能电话900中,电子设备100的通信单元102、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行生成单元101和通信单元102的功能来通过利用4G或5G通用网络接口发送由车载移动智能子***和/或车用辅助采集器采集的车辆状态信息,方便地实现了车路协同应用。
(第二应用示例)
图8是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位***(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF 电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图8所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图8示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图8所示,汽车导航设备920可以包括多个天线937。虽然图8示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图8所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图8示出的汽车导航设备920中,电子设备100的通信单元102、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行生成单元101和通信单元102的功能来通过利用4G或5G通用网络接口发送由车载移动智能子***和/或车用辅助采集器采集的车辆状态信息,方便地实现了车路协同应用。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载***(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且 将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图9所示的通用计算机900)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图9中,中央处理单元(CPU)901根据只读存储器(ROM)902中存储的程序或从存储部分908加载到随机存取存储器(RAM)903的程序执行各种处理。在RAM 903中,也根据需要存储当CPU 901执行各种处理等等时所需的数据。CPU 901、ROM 902和RAM 903经由总线904彼此连接。输入/输出接口905也连接到总线904。
下述部件连接到输入/输出接口905:输入部分906(包括键盘、鼠标等等)、输出部分907(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分908(包括硬盘等)、通信部分909(包括网络接口卡比如LAN卡、调制解调器等)。通信部分909经由网络比如因特网执行通信处理。根据需要,驱动器910也可连接到输入/输出接口905。可移除介质911比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器910上,使得从中读出的计算机程序根据需要被安装到存储部分908中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质911安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图9所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质911。可移除介质911的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 902、存储部分908中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和***中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (26)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及
    通过第4代移动通信网络或第5代移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元。
  2. 根据权利要求1所述的电子设备,其中,所述车辆状态消息包括车辆基本安全消息和车辆扩展安全消息。
  3. 根据权利要求2所述的电子设备,其中,所述车辆扩展安全消息包括如下中的一个或多个:车辆特殊事件状态,车辆历史轨迹,路线预测,车身灯光状态,车门后备箱状态,车辆自身的行驶数据。
  4. 根据权利要求2所述的电子设备,其中,所述车辆基本安全消息包括如下中的一个或多个:车辆的速度,车辆的地理位置,车辆的三轴加速度信息,车辆位置的置信度,车牌信息,车辆类型,车头朝向,时间戳。
  5. 根据权利要求3所述的电子设备,其中,所述车辆自身的行驶数据包括以下中的一个或多个:发动机转速,发动机负荷,油门位置,瞬时油耗,平均油耗,充电状态,电池寿命,进气温度。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为对通过所述移动智能应用子***采集的数据与通过所述车用辅助采集器采集的数据进行融合来生成所述车辆状态消息。
  7. 根据权利要求6所述的电子设备,其中,在不同的数据项的采集频率不同的情况下,所述处理电路被配置为以较高的频率生成和发送所述车辆状态消息。
  8. 根据权利要求7所述的电子设备,其中,在采集频率低的数据项没有更新的发送周期中,所述处理电路被配置为将在该发送周期中发送的所述车辆状态消息中与所述采集频率低的数据项对应的字段设置为空 或者将该字段设置为无效字段。
  9. 根据权利要求1所述的电子设备,其中,所述移动智能应用子***与所述车用辅助采集器独立执行与车辆有关的信息的采集,以及所述处理电路被配置为分开发送通过所述移动智能应用子***采集的与车辆有关的信息和通过所述车用辅助采集器采集的与车辆有关的信息。
  10. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为经由如下中的一种或多种方式从所述车用辅助采集器获取所采集的与车辆有关的信息:PC5接口,车内WiFi,蓝牙连接。
  11. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在发生紧急事件的情况下,将所述车辆状态消息通过局部广播发送至路侧单元。
  12. 根据权利要求11所述的电子设备,其中,所述车辆状态消息由所述路侧单元上传至所述中心子***。
  13. 根据权利要求1所述的电子设备,其中,所述移动智能应用子***包括如下之一:智能手机、智能后视镜、智能行车记录仪。
  14. 一种移动智能应用子***,包括根据权利要求1至13中的任意一项所述的电子设备。
  15. 一种用于无线通信的方法,包括:
    基于通过移动智能应用子***和/或车用辅助采集器采集的与车辆有关的信息生成车辆状态消息;以及
    通过第4代移动通信网络或第5代移动通信网络将所述车辆状态消息发送至中心子***和/或路侧单元。
  16. 根据权利要求15所述的方法,其中,所述车辆状态消息包括车辆基本安全消息和车辆扩展安全消息。
  17. 根据权利要求16所述的方法,其中,所述车辆扩展安全消息包括如下中的一个或多个:车辆特殊事件状态,车辆历史轨迹,路线预测,车身灯光状态,车门后备箱状态,车辆自身的行驶数据。
  18. 根据权利要求16所述的方法,其中,所述车辆基本安全消息包括如下中的一个或多个:车辆的速度,车辆的地理位置,车辆的三轴加 速度信息,车辆位置的置信度,车牌信息,车辆类型,车头朝向,时间戳。
  19. 根据权利要求15所述的方法,其中,所述生成车辆状态消息包括:对通过所述移动智能应用子***采集的数据与通过所述车用辅助采集器采集的数据进行融合来生成所述车辆状态消息。
  20. 根据权利要求19所述的方法,其中,在不同的数据项的采集频率不同的情况下,以较高的频率生成和发送所述车辆状态消息。
  21. 根据权利要求20所述的方法,其中,在采集频率低的数据项没有更新的发送周期中,将在该发送周期中发送的所述车辆状态消息中与所述采集频率低的数据项对应的字段设置为空或者将该字段设置为无效字段。
  22. 根据权利要求15所述的方法,还包括经由如下中的一种或多种方式从所述车用辅助采集器获取所采集的与车辆有关的信息:PC5接口,车内WiFi,蓝牙连接。
  23. 根据权利要求15所述的方法,其中,在发生紧急事件的情况下,将所述车辆状态消息通过局部广播发送至路侧单元。
  24. 根据权利要求23所述的方法,其中,所述车辆状态消息由所述路侧单元上传至所述中心子***。
  25. 根据权利要求15所述的方法,其中,所述移动智能应用子***包括如下之一:智能手机、智能后视镜、智能行车记录仪。
  26. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被一个或多个处理器执行时,使得所述一个或多个处理器执行根据权利要求15至25中任意一项所述的用于无线通信的方法。
PCT/CN2022/108872 2021-08-06 2022-07-29 用于无线通信的电子设备和方法、计算机可读存储介质 WO2023011337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280053053.2A CN117751591A (zh) 2021-08-06 2022-07-29 用于无线通信的电子设备和方法、计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110902439.3 2021-08-06
CN202110902439.3A CN115706949A (zh) 2021-08-06 2021-08-06 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023011337A1 true WO2023011337A1 (zh) 2023-02-09

Family

ID=85154283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108872 WO2023011337A1 (zh) 2021-08-06 2022-07-29 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN115706949A (zh)
WO (1) WO2023011337A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300646A (zh) * 2014-10-31 2015-01-21 国家电网公司 一种支持车联网的多频段智能充电桩***
CN104751669A (zh) * 2015-03-20 2015-07-01 江苏大学 一种基于车联网的智能驾驶辅助***及方法
CN105761521A (zh) * 2015-12-31 2016-07-13 重庆邮电大学 基于车联网的实时交通诱导路侧***及实时交通诱导方法
CN106467112A (zh) * 2016-10-11 2017-03-01 斑马信息科技有限公司 车载辅助驾驶***
CN109282827A (zh) * 2018-07-05 2019-01-29 惠州市德赛西威汽车电子股份有限公司 一种基于v2x的车辆在线导航***及方法
CN109448385A (zh) * 2019-01-04 2019-03-08 北京钛星科技有限公司 基于车路协同的自动驾驶车辆交叉路口调度***及方法
US20190217883A1 (en) * 2018-01-17 2019-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle control device and control method for vehicle
CN111524357A (zh) * 2020-05-19 2020-08-11 河北德冠隆电子科技有限公司 用于车辆安全行驶所需的多数据融合的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300646A (zh) * 2014-10-31 2015-01-21 国家电网公司 一种支持车联网的多频段智能充电桩***
CN104751669A (zh) * 2015-03-20 2015-07-01 江苏大学 一种基于车联网的智能驾驶辅助***及方法
CN105761521A (zh) * 2015-12-31 2016-07-13 重庆邮电大学 基于车联网的实时交通诱导路侧***及实时交通诱导方法
CN106467112A (zh) * 2016-10-11 2017-03-01 斑马信息科技有限公司 车载辅助驾驶***
US20190217883A1 (en) * 2018-01-17 2019-07-18 Toyota Jidosha Kabushiki Kaisha Vehicle control device and control method for vehicle
CN109282827A (zh) * 2018-07-05 2019-01-29 惠州市德赛西威汽车电子股份有限公司 一种基于v2x的车辆在线导航***及方法
CN109448385A (zh) * 2019-01-04 2019-03-08 北京钛星科技有限公司 基于车路协同的自动驾驶车辆交叉路口调度***及方法
CN111524357A (zh) * 2020-05-19 2020-08-11 河北德冠隆电子科技有限公司 用于车辆安全行驶所需的多数据融合的方法

Also Published As

Publication number Publication date
CN115706949A (zh) 2023-02-17
CN117751591A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN111030719B (zh) 车载装置和数据处理的方法
EP3038269B1 (en) Terminal device, program, and information processing device for near field communication
KR20230004467A (ko) 취약 도로 사용자 경고 메시지 생성 및 전송
US20240187992A1 (en) Bluetooth connection method and device
JP2009083815A (ja) ドライブレコーダ装置および事故解析シミュレーション装置
CN114584917B (zh) 位置信息的获取方法、装置及***
US20230276210A1 (en) Electronic device and method for wireless communications, and computer readable storage medium
CN104349503A (zh) 提供无线通信装置在车辆之外的通知的方法、***和设备
CN115997244A (zh) 智能运输***中的集体感知服务
WO2023010922A1 (zh) 一种高架识别方法及装置
WO2022257666A1 (zh) 设备跟踪检测方法和电子设备
WO2023010923A1 (zh) 一种高架识别方法及装置
US11140522B2 (en) Method and electronic device for transmitting group message
WO2023011337A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4057651A1 (en) Electronic device, radio communication method, and computer-readable storage medium
WO2021185157A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022135253A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021164387A1 (zh) 目标物体的预警方法、装置和电子设备
US20230171829A1 (en) Communication system
WO2024078351A1 (zh) 电子设备、通信方法和存储介质
WO2022237396A1 (zh) 终端设备、定位方法及装置
WO2024067078A1 (zh) 车辆定位方法及电子设备
WO2023104075A1 (zh) 一种分享导航信息的方法、电子设备和***
EP4318453A1 (en) Information processing device, information processing method, and program
CN113820732A (zh) 一种导航方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053053.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE