WO2023010722A1 - 多燃料电池的混合动力***的故障管理方法及装置 - Google Patents

多燃料电池的混合动力***的故障管理方法及装置 Download PDF

Info

Publication number
WO2023010722A1
WO2023010722A1 PCT/CN2021/133407 CN2021133407W WO2023010722A1 WO 2023010722 A1 WO2023010722 A1 WO 2023010722A1 CN 2021133407 W CN2021133407 W CN 2021133407W WO 2023010722 A1 WO2023010722 A1 WO 2023010722A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
value
hbs
hstate
power supply
Prior art date
Application number
PCT/CN2021/133407
Other languages
English (en)
French (fr)
Inventor
韩国鹏
裴春兴
王艳琴
汪星华
刘楠
赵丽丽
冯轩
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Priority to EP21952585.4A priority Critical patent/EP4382339A1/en
Publication of WO2023010722A1 publication Critical patent/WO2023010722A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0053Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present application relates to the technical field of battery energy management, and in particular, to a fault management method and device for a hybrid power system with multiple fuel cells.
  • Rail vehicle power systems often use electric-electric hybrid power systems composed of fuel cells/power batteries. Compared with automobiles, rail vehicle hybrid power systems require large power, and generally adopt custom-developed high-power fuel cell systems, which are costly and low in technology maturity; while low-power fuel cells are mature in technology and have strong options, but due to The power of a single machine is low, so it cannot be directly applied to rail vehicles.
  • the hybrid power system of existing rail vehicles mainly uses high-power fuel cells for simple parallel power supply, as shown in Figure 1.
  • each high-power fuel cell is connected to the DC bus through a DC/DC module, and the power battery is directly connected to the bus.
  • the power supply scheme of a hybrid power system with simple parallel connection of high-power fuel cells due to the large power demand of a single fuel cell, generally requires customized development, and the cost is high; affected by the working characteristics of fuel cells, when the power demand of vehicles is small, high-power fuel cells It is at a low efficiency point, which is not conducive to the improvement of system efficiency; due to the small number of fuel cells in the system, the fuel cell system often has only one external interface.
  • the power battery or fuel cell fails, it can only continue to operate normally The state of the power battery or fuel cell continues to work, or it will directly cause the system to shut down, and its fault tolerance is poor.
  • Embodiments of the present application provide a fault management method and device for a hybrid power system with multiple fuel cells, so as to solve the above technical problems.
  • an embodiment of the present application provides a fault management method for a hybrid power system with multiple fuel cells
  • the hybrid power system includes a power battery and a fuel cell system
  • the fuel cell system includes at least two parallel branches , there are at least two fuel cells connected in series in each branch, and each branch is connected to the DC bus through a DC/DC module, and the power battery is connected to the DC bus; two ends of each fuel cell are connected in parallel with bypass A bypass isolating switch, the bypass isolating switch is used to connect the fuel cell into the fuel cell system for power supply or cut off the fuel cell from the fuel cell system
  • the method includes: obtaining the main power of the hybrid power system State value; obtain the health state value of the hybrid power system at the current moment; the main state value and the health state value represent the power supply state of the hybrid power system at different times, and the power supply state can be powered externally by the hybrid power system
  • the power supply topology structure formed by the battery is determined; according to the two power supply states corresponding to the main state value and the health state value
  • an embodiment of the present application provides a fault management device for a hybrid power system with multiple fuel cells
  • the hybrid power system includes a power battery and a fuel cell system
  • the fuel cell system includes at least two parallel branches , there are at least two fuel cells connected in series in each branch, and each branch is connected to the DC bus through a DC/DC module, and the power battery is connected to the DC bus; two ends of each fuel cell are connected in parallel with bypass A bypass isolating switch, the bypass isolating switch is used to connect the fuel cell to the fuel cell system for power supply or remove the fuel cell from the fuel cell system
  • the device includes: a state value acquisition module for To obtain the main state value of the hybrid power system, and to obtain the health state value of the hybrid power system at the current moment; the main state value and the health state value represent the power supply state of the hybrid power system at different times, and the power supply state is determined by the The power supply topology formed by the battery that can supply power to the outside in the hybrid power system is determined; the fault management module is used to
  • multiple low-power fuel cells can be connected in series and parallel to form a complex fuel cell system. Compared with the simple parallel connection of high-power fuel cells, it can reduce costs and improve system efficiency; at the same time, in order to achieve the above
  • the fault management of the hybrid power system composed of the fuel cell system and the power battery compares the health state value at the current moment with the main state value at the previous time.
  • the main state value and the health state value reflect the power supply state of the hybrid power system at different times. According to the two power supply states corresponding to the main state value and the health state value, execute the corresponding fault processing program, and control the bypass isolation switch according to the fault processing program, so that the normal fuel cell that has recovered power will be restarted through the bypass isolation switch.
  • this solution can make corresponding processing in time according to the different situations between the current power supply state and the previous time, such as timely self-recovery of the power of the hybrid power system, or timely restart of the faulty fuel cell, etc., thereby improving the power supply of the hybrid power system. reliability.
  • Fig. 1 shows the structural representation of the hybrid power system of rail vehicle in the related art
  • Fig. 2 shows the structural representation of the hybrid power system of rail vehicle in the embodiment of the present application
  • FIG. 3 shows a flow chart of a fault management method for a hybrid power system with multiple fuel cells provided by an embodiment of the present application
  • Fig. 4 shows the flowchart of the determination process of the health state value HBS_Hstate in the embodiment of the present application
  • Fig. 5 shows the flowchart of the specific process of step 220 in Fig. 4;
  • Fig. 6 shows a schematic diagram of a fault management device for a hybrid power system with multiple fuel cells provided by an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of the hybrid power system provided in the embodiment of the present application.
  • the hybrid power system includes : Power battery and fuel cell system, the fuel cell system includes at least two parallel branches, each branch has at least two fuel cells in series, and each branch is connected to the DC bus through a DC/DC module, specifically , all the fuel cells on the same branch are connected in series to the DC bus through the DC/DC module, and the power batteries are connected to the same DC bus.
  • the power battery is used to maintain the bus voltage, and its large capacity can prevent sudden changes in the bus voltage and play the role of peak shaving and valley filling.
  • the fuel cell system includes two parallel branches, namely a first branch and a second branch, and each branch has four fuel cells connected in series, as shown in FIG. 2 ,
  • the fuel cell system is a topological structure of 4 in series and 2 in parallel. It can be understood that the fuel cell system may also have three, four or even more branches connected in parallel, and the number of fuel cells connected in series in each branch may be equal or different.
  • the series current is equal, and the voltage is the sum of the voltages of each fuel cell.
  • Four series fuel cells are connected to the input terminal of a DC/DC module to ensure that the boost ratio of the DC/DC module is controlled at a small value and improve the power- Electric conversion efficiency; the DC/DC module is mainly for boosting and stabilizing the voltage.
  • the boosting is because the output power of the fuel cell cannot meet the needs of the vehicle. If too many fuel cells are connected in series, there will be imbalance, resulting in performance degradation.
  • the output voltage set by the fuel cell manufacturer is relatively low and needs to be boosted; the voltage regulation is because the output characteristics of the fuel cell are very soft, and the increase in current will cause the voltage to drop rapidly, so the fuel cell and the DC/DC module need to be used together.
  • the parallel branch guarantees the power demand of the vehicle while improving the power supply reliability of the vehicle; a bypass isolation switch is connected in parallel at both ends of each fuel cell to connect the fuel cell to the fuel cell system for power supply or to connect the fuel cell from Cut off in the fuel cell system, so when any fuel cell in the branch fails through the bypass isolation switch, the faulty fuel cell will be disconnected from the system in time, and it will be reconnected to the system after the fault is removed, so as to overcome the reliability of the series branch.
  • the shortcomings of low cost and high cost of the parallel branch improve the reliability of the fuel cell system coupled with multiple fuel cells; the hydrogen storage system provides hydrogen for the entire fuel cell system.
  • the energy control unit controls each unit (power battery, each fuel cell, hydrogen storage system and DC/DC module) in the hybrid power system.
  • the power supply states of the hybrid power system with multiple fuel cells are as follows:
  • the above-mentioned power supply state is determined by the power supply topology formed according to the batteries in the hybrid power system that can supply power to the outside.
  • the fault status of each unit in the hybrid power system (such as power battery, fuel cell, hydrogen storage system or DC/DC module) is uniformly divided into three levels, level 0 means no fault, level 1 means that some parameters deviate from the normal value, and need Concern, but not operational; Level 2 indicates failure. If the fault level is between 0 and 1, the fault state is considered normal, and if the fault state is at level 2, the fault state is considered to be faulty.
  • the main state value HBS_state Before the start of the rail vehicle, that is, before the start of the hybrid power system, the main state value HBS_state will be initialized and determined, and the power supply processing program corresponding to the main state value HBS_state will be used for initial operation. For example, when the main state value HBS_state is 2, the power supply processing performed The program is a single-power battery-powered processing program.
  • the hybrid power system may enter a fault state from a normal state, or vice versa, at this time, the power supply state of the hybrid power system may face a transition problem, which may change from a lesser fault state State transitions to another more severe fault state (continues to lose power), or from one fault state to another less severe fault (or normal) state (regains some power).
  • the present application proposes a method for fault management of a hybrid power system with multiple fuel cells, which is based on the structure of the above hybrid power system (some embodiments are described with the structure of 4 series-2 parallel in Fig. 2 as an example ), based on the main state value and the real-time determined health state value as the judgment basis, execute the corresponding fault handling program, so as to manage the power supply state of the hybrid power system.
  • Figure 3 shows a flow chart of the fault management method provided by the embodiment of the present application, please refer to Figure 3, the method includes:
  • Step 110 acquiring the main state value of the hybrid power system.
  • Step 120 acquiring the health state value of the hybrid power system at the current moment.
  • Step 130 according to the two power supply states corresponding to the main state value and the health state value, execute the fault processing program corresponding to the two power supply states, and control the bypass isolating switch according to the executed fault processing program.
  • the main state value and the health state value represent the power supply state of the hybrid power system at different times, and the power supply state is determined by the power supply topology formed by the battery in the hybrid power system that can supply power to the outside.
  • the main state value in step 110 may be determined before the system is started, or may be determined by reassigning the main state value through the fault handling program during the operation of the hybrid system. Therefore, After the system starts, the main state value is not static, but changes dynamically.
  • the main state value HBS_state and the health state value HBS_Hstate are determined in exactly the same way.
  • the following takes the health state value HBS_Hstate as an example to illustrate the determination process of the health state value HBS_Hstate, but it should be understood that the main state value HBS_state is also determined through the same method. Therefore, the main state value HBS_state is not specifically described.
  • FIG. 4 shows the determination process of the health status value HBS_Hstate in this embodiment, specifically including:
  • Step 210 acquiring the fault state value Alarm_Bat of the power battery.
  • level 0 means no fault
  • level 1 means some parameters deviate from the normal value, need attention, but does not affect the operation
  • level 2 means failure. If the fault level is between 0 and 1, the fault state is considered normal, and if the fault state is at level 2, the fault state is considered to be faulty. Therefore, if the fault level is 0 or 1, assign the fault state value Alarm_Bat of the power battery to 1, indicating that the power battery is normal; if the fault level is 2, assign the fault state value Alarm_Bat of the power battery to 0, indicating power Battery failure.
  • Step 220 obtain the state number FCs_Hstate of the fuel cell system, and FCs_Hstate represents the total number of fuel cells in the fuel cell system that can supply power to the outside.
  • step 220 specifically includes:
  • Step 221 identify the failure status of each fuel cell respectively.
  • level 0 means no fault
  • level 1 means that some parameters deviate from the normal value and needs attention, but does not affect the operation
  • level 2 means failure. If the fault level is between 0 and 1, the fault state is considered normal, and if the fault state is at level 2, the fault state is considered to be faulty. If the failure level of the fuel cell is level 0 or level 1, it is determined that the failure state of the fuel cell is normal, and if the failure level of the fuel cell is level 2, it is determined that the failure state of the fuel cell is failure.
  • Step 222 according to the fault state of each fuel cell, count the state reference number FCs_Hstate_i_re of each branch.
  • FCs_Hstate_i_re represents the number of fuel cells whose failure status is normal in the i-th branch. If there are 4 fuel cells in series in the second branch, and the fault state of 3 fuel cells is normal, and the fault state of 1 fuel cell is fault, then the state reference number FCs_Hstate_2_re of the second branch is 3.
  • Step 223 determine the state number FCs_Hstate according to the state reference number FCs_Hstate_i_re of each branch.
  • level 0 means no fault
  • level 1 means some The parameter deviates from the normal value, which needs attention, but does not affect the operation
  • the level 2 indicates failure. If the fault level is between 0 and 1, the fault state is considered normal, and if the fault state is at level 2, the fault state is considered to be faulty. If the fault level of the hydrogen storage system is level 0 or level 1, it is determined that the hydrogen storage system is not faulty, and if the fault level of the hydrogen storage system is level 2, it is determined that the hydrogen storage system is faulty.
  • the hydrogen storage system is not faulty, it is further judged whether the DC/DC modules connected to each branch are faulty; the state reference number FCs_Hstate_i_re of the branch circuit where the DC/DC module is not faulty is assigned to the state target number FCs_Hstate_i of the branch, and The state target number FCs_Hstate_i of the DC/DC module failure branch is set to zero, and FCs_Hstate_i indicates the number of fuel cells that can supply power to the outside in the i-th branch; the state number FCs_Hstate is obtained according to the sum of the state target numbers FCs_Hstate_i of each branch.
  • the state target number FCs_Hstate_i of each branch and the fuel cell The state number FCs_Hstate of the system is directly set to zero.
  • the fault states of the fuel cells are identified one by one, and if the fault level of the fuel cell is not level 2, the fuel cell is considered to be normal, and its fault state value is set to FCX_X_OK is set to 1, otherwise it is set to 0.
  • the first X in FCX_X_OK is the branch label, which represents two parallel branches, and the value is 1-2.
  • the second X is the fuel cell number, which represents 4 fuel cells connected in series.
  • the value is 1-4; then sum the fault state values FCX_X_OK of each branch fuel cell and assign them to FCs_Hstate_1_re and FCs_Hstate_2_re respectively; judge whether the hydrogen storage system is faulty, if the hydrogen storage system is faulty, it will indicate that the branch can be
  • the state target numbers FCs_Hstate_1 and FCs_Hstate_2 of the number of fuel cells for external power supply, and the state number FCs_Hstate of the fuel cell system are all set to 0; if the hydrogen storage system is not faulty, further judge the fault state of the DC/DC module connected to each branch, If the DC/DC module of the branch is faulty (that is, there is a 2-level fault level), the state target number FCs_Hstate_i of the branch is set to 0.
  • FCs_Hstate_1_re, FCs_Hstate_2_re is respectively assigned to FCs_Hstate_1 and FCs_Hstate_2, and then the sum of FCs_Hstate_1 and FCs_Hstate_2 is calculated to obtain the state number FCs_Hstate of the fuel cell system.
  • step 230 is executed to determine the health state value HBS_Hstate of the hybrid power system according to Alarm_Bat and FCs_Hstate.
  • the health state value HBS_Hstate represents the current real-time power supply state of the hybrid power system.
  • the hybrid power system in this embodiment includes 6 power supply states: (1) normal power supply; (2) limp-hybrid power supply; 3) Limping - powered by a single power battery; (4) Limping - powered by a single fuel cell; (5) Limping - powered by a single fuel cell failure; (6) Faulty hybrid system.
  • step 230 the specific determination process of the health state value HBS_Hstate is:
  • Normal power supply state HBS_Hstate 0: The power battery and the fuel cell system in the hybrid power system are both normal, and can provide power according to the normal energy distribution strategy.
  • HBS_Hstate 2: In this state, the power battery is normal, and the entire fuel cell system cannot supply power normally, and the power battery can be used to power the system alone.
  • the health state value HBS_Hstate is assigned a second value, the second value corresponds to the power supply state of the single power battery of the hybrid system, and the second value can be 2 for ease of implementation.
  • the health state value HBS_Hstate is assigned a third value, which corresponds to the single fuel cell power supply state of the hybrid system; for ease of implementation, the third value can be 3.
  • HBS_Hstate 4: In this state, the power battery is faulty, and some fuel cells in the fuel cell system are faulty, and the hybrid power system can use the fuel cell in a normal state to supply power to the outside. At the same time, in order to meet the minimum power supply (auxiliary load power supply) requirements of the vehicle, HBS_Hstate is assigned a value of 4 when FCs_Hstate is not less than the preset basic number.
  • Hybrid power system fault HBS_Hstate 5: In this state, both the power battery and the entire fuel cell system are faulty (or the fuel cell does not meet the minimum power supply requirements of the vehicle), the hybrid power system cannot output externally, and the power supply needs to be turned off to troubleshoot.
  • the health state value HBS_Hstate When Alarm_Bat represents a power battery failure, and FCs_Hstate ⁇ [0, M'), assign the health state value HBS_Hstate to the fifth value, which corresponds to the fault state of the hybrid power system.
  • the fifth value can be 5 .
  • the main state value HBS_state When the system starts, if the main state value HBS_state is the target value, it will start according to the normal power supply processing procedure; if the main state value HBS_state is the first value, it will start according to the hybrid power supply processing procedure; if the main state value HBS_state is the second value, Then start according to the single power battery power supply processing procedure; if the main state value HBS_state is the third value, then start according to the single fuel cell power supply processing procedure; if the main state value HBS_state is the fourth value, then start according to the single fuel cell fault power supply processing procedure ; If the main state value HBS_state is the fifth value, then execute the fault shutdown processing program, and the system does not start.
  • a corresponding fault handling program is executed.
  • This embodiment below provides the specific implementation of the fault handling program executed when the main state value HBS_state and the health state value HBS_Hstate are different values, including the following situations:
  • the determination time of the main state value HBS_state may be the time when the main state value HBS_state is determined before the system starts, or the time when the main state value HBS_state is reassigned during the system operation.
  • the fuel cell system includes a first branch and a second branch connected in parallel.
  • a first branch After closing the branch whose state target number FCs_Hstate_i at the current moment is reduced compared with the state target number FCs_Hstate_i at the time when the main state value HBS_state is determined, Respectively determine the power improvement flag FCs1_rs and running state flag FCs1_run of the first branch, and the power improving flag FCs2_rs and running state flag FCs2_run of the second branch; wherein, the power improvement flag indicates whether the power of the branch is improved, and the running state flag indicates Whether the branch is in the running state; if the program jump flag is set to zero, judge whether any of the following three situations occurs:
  • FCs1_rs is set and FCs2_rs is set; or,
  • FCs1_rs is set and FCs2_run is set to zero; or,
  • FCs2_rs is set and FCs1_run is set to zero;
  • both HBS_state and HBS_Hstate are equal to the fourth value, update the fault state of each fuel cell in the fuel cell system; close the branch in which the state target number FCs_Hstate_i at the current moment is reduced compared with the state target number FCs_Hstate_i at the time when the main state value HBS_state is determined ; If all branches are closed, set the program jump flag, otherwise, set the program jump flag to zero.
  • the main state value HBS_state is immediately assigned the fifth value to trigger the failure shutdown processing program corresponding to when the main state value HBS_state is the fifth value, and execute the failure shutdown.
  • the fuel cell system includes a first branch and a second branch connected in parallel. After closing the branch whose state target number FCs_Hstate_i at the current moment is reduced compared with the state target number FCs_Hstate_i at the time when the main state value HBS_state is determined, Respectively determine the power improvement flag FCs1_rs and running state flag FCs1_run of the first branch, and the power improving flag FCs2_rs and running state flag FCs2_run of the second branch;
  • FCs1_rs is set and FCs2_rs is set; or,
  • FCs1_rs is set and FCs2_run is set to zero; or,
  • FCs2_rs is set and FCs1_run is set to zero;
  • a reminder to improve the health status of the hybrid system will be sent to the driver, reminding the driver that the power status of the hybrid system can be improved by restarting, and the vehicle will be powered off during the restart.
  • the power improvement flags of the first branch and the second branch are not both set to zero, wait until the vehicle is in a parked state, and then restart the power improvement flag. road. If the power improvement flags of the first branch and the second branch are both set to zero, it indicates that there is no power improvement in the two branches. At this time, no operation can be performed, and the current power supply processing program continues to run.
  • HBS_state target value
  • HBS_Hstate! target value
  • HBS_state target value
  • HBS_Hstate! target value
  • HBS_state first value
  • HBS_Hstate! first value
  • HBS_state first value
  • HBS_Hstate! The first numerical value includes the following sub-cases:
  • HBS_state is equal to the first value and HBS_Hstate is equal to the target value
  • update the fault status of each fuel cell in the fuel cell system respectively determine the power improvement flag FCs1_rs and the running state flag FCs1_run of the first branch, and the second branch Road power improvement flag FCs2_rs and running state flag FCs2_run; judge whether any of the following three situations occurs:
  • FCs1_rs is set and FCs2_rs is set; or,
  • FCs1_rs is set and FCs2_run is set to zero; or,
  • FCs2_rs is set and FCs1_run is set to zero;
  • HBS_state When HBS_state is equal to the first value and HBS_Hstate is equal to the second value, update the fault state of each fuel cell in the fuel cell system; close the state at the current moment compared with the state target number FCs_Hstate_i at the time determined by the main state value HBS_state The branch in which the target number FCs_Hstate_i is reduced; immediately assign the main state value HBS_state to the second value, so as to trigger entering the corresponding single-power battery power supply processing program when the main state value HBS_state is the second value.
  • HBS_state second value
  • HBS_Hstate! second value
  • HBS_state second value
  • HBS_Hstate! the second value
  • HBS_state is equal to the second value, and HBS_Hstate is equal to the target value or the first value, wait until the vehicle is in the parking state, then assign the current health state value HBS_Hstate to the main state value HBS_state to trigger entering a new main state
  • the value corresponds to the power supply handler.
  • HBS_Hstate is equal to the target value at this moment, assign the main state value HBS_state as the target value to trigger entry into the normal power supply processing procedure; if HBS_Hstate is equal to the first value at this moment, then assign the main state value HBS_state to the first value, To trigger entry into the hybrid power supply processing program.
  • HBS_state is equal to the second value, and HBS_Hstate is equal to the third value, the fourth value or the fifth value, it indicates that the power battery has changed from the original normal state to a fault state, so the power battery needs to be removed from the system, fuel
  • the DC/DC modules in the battery system are simultaneously switched to be connected to the bus by the voltage source working mode. In order to prevent large fluctuations in the bus voltage during power battery switching and fuel cell connection, this switching is completed by shutting down. Therefore, immediately
  • the main state value HBS_state is assigned the fifth value, so as to trigger to enter the failure shutdown processing program corresponding to the fifth value of the main state value HBS_state, execute the failure shutdown, and complete the switching after the shutdown.
  • HBS_state third value
  • HBS_Hstate! third value
  • HBS_state third value
  • HBS_Hstate! When the third value includes the following sub-cases:
  • HBS_state is equal to the third value, and HBS_Hstate is equal to the target value or the first value, the power battery returns to normal at this time, and the hybrid power supply mode can be entered, but the recovery of the power battery needs to be completed by shutting down and switching. Therefore, to the driver
  • the driver will send a shutdown switching reminder to remind the driver that the power battery is back to normal, and the hybrid power supply can be entered through the shutdown switching.
  • the driver can choose whether to stop switching according to his own needs, and does not use the program to intervene.
  • the hybrid system loses power during the shutdown switching process.
  • the hybrid power system can be switched to the power battery for power supply by shutting down, so immediately assign the main state value HBS_state to the fifth value to trigger entering the main state value HBS_state is the failure shutdown processing program corresponding to the fifth numerical value, execute failure shutdown, and complete conversion after shutdown.
  • HBS_state is equal to the third value and HBS_Hstate is equal to the fourth value, update the fault state of each fuel cell in the fuel cell system; close the state target number FCs_Hstate_i at the moment when the main state value HBS_state is determined, and the state at the current moment Branches with reduced target number FCs_Hstate_i; if all branches are closed, set the program jump flag, otherwise, set the program jump flag to zero; if the program jump flag is set, immediately assign the main state value HBS_state is the fifth value, so as to trigger to enter the failure shutdown processing program corresponding to when the main state value HBS_state is the fifth value.
  • HBS_state is equal to the third numerical value
  • HBS_Hstate is equal to the fifth numerical value
  • HBS_state fourth value
  • HBS_Hstate! fourth value
  • HBS_state fourth value
  • HBS_Hstate! When the fourth value includes the following sub-cases:
  • HBS_state is equal to the fourth value, and HBS_Hstate is equal to the target value or the first value, the power battery returns to normal at this time, and the hybrid power supply mode can be entered, but the recovery of the power battery needs to be completed by shutting down and switching. Therefore, to the driver
  • the driver will send a shutdown switching reminder to remind the driver that the power battery is back to normal, and the hybrid power supply can be entered through the shutdown switching.
  • the driver can choose whether to stop switching according to his own needs, and does not use the program to intervene.
  • the hybrid system loses power during the shutdown switching process.
  • the hybrid power system can be switched to power battery power supply by shutting down, so immediately assign the main state value HBS_state to the fifth value to trigger entering the main state value HBS_state It is the failure shutdown processing program corresponding to the fifth value, and the switching of the power supply state can be completed after the failure shutdown is executed.
  • HBS_state When HBS_state is equal to the fourth value and HBS_Hstate is equal to the third value, update the fault state of each fuel cell in the fuel cell system; respectively determine the power improvement flags of each branch, and judge whether the main state value HBS_state determines whether The number of state targets with branches FCs_Hstate_i is equal to the number of fuel cells connected in series in the branch. For example, if each branch has 4 fuel cells connected in series, it is judged whether there is a state of the branch at the moment when the main state value HBS_state is determined. The target number FCs_Hstate_i is equal to 4.
  • state target number FCs_Hstate_i of a branch is equal to the number of fuel cells connected in series in this branch, then there is no need to stop the switching process this time, it is only necessary to restart the branch with the power improvement flag set when parking, so wait until After the vehicle is in a parked state, restart the branch where the power improvement flag is set; if there is no state target number FCs_Hstate_i of the branch is equal to the number of fuel cells connected in series in the branch, then send a reminder to the driver to improve the health state of the hybrid system , reminding the driver that the power state of the hybrid system can be improved by restarting, and the vehicle is powered off during restarting.
  • HBS_state is equal to the fourth value and HBS_Hstate is equal to the fifth value, immediately assign the main state value HBS_state to the fifth value to trigger the failure shutdown processing program corresponding to when the main state value HBS_state is the fifth value.
  • HBS_state fifth value
  • HBS_Hstate fifth value
  • the fuel cell is shut down through the bypass isolating switch, or the fuel cell is restarted through the bypass isolating switch.
  • the application can be applied to the dynamic running process of a rail vehicle containing multiple fuel cells, to realize the power supply state transition when the power system fails, and to realize the controlled switching between different main states of the system.
  • the inventor applied this method to the third-generation fuel cell system of CRRC Tangshan New Energy Co., Ltd. to realize fault management when eight low-power fuel cells and power batteries are mixed for power supply.
  • the four fuel cells are divided into upper and lower two Each layer is tiled with two fuel cells as a series branch, the vehicle uses two branches in parallel to supply power, and uses PLC to implement the fault management method provided in this embodiment.
  • the number of vehicle shutdowns is reduced by 60% compared with that without this method (the number of failure shutdowns in the same test period is reduced from 5 times to 2 times), and in some cases the power system can automatically Restore power and greatly improve the power supply reliability of the hybrid system.
  • this application proposes a fault management method for a hybrid power system with multiple fuel cells, which has the following beneficial effects:
  • the power of the hybrid power system can be restored in time: when the hybrid power system containing multiple fuel cells changes from one fault state to another (normal) state with a lighter fault (regaining part of the power), the power provided by this application is adopted.
  • the method can automatically complete the switching of the power supply state of the hybrid power system while ensuring the safety of the system, so that the power can be self-recovered, or prompt the driver to complete the manual switching at an appropriate time, which effectively solves the problem that the power supply state of the hybrid power system can be improved but cannot be used. Or the problem that power can only be restored by restarting, improving the quality of power supply of the multi-fuel cell hybrid system.
  • an embodiment of the present application provides a fault management device for a hybrid power system with multiple fuel cells
  • the hybrid power system includes a power battery and a fuel cell system
  • the fuel cell system includes at least two parallel branches , there are at least two fuel cells connected in series in each branch, and each branch is connected to the DC bus through a DC/DC module, and the power battery is connected to the DC bus; two ends of each fuel cell are connected in parallel with bypass
  • a bypass isolating switch is used for connecting the fuel cell to the fuel cell system for power supply or disconnecting the fuel cell from the fuel cell system.
  • the device includes: a status value acquisition module 310 and a fault management module 320 .
  • the state value obtaining module 310 is used to obtain the main state value of the hybrid power system, and obtain the health state value of the hybrid power system at the current moment; the main state value and the health state value represent the power supply of the hybrid power system at different times State, the power supply state is determined by the power supply topology formed by the battery in the hybrid power system that can supply power to the outside; the fault management module 320 is used for two power supply states corresponding to the main state value and the health state value, Executing a fault handling program corresponding to the two power supply states, and controlling the bypass isolating switch according to the fault handling program.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种多燃料电池的混合动力***的故障管理方法及装置,该方法包括:获取混合动力***的主状态值;获取混合动力***在当前时刻的健康状态值;主状态值和健康状态值表示不同时刻混合动力***的供电状态,供电状态由混合动力***中可对外供电的电池形成的供电拓扑结构确定;根据主状态值与健康状态值对应的两种供电状态,执行与两种供电状态相对应的故障处理程序,并根据故障处理程序对旁路隔离开关进行控制。

Description

多燃料电池的混合动力***的故障管理方法及装置 技术领域
本申请涉及电池能源管理技术领域,具体地,涉及一种多燃料电池的混合动力***的故障管理方法及装置。
背景技术
轨道车辆动力***常采用燃料电池/动力电池构成的电电混合动力***。相比于汽车,轨道车辆混合动力***所需功率大,一般采用定制开发的大功率燃料电池***,成本高昂且技术成熟度低;而小功率燃料电池尽管技术成熟、可选择性强,但由于单机功率低,无法在轨道车辆上直接应用。
现有轨道车辆的混合动力***主要采用大功率燃料电池进行简单并联供电,如图1所示。该方案中每个大功率燃料电池均通过DC/DC模块连接到直流母线,动力电池采用直挂母线的方式。采用大功率燃料电池简单并联的混合动力***供电方案,由于单个燃料电池功率需求大,一般需要定制化开发,成本高昂;受燃料电池工作特性的影响,当车辆需求功率较小时,大功率燃料电池处在效率低点,不利于***效率的提升;由于***中燃料电池数量少,燃料电池***对外接口往往只有一个,当动力电池出现故障或燃料电池出现故障时,要么只能继续以仍处于正常状态的动力电池或燃料电池继续工作,要么将直接导致***停机,其容错能力较差。
发明内容
本申请实施例提供一种多燃料电池的混合动力***的故障管理方法及装置,以解决上述技术问题。
第一方面,本申请实施例提供了一种多燃料电池的混合动力***的故障管理方法,所述混合动力***包括动力电池和燃料电池***,所述燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,所述动力电池连接到所述直流母线;每个燃料电池的两端并联有旁路隔离开关,所述旁路隔离开关用于将燃料电池接 入到所述燃料电池***中进行供电或将燃料电池从所述燃料电池***中切除;所述方法包括:获取混合动力***的主状态值;获取混合动力***在当前时刻的健康状态值;所述主状态值和所述健康状态值表示不同时刻混合动力***的供电状态,所述供电状态由所述混合动力***中可对外供电的电池形成的供电拓扑结构确定;根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,并根据所述故障处理程序对所述旁路隔离开关进行控制。
第二方面,本申请实施例提供了一种多燃料电池的混合动力***的故障管理装置,所述混合动力***包括动力电池和燃料电池***,所述燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,所述动力电池连接到所述直流母线;每个燃料电池的两端并联有旁路隔离开关,所述旁路隔离开关用于将燃料电池接入到所述燃料电池***中进行供电或将燃料电池从所述燃料电池***中切除;所述装置包括:状态值获取模块,用于获取混合动力***的主状态值,以及获取混合动力***在当前时刻的健康状态值;所述主状态值和所述健康状态值表示不同时刻混合动力***的供电状态,所述供电状态由所述混合动力***中可对外供电的电池形成的供电拓扑结构确定;故障管理模块,用于根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,并根据所述故障处理程序对所述旁路隔离开关进行控制。
通过本技术方案,可将多个小功率燃料电池进行串、并联,组合成复杂的燃料电池***,相较于大功率燃料电池简单并联,可降低成本、提升***效率;同时,为实现由上述燃料电池***与动力电池组成的混合动力***的故障管理,将当前时刻的健康状态值与之前时刻的主状态值进行比对,主状态值与健康状态值反映不同时刻混合动力***的供电状态,根据主状态值与健康状态值对应的两种供电状态,执行相对应的故障处理程序,并根据故障处理程序对旁路隔离开关进行控制,从而通过旁路隔离开关将恢复动力的正常燃料电池重新 接入到***中或将燃料电池关闭。因而本方案能够根据当前时刻与之前时刻的供电状态间的不同情况及时作出相应的处理,如及时自恢复混合动力***的动力,或者及时将故障的燃料电池重启等,进而提高混合动力***的供电可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了相关技术中轨道车辆的混合动力***的结构示意图;
图2示出了本申请实施例中轨道车辆的混合动力***的结构示意图;
图3示出了本申请实施例提供的多燃料电池的混合动力***的故障管理方法的流程图;
图4示出了本申请实施例中健康状态值HBS_Hstate的确定过程的流程图;
图5示出了图4中步骤220的具体过程的流程图;
图6示出了本申请实施例提供的多燃料电池的混合动力***的故障管理装置的示意图。
具体实施方式
以下结合附图对本申请的示例性实施例进行详细说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请实施例将多个小功率燃料电池进行串、并联,组合成复杂燃料电池***,图2示出了本申请实施例提供的混合动力***的结构示意图,请参照图2,混合动力***包括:动力电池和燃料电池***,燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,具体的,同一支路上的所有燃料电池串联后通过DC/DC模块连接到直流母线,动力电池连接到同一直流母线上。混合动力***中,动力电池用于维持母线电压,其较大容量特点可防止母线电压的突变,起 到削峰填谷的作用。
在一种实施例中,燃料电池***包括两个并联的支路,分别为第一支路和第二支路,每个支路中均分别串联有四个燃料电池,如图2所示,燃料电池***为4串联-2并联的拓扑结构。可以理解的,燃料电池***也可以有三个、四个甚至更多个并联的支路,每个支路中串联的燃料电池的个数可以相等,也可以不等。
同一支路上,串联电流相等,电压为各燃料电池的电压之和,4个串联燃料电池连接到一个DC/DC模块输入端,保证DC/DC模块升压比控制在较小值,提高电-电转化效率;DC/DC模块主要是升压和稳压作用,升压是由于燃料电池的输出功率达不到车辆的使用需求,燃料电池单体串联太多会出现不均衡,导致性能下降,所以燃料电池厂家设置的输出电压比较低,需要进行升压;稳压是由于燃料电池的输出特性很软,电流增大会让电压迅速下降,因此燃料电池与DC/DC模块需要配合使用。
并联支路保证车辆的功率需求,同时提高车辆的供电可靠性;在每个燃料电池的两端并联有旁路隔离开关,以将燃料电池接入到燃料电池***中进行供电或将燃料电池从燃料电池***中切除,因此通过旁路隔离开关实现支路中任何一个燃料电池故障时,将故障燃料电池及时切除***,并在故障解除后将其重新接入***,从而克服串联支路可靠性低、并联支路成本高的缺点,提高多燃料电池耦合的燃料电池***的可靠性;储氢***为整个燃料电池***提供氢气。能量控制单元对混合动力***中各单元(动力电池、各个燃料电池、储氢***及DC/DC模块)进行控制。
根据图2所示的拓扑结构,含多燃料电池的混合动力***供电状态有如下6种:
(1)正常供电;
(2)跛行-混合供电;
(3)跛行-单动力电池供电;
(4)跛行-单燃料电池供电;
(5)跛行-单燃料电池故障供电;
(6)混合动力***故障。
上述供电状态由根据混合动力***中可对外供电的电池形成的供电拓扑结构确定。混合动力***中各个单元(如动力电池、燃料电池、储氢***或DC/DC模块)的故障状态统一划分为三种级别,0级表示无故障,1级表示某些参数偏离正常值,需要关注,但不影响运行;2级表示出现故障。故障级别在0级和1级,认为故障状态为正常,故障状态在2级,认为故障状态为故障。
当轨道车辆启动前,即混合动力***启动前将会初始化确定主状态值HBS_state,并以该主状态值HBS_state对应的供电处理程序进行初始运行,如当主状态值HBS_state为2时,执行的供电处理程序为单动力电池供电处理程序。
由于含多燃料电池的燃料电池***本身的结构复杂,与动力电池一起构成混合动力***后,若启动前混合动力***中某些单元出现故障,则在运行时可能以不同的故障供电拓扑运行。由于车辆运行过程中各单元的状态动态变化,混合动力***可能从正常状态进入故障状态,或反之,此时混合动力***的供电状态可能面临转换问题,这种转换可能从一种较轻的故障状态转化为另一种较重的故障状态(继续丧失动力),或从一种故障状态转为另一种较轻的故障(或正常)状态(重新获得一部分动力)。为此,本申请提出一种多燃料电池的混合动力***的故障管理方法,该方法以上述混合动力***结构为基础(部分实施例以图2中的4串联-2并联的结构为例进行说明),以主状态值和实时确定的健康状态值作为判断依据,执行相应的故障处理程序,从而对混合动力***的供电状态进行管理。
图3示出了本申请实施例提供的故障管理方法的流程图,请参照图3,该方法包括:
步骤110,获取混合动力***的主状态值。
步骤120,获取混合动力***在当前时刻的健康状态值。
步骤130,根据主状态值与健康状态值对应的两种供电状态,执行与该两种供电状态相对应的故障处理程序,并根据所执行的故障处理程序对旁路隔离开关进行控制。
其中,主状态值和健康状态值表示不同时刻混合动力***的供电状态,供电状态由混合动力***中可对外供电的电池形成的供电拓扑结构确定。
在一种实施例中,步骤110中的主状态值可能是在***启动前确定的,也可能是在混合动力***运行过程中,通过故障处理程序对主状态值进行重新赋值确定的,因此,在***启动后,主状态值并非一成不变的,而是动态变化的。
本实施例中,主状态值HBS_state与健康状态值HBS_Hstate的确定方式完全相同,下文以健康状态值HBS_Hstate为例对健康状态值HBS_Hstate的确定过程进行说明,但应当理解,主状态值HBS_state也是通过相同方式进行确定,因此不特意对主状态值HBS_state进行说明。
图4示出了本实施例中健康状态值HBS_Hstate的确定过程,具体包括:
步骤210,获取动力电池的故障状态值Alarm_Bat。
将动力电池的故障状态划分为三种级别,0级表示无故障,1级表示某些参数偏离正常值,需要关注,但不影响运行,2级表示出现故障。故障级别在0级和1级,认为故障状态为正常,故障状态在2级,认为故障状态为故障。因此,若故障级别为0级或1级,将动力电池的故障状态值Alarm_Bat赋值为1,表示动力电池正常,若故障级别为2级,将动力电池的故障状态值Alarm_Bat赋值为0,表示动力电池故障。
步骤220,获取燃料电池***的状态数FCs_Hstate,FCs_Hstate表示燃料电池***中可对外供电的燃料电池的总个数。
具体的,请参照图5,步骤220具体包括:
步骤221,分别识别每个燃料电池的故障状态。
将燃料电池的故障状态划分为三种级别,0级表示无故障,1级表示某些参数偏离正常值,需要关注,但不影响运行,2级表示出现故障。故障级别在0级和1级,认为故障状态为正常,故障状态在2级,认为故障状态为故障。若燃料电池的故障级别为0级或1级,则确定该燃料电池的故障状态为正常,若燃料电池的故障级别为2级,则确定该燃料电池的故障状态为故障。
步骤222,根据每个燃料电池的故障状态分别统计各支路的状态参考数FCs_Hstate_i_re。
其中,FCs_Hstate_i_re表示第i个支路中故障状态为正常的燃料电池的个数。若第2个支路中串联有4个燃料电池,其中3个燃料电池的故障状态为正常,1个燃料电池的故障状态为故障,则得到第2个支路的状态参考数FCs_Hstate_2_re为3。
步骤223,根据各支路的状态参考数FCs_Hstate_i_re确定状态数FCs_Hstate。
其中,在获得各支路的状态参考数FCs_Hstate_i_re之后,判断燃料电池***连接的储氢***是否故障,将储氢***的故障状态划分为三种级别,0级表示无故障,1级表示某些参数偏离正常值,需要关注,但不影响运行,2级表示出现故障。故障级别在0级和1级,认为故障状态为正常,故障状态在2级,认为故障状态为故障。若储氢***的故障级别为0级或1级,则确定储氢***未故障,若储氢***的故障级别为2级,则确定储氢***故障。
若储氢***未故障,则进一步判断各支路连接的DC/DC模块是否故障;将DC/DC模块未故障的支路的状态参考数FCs_Hstate_i_re赋值给该支路的状态目标数FCs_Hstate_i,并将DC/DC模块故障的支路的状态目标数FCs_Hstate_i置零,FCs_Hstate_i表示第i个支路中可对外供电的燃料电池的个数;根据各支路的状态目标数FCs_Hstate_i之和得到状态数FCs_Hstate。
由于整个燃料电池***采用一套储氢***供氢,若储氢***故障,则整个燃料电池***都将无法正常运行,即无法对外供电,此时将各支路的状态目标数FCs_Hstate_i和燃料电池***的状态数FCs_Hstate均直接置零。
以图2为例,在上述步骤221-222的一种具体实施例中,逐个识别燃料电池的故障状态,若燃料电池故障级别不为2级,则认为该燃料电池正常,将其故障状态值FCX_X_OK设为1,否则置0,FCX_X_OK中第一个X为支路标号,代表并联的两条支路,取值为1-2,第二个X为燃料电池编号,代表串联的4个燃料电池,取值为1-4;然后将各支路燃料电池的故障状态值FCX_X_OK求和并分别赋值给FCs_Hstate_1_re和FCs_Hstate_2_re;判断储氢***是否故障,若储氢***故障,则将表示支路可对外供电的燃料电池个数的状态目标数FCs_Hstate_1、FCs_Hstate_2,以及燃料电池***的状态数FCs_Hstate均置0;若储氢***未故障,进一步判断各支路所连接的DC/DC模块的故障状态,若该支路的DC/DC模块故障(即出现2级故障级别),则将该支路状态目标数FCs_Hstate_i置为0,如果两个支路的DC/DC模块均未故障,则将FCs_Hstate_1_re、FCs_Hstate_2_re分别赋值给FCs_Hstate_1,FCs_Hstate_2,再对FCs_Hstate_1和FCs_Hstate_2进行求和,得到燃料电池***的状态数FCs_Hstate。
在获得动力电池的故障状态值Alarm_Bat和燃料电池***的状态数FCs_Hstate后,执行步骤230,根据Alarm_Bat和FCs_Hstate确定混合动力***的健康状态值HBS_Hstate。
健康状态值HBS_Hstate表示混合动力***当前实时时刻的供电状态,如上文所示,本实施例中的混合动力***共包括6种供电状态:(1)正常供电;(2)跛行-混合供电;(3)跛行-单动力电池供电;(4)跛行-单燃料电池供电;(5)跛行-单燃料电池故障供电;(6)混合动力***故障。
在步骤230中,健康状态值HBS_Hstate的具体确定过程为:
(1)正常供电状态HBS_Hstate=0:混合动力***中动力电池和燃料电池***均正常,可按照正常的能量分配策略提供动力。
当Alarm_Bat表示动力电池正常,且FCs_Hstate等于M时,将健康状态值HBS_Hstate赋值为目标数值,其中,M为燃料电池***中包含的燃料电池总个数,目标数值对应混合动力***的正常供电状态,为便于实施,目标数值可为0。
(2)跛行-混合供电状态HBS_Hstate=1:此状态下动力电池正常,燃料电池***中存在部分燃料电池故障,此时混合动力***以混合供电方式提供动力,由于***包含8个燃料电池,HBS_Hstate=1的***拓扑包含多种情况,如单支路故障、双支路故障,且支路故障数也有多种组合,因而即使主状态值和健康状态值一致的情况下,混合动力***的供电状态也可能发生转换。
当Alarm_Bat表示动力电池正常,且FCs_Hstate∈[1,M-1]时,将健康状态值HBS_Hstate赋值为第一数值,第一数值对应混合动力***的混合供电状态;为便于实施,第一数值可为1。
(3)跛行-单动力电池供电HBS_Hstate=2:此状态下动力电池正常,整个燃料电池***均无法正常供电,可采用动力电池单独为***供电。
当Alarm_Bat表示动力电池正常,且FCs_Hstate等于0时,将健康状态值HBS_Hstate赋值为第二数值,第二数值对应混合动力***的单动力电池供电状态,为便于实施,第二数值可为2。
(4)跛行-单燃料电池供电HBS_Hstate=3:此状态下动力电池故障,整个燃料电池***中各燃料电池均正常,由于直流母线上无稳压源,此时可将燃料电池连接的DC/DC模块设置为电压源工作模式进行对外输出。
当Alarm_Bat表示动力电池故障,且FCs_Hstate等于M时,将健康状态值HBS_Hstate赋值为第三数值,第三数值对应混合动力***的单燃料电池供电状态;为便于实施,第三数值可为3。
(5)跛行-单燃料电池故障供电HBS_Hstate=4:此状态下动力电池故障,燃料电池***中存在部分燃料电池故障,混合动力***可利用处于正常状态的燃料电池对外供电。同时,为满足车辆最低供电(辅助负载供电)要求,当FCs_Hstate不小于预设的基础个数时才将HBS_Hstate赋值为4。由于***包含8个燃料电池,HBS_Hstate=4的***拓扑包含多种情况,如单支路故障、双支路故障,且支路故障数也有多种组合,因而即使主状态值和健康状态值一致的情况下,混合动力***的供电状态也可能发生转换。
当Alarm_Bat表示动力电池故障,且FCs_Hstate∈[M’,M-1]时,将健康状态值HBS_Hstate赋值为第四数值,其中,M’为满足车辆最低供电要求的燃料电池基础个数,第四数值对应混合动力***的单燃料电池故障供电状态;为便于实施,第四数值可为4,满足车辆最低供电要求的燃料电池基础个数M’可为2。
(6)混合动力***故障HBS_Hstate=5:此状态下动力电池和整个燃料电池***均故障(或者燃料电池不满足车辆最低供电要求),混合动力***无法对外输出,需要关闭电源排查故障。
当Alarm_Bat表示动力电池故障,且FCs_Hstate∈[0,M’)时,将健康状态值HBS_Hstate赋值为第五数值,第五数值对应混合动力***故障状态,为便于实施例,第五数值可为5。
当***启动时,若主状态值HBS_state为目标数值,则按照正常供电处理程序启动;若主状态值HBS_state为第一数值,则按照混合供电处理程序启动;若主状态值HBS_state为第二数值,则按照单动力电池供电处理程序启动;若主状态值HBS_state为第三数值,则按照单燃料电池供电处理程序启动;若主状态值HBS_state为第四数值,则按照单燃料电池故障供电处理程序启动;若主状态值HBS_state为第五数值,则执行故障停机处理程序,***不启动。
在获取混合动力***的主状态值HBS_state和健康状态值HBS_Hstate之后,根据主状态值HBS_state和健康状态值HBS_Hstate对应的两种供电状态, 执行相对应的故障处理程序。本实施例下文给出主状态值HBS_state、健康状态值HBS_Hstate为不同数值时所执行的故障处理程序的具体实现方式,共包括以下几种情况:
第一种情况:HBS_state=HBS_Hstate=第一数值
当HBS_state和HBS_Hstate均等于第一数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路。其中,主状态值HBS_state确定时刻可能是***启动前对主状态值HBS_state进行确定的时刻,也可能是***运行过程中对主状态值HBS_state进行重新赋值的时刻。
若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
可选的,燃料电池***包括并联的第一支路和第二支路,在关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路之后,分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;其中,动力改善标志表示支路动力是否有改善,运行状态标志表示支路是否处于运行状态;若程序跳转标志置零,判断是否出现以下三种情况中的任意一种:
FCs1_rs置位且FCs2_rs置位;或,
FCs1_rs置位且FCs2_run置零;或,
FCs2_rs置位且FCs1_run置零;
若出现上述三种情况中的任意一种,表示两条支路均出现动力改善,或者其中一条支路出现动力改善且另一条支路已被关闭,这三种情况若要改善动力,则需要将燃料电池***全部关掉后才能重启,因此,等待至车辆处于停车 状态后,关闭动力改善标志置位的支路,并将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。在进入单动力电池供电处理程序后,整个燃料电池***全部被关闭。
若没有出现上述三种情况,表明只有一条支路需要更新(另一条支路已经在供电,且状态没变),则重启需要更新的支路。例如,FCs1_rs置位且FCs2_run置位时不属于上述三种情况中的任意一种,其表示第一支路的动力改善,且第二支路处于运行状态,此时只需要重启第一支路即可。
第二种情况:HBS_state=HBS_Hstate=第四数值
当HBS_state和HBS_Hstate均等于第四数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零。
若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机。
可选的,燃料电池***包括并联的第一支路和第二支路,在关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路之后,分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;
若程序跳转标志置零,判断是否出现以下三种情况中的任意一种:
FCs1_rs置位且FCs2_rs置位;或,
FCs1_rs置位且FCs2_run置零;或,
FCs2_rs置位且FCs1_run置零;
若出现三种情况中的任意一种,则向驾驶员发送混合动力***的健康状态改善提示,提示驾驶员可通过重启改善混合动力***的动力状态,重启期间车辆断电。
若未出现上述三种情况中的任意一种,且第一支路和第二支路的动力改善标志并未均置零,则等待至车辆处于停车状态后,重启动力改善标志置位的支路。若第一支路和第二支路的动力改善标志均置零,表明两条支路均没有动力改善,此时,可不执行任何操作,保持当前的供电处理程序继续运行。
第三种情况:HBS_state=目标数值,HBS_Hstate!=目标数值
HBS_state=目标数值,HBS_Hstate!=目标数值时共包括以下几种子情况:
(1)当HBS_state等于目标数值,且HBS_Hstate等于第一数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
(2)当HBS_state等于目标数值,且HBS_Hstate等于第二数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;由于HBS_Hstate等于第二数值,相比该主状态值HBS_state的确定时刻,两支路均新增故障燃料电池,在关闭状态目标数FCs_Hstate_i减少的支路后,两支路必然均被关闭,即两支路均停机,因此,立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
(3)当HBS_state等于目标数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,由于动力电池直挂直流母线,在该主状态值HBS_state的确 定时刻,动力电池与燃料电池一同供电,那时DC/DC模块的控制模式被设置为电流源工作模式,若反映当前实时供电状态的健康状态值HBS_Hstate等于第三数值、第四数值或第五数值时,表明动力电池故障,需要由燃料电池供电,此时首要目标是维持母线电压,所以需要将DC/DC模块的控制模式由电流源工作模式更改为电压源工作模式,而模式切换必须通过停机才能实现,不能直接进行切换,因此,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机,在停机后可完成DC/DC模块的模式切换。
第四种情况:HBS_state=第一数值,HBS_Hstate!=第一数值
HBS_state=第一数值,HBS_Hstate!=第一数值时共包括以下几种子情况:
(1)当HBS_state等于第一数值,且HBS_Hstate等于目标数值时,更新燃料电池***中各燃料电池的故障状态;分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;判断是否出现以下三种情况中的任意一种:
FCs1_rs置位且FCs2_rs置位;或,
FCs1_rs置位且FCs2_run置零;或,
FCs2_rs置位且FCs1_run置零;
若出现三种情况中的任意一种,则等待至车辆处于停车状态后,关闭动力改善标志置位的支路,并将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
(2)当HBS_state等于第一数值,且HBS_Hstate等于第二数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
(3)当HBS_state等于第一数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
第五种情况:HBS_state=第二数值,HBS_Hstate!=第二数值
HBS_state=第二数值,HBS_Hstate!=第二数值时共包括以下几种子情况:
(1)当HBS_state等于第二数值,且HBS_Hstate等于目标数值或第一数值时,等待至车辆处于停车状态后,将当前的健康状态值HBS_Hstate赋值给主状态值HBS_state,以触发进入新的主状态值对应的供电处理程序。
示例性地,若此刻HBS_Hstate等于目标数值,则将主状态值HBS_state赋值为目标数值,以触发进入正常供电处理程序,若此刻HBS_Hstate等于第一数值,则将主状态值HBS_state赋值为第一数值,以触发进入混合供电处理程序。
(2)当HBS_state等于第二数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,表明动力电池由原本的正常状态变为故障状态,于是需要将动力电池从***中切除,燃料电池***中的DC/DC模块同时切换至由电压源工作模式接入母线,为防止动力电池切换、燃料电池接入过程中母线电压出现较大波动,本次切换通过停机完成,因此,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机,在停机后可完成切换。
第六种情况:HBS_state=第三数值,HBS_Hstate!=第三数值
HBS_state=第三数值,HBS_Hstate!=第三数值时共包括以下几种子情况:
(1)当HBS_state等于第三数值,且HBS_Hstate等于目标数值或第一数值时,此时动力电池恢复正常,可以进入混合供电模式,但动力电池的恢复需要通过停机切换才能完成,于是,向驾驶员发送停机切换提示,提示驾驶员动力电池恢复正常,可通过停机切换进入混合供电状态,由驾驶员根据自需求选 择是否停机切换,不采用程序进行干预,停机切换过程中混合动力***丧失动力。
(2)当HBS_state等于第三数值,且HBS_Hstate等于第二数值时,混合动力***可通过停机转入动力电池供电,于是立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机,在停机后可完成转换。
(3)当HBS_state等于第三数值,且HBS_Hstate等于第四数值时,更新燃料电池***中各燃料电池的故障状态;关闭与主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
(4)当HBS_state等于第三数值,且HBS_Hstate等于第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机。
第七种情况:HBS_state=第四数值,HBS_Hstate!=第四数值
HBS_state=第四数值,HBS_Hstate!=第四数值时共包括以下几种子情况:
(1)当HBS_state等于第四数值,且HBS_Hstate等于目标数值或第一数值时,此时动力电池恢复正常,可以进入混合供电模式,但动力电池的恢复需要通过停机切换才能完成,于是,向驾驶员发送停机切换提示,提示驾驶员动力电池恢复正常,可通过停机切换进入混合供电状态,由驾驶员根据自需求选择是否停机切换,不采用程序进行干预,停机切换过程中混合动力***丧失动力。
(2)当HBS_state等于第四数值,且HBS_Hstate等于第二数值时,混合动力***可通过停机转入动力电池供电,于是立刻将主状态值HBS_state赋值 为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序,执行故障停机后可完成供电状态的切换。
(3)当HBS_state等于第四数值,且HBS_Hstate等于第三数值时,更新燃料电池***中各燃料电池的故障状态;分别确定各支路的动力改善标志,并判断在主状态值HBS_state确定时刻是否有支路的状态目标数FCs_Hstate_i等于该支路中串联的燃料电池个数,例如,每个支路串联有4个燃料电池,则判断在之前的主状态值HBS_state确定时刻是否有支路的状态目标数FCs_Hstate_i等于4。
若有支路的状态目标数FCs_Hstate_i等于该支路中串联的燃料电池个数,则本次切换过程无需停机,只需在停车时重启动力改善标志置位的支路即可,于是,等待至车辆处于停车状态后,重启动力改善标志置位的支路;若没有支路的状态目标数FCs_Hstate_i等于该支路中串联的燃料电池个数,则向驾驶员发送混合动力***的健康状态改善提示,提示驾驶员可通过重启改善混合动力***的动力状态,重启期间车辆断电。
(4)当HBS_state等于第四数值,且HBS_Hstate等于第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
第八种情况:HBS_state=第五数值,HBS_Hstate=第五数值
当混合动力***启动前确定主状态值HBS_state为第五数值时,原则上车辆进行故障停机,不启动,但若按下车辆的启动开关,则自动进入本实施例所提供的故障管理方法的流程,自动计算当前的健康状态值HBS_Hstate,此时,HBS_state=HBS_Hstate=第五数值,在一种实施例中,可通过将主状态值HBS_state再次赋值为第五数值,触发进入故障停机程序,使车辆停机。
第九种情况:HBS_state=HBS_Hstate!=第一数值或第四数值
当HBS_state=HBS_Hstate=目标数值或第二数值或第三数值时,表明混合动力***的供电状态未发生变化,此时可不执行任何操作,保持当前的供电处理程序继续运行。
在上述执行故障处理程序的过程中,通过旁路隔离开关将燃料电池关闭,或通过旁路隔离开关将燃料电池重启。
本申请可应用于含多燃料电池的轨道车辆的动态运行过程中,实现动力***发生故障时的供电状态转换,以及实现***不同主状态间的受控切换。发明人将该方法应用在中车唐山公司新能源第三代燃料电池***中,实现8个小功率燃料电池与动力电池混合供电时的故障管理,具体的,将4个燃料电池分为上下两层,每层平铺两个燃料电池作为一条串联支路,车辆采用两条支路并联供电,采用PLC实施本实施例提供的故障管理方法。经实际测试,在采用本方法后,车辆停机次数较未采用该方法降低了60%(相同测试周期内故障停机次数由5次较少为2次),且在某些情况下动力***可自动恢复动力,大幅提高混合动力***的供电可靠性。
综上所述,本申请提出了一种多燃料电池的混合动力***的故障管理方法,具有以下有益效果:
(1)在不直接干预混合动力***当前运行状态的条件下实现***适用主状态的实时判定:含多燃料电池的燃料电池混合动力***在启动时已完成主状态HBS_state的判定,由于主状态之间的切换不是任意的,当***运行后且适用的主状态发生变化时,若直接修改***主状态值HBS_state将导致***的主状态发生不受控的转化,导致***故障,因此本申请采用单独设置***健康状态值HBS_Hstate,且采用与主状态值HBS_state相同的确定方式来确定健康状态值HBS_Hstate,从而既能实时判断***当前适用的主状态,又不直接对主状态值进行干预。
(2)降低了含多燃料电池的燃料电池混合动力***故障停机次数,提高混合动力***供电可靠性:含多燃料电池的混合动力***启动时,根据***中 各单元(动力电池、燃料电池或DC/DC模块)的故障情况可进入不同的主状态下运行,当***运行后且适用的主状态发生变化时,采用本申请提供的方法可实现不同主状态间的受控切换,有效避免了***状态切换只能通过停机完成的困境,提高了混合动力***的供电可靠性。
(3)可及时恢复混合动力***的动力:含多燃料电池的混合动力***从一种故障状态转为另一种较轻的故障(正常)状态(重新获得一部分动力)时,采用本申请提供的方法可在保证***安全的同时,自动完成混合动力***供电状态的切换,使动力自恢复,或提示驾驶员在适当时机完成手动切换,有效解决了混合动力***供电状态改善却无法被利用,或只能通过重启来恢复动力的问题,提高了多燃料电池混合动力***的供电质量。
基于同一发明构思,本申请实施例提供一种多燃料电池的混合动力***的故障管理装置,所述混合动力***包括动力电池和燃料电池***,所述燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,所述动力电池连接到所述直流母线;每个燃料电池的两端并联有旁路隔离开关,所述旁路隔离开关用于将燃料电池接入到所述燃料电池***中进行供电或将燃料电池从所述燃料电池***中切除。混合动力***的具体结构可参考图2及其说明。请参照图6,该装置包括:状态值获取模块310和故障管理模块320。
其中,状态值获取模块310用于获取混合动力***的主状态值,以及获取混合动力***在当前时刻的健康状态值;所述主状态值和所述健康状态值表示不同时刻混合动力***的供电状态,所述供电状态由所述混合动力***中可对外供电的电池形成的供电拓扑结构确定;故障管理模块320用于根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,并根据所述故障处理程序对所述旁路隔离开关进行控制。
可以理解,本实施例中的多燃料电池的混合动力***的故障管理装置,其实现原理及产生的技术效果在前述方法实施例中已经介绍,为简要描述,该多 燃料电池的混合动力***的故障管理装置中未提及之处可以参照多燃料电池的混合动力***的故障管理方法中的相应描述,在此不赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申 请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种多燃料电池的混合动力***的故障管理方法,其特征在于,所述混合动力***包括动力电池和燃料电池***,所述燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,所述动力电池连接到所述直流母线;每个燃料电池的两端并联有旁路隔离开关,所述旁路隔离开关用于将燃料电池接入到所述燃料电池***中进行供电或将燃料电池从所述燃料电池***中切除;所述方法包括:
    获取混合动力***的主状态值;
    获取混合动力***在当前时刻的健康状态值;所述主状态值和所述健康状态值表示不同时刻混合动力***的供电状态,所述供电状态由所述混合动力***中可对外供电的电池形成的供电拓扑结构确定;
    根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,并根据所述故障处理程序对所述旁路隔离开关进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述主状态值和所述健康状态值均通过如下方式确定:
    获取动力电池的故障状态值Alarm_Bat;
    获取燃料电池***的状态数FCs_Hstate,FCs_Hstate表示所述燃料电池***中可对外供电的燃料电池的总个数;
    根据Alarm_Bat和FCs_Hstate确定混合动力***的主状态值HBS_state或健康状态值HBS_Hstate。
  3. 根据权利要求2所述的方法,其特征在于,所述获取燃料电池***的状态数FCs_Hstate,包括:
    分别识别每个燃料电池的故障状态,所述故障状态包括正常或故障;
    根据每个燃料电池的故障状态分别统计各支路的状态参考数FCs_Hstate_i_re,FCs_Hstate_i_re表示第i个支路中故障状态为正常的燃料电池的个数;
    根据各支路的状态参考数FCs_Hstate_i_re确定所述状态数FCs_Hstate。
  4. 根据权利要求3所述的方法,其特征在于,所述根据各支路的状态参考数FCs_Hstate_i_re确定所述状态数FCs_Hstate,包括:
    判断所述燃料电池***连接的储氢***是否故障;
    若储氢***未故障,则判断各支路连接的DC/DC模块是否故障;
    将DC/DC模块未故障的支路的状态参考数FCs_Hstate_i_re赋值给所述支路的状态目标数FCs_Hstate_i,以及将DC/DC模块故障的支路的状态目标数FCs_Hstate_i置零,FCs_Hstate_i表示第i个支路中可对外供电的燃料电池的个数;
    根据各支路的状态目标数FCs_Hstate_i之和得到所述状态数FCs_Hstate。
  5. 根据权利要求4所述的方法,其特征在于,在判断所述燃料电池***连接的储氢***是否故障之后,所述方法还包括:
    若储氢***故障,则将所述燃料电池***的状态数FCs_Hstate直接置零。
  6. 根据权利要求4所述的方法,其特征在于,所述根据Alarm_Bat和FCs_Hstate确定混合动力***的主状态值HBS_state或健康状态值HBS_Hstate,包括:
    当Alarm_Bat表示动力电池正常,且FCs_Hstate等于M时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为目标数值,其中,M为所述燃料电池***中包含的燃料电池总个数,目标数值对应混合动力***的正常供电状态;
    当Alarm_Bat表示动力电池正常,且FCs_Hstate∈[1,M-1]时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为第一数值,第一数值对应混合动力***的混合供电状态;
    当Alarm_Bat表示动力电池正常,且FCs_Hstate等于0时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为第二数值,第二数值对应混合动力***的单动力电池供电状态;
    当Alarm_Bat表示动力电池故障,且FCs_Hstate等于M时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为第三数值,第三数值对应混合动力***的单燃料电池供电状态;
    当Alarm_Bat表示动力电池故障,且FCs_Hstate∈[M’,M-1]时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为第四数值,其中,M’为满足车辆最低供电要求的燃料电池基础个数,第四数值对应混合动力***的单燃料电池故障供电状态;
    当Alarm_Bat表示动力电池故障,且FCs_Hstate∈[0,M’)时,将主状态值HBS_state或健康状态值HBS_Hstate赋值为第五数值,第五数值对应混合动力***故障状态。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state和HBS_Hstate均等于第一数值时,更新燃料电池***中各燃料电池的故障状态;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;
    若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  8. 根据权利要求7所述的方法,其特征在于,所述燃料电池***包括并联的第一支路和第二支路,在关闭与所述主状态值HBS_state确定时刻的状态目 标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路之后,所述方法还包括:
    分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;所述动力改善标志表示支路动力是否有改善,所述运行状态标志表示支路是否处于运行状态;
    若程序跳转标志置零,判断是否出现以下三种情况中的任意一种:
    FCs1_rs置位且FCs2_rs置位;或,
    FCs1_rs置位且FCs2_run置零;或,
    FCs2_rs置位且FCs1_run置零;
    若出现所述三种情况中的任意一种,则等待至车辆处于停车状态后,关闭动力改善标志置位的支路,并将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  9. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state和HBS_Hstate均等于第四数值时,更新燃料电池***中各燃料电池的故障状态;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;
    若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  10. 根据权利要求9所述的方法,其特征在于,所述燃料电池***包括并联的第一支路和第二支路,在关闭与所述主状态值HBS_state确定时刻的状态目 标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路之后,所述方法还包括:
    分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;所述动力改善标志表示支路动力是否有改善,所述运行状态标志表示支路是否处于运行状态;
    若程序跳转标志置零,判断是否出现以下三种情况中的任意一种:
    FCs1_rs置位且FCs2_rs置位;或,
    FCs1_rs置位且FCs2_run置零;或,
    FCs2_rs置位且FCs1_run置零;
    若出现所述三种情况中的任意一种,则向驾驶员发送混合动力***的健康状态改善提示,提示驾驶员可通过重启改善混合动力***的动力状态。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若未出现所述三种情况中的任意一种,且第一支路和第二支路的动力改善标志并未均置零,则等待至车辆处于停车状态后,重启动力改善标志置位的支路。
  12. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于目标数值,且HBS_Hstate等于第一数值时,更新燃料电池***中各燃料电池的故障状态;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;
    若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  13. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于目标数值,且HBS_Hstate等于第二数值时,更新燃料电池***中各燃料电池的故障状态;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  14. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于目标数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  15. 根据权利要求6所述的方法,其特征在于,所述燃料电池***包括并联的第一支路和第二支路,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第一数值,且HBS_Hstate等于目标数值时,更新燃料电池***中各燃料电池的故障状态;
    分别确定第一支路的动力改善标志FCs1_rs和运行状态标志FCs1_run,以及第二支路的动力改善标志FCs2_rs和运行状态标志FCs2_run;所述动力改善 标志表示支路动力是否有改善,所述运行状态标志表示支路是否处于运行状态;
    判断是否出现以下三种情况中的任意一种:
    FCs1_rs置位且FCs2_rs置位;或,
    FCs1_rs置位且FCs2_run置零;或,
    FCs2_rs置位且FCs1_run置零;
    若出现所述三种情况中的任意一种,则等待至车辆处于停车状态后,关闭动力改善标志置位的支路,并将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  16. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第一数值,且HBS_Hstate等于第二数值时,更新燃料电池***中各燃料电池的故障状态,所述故障状态包括正常或故障;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    立刻将主状态值HBS_state赋值为第二数值,以触发进入主状态值HBS_state为第二数值时所对应的单动力电池供电处理程序。
  17. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第一数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  18. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第二数值,且HBS_Hstate等于目标数值或第一数值时,则等待至车辆处于停车状态后,将当前的所述健康状态值HBS_Hstate赋值给主状态值HBS_state,以触发进入新的主状态值对应的供电处理程序。
  19. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第二数值,且HBS_Hstate等于第三数值、第四数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  20. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第三数值,且HBS_Hstate等于目标数值或第一数值时,向驾驶员发送停机切换提示,提示驾驶员动力电池恢复正常,可通过停机切换进入混合供电状态。
  21. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第三数值,且HBS_Hstate等于第二数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  22. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第三数值,且HBS_Hstate等于第四数值时,更新燃料电池***中各燃料电池的故障状态;
    关闭与所述主状态值HBS_state确定时刻的状态目标数FCs_Hstate_i相比,当前时刻的状态目标数FCs_Hstate_i减少的支路;
    若所有支路均被关闭,将程序跳转标志置位,否则,将程序跳转标志置零;
    若程序跳转标志置位,则立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  23. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第四数值,且HBS_Hstate等于目标数值或第一数值时,向驾驶员发送停机切换提示,提示驾驶员动力电池恢复正常,可通过停机切换进入混合供电状态。
  24. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第四数值,且HBS_Hstate等于第二数值或第五数值时,立刻将主状态值HBS_state赋值为第五数值,以触发进入主状态值HBS_state为第五数值时所对应的故障停机处理程序。
  25. 根据权利要求6所述的方法,其特征在于,所述根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,包括:
    当HBS_state等于第四数值,且HBS_Hstate等于第三数值时,更新燃料电池***中各燃料电池的故障状态;
    分别确定各支路的动力改善标志,并判断在所述主状态值HBS_state的确定时刻是否有支路的状态目标数FCs_Hstate_i等于该支路中串联的燃料电池个数;所述动力改善标志表示支路动力是否有改善;
    若有支路的状态目标数FCs_Hstate_i等于该支路中串联的燃料电池个数,则等待至车辆处于停车状态后,重启动力改善标志置位的支路;
    否则,向驾驶员发送混合动力***的健康状态改善提示,提示驾驶员可通过重启改善混合动力***的动力状态。
  26. 一种多燃料电池的混合动力***的故障管理装置,其特征在于,所述混合动力***包括动力电池和燃料电池***,所述燃料电池***包括至少两个并联的支路,每个支路中串联有至少两个燃料电池,各支路分别通过一DC/DC模块连接到直流母线,所述动力电池连接到所述直流母线;每个燃料电池的两端并联有旁路隔离开关,所述旁路隔离开关用于将燃料电池接入到所述燃料电池***中进行供电或将燃料电池从所述燃料电池***中切除;所述装置包括:
    状态值获取模块,用于获取混合动力***的主状态值,以及获取混合动力***在当前时刻的健康状态值;所述主状态值和所述健康状态值表示不同时刻混合动力***的供电状态,所述供电状态由所述混合动力***中可对外供电的电池形成的供电拓扑结构确定;
    故障管理模块,用于根据所述主状态值与所述健康状态值对应的两种供电状态,执行与所述两种供电状态相对应的故障处理程序,并根据所述故障处理程序对所述旁路隔离开关进行控制。
PCT/CN2021/133407 2021-08-05 2021-11-26 多燃料电池的混合动力***的故障管理方法及装置 WO2023010722A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21952585.4A EP4382339A1 (en) 2021-08-05 2021-11-26 Fault management method and device for hybrid power system having multiple fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110895977.4 2021-08-05
CN202110895977.4A CN113665363B (zh) 2021-08-05 2021-08-05 多燃料电池的混合动力***的故障管理方法及装置

Publications (1)

Publication Number Publication Date
WO2023010722A1 true WO2023010722A1 (zh) 2023-02-09

Family

ID=78541562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133407 WO2023010722A1 (zh) 2021-08-05 2021-11-26 多燃料电池的混合动力***的故障管理方法及装置

Country Status (3)

Country Link
EP (1) EP4382339A1 (zh)
CN (1) CN113665363B (zh)
WO (1) WO2023010722A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665363B (zh) * 2021-08-05 2023-01-24 中车唐山机车车辆有限公司 多燃料电池的混合动力***的故障管理方法及装置
CN113665364B (zh) * 2021-08-05 2023-01-24 中车唐山机车车辆有限公司 多燃料电池的混合动力***及其能量管理方法、装置
CN114103734B (zh) * 2021-12-30 2024-06-18 潍柴动力股份有限公司 一种燃料电池汽车的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010985A1 (de) * 2000-03-07 2001-09-20 Daimler Chrysler Ag Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
CN101524967A (zh) * 2008-03-04 2009-09-09 现代自动车株式会社 具有多电源和多驱动***的混合燃料电池车及其控制方法
CN104786861A (zh) * 2015-04-15 2015-07-22 西南交通大学 燃料电池控制***及其包含燃料电池控制***的有轨电车
SE2050663A1 (en) * 2020-06-05 2021-07-27 Myfc Ab A fuel cell and battery hybrid system
CN113665363A (zh) * 2021-08-05 2021-11-19 中车唐山机车车辆有限公司 多燃料电池的混合动力***的故障管理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2754251Y (zh) * 2004-07-28 2006-01-25 百拉得动力***公司 具有燃料电池***阵列的电源装置
DE102012222343A1 (de) * 2012-12-05 2014-06-05 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Versorgungsspannung und elektrisches Antriebssystem
DE102019110343A1 (de) * 2019-04-18 2020-10-22 e.Go REX GmbH Schaltungsanordnung für ein bordnetz eines elektrisch angetriebenen kraftfahrzeugs und verfahren zum betreiben einer solchen schaltungsanordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010985A1 (de) * 2000-03-07 2001-09-20 Daimler Chrysler Ag Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
CN101524967A (zh) * 2008-03-04 2009-09-09 现代自动车株式会社 具有多电源和多驱动***的混合燃料电池车及其控制方法
CN104786861A (zh) * 2015-04-15 2015-07-22 西南交通大学 燃料电池控制***及其包含燃料电池控制***的有轨电车
SE2050663A1 (en) * 2020-06-05 2021-07-27 Myfc Ab A fuel cell and battery hybrid system
CN113665363A (zh) * 2021-08-05 2021-11-19 中车唐山机车车辆有限公司 多燃料电池的混合动力***的故障管理方法及装置

Also Published As

Publication number Publication date
CN113665363A (zh) 2021-11-19
CN113665363B (zh) 2023-01-24
EP4382339A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
WO2023010722A1 (zh) 多燃料电池的混合动力***的故障管理方法及装置
CN113665364B (zh) 多燃料电池的混合动力***及其能量管理方法、装置
CN106515490A (zh) 一种新能源电动汽车的整车控制方法
CN110549867B (zh) 一种氢燃料电池车的双模式自动切换控制方法
CN108437835A (zh) 电源***
CN110696814B (zh) 混合动力汽车的供电控制方法和装置
CN113799610B (zh) 车辆冗余控制方法、装置和车辆
CN110341543A (zh) 高压下电控制方法、交流充电***及电动汽车
JP2022525825A (ja) バッテリーパック管理システム、バッテリーパック、車両及び管理方法
CN115179818A (zh) 一种插电式燃料电池汽车上下电控制方法及***
CN114274841A (zh) 一种多支路动力电池***并联直挂控制方法
CN114030458B (zh) 一种混动车控制方法、装置、设备和介质
CN113696748A (zh) 一种燃料电池供电***及其控制方法和控制装置
CN114771358A (zh) 一种燃料电池汽车动力***的控制方法及装置
CN113937747A (zh) 直流组网船舶混动实验室的能量控制***及其控制方法
CN113954773B (zh) 一种商用车低压电源装置
CN115714450A (zh) 一种基于移动储能装置的电力***及其控制方法
CN115723637A (zh) 一种氢燃料混合动力机车的启动控制方法及相关设备
CN111799881B (zh) 一种负载不间断供电***和控制方法
CN115891967B (zh) 混合动力***控制方法、装置、设备以及介质
CN115579929B (zh) 一种用于改善储能***电池保护的控制方法
CN112848951B (zh) 一种离网型光储充供电协调控制***及方法
CN221202200U (zh) 一种双电机电动游艇的高压配电和dcdc电路
CN216355973U (zh) 直流组网船舶混动实验室的能量控制***
CN116394943A (zh) 车辆控制方法、装置、车辆及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952585

Country of ref document: EP

Effective date: 20240305