WO2023008487A1 - Non-contact power feeding module and non-contact power feeding system - Google Patents

Non-contact power feeding module and non-contact power feeding system Download PDF

Info

Publication number
WO2023008487A1
WO2023008487A1 PCT/JP2022/028967 JP2022028967W WO2023008487A1 WO 2023008487 A1 WO2023008487 A1 WO 2023008487A1 JP 2022028967 W JP2022028967 W JP 2022028967W WO 2023008487 A1 WO2023008487 A1 WO 2023008487A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
power receiving
module
coil
Prior art date
Application number
PCT/JP2022/028967
Other languages
French (fr)
Japanese (ja)
Inventor
顯 田中
聖 三浦
健太郎 野内
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Priority to JP2023538598A priority Critical patent/JPWO2023008487A1/ja
Publication of WO2023008487A1 publication Critical patent/WO2023008487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a non-contact power supply module and a non-contact power supply system for non-contact power supply, and in particular to technology suitable for power supply to electrical equipment that requires protective grounding (for example, medical electrical equipment).
  • a contactless power supply system includes, for example, a power supply module having a power supply coil to which a voltage is supplied from an AC power supply, and a power reception module having a power reception coil arranged opposite to the power supply coil and magnetically coupled to the power supply coil, Power is supplied in a non-contact manner using electromagnetic induction or magnetic resonance (see Patent Documents 1 and 2, for example).
  • the power feeding module and the power receiving module are collectively referred to as "contactless power feeding module”.
  • the floor surface should be flat from the viewpoints of ease of movement of heavy objects such as operating tables and medical electrical equipment, prevention of stumbling by medical staff, and ease of cleaning the floor surface.
  • Liquids such as antiseptic solution and blood may also scatter on the floor of an operating room or the like. Therefore, it is not suitable from the standpoint of workability and safety to install a conventional power outlet on the floor, in which a terminal serving as an electrical contact is exposed to the outside.
  • a contactless power supply system since the power supply coil and the power reception coil do not need to be exposed to the outside, the power supply module can be installed while maintaining the flatness of the floor surface. cable wiring can be simplified.
  • An object of the present invention is to provide a contactless power supply module and a contactless power supply system that can easily realize protective grounding of electrical equipment and improve convenience.
  • a contactless power supply module includes: A contactless power supply module provided on the power supply side or the power receiving side of a contactless power supply system, a coil used to transmit power; a housing having a recess for accommodating the coil; a grounding portion connected to a grounding line and arranged along the opening of the recess with its surface exposed.
  • a contactless power supply system includes: a power supply module comprising the contactless power supply module; a power receiving module comprising the contactless power supply module; Power is transmitted while the ground portion of the power supply module and the ground portion of the power reception module are in contact with each other.
  • protective grounding of electrical equipment can be easily achieved, and the size of the power supply module and the power reception module can be reduced.
  • FIG. 1 is a diagram showing a schematic configuration of a contactless power supply system 1 according to an embodiment.
  • 2A and 2B are a cross-sectional view and a plan view schematically showing the configuration of the power supply module.
  • 3A and 3B are a cross-sectional view and a plan view schematically showing the configuration of the power receiving module.
  • FIG. 4 is a diagram showing a usage state of the contactless power supply system.
  • FIG. 1 is a diagram showing a schematic configuration of a contactless power supply system 1 according to an embodiment.
  • the contactless power supply system 1 is used, for example, to supply power to the device power supply 44 of the medical electrical equipment 45 .
  • the medical electrical equipment 45 is a Class I electrical equipment that requires protective grounding defined in JIS T 0601-1.
  • the contactless power feeding system 1 includes a power feeding module 10 having a power feeding coil 11 and a power receiving module 20 having a power receiving coil 21 .
  • the power supply module 10 is embedded in the floor F of an operating room or the like so as to surround, for example, an operating table.
  • the power receiving module 20 is connected to a power cable 43 with a 3-pin plug of a medical electrical device 45 via a power receiving cable 41 and a power receiving circuit 42 .
  • the power receiving module 20 is placed on the power feeding module 10, and the power feeding coil 11 and the power receiving coil 21 are arranged to face each other while being spaced apart.
  • the feed coil 11 is connected via a feed cable 31 to a feed circuit 32 including a resonance capacitor (not shown) and the like.
  • the power receiving coil 21 is connected via a power receiving cable 41 to a power receiving circuit 42 including a resonance capacitor (not shown).
  • the power receiving circuit 42 is also connected to a device power source 44 of a medical electrical device 45 via a power cable 43 with a 3-pin plug.
  • the power receiving circuit 42 has a socket structure that can be attached to and detached from the power cable 43 with a 3-pin plug.
  • commercial power supplied from the AC power supply 33 is converted into a high-frequency AC voltage by the power supply circuit 32 and applied to the power supply coil 11 .
  • an alternating current flows through the feeding coil 11
  • a magnetic field is generated around the feeding coil 11
  • the magnetic flux interlinking with both the feeding coil 11 and the receiving coil 21 causes a potential difference (voltage) in the receiving coil 21 .
  • An induced current flows through the power receiving coil 21 , and power is supplied to the device power supply 44 of the medical electrical equipment 45 via the power receiving cable 41 , the power receiving circuit 42 and the power cable 43 with a 3-pin plug.
  • FIG. 2A is a cross-sectional view of the power supply module 10
  • FIG. 2B is a view of the power supply module 10 viewed from the opening end side of the power supply side housing 13.
  • the power feeding module 10 includes a power feeding coil 11, a power feeding ground ring 12, a power feeding side housing 13, a power feeding side magnetic shield 14, a power feeding side protector 15, and the like.
  • the feeding coil 11 is an annular spiral coil (also called a pancake coil) in which an electric wire is wound on the same plane with a predetermined number of turns.
  • the shape of the feeding coil 11 is not limited to an annular shape, and may be, for example, an oval shape (an oval shape or a racetrack shape).
  • a litz wire is applied, which is obtained by twisting a plurality of enamel wires (strand wires) in which an insulating coating is baked on a conductor.
  • Terminal fittings (not shown) of the power line of the power supply cable 31 are connected to both ends of the power supply coil 11 by soldering, for example.
  • the feeding-side housing 13 is a cylinder with a bottom having a concave portion 13a, and has, for example, a cylindrical shape.
  • the feeding-side housing 13 accommodates the feeding coil 11 and the feeding-side magnetic shield 14 in the concave portion 13a.
  • the feeding-side housing 13 is made of, for example, a metal material such as aluminum.
  • the feeding-side housing 13 is connected to, for example, a terminal fitting (not shown) of the grounding wire of the feeding cable 31 and grounded.
  • the feeding-side housing 13 also functions as an electromagnetic shield that prevents the radiation of electromagnetic waves to the outside and the incidence of electromagnetic waves from the outside.
  • the power feeding side housing 13 may be grounded via a power feeding side grounding wire provided separately from the power feeding cable 31 .
  • the power supply side housing 13 is made of a resin material such as fiber reinforced plastic (FRP), which is epoxy resin mixed with a filler (such as glass fiber). may be formed.
  • FRP fiber reinforced plastic
  • the power supply side grounding ring 12 is made of a conductive material and has an annular shape (for example, an annular shape) corresponding to the opening of the recess 13 a of the power supply side housing 13 .
  • the feed-side ground ring 12 is arranged along the opening of the recess 13a with its surface exposed.
  • the feed-side ground ring 12 is grounded via a feed-side ground wire.
  • the feed-side grounding ring 12 is joined to the feed-side housing 13 made of metal and grounded through the feed-side housing 13 .
  • the feeding-side grounding ring 12 may have an annular shape as a whole, and may be partially divided.
  • the feed-side grounding ring 12 and the feed-side housing 13 may be made of the same material, or may be made of different materials.
  • the feed-side grounding ring 12 and the feed-side housing 13 are made of the same material, that is, when a part of the feed-side housing 13 serves as the feed-side grounding ring 12, the number of parts is reduced. manufacturing process is simplified, and the manufacturing cost can be reduced.
  • suitable materials can be selected to realize their respective functions.
  • the weight of the power feeding side housing 13 can be reduced while the power feeding side exposed as the floor surface can be used.
  • the corrosion resistance of the ground ring 12 can be improved.
  • the surface of the power-supply-side grounding ring 12 may have an uneven structure like the power-receiving-side grounding ring 22, which will be described later. preferable.
  • the power supply side magnetic shield 14 is arranged so as to cover the outer surface of the power supply coil 11 (excluding the surface facing the power reception coil 21).
  • the feeding-side magnetic shield 14 is made of, for example, a magnetic material such as ferrite.
  • the power supply side protector 15 fixes the power supply coil 11 and the power supply side magnetic shield 14 to the concave portion 13 a of the power supply side housing 13 .
  • the power feed side protector 15 includes an insulating medium 151 (for example, epoxy resin) and a surface protective layer 152 .
  • an insulating medium 151 e.g., epoxy resin
  • the shield 14 is fixed in the recess 13a.
  • the insulating medium 151 is formed to be recessed from the end surface of the feed-side ground ring 12 by the thickness of the surface protection layer 152 (for example, 2 mm).
  • the surface protective layer 152 is formed on the open surface of the insulating medium 151 so as to be flush with the power supply side grounding ring 12 .
  • the surface protection layer 152 protects the surface of the insulating medium 151 and forms the floor on which the power supply module 10 is installed.
  • the surface protective layer 152 is formed of, for example, a cushioning resin flooring material (for example, vinyl chloride resin flooring material) used in an operating room or the like.
  • the surface protective layer 152 is preferably made of the same material as the floor material used for the floor on which the power supply module 10 is installed.
  • the power supply module 10 is installed on the floor F of an operating room or the like so that the power supply side grounding ring 12 and the surface protective layer 152 of the power supply module 10 are flush with the floor F. Although the power-supply-side grounding ring 12 is exposed on the surface, since the flatness of the floor surface is ensured, it does not hinder the movement of heavy objects such as the medical electrical equipment 45 .
  • FIG. 3A is a cross-sectional view of the power receiving module 20, and FIG. 3B is a view of the power receiving module 20 viewed from the opening end side of the power receiving side housing 23.
  • the power receiving module 20 includes a power receiving coil 21, a power receiving side grounding ring 22, a power receiving side housing 23, a power receiving side magnetic shield 24, and the like.
  • the receiving coil 21 is an annular spiral coil formed by winding an electric wire on the same plane with a predetermined number of turns.
  • the shape of power receiving coil 21 is typically the same as the shape of power feeding coil 11 .
  • Terminal fittings (not shown) of the power line of the power receiving cable 41 are connected to both ends of the power receiving coil 21 by soldering, for example.
  • the power receiving side housing 23 is a cylindrical body with a bottom having a recess 23a, and has, for example, a cylindrical shape.
  • the power receiving side housing 23 accommodates the power receiving coil 21 and the power receiving side magnetic shield 24 in the concave portion 23a.
  • the power receiving side housing 23 is made of, for example, a metal material such as aluminum.
  • the power receiving side housing 23 is connected to, for example, a terminal fitting (not shown) of the ground wire of the power receiving cable 41 .
  • the power receiving side housing 23 functions as an electromagnetic shield that prevents the radiation of electromagnetic waves to the outside and the incidence of electromagnetic waves from the outside.
  • the power receiving side housing 23 may be formed of a resin material such as fiber reinforced plastic (FRP). In this case, it is possible to prevent the heat generation of the power receiving side housing 23 due to induction heating, and further, to improve the heat dissipation of the power receiving side housing 23 by adopting a filler of FRP having good thermal conductivity. can also
  • the power receiving side grounding ring 22 is made of a conductive material and has an annular shape (for example, an annular shape) corresponding to the opening of the recess 23 a of the power receiving side housing 23 .
  • the power-receiving-side grounding ring 22 is arranged along the opening of the recess 23a with its surface exposed.
  • the power receiving side grounding ring 22 contacts the power feeding side grounding ring 12 and is grounded.
  • the power receiving side ground ring 22 is joined to the metal power receiving side housing 23 , and the ground wire of the power receiving cable 41 is grounded via the power receiving side housing 23 .
  • the power-receiving-side grounding ring 22 may have an annular shape as a whole, and may be partially divided.
  • the power-receiving-side grounding ring 22 and the power-receiving-side housing 23 may be made of the same material, or may be made of different materials.
  • the power receiving side grounding ring 22 and the power receiving side housing 23 are made of the same material, that is, when a part of the power receiving side housing 23 becomes the power receiving side grounding ring 22, the number of parts is reduced. manufacturing process is simplified, and the manufacturing cost can be reduced.
  • suitable materials can be selected to realize their respective functions.
  • the weight of the power receiving side housing 23 can be reduced and grounding can be achieved. Resistance can be efficiently reduced.
  • a plated layer made of Ni or the like may be formed on the surface of the power receiving side grounding ring 22 in order to improve corrosion resistance.
  • the power receiving side grounding ring 22 preferably has an uneven structure on its surface. Since the power supply module 10 is installed on the floor and the power supply side grounding ring 12 is exposed to the outside air, there is a risk that an oxide film will form on the surface of the power supply side grounding ring 12 over time. In the case where the surface of the power receiving side grounding ring 22 is formed with an uneven structure, when the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other, the oxide film formed on the power feeding side grounding ring 12 is formed on the power receiving side grounding ring. It is destroyed by the uneven structure of 22, which is useful for ensuring good electrical continuity. The contact area of the power receiving side ground ring 22 is ensured so that the ground resistance in the ground path including the power receiving side ground ring 22 is 10 ⁇ or less.
  • the power receiving side grounding ring 22 preferably has a spring structure on its surface.
  • the spring structure is deformed under pressure due to the weight of the power receiving module 20 itself.
  • the power-supplying-side grounding ring 12 and the power-receiving-side grounding ring 22 are reliably brought into contact with each other to prevent poor grounding, which is useful for ensuring electrical continuity.
  • the spring structure for example, leaf springs (so-called shield fingers (trade name)) arranged at equal intervals in the circumferential direction of the power receiving side grounding ring 22 can be applied.
  • the power receiving side magnetic shield 24 is arranged so as to cover the outer surface of the power receiving coil 21 (excluding the surface facing the power feeding coil 11).
  • the power receiving side magnetic shield 24 is made of, for example, a magnetic material such as ferrite.
  • a path with low magnetic resistance is formed.
  • the performance (Q value) of the power receiving coil 21 is improved and leakage magnetic flux is reduced. Therefore, the lines of magnetic force can be efficiently focused to improve the power transmission efficiency, and noise generation can be suppressed.
  • the heat generation of the power receiving side housing 23 made of metal can be suppressed.
  • the power receiving side protector 25 fixes the power receiving coil 21 and the power receiving side magnetic shield 24 to the recess 23 a of the power receiving side housing 23 .
  • the power receiving side protector 25 is made of, for example, an insulating material such as epoxy resin.
  • an insulating material is filled and cured to form the power receiving side protector 25 .
  • the side magnetic shield 24 is fixed to the recess 23a.
  • the power receiving side protector 25 is formed recessed from the end surface of the power receiving side grounding ring 22 .
  • FIG. 4 is a diagram showing a usage state of the contactless power supply system 1.
  • the power reception module 20 when power is supplied from the power supply module 10 to the power reception module 20, the power reception module 20 is placed on the power supply module 10 so that the power supply coil 11 and the power reception coil 21 face each other.
  • the ring-shaped power feeding side grounding ring 12 exposed on the floor F can be used as a mark for positioning.
  • the power receiving module 20 is placed on the power feeding module 10
  • the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other, and the power receiving side grounding ring is connected through the power feeding side grounding ring 12 and the power feeding side housing 13. 22 is grounded.
  • the power receiving side ground ring 22 is connected to the ground line of the power receiving cable 41 via the power receiving side housing 23, and the ground line of the power receiving cable 41 is connected to the ground line of the power cable 43 with a 3-pin plug via the power receiving circuit 42.
  • the medical electrical equipment 45 is protectively grounded.
  • the power supply module 10 (contactless power supply module) according to the embodiment includes the power supply coil 11 used for power transmission, the power supply side housing 13 having the recess 13a that accommodates the power supply coil 11, and the power supply cable. a power supply side ground ring 12 (ground portion) connected to the ground line 31 and arranged along the opening of the recess 13a with its surface exposed.
  • the power receiving module 20 (contactless power supply module) is connected to a power receiving coil 21 used for power transmission, a power receiving side housing 23 having a concave portion 23 a for housing the power receiving coil 21 , and a ground wire of the power receiving cable 41 .
  • the contactless power supply system 1 includes a power supply module 10 and a power receiving module 20, and power is supplied while the power supply side ground ring 12 of the power supply module 10 and the power receiving side ground ring 22 of the power reception module 20 are in contact with each other. transmission takes place.
  • the power receiving module 20 when the power receiving module 20 is placed on the power feeding module 10, the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other.
  • a ground wire of a power cable 43 with a 3-pin plug connected to the power receiving module 20 via the power receiving cable 41 or the like is grounded.
  • the power-supplying-side grounding ring 12 and the power-receiving-side grounding ring 22 are arranged along the openings of the concave portions 13a and 23a, respectively, that is, are formed in an annular shape, the power-receiving-side grounding ring 22 can be placed when the power-receiving module 20 is placed.
  • the power supply side housing 13 is conductive, and the power supply side grounding ring 12 is arranged at the opening end of the recess 13a and physically and electrically connected.
  • the power receiving side housing 23 is conductive, and the power receiving side grounding ring 22 is arranged at the opening end of the recess 23a and is physically and electrically connected.
  • the power supply side housing 13 and the power supply side grounding ring 12 are made of different materials.
  • the power receiving side housing 23 and the power receiving side grounding ring 22 are made of different materials. As a result, it is possible to select a suitable material for realizing each function, thereby improving the degree of freedom in design.
  • the power supply module 10 further includes a protector 15 arranged in the opening of the recess 13a, and the power supply side ground ring 12 and the surface protective layer 152 (surface of the protector 15) are flush with each other. Accordingly, by installing the power supply module 10 so that the power supply side grounding ring 12 and the surface protective layer 152 are flush with the floor surface, the flatness of the floor surface is ensured. In addition to being able to move heavy objects smoothly, it is possible to prevent medical staff from stumbling and improve the workability of floor cleaning.
  • the power receiving side grounding ring 22 has an uneven structure on its surface.
  • the power-receiving-side grounding ring 22 has a pressure-deformable spring structure on its surface. This makes it easier to ensure good electrical continuity.
  • the contactless power supply system 1 can position the power receiving module 20 in the XYZ directions, specifically, move a movable body (for example, a wagon for medical electrical equipment) including the power receiving module 20 on a plane, and move the power receiving module 20.
  • a positioning device that automatically raises and lowers may be provided.
  • a brush portion such as a wire brush may be provided on the surface of the power receiving side grounding ring 22 of the power receiving module 20 .
  • a brush portion such as a wire brush may be provided on the surface of the power receiving side grounding ring 22 of the power receiving module 20 .
  • the insulating medium 151 of the power feeding side protector 15 and the insulating material of the power receiving side protector 25 are not particularly limited as long as they can fix the power feeding coil 11 and the power receiving coil 21 .
  • the insulating medium 151 of the power feeding side protector 15 and the insulating material of the power receiving side protector 25 may be made of a resin material obtained by adding a filler to epoxy resin. In this case, the waterproof effect of the epoxy resin can be obtained, and the strength of the power supply module 10 and the power reception module 20 can be increased. Furthermore, when a filler with high heat dissipation is employed, the heat dissipation of the power feeding coil 11 and the power receiving coil 21 can be enhanced.
  • the present invention relates to a non-contact power supply module and a non-contact power supply system for non-contact power supply, and is particularly useful for power supply to electrical equipment that requires protective grounding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided are a non-contact power feeding module and a non-contact power feeding system which can easily implement a protective ground of an electrical apparatus and attain miniaturization. The non-contact power feeding module is a non-contact power feeding module provided on a power feeding side or a power reception side of the non-contact power feeding system, and comprises: a coil used for transmitting power; a case which has a recess part that accommodates the coil; and a ground unit which is connected to a ground line and is disposed along an opening of the recess part with the surface exposed.

Description

非接触給電モジュール及び非接触給電システムContactless power supply module and contactless power supply system
 本発明は、非接触で給電を行うための非接触給電モジュール及び非接触給電システムに関し、特に、保護接地が必要な電気機器(例えば、医用電気機器)への給電に好適な技術に関する。 The present invention relates to a non-contact power supply module and a non-contact power supply system for non-contact power supply, and in particular to technology suitable for power supply to electrical equipment that requires protective grounding (for example, medical electrical equipment).
 近年、病院等の医療施設においては、安全な手術環境の実現のため、手術室等に設置される医用電気機器のケーブルレス化が進められており、非接触給電システムの利用が検討されている。非接触給電システムは、例えば、交流電源から電圧が供給される給電コイルを有する給電モジュールと、給電コイルに対向して配置され給電コイルと磁気的に結合する受電コイルを有する受電モジュールとを備え、電磁誘導又は磁気共鳴を利用して非接触で給電を行う(例えば、特許文献1、2参照)。本明細書では、給電モジュールと受電モジュールを合わせて「非接触給電モジュール」と総称する。 In recent years, in medical facilities such as hospitals, in order to realize a safe surgical environment, cable-less medical electrical equipment installed in operating rooms, etc. has been promoted, and the use of contactless power supply systems is being studied. . A contactless power supply system includes, for example, a power supply module having a power supply coil to which a voltage is supplied from an AC power supply, and a power reception module having a power reception coil arranged opposite to the power supply coil and magnetically coupled to the power supply coil, Power is supplied in a non-contact manner using electromagnetic induction or magnetic resonance (see Patent Documents 1 and 2, for example). In this specification, the power feeding module and the power receiving module are collectively referred to as "contactless power feeding module".
 手術室等においては、手術台や医用電気機器などの重量物の移動のしやすさ、医療従事者のつまずき防止、床面の清掃のしやすさの観点から、床面は平坦であることが好ましい。また、手術室等の床面には、消毒液や血液等の液体が飛散することもある。そのため、電気接点となる端子が外部に露出している従来の電源コンセントを床面に設置することは、作業性及び安全性の面で適さない。これに対して、非接触給電システムの場合、給電コイル及び受電コイルが外部に露出している必要はないので、床面の平坦性を維持しつつ給電モジュールを設置することができ、医用電気機器のケーブル配線を簡素化することができる。 In operating rooms, etc., the floor surface should be flat from the viewpoints of ease of movement of heavy objects such as operating tables and medical electrical equipment, prevention of stumbling by medical staff, and ease of cleaning the floor surface. preferable. Liquids such as antiseptic solution and blood may also scatter on the floor of an operating room or the like. Therefore, it is not suitable from the standpoint of workability and safety to install a conventional power outlet on the floor, in which a terminal serving as an electrical contact is exposed to the outside. On the other hand, in the case of a contactless power supply system, since the power supply coil and the power reception coil do not need to be exposed to the outside, the power supply module can be installed while maintaining the flatness of the floor surface. cable wiring can be simplified.
特開2021-61706号公報Japanese Patent Application Laid-Open No. 2021-61706 国際公開第2019/189138号WO2019/189138
 ところで、医用電気機器に非接触給電システムを適用するに際し、医用電気機器の安全規格(JIS T 0601-1)「医療機器-第1部:安全に関する一般要求事項」に適合する必要がある。具体的には、クラスIに属する医用電気機器には、施設の医用接地端子に接続する手段を備えることが求められている。 By the way, when applying a contactless power supply system to medical electrical equipment, it is necessary to comply with the safety standard for medical electrical equipment (JIST 0601-1) "Medical Equipment - Part 1: General Requirements for Safety". Specifically, Class I medical electrical equipment is required to have means for connection to the facility's medical ground.
 特許文献1に開示の非接触給電システムでは、給電コイル(20)と受電コイル(50)を対向させて給電を行う際に、給電側の接地された透過板(16)に受電側の透過板(46)が接触して、電気機器(100)が保護接地されるようになっている。しかしながら、給電コイル(20)と透過板(16)とが並置され、また、受電コイル(50)と透過板(46)とが並置されており、医用電気機器の配置が固定されてしまう為、様々なシーンへの対応に課題がある。具体的には、患者の手術部位や術者の対応しやすい位置や角度に応じて、医用電気機器の配置を柔軟に変更することができず、利便性の面で改善の余地がある。 In the contactless power supply system disclosed in Patent Document 1, when power is supplied with the power supply coil (20) and the power receiving coil (50) facing each other, the power receiving side transmission plate (16) is connected to the grounded transmission plate (16) on the power supply side. (46) is in contact so that the electrical equipment (100) is protectively grounded. However, since the feeding coil (20) and the transmission plate (16) are juxtaposed, and the receiving coil (50) and the transmission plate (46) are juxtaposed, the arrangement of the medical electrical equipment is fixed. There is a problem in dealing with various scenes. Specifically, it is not possible to flexibly change the arrangement of the medical electrical equipment according to the surgical site of the patient and the position and angle that are easy for the operator to handle, and there is room for improvement in terms of convenience.
 本発明の目的は、電気機器の保護接地を容易に実現できるとともに、利便性を向上できる非接触給電モジュール及び非接触給電システムを提供することである。 An object of the present invention is to provide a contactless power supply module and a contactless power supply system that can easily realize protective grounding of electrical equipment and improve convenience.
 本発明に係る非接触給電モジュールは、
 非接触給電システムの給電側又は受電側に設けられる非接触給電モジュールであって、
 電力の伝送に用いられるコイルと、
 前記コイルを収容する凹部を有する筐体と、
 接地線に接続され、表面が露出する状態で前記凹部の開口に沿って配置される接地部と、を備える。
A contactless power supply module according to the present invention includes:
A contactless power supply module provided on the power supply side or the power receiving side of a contactless power supply system,
a coil used to transmit power;
a housing having a recess for accommodating the coil;
a grounding portion connected to a grounding line and arranged along the opening of the recess with its surface exposed.
 本発明に係る非接触給電システムは、
 上記の非接触給電モジュールからなる給電モジュールと、
 上記の非接触給電モジュールからなる受電モジュールと、を備え、
 前記給電モジュールの前記接地部と前記受電モジュールの前記接地部とが接触した状態で、電力の伝送が行われる。
A contactless power supply system according to the present invention includes:
a power supply module comprising the contactless power supply module;
a power receiving module comprising the contactless power supply module;
Power is transmitted while the ground portion of the power supply module and the ground portion of the power reception module are in contact with each other.
 本発明によれば、電気機器の保護接地を容易に実現できるとともに、給電モジュール及び受電モジュールの小型化を図ることができる。 According to the present invention, protective grounding of electrical equipment can be easily achieved, and the size of the power supply module and the power reception module can be reduced.
図1は、実施の形態に係る非接触給電システム1の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a contactless power supply system 1 according to an embodiment. 図2A、図2Bは、給電モジュールの構成を模式的に示す断面図及び平面図である。2A and 2B are a cross-sectional view and a plan view schematically showing the configuration of the power supply module. 図3A、図3Bは、受電モジュールの構成を模式的に示す断面図及び平面図である。3A and 3B are a cross-sectional view and a plan view schematically showing the configuration of the power receiving module. 図4は、非接触給電システムの使用状態を示す図である。FIG. 4 is a diagram showing a usage state of the contactless power supply system.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、実施の形態に係る非接触給電システム1の概略構成を示す図である。非接触給電システム1は、例えば、医用電気機器45の装置電源44への給電に用いられる。医用電気機器45は、JIS T 0601-1で規定されている保護接地が必要なクラスIに属する電気機器である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a contactless power supply system 1 according to an embodiment. The contactless power supply system 1 is used, for example, to supply power to the device power supply 44 of the medical electrical equipment 45 . The medical electrical equipment 45 is a Class I electrical equipment that requires protective grounding defined in JIS T 0601-1.
 図1に示すように、非接触給電システム1は、給電コイル11を備える給電モジュール10と、受電コイル21を備える受電モジュール20と、で構成される。
 給電モジュール10は、手術室等の床Fに、例えば、手術台を取り囲むように埋設される。受電モジュール20は、受電ケーブル41及び受電回路42を介して、医用電気機器45の3ピンプラグ付き電源ケーブル43に接続される。給電時には、給電モジュール10の上に受電モジュール20が載置され、給電コイル11と受電コイル21とが離間した状態で対向して配置されることとなる。
As shown in FIG. 1 , the contactless power feeding system 1 includes a power feeding module 10 having a power feeding coil 11 and a power receiving module 20 having a power receiving coil 21 .
The power supply module 10 is embedded in the floor F of an operating room or the like so as to surround, for example, an operating table. The power receiving module 20 is connected to a power cable 43 with a 3-pin plug of a medical electrical device 45 via a power receiving cable 41 and a power receiving circuit 42 . During power feeding, the power receiving module 20 is placed on the power feeding module 10, and the power feeding coil 11 and the power receiving coil 21 are arranged to face each other while being spaced apart.
 本実施の形態では、給電コイル11は、給電ケーブル31を介して、共振用コンデンサー(図示略)等を含む給電回路32に接続されている。同様に、受電コイル21は、受電ケーブル41を介して、共振用コンデンサー(図示略)を含む受電回路42に接続されている。また、受電回路42は、3ピンプラグ付き電源ケーブル43を介して、医用電気機器45の装置電源44に接続されている。なお、受電回路42は、3ピンプラグ付き電源ケーブル43に着脱可能なソケット構造を有している。 In the present embodiment, the feed coil 11 is connected via a feed cable 31 to a feed circuit 32 including a resonance capacitor (not shown) and the like. Similarly, the power receiving coil 21 is connected via a power receiving cable 41 to a power receiving circuit 42 including a resonance capacitor (not shown). The power receiving circuit 42 is also connected to a device power source 44 of a medical electrical device 45 via a power cable 43 with a 3-pin plug. The power receiving circuit 42 has a socket structure that can be attached to and detached from the power cable 43 with a 3-pin plug.
 例えば、交流電源33から供給された商用電源は、給電回路32で高周波数の交流電圧に変換され、給電コイル11に印加される。給電コイル11に交流電流が流れると、給電コイル11の周囲に磁界が発生し、給電コイル11及び受電コイル21の双方と鎖交する磁束により、受電コイル21に電位差(電圧)が生じる。そして、受電コイル21に誘導電流が流れ、受電ケーブル41、受電回路42及び3ピンプラグ付き電源ケーブル43を介して医用電気機器45の装置電源44に電力が供給される。 For example, commercial power supplied from the AC power supply 33 is converted into a high-frequency AC voltage by the power supply circuit 32 and applied to the power supply coil 11 . When an alternating current flows through the feeding coil 11 , a magnetic field is generated around the feeding coil 11 , and the magnetic flux interlinking with both the feeding coil 11 and the receiving coil 21 causes a potential difference (voltage) in the receiving coil 21 . An induced current flows through the power receiving coil 21 , and power is supplied to the device power supply 44 of the medical electrical equipment 45 via the power receiving cable 41 , the power receiving circuit 42 and the power cable 43 with a 3-pin plug.
 図2Aは、給電モジュール10の断面図であり、図2Bは、給電モジュール10を給電側筐体13の開口端側から見た図である。
 図2A、図2Bに示すように、給電モジュール10は、給電コイル11、給電側接地リング12、給電側筐体13、給電側磁気シールド14、及び給電側保護体15等を備える。
2A is a cross-sectional view of the power supply module 10, and FIG. 2B is a view of the power supply module 10 viewed from the opening end side of the power supply side housing 13. FIG.
As shown in FIGS. 2A and 2B, the power feeding module 10 includes a power feeding coil 11, a power feeding ground ring 12, a power feeding side housing 13, a power feeding side magnetic shield 14, a power feeding side protector 15, and the like.
 給電コイル11は、電線を同一平面上に所定の巻数で巻線した環状の渦巻き型コイル(パンケーキ型コイルとも呼ばれる)である。給電コイル11及び受電コイル21を円環形状とした場合、受電モジュール20が回転してもコイル同士の対向姿勢は変わらないので、容易に位置合わせを行うことができる。なお、給電コイル11の形状は円環形状に限定されず、例えば、長円形状(小判形状やレーストラック形状)であってもよい。給電コイル11及び受電コイル21を長円形状とした場合、コイルの直線部分同士が対向していれば、直線部分に沿う長手方向に位置ずれが生じても、電力伝送効率の低下を抑制することができる。 The feeding coil 11 is an annular spiral coil (also called a pancake coil) in which an electric wire is wound on the same plane with a predetermined number of turns. When the power feeding coil 11 and the power receiving coil 21 are formed in an annular shape, even if the power receiving module 20 rotates, the facing postures of the coils do not change, so that alignment can be easily performed. In addition, the shape of the feeding coil 11 is not limited to an annular shape, and may be, for example, an oval shape (an oval shape or a racetrack shape). When the power feeding coil 11 and the power receiving coil 21 are oval-shaped, if the linear portions of the coils are opposed to each other, even if there is a positional deviation in the longitudinal direction along the linear portions, a decrease in power transmission efficiency can be suppressed. can be done.
 給電コイル11を形成する電線には、例えば、導体に絶縁被膜を焼き付けたエナメル線(素線)を複数本撚り合わせたリッツ線が適用される。給電コイル11の両端部には、例えば、半田付けなどにより給電ケーブル31の電力線の端子金具(図示略)が接続される。 For the electric wire forming the feeding coil 11, for example, a litz wire is applied, which is obtained by twisting a plurality of enamel wires (strand wires) in which an insulating coating is baked on a conductor. Terminal fittings (not shown) of the power line of the power supply cable 31 are connected to both ends of the power supply coil 11 by soldering, for example.
 給電側筐体13は、凹部13aを有する有底筒体であり、例えば、円筒形状を有する。給電側筐体13は、凹部13aに、給電コイル11及び給電側磁気シールド14を収容する。 The feeding-side housing 13 is a cylinder with a bottom having a concave portion 13a, and has, for example, a cylindrical shape. The feeding-side housing 13 accommodates the feeding coil 11 and the feeding-side magnetic shield 14 in the concave portion 13a.
 給電側筐体13は、例えば、アルミニウム等の金属材料で形成される。給電側筐体13は、例えば、給電ケーブル31の接地線の端子金具(図示略)に接続され、接地される。この場合、給電側筐体13は、外部への電磁波の放射及び外部からの電磁波の入射を防止する電磁シールドとしても機能する。
 なお、給電側筐体13は、給電ケーブル31とは別に設けられた給電側接地線を介して接地されてもよい。また、給電モジュール10の磁気シールドを別途設ける場合、給電側筐体13は、例えば、エポキシ樹脂にフィラー(ガラス繊維など)を混入させた繊維強化プラスチック(FRP:Fiber Reinforced Plastic)などの樹脂材料で形成されてもよい。この場合、誘導加熱による給電側筐体13の発熱を防止することができ、さらには、FRPのフィラーとして熱伝導性のよいものを採用して、給電側筐体13の放熱性を向上させることもできる。
The feeding-side housing 13 is made of, for example, a metal material such as aluminum. The feeding-side housing 13 is connected to, for example, a terminal fitting (not shown) of the grounding wire of the feeding cable 31 and grounded. In this case, the feeding-side housing 13 also functions as an electromagnetic shield that prevents the radiation of electromagnetic waves to the outside and the incidence of electromagnetic waves from the outside.
It should be noted that the power feeding side housing 13 may be grounded via a power feeding side grounding wire provided separately from the power feeding cable 31 . When a magnetic shield is separately provided for the power supply module 10, the power supply side housing 13 is made of a resin material such as fiber reinforced plastic (FRP), which is epoxy resin mixed with a filler (such as glass fiber). may be formed. In this case, it is possible to prevent the power supply side housing 13 from generating heat due to induction heating, and furthermore, to improve the heat dissipation of the power supply side housing 13 by adopting an FRP filler with good thermal conductivity. can also
 給電側接地リング12は、導電性の材料で形成され、給電側筐体13の凹部13aの開口に対応する環形状(例えば、円環形状)を有する。給電側接地リング12は、表面が露出する状態で、凹部13aの開口に沿って配置される。給電側接地リング12は、給電側接地線を介して接地される。本実施の形態では、給電側接地リング12は、金属製の給電側筐体13と接合され、給電側筐体13を介して接地されている。この場合、給電側接地リング12は、全体として環形状を呈していればよく、部分的に分断されていてもよい。 The power supply side grounding ring 12 is made of a conductive material and has an annular shape (for example, an annular shape) corresponding to the opening of the recess 13 a of the power supply side housing 13 . The feed-side ground ring 12 is arranged along the opening of the recess 13a with its surface exposed. The feed-side ground ring 12 is grounded via a feed-side ground wire. In the present embodiment, the feed-side grounding ring 12 is joined to the feed-side housing 13 made of metal and grounded through the feed-side housing 13 . In this case, the feeding-side grounding ring 12 may have an annular shape as a whole, and may be partially divided.
 給電側接地リング12と給電側筐体13は、同種材料で形成されてもよいし、異種材料で形成されてもよい。
 給電側接地リング12と給電側筐体13とを同種材料で形成する場合、すなわち、給電側筐体13の一部が給電側接地リング12となる場合、部品点数が少なくなるので、給電モジュール10の製造工程が簡素化され、製造コストを低減することができる。
 一方、給電側接地リング12と給電側筐体13とを異種材料で形成する場合、それぞれの機能を実現するために適した材料を選定することができる。例えば、給電側筐体13にアルミニウム、給電側接地リング12にハステロイ(登録商標)などのニッケル合金を適用することで、給電側筐体13の軽量化を図りつつ、床面として露出する給電側接地リング12の耐食性を向上することができる。
The feed-side grounding ring 12 and the feed-side housing 13 may be made of the same material, or may be made of different materials.
When the feed-side grounding ring 12 and the feed-side housing 13 are made of the same material, that is, when a part of the feed-side housing 13 serves as the feed-side grounding ring 12, the number of parts is reduced. manufacturing process is simplified, and the manufacturing cost can be reduced.
On the other hand, when the feed-side grounding ring 12 and the feed-side housing 13 are made of different materials, suitable materials can be selected to realize their respective functions. For example, by applying aluminum to the power feeding side housing 13 and applying a nickel alloy such as Hastelloy (registered trademark) to the power feeding side grounding ring 12, the weight of the power feeding side housing 13 can be reduced while the power feeding side exposed as the floor surface can be used. The corrosion resistance of the ground ring 12 can be improved.
 給電側接地リング12の表面は、後述する受電側接地リング22のように凹凸構造を有していてもよいが、床面の掃除のしやすさや、つまずき防止の観点から、平坦であることが好ましい。 The surface of the power-supply-side grounding ring 12 may have an uneven structure like the power-receiving-side grounding ring 22, which will be described later. preferable.
 給電側磁気シールド14は、給電コイル11の外面(受電コイル21に対向する面を除く)を覆うように配置される。給電側磁気シールド14は、例えば、フェライト等の磁性材料で形成される。給電側磁気シールド14を設けることにより、磁気抵抗の低い通路が形成されるので、結果として給電コイル11の性能(Q値)が高まり、漏れ磁束が少なくなる。したがって、効率よく磁力線を集束して電力伝送効率を向上できるとともに、ノイズの発生を抑制することができる。また、金属製の給電側筐体13の発熱を抑制することができる。 The power supply side magnetic shield 14 is arranged so as to cover the outer surface of the power supply coil 11 (excluding the surface facing the power reception coil 21). The feeding-side magnetic shield 14 is made of, for example, a magnetic material such as ferrite. By providing the feeding-side magnetic shield 14, a path with low magnetic resistance is formed, and as a result, the performance (Q value) of the feeding coil 11 is improved, and leakage magnetic flux is reduced. Therefore, the lines of magnetic force can be efficiently focused to improve the power transmission efficiency, and noise generation can be suppressed. Moreover, the heat generation of the power feeding side housing 13 made of metal can be suppressed.
 給電側保護体15は、給電側筐体13の凹部13aに給電コイル11及び給電側磁気シールド14を固定する。給電側保護体15は、絶縁性媒体151(例えば、エポキシ樹脂)及び表面保護層152を含む。 The power supply side protector 15 fixes the power supply coil 11 and the power supply side magnetic shield 14 to the concave portion 13 a of the power supply side housing 13 . The power feed side protector 15 includes an insulating medium 151 (for example, epoxy resin) and a surface protective layer 152 .
 給電側筐体13の凹部13aに給電コイル11及び給電側磁気シールド14を配置した状態で、絶縁性媒体151(例えば、エポキシ樹脂)を充填し、硬化させることで、給電コイル11及び給電側磁気シールド14は、凹部13aに固定される。絶縁性媒体151は、表面保護層152の厚み分(例えば、2mm)だけ、給電側接地リング12の端面よりも凹んで形成される。 With the feed coil 11 and the feed side magnetic shield 14 placed in the recess 13a of the feed side housing 13, an insulating medium 151 (e.g., epoxy resin) is filled and cured to form the feed coil 11 and the feed side magnetic shield. The shield 14 is fixed in the recess 13a. The insulating medium 151 is formed to be recessed from the end surface of the feed-side ground ring 12 by the thickness of the surface protection layer 152 (for example, 2 mm).
 表面保護層152は、絶縁性媒体151の開放面に、給電側接地リング12と面一となるように形成される。表面保護層152は、絶縁性媒体151の表面を保護するとともに、給電モジュール10が設置される床の床面を形成する。表面保護層152は、例えば、手術室等に使用されるクッション性を有する樹脂性床材(例えば、塩化ビニル樹脂製床材)で形成される。表面保護層152は、給電モジュール10が設置される床に使用されている床材と同一材料で形成されることが好ましい。 The surface protective layer 152 is formed on the open surface of the insulating medium 151 so as to be flush with the power supply side grounding ring 12 . The surface protection layer 152 protects the surface of the insulating medium 151 and forms the floor on which the power supply module 10 is installed. The surface protective layer 152 is formed of, for example, a cushioning resin flooring material (for example, vinyl chloride resin flooring material) used in an operating room or the like. The surface protective layer 152 is preferably made of the same material as the floor material used for the floor on which the power supply module 10 is installed.
 給電モジュール10は、手術室等の床Fに、給電モジュール10の給電側接地リング12及び表面保護層152と床Fとが面一となるように設置される。給電側接地リング12は、表面に露出しているが、床面の平坦性は確保されているので、医用電気機器45等の重量物の移動を妨げない。 The power supply module 10 is installed on the floor F of an operating room or the like so that the power supply side grounding ring 12 and the surface protective layer 152 of the power supply module 10 are flush with the floor F. Although the power-supply-side grounding ring 12 is exposed on the surface, since the flatness of the floor surface is ensured, it does not hinder the movement of heavy objects such as the medical electrical equipment 45 .
 図3Aは、受電モジュール20の断面図であり、図3Bは、受電モジュール20を受電側筐体23の開口端側から見た図である。図3A、図3Bに示すように、受電モジュール20は、構成自体は給電モジュール10とほぼ同様である。受電モジュール20の説明のうち、給電モジュール10と同一又は対応する構成要素については、簡単に説明する。 3A is a cross-sectional view of the power receiving module 20, and FIG. 3B is a view of the power receiving module 20 viewed from the opening end side of the power receiving side housing 23. FIG. As shown in FIGS. 3A and 3B , the power receiving module 20 has substantially the same configuration as the power feeding module 10 . In the description of the power receiving module 20, components that are the same as or correspond to those of the power feeding module 10 will be briefly described.
 受電モジュール20は、受電コイル21、受電側接地リング22、受電側筐体23及び受電側磁気シールド24等を備える。 The power receiving module 20 includes a power receiving coil 21, a power receiving side grounding ring 22, a power receiving side housing 23, a power receiving side magnetic shield 24, and the like.
 受電コイル21は、電線を同一平面上に所定の巻数で巻線した円環状の渦巻き型コイルである。受電コイル21の形状は、典型的には、給電コイル11の形状と同じである。受電コイル21の両端部には、例えば、半田付けにより受電ケーブル41の電力線の端子金具(図示略)が接続される。 The receiving coil 21 is an annular spiral coil formed by winding an electric wire on the same plane with a predetermined number of turns. The shape of power receiving coil 21 is typically the same as the shape of power feeding coil 11 . Terminal fittings (not shown) of the power line of the power receiving cable 41 are connected to both ends of the power receiving coil 21 by soldering, for example.
 受電側筐体23は、凹部23aを有する有底筒体であり、例えば、円筒形状を有する。受電側筐体23は、凹部23aに、受電コイル21及び受電側磁気シールド24を収容する。 The power receiving side housing 23 is a cylindrical body with a bottom having a recess 23a, and has, for example, a cylindrical shape. The power receiving side housing 23 accommodates the power receiving coil 21 and the power receiving side magnetic shield 24 in the concave portion 23a.
 受電側筐体23は、例えば、アルミニウム等の金属材料で形成される。受電側筐体23は、例えば、受電ケーブル41の接地線の端子金具(図示略)に接続される。この場合、受電側筐体23は、外部への電磁波の放射及び外部からの電磁波の入射を防止する電磁シールドとして機能する。
 なお、受電モジュール20の電磁シールドを別途設ける場合、受電側筐体23は、繊維強化プラスチック(FRP)などの樹脂材料で形成されてもよい。この場合、誘導加熱による受電側筐体23の発熱を防止することができ、さらには、FRPのフィラーとして熱伝導性のよいものを採用して、受電側筐体23の放熱性を向上させることもできる。
The power receiving side housing 23 is made of, for example, a metal material such as aluminum. The power receiving side housing 23 is connected to, for example, a terminal fitting (not shown) of the ground wire of the power receiving cable 41 . In this case, the power receiving side housing 23 functions as an electromagnetic shield that prevents the radiation of electromagnetic waves to the outside and the incidence of electromagnetic waves from the outside.
Note that when an electromagnetic shield for the power receiving module 20 is provided separately, the power receiving side housing 23 may be formed of a resin material such as fiber reinforced plastic (FRP). In this case, it is possible to prevent the heat generation of the power receiving side housing 23 due to induction heating, and further, to improve the heat dissipation of the power receiving side housing 23 by adopting a filler of FRP having good thermal conductivity. can also
 受電側接地リング22は、導電性の材料で形成され、受電側筐体23の凹部23aの開口に対応する環形状(例えば、円環形状)を有する。受電側接地リング22は、表面が露出する状態で、凹部23aの開口に沿って配置される。受電側接地リング22は、給電モジュール10の上に受電モジュール20を載置したとき、給電側接地リング12と接触し、接地される。本実施の形態では、受電側接地リング22は、金属製の受電側筐体23と接合されており、受電側筐体23を介して受電ケーブル41の接地線が接地される。この場合、受電側接地リング22は、全体として環形状を呈していればよく、部分的に分断されていてもよい。 The power receiving side grounding ring 22 is made of a conductive material and has an annular shape (for example, an annular shape) corresponding to the opening of the recess 23 a of the power receiving side housing 23 . The power-receiving-side grounding ring 22 is arranged along the opening of the recess 23a with its surface exposed. When the power receiving module 20 is placed on the power feeding module 10, the power receiving side grounding ring 22 contacts the power feeding side grounding ring 12 and is grounded. In the present embodiment, the power receiving side ground ring 22 is joined to the metal power receiving side housing 23 , and the ground wire of the power receiving cable 41 is grounded via the power receiving side housing 23 . In this case, the power-receiving-side grounding ring 22 may have an annular shape as a whole, and may be partially divided.
 受電側接地リング22と受電側筐体23は、同種材料で形成されてもよいし、異種材料で形成されてもよい。
 受電側接地リング22と受電側筐体23とを同種材料で形成する場合、すなわち、受電側筐体23の一部が受電側接地リング22となる場合、部品点数が少なくなるので、受電モジュール20の製造工程が簡素化され、製造コストを低減することができる。
 一方、受電側接地リング22と受電側筐体23とを異種材料で形成する場合、それぞれの機能を実現するために適した材料を選定することができる。例えば、受電側筐体23にアルミニウム、受電側接地リング22に導電性とばね性の高い銅合金(例えば、ベリリウム銅)を適用することで、受電側筐体23の軽量化を図りつつ、接地抵抗を効率よく低減することができる。また、受電側接地リング22の表面には、耐食性を高めるためにNi等からなるめっき層を形成してもよい。
The power-receiving-side grounding ring 22 and the power-receiving-side housing 23 may be made of the same material, or may be made of different materials.
When the power receiving side grounding ring 22 and the power receiving side housing 23 are made of the same material, that is, when a part of the power receiving side housing 23 becomes the power receiving side grounding ring 22, the number of parts is reduced. manufacturing process is simplified, and the manufacturing cost can be reduced.
On the other hand, when the power receiving side grounding ring 22 and the power receiving side housing 23 are made of different materials, suitable materials can be selected to realize their respective functions. For example, by applying aluminum to the power receiving side housing 23 and applying a copper alloy (e.g., beryllium copper) with high conductivity and springiness to the power receiving side grounding ring 22, the weight of the power receiving side housing 23 can be reduced and grounding can be achieved. Resistance can be efficiently reduced. Further, a plated layer made of Ni or the like may be formed on the surface of the power receiving side grounding ring 22 in order to improve corrosion resistance.
 受電側接地リング22は、表面に凹凸構造を有していることが好ましい。給電モジュール10は床面に設置され、給電側接地リング12は外気に曝されるので、給電側接地リング12の表面に経時的に酸化皮膜が形成される虞がある。受電側接地リング22の表面に凹凸構造が形成されている場合、給電側接地リング12と受電側接地リング22が接触するときに、給電側接地リング12に形成された酸化皮膜が受電側接地リング22の凹凸構造によって破壊されるので、良好な電気的導通を確保する上で有用である。なお、受電側接地リング22における接触面積は、受電側接地リング22を含む接地経路における接地抵抗が10Ω以下となるように確保される。 The power receiving side grounding ring 22 preferably has an uneven structure on its surface. Since the power supply module 10 is installed on the floor and the power supply side grounding ring 12 is exposed to the outside air, there is a risk that an oxide film will form on the surface of the power supply side grounding ring 12 over time. In the case where the surface of the power receiving side grounding ring 22 is formed with an uneven structure, when the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other, the oxide film formed on the power feeding side grounding ring 12 is formed on the power receiving side grounding ring. It is destroyed by the uneven structure of 22, which is useful for ensuring good electrical continuity. The contact area of the power receiving side ground ring 22 is ensured so that the ground resistance in the ground path including the power receiving side ground ring 22 is 10Ω or less.
 また、受電側接地リング22は、表面に、バネ構造を有することが好ましい。この場合、給電モジュール10の上に受電モジュール20を載置するときに、受電モジュール20の自重によってバネ構造が加圧変形する。これにより、給電側接地リング12と受電側接地リング22とが確実に接触し、接地不良が防止されるので、電気的導通を確保する上で有用である。バネ構造には、例えば、受電側接地リング22の周方向において等間隔で配置される板バネ(いわゆるシールドフィンガー(商品名))を適用することができる。 Also, the power receiving side grounding ring 22 preferably has a spring structure on its surface. In this case, when the power receiving module 20 is placed on the power feeding module 10, the spring structure is deformed under pressure due to the weight of the power receiving module 20 itself. As a result, the power-supplying-side grounding ring 12 and the power-receiving-side grounding ring 22 are reliably brought into contact with each other to prevent poor grounding, which is useful for ensuring electrical continuity. For the spring structure, for example, leaf springs (so-called shield fingers (trade name)) arranged at equal intervals in the circumferential direction of the power receiving side grounding ring 22 can be applied.
 受電側磁気シールド24は、受電コイル21の外面(給電コイル11に対向する面を除く)を覆うように配置される。受電側磁気シールド24は、例えば、フェライト等の磁性材料で形成される。受電側磁気シールド24を設けることにより、磁気抵抗の低い通路が形成されるので、結果として受電コイル21の性能(Q値)が高まり、漏れ磁束が少なくなる。したがって、効率よく磁力線を集束して電力伝送効率を向上できるとともに、ノイズの発生を抑制することができる。また、金属製の受電側筐体23の発熱を抑制することができる。 The power receiving side magnetic shield 24 is arranged so as to cover the outer surface of the power receiving coil 21 (excluding the surface facing the power feeding coil 11). The power receiving side magnetic shield 24 is made of, for example, a magnetic material such as ferrite. By providing the power receiving side magnetic shield 24, a path with low magnetic resistance is formed. As a result, the performance (Q value) of the power receiving coil 21 is improved and leakage magnetic flux is reduced. Therefore, the lines of magnetic force can be efficiently focused to improve the power transmission efficiency, and noise generation can be suppressed. Moreover, the heat generation of the power receiving side housing 23 made of metal can be suppressed.
 受電側保護体25は、受電側筐体23の凹部23aに受電コイル21及び受電側磁気シールド24を固定する。受電側保護体25は、例えば、エポキシ樹脂等の絶縁性材料で形成される。 The power receiving side protector 25 fixes the power receiving coil 21 and the power receiving side magnetic shield 24 to the recess 23 a of the power receiving side housing 23 . The power receiving side protector 25 is made of, for example, an insulating material such as epoxy resin.
 受電側筐体23の凹部23aに受電コイル21及び受電側磁気シールド24を配置した状態で、絶縁性材料を充填し、硬化させて受電側保護体25を形成することで、受電コイル21及び受電側磁気シールド24は、凹部23aに固定される。受電側保護体25は、受電側接地リング22の端面よりも凹んで形成される。 In a state in which the power receiving coil 21 and the power receiving side magnetic shield 24 are arranged in the concave portion 23 a of the power receiving side housing 23 , an insulating material is filled and cured to form the power receiving side protector 25 . The side magnetic shield 24 is fixed to the recess 23a. The power receiving side protector 25 is formed recessed from the end surface of the power receiving side grounding ring 22 .
 図4は、非接触給電システム1の使用状態を示す図である。
 図4に示すように、給電モジュール10から受電モジュール20に給電を行う場合、給電コイル11と受電コイル21が対向するように、給電モジュール10の上に受電モジュール20が載置される。このとき、床Fに露出している環状の給電側接地リング12を目印として位置決めすることができる。
 給電モジュール10の上に受電モジュール20が載置されると、給電側接地リング12と受電側接地リング22が接触し、給電側接地リング12及び給電側筐体13を介して、受電側接地リング22は接地される。受電側接地リング22は、受電側筐体23を介して受電ケーブル41の接地線に接続されており、受電ケーブル41の接地線は、受電回路42を介して3ピンプラグ付き電源ケーブル43の接地線に接続されているので、医用電気機器45は保護接地される。
FIG. 4 is a diagram showing a usage state of the contactless power supply system 1. As shown in FIG.
As shown in FIG. 4, when power is supplied from the power supply module 10 to the power reception module 20, the power reception module 20 is placed on the power supply module 10 so that the power supply coil 11 and the power reception coil 21 face each other. At this time, the ring-shaped power feeding side grounding ring 12 exposed on the floor F can be used as a mark for positioning.
When the power receiving module 20 is placed on the power feeding module 10, the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other, and the power receiving side grounding ring is connected through the power feeding side grounding ring 12 and the power feeding side housing 13. 22 is grounded. The power receiving side ground ring 22 is connected to the ground line of the power receiving cable 41 via the power receiving side housing 23, and the ground line of the power receiving cable 41 is connected to the ground line of the power cable 43 with a 3-pin plug via the power receiving circuit 42. , the medical electrical equipment 45 is protectively grounded.
 このように、実施の形態に係る給電モジュール10(非接触給電モジュール)は、電力の伝送に用いられる給電コイル11と、給電コイル11を収容する凹部13aを有する給電側筐体13と、給電ケーブル31の接地線に接続され、表面が露出する状態で凹部13aの開口に沿って配置される給電側接地リング12(接地部)と、を備える。
 また、受電モジュール20(非接触給電モジュール)は、電力の伝送に用いられる受電コイル21と、受電コイル21を収容する凹部23aを有する受電側筐体23と、受電ケーブル41の接地線に接続され、表面が露出する状態で凹部23aの開口に沿って配置される受電側接地リング22(接地部)と、を備える。
 また、非接触給電システム1は、給電モジュール10と、受電モジュール20と、を備え、給電モジュール10の給電側接地リング12と受電モジュール20の受電側接地リング22とが接触した状態で、電力の伝送が行われる。
As described above, the power supply module 10 (contactless power supply module) according to the embodiment includes the power supply coil 11 used for power transmission, the power supply side housing 13 having the recess 13a that accommodates the power supply coil 11, and the power supply cable. a power supply side ground ring 12 (ground portion) connected to the ground line 31 and arranged along the opening of the recess 13a with its surface exposed.
The power receiving module 20 (contactless power supply module) is connected to a power receiving coil 21 used for power transmission, a power receiving side housing 23 having a concave portion 23 a for housing the power receiving coil 21 , and a ground wire of the power receiving cable 41 . and a power receiving side grounding ring 22 (grounding portion) arranged along the opening of the concave portion 23a with its surface exposed.
In addition, the contactless power supply system 1 includes a power supply module 10 and a power receiving module 20, and power is supplied while the power supply side ground ring 12 of the power supply module 10 and the power receiving side ground ring 22 of the power reception module 20 are in contact with each other. transmission takes place.
 給電モジュール10、受電モジュール20及び非接触給電システム1によれば、給電モジュール10の上に受電モジュール20を載置したときに、給電側接地リング12と受電側接地リング22が接触することにより、受電ケーブル41等を介して受電モジュール20に接続されている3ピンプラグ付き電源ケーブル43の接地線が接地される。また、給電側接地リング12及び受電側接地リング22は、それぞれ凹部13a、23aの開口に沿って配置されている、すなわち環状に形成されているので、受電モジュール20を載置するときに載置方向を意識せずに容易に位置決めすることができ、患者の手術部位や術者の対応しやすい位置や角度に応じて、医用電気機器45の配置を柔軟に変更することができる。したがって、医用電気機器45等のクラスI機器の保護接地を容易に実現することができるとともに、非接触給電システム1の利便性が格段に向上する。また、給電側接地リング12及び受電側接地リング22を配置するために筐体を大きくする必要はないので、給電モジュール10及び受電モジュール20の小型化を図ることができる。 According to the power feeding module 10, the power receiving module 20, and the contactless power feeding system 1, when the power receiving module 20 is placed on the power feeding module 10, the power feeding side grounding ring 12 and the power receiving side grounding ring 22 come into contact with each other. A ground wire of a power cable 43 with a 3-pin plug connected to the power receiving module 20 via the power receiving cable 41 or the like is grounded. In addition, since the power-supplying-side grounding ring 12 and the power-receiving-side grounding ring 22 are arranged along the openings of the concave portions 13a and 23a, respectively, that is, are formed in an annular shape, the power-receiving-side grounding ring 22 can be placed when the power-receiving module 20 is placed. It can be easily positioned without being conscious of the direction, and the arrangement of the medical electrical equipment 45 can be flexibly changed according to the patient's surgical site and the operator's easy-to-handle position and angle. Therefore, protective grounding of class I equipment such as the medical electrical equipment 45 can be easily realized, and the convenience of the non-contact power supply system 1 is greatly improved. In addition, since it is not necessary to increase the size of the housing for arranging the power feeding side ground ring 12 and the power receiving side grounding ring 22, the size of the power feeding module 10 and the power receiving module 20 can be reduced.
 また、給電モジュール10において、給電側筐体13は、導電性を有し、給電側接地リング12は、凹部13aの開口端に配置され、物理的かつ電気的に接続されている。受電モジュール20において、受電側筐体23は、導電性を有し、受電側接地リング22は、凹部23aの開口端に配置され、物理的かつ電気的に接続されている。
 これにより、給電側筐体13及び受電側筐体23を利用して容易に保護接地を実現することができるとともに、給電モジュール10及び受電モジュール20における電磁シールドを図ることができる。
In the power supply module 10, the power supply side housing 13 is conductive, and the power supply side grounding ring 12 is arranged at the opening end of the recess 13a and physically and electrically connected. In the power receiving module 20, the power receiving side housing 23 is conductive, and the power receiving side grounding ring 22 is arranged at the opening end of the recess 23a and is physically and electrically connected.
As a result, protective grounding can be easily achieved using the power feeding side housing 13 and the power receiving side housing 23 , and electromagnetic shielding can be achieved in the power feeding module 10 and the power receiving module 20 .
 また、給電モジュール10において、給電側筐体13及び給電側接地リング12は、異種材料で形成されている。受電モジュール20において、受電側筐体23及び受電側接地リング22は、異種材料で形成されている。これにより、それぞれの機能を実現するために適した材料を選定することができるので、設計の自由度が向上する。 In addition, in the power supply module 10, the power supply side housing 13 and the power supply side grounding ring 12 are made of different materials. In the power receiving module 20, the power receiving side housing 23 and the power receiving side grounding ring 22 are made of different materials. As a result, it is possible to select a suitable material for realizing each function, thereby improving the degree of freedom in design.
 また、給電モジュール10は、凹部13aの開口に配置される保護体15をさらに備え、給電側接地リング12と表面保護層152(保護体15の表面)は、面一である。これにより、給電側接地リング12及び表面保護層152と床面とが面一となるように給電モジュール10を設置することで、床面の平坦性が確保されるので、医用電気機器45等の重量物をスムーズに移動させることができるとともに、医療従事者のつまずき防止、床面清掃の作業性の向上を図ることができる。 The power supply module 10 further includes a protector 15 arranged in the opening of the recess 13a, and the power supply side ground ring 12 and the surface protective layer 152 (surface of the protector 15) are flush with each other. Accordingly, by installing the power supply module 10 so that the power supply side grounding ring 12 and the surface protective layer 152 are flush with the floor surface, the flatness of the floor surface is ensured. In addition to being able to move heavy objects smoothly, it is possible to prevent medical staff from stumbling and improve the workability of floor cleaning.
 また、受電モジュール20において、受電側接地リング22は、表面に凹凸構造を有する。好ましくは、受電側接地リング22は、表面に、加圧変形可能なバネ構造を有する。これにより、良好な電気的導通を確保しやすくなる。 In addition, in the power receiving module 20, the power receiving side grounding ring 22 has an uneven structure on its surface. Preferably, the power-receiving-side grounding ring 22 has a pressure-deformable spring structure on its surface. This makes it easier to ensure good electrical continuity.
 以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。 Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and can be changed without departing from the gist of the invention.
 例えば、非接触給電システム1は、受電モジュール20のXYZ方向の位置決め、具体的には、受電モジュール20を備える可動体(例えば、医用電気器用のワゴン)の平面上での移動及び受電モジュール20の昇降を、自動で行う位置決め装置を備えてもよい。 For example, the contactless power supply system 1 can position the power receiving module 20 in the XYZ directions, specifically, move a movable body (for example, a wagon for medical electrical equipment) including the power receiving module 20 on a plane, and move the power receiving module 20. A positioning device that automatically raises and lowers may be provided.
 また例えば、受電モジュール20の受電側接地リング22の表面には、ワイヤーブラシ等のブラシ部を設けてもよい。これにより、給電モジュール10の上に受電モジュール20を載置する際に、給電側接地リング12の表面の汚れや酸化被膜が除去されるので、接地不良を効率よく防止することができる。 Further, for example, a brush portion such as a wire brush may be provided on the surface of the power receiving side grounding ring 22 of the power receiving module 20 . As a result, when the power receiving module 20 is placed on the power feeding module 10, dirt and oxide film on the surface of the power feeding side grounding ring 12 are removed, so that poor grounding can be efficiently prevented.
 また、給電側保護体15の絶縁性媒体151及び受電側保護体25の絶縁性材料は、給電コイル11及び受電コイル21を固定できればよく、その構成材料は特に限定されない。例えば、給電側保護体15の絶縁性媒体151及び受電側保護体25の絶縁性材料を、エポキシ樹脂にフィラーを添加した樹脂材料で形成してもよい。この場合、エポキシ樹脂による防水効果が得られる上、給電モジュール10及び受電モジュール20の強度を高めることができる。さらに、放熱性の高いフィラーを採用した場合、給電コイル11及び受電コイル21の放熱性を高めることができる。 Also, the insulating medium 151 of the power feeding side protector 15 and the insulating material of the power receiving side protector 25 are not particularly limited as long as they can fix the power feeding coil 11 and the power receiving coil 21 . For example, the insulating medium 151 of the power feeding side protector 15 and the insulating material of the power receiving side protector 25 may be made of a resin material obtained by adding a filler to epoxy resin. In this case, the waterproof effect of the epoxy resin can be obtained, and the strength of the power supply module 10 and the power reception module 20 can be increased. Furthermore, when a filler with high heat dissipation is employed, the heat dissipation of the power feeding coil 11 and the power receiving coil 21 can be enhanced.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.
 2021年7月29日出願の特願2021-124410の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure contents of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2021-124410 filed on July 29, 2021 are incorporated herein by reference.
 本発明は、非接触で給電を行うための非接触給電モジュール及び非接触給電システムにかかり、特に、保護接地が必要な電気機器への給電に有用である。 The present invention relates to a non-contact power supply module and a non-contact power supply system for non-contact power supply, and is particularly useful for power supply to electrical equipment that requires protective grounding.
 1 非接触給電システム
 10 給電モジュール
 11 給電コイル
 12 給電側接地リング
 13 給電側筐体
 14 給電側磁気シールド
 15 給電側保護体
 151 絶縁性媒体
 152 表面保護層
 20 受電モジュール
 21 受電コイル
 22 受電側接地リング
 23 受電側筐体
 24 受電側磁気シールド
 25 受電側保護体
 31 給電ケーブル
 43 3ピンプラグ付き電源ケーブル
Reference Signs List 1 wireless power supply system 10 power supply module 11 power supply coil 12 power supply side grounding ring 13 power supply side housing 14 power supply side magnetic shield 15 power supply side protector 151 insulating medium 152 surface protective layer 20 power receiving module 21 power receiving coil 22 power receiving side grounding ring 23 power receiving side housing 24 power receiving side magnetic shield 25 power receiving side protector 31 power supply cable 43 power cable with 3-pin plug

Claims (8)

  1.  非接触給電システムの給電側又は受電側に設けられる非接触給電モジュールであって、
     電力の伝送に用いられるコイルと、
     前記コイルを収容する凹部を有する筐体と、
     接地線に接続され、表面が露出する状態で前記凹部の開口に沿って配置される接地部と、
     を備える非接触給電モジュール。
    A contactless power supply module provided on the power supply side or the power receiving side of a contactless power supply system,
    a coil used to transmit power;
    a housing having a recess for accommodating the coil;
    a ground portion connected to a ground line and arranged along the opening of the recess with its surface exposed;
    A contactless power supply module.
  2.  前記筐体は、導電性を有し、
     前記接地部は、前記凹部の開口端に配置され、物理的かつ電気的に接続されている
     請求項1に記載の非接触給電モジュール。
    The housing has conductivity,
    The contactless power supply module according to claim 1, wherein the ground portion is arranged at an open end of the recess and is physically and electrically connected.
  3.  前記筐体及び前記接地部は、異種材料で形成されている、
     請求項2に記載の非接触給電モジュール。
    The housing and the grounding portion are made of different materials,
    The contactless power supply module according to claim 2.
  4.  前記凹部の開口に配置される保護体を備え、
     前記接地部と前記保護体の表面は、面一である、
     請求項1から3のいずれか一項に記載の非接触給電モジュール。
    A protective body arranged in the opening of the recess,
    The surface of the ground part and the surface of the protector are flush with each other,
    The contactless power supply module according to any one of claims 1 to 3.
  5.  前記接地部は、表面に凹凸構造を有する、
     請求項1から4のいずれか一項に記載の非接触給電モジュール。
    The ground part has an uneven structure on its surface,
    The contactless power supply module according to any one of claims 1 to 4.
  6.  前記接地部は、表面に、加圧変形可能なバネ構造を有する、
     請求項1から5のいずれか一項に記載の非接触給電モジュール。
    The grounding part has a spring structure that can be deformed under pressure on the surface,
    The contactless power supply module according to any one of claims 1 to 5.
  7.  前記接地部は、表面にブラシ部を有する、
     請求項1から6のいずれか一項に記載の非接触給電モジュール。
    The ground part has a brush part on the surface,
    The contactless power supply module according to any one of claims 1 to 6.
  8.  請求項1から4のいずれか一項に記載の非接触給電モジュールからなる給電モジュールと、
     請求項1から7のいずれか一項に記載の非接触給電モジュールからなる受電モジュールと、を備え、
     前記給電モジュールの前記接地部と前記受電モジュールの前記接地部とが接触した状態で、電力の伝送が行われる、
     非接触給電システム。
    a power supply module comprising the contactless power supply module according to any one of claims 1 to 4;
    a power receiving module comprising the contactless power supply module according to any one of claims 1 to 7,
    Power is transmitted while the grounding portion of the power supply module and the grounding portion of the power receiving module are in contact with each other.
    Contactless power supply system.
PCT/JP2022/028967 2021-07-29 2022-07-27 Non-contact power feeding module and non-contact power feeding system WO2023008487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538598A JPWO2023008487A1 (en) 2021-07-29 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124410 2021-07-29
JP2021-124410 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008487A1 true WO2023008487A1 (en) 2023-02-02

Family

ID=85086863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028967 WO2023008487A1 (en) 2021-07-29 2022-07-27 Non-contact power feeding module and non-contact power feeding system

Country Status (2)

Country Link
JP (1) JPWO2023008487A1 (en)
WO (1) WO2023008487A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110294A (en) * 2000-08-14 2002-04-12 Framatome Connectors Internatl Electrical connector for micro co-axial conductor
JP2007165876A (en) * 2005-12-01 2007-06-28 General Electric Co <Ge> Non-contact power transmission system
JP2018534808A (en) * 2015-09-03 2018-11-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Connectors and devices for wireless transmission of data and / or power
JP2021061706A (en) * 2019-10-08 2021-04-15 昭和電線ケーブルシステム株式会社 Non-contact power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110294A (en) * 2000-08-14 2002-04-12 Framatome Connectors Internatl Electrical connector for micro co-axial conductor
JP2007165876A (en) * 2005-12-01 2007-06-28 General Electric Co <Ge> Non-contact power transmission system
JP2018534808A (en) * 2015-09-03 2018-11-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Connectors and devices for wireless transmission of data and / or power
JP2021061706A (en) * 2019-10-08 2021-04-15 昭和電線ケーブルシステム株式会社 Non-contact power supply system

Also Published As

Publication number Publication date
JPWO2023008487A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN112311048B (en) Thermally optimized RX wireless charger for small RX devices
US9748802B2 (en) Contactless rotary joint
JP2014112728A (en) Thin film coil and electronic device having the same
JP6778269B2 (en) Electromagnetic shield for wireless power transfer systems
JP6221411B2 (en) Coil unit for wireless power transmission
JP4563950B2 (en) Contactless charging system
JP5952091B2 (en) Wireless power feeding device, wireless power receiving device, wireless power feeding system, and electrical equipment
US11374427B2 (en) Portable electronic device and wireless electric power transmission device
JP2019004531A (en) Power reception coil device and wireless power transmission system using the same
JP7239274B2 (en) Power transmission communication unit
WO2015083531A1 (en) Transmission cable
WO2023008487A1 (en) Non-contact power feeding module and non-contact power feeding system
US10873214B2 (en) Connector and power supply system
JP2014039437A (en) Charge and discharge device
JP2015106938A (en) Power transmission coil unit and wireless power transmission device
JP2023150571A (en) Non-contact power supply module and non-contact power supply system
CN112088412B (en) Non-contact power transmission device, electromagnetic wave irradiation/reception device, power transmission/information communication device, and autonomous mobile robot system
WO2016136568A1 (en) Circuit device and power transmission system
KR20150048694A (en) Thin film coil, case assembly, non-contact power receiving device, and electronic device having the same
KR101973453B1 (en) Thin film coil, wireless power receiving device, electronic apparatus, and case assembly
US20220407356A1 (en) Dual-frequency wireless charger modules
JP2017153351A (en) Non-contact power transmission circuit and non-contact power transmission device
KR20240006680A (en) Dual frequency wireless charger modules
CN112737143A (en) Wireless charging coil and charging equipment
JP2020155538A (en) Coil device, wireless power transmission device, wireless power reception device, wireless power transmission system, and electrical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538598

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849548

Country of ref document: EP

Kind code of ref document: A1