WO2023005257A1 - 一种浮动非接触式超声增强柔性子孔径抛光装置及方法 - Google Patents

一种浮动非接触式超声增强柔性子孔径抛光装置及方法 Download PDF

Info

Publication number
WO2023005257A1
WO2023005257A1 PCT/CN2022/085965 CN2022085965W WO2023005257A1 WO 2023005257 A1 WO2023005257 A1 WO 2023005257A1 CN 2022085965 W CN2022085965 W CN 2022085965W WO 2023005257 A1 WO2023005257 A1 WO 2023005257A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
workpiece
polishing
axis motion
flexible
Prior art date
Application number
PCT/CN2022/085965
Other languages
English (en)
French (fr)
Inventor
朱吴乐
韩放
武璐
孙安玉
居冰峰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/891,015 priority Critical patent/US11839944B2/en
Publication of WO2023005257A1 publication Critical patent/WO2023005257A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/02Frames; Beds; Carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the field of ultra-precision machining, and in particular relates to a floating non-contact ultrasonically enhanced flexible sub-aperture polishing device and method.
  • the traditional processing method requires hard contact between the tool and the workpiece, which leads to the inability of the tool to track the surface shape of the workpiece when processing a complex surface shape workpiece, resulting in a far difference between the processing result and the ideal surface shape;
  • the tool can be close to the surface of the workpiece according to the curvature of the workpiece, but this leads to the fact that the free abrasive particles cannot enter the gap between the tool and the workpiece, and the abrasive particles on the flexible tool are caused by the deformation of the tool.
  • a floating non-contact ultrasonically enhanced flexible sub-aperture polishing device and method are proposed: through the linkage control of the X-axis motion platform, Y-axis motion platform, Z-axis motion platform, and workpiece swing table, it is ensured that the tool normal at the processing point is in line with the The normal of the workpiece maintains the same angle to realize sub-aperture machining; the air pressure of the ventilated spindle acts on the inner end surface of the ball spline to form an axial thrust to realize the free floating of the tool in the axial direction; the rotation of the flexible tool will drive the polishing liquid to form a fluid flow Pressure, air pressure and dynamic pressure are dynamically balanced; dynamic pressure makes the flexible tool elastically deformed, forming a small gap between the tool and the workpiece, and the shear force generated when the polishing fluid flows through the gap is used to remove the material; and through the transducer generated Ultrasound passes through the flexible tool to form a cavitation effect in the gap, speeding up material removal and
  • the present invention proposes a floating non-contact ultrasonic enhanced flexible sub-aperture polishing device and method.
  • the normal line of the tool at the position of the machining point and the normal line of the workpiece are kept at the same angle to realize sub-aperture processing;
  • the air pressure of the ventilated spindle acts on On the inner end surface of the ball spline shaft, an axial thrust is formed to realize the free floating of the tool in the axial direction;
  • the rotation of the flexible tool will drive the polishing liquid to form a hydrodynamic pressure, and the air pressure and dynamic pressure are dynamically balanced;
  • the dynamic pressure makes the flexible tool produce elastic deformation , A small gap is formed between the tool and the workpiece, and the shear force generated when the polishing liquid flows through the gap is used to remove the material; and the ultrasonic wave generated by the transducer passes through the flexible tool to form a cavitation effect in the gap, accelerating material removal, Improve polishing efficiency;
  • a floating non-contact ultrasonic enhanced flexible sub-aperture polishing device including a flexible tool, a horn, an ultrasonic transducer, a conductive ring rotor, a conductive ring stator, a connecting shaft, a coupling, a ball spline nut, a ball Consists of spline shaft and axial restraint sleeve;
  • the ball spline nut is fixed in the ventilated main shaft through the flange, the ball spline shaft passes through the ball spline nut, the axial restraint sleeve is arranged at both ends of the ball spline nut, and is connected with the ball spline shaft by interference, the coupling One end of the coupling is interference-connected with the ball spline shaft, the other end of the coupling is fixedly connected with one end of the connecting shaft, the other end of the connecting shaft passes through the stator of the conductive ring, the rotor of the conductive ring is fixedly connected with the connecting shaft, and the conductive ring
  • the stator is fixed on the axial movement platform through the anti-rotation plate, the connecting shaft and the end of the transducer are connected in interference, the transducer and the horn are connected through a flange, and the flexible polishing tool is fixed at the output end of the horn;
  • the conductive ring stator is connected to the conductive
  • it also includes a Z-axis motion table, a frame, an X-axis motion table, a Y-axis motion table, and a workpiece table;
  • the ventilation spindle is fixedly installed on the Z-axis motion table, the conductive ring stator is fixedly installed on the Z-axis motion table, and the Z-axis motion platform is installed on the frame; the workpiece is fixed on the workpiece table, and the workpiece table is fixed on the Y-axis On the motion table, the motion direction of the Y-axis motion table is the vertical direction, the Y-axis motion table is fixed on the X-axis motion table, the Z-axis motion table and the X-axis motion table are in the same plane, and the motion directions are perpendicular to each other, and the movement The directions are perpendicular to each other, and the X-axis motion table is fixed on the frame.
  • a polishing method for a floating non-contact ultrasonically enhanced flexible sub-aperture polishing device specifically includes: the floating non-contact ultrasonically enhanced flexible sub-aperture polishing device approaches a workpiece through a Z-axis motion platform, and the workpiece is placed on an X-axis motion platform, The Y-axis motion platform adjusts the processing position to ensure that the tool can process the workpiece at any position in the direction of the X-axis and Y-axis.
  • the workpiece swing table swings around the X-axis to ensure that it always maintains the same angle with the normal line of the workpiece surface processing point by finding the position of the tool. Realize sub-aperture machining of aspherical workpieces.
  • the ball spline shaft has a certain movement allowance in the axial direction
  • the ventilating main shaft acts on the inner end surface of the rolling spline shaft with pressure gas to push the whole mechanism to move freely in the axial direction; it is sufficiently stable during the processing
  • the polishing liquid is sprayed between the flexible polishing tool and the workpiece, and the flexible polishing tool rotates to make the polishing liquid generate dynamic pressure, which is balanced with the air pressure of the ventilation spindle.
  • the rotation of the flexible polishing tool causes the polishing liquid to generate dynamic pressure, and the dynamic pressure generated by the polishing liquid is balanced with the air pressure of the ventilated spindle, instead of achieving the effect of balancing the dynamic pressure by pre-tightening the spring and pulling it with a heavy object .
  • the transducer generates ultrasonic waves; the ultrasonic waves are transmitted to the flexible tool through the horn, and then to the polishing liquid; the flexible polishing tool is a superelastic material, and the ultrasonic wave is generated when passing through the flexible polishing tool.
  • the polishing liquid flow field will produce micro-bubbles under the action of ultrasonic waves, and the bubbles will be broken due to the cavitation effect generated by the ultrasonic wave. Promote the contact and exchange between the abrasive grains and the surface atoms of the workpiece, and drive the abrasive grains to remove materials under the shear force of the flow field.
  • the dynamic pressure causes elastic deformation of the flexible tool, so that a small gap is formed between the flexible tool and the surface of the workpiece, and the polishing liquid is driven by the kinematics of the tool to generate a large shear stress in the gap between the tool and the workpiece, which is distributed in a gradient.
  • the present invention has the biggest difference and advantages: first, it can ensure that the normal line of the tool and the normal line of the workpiece maintain the same feed angle, and realize the sub-aperture processing of workpieces with complex shapes; An ultrasonic transducer is attached to the floating spindle, and the ultrasonic cavitation effect is used to speed up the material removal efficiency, which makes up for the low efficiency of the existing air-floating processing.
  • the contradiction between extremely high surface/subsurface quality and high material removal rate can meet the deterministic polishing requirements of high-efficiency surface shape controllable for plane, spherical, aspherical and free-form surfaces;
  • Figure 1 is a schematic diagram of a floating non-contact ultrasonic cavitation flexible sub-aperture polishing spindle
  • Fig. 2 is a schematic diagram of a floating non-contact ultrasonic cavitation flexible sub-aperture polishing device
  • Fig. 3 is a schematic diagram of sub-aperture processing
  • Fig. 4 is a schematic diagram of floating non-contact flexible processing
  • Figure 5 is a schematic diagram of the ultrasonic cavitation effect.
  • FIG. 1 it includes a flexible tool 101, a horn 102, an ultrasonic transducer 103, a conductive ring rotor 104, a conductive ring stator 105, a connecting shaft 106, a coupling 107, a ball spline nut 108, a ball A spline shaft 109 and an axial restraint sleeve 110 are formed;
  • the ball spline nut 108 is fixed on the ventilating main shaft 201 through the flange, the ball spline shaft 109 passes through the ball spline nut, the axial restraint sleeve 110 is in interference connection with the ball spline shaft 109, the coupling 107 and the ball spline
  • the key shaft 109 is interference-connected, the coupling 107 is connected to the connecting shaft 106 through threads, the connecting shaft 106 passes through the conductive ring rotor 104, the conductive ring rotor 104 is fixed to the connecting shaft 106 by four bolts, and the conductive ring stator 105
  • the anti-rotation piece is connected to the frame with bolts, the connecting shaft 106 is connected to the end of the transducer 103 in an interference connection, the transducer 103 is connected to the horn 102 through a flange, and the flexible tool 101 is fixed on the narrow horn 102 part;
  • the ball spline pair can not only transmit the rotation of the main shaft to the tool, but also realize the axial movement of the tool;
  • the axial restraint sleeve is used to restrict the relative movement range of the shaft and the ball spline nut, and control the axial movement distance within 2mm within;
  • FIG. 2 it consists of a ventilation spindle 201, a Z-axis motion table 202, a frame 203, an X-axis motion table 204, a Y-axis motion table 205, a workpiece 206, and a workpiece swing table 207;
  • the flange on the ball spline nut 108 is fixed on the ventilation main shaft 201 by bolts, the base of the ventilation main shaft 201 is installed on the Z-axis motion table 202 with bolts, and there are two brackets on the Z-axis motion table 202 to install and fix the conductive ring
  • the stator 105 and the Z-axis motion platform 202 are installed on the frame 203; the workpiece 206 is fixed on the workpiece swing table 207, the workpiece swing table 207 is fixed on the Y-axis motion table 205, and the Y-axis motion table 205 is fixed on the X-axis motion table 204 204 sets of X-axis movement are fixed on the frame 203;
  • the floating non-contact ultrasonically enhanced flexible sub-aperture polishing tool approaches the workpiece through the Z-axis motion platform, and the workpiece setting table can adjust the processing position through the X-axis motion platform and Y-axis motion platform to ensure that the tool can be processed at any XY position
  • the workpiece, the workpiece table can swing around the A axis, by finding the position of the tool to ensure that it always maintains the same angle with the normal line of the workpiece surface processing point, to realize the sub-aperture processing of aspheric workpieces;
  • the ball spline shaft has a certain movement margin in the axial direction, and the ventilating main shaft can act on the inner end surface of the rolling spline shaft to push the whole mechanism to move freely in the axial direction;
  • a sufficiently stable polishing liquid is sprayed between the tool and the workpiece, and the tool rotates to make the polishing liquid generate dynamic pressure, which is balanced with the air pressure of the ventilated spindle; the dynamic pressure makes the flexible tool elastically deformed, making There is a small gap between the flexible tool and the workpiece surface.
  • the polishing liquid generates a large shear stress in the gap between the tool and the workpiece, which is distributed in a gradient. The closer to the workpiece position, the greater the shear stress on the workpiece surface. Free abrasive particles come into contact with the workpiece surface under shear stress and remove material;
  • the outgoing wires of the conductive ring rotor are respectively connected to the positive and negative poles of the transducer, and the transducer generates ultrasonic waves; the ultrasonic waves are transmitted to the flexible tool through the horn, and then to the polishing liquid; the flexible tool material It is a superelastic material and has little attenuation to ultrasonic waves; before the ultrasonic waves pass through the tool to generate ultrasonic waves similar to the shape of the tool, the polishing liquid will generate micro-bubbles after being subjected to ultrasonic waves, and the bubbles will burst due to the cavitation effect generated by the ultrasonic waves.
  • the micro-jet generated during the process pushes the free abrasive particles to collide with the surface of the workpiece to cause friction, remove material and improve polishing efficiency;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种浮动非接触式超声增强柔性子孔径抛光装置及其抛光方法,抛光装置包括柔性工具(101)、变幅杆(102)、超声换能器(103)、导电圆环转子(104)、导电圆环定子(105)、连接轴(106)、联轴器(107)、滚珠花键螺母(108)、滚珠花键轴(109)、轴向约束轴套(110);滚珠花键螺母(108)通过法兰固定在通气主轴(201)内,滚珠花键轴(109)穿过滚珠花键螺母(108),联轴器(107)的一端与滚珠花键轴(109)连接,联轴器(107)另一端与连接轴(106)的一端固定连接,连接轴(106)的另一端穿过导电圆环定子(105),导电圆环转子(104)与连接轴(106)固定连接,导电圆环定子(105)通过止转片固定在轴向运动平台上,换能器(103)与变幅杆(102)通过法兰连接,柔性工具(101)固定在变幅杆(102)输出端。抛光装置及其抛光方法保证加工点位置工具法线与工件法线保持同一角度,实现子孔径加工、工具在轴向自由浮动、气压和动压动态平衡、提高抛光效率。

Description

一种浮动非接触式超声增强柔性子孔径抛光装置及方法 技术领域
本发明属于超精密加工领域,尤其涉及一种浮动非接触式超声增强柔性子孔径抛光装置及方法。
背景技术
随着航空航天、光学、半导体等领域的发展,对于非球面透镜的需求日益增加,然而传统的加工方法主要用于加工平面透镜,在加工非球面透镜时,由于曲率变化、面形复杂、加工精度要求高等因素无法胜任;
传统的加工方法需要工具与工件硬接触,这就导致了当加工复杂面形工件时,工具无法跟踪工件面形,导致加工结果与理想面形相差甚远;有学者为此提出了柔性工具研抛工件的方法,工具可以根据工件的面形曲率变化,紧贴工件表面,但是这样就导致了游离磨粒无法进入工具与工件之间间隙,而柔性工具上的磨粒由于工具的变形导致与工件接触力不足以高效地去除材料;在此基础上,有学者提出了气浮的方式,让柔性工具离开工件表面,通过游离磨粒的动压剪切作用去除材料,这种方法虽然可以有效去除材料,但是由于去除材料效率很低,仍然有待改善;
为此,提出一种浮动非接触式超声增强柔性子孔径抛光装置及方法:通过X轴运动平台、Y轴运动平台、Z轴运动平台、工件摆台联动控制,保证加工点位置工具法线与工件法线保持同一角度,实现子孔径加工;通气主轴的气压作用在滚珠花键内端面上,形成一个轴向的推力,实现工具在轴向自由浮动;柔性工具旋转会带动抛光液形成流体动压,气压和动压动态平衡;动压使得柔性工具产生弹性形变,在工具与工件之间形成微小间隙,利用抛光液流过间隙时产生的剪切力去除材料;并通过换能器产生的超声波透过柔性工具在间隙内形成空化效应,加快材料去除、提高抛光效率;该方法具有加工精度高、效率高、通用性好等特点,解决极高的表面/亚表面质量而高材料去除率的矛盾,可满足平面、球面、非球面以及自由曲面的高效面形可控的确定性抛光需求;
发明内容
本发明针对现有技术的不足,提出了一种浮动非接触式超声增强柔性子孔径抛光装置及方法。
本发明通过X轴运动平台、Y轴运动平台、Z轴运动平台、工件摆台联动控制,保证加工点位置工具法线与工件法线保持同一角度,实现子孔径加工;通气主轴的气压作用在滚珠花键轴内端面上,形成一个轴向的推力,实现工具在轴向自由浮动;柔性工具旋转会带动抛光液形成流体动压,气压和动压动态平衡;动压使得柔性工具产生弹性形变,在工具与工件之间形成微小间隙,利用抛光液流过间隙时产生的剪切力去除材料;并通过换能器产生的超声波透过柔性工具在间隙内形成空化效应,加快材料去除、提高抛光效率;
为达到上述目的,本发明技术方案如下:
一种浮动非接触式超声增强柔性子孔径抛光装置,包括柔性工具、变幅杆、超声换能器、导电圆环转子、导电圆环定子、连接轴、联轴器、滚珠花键螺母、滚珠花键轴、轴向约束轴套构成;
滚珠花键螺母通过法兰固定在通气主轴内,滚珠花键轴穿过滚珠花键螺母,轴向约束轴套设置在滚珠花键螺母两端,并与滚珠花键轴过盈连接,联轴器的一端与滚珠花键轴过盈连接,联轴器另一端与连接轴的一端固定连接,连接轴的另一端穿过导电圆环定子,导电圆环转子与连接轴固定连接,导电圆环定子通过止转片固定在轴向运动平台上,连接轴与换能器端部过盈连接,换能器与变幅杆通过法兰连接,柔性抛光工具固定在变幅杆输出端;所述的导电圆环定子与导电圆环转子通过电刷连接,所述的换能器电源输入端接导电圆环转子的电源端子。
作为优选,还包括Z轴运动台、机架、X轴运动台、Y轴运动台、工件摆台构成;
通气主轴的固定安装在Z轴运动台上,导电圆环定子固定安装在Z轴运动台上,Z轴运动平台安装在机架上;工件固定在工件摆台上,工件摆台固定在Y轴运动台上,Y轴运动台的运动方向为竖直方向,Y轴运动台固定在X轴运动台上,Z轴运动台与X轴运动台在同一平面内,且运动方向相互垂直,且运动方向相互垂直,X轴运动台固定在机架上。
一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,该方法具体为:浮动非接触式超声增强柔性子孔径抛光装置通过Z轴运动平台靠近工件,工件摆台通过X轴运动平台、Y轴运动平台调节加工位置,保证工具在X轴Y轴方向上任意位置加工工件,工件摆台绕X轴摆动,通过寻找工具的位置保证其与工件表面加工点的法线始终保持同一角度,实现非球面工件的子孔径加工。
作为优选,所述的滚珠花键轴在轴向有一定的运动余量,通气主轴将压力气体作用在滚动花键轴的内端面,推动整个机构在轴向***;在加工过程中充分稳定的抛光液喷 射在柔性抛光工具和工件之间,柔性抛光工具旋转使得抛光液产生动压,抛光液产生的动压与通气主轴的气压平衡。
作为优选,所述的柔性抛光工具旋转使得抛光液产生动压,抛光液产生的动压与通气主轴的气压平衡,替换为通过预紧弹簧和利用重物拉拽的方式实现平衡动压的效果。
作为优选,所述的换能器产生超声波;通过变幅杆将超声波传递给柔性工具,再传递给抛光液;柔性抛光工具为超弹性材料,超声波在穿出柔性抛光工具时产生近似于工具形状的超声波前,抛光液流场在超声波作用下会产生微气泡,气泡由于超声波产生的空化效应破裂,微气泡破裂时产生的微射流在工具与工件之间的间隙内引起局部湍流,湍流会促进磨粒与工件表面原子之间的接触和交换,并驱动磨粒在流场剪切力的作用下去除材料。
作为优选,所述的动压使柔性工具产生弹性形变,使得柔性工具与工件表面产生微小间隙,抛光液在工具运动学驱动下,在工具与工件间隙产生大的剪切应力,呈梯度分布,越靠近工件位置,工件表面所受的剪切应力越大,游离磨粒在剪切应力作用下与工件表面接触并去除材料;
本发明的有益效果为:
本发明与已有的加工方法相比,最大的区别优势在于:第一,可以保证工具法线与工件法线保持同一进给角度,实现复杂形貌工件的子孔径加工;第二,在气浮主轴上附加了超声换能器,利用超声空化效应加快材料去除效率,弥补了已有气浮式加工效率低的缺点;该方法具有加工精度高、效率高、通用性好等特点,解决极高的表面/亚表面质量而高材料去除率的矛盾,可满足平面、球面、非球面以及自由曲面的高效面形可控的确定性抛光需求;
附图说明
图1是浮动非接触式超声空化柔性子孔径抛光主轴示意图;
图2是浮动非接触式超声空化柔性子孔径抛光装置示意图;
图3是子孔径加工原理图;
图4是浮动非接触柔性加工原理图;
图5是超声空化效应原理图。
具体实施方式
下面结合附图和实施例对本发明做进一步详述。
如图1所示,包括柔性工具101、变幅杆102、超声换能器103、导电圆环转子104、导电圆环定子105、连接轴106、联轴器107、滚珠花键螺母108、滚珠花键轴109、轴向约束轴套110构成;
滚珠花键螺母108通过法兰固定在通气主轴201上,滚珠花键轴109穿过滚珠花键螺母,轴向约束轴套110与滚珠花键轴109过盈连接,联轴器107与滚珠花键轴109过盈连接,联轴器107与连接轴106通过螺纹连接,连接轴106穿过导电圆环转子104,导电圆环转子104通过四个螺栓与连接轴106固定,导电圆环定子105通过止转片与机架用螺栓连接,连接轴106与换能器103端部过盈连接,换能器103与变幅杆102通过法兰连接,柔性工具101固定在变幅杆102较窄段;
滚珠花键副既可以将主轴的旋转传递给工具,又可以实现工具在轴向的运动;轴向约束轴套用来约束轴与滚珠花键螺母的相对运动范围,将轴向运动距离控制在2mm以内;
如图2所示,包括通气主轴201、Z轴运动台202、机架203、X轴运动台204、Y轴运动台205、工件206、工件摆台207构成;
滚珠花键螺母108上的法兰盘通过螺栓固定在通气主轴201上,通气主轴201的底座用螺栓安装在Z轴运动台上202,Z轴运动台202上有两个支架安装固定导电圆环定子105,Z轴运动平台202安装在机架203上;工件206固定在工件摆台207上,工件摆台207固定在Y轴运动台205上,Y轴运动台205固定在X轴运动台204上,X轴运动204台固定在机架203上;
如图3所示,浮动非接触式超声增强柔性子孔径抛光工具通过Z轴运动平台靠近工件,工件摆台可以通过X轴运动平台、Y轴运动平台调节加工位置,保证工具在XY任意位置加工工件,工件摆台可以绕A轴摆动,通过寻找工具的位置保证其与工件表面加工点的法线始终保持同一角度,实现非球面工件的子孔径加工;
如图4所示,所述的滚珠花键轴在轴向有一定的运动余量,通气主轴可以将压力气体作用在滚动花键轴的内端面,推动整个机构在轴向***;在加工过程中充分稳定的抛光液喷射在工具和工件之间,工具旋转使得抛光液产生动压,抛光液产生的动压与通气主轴的气压平衡;所述的动压使柔性工具产生弹性形变,使得柔性工具与工件表面产生微小间隙,抛光液在工具运动学驱动下,在工具与工件间隙产生大的剪切应力,呈梯度分布,越靠近工件位置,工件表面所受的剪切应力越大,游离磨粒在剪切应力作用下与工件表面接触并去除材料;
如图5所示,所述的导电圆环转子出线分别与换能器正负极连接,换能器产生超声波;通过变幅杆将超声波传递给柔性工具,再传递给抛光液;柔性工具材料为超弹性材料,并且对超声波的衰减很小;超声波在穿出工具时产生近似于工具形状的超声波前,抛光液受到超声波作用后会产生微气泡,气泡由于超声波产生的空化效应破裂,破裂时产生的微射流推动游离磨粒与工件表面发生碰撞摩擦,去除材料并提高抛光效率;
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种浮动非接触式超声增强柔性子孔径抛光装置,其特征在于:包括柔性工具(101)、变幅杆(102)、超声换能器(103)、导电圆环转子(104)、导电圆环定子(105)、连接轴(106)、联轴器(107)、滚珠花键螺母(108)、滚珠花键轴(109)、轴向约束轴套(110)构成;
    滚珠花键螺母(108)通过法兰固定在通气主轴(201)内,滚珠花键轴(109)穿过滚珠花键螺母(108),轴向约束轴套(110)设置在滚珠花键螺母(108)两端,并与滚珠花键轴(109)过盈连接,联轴器(107)的一端与滚珠花键轴(109)过盈连接,联轴器(107)另一端与连接轴(106)的一端固定连接,连接轴(106)的另一端穿过导电圆环定子(105),导电圆环转子(104)与连接轴(106)固定连接,导电圆环定子(105)通过止转片固定在轴向运动平台上,连接轴(106)与换能器(103)端部过盈连接,换能器(103)与变幅杆(102)通过法兰连接,柔性工具(101)固定在变幅杆(102)输出端;所述的导电圆环定子(105)与导电圆环转子(104)通过电刷连接,所述的换能器电源输入端接导电圆环转子(104)的电源端子。
  2. 如权利要求1所述的一种浮动非接触式超声增强柔性子孔径抛光装置,其特征在于:还包括Z轴运动台(202)、机架(203)、X轴运动台(204)、Y轴运动台(205)、工件摆台(207)构成;
    通气主轴(201)的固定安装在Z轴运动台上(202),导电圆环定子(105)固定安装在Z轴运动台(202)上,Z轴运动平台(202)安装在机架(203)上;工件(206)固定在工件摆台(207)上,工件摆台(207)固定在Y轴运动台(205)上,Y轴运动台的运动方向为竖直方向,Y轴运动台(205)固定在X轴运动台(204)上,Z轴运动台与X轴运动台在同一平面内,且运动方向相互垂直,X轴运动台(204)固定在机架(203)上。
  3. 如权利要求1或2所述的一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,其特征在于:浮动非接触式超声增强柔性子孔径抛光装置通过Z轴运动平台靠近工件,工件摆台通过X轴运动平台、Y轴运动平台调节加工位置,保证工具在X轴Y轴方向上任意位置加工工件,工件摆台绕X轴摆动,通过寻找工具的位置保证其与工件表面加工点的法线始终保持同一角度,实现非球面工件的子孔径加工。
  4. 如权利要求3所述的一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,其特征在于:所述的滚珠花键轴在轴向有一定的运动余量,通气主轴将压力气体作用在 滚动花键轴的内端面,推动整个机构在轴向***;在加工过程中充分稳定的抛光液喷射在柔性抛光工具和工件之间,柔性抛光工具旋转使得抛光液产生动压,抛光液产生的动压与通气主轴的气压平衡。
  5. 如权利要求3所述的一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,其特征在于:所述的换能器产生超声波;通过变幅杆将超声波传递给柔性工具,再传递给抛光液;柔性抛光工具为超弹性材料,超声波在穿出柔性抛光工具时产生近似于工具形状的超声波前,抛光液流场在超声波作用下会产生微气泡,气泡由于超声波产生的空化效应破裂,微气泡破裂时产生的微射流在工具与工件之间的间隙内引起局部湍流,湍流会促进磨粒与工件表面原子之间的接触和交换,并驱动磨粒在流场剪切力的作用下去除材料。
  6. 如权利要求3所述的一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,其特征在于:所述的柔性抛光工具旋转使得抛光液产生动压,抛光液产生的动压与通气主轴的气压平衡,替换为通过预紧弹簧和利用重物拉拽的方式实现平衡动压的效果。
  7. 如权利要求4所述的一种浮动非接触式超声增强柔性子孔径抛光装置的抛光方法,其特征在于:所述的动压使柔性工具产生弹性形变,使得柔性工具与工件表面产生微小间隙,抛光液在工具运动学驱动下,在工具与工件间隙产生大的剪切应力,呈梯度分布,越靠近工件位置,工件表面所受的剪切应力越大,游离磨粒在剪切应力作用下与工件表面接触并去除材料。
PCT/CN2022/085965 2021-07-28 2022-04-08 一种浮动非接触式超声增强柔性子孔径抛光装置及方法 WO2023005257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/891,015 US11839944B2 (en) 2021-07-28 2022-08-18 Floating non-contact ultrasonic enhanced flexible sub-aperture polishing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110858172.2A CN113601320B (zh) 2021-07-28 2021-07-28 一种浮动非接触式超声增强柔性子孔径抛光装置及方法
CN202110858172.2 2021-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/891,015 Continuation US11839944B2 (en) 2021-07-28 2022-08-18 Floating non-contact ultrasonic enhanced flexible sub-aperture polishing device and method

Publications (1)

Publication Number Publication Date
WO2023005257A1 true WO2023005257A1 (zh) 2023-02-02

Family

ID=78305811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085965 WO2023005257A1 (zh) 2021-07-28 2022-04-08 一种浮动非接触式超声增强柔性子孔径抛光装置及方法

Country Status (2)

Country Link
CN (1) CN113601320B (zh)
WO (1) WO2023005257A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494026A (zh) * 2023-06-09 2023-07-28 浙江大学 一种面向硬脆元件的电化学催化原子级柔性抛光方法
CN118024121A (zh) * 2024-04-11 2024-05-14 浙江大学 一种轴承内外圈非圆滚道柔性控形加工装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113601320B (zh) * 2021-07-28 2022-06-07 浙江大学 一种浮动非接触式超声增强柔性子孔径抛光装置及方法
US11839944B2 (en) 2021-07-28 2023-12-12 Zhejiang University Floating non-contact ultrasonic enhanced flexible sub-aperture polishing device and method
CN116021037A (zh) * 2022-12-26 2023-04-28 山东大学 一种滚珠式超声微锻造辅助增材制造装置
CN116619221A (zh) * 2023-05-09 2023-08-22 浙江大学 一种间隙自适应非接触抛光装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038594A (ja) * 1999-07-29 2001-02-13 Olympus Optical Co Ltd 光学素子研磨方法及び光学素子研磨装置
JP2005279902A (ja) * 2004-03-31 2005-10-13 Olympus Corp 研磨加工装置及び研磨加工方法
CN106002543A (zh) * 2016-07-15 2016-10-12 长春工业大学 一种基于粘弹性材料的主动柔顺研抛装置与方法
CN107175559A (zh) * 2017-03-30 2017-09-19 中国工程物理研究院激光聚变研究中心 一种流体动压抛光方法及装置
CN108581816A (zh) * 2018-04-02 2018-09-28 浙江工业大学 三相流动压空化抛光方法及装置
CN108637801A (zh) * 2018-08-01 2018-10-12 中北大学 一种超声辅助磨削装置及其应用
CN113601320A (zh) * 2021-07-28 2021-11-05 浙江大学 一种浮动非接触式超声增强柔性子孔径抛光装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380804A (zh) * 2011-08-12 2012-03-21 赵辉 模具型腔超声波加工工具
CN104786110B (zh) * 2014-01-20 2017-07-18 浙江大学 一种面向微型轴承内圆精加工的轴向超声振动高速磨削装置
CN104044063A (zh) * 2014-06-04 2014-09-17 张增英 用于电主轴的超声波转子
CN106141211A (zh) * 2015-03-26 2016-11-23 焦作天元精密光学实验室(普通合伙) 一种脆硬材料超精密加工用气浮超声旋转钻铣轴
CN105598220B (zh) * 2016-03-08 2017-09-26 西安理工大学 一种板料渐进成形的超声振动主轴装置
CN106475868B (zh) * 2016-12-08 2018-08-03 东北大学 一种光学曲面加工用五轴二维超声抛光机床及其使用方法
CN106736992B (zh) * 2016-12-27 2018-08-28 东北大学 一种光学曲面加工用五轴三维超声抛光机床及其使用方法
CN108406324B (zh) * 2018-03-22 2019-11-15 长春理工大学 旋转超声三维椭圆振动浸抛光液铣削加工装置及方法
CN108436490B (zh) * 2018-05-04 2023-09-19 吉林大学 一种多功能超声振动辅助加工机床及其控制方法
CN108705164B (zh) * 2018-05-04 2021-07-02 山东大学 旋转超声辅助微细电解磨削扩孔加工装置及方法
CN113118882A (zh) * 2021-04-22 2021-07-16 中北大学 一种旋转超声磨削机床及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038594A (ja) * 1999-07-29 2001-02-13 Olympus Optical Co Ltd 光学素子研磨方法及び光学素子研磨装置
JP2005279902A (ja) * 2004-03-31 2005-10-13 Olympus Corp 研磨加工装置及び研磨加工方法
CN106002543A (zh) * 2016-07-15 2016-10-12 长春工业大学 一种基于粘弹性材料的主动柔顺研抛装置与方法
CN107175559A (zh) * 2017-03-30 2017-09-19 中国工程物理研究院激光聚变研究中心 一种流体动压抛光方法及装置
CN108581816A (zh) * 2018-04-02 2018-09-28 浙江工业大学 三相流动压空化抛光方法及装置
CN108637801A (zh) * 2018-08-01 2018-10-12 中北大学 一种超声辅助磨削装置及其应用
CN113601320A (zh) * 2021-07-28 2021-11-05 浙江大学 一种浮动非接触式超声增强柔性子孔径抛光装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494026A (zh) * 2023-06-09 2023-07-28 浙江大学 一种面向硬脆元件的电化学催化原子级柔性抛光方法
CN116494026B (zh) * 2023-06-09 2024-05-31 浙江大学 一种面向硬脆元件的电化学催化原子级柔性抛光方法
CN118024121A (zh) * 2024-04-11 2024-05-14 浙江大学 一种轴承内外圈非圆滚道柔性控形加工装置及方法

Also Published As

Publication number Publication date
CN113601320B (zh) 2022-06-07
CN113601320A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023005257A1 (zh) 一种浮动非接触式超声增强柔性子孔径抛光装置及方法
CN102119068B (zh) 使用超声波纳米晶体表面改性器的轴承加工***及方法
CN108705411B (zh) 一种压力可调的浮离抛光装置
CN108687573B (zh) 一种自动化磁场辅助光整加工装置及方法
CN101844320B (zh) 一种曲面零件的精密高效抛光方法及装置
CN112536674B (zh) 大口径异形离轴非球面镜的气囊抛光***及其工作方法
CN108526912A (zh) 激光辅助卧式三维超声椭圆振动铣床设备及其工作方法
CN108311960B (zh) 一种光学自由曲面的抛光装置及方法
CN111590190A (zh) 一种用于大尺寸非晶合金的超声摩擦焊接成型方法
CN108907906A (zh) 一种非牛顿幂律流体作为抛光介质的液浮抛光方法
CN111716159B (zh) 一种自由曲面的抛光方法及装置
CN105058247A (zh) 微细磨料水射流加工专用超声扭转振动工作台
CN104985492A (zh) 一种强度可调的超声波辅助磨粒流抛光加工装置
CN116619221A (zh) 一种间隙自适应非接触抛光装置及方法
US20230029755A1 (en) Floating non-contact ultrasonic enhanced flexible sub-aperture polishing device and method
CN204524284U (zh) 一种脆硬材料超精密加工用气浮超声旋转钻铣轴
CN113957236A (zh) 一种基于聚焦超声的表面强化方法
CN109514358A (zh) 一种型面约束超声振动辅助旋转磨料流光整加工装置
CN107253101B (zh) 基于法向力的水基磁流变封闭式柔性抛光头
CN205414837U (zh) 一种内圆弧面超声滚压工具头
CN110405620B (zh) 基于微纳米气相和洛伦兹力的高精度均匀化抛光装置
CN209078390U (zh) 一种基于声透镜的超声聚焦流体振动抛光***
CN215789037U (zh) 一种振动辅助磁性剪切增稠抛光装置
CN212470876U (zh) 一种中心供液行星抛光装置
CN114102276A (zh) 一种超声辅助加工高剪低压磨削装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE