WO2023004545A1 - 通信方法及通信装置 - Google Patents

通信方法及通信装置 Download PDF

Info

Publication number
WO2023004545A1
WO2023004545A1 PCT/CN2021/108467 CN2021108467W WO2023004545A1 WO 2023004545 A1 WO2023004545 A1 WO 2023004545A1 CN 2021108467 W CN2021108467 W CN 2021108467W WO 2023004545 A1 WO2023004545 A1 WO 2023004545A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
power
target
transmission
preamble
Prior art date
Application number
PCT/CN2021/108467
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180098079.4A priority Critical patent/CN117296386A/zh
Priority to PCT/CN2021/108467 priority patent/WO2023004545A1/zh
Publication of WO2023004545A1 publication Critical patent/WO2023004545A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and more specifically, to a communication method and a communication device.
  • the present application provides a communication method and a communication device, which can reduce the power consumption of the communication system.
  • a communication method including: a terminal device receives indication information, the indication information is used to indicate M transmission powers and N synchronization signal blocks SSBs transmitted using the M transmission powers, and M is An integer greater than 1, N being an integer not less than M; the terminal device selects a target SSB from the SSBs according to the indication information; the terminal device is on the physical random access channel PRACH resource corresponding to the target SSB Send preamble.
  • a communication method including: the base station sends indication information, and the indication information is used to indicate M transmission powers and N synchronization signal blocks SSB in transmission using the M transmission powers, where M is An integer greater than 1, N being an integer not less than M; the base station receives a preamble on a physical random access channel PRACH resource corresponding to a target SSB, and the target SSB is one of the N SSBs.
  • a communication device including: a receiving unit, configured to receive indication information, and the indication information is used to indicate M transmission powers and N synchronization signal blocks SSB transmitted using the M transmission powers , M is an integer greater than 1, and N is an integer not less than M; a selection unit is used to select a target SSB from the SSBs according to the indication information; a sending unit is used to select a target SSB from the SSB corresponding to the target SSB The preamble is sent on the PRACH resource of the incoming channel.
  • a communication device including: a sending unit, configured to send indication information, where the indication information is used to indicate M transmission powers and N synchronization signal blocks SSB for transmission using the M transmission powers , M is an integer greater than 1, and N is an integer not less than M; the receiving unit is configured to receive the preamble on the physical random access channel PRACH resource corresponding to the target SSB, and the target SSB is one of the N SSBs one.
  • a communication device including a memory and a processor, the memory is used to store a program, and the processor is used to invoke the program in the memory to execute the method according to the first aspect.
  • a communication device including a memory and a processor, the memory is used to store a program, and the processor is used to invoke the program in the memory to execute the method described in the second aspect.
  • a communication device including a processor, configured to call a program from a memory to execute the method described in the first aspect.
  • a communication device including a processor, configured to call a program from a memory to execute the method described in the second aspect.
  • a ninth aspect provides a chip, including a processor, configured to call a program from a memory, so that a device installed with the chip executes the method described in the first aspect.
  • a chip including a processor, configured to call a program from a memory, so that a device installed with the chip executes the method described in the second aspect.
  • a computer-readable storage medium on which a program is stored, and the program causes a computer to execute the method described in the first aspect.
  • a computer-readable storage medium on which a program is stored, and the program causes a computer to execute the method described in the second aspect.
  • a thirteenth aspect provides a computer program product, including a program, the program causes a computer to execute the method described in the first aspect.
  • a fourteenth aspect provides a computer program product, including a program, the program causes a computer to execute the method described in the second aspect.
  • a fifteenth aspect provides a computer program, the computer program causes a computer to execute the method described in the first aspect.
  • a sixteenth aspect provides a computer program, the computer program causes a computer to execute the method described in the second aspect.
  • the indication information is used to indicate M transmission powers and use the M transmission powers for transmission.
  • N synchronization signal blocks SSB
  • the terminal device selects a target SSB from the SSBs according to the indication information, and sends a preamble on the PRACH resource corresponding to the target SSB, which can avoid the occurrence of the SSB signal selected by the terminal device
  • the intensity is good, but the path loss of the beam where the SSB is located is relatively large, thereby avoiding increasing the power consumption of the terminal device, and at the same time, avoiding increasing uplink interference due to an increase in transmission power.
  • the terminal device determines the initial transmit power of the preamble according to the target received power of the preamble, the transmit power of the target SSB, and the RSRP of the target SSB, and uses the initial transmit power of the preamble Sending the preamble on the corresponding PRACH resource can avoid increasing the power consumption and uplink interference of the terminal device due to the excessive initial transmission power of the preamble.
  • the base station indicates to the terminal equipment the M transmission powers and the N SSBs that are transmitted using the M transmission powers through indication information, It helps to reduce the impact on the terminal equipment caused by the different transmission powers of the N SSBs while reducing the power consumption of the base station, thereby helping to reduce the power consumption of the communication system.
  • Fig. 1 is an example diagram of a wireless communication system applied in the embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a communication method provided by another embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a communication method provided by another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a device provided by another embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a user equipment (user equipment, UE) 120.
  • Network device 110 may be a device that communicates with UE 120 .
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with UEs 120 (such as UE 120 a , UE 120 b , and UE 120 c in FIG. 1 ) located within the coverage area.
  • UE 120 can access a network (such as a wireless network) through network device 110 .
  • the wireless communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system , LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system, and satellite communication systems, and so on.
  • the UE in the embodiment of the present application may also be referred to as a terminal device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station (mobile station, MS), a mobile terminal (mobile Terminal, MT), a remote station, and a remote terminal.
  • a terminal device an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station (mobile station, MS), a mobile terminal (mobile Terminal, MT), a remote station, and a remote terminal.
  • mobile device, user terminal, terminal, wireless communication device, user agent, or user device may be a device that provides voice and/or data connectivity to users, and may be used to connect people, objects and machines, such as handheld devices with wireless connection functions, vehicle-mounted devices, and the like.
  • the UE in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a palmtop computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR ) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless terminals in remote medical surgery (remote medical surgery), smart grid Wireless terminals in (smart grid), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • UE can be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a cell phone and an automobile communicate with each other using sidelink signals. Communication between cellular phones and smart home devices without relaying communication signals through base stations.
  • the network device in this embodiment of the present application may be a device for communicating with UE, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects the UE to the wireless network.
  • radio access network radio access network, RAN
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), primary station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (access piont, AP), transmission node, transceiver node, base band unit (base band unit, BBU), remote radio unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • a base station may be a macro base station, a micro base station, a relay node,
  • a base station may be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to act as a device communicating with another base station.
  • the base station may refer to CU or DU, or the base station may include CU and DU, or the base station may also include AAU.
  • the base station can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water; it can also be deployed on airplanes, balloons and satellites in the air.
  • the base station and the scene in the embodiment of the present application are not limited. It should also be understood that all or part of the functions of the base station and UE in this application may also be implemented by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the base station can send a synchronization signal block (synchronization signal block, SSB) by means of beam sweeping, and the SSB can include a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS) and physical broadcast channel (physical broadcast channel, PBCH), etc.
  • the base station can send an SSB in each downlink beam (hereinafter, the beam where the SSB is located or the beam corresponding to the SSB can be understood as the beam that sends the SSB).
  • SSB can be sent periodically, and multiple SSBs can form a SSB burst set (SSB burst set), and the base station can send it on each beam in a beam scanning manner in the time domain (multiple SSB burst sets in one SSB burst set) ) SSB, so as to realize the whole cell coverage of the synchronization signal.
  • SSB burst set SSB burst set
  • the base station can send it on each beam in a beam scanning manner in the time domain (multiple SSB burst sets in one SSB burst set) ) SSB, so as to realize the whole cell coverage of the synchronization signal.
  • some network equipment vendors and operators have put forward the demand for energy saving of the base station, and hope to reduce the power consumption of the base station by reducing the transmission power of the SSB, but no specific solution has been proposed.
  • the UE before initiating random access, the UE needs to select a target SSB according to the signal strength of each SSB in the cell, and send a preamble (preamble) on the physical random access channel (PRACH) corresponding to the target SSB. ).
  • the UE when selecting the target SSB, the UE only selects according to the signal strength of each SSB, without considering that the transmission power of each SSB may be different.
  • the path loss of the beam (hereinafter referred to as the path loss) is also large, sending information through the beam with a large path loss will increase the transmit power of the UE, which will increase the power consumption of the UE. At the same time, the increase in transmit power will also increase the cause greater uplink interference.
  • the initial transmit power of the preamble when determining the initial transmit power of the preamble, it is necessary to combine the path loss of the beam where the target SSB is located, and the different transmit powers of each SSB will cause the path loss of each beam where the SSB is located to be different.
  • the path loss of the beam where the target SSB is located The calculation method of the loss also needs to be adjusted accordingly, otherwise, the initial transmission power of the preamble will be too large and the power consumption of the UE and the uplink interference will be increased.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. It should be understood that FIG. 2 shows the steps or operations of the communication method, but these steps or operations are only examples. In this embodiment of the present application, other operations or variations of the operations in FIG. 2 may be performed, or not all steps are need to be performed, alternatively, the steps can be performed in another order.
  • the method 200 shown in FIG. 2 may include steps S210, S220 and S230, specifically as follows:
  • the base station sends indication information.
  • the base station may send the indication information through a system message in a broadcast manner.
  • the base station may use beam scanning to send multiple SSBs (in one SSB burst set) with beams in different directions at multiple moments in the time domain, and the multiple SSBs may include the primary system information block (master information block, MIB), system information block 1 (system information block 1, SIB1) or other SIB.
  • the indication information may be included in MIB, SIB1 or other SIBs.
  • the indication information may be used to indicate M transmission powers and N synchronization signal blocks SSBs transmitted using the M transmission powers, M is an integer greater than 1, N is an integer not less than M, and the transmission power
  • the unit can be dBm.
  • the N SSBs may belong to the same SSB burst set. It should be noted that, the N synchronization signal blocks SSBs transmitted by using the M transmission powers mentioned here may also be understood as: the beams where the N SSBs are transmitted by using the M transmission powers.
  • Each SSB in the N SSBs may correspond to one transmit power (among the M transmit powers), but one transmit power among the M transmit powers may correspond to one (among the N SSBs) or multiple SSBs. That is to say, each SSB in the N SSBs can use one transmission power (among the M transmission powers) for transmission, but multiple SSBs in the N SSBs can also use the same transmission power power (for example, the same transmission power among the M transmission powers) for transmission.
  • the M sending powers may be different.
  • the base station may reduce the transmission power of one or more SSBs in the N SSBs, and accordingly, the base station may use different transmission powers to transmit the N SSBs.
  • the base station may reduce the transmit power of one or more SSBs in the N SSBs according to factors such as the number of UEs in the beam direction where the N SSBs are located and the signal quality of the UEs.
  • the base station may reduce the transmit power of the SSB; or, if the beam of another SSB of the N SSBs is located If the signal quality of the UE in the direction is better, the base station can reduce the transmit power of the SSB. For example, as shown in FIG.
  • the base station can reduce the transmission power of SSB in the first beam direction; for another example, if the signal quality of UE120b and UE120c is better, and the signal quality of UE120a is poor, the base station can reduce the transmission power of SSB in the second beam direction.
  • the base station may also comprehensively consider the number of UEs in the beam direction where the SSB is located and the signal quality of the UE, or may combine other factors to reduce (one or more of the N SSBs) SSB transmission power, This is not limited in the embodiment of the present application.
  • the indication information can be indicated in the following ways:
  • the indication information may indicate the power value of each transmit power and the corresponding index of each SSB.
  • the indication information may include power values of the M transmission powers, and indexes of the N SSBs corresponding to the M transmission powers in the SSB burst set.
  • the N SSBs corresponding to using the M transmission powers may be understood as: the N SSBs that are transmitted using the M transmission powers.
  • the indication information may indicate the power value of each transmission power and the index of the SSB corresponding to other transmission powers.
  • the indication information may include power values of the M transmission powers and indexes of SSBs corresponding to other transmission powers in the SSB burst set.
  • the other transmit powers here may refer to transmit powers other than the first transmit power among the M transmit powers.
  • the first transmission power may be the transmission power with the largest power value among the M transmission powers.
  • the indication information may indicate the power value of the first transmission power, the offset of the power value of other transmission powers relative to the first transmission power, and the corresponding index of each SSB.
  • the indication information may include a power value of a first transmission power among the M transmission powers, a power value offset of other transmission powers among the M transmission powers relative to the first transmission power, and indexes of the N SSBs corresponding to the M transmit powers in the SSB burst set.
  • the indication information may indicate the power value of the first transmission power, the offset of the power value of the other transmission power relative to the first transmission power, and the index of the SSB corresponding to the other transmission power.
  • the indication information may include a power value of a first transmission power among the M transmission powers, a power value offset of other transmission powers among the M transmission powers relative to the first transmission power, And the index of the SSB corresponding to the other transmit power in the SSB burst set.
  • the three transmit powers are respectively transmit power a, transmit power b, and transmit power c, wherein the power value of transmit power a is the maximum value of the three transmit powers (that is, transmit power a is the maximum value of the three transmit powers
  • the first transmission power among the transmission powers) assuming that N is 4, and the four SSBs are SSB0, SSB1, SSB2, and SSB3 respectively, wherein, SSB0 and SSB1 use the transmission power a for transmission, SSB2 use the transmission power b for transmission, and SSB3 Transmission is performed using transmission power c.
  • the indication information may indicate the index of the 4 SSBs in the SSB burst set, and the corresponding transmission power of the 4 SSBs (that is, the transmission power used by the 4 SSBs).
  • the indication information may indicate the power values of transmission power a, transmission power b, and transmission power c, the indexes of SSB2 and SSB3 in the SSB burst set, and the corresponding transmission power b of SSB2 , SSB3 corresponds to the transmission power c. It can be seen that the indication information does not indicate the index of SSB0 and SSB1, and the corresponding transmission power of SSB0 and SSB1. At this time, in mode 2, SSB0 and SSB1 can be used by default (among the three transmission powers) with the largest power value Transmission power a is used for transmission.
  • the indication information may indicate the power value of transmission power a, the power value offset of transmission power b relative to transmission power a, and the power value of transmission power c relative to transmission power a The offset, the index of the 4 SSBs in the SSB burst set, and the transmit power corresponding to the 4 SSBs.
  • the power value of transmission power b can be determined according to the power value of transmission power a and the offset of transmission power b relative to transmission power a, and the power value of transmission power b can be determined according to the power value of transmission power a and the relative power value of transmission power c
  • the power value offset of the power a determines the power value of the sending power c.
  • the power value of transmission power b the power value of transmission power a-the power value offset of transmission power b relative to transmission power a
  • the power value of transmission power c the power value of transmission power a-transmission power c relative to The power value offset of the sending power a. It can be seen that these two formulas are explained by taking the power value offset as an example, and the power value offset can also be a negative value. At this time, the "-" (minus sign) can also be adjusted accordingly to "+" (plus sign).
  • the indication information may indicate the power value of the transmission power a, the power value offset of the transmission power b relative to the transmission power a, and the power value of the transmission power c relative to the transmission power a
  • the corresponding transmission power c of SSB3 (or , SSB3 corresponds to the power value offset of the transmission power c relative to the transmission power a).
  • the UE may receive the indication information sent by the base station, and at this time, the UE may perform S220.
  • the UE selects a target SSB from the multiple SSBs according to the indication information.
  • the UE may select the target SSB according to the reference signal receiving power (reference signal receiving power, RSRP) of the target SSB.
  • the unit of RSRP may be dBm.
  • the RSRP of the target SSB may be greater than or equal to (or greater than) the RSRP threshold of the target SSB, and the unit of the RSRP threshold may be dBm.
  • the RSRP threshold of the target SSB may be based on an offset of the transmit power of the target SSB relative to the first transmit power among the M transmit powers and using the first transmit power to transmit determined by the RSRP threshold of the SSB.
  • the RSRP threshold value of the target SSB may be the RSRP threshold value of the SSB transmitted using the first transmit power and the transmit power of the target SSB relative to the M transmit powers The difference between the offsets of the first transmit power.
  • the RSRP threshold value of the SSB transmitted using the first transmit power may be pre-configured.
  • the first transmission power may be the transmission power with the largest power value among the M transmission powers.
  • the UE may measure the RSRP of the N SSBs, determine the offset of the transmit power of the N SSBs relative to the first transmit power among the M transmit powers, and Determine the RSRP threshold of the N SSBs according to the offsets of the N SSBs and the RSRP threshold of the SSBs sent using the first transmit power.
  • the RSRP of the SSB mentioned here can also be understood as: the RSRP of the beam where the SSB is located.
  • the UE may determine the offset Poffset i of the transmit power of the i-th SSB relative to the first transmit power, and use the first transmit power
  • the RSRP threshold value of the SSB for power transmission is rsrp-ThresholdSSB, then the RSRP threshold value rsrp-ThresholdSSB i of the i-th SSB can be determined by the following formula:
  • rsrp-ThresholdSSB i rsrp-ThresholdSSB-Poffset i
  • i is an integer greater than or equal to 0.
  • all SSBs satisfying the first condition above may be selected from the N SSBs, and the target SSB is selected from all the SSBs satisfying the first condition above.
  • the SSB with the strongest signal among all the SSBs meeting the above condition 1 may be selected as the target SSB.
  • the specific method may refer to the prior art, which is not limited in the embodiment of the present application.
  • the UE may select the target SSB according to the path loss value of the beam where the target SSB is located.
  • the unit of the path loss value may be dB.
  • the path loss value of the target beam may be less than or equal to (or less than) the SSB path loss threshold value.
  • the path loss value of the target beam may be determined based on the transmit power of the target SSB and the RSRP of the target SSB, and the target beam may be a beam where the target SSB is located.
  • the path loss value of the target beam is a difference between the transmit power of the target SSB and the RSRP of the target SSB.
  • the UE may determine the path loss value of the beam where the N SSBs are located according to the transmit power of the N SSBs and their RSRPs.
  • the transmission power of the i-th SSB among the N SSBs is ss-PBCH-BlockPowerDedicated i
  • the RSRP of the i-th SSB is RSRP i
  • the path loss value PL i of the beam where the i-th SSB is located can be obtained by Determined by the following formula:
  • pl-ThresholdSSB may be a pre-configured path loss threshold.
  • all SSBs satisfying the above-mentioned condition 2 among the N SSBs can be selected (one or more SSBs satisfying the above-mentioned condition 2 among the N SSBs can be selected), and all SSBs satisfying the above-mentioned condition 2 can be selected.
  • the target SSB is selected from .
  • the SSB with the strongest signal among all the SSBs satisfying the above condition two may be selected as the target SSB, or any SSB among all the SSBs satisfying the above condition two may be selected as the target SSB.
  • other methods in the prior art may also be used to select the target SSB, and the specific method may refer to the prior art, which is not limited in the embodiment of the present application.
  • the UE sends a preamble on a PRACH resource corresponding to the target SSB.
  • the PRACH resources may include time-frequency resources and code domain resources.
  • the UE may determine the initial transmit power of the preamble according to the target receive power of the preamble, the transmit power of the target SSB, and the RSRP of the target SSB, wherein the target receive power of the preamble and the The unit of the initial transmission power of the preamble may be dBm.
  • the UE may use the initial transmission power of the preamble to send the preamble on the PRACH resource corresponding to the target SSB.
  • the initial preamble transmit power may be the maximum value of the maximum transmit power of the UE and the initial preamble transmit power determined by the UE, and the initial preamble transmit power determined by the UE It is determined according to the target receive power of the preamble, the transmit power of the target SSB, and the RSRP of the target SSB.
  • the initial transmit power of the preamble determined by the UE may be the sum of the target received power of the preamble and the path loss value of the target beam, where the path loss value of the target beam is the transmission power of the target SSB The difference between the power and the RSRP of the target SSB.
  • the UE may determine the path loss value PL i of the beam where the target SSB is located by the following formula:
  • ss-PBCH-BlockPowerDedicated i is the transmit power of the target SSB
  • RSRP i is the RSRP of the target SSB.
  • the initial transmission power preambleInitialPower determined by the UE may be determined by the following formula:
  • preambleInitialPower preambleReceivedTargetPower+PL i
  • preambleReceivedTargetPower may be the preamble target received power.
  • the target received power of the preamble can be pre-configured by the base station through system information (for example, MIB, SIB1 or other SIBs).
  • a maximum value between the maximum transmit power of the UE and the initial transmit power of the preamble determined by the UE may be used as the initial transmit power of the preamble.
  • the UE may use the initial transmission power of the preamble to send the preamble on the PRACH resource corresponding to the target SSB.
  • the base station may receive the preamble on the PRACH resource corresponding to the target SSB.
  • FIG. 3 is illustrated by taking a contention-based random access procedure as an example.
  • the method 300 shown in FIG. 3 may include steps S310, S320, S330, S340, S350 and S360, specifically as follows:
  • the base station sends indication information.
  • the base station may transmit multiple SSBs (in one SSB burst set) with beams in different directions at multiple times, and each of the multiple SSBs may include the indication information.
  • each SSB may further include one or more of an RSRP threshold, a path loss threshold, and a preamble target received power.
  • the RSRP threshold value may be the RSRP threshold value corresponding to the SSB transmitted using the first transmit power in the method 200 in FIG. 2 above or the RSRP threshold value corresponding to the SSB transmitted using the first transmit power RSRP threshold.
  • the indication information may be used to indicate M transmission powers and N synchronization signal blocks SSBs to be transmitted using the M transmission powers, where M is an integer greater than 1, and N is an integer not less than M.
  • M is an integer greater than 1
  • N is an integer not less than M.
  • the UE may also measure the RSRPs of the N SSBs.
  • the UE may also measure the RSRPs of the N SSBs.
  • reference may be made to the prior art, which will not be repeated in this embodiment of the present application.
  • the following events may trigger the UE to initiate a random access procedure:
  • Idle state initial access (initial access from RRC_IDLE), connection state reconnection (RRC connection re-establishment procedure), handover (handover), when the uplink synchronization state is "asynchronous", there is downlink or uplink during RRC_CONNECTED Data arrival (DL or UL data arrival during RRC_CONNECTED when UL synchronization status is "non-synchronised"), when there are no available PUCCH resources for SR, there is uplink data arrival during RRC_CONNECTED (UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available), scheduling request failure (SR failure), RRC request synchronous reconfiguration (request by RRC upon synchronous reconfiguration), transition from deactivation state (transition from RRC_INACTIVE), establishment time calibration when adding a secondary cell (to establish time alignment at SCell addition), request for other system messages (request for other SI) and beam failure recovery (beam failure recovery), etc.
  • the UE may also be triggered by other events
  • the following S320 may be performed.
  • the UE selects a target SSB from the multiple SSBs according to the indication information.
  • the UE may select the target SSB according to the RSRP of the target SSB, or the UE may also select the target SSB according to the path loss value of the beam where the target SSB is located.
  • the target SSB may select the target SSB according to the RSRP of the target SSB, or the UE may also select the target SSB according to the path loss value of the beam where the target SSB is located.
  • the UE sends a first step message (msg1) to the base station on the PRACH resource corresponding to the target SSB.
  • msg1 may include a preamble (preamble).
  • the UE may determine the initial transmission power of the preamble according to the target received power of the preamble, the transmission power of the target SSB, and the RSRP of the target SSB, and accordingly, the UE may use the initial transmission power of the preamble The power transmits the preamble on the PRACH resource corresponding to the target SSB.
  • the initial transmit power of the preamble may be the maximum value of the maximum transmit power of the UE and the initial transmit power of the preamble determined by the UE, and the initial transmit power of the preamble determined by the UE is based on The target received power of the preamble, the transmitted power of the target SSB and the RSRP of the target SSB are determined.
  • the initial transmit power of the preamble determined by the UE may be the sum of the target receive power of the preamble and the path loss value of the target beam, and the path loss value of the target beam may be the The difference between the transmit power and the RSRP of the target SSB.
  • the base station sends a second step message (msg2) to the UE on the PRACH resource corresponding to the target SSB.
  • msg2 may include a random access response (random access response, RAR).
  • RAR random access response
  • the UE sends a third step message (msg3) to the base station.
  • the base station sends a fourth step message (msg4) to the UE.
  • FIG. 4 is illustrated by taking a 2-step random access process as an example.
  • the method 400 shown in FIG. 4 may include steps S410, S420, S430 and S440, specifically as follows:
  • the base station sends indication information.
  • the base station may transmit multiple SSBs (in one SSB burst set) with beams in different directions at multiple times, and each SSB in the multiple SSBs may include the indication information.
  • each SSB may further include one or more of an RSRP threshold, a path loss threshold, and a preamble target received power.
  • the RSRP threshold value may be the RSRP threshold value corresponding to the SSB transmitted using the first transmit power in the method 200 in FIG. 2 above or the RSRP threshold value corresponding to the SSB transmitted using the first transmit power RSRP threshold.
  • the indication information may be used to indicate M transmission powers and N synchronization signal blocks SSBs to be transmitted using the M transmission powers, where M is an integer greater than 1, and N is an integer not less than M.
  • M is an integer greater than 1
  • N is an integer not less than M.
  • the UE may also measure the RSRPs of the N SSBs.
  • the UE may also measure the RSRPs of the N SSBs.
  • reference may be made to the prior art, which will not be repeated in this embodiment of the present application.
  • the UE may also be triggered to initiate a random access procedure through various events mentioned in the method 300 in FIG. 3 .
  • various events For a specific description of the various events, reference may be made to the description in the method 300 in FIG. 3 above, and details are not repeated here.
  • the following S420 may be performed.
  • the UE selects a target SSB from the multiple SSBs according to the indication information.
  • the UE may select the target SSB according to the RSRP of the target SSB, or the UE may also select the target SSB according to the path loss value of the beam where the target SSB is located.
  • the target SSB may select the target SSB according to the RSRP of the target SSB, or the UE may also select the target SSB according to the path loss value of the beam where the target SSB is located.
  • the UE sends a message A (msgA) to the base station on the PRACH resource corresponding to the target SSB.
  • msgA message A
  • the UE may send a preamble (preamble) on the PRACH resource corresponding to the target SSB.
  • the UE may determine the initial transmission power of the preamble according to the target received power of the preamble, the transmission power of the target SSB, and the RSRP of the target SSB, and accordingly, the UE may use the initial transmission power of the preamble The power transmits the preamble on the PRACH resource corresponding to the target SSB.
  • the initial transmit power of the preamble may be the maximum value of the maximum transmit power of the UE and the initial transmit power of the preamble determined by the UE, and the initial transmit power of the preamble determined by the UE is based on The target received power of the preamble, the transmitted power of the target SSB and the RSRP of the target SSB are determined.
  • the initial transmit power of the preamble determined by the UE may be the sum of the target receive power of the preamble and the path loss value of the target beam, and the path loss value of the target beam may be the The difference between the transmit power and the RSRP of the target SSB.
  • the base station sends a message B (msgB) to the UE on the PRACH resource corresponding to the target SSB.
  • the UE may feed back an acknowledgment message (ACK) to the base station to complete the random access procedure.
  • ACK acknowledgment message
  • Fig. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 in FIG. 5 includes a sending unit 510 and a receiving unit 520 .
  • the sending unit 510 is configured to send indication information, where the indication information is used to indicate M transmission powers and N synchronization signal blocks SSB to be transmitted using the M transmission powers, where M is an integer greater than 1, and N is not less than an integer of M;
  • the receiving unit 520 is configured to receive a preamble on a PRACH resource corresponding to a target SSB, where the target SSB is one of the N SSBs.
  • the indication information includes a power value of each transmission power in the M transmission powers.
  • the indication information includes a power value of a first transmission power among the M transmission powers and a power value offset of other transmission powers among the M transmission powers relative to the first transmission power .
  • the indication information includes an index in the SSB burst set of the SSB transmitted using each of the other transmit powers, where the other transmit power is one of the M transmit powers except the first transmit power external transmit power.
  • the indication information includes indexes of the N SSBs in the SSB burst set.
  • Fig. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 600 in FIG. 6 includes a receiving unit 610 , a selecting unit 620 and a sending unit 630 .
  • the receiving unit 610 is configured to receive indication information, where the indication information is used to indicate M transmission powers and N synchronization signal blocks SSB to be transmitted using the M transmission powers, where M is an integer greater than 1, and N is not less than an integer of M;
  • a selection unit 620 configured to select a target SSB from the SSBs according to the indication information
  • the sending unit 630 is configured to send a preamble on the PRACH resource corresponding to the target SSB.
  • the indication information includes a power value of each transmission power in the M transmission powers.
  • the indication information includes a power value of a first transmission power among the M transmission powers and offsets of other transmission powers among the M transmission powers relative to the first transmission power.
  • the RSRP of the target SSB is greater than or equal to the RSRP threshold of the target SSB.
  • the RSRP threshold of the target SSB is based on an offset of the transmit power of the target SSB relative to the first transmit power among the M transmit powers and the The RSRP threshold of the SSB is determined.
  • the RSRP threshold value of the target SSB is the RSRP threshold value of the SSB transmitted using the first transmit power and the transmit power of the target SSB relative to the M transmit power. The difference between the offsets of a transmit power.
  • a power value of the first transmission power is a maximum value among the M transmission powers.
  • the path loss value of the target beam is less than or equal to the SSB path loss threshold value
  • the path loss value of the target beam is determined based on the transmit power of the target SSB and the RSRP of the target SSB
  • the The target beam is the beam where the target SSB is located.
  • the path loss value of the target beam is a difference between the transmit power of the target SSB and the RSRP of the target SSB.
  • the sending unit 630 is specifically configured to: send a preamble on the PRACH resource corresponding to the target SSB using an initial preamble transmission power, where the initial preamble transmission power is based on the target received power of the preamble, the determined by the transmit power of the target SSB and the RSRP of the target SSB.
  • the initial transmission power of the preamble is the maximum value of the maximum transmission power of the communication device 600 and the initial transmission power of the preamble determined by the communication device 600, and the preamble determined by the communication device 600
  • the initial transmit power is determined according to the target received power of the preamble, the transmit power of the target SSB, and the RSRP of the target SSB.
  • the initial transmit power of the preamble determined by the communication device 600 is the sum of the target receive power of the preamble and the path loss value of the target beam, where the path loss value of the target beam is The difference between the transmit power and the RSRP of the target SSB.
  • the indication information includes an index in the SSB burst set of the SSB transmitted using each of the other transmit powers, where the other transmit power is one of the M transmit powers except the first transmit power external transmit power.
  • the indication information includes indexes of the N SSBs in the SSB burst set.
  • Fig. 7 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the dashed line in Figure 7 indicates that the unit or module is optional.
  • the apparatus 700 may be used to implement the methods described in the foregoing method embodiments.
  • Device 700 may be a chip or a communication device.
  • Apparatus 700 may include one or more processors 710 .
  • the processor 710 may support the device 700 to implement the methods described in the foregoing method embodiments.
  • the processor 710 may be a general purpose processor or a special purpose processor.
  • the processor may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • Apparatus 700 may also include one or more memories 720 .
  • a program is stored in the memory 720, and the program can be executed by the processor 710, so that the processor 710 executes the methods described in the foregoing method embodiments.
  • the memory 720 may be independent from the processor 710 or may be integrated in the processor 710 .
  • Apparatus 700 may also include a transceiver 730 .
  • the processor 710 can communicate with other devices or chips through the transceiver 730 .
  • the processor 710 may send and receive data with other devices or chips through the transceiver 730 .
  • the embodiment of the present application also provides a computer-readable storage medium for storing programs.
  • the computer-readable storage medium can be applied to the communication device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the communication device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes programs.
  • the computer program product can be applied to the communication device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the communication device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device provided in the embodiments of the present application, and the computer program enables the computer to execute the methods performed by the communication device in the various embodiments of the present application.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)) or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法及通信装置,所述方法包括:终端设备接收指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;所述终端设备根据所述指示信息从所述SSB中选择目标SSB;所述终端设备在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。本申请实施例中的方法,能够降低通信***的功耗。

Description

通信方法及通信装置 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种通信方法及通信装置。
背景技术
随着通信技术的飞速发展,通信***支持的业务从最初的语音、短信,发展到现在支持无线高速数据通信。与此同时,随着物联网、智能交通等领域的发展,通信***中终端设备的数量也在飞速地增长,这些都对通信***的性能提出了更高的要求。
但是,随着通信***的性能不断提高,通信***的功耗也会大幅增加。因此,如何降低通信***的功耗成为一个亟需解决的技术问题。
发明内容
本申请提供一种通信方法及通信装置,能够降低通信***的功耗。
第一方面,提供了一种通信方法,包括:终端设备接收指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;所述终端设备根据所述指示信息从所述SSB中选择目标SSB;所述终端设备在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
第二方面,提供了一种通信方法,包括:基站发送指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送中的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;所述基站在目标SSB对应的物理随机接入信道PRACH资源上接收前导码,所述目标SSB为所述N个SSB中的一个。
第三方面,提供了一种通信装置,包括:接收单元,用于接收指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;选择单元,用于根据所述指示信息从所述SSB中选择目标SSB;发送单元,用于在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
第四方面,提供了一种通信装置,包括:发送单元,用于发送指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块 SSB,M为大于1的整数,N为不小于M的整数;接收单元,用于在目标SSB对应的物理随机接入信道PRACH资源上接收前导码,所述目标SSB为所述N个SSB中的一个。
第五方面,提供一种通信装置,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如第一方面所述的方法。
第六方面,提供一种通信装置,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行第二方面所述的方法。
第七方面,提供一种通信装置,包括处理器,用于从存储器中调用程序,以执行第一方面所述的方法。
第八方面,提供一种通信装置,包括处理器,用于从存储器中调用程序,以执行第二方面所述的方法。
第九方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第一方面所述的方法。
第十方面,提供一种芯片,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行第二方面所述的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第一方面所述的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有程序,所述程序使得计算机执行第二方面所述的方法。
第十三方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第一方面所述的方法。
第十四方面,提供一种计算机程序产品,包括程序,所述程序使得计算机执行第二方面所述的方法。
第十五方面,提供一种计算机程序,所述计算机程序使得计算机执行第一方面所述的方法。
第十六方面,提供一种计算机程序,所述计算机程序使得计算机执行第二方面所述的方法。
在基站降低SSB的发送功率时,会使得所述N个SSB的发送功率不同,在本申请实施例中,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,终端设备根据所述指示信息从所述SSB中选择目标SSB,并在所述目标SSB对应的PRACH资源上发送前导码,可以避免出现所述终端设备选择的SSB的信号强度较好,但该SSB所在波束的路径损失较大的情况,从而能够避免增加所述终端 设备的功耗,同时,还可以避免因发送功率增大而增加上行干扰。
同时,所述终端设备根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定所述前导码初始发送功率,并使用所述前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码,可以避免因所述前导码初始发送功率过大而增加所述终端设备的功耗和上行干扰。
另外,由于所述N个SSB对应的所述M个的发送功率的功率值不同,基站通过指示信息向终端设备指示M个发送功率及使用所述M个的发送功率进行发送的N个SSB,有助于在降低基站功耗的同时,减少因所述N个SSB的发送功率不同而对终端设备造成的影响,从而有助于降低通信***的功耗。
附图说明
图1是本申请实施例应用的无线通信***的示例图。
图2是本申请一个实施例提供的通信方法的示意性流程图。
图3是本申请另一实施例提供的通信方法的示意性流程图。
图4是本申请又一实施例提供的通信方法的示意性流程图。
图5是本申请一个实施例提供的通信装置的示意性结构图。
图6是本申请另一实施例提供的通信装置的示意性结构图。
图7是本申请又一实施例提供的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信***100。该无线通信***100可以包括网络设备110和用户设备(user equipment,UE)120。网络设备110可以是与UE120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE120(如图1中的UE120a、UE120b及UE120c)进行通信。UE120可以通过网络设备110接入网络(如无线网络)。可选地,该无线通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:第五代(5th generation,5G)***或新无线(new radio,NR)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***,又如卫星通信***,等等。
本申请实施例中的UE也可称为终端设备、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的UE可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的UE可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与UE通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将UE接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。为便于理解,下文将网络设备统一称为基站。
在一些实施例中,基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站进行通信的设备。在一些实施例中,基站可以是指CU或者DU,或者,基站可以包括CU和DU,或者,基站还可以包 括AAU。
应理解,基站可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对基站和在本申请实施例中所处的场景不做限定。还应理解,本申请中的基站和UE的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
随着通信***的性能不断提高,基站的功耗也大幅增加。在某些通信***中,基站可以采用波束扫描(beam sweeping)的方式发送同步信号块(synchronization signal block,SSB),SSB中可以包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)及物理广播信道(physical broadcast channel,PBCH)等。例如,基站可以在每一个下行波束中发送一个SSB(在下文中,SSB所在的波束或SSB对应的波束均可以理解为发送该SSB的波束)。SSB可以是周期性发送的,多个SSB可以组成一个SSB突发集合(SSB burst set),基站可以在时域上以波束扫描的方式在各个波束上发送(一个SSB突发集合中的多个)SSB,从而实现同步信号的全小区覆盖。目前,已有网络设备商和运营商提出了基站节能的需求,并希望通过降低SSB的发送功率的方式来降低基站的功耗,但是,并未提出具体的解决方法。
同时,在发起随机接入之前,UE需要根据小区中的各个SSB的信号强度选择目标SSB,并在该目标SSB对应的物理随机接入信道(physical random access channel,PRACH)上发送前导码(preamble)。目前,在选择目标SSB时,UE只是根据各个SSB的信号强度进行选择,并没有考虑到各个SSB的发送功率可能不同,此时,可能会出现UE选择的SSB的信号强度较好,但该SSB所在波束的路径损失(下文简称路损)也较大的情况,而通过路损大的波束发送信息等会导致UE的发送功率增加,从而会增加UE的功耗,同时,发送功率增加也会造成更大的上行干扰。
此外,在确定前导码的初始发送功率时需要结合目标SSB所在波束的路损,而各个SSB的发送功率不同会使得各个SSB所在波束的路径损失也不同,相应地,该目标SSB所在波束的路损的计算方式也需要相应地调整,否则,会导致前导码的初始发送功率过大而增加UE的功耗和上行干扰。
为了解决上述问题中的一个或多个,下面结合图2,对本申请实施例进行详细地举例说明。
图2是本申请实施例的通信方法的一个示意性流程图。应理解,图2示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者 图2中的各个操作的变形,或者,并不是所有步骤都需要执行,或者,这些步骤可以按照其他顺序执行。图2所示的方法200可以包括步骤S210、S220及S230,具体如下:
S210,基站发送指示信息。
基站可以采用广播的方式,通过***消息发送所述指示信息。例如,基站可以采用波束扫描的方式,在时域上的多个时刻,以不同方向的波束发送(一个SSB突发集合中的)多个SSB,所述多个SSB中可以包括主***信息块(master information block,MIB)、***信息块1(system information block 1,SIB1)或其它SIB。其中,MIB、SIB1或其他SIB中可以包括所述指示信息。
所述指示信息可以用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数,所述发送功率的单位可以为dBm。所述N个SSB可以属于同一个SSB突发集合。需要说明的是,这里所说的的使用所述M个发送功率进行发送的N个同步信号块SSB,也可以理解为:使用所述M个发送功率发送N个SSB所在的波束。
所述N个SSB中的每个SSB可以对应(所述M个发送功率中的)一个发送功率,但所述M个发送功率中的一个发送功率可以对应(所述N个SSB中的)一个或多个SSB。也就是说,所述N个SSB中的每个SSB可以使用(所述M个发送功率中的)一个发送功率进行发送,但是,所述N个SSB中的多个SSB也可以使用相同的发送功率(例如,所述M个发送功率中的同一个发送功率)进行发送。
可选地,所述M个发送功率可以不同。在一些实施例中,基站可以降低所述N个SSB中的一个或多个SSB的发送功率,相应地,基站可以使用不同的发送功率来发送所述N个SSB。
在一些实施例中,基站可以根据所述N个SSB所在波束方向上的UE的数量及UE的信号质量等因素,降低所述N个SSB中的一个或多个SSB的发送功率。可选地,若所述N个SSB中的一个SSB所在波束方向上的UE的数量较少,则基站可以降低该SSB的发送功率;或者,若所述N个SSB中的另一个SSB所在波束方向上的UE的信号质量较好,则基站可以降低该SSB的发送功率。例如,如图1所示,假设UE120a处于第一波束方向上、UE120b与UE120c处于第二波束方向上,此时,第一波束方向上的UE数量少于第二波束方向上的UE数量,则基站可以降低第一波束方向上的SSB的发送功率;再例如,若UE120b与UE120c的信号质量较好,UE120a的信号质量较差,则基站可以降低第二波束方向上的SSB的发送功率。当然,基站也可以综合考虑SSB所在波束方向上的UE的数量及UE的信号质量,或者,也可以结合其他因素,来降低(所述N个 SSB中的一个或多个)SSB的发送功率,本申请实施例中对此并不限定。
在本申请实施例中,所述指示信息可以通过下述几种方式进行指示:
方式一:
所述指示信息可以指示每个发送功率的功率值及其对应的每个SSB的索引。例如,所述指示信息可以包括所述M个发送功率的功率值、及所述M个发送功率对应的所述N个SSB在SSB突发集合中的索引。这里的使用所述M个发送功率对应的N个SSB可以理解为:使用所述M个发送功率进行发送的N个SSB。
方式二:
所述指示信息可以指示每个发送功率的功率值及其他发送功率对应的SSB的索引。例如,所述指示信息可以包括所述M个发送功率的功率值及其他发送功率对应的SSB在SSB突发集合中的索引。这里的其他发送功率可以指所述M个发送功率中除第一发送功率之外的发送功率。所述第一发送功率可以为所述M个发送功率中功率值最大的发送功率。
方式三:
所述指示信息可以指示第一发送功率的功率值、其他发送功率相对于所述第一发送功率的功率值偏移量以及其对应的每个SSB的索引。例如,所述指示信息可以包括所述M个发送功率中的第一发送功率的功率值、所述M个发送功率中的其他发送功率相对于所述第一发送功率的功率值偏移量、以及所述M个发送功率对应的所述N个SSB在SSB突发集合中的索引。
方式四:
所述指示信息可以指示第一发送功率的功率值、其他发送功率相对于所述第一发送功率的功率值偏移量以及其他发送功率对应的SSB的索引。例如,所述指示信息可以包括所述M个发送功率中的第一发送功率的功率值、所述M个发送功率中的其他发送功率相对于所述第一发送功率的功率值偏移量、以及所述其他发送功率对应的SSB在SSB突发集合中的索引。
假设M为3,3个发送功率分别为发送功率a、发送功率b及发送功率c,其中,发送功率a的功率值为这3个发送功率中的最大值(即,发送功率a为这3个发送功率中的第一发送功率),假设N为4,4个SSB分别为SSB0、SSB1、SSB2及SSB3,其中,SSB0和SSB1使用发送功率a进行发送,SSB2使用发送功率b进行发送,SSB3使用发送功率c进行发送。
在以上述方式一进行指示的情况下,所述指示信息可以指示4个SSB在SSB突发集 合中的索引、以及这4个SSB对应的发送功率(即这4个SSB使用的发送功率)。
在以上述方式二进行指示的情况下,所述指示信息可以指示发送功率a、发送功率b及发送功率c的功率值、SSB2及SSB3在SSB突发集合中的索引、以及SSB2对应发送功率b、SSB3对应发送功率c。可以看出,所述指示信息没有指示SSB0和SSB1的索引,以及SSB0和SSB1对应的发送功率,此时,在方式二中,可以默认SSB0和SSB1使用(3个发送功率中)功率值最大的发送功率a进行发送。
在以上述方式三进行指示的情况下,所述指示信息可以指示发送功率a的功率值、发送功率b相对于发送功率a的功率值偏移量、发送功率c相对于发送功率a的功率值偏移量、4个SSB在SSB突发集合中的索引、以及这4个SSB对应的发送功率。
此时,可以根据发送功率a的功率值及发送功率b相对于发送功率a的功率值偏移量,确定发送功率b的功率值,可以根据发送功率a的功率值及发送功率c相对于发送功率a的功率值偏移量,确定发送功率c的功率值。例如,发送功率b的功率值=发送功率a的功率值-发送功率b相对于发送功率a的功率值偏移量,发送功率c的功率值=发送功率a的功率值-发送功率c相对于发送功率a的功率值偏移量。可以看出,这两个公式是以功率值偏移量均为正值为例进行说明的,功率值偏移量也可以为负值,此时,这两个公式中的“-”(减号)也可以相应地调整为“+”(加号)。
在以上述方式四进行指示的情况下,所述指示信息可以指示发送功率a的功率值、发送功率b相对于发送功率a的功率值偏移量、发送功率c相对于发送功率a的功率值偏移量、SSB2及SSB3在SSB突发集合中的索引、以及SSB2对应发送功率b(或者,SSB2对应发送功率b相对于发送功率a的功率值偏移量)、SSB3对应发送功率c(或者,SSB3对应发送功率c相对于发送功率a的功率值偏移量)。
在本申请实施例中,UE可以接收基站发送的所述指示信息,此时,所述UE可以执行S220。
S220,UE根据所述指示信息从所述多个SSB中选择目标SSB。
在一些实施例中,UE可以根据所述目标SSB的参考信号接收功率(reference signal receiving power,RSRP)选择目标SSB。RSRP的单位可以为dBm。
此时,所述目标SSB的RSRP可以大于或等于(或大于)所述目标SSB的RSRP门限值,RSRP门限值的单位可以为dBm。可选地,所述目标SSB的RSRP门限值可以是基于所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量以及使用所述第一发送功率发送的SSB的RSRP门限值确定的。可选地,所述目标SSB的RSRP门限值可以为所述使用所述第一发送功率发送的SSB的RSRP门限值与所述目标 SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量之间的差值。其中,所述使用所述第一发送功率发送的SSB的RSRP门限值可以是预先配置的。可选地,所述第一发送功率可以为所述M个发送功率中功率值最大的发送功率。
可选地,在所述S220之前,UE可以测量所述N个SSB的RSRP,确定所述N个SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量,并根据所述N个SSB的偏移量以及使用所述第一发送功率发送的SSB的RSRP门限值确定所述N个SSB的RSRP门限值。需要说明的是,这里所说的SSB的RSRP也可以理解为:SSB所在波束的RSRP。
例如,UE测量到所述N个SSB中第i个SSB的RSRP i,可以确定该第i个SSB的发送功率相对于所述第一发送功率的偏移量Poffset i,使用所述第一发送功率发送的SSB的RSRP门限值为rsrp-ThresholdSSB,则该第i个SSB的RSRP门限值rsrp-ThresholdSSB i可以通过下式确定:
rsrp-ThresholdSSB i=rsrp-ThresholdSSB-Poffset i
其中,i为大于或等于0的整数。
进一步地,可以确定该第i个SSB的RSRP i是否满足下述条件一:
RSRP i>rsrp-ThresholdSSB i
此时,可以选择出所述N个SSB中满足上述条件一的所有SSB,并从该满足上述条件一的所有SSB中选择出所述目标SSB。例如,可以选择该满足上述条件一的所有SSB中信号最强的SSB作为所述目标SSB。当然,本申请实施例中也可以使用其他方法选择所述目标SSB,具体的方法可以参照现有技术,本申请实施例中对此并不限定。
在一些实施例中,UE可以根据所述目标SSB所在波束的路损值选择目标SSB。路损值的单位可以为dB。
此时,所述目标波束的路损值可以小于或等于(或小于)SSB路损门限值。可选地,所述目标波束的路损值可以是基于所述目标SSB的发送功率和所述目标SSB的RSRP确定的,所述目标波束可以为所述目标SSB所在的波束。可选地,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
可选地,UE可以根据所述N个SSB的发送功率及其RSRP,确定所述N个SSB所在波束的路损值。
例如,所述N个SSB中第i个SSB的发送功率为ss-PBCH-BlockPowerDedicated i,该第i个SSB的RSRP为RSRP i,则该第i个SSB所在波束的路损值PL i可以通过下式确定:
PL i=ss-PBCH-BlockPowerDedicated i-RSRP i
进一步地,可以确定第i个SSB所在波束的路损值PL i是否满足下述条件二:
PL i<pl-ThresholdSSB
其中,pl-ThresholdSSB可以为预先配置的路损门限值。
此时,可以选择出所述N个SSB中满足上述条件二的所有SSB(所述N个SSB中满足上述条件二的SSB可以为一个或多个),并从该满足上述条件二的所有SSB中选择出所述目标SSB。例如,可以选择该满足上述条件二的所有SSB中信号最强的SSB作为所述目标SSB,或者,也可以将该满足上述条件二的所有SSB中的任意SSB作为所述目标SSB。当然,本申请实施例中也可以使用现有技术中的其他方法选择所述目标SSB,具体的方法可以参照现有技术,本申请实施例中对此并不限定。
S230,所述UE在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
所述PRACH资源可以包括时频资源和码域资源。
在所述S230之前,所述UE可以根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定前导码初始发送功率,其中,所述前导码目标接收功率及所述前导码初始发送功率的单位可以为dBm。可选地,所述UE可以使用所述前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码。
在一些实施例中,所述前导码初始发送功率可以为所述UE的最大发送功率和所述UE确定的前导码初始发送功率二者中的最大值,所述UE确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。可选地,所述UE确定的前导码初始发送功率可以为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
例如,UE可以通过下式确定所述目标SSB所在波束的路损值PL i
PL i=ss-PBCH-BlockPowerDedicated i-RSRP i
其中,ss-PBCH-BlockPowerDedicated i为所述目标SSB的发送功率,RSRP i为所述目标SSB的RSRP。
此时,可以通过下式确定所述UE确定的前导码初始发送功率preambleInitialPower:
preambleInitialPower=preambleReceivedTargetPower+PL i
其中,preambleReceivedTargetPower可以为所述前导码目标接收功率。所述前导码目标接收功率可以基站通过***消息(例如,MIB、SIB1或其他SIB)预先配置的。
可选地,可以将所述UE的最大发送功率和所述UE确定的前导码初始发送功率二者中的最大值作为所述前导码初始发送功率。
此时,所述UE可以使用所述前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码。相应地,基站可以在所述目标SSB对应的物理随机接入信道PRACH资源上接收所述前导码。
为了便于理解,下面结合图3和图4,以随机接入过程为例,分别从基于竞争的随机接入和2步(2-step)随机接入的角度,给出两个具体的示例。
图3是以基于竞争的随机接入过程为例进行说明的。图3所示的方法300可以包括步骤S310、S320、S330、S340、S350及S360,具体如下:
S310,基站发送指示信息。
例如,基站可以在多个时刻,以不同方向的波束发送(一个SSB突发集合中的)多个SSB,所述多个SSB中的每个SSB中可以包括所述指示信息。
可选地,所述每个SSB中还可以包括RSRP门限值、路损门限值及前导码目标接收功率中的一个或多个。其中,所述RSRP门限值可以为上述图2中方法200中的所述使用所述第一发送功率发送的SSB对应的RSRP门限值或所述使用所述第一发送功率发送的SSB对应的RSRP门限值。
所述指示信息可以用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数。关于所述指示信息的具体描述可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
此外,UE还可以测量所述N个SSB的RSRP,具体的测量方法可以参照现有技术,本申请实施例中不再赘述。
在一些实施例中,下述多种事件可以触发UE发起随机接入过程:
空闲态的初始接入(initial access from RRC_IDLE)、连接态的重连(RRC connection re-establishment procedure)、切换(handover)、当上行同步状态为“非同步”时,在RRC_CONNECTED期间有下行或上行数据到达(DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is"non-synchronised")、当没有用于SR的可用PUCCH资源时,在RRC_CONNECTED期间有上行数据到达(UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available)、调度请求失败(SR failure)、RRC请求同步重新配置(request by RRC upon synchronous reconfiguration)、从去激活态转换(transition from RRC_INACTIVE)、在增加辅小区时建立时间校准(to establish time alignment at SCell addition)、请求其他***消息(request  for other SI)及波束失败恢复(beam failure recovery)等。当然,也可以由其他事件触发UE发起随机接入过程,本申请实施例中对此并不限定。
在UE需要发起随机接入的情况下,可以执行下述S320。
S320,UE根据所述指示信息从所述多个SSB中选择目标SSB。
在一些实施例中,UE可以根据所述目标SSB的RSRP选择目标SSB,或者,UE也可以根据所述目标SSB所在波束的路损值选择目标SSB。从所述多个SSB中确定所述目标SSB的具体方法可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
S330,UE在所述目标SSB对应的PRACH资源上向基站发送第一步消息(msg1)。
例如,msg1中可以包括前导码(preamble)。
在所述S330之前,UE可以根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定前导码初始发送功率,相应地,所述UE可以使用所述前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码。
可选地,所述前导码初始发送功率可以为所述UE的最大发送功率和所述UE确定的前导码初始发送功率二者中的最大值,所述UE确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。可选地,所述UE确定的前导码初始发送功率可以为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值可以为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。确定所述前导码初始发送功率的具体方法可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
S340,基站在所述目标SSB对应的PRACH资源上向UE发送第二步消息(msg2)。
例如,msg2中可以包括随机接入响应(random access response,RAR)。
S350,UE向基站发送第三步消息(msg3)。
S360,基站向UE发送第四步消息(msg4)。
对于上述随机接入过程中的各个步骤的具体实现可以参照现有技术,本申请实施例中对此不再赘述。
图4是以2步随机接入过程为例进行说明的。图4所示的方法400可以包括步骤S410、S420、S430及S440,具体如下:
S410,基站发送指示信息。
例如,基站可以在多个时刻,以不同方向的波束发送(一个SSB突发集合中的)多 个SSB,所述多个SSB中的每个SSB中可以包括所述指示信息。
可选地,所述每个SSB中还可以包括RSRP门限值、路损门限值及前导码目标接收功率中的一个或多个。其中,所述RSRP门限值可以为上述图2中方法200中的所述使用所述第一发送功率发送的SSB对应的RSRP门限值或所述使用所述第一发送功率发送的SSB对应的RSRP门限值。
所述指示信息可以用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数。关于所述指示信息的具体描述可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
此外,UE还可以测量所述N个SSB的RSRP,具体的测量方法可以参照现有技术,本申请实施例中不再赘述。
在一些实施例中,也可以通过图3中方法300中提到的多种事件触发UE发起随机接入过程。关于所述多种事件的具体描述可以参照上述图3中方法300中的描述,这里不再赘述。
在UE需要发起随机接入的情况下,可以执行下述S420。
S420,UE根据所述指示信息从所述多个SSB中选择目标SSB。
在一些实施例中,UE可以根据所述目标SSB的RSRP选择目标SSB,或者,UE也可以根据所述目标SSB所在波束的路损值选择目标SSB。从所述多个SSB中确定所述目标SSB的具体方法可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
S430,UE在所述目标SSB对应的PRACH资源上向基站发送消息A(msgA)。
例如,UE可以在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码(preamble)。
在所述S430之前,UE可以根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定前导码初始发送功率,相应地,所述UE可以使用所述前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码。
可选地,所述前导码初始发送功率可以为所述UE的最大发送功率和所述UE确定的前导码初始发送功率二者中的最大值,所述UE确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。可选地,所述UE确定的前导码初始发送功率可以为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值可以为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。确定所述前导码初始发送功率的具体方法可以参照上述图2中方法200中各实施例的描述,这里不再赘述。
S440,基站在所述目标SSB对应的PRACH资源上向UE发送消息B(msgB)。
可选地,在随机接入成功后,UE可以向基站反馈一个确认信息(ACK),以完成随机接入过程。
对于上述随机接入过程中的各个步骤的具体实现可以参照现有技术,本申请实施例中对此不再赘述。
上文结合图1至图4,详细描述了本申请的方法实施例,下面结合图5至图7,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图5是本申请一实施例提供的通信装置的示意性结构图。图5中的通信装置500包括发送单元510及接收单元520。
发送单元510,用于发送指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
接收单元520,用于在目标SSB对应的物理随机接入信道PRACH资源上接收前导码,所述目标SSB为所述N个SSB中的一个。
可选地,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
可选地,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的功率值偏移量。
可选地,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
可选地,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
图6是本申请一实施例提供的通信装置的示意性结构图。图6中的通信装置600包括接收单元610、选择单元620及发送单元630。
接收单元610,用于接收指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
选择单元620,用于根据所述指示信息从所述SSB中选择目标SSB;
发送单元630,用于在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
可选地,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
可选地,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的偏移量。
可选地,所述目标SSB的参考信号接收功率RSRP大于或等于所述目标SSB的RSRP门限值。
可选地,所述目标SSB的RSRP门限值是基于所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量以及使用所述第一发送功率发送的SSB的RSRP门限值确定的。
可选地,所述目标SSB的RSRP门限值为所述使用所述第一发送功率发送的SSB的RSRP门限值与所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量之间的差值。
可选地,所述第一发送功率的功率值为所述M个发送功率中的最大值。
可选地,所述目标波束的路损值小于或等于SSB路损门限值,所述目标波束的路损值是基于所述目标SSB的发送功率和所述目标SSB的RSRP确定的,所述目标波束为所述目标SSB所在的波束。
可选地,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
可选地,所述发送单元630具体用于:使用前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码,所述前导码初始发送功率是根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
可选地,所述前导码初始发送功率为所述通信装置600的最大发送功率和所述通信装置600确定的前导码初始发送功率二者中的最大值,所述通信装置600确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
可选地,所述通信装置600确定的前导码初始发送功率为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
可选地,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
可选地,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
图7是本申请一实施例提供的装置的示意性结构图。图7中的虚线表示该单元或模 块为可选的。该装置700可用于实现上述方法实施例中描述的方法。装置700可以是芯片或通信装置。
装置700可以包括一个或多个处理器710。该处理器710可支持装置700实现前文方法实施例所描述的方法。该处理器710可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置700还可以包括一个或多个存储器720。存储器720上存储有程序,该程序可以被处理器710执行,使得处理器710执行前文方法实施例所描述的方法。存储器720可以独立于处理器710也可以集成在处理器710中。
装置700还可以包括收发器730。处理器710可以通过收发器730与其他设备或芯片进行通信。例如,处理器710可以通过收发器730与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的通信装置中,并且该程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的通信装置中,并且该程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的通信装置中,并且该计算机程序使得计算机执行本申请各个实施例中的由通信装置执行的方法。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施 过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
    所述终端设备根据所述指示信息从所述SSB中选择目标SSB;
    所述终端设备在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
  3. 根据权利要求1所述的方法,其特征在于,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的偏移量。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述目标SSB的参考信号接收功率RSRP大于或等于所述目标SSB的RSRP门限值。
  5. 根据权利要求4所述的方法,其特征在于,所述目标SSB的RSRP门限值是基于所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量以及使用所述第一发送功率发送的SSB的RSRP门限值确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述目标SSB的RSRP门限值为所述使用所述第一发送功率发送的SSB的RSRP门限值与所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量之间的差值。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一发送功率的功率值为所述M个发送功率中的最大值。
  8. 根据权利要求1至3中任一项所述的方法,其特征在于,所述目标波束的路损值小于或等于SSB路损门限值,所述目标波束的路损值是基于所述目标SSB的发送功率和所述目标SSB的RSRP确定的,所述目标波束为所述目标SSB所在的波束。
  9. 根据权利要求8所述的方法,其特征在于,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述终端设备在所述目标SSB对应的物理随机接入信道PRACH资源上发送所述终端设备的前导码preamble,包括:
    所述终端设备使用前导码初始发送功率在所述目标SSB对应的PRACH资源上发送 前导码,所述前导码初始发送功率是根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述前导码初始发送功率为所述终端设备的最大发送功率和所述终端设备确定的前导码初始发送功率二者中的最大值,所述终端设备确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备确定的前导码初始发送功率为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
  15. 一种通信方法,其特征在于,包括:
    基站发送指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
    所述基站在目标SSB对应的物理随机接入信道PRACH资源上接收前导码,所述目标SSB为所述N个SSB中的一个。
  16. 根据权利要求15所述的方法,其特征在于,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
  17. 根据权利要求15所述的方法,其特征在于,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的功率值偏移量。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
  19. 根据权利要求15至17中任一项所述的方法,其特征在于,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
  20. 一种通信装置,其特征在于,包括:
    接收单元,用于接收指示信息,所述指示信息用于指示M个发送功率及使用所述M 个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
    选择单元,用于根据所述指示信息从所述SSB中选择目标SSB;
    发送单元,用于在所述目标SSB对应的物理随机接入信道PRACH资源上发送前导码。
  21. 根据权利要求20所述的装置,其特征在于,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
  22. 根据权利要求20所述的装置,其特征在于,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的偏移量。
  23. 根据权利要求20至22中任一项所述的装置,其特征在于,所述目标SSB的参考信号接收功率RSRP大于或等于所述目标SSB的RSRP门限值。
  24. 根据权利要求23所述的装置,其特征在于,所述目标SSB的RSRP门限值是基于所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量以及使用所述第一发送功率发送的SSB的RSRP门限值确定的。
  25. 根据权利要求24所述的装置,其特征在于,所述目标SSB的RSRP门限值为所述使用所述第一发送功率发送的SSB的RSRP门限值与所述目标SSB的发送功率相对于所述M个发送功率中的第一发送功率的偏移量之间的差值。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第一发送功率的功率值为所述M个发送功率中的最大值。
  27. 根据权利要求20至22中任一项所述的装置,其特征在于,所述目标波束的路损值小于或等于SSB路损门限值,所述目标波束的路损值是基于所述目标SSB的发送功率和所述目标SSB的RSRP确定的,所述目标波束为所述目标SSB所在的波束。
  28. 根据权利要求27所述的装置,其特征在于,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
  29. 根据权利要求20至28中任一项所述的装置,其特征在于,所述发送单元具体用于:
    使用前导码初始发送功率在所述目标SSB对应的PRACH资源上发送前导码,所述前导码初始发送功率是根据前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
  30. 根据权利要求29所述的装置,其特征在于,所述前导码初始发送功率为所述通 信装置的最大发送功率和所述通信装置确定的前导码初始发送功率二者中的最大值,所述通信装置确定的前导码初始发送功率是根据所述前导码目标接收功率、所述目标SSB的发送功率及所述目标SSB的RSRP确定的。
  31. 根据权利要求30所述的装置,其特征在于,所述通信装置确定的前导码初始发送功率为所述前导码目标接收功率与所述目标波束的路损值的和,所述目标波束的路损值为所述目标SSB的发送功率与所述目标SSB的RSRP之间的差值。
  32. 根据权利要求20至31中任一项所述的装置,其特征在于,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
  33. 根据权利要求20至31中任一项所述的装置,其特征在于,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
  34. 一种通信装置,其特征在于,包括:
    发送单元,用于发送指示信息,所述指示信息用于指示M个发送功率及使用所述M个发送功率进行发送的N个同步信号块SSB,M为大于1的整数,N为不小于M的整数;
    接收单元,用于在目标SSB对应的物理随机接入信道PRACH资源上接收前导码,所述目标SSB为所述N个SSB中的一个。
  35. 根据权利要求34所述的装置,其特征在于,所述指示信息包括所述M个发送功率中每个发送功率的功率值。
  36. 根据权利要求34所述的装置,其特征在于,所述指示信息包括所述M个发送功率中的第一发送功率的功率值和所述M个发送功率中的其他发送功率相对于所述第一发送功率的功率值偏移量。
  37. 根据权利要求34至36中任一项所述的装置,其特征在于,所述指示信息包括使用其他发送功率中每个发送功率进行发送的SSB在SSB突发集合中的索引,所述其他发送功率为所述M个发送功率中除第一发送功率之外的发送功率。
  38. 根据权利要求34至36中任一项所述的装置,其特征在于,所述指示信息包括所述N个SSB在SSB突发集合中的索引。
  39. 一种通信装置,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求1至14中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括存储器和处理器,所述存储器用于存储程 序,所述处理器用于调用所述存储器中的程序,以执行如权利要求15至19中任一项所述的方法。
  41. 一种通信装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1至14中任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求15至19中任一项所述的方法。
  43. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法。
  44. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求15至19中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1至14中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求15至19中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1至14中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求15至19中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至19中任一项所述的方法。
PCT/CN2021/108467 2021-07-26 2021-07-26 通信方法及通信装置 WO2023004545A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180098079.4A CN117296386A (zh) 2021-07-26 2021-07-26 通信方法及通信装置
PCT/CN2021/108467 WO2023004545A1 (zh) 2021-07-26 2021-07-26 通信方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108467 WO2023004545A1 (zh) 2021-07-26 2021-07-26 通信方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023004545A1 true WO2023004545A1 (zh) 2023-02-02

Family

ID=85086149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108467 WO2023004545A1 (zh) 2021-07-26 2021-07-26 通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117296386A (zh)
WO (1) WO2023004545A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112065A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 发送功率的确定、信令配置方法及装置、终端、基站
CN109120355A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 确定路径损耗的方法与装置
CN109475001A (zh) * 2017-09-08 2019-03-15 北京三星通信技术研究有限公司 随机接入前导序列的发送方法及装置
CN110035441A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 确定波束、信号质量测量方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112065A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 发送功率的确定、信令配置方法及装置、终端、基站
CN109120355A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 确定路径损耗的方法与装置
CN109475001A (zh) * 2017-09-08 2019-03-15 北京三星通信技术研究有限公司 随机接入前导序列的发送方法及装置
CN110035441A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 确定波束、信号质量测量方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "(TP for SON BL CR for TS 38.423): MLB enhancements", 3GPP DRAFT; R3-210674, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210125 - 20210204, 14 January 2021 (2021-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973091 *

Also Published As

Publication number Publication date
CN117296386A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US10925107B2 (en) Fast activation of multi-connectivity utilizing uplink signals
WO2020143835A1 (zh) 功率控制方法及功率控制装置
WO2020030051A1 (zh) 一种资源配置方法及装置
WO2020164418A1 (zh) 一种测量方法、终端设备及网络设备
WO2019161793A1 (zh) 非竞争随机接入的方法和装置
US20220322452A1 (en) Communication method and system, and device
US11076422B2 (en) Random access responding method and device, and random access method and device
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
US20230199709A1 (en) Information processing method, terminal device, and network device
US20230239933A1 (en) Random access method and apparatus, and related device
WO2021134636A1 (zh) 随机接入方法及通信装置
WO2023004545A1 (zh) 通信方法及通信装置
WO2023039829A1 (zh) 无线通信方法、终端设备以及网络设备
WO2023109575A1 (zh) 通信方法及装置
WO2023077279A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023130448A1 (zh) 通信方法及通信装置
US20240155560A1 (en) Communication method and communication apparatus
WO2023108416A1 (zh) 无线通信的方法、终端设备及网络设备
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023207776A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2023198059A1 (zh) 一种通信方法、装置、***及存储介质
WO2023019437A1 (zh) 通信方法及通信装置
EP4351193A1 (en) Method, apparatus and system for relay communication
WO2023201489A1 (zh) 通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098079.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE