WO2023004542A1 - 医疗通气设备及其通气控制方法、存储介质 - Google Patents

医疗通气设备及其通气控制方法、存储介质 Download PDF

Info

Publication number
WO2023004542A1
WO2023004542A1 PCT/CN2021/108450 CN2021108450W WO2023004542A1 WO 2023004542 A1 WO2023004542 A1 WO 2023004542A1 CN 2021108450 W CN2021108450 W CN 2021108450W WO 2023004542 A1 WO2023004542 A1 WO 2023004542A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
patient
task
pressure
preset
Prior art date
Application number
PCT/CN2021/108450
Other languages
English (en)
French (fr)
Inventor
潘瑞玲
黄继萍
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2021/108450 priority Critical patent/WO2023004542A1/zh
Priority to CN202180100405.0A priority patent/CN117642199A/zh
Publication of WO2023004542A1 publication Critical patent/WO2023004542A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • the present application relates to the technical field of medical equipment, in particular to a medical ventilation equipment, a ventilation control method, and a storage medium thereof.
  • the Ramp feature allows medical ventilators to start therapy at a lower pressure and then gradually increase the pressure over a period of time to the target pressure set by the physician. The pressure at the start of the ramp is generally lower, making the patient more comfortable and able to fall asleep more easily.
  • the process of delayed boosting may be relatively long (for example, 45 minutes), the medical staff may not be able to accompany the patient during this process, which is not conducive to the ventilation treatment of the patient.
  • the present application provides a medical ventilation device, its ventilation control method, and a storage medium, which can improve the safety of the medical ventilation device in the process of delaying pressurization, and reduce the workload of medical staff.
  • the embodiment of the present application provides a ventilation control method for medical ventilation equipment, including:
  • the delayed boost task is used to change the ventilation pressure applied to the patient by the medical ventilation device from the initial pressure to the ventilation control program based on the preset ventilation strategy.
  • the ventilation control program in the ventilation strategy is modified, and the modified ventilation control program is executed to continue the delayed pressurization task.
  • the embodiment of the present application provides a medical ventilation device, including:
  • a breathing circuit in communication with the airflow providing device, for delivering the ventilation airflow generated by the airflow providing device to the airway of the patient;
  • One or more processors working individually or jointly, are used to execute the steps of the aforementioned ventilation control method.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor implements the aforementioned method.
  • An embodiment of the present application provides a medical ventilation device and its ventilation control method and storage medium.
  • the method includes: starting a delayed boost task to perform ventilation therapy on a patient; the delayed boost task is used for a ventilation strategy based on a preset In the ventilation control program, the ventilation pressure applied to the patient by the medical ventilation equipment is non-instantaneously increased from the initial pressure to the target pressure; in the delayed boost task, the ventilation status of the patient is monitored; After the ventilation state of the patient meets the preset condition, the ventilation control program in the ventilation strategy is modified, and the modified ventilation control program is executed to continue the delayed pressurization task.
  • the function of dynamically adjusting the delayed step-up strategy according to the patient's state can be realized, and the medical ventilation equipment can be improved.
  • the safety during the boosting process reduces the workload of medical staff.
  • FIG. 1 is a schematic flowchart of a ventilation control method for a medical ventilation device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a medical ventilation device provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a ventilator provided by an embodiment of the present application.
  • Fig. 4 is an interface schematic diagram of a human-computer interaction interface of a medical ventilation device in an embodiment
  • Fig. 5 is a schematic diagram of the ventilation control program in the modified ventilation strategy in an embodiment
  • Fig. 6-Fig. 9 are the interface schematic diagrams of the human-computer interaction interface of the medical ventilation equipment in different embodiments.
  • Fig. 10 is a schematic diagram of an interface for setting judgment indications in an embodiment.
  • FIG. 1 is a schematic flowchart of a ventilation control method for a medical ventilation device provided in an embodiment of the present application.
  • the control method can be applied in the medical ventilation equipment or the ventilation control device of the medical ventilation equipment, and is used to adjust the configuration of ventilation parameters of the medical ventilation equipment and other processes.
  • FIG. 2 is a schematic diagram of a scene implementing the ventilation control method of the medical ventilation equipment provided by the embodiment of the present application.
  • a ventilation flow is generated, and the breathing circuit 20 communicates with the airflow providing device 10 for delivering the ventilation flow generated by the airflow providing device 10 to the airway of the patient.
  • the airflow providing device 10 includes, for example, an air source interface and/or an air source, for example, the air source can be detachably connected to the air source interface.
  • the medical ventilation device may further include a patient interface 30, which may include a face mask, a nasal mask, a nasal cannula, and an endotracheal tube, etc., which are attached to the patient.
  • the airflow providing device 10 communicates with the patient interface 30 through the breathing circuit 20, and transmits the ventilation airflow to the airway of the patient.
  • the medical ventilation equipment may also include a monitoring device 40, which is used to obtain monitoring parameters related to ventilation tasks. Ventilation parameters are detected, and the ventilation parameters may include the flow rate of ventilation airflow, ventilation pressure, respiratory frequency, tidal volume, inspiratory time, compliance of the respiratory system or the lungs, and the like. Exemplarily, some monitoring parameters, such as blood oxygen saturation and apnea time, can also be obtained through other devices than the medical ventilation device, for example, through a monitor. It should be noted that the monitoring parameters can be detected directly, or can be calculated after detecting certain basic parameters, for example, the man-machine dyssynchrony index during ventilation can be determined according to the basic parameters.
  • the medical ventilation device includes one or more processors 50, and the one or more processors 50 work individually or jointly to execute the steps of the ventilation control method of the medical ventilation device.
  • the medical ventilation device further includes a memory 60, and the processor 50 and the memory 60 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 50 is configured to execute the computer program stored in the memory 60, and when executing the computer program, implement any ventilation control method of the medical ventilation device provided by the embodiment of the present application.
  • the medical ventilation equipment may also include a human-computer interaction device, which may be used to provide a human-computer interaction interface.
  • the human-computer interaction device may include a display for displaying the pressure, Flow rate and volume, as well as displaying patient status information, monitoring parameters, etc.
  • the specific content displayed can include text, charts, numbers, colors, waveforms, characters, etc., for visually displaying various information.
  • the human-computer interaction device may also include an input device through which medical staff can set various parameters, select and control the display interface of the display, etc., to realize information interaction between man and machine.
  • the display can also be a touch display.
  • the medical ventilation device may be a ventilator or an anesthesia machine, which will be described in detail below.
  • the medical ventilation equipment can be a ventilator.
  • the ventilator is an artificial mechanical ventilation device used to assist or control the breathing movement of the patient to achieve gas exchange in the lungs and reduce the work of breathing for the patient to facilitate respiratory function. recovery. Please refer to FIG.
  • the medical ventilation equipment may also include a breathing interface 211 (i.e., a patient interface), an air source interface 212, a breathing circuit (i.e., a breathing circuit), a breathing assistance device (i.e., an air flow providing device), Based on the monitoring device for detecting ventilation parameters, the processor 50, the memory 60, the display 70, etc., the processor 50 can determine the target pressure based on the ventilation parameters detected by the monitoring device, so as to control the breathing assistance device to ventilate the patient according to the target pressure.
  • a breathing interface 211 i.e., a patient interface
  • an air source interface 212 i.e., a breathing circuit
  • a breathing assistance device i.e., an air flow providing device
  • the gas source interface 212 is used to connect with the gas source (not shown in the figure), and the gas source is used to provide gas, and the gas can generally adopt oxygen and air, etc.; in some embodiments, the gas source can adopt compressed gas cylinders or
  • the central air supply source supplies air to the ventilator through the air source interface 212.
  • the types of air supply include oxygen and air.
  • the air source interface 212 can include a pressure gauge, a pressure regulator, a flow meter, a pressure reducing valve, and an air-oxygen ratio Conventional components such as regulating protection devices are used to control the flow of various gases (such as oxygen and air) respectively.
  • the breathing circuit selectively communicates the gas source interface 212 with the patient's breathing system.
  • the ventilator is a non-invasive ventilator, and the non-invasive ventilator includes an inspiratory branch 213a, and the inspiratory branch 213a is connected between the respiratory interface 211 and the air source interface 212, and is used to provide oxygen or air to the patient,
  • the gas input from the gas source interface 212 enters the inhalation branch 213a, and then enters the patient's lungs through the breathing interface 211;
  • the breathing interface 211 is used to connect the patient to the breathing circuit, and the breathing interface 211 may include an exhalation valve, An exhalation valve may not be included, for example, the breathing interface 211 may include a perforated mask, and the patient can exhale through holes in the perforated mask.
  • the breathing circuit may include an expiratory branch 213b and an inspiratory branch 213a, and the expiratory branch 213b is connected between the breathing interface 211 and the exhaust port 213c, and is used to guide the patient's exhaled gas to the Exhaust port 213c.
  • the exhaust port 213c can lead to the external environment, and can also be used in a special gas recovery device for the channel; the breathing interface 211 is used to connect the patient to the breathing circuit.
  • the gas exhaled by the patient can be introduced into the exhaust port 213c through the exhalation branch 213b; according to the situation, the breathing interface 211 can be a cannula or a mask worn on the mouth and nose.
  • the breathing assistance device is connected with the gas source interface 212 and the breathing circuit, and controls the gas provided by the external gas source to be delivered to the patient through the breathing circuit.
  • the breathing assistance device may include an exhalation controller 214b and an inhalation controller 214a.
  • the suction controller 214a is arranged on the suction branch 213a, and is used for turning on or closing the suction branch 213a according to a control command, or controlling the flow rate or pressure of the output gas.
  • the air suction controller 214a may include one or more of devices capable of controlling flow or pressure, such as an air suction valve, a one-way valve, or a flow controller.
  • the exhalation controller 214b is arranged on the exhalation branch 213b, and is used for turning on the exhalation branch 213b or closing the exhalation branch 213b according to the control instruction, or controlling the flow rate or pressure of the gas exhaled by the patient.
  • the exhalation controller 214b may include one or more of devices capable of controlling flow or pressure, such as an exhalation valve, a one-way valve, a flow controller, and a PEEP valve.
  • the memory 60 can be used to store data or programs, for example, to store data collected by sensors or monitoring devices, and data generated by the processor 50 after calculation or image frames generated by the processor, and the image frames can be 2D or 3D
  • An image, or memory 60 may store a graphical user interface, one or more default image display settings, programming instructions for the processor.
  • Memory 60 may be a tangible and non-transitory computer-readable medium such as flash memory, RAM, ROM, EEPROM, and the like.
  • the processor 50 can also be used to execute instructions or programs, control various control valves in the breathing assistance device, air source interface and/or breathing circuit, or process the received data to generate the required calculation or judgment results, or generate visualized data or graphics, and output the visualized data or graphics to the display 70 for display.
  • the medical ventilation equipment is a ventilator. It should be noted that the above figure 3 is just an example of a ventilator, which is not intended to limit the structure of the ventilator.
  • the control method can also be applied in the ventilation control device of the medical ventilation equipment, the control equipment can communicate with the medical ventilation equipment, and is used to adjust the ventilation pressure of the medical ventilation equipment during the delay boost task and other processes.
  • the control device may be at least one of a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, a remote controller, and the like.
  • the delay boost function needs to be used.
  • the ventilator is completely executed according to the program set by the machine. Because the process of delayed boosting may be relatively long (for example, 45 minutes), medical staff may not be able to accompany the patient during this process.
  • the ventilator will still operate according to the ventilator’s preset schedule. If ventilation is performed with the set delay boost program, the patient may suffer from hypoventilation and oxygenation, which may even lead to the failure of non-invasive ventilation of the patient.
  • the inventors of the present application have improved the ventilation control method of the medical ventilation equipment, which can dynamically adjust the process of delayed boosting according to the patient's ventilation situation, which can ensure the comfort of the patient's ventilation, and can be used in critical situations.
  • a more intelligent delay boost implementation scheme is provided.
  • the ventilation control method of the medical ventilation equipment includes step S110 to step S130 , which may be specifically as follows.
  • the delayed boost task is used to apply the ventilation pressure of the medical ventilation equipment to the patient based on the ventilation control program in the preset ventilation strategy from the start The pressure is non-instantaneously raised to the target pressure.
  • the delayed pressurization task is used to implement medical ventilation equipment such as a ventilator to start treatment with a lower initial pressure, and then gradually increase the pressure to the target pressure within a period of time, so as to improve the patient's tolerance and comfort.
  • the pressure at which the ramp begins is called the initial pressure of the ventilator (which may include the initial inspiratory pressure and/or the initial expiratory pressure).
  • the initial pressure is generally lower, which will make the patient more comfortable and comfortable. It is easier to fall asleep.
  • the parameters corresponding to the delay boost task such as the initial pressure, target pressure, and the time from the initial pressure to the target pressure can be set by the user or determined by a preset program, such as the ventilation control in the ventilation strategy
  • the program includes default parameters, or the preset program can determine the parameters corresponding to the delay boost task according to the state of the user.
  • the ventilation control program in the ventilation strategy is used to control the medical ventilation equipment to perform the delayed boost task according to the parameters corresponding to the delayed boost task set by the user or determined by the preset program.
  • the ventilation control method further includes: displaying a human-computer interaction interface.
  • the human-computer interaction interface is displayed on the display of the medical ventilation equipment.
  • the human-computer interaction interface includes at least one of the following: an area Z10 for displaying the setting parameters corresponding to the delayed boost task; the setting parameters corresponding to the delayed boost task include initial At least one of inspiratory pressure, initial expiratory pressure, target pressure, and ramp-up time.
  • the human-computer interaction interface shown in FIG. 4 may be called a delay boost function setting interface, or the area Z10 may be called a delay boost function setting area.
  • the parameters related to the delay boost task may be determined according to the parameter setting operation performed by the user on the human-computer interaction interface.
  • the ventilation control method further includes: acquiring a user's setting operation on the setting parameter corresponding to the delayed boost task, and adjusting the size of the set parameter corresponding to the delayed boost task based on the setting operation.
  • the initial inspiratory pressure is set to 8cmH2O
  • the initial expiratory pressure is 4cmH2O
  • the delayed boost time is 30 minutes
  • the ventilation control program in the ventilation strategy is used to instruct the medical ventilation equipment
  • the ventilation pressure applied to the patient was gradually increased from the initial pressure and reached the target pressure at 30 minutes.
  • the setting parameters corresponding to the ramp-up task may also be determined according to the state of the patient, that is, the initial pressure may not be fixed, but automatically matched according to the patient's condition.
  • the initial pressure may not be fixed, but automatically matched according to the patient's condition.
  • more appropriate setting parameters can be determined according to the physical fitness or condition of the patient.
  • a maximum initial pressure that the patient can tolerate is dynamically searched for through a trial ventilation task.
  • medical ventilation equipment such as ventilators can provide patients with greater ventilation support, and can also increase the pressure to the preset or target pressure set by the doctor faster to ensure that the patient gets enough as soon as possible. Ventilation therapy. In this way, the patient can be tolerated, and the patient can receive as much ventilation therapy as possible, preventing the patient from not receiving sufficient ventilation therapy when the ventilation is started at a lower initial pressure.
  • the preset ventilation strategy includes: increasing the ventilation pressure applied to the patient from the initial pressure to the target pressure within a preset time based on the first increasing speed.
  • the preset ventilation strategy is used to indicate that the increase rate of the ventilation pressure applied to the patient by the medical ventilation equipment is less than or equal to the first increase rate, for example, the increase rate applied to the patient is fixed at the first increase rate. The patient's ventilation pressure.
  • the first increase rate may be the increase rate preset by the ventilation control program in the ventilation strategy, or the increase rate set by the user on the human-computer interaction interface, or the increase rate determined based on the preset program. speed.
  • the ventilation control method further includes: determining the first increase rate of the ventilation pressure applied to the patient in the preset ventilation strategy according to the set initial pressure, target pressure and ramp-up time, which can reduce the user's workload.
  • the patient's ventilation state may reflect the effect of the patient's ventilation therapy during the delayed boost task, and the delayed boost task may be adjusted according to the patient's ventilation state.
  • the patient's ventilation state includes but is not limited to at least one of the following: human-computer asynchrony, hypoxia, asphyxia, and ventilation balance, and of course it is not limited thereto.
  • human-computer asynchrony asynchrony
  • hypoxia asphyxia
  • ventilation balance a certain risk for the patient.
  • man-machine asynchrony, hypoxia, and suffocation are undesirable ventilation states, and there is a certain risk for the patient.
  • the ventilation is balanced, the patient's breathing is stable, and the delayed boost task can be executed faster to increase the effect of ventilation therapy.
  • the Human-Machine Dyssynchrony Index can be used to characterize the degree of human-machine asynchrony.
  • the human-machine dyssynchrony index can be obtained through the detection technology of the human-computer asynchrony, and the detected human-computer asynchronous index is compared with a set threshold to determine whether respiratory asynchrony occurs.
  • the monitoring of the patient's ventilation state includes: determining the patient's ventilation state based on preset judgment indicators; the judgment indicators include at least one of the following: man-machine dyssynchrony index, Blood oxygen saturation and suffocation time, of course, are not limited to this.
  • the preset judgment indications provide reference indications for the ventilation status of the patient, and the current or expected ventilation status of the patient can be accurately determined according to the monitoring parameters corresponding to the judgment indications. It should be noted that the detection parameters corresponding to the judgment indications may be obtained through direct detection, or may be obtained through calculation after certain basic parameters are detected.
  • the man-machine interface includes an area for displaying information on monitoring parameters related to the ramp task.
  • the human-computer interaction interface may be called the delay boost function setting and process monitoring interface.
  • the user can know the patient's ventilation status according to the displayed monitoring parameter information, for example, can know the current value or change trend of the patient's inspiratory pressure.
  • the human-computer interaction interface includes an area Z20 for displaying the monitoring parameter waveform related to the delayed boost task and/or a zone Z20 for displaying a trend graph of the monitored parameter related to the delayed boost task.
  • Zone Z30 the monitoring parameter waveform related to the delayed boost task includes at least one of the inspiratory pressure waveform and the expiratory pressure waveform;
  • the monitored parameter trend graph related to the delayed boost task includes a human-machine asynchronous index trend graph, At least one of a blood oxygen saturation trend graph and a suffocation event trend graph.
  • Region Z20 may be a real-time state monitoring region of inspiratory pressure and expiratory pressure during the ramp-up process, and the displayed monitoring parameter waveforms related to the ramp-up task may be used to indicate the detected changes in the patient's ventilation pressure; the region Z30 is The real-time state monitoring area of the monitoring parameters corresponding to the judgment indication, the displayed monitoring parameters can be used to indicate the ventilation state of the patient.
  • the determination of the patient's ventilation state based on preset judgment indicators includes at least one of the following: detecting that the man-machine dyssynchrony index is equal to or greater than an index threshold, and determining that the patient's ventilation state is human-machine dyssynchrony Synchronization; it is detected that the patient's blood oxygen saturation is equal to or lower than the saturation threshold, and it is determined that the patient's ventilation status is hypoxia; The state is asphyxia; it is detected that the man-machine dyssynchrony index is less than the index threshold, and the patient's blood oxygen saturation is higher than the saturation threshold, and it is determined that the patient's ventilation state is ventilation balance.
  • the patient's ventilation state can be accurately determined by monitoring the monitoring parameter corresponding to the decision indication and the threshold value of the monitoring parameter corresponding to the decision indication obtained through monitoring.
  • the ventilation state meeting the preset condition includes at least one of the following: man-machine asynchrony, hypoxia, asphyxia, and ventilation balance.
  • the ventilation control program in the ventilation strategy is modified according to the modification strategy corresponding to the preset condition.
  • modifying the ventilation control program in the ventilation strategy includes at least one of the following: determining that the ventilation state of the patient is artificial After synchronization, temporarily maintain the ventilation pressure applied to the patient unchanged; after determining that the ventilation state of the patient is hypoxic, increase the ventilation pressure applied to the patient to the target pressure based on the second speed increase, or set the The ventilation pressure applied to the patient is instantly increased to the target pressure, wherein the second increase rate is greater than the first increase rate in the preset ventilation strategy; after it is determined that the patient's ventilation state is asphyxia, Instantaneously increase the ventilation pressure applied to the patient to the target pressure; after determining that the ventilation state of the patient is ventilation balance, increase the ventilation pressure applied to the patient to the target pressure based on a third speed increase, wherein , the third speed increase is greater than the first speed speed in the preset ventilation strategy.
  • the third speed increase may be equal to the second speed increase, or may be greater than the second speed increase
  • the modified ventilation control program is used to Instruct the medical ventilation equipment to temporarily maintain the ventilation pressure applied to the patient; it can also be determined after the patient’s ventilation status has returned to normal from man-machine asynchrony, such as the patient’s breathing is stable and there is no obvious man-machine asynchrony When, for example, when the man-machine dyssynchrony index is less than the index threshold, the pressurization process is restarted.
  • the ventilation control program is modified to the ventilation control program in the preset ventilation strategy, for example, continues to be based on The first increase in speed increases the ventilation pressure applied to the patient.
  • the ramp-up process if it is detected that the blood oxygen saturation of the patient is equal to or lower than the saturation threshold, such as 92%, it is determined that the patient's ventilation status is hypoxia; When the patient does not breathe spontaneously, the duration is equal to or greater than the apnea duration threshold, such as one minute, then it is determined that the patient's ventilation state is asphyxia; after determining that the patient's ventilation state is hypoxia or asphyxia, as shown in curve B, The ventilation pressure applied to the patient can be increased instantaneously to the target pressure to ensure the patient's ventilation and oxygenation needs and ensure the patient's safety; for example, after determining that the patient's ventilation state is hypoxia or asphyxia, The ramp-up process can be stopped immediately, and the ventilation pressure can be adjusted to the target pressure, for example, to the target pressure value set by a doctor.
  • the saturation threshold such as 92%
  • a prompt message may also be given to remind the medical staff to deal with it as soon as possible.
  • the ventilation pressure applied to the patient may also be increased to the target pressure based on the second increase rate, wherein the second increase rate The speed is greater than the first speed increase in the preset ventilation strategy, so as to ensure the ventilation and oxygenation requirements of the patient and enable the patient to tolerate it, thereby ensuring the safety of the patient.
  • the speed of increasing the ventilation pressure can be accelerated, and the target pressure can be reached more quickly.
  • the ventilation pressure applied to the patient is raised to the target pressure based on the third speed increase, wherein , the third speed increase is greater than the first speed speed in the preset ventilation strategy.
  • the third speed increase is greater than the first speed speed in the preset ventilation strategy.
  • each ramp task it may be determined more than once that the ventilation state of the patient meets the preset condition, for example, it is determined that one of the patient's ventilation states meets the preset conditions at different times in a ramp task.
  • One or more ventilation states meet preset conditions. For example, after it is determined that the patient's ventilation state is human-machine asynchronous at a certain time, the ventilation pressure applied to the patient is temporarily maintained unchanged, and then when the patient's ventilation state returns from human-machine asynchronous to normal, continue based on the The first speed increase increases the ventilation pressure applied to the patient, but the ventilation pressure applied to the patient can be temporarily maintained unchanged after the patient’s ventilation state is determined to be human-machine asynchronous at another time later.
  • the ventilation pressure applied to the patient may be raised to the target pressure based on the third speed increase , to increase the boost speed.
  • the ventilation pressure applied to the patient may be increased to the target pressure based on the second increasing speed, or the ventilation pressure applied to the patient may be increased to the target pressure instantaneously.
  • the ventilation pressure applied to the patient is increased to the target pressure based on the third increase rate, but at another time after that, if the patient’s ventilation status is determined to be
  • the ventilation state is hypoxia or asphyxia
  • the ventilation pressure applied to the patient can be increased to the target pressure based on the fourth increasing speed, or the ventilation pressure applied to the patient can be increased to the target pressure instantaneously, wherein the The fourth speedup may be greater than the third speedup, or the fourth speedup may be equal to the second speedup.
  • the method may further include: determining a ventilation state corresponding to the preset condition according to a user's setting operation.
  • the ventilation state corresponding to the preset condition includes human-computer asynchrony, hypoxia, and asphyxia, but does not include ventilation balance
  • it may only monitor whether the patient's ventilation state is human-machine asynchronous, hypoxia, and asphyxia , it is not necessary to monitor whether the patient’s ventilation is balanced, nor to modify the ventilation control program in the ventilation strategy when the patient’s ventilation state is balanced ventilation, for example, it is not necessary to increase the ventilation pressure applied to the patient based on the third speed increase to the target pressure. Therefore, the user can more flexibly set the ventilation strategy of the medical ventilation device according to the usage scenario.
  • the human-computer interaction interface further includes a judgment indication setting entry Z40.
  • the decision indicator setting entry can be used to open an interface for the type and threshold of the decision indicator.
  • the method further includes: displaying an interface for setting the type and threshold of the decision indicator according to a user's trigger operation on the indicator setting entry, as shown in FIG. 10 , the interface may be called Judgment indication setting interface.
  • the ventilation state corresponding to the preset condition and the threshold of the judgment indication corresponding to the ventilation state may be determined according to the user's setting operation on the interface.
  • the interface for setting the type and threshold of the judgment indication includes multiple types of judgment indications (which may be referred to as judgment indication items), such as man-machine out-of-sync index (%), blood oxygen saturation Degree (SpO2, %) and suffocation duration (second, s), of course, are not limited thereto, for example, information such as CO2, respiration rate, etc. may also be included.
  • the user can select one or several judgment indication items, so the ventilation state corresponding to the preset condition can be determined according to the type of judgment indication selected by the user on the interface. For example, as shown in FIG.
  • the ventilation state corresponding to the preset condition includes man-machine dyssynchrony.
  • the man-machine asynchronous index is equal to or greater than the index threshold, it is determined that the ventilation state of the patient is man-machine asynchronous, and the ventilation pressure applied to the patient is temporarily maintained unchanged.
  • the interface for setting the type and threshold of the judgment indication also includes a setting area for thresholds of multiple judgment indications, and the ventilation status corresponding to the ventilation state can be determined according to the setting operation of the user in the setting area.
  • the threshold for judging indications sets the index threshold for judging whether man-machine is out of synch to 10%, the saturation threshold for judging whether hypoxia is 92%, and the apnea duration for judging whether it is asphyxia
  • the threshold is 30 seconds. Therefore, the preset conditions corresponding to the patient's ventilation state can be adjusted according to the actual situation of the patient, such as age, condition, etc., and the ventilation control program in the ventilation strategy can be modified at a more appropriate time.
  • the area Z30 on the human-computer interaction interface for displaying the monitoring parameter trend graph related to the delay boost task can be used to display the corresponding judgment indication selected by the user.
  • the monitoring parameters can also display the threshold value of the judgment indication set by the user (or it can be called the warning setting limit).
  • the displayed monitoring parameters can be used to indicate the ventilation status of the patient, and comparing the displayed monitoring parameters with the thresholds of the displayed judgment indications can determine whether the ventilation status of the patient meets the preset conditions.
  • the ventilation state corresponding to the preset condition includes man-machine asynchrony, as shown in Figure 6 and Figure 10, if the user selects "man-machine asynchrony index" as the judgment indicator, when the detected human When the machine-machine out-of-sync index exceeds the limit set by the user, that is, the index threshold (such as 10%), it indicates that the patient's man-machine out-of-synch is serious and unstable.
  • the index threshold such as 10%
  • determining the ventilation state corresponding to the preset condition includes Hypoxia (blood oxygen saturation at or below the saturation threshold).
  • Hypoxia blood oxygen saturation at or below the saturation threshold.
  • the area Z30 on the human-computer interaction interface for displaying the monitoring parameter trend graph related to the ramp task displays the patient's blood oxygen saturation trend graph, when it is detected that the patient's blood oxygen saturation is equal to or lower than the saturation threshold, indicating that there is a risk of insufficient oxygenation in the patient, determine that the patient’s ventilation status is hypoxia, and instantaneously increase the ventilation pressure applied to the patient to the target pressure to ensure the patient’s ventilation needs .
  • the ventilation state corresponding to the preset condition includes apnea.
  • the area Z30 on the human-computer interaction interface for displaying the monitoring parameter trend graph related to the ramp task displays the patient's asphyxia event trend graph.
  • the ventilation status corresponding to the condition includes man-machine asynchrony, hypoxia, and asphyxia. Please refer to Fig.
  • the area Z30 on the human-computer interaction interface for displaying the trend graph of the monitored parameters related to the delayed boost task displays the trend graph of the man-machine out-of-sync index, the trend graph of blood oxygen saturation and the trend graph of asphyxia events , if it is detected that the human-computer dyssynchrony index is less than the index threshold, and the patient's blood oxygen saturation is higher than the saturation threshold, and no asphyxia event occurs, then it can be determined that the ventilation state of the patient is ventilation balance, which can be automatically increasing the ramp rate, for example increasing the ventilation pressure applied to the patient to the target pressure based on a third increasing rate, wherein the third increasing rate is greater than the first rate in the preset ventilation strategy Increase the speed, make the pressure reach the target value set by the doctor as soon as possible, and provide adequate breathing support.
  • the human-computer interaction interface also includes a prompt area Z50, which can be used as a prompt information area, and the prompt area is used to confirm the ventilation of the patient.
  • a prompt message will be displayed when the status meets the preset conditions.
  • the ventilation control method further includes: after determining that the ventilation state of the patient is hypoxia or asphyxia, displaying prompt information in the prompt area for prompting that the ramp task is terminated abnormally.
  • displaying prompt information in the prompt area for prompting that the ramp task is terminated abnormally As shown in Figures 7 and 8, when it is determined that the patient's ventilation state is hypoxia or asphyxia, and/or the ventilation pressure applied to the patient is instantaneously increased to the target pressure, a prompt message is displayed in the prompt area "The delay boost process was terminated abnormally", reminding the medical staff to deal with it.
  • the ventilation control method further includes: when it is determined that the patient's ventilation state is ventilation balance, displaying prompt information in the prompt area for prompting an accelerated increase of the ventilation pressure applied to the patient.
  • the ventilation control method further includes: when it is determined that the patient's ventilation state is human-machine out of sync, displaying prompt information in the prompt area for prompting to temporarily maintain the constant ventilation pressure applied to the patient.
  • the user can also manually adjust the corresponding setting parameter information, for example, obtain the user's setting operation on the set parameter corresponding to the delayed boost task, and based on the The above setting operation adjusts the size of the setting parameter corresponding to the delay boost task. It can be understood that after starting the ramp-up process, the doctor is also allowed to manually adjust the time of ramp-up, which can shorten or prolong the ramp-up process.
  • the doctor can adjust the ramp time according to the waveform or trend graph of the monitoring parameters related to the ramp task displayed on the man-machine interface, for example, when the blood oxygen saturation of the patient tends to be lower than the saturation threshold, adjust Low ramp-up time to shorten the ramp-up process and increase the speed-up of ventilation pressure.
  • the ventilation control method further includes: generating log information.
  • the log information includes but is not limited to at least one of the following: after determining that the ventilation state of the patient meets the preset conditions, information about modifying the ventilation control program in the ventilation strategy; the delay boost task is aborted abnormally information; during the delay boost task process, the user manually adjusts the information of the corresponding setting parameters, which is convenient for medical staff to view and understand the entire delay boost process of the patient.
  • the time of the setting operation and the size of the setting parameter corresponding to the delayed boost task before and/or after adjustment are recorded .
  • the time of the setting operation and the type and threshold of the decision indicator before and/or after adjustment are recorded.
  • the ventilation control program in the ventilation strategy when it is determined that the ventilation status of the patient meets the preset condition, record the time when the ventilation status meets the preset condition, and which ventilation status meets the preset condition; when modifying the ventilation control program in the ventilation strategy , record how the ventilation control program was modified. For example, record the start time and duration of temporarily maintaining the constant ventilation pressure applied to the patient.
  • the log information may also include the time and content of the prompt information displayed in the prompt area Z50 of the man-machine interface, such as the abnormal termination of the delay boost process.
  • the log information may also include the time when the ventilation pressure applied to the patient by the medical ventilation equipment rises to the target pressure.
  • the ventilation control method of the medical ventilation equipment includes: starting the delayed boost task to perform ventilation therapy on the patient; the delayed boost task is used in the ventilation control program based on the preset ventilation strategy, and the The ventilation pressure applied to the patient by the medical ventilation equipment is non-instantaneously increased from the initial pressure to the target pressure; in the delayed boost task, the ventilation status of the patient is monitored; the ventilation status of the patient is determined After the preset condition is met, the ventilation control program in the ventilation strategy is modified, and the modified ventilation control program is executed to continue the delayed pressurization task.
  • the function of dynamically adjusting the delayed boost strategy according to the patient's state can be realized.
  • the delay boost process can be dynamically adjusted according to the patient's state, and the boost process can be automatically suspended, terminated or accelerated, which can improve the safety of the medical ventilation equipment during the delay boost process and reduce the workload of medical staff.
  • FIG. 2 is a schematic structural diagram of a medical ventilation device provided by an embodiment of the present application.
  • the medical ventilation equipment may include an airflow providing device 10 and a breathing circuit 20, the airflow providing device 10 is used to generate a ventilation airflow, and the breathing circuit 20 communicates with the airflow providing device 10 for connecting the airflow providing device 10 The resulting flow of ventilation is delivered to the patient's airway.
  • the airflow providing device 10 includes, for example, an air source interface and/or an air source, for example, the air source can be detachably connected to the air source interface.
  • the medical ventilation device may further include a patient interface 30, which may include a face mask, a nasal mask, a nasal cannula, and an endotracheal tube, etc., which are attached to the patient.
  • the airflow providing device 10 communicates with the patient interface 30 through the breathing circuit 20, and transmits the ventilation airflow to the airway of the patient.
  • the medical ventilation equipment may also include a monitoring device 40, which is used to obtain monitoring parameters related to ventilation tasks. Ventilation parameters are detected, and the ventilation parameters may include the flow rate of ventilation airflow, ventilation pressure, respiratory frequency, tidal volume, inspiratory time, compliance of the respiratory system or the lungs, and the like. Exemplarily, some monitoring parameters, such as blood oxygen saturation and apnea time, can also be obtained through other devices than the medical ventilation device, for example, through a monitor. It should be noted that the monitoring parameters can be detected directly, or can be calculated after detecting certain basic parameters, for example, the man-machine dyssynchrony index during ventilation can be determined according to the basic parameters.
  • the medical ventilation device includes one or more processors 50, and the one or more processors 50 work individually or jointly to execute the steps of the ventilation control method of the medical ventilation device.
  • the medical ventilation device further includes a memory 60, and the processor 50 and the memory 60 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 50 is configured to execute the computer program stored in the memory 60, and when executing the computer program, implement any ventilation control method of the medical ventilation device provided by the embodiment of the present application.
  • the memory 60 can be a volatile memory (volatile memory), such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • volatile memory such as a random access memory (Random Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as a read-only memory (Read Only Memory, ROM) , flash memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or a combination of the above types of memory.
  • ROM read-only memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • the processor 50 is configured to execute the computer program stored in the memory 60, and when executing the computer program, implement any ventilation control method of the medical ventilation device provided by the embodiment of the present application.
  • the medical ventilation equipment can also include a human-computer interaction device, which can be used to provide a human-computer interaction interface.
  • the human-computer interaction device can include a display 70, and the display 70 is used to display when the medical ventilation equipment is ventilating the patient.
  • the pressure, flow rate and volume of the patient can be displayed, as well as the status information of the patient, monitoring parameters, etc.
  • the specific content of the display can include text, charts, numbers, colors, waveforms, characters, etc., which are used to intuitively display various information.
  • the human-computer interaction device may also include an input device, through which the medical staff can set various parameters, select and control the display interface of the display 70, etc., to realize information interaction between man and machine.
  • the display 70 can also be a touch display.
  • the medical ventilation device may be a ventilator or anesthesia machine.
  • processors 50 work individually or jointly to perform the following steps:
  • the delayed boost task is used to change the ventilation pressure applied to the patient by the medical ventilation device from the initial pressure to the ventilation control program based on the preset ventilation strategy.
  • the ventilation control program in the ventilation strategy is modified, and the modified ventilation control program is executed to continue the delayed pressurization task.
  • the ventilation state meeting the preset condition includes at least one of the following: man-machine asynchrony, hypoxia, asphyxia, and ventilation balance.
  • the preset ventilation strategy includes: increasing the ventilation pressure applied to the patient from the initial pressure to the target pressure within a preset time based on the first increasing speed.
  • the processor executes the monitoring of the ventilation state of the patient, it is configured to: determine the ventilation state of the patient based on preset judgment indications; the judgment indications include at least one of the following: Man-machine dyssynchrony index, blood oxygen saturation, apnea time.
  • the processor when the processor performs the determination of the ventilation status of the patient based on the preset judgment indication, it is configured to perform at least one of the following:
  • man-machine dyssynchrony index is equal to or greater than the index threshold, and the ventilation status of the patient is determined as man-machine dyssynchrony;
  • the man-machine dyssynchrony index is less than the index threshold, and the blood oxygen saturation of the patient is higher than the saturation threshold, and it is determined that the ventilation state of the patient is ventilation balance.
  • the processor executes the determination until the ventilation state of the patient meets the preset condition, when modifying the ventilation control program in the ventilation strategy, the processor is configured to perform at least one of the following:
  • the ventilation pressure applied to the patient to the target pressure based on the second speed increase, or instantaneously increasing the ventilation pressure applied to the patient to the target pressure, wherein, the second speed increase is greater than the first speed speed in the preset ventilation strategy;
  • the processor is also used to execute:
  • a human-computer interaction interface is displayed, and the human-computer interaction interface includes at least one of the following:
  • the setting parameters corresponding to the delayed boost task include at least one of initial inspiratory pressure, initial expiratory pressure, target pressure, and delayed boost time;
  • the monitored parameter waveform related to the delayed boost task includes at least one of an inspiratory pressure waveform and an expiratory pressure waveform;
  • the processor is also used to execute:
  • the processor is also used to execute:
  • the first increase rate of the ventilation pressure applied to the patient in the preset ventilation strategy is determined according to the set initial pressure, target pressure and delay ramp time.
  • the human-computer interaction interface further includes a judgment indication setting entry; optionally, the processor is also configured to execute:
  • an interface for setting the type and threshold of the determination indication is displayed.
  • the human-computer interaction interface further includes a prompt area for displaying prompt information after it is determined that the ventilation state of the patient meets a preset condition.
  • the processor is also used to execute:
  • a prompt message for prompting the abnormal termination of the ramp task is displayed in the prompt area.
  • the processor is also used to execute:
  • log information includes at least one of the following:
  • the user manually adjusts the information of the corresponding setting parameters.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor realizes the functions of the medical ventilation device provided in the above-mentioned embodiment.
  • the steps of the ventilation control method are also provided.
  • the computer-readable storage medium may be an internal storage unit of the medical ventilation device described in any of the foregoing embodiments, such as a hard disk or a memory of the medical ventilation device.
  • the computer-readable storage medium can also be an external storage device of the medical ventilator, such as a plug-in hard disk equipped on the medical ventilator, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种医疗通气设备的通气控制方法,包括:启动延迟升压任务,以对患者进行通气治疗;延迟升压任务用于基于预设的通气策略中的通气控制程序,将医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力(S110);在延迟升压任务中,监测患者的通气状态(S120);确定到患者的通气状态符合预设条件后,修改通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续延迟升压任务(S130)。本方法能够提高医疗通气设备延迟升压过程中的安全性,降低医护人员的工作量。还提供了医疗通气设备和存储介质。

Description

医疗通气设备及其通气控制方法、存储介质 技术领域
本申请涉及医疗设备技术领域,尤其涉及一种医疗通气设备及其通气控制方法、存储介质。
背景技术
患者使用无创通气治疗的时候,从完全自主呼吸过渡到正压通气,患者容易出现不适应、不耐受的情况。另外,在患者使用无创通气过程中,由于通气气流较大,可能会导致患者无法入睡。这两种情形,都需要使用延迟升压功能,以提升患者的耐受性和舒适性。延迟升压功能允许医疗通气设备以较低的压力启动治疗,然后在一段时间内逐渐增加压力到医生设置的目标压力值。延时升压开始时的压力一般较低,会让患者更舒适且可更容易入睡。
但是因为延迟升压的过程可能会比较长(比如45min),在这个过程中医护人员可能无法全程陪在患者身边,不利于对患者的通气治疗。
发明内容
本申请提供了一种医疗通气设备及其通气控制方法、存储介质,可以提高医疗通气设备进行延迟升压的过程中的安全性,降低医护人员的工作量。
第一方面,本申请实施例提供了一种医疗通气设备的通气控制方法,包括:
启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力;
在所述延迟升压任务中,监测所述患者的通气状态;
确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。
第二方面,本申请实施例提供了一种医疗通气设备,包括:
气流提供装置,用于产生通气气流;
呼吸管路,与所述气流提供装置连通,用于将所述气流提供装置产生的通气气流传送到患者的气道;
一个或多个处理器,单独地或共同地工作,用于执行前述的通气控制方法的步骤。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现前述的方法。
本申请实施例提供了一种医疗通气设备及其通气控制方法、存储介质,方法包括:启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力;在所述延迟升压任务中,监测所述患者的通气状态;确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。通过根据患者的通气状态修改所述通气策略中的通气控制程序,以调整所述延迟升压任务的进程,可以实现能够根据患者状态动态调整延迟升压策略的功能,可以提高医疗通气设备进行延迟升压的过程中的安全性,降低医护人员的工作量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种医疗通气设备的通气控制方法的流程示意图;
图2是本申请实施例提供的一种医疗通气设备的结构示意图;
图3是本申请实施例提供的一种呼吸机的结构示意图;
图4是一实施方式中医疗通气设备的人机交互界面的界面示意图;
图5是一实施方式中修改通气策略中的通气控制程序的示意图;
图6-图9是不同实施方式中医疗通气设备的人机交互界面的界面示意图;
图10是一实施方式中设置判决指征的界面示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种医疗通气设备的通气控制方法的流程示意图。所述控制方法可以应用在医疗通气设备或医疗通气设备的通气控制装置中,用于调节医疗通气设备的通气参数配置等过程。
图2是实施本申请实施例提供的医疗通气设备的通气控制方法的一场景示意图,如图2所示,该医疗通气设备可以包括气流提供装置10和呼吸管路20,气流提供装置10用于产生通气气流,呼吸管路20与气流提供装置10连通,用于将气流提供装置10产生的通气气流传送到患者的气道。气流提供装置10例如包括气源接口和/或气源,例如气源能够可拆卸的连接于气源接口。
示例性的,该医疗通气设备还可以包括患者接口30,患者接口30可以包括面罩、鼻罩、鼻套管、以及气管插管等,其附接到患者。其中,气流提供装置10通过呼吸管路20与患者接口30连通,将通气气流传送到患者的气道。
示例性的,该医疗通气设备还可以包括监测装置40,用来获取通气任务相 关的监测参数,举例而言,监测装置40例如包括设置在呼吸管路或患者接口上的通气检测装置,用来检测通气参数,该通气参数可以包括通气气流的流速、通气压力、呼吸频率、潮气量、吸气时间、呼吸***或肺部的顺应性等。示例性的,一些监测参数,如血氧饱和度、窒息时间也可以通过医疗通气设备之外的其他设备获取,例如通过监护仪获取。需要说明的是,监测参数的检测可以是直接检测得到,也可以是检测得到某些基础参数后,再进行计算得出,例如可以根据基础参数确定通气时的人机不同步指数。
具体的,医疗通气设备包括一个或多个处理器50,一个或多个处理器50单独地或共同地工作,用于执行医疗通气设备的通气控制方法的步骤。
示例性的,医疗通气设备还包括存储器60,处理器50和存储器60之间可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种医疗通气设备的通气控制方法。
医疗通气设备还可以包括人机交互装置,人机交互装置可以用于提供人机交互界面,举例而言,该人机交互装置可以包括显示器,用于显示医疗通气设备给患者通气时的压力、流速和容积,以及显示患者的状态信息、监测参数等,显示具体内容可以包括文字、图表、数字、颜色、波形、字符等,用于直观地显示各类信息。实际应用中,人机交互装置还可以包括输入装置,医护人员可以通过该输入装置进行各类参数的设置,以及显示器的显示界面的选择和控制等,实现人机之间的信息交互。该显示器也可以是一触控显示器。
在一些实施方式中,医疗通气设备可以是呼吸机或麻醉机,以下将进行详细说明。
在一些实施例中医疗通气设备可以是呼吸机,呼吸机是一种人工的机械通气装置,用以辅助或控制患者的呼吸运动,以实现肺内气体交换,降低病人呼吸做功,以利于呼吸功能的恢复。请参照图3,在一些实施例中医疗通气设备还可以包括呼吸接口211(即患者接口)、气源接口212、呼吸回路(即呼吸管路)、呼吸辅助装置(即气流提供装置)、用于检测通气参数的监测装置、处理器50、存储器60和显示器70等,处理器50可以基于监测装置检测得到的通气参数确定目标压力,以便控制呼吸辅助装置按照该目标压力给患者通气。
气源接口212用于与气源(图中未示出)连接,气源用以提供气体,该气 体通常可采用氧气和空气等;在一些实施例中,该气源可以采用压缩气瓶或中心供气源,通过气源接口212为呼吸机供气,供气种类有氧气和空气等,气源接口212中可以包括压力表、压力调节器、流量计、减压阀和空气-氧气比例调控保护装置等常规组件,分别用于控制各种气体(例如氧气和空气)的流量。
呼吸回路将气源接口212和患者的呼吸***选择性连通。在一些实施例中,呼吸机为无创呼吸机,无创呼吸机包括吸气支路213a,吸气支路213a连接在呼吸接口211和气源接口212之间,用于为患者提供氧气或空气,例如从气源接口212输入的气体进入吸气支路213a中,然后通过呼吸接口211进入患者的肺部;呼吸接口211是用于将患者连接到呼吸回路,呼吸接口211可以包括呼气阀,也可以不包括呼气阀,举例而言,呼吸接口211可以包括带孔面罩,患者可以通过带孔面罩上的孔呼气。在另一些实施例中,呼吸回路可以包括呼气支路213b和吸气支路213a,呼气支路213b连接在呼吸接口211和排气口213c之间,用于将患者呼出的气导出到排气口213c。排气口213c可以通到外界环境,也可以通道专用的气体回收装置中;呼吸接口211是用于将患者连接到呼吸回路,除了将由吸气支路213a传输过来的气体导入到患者外,还可以将患者呼出的气体通过呼气支路213b导入到排气口213c;根据情况,呼吸接口211可以是插管或用于佩戴在口鼻上的面罩。呼吸辅助装置与气源接口212和呼吸回路连接,控制将外部气源提供的气体通过所述呼吸回路输送给患者。在一些实施例中呼吸辅助装置可以包括呼气控制器214b和吸气控制器214a。吸气控制器214a设置在吸气支路213a上,用于根据控制指令接通吸气支路213a或关闭吸气支路213a,或控制输出气体的流速或压力。具体实现时,吸气控制器214a可以包括吸气阀、单向阀或流量控制器等能实现对流量或压力控制的器件中的一个或多个。呼气控制器214b设置在呼气支路213b上,用于根据控制指令接通呼气支路213b或关闭呼气支路213b,或控制患者呼出气体的流速或压力。具体实现时,呼气控制器214b可以包括呼气阀、单向阀、流量控制器、PEEP阀等能实现对流量或压力控制的器件中的一个或多个。
存储器60可以用于存储数据或者程序,例如用于存储传感器或监测装置所采集的数据、以及处理器50经计算所生成的数据或处理器所生成的图像帧,该图像帧可以是2D或3D图像,或者存储器60可以存储图形用户界面、一个或多个默认图像显示设置、用于处理器的编程指令。存储器60可以是有形且非暂态 的计算机可读介质,例如闪存、RAM、ROM、EEPROM等。
在一些实施例中处理器50还可以用于执行指令或程序,对呼吸辅助装置、气源接口和/或呼吸回路中的各种控制阀进行控制,或对接收的数据进行处理,生成所需要的计算或判断结果,或者生成可视化数据或图形,并将可视化数据或图形输出给显示器70进行显示。
以上是医疗通气设备为呼吸机的一些描述,需要说明的是,上面图3只是呼吸机的一种例子,这并不用于限定呼吸机只能是如此的结构。
所述控制方法也可以应用在医疗通气设备的通气控制装置中,该控制设备能够与医疗通气设备通信连接,用于调节医疗通气设备在延迟升压任务时的通气压力等过程。示例性的,该控制设备例如可以为手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等中的至少一项。
患者使用无创通气治疗的时候,从完全自主呼吸过渡到正压通气,患者容易出现不适应、不耐受的情况。另外,在患者使用无创通气过程中,由于通气气流较大,可能会导致患者无法入睡。这两种情形,都需要使用延迟升压功能。目前医疗通气设备的通气控制方法在延迟升压功能设置并启动之后,呼吸机即完全按照机器设定的程序执行。因为延迟升压的过程可能会比较长(比如45分钟),在这个过程医护人员可能无法全程陪在患者身边。一旦患者出现较严重的人机不同步、或持续一段时间无自主呼吸(窒息事件)、或血氧饱和度(SpO2)降到安全范围以下等危险情况时,此时呼吸机仍然按照呼吸机预设的延迟升压程序执行通气,患者可能会出现通气不足、氧合不足,甚至会导致患者无创通气失败。
针对该技术问题,本申请的发明人对医疗通气设备的通气控制方法进行了改进,可以根据患者的通气情况,动态调整延迟升压的过程,可以保证患者的通气舒适性,在危机情况时可以保证患者的安全,提供了一种比较智能的延迟升压实现方案。
请参阅图1,本申请实施例的医疗通气设备的通气控制方法包括步骤S110至步骤S130,具体可以如下。
S110、启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力。
示例性的,延迟升压任务用于实现呼吸机等医疗通气设备以较低的起始压力启动治疗,然后在一段时间内逐渐增加压力到目标压力,以提升患者的耐受性和舒适性。延时升压开始时的压力,被称为呼吸机的起始压力(可以包括起始吸气压力和/或起始呼气压力),起始压力一般较低,会让患者更舒适且可更容易入睡。
在一些实施方式中,起始压力、目标压力、由起始压力增加到目标压力的时间等延迟升压任务对应的参数可以由用户设置或者由预设的程序确定,例如通气策略中的通气控制程序包括默认的参数,或者预设的程序可以根据用户的状态确定延迟升压任务对应的参数。所述通气策略中的通气控制程序用于根据由用户设置的或者由预设的程序确定的延迟升压任务对应的参数,控制医疗通气设备执行所述延迟升压任务。
在一些实施方式中,所述通气控制方法还包括:显示人机交互界面。例如在所述医疗通气设备的显示器上显示所述人机交互界面。
示例性的,请参阅图4,所述人机交互界面包括以下至少一种:用于显示所述延迟升压任务对应的设置参数的区域Z10;所述延迟升压任务对应的设置参数包括初始吸气压力、初始呼气压力、目标压力、延迟升压时间中的至少一种。图4所示的人机交互界面可以称为延迟升压功能设置界面,或者区域Z10可以称为延迟升压功能的设置区域。示例性的,可以根据用户在所述人机交互界面上进行的设置参数的设置操作确定延迟升压任务的相关参数。
示例性的,所述通气控制方法还包括:获取用户对所述延迟升压任务对应的设置参数的设置操作,并基于所述设置操作调整所述延迟升压任务对应的设置参数的大小。举例而言,如图4所示,设置初始吸气压力为8cmH2O、初始呼气压力为4cmH2O,延迟升压时间为30分钟,所述通气策略中的通气控制程序用于指示所述医疗通气设备施加给患者的通气压力由起始压力逐渐升高,且在30分钟时升高至目标压力。
示例性的,所述延迟升压任务对应的设置参数也可以是根据患者的状态确定的,即起始压力也可以不是固定的,而是根据患者情况自动匹配的。例如可以根据患者的身体素质或病情确定更加合适的设置参数。
举例而言,在启动延迟升压任务时,通过试验性通气任务,动态寻找一个患者能够耐受的最大的起始压力。因为有较高的起始压力,呼吸机等医疗通气 设备就能够为患者提供较大的通气支持,也能够更快升压到预设的或者由医生设置的目标压力,确保患者尽快得到足够的通气治疗。这样即可以使患者能够耐受,又能够使患者得到尽可能多的通气治疗,防止以较低的起始压力开始通气时患者得不到充分的通气治疗。
在一些实施方式中,所述预设的通气策略包括:基于第一增速将施加给患者的通气压力在预设时间内从所述起始压力升高至所述目标压力。示例性的,所述预设的通气策略用于指示所述医疗通气设备施加给患者的通气压力的增速小于或等于所述第一增速,例如固定以所述第一增速增加施加给患者的通气压力。
示例性的,所述第一增速可以为所述通气策略中的通气控制程序预设的增速,或者为用户在人机交互界面设置的增速,或者为基于预设的程序确定的增速。可选的,所述通气控制方法还包括:根据设置的起始压力、目标压力和延迟升压时间确定所述预设的通气策略中施加给患者的通气压力的第一增速,可以降低用户的工作量。
S120、在所述延迟升压任务中,监测所述患者的通气状态。
患者的通气状态可以体现延迟升压任务时患者的通气治疗的效果,根据患者的通气状态可以对所述延迟升压任务进行调整。
举例而言,患者的通气状态包括但不限于以下至少一种:人机不同步、缺氧、窒息、通气平衡,当然也不限于此。其中,人机不同步、缺氧、窒息为不期望的通气状态,患者存在一定的危险,通气平衡状态时患者的呼吸平稳,延迟升压任务可以加快执行,以增加通气治疗效果。
可以理解的,当患者存在自主呼吸努力时,患者具有自身建立的吸气阶段和呼气阶段,这种情况下,需要呼吸机的吸气阶段和呼气阶段与患者自身的吸气阶段和呼气阶段同步,如果不同步就会存在人机对抗,导致患者产生不适。人机不同步指数可以用于表征人机不同步的程度。示例性的,可以通过人机不同步的检测技术获取人机不同步指数,将检测的人机不同步指数和设定的阈值进行比较,判断是否出现呼吸不同步。
在一些实施方式中,所述监测所述患者的通气状态,包括:基于预设的判决指征确定所述患者的通气状态;所述判决指征包括以下至少一种:人机不同步指数、血氧饱和度、窒息时间,当然也不限于此。所述预设的判决指征为患 者的通气状态提供了参考指征,根据判决指征对应的监测参数可以准确的确定患者当前的或预期的通气状态。需要说明的是,判决指征对应的检测参数可以是直接检测得到,也可以是检测得到某些基础参数后,再进行计算得到的。
在一些实施方式中,所述人机交互界面包括用于显示所述延迟升压任务相关的监测参数的信息的区域。如图4所示,人机交互界面可以称为延迟升压功能设置及过程监测界面。用户可以根据显示的监测参数的信息了解患者的通气状态,例如可以知道患者吸气压力的当前值或变化趋势。
示例性的,请参阅图4,人机交互界面包括用于显示所述延迟升压任务相关的监测参数波形的区域Z20和/或用于显示所述延迟升压任务相关的监测参数趋势图的区域Z30。其中,所述延迟升压任务相关的监测参数波形包括吸气压力波形、呼气压力波形中的至少一种;所述延迟升压任务相关的监测参数趋势图包括人机不同步指数趋势图、血氧饱和度趋势图、窒息事件趋势图中的至少一种。区域Z20可以为延迟升压过程中吸气压力和呼气压力的实时状态监测区域,显示的延迟升压任务相关的监测参数波形可以用于指示检测得到的患者的通气压力的变化;区域Z30为所述判决指征对应的监测参数的实时状态监测区域,显示的监测参数可以用于指示患者的通气状态。
示例性的,所述基于预设的判决指征确定所述患者的通气状态,包括以下至少一种:检测到人机不同步指数等于或大于指数阈值,确定所述患者的通气状态为人机不同步;检测到患者的血氧饱和度等于或低于饱和度阈值,确定所述患者的通气状态为缺氧;检测到患者没有自主呼吸的时长等于或大于窒息时长阈值,确定所述患者的通气状态为窒息;检测到人机不同步指数小于所述指数阈值,且患者的血氧饱和度高于所述饱和度阈值,确定所述患者的通气状态为通气平衡。通过根据监测得到的所述判决指征对应的监测参数,以及所述判决指征对应的监测参数的阈值,可以准确的确定患者的通气状态。
S130、确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。
在一些实施方式中,符合所述预设条件的通气状态包括以下至少一种:人机不同步、缺氧、窒息、通气平衡。示例性的,在确定到所述患者的通气状态符合其中任一种预设条件后,根据所述预设条件对应的修改策略修改所述通气策略中的通气控制程序。
在一些实施方式中,所述确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,包括以下至少一种:确定到所述患者的通气状态为人机不同步后,暂时性维持施加给患者的通气压力不变;确定到所述患者的通气状态为缺氧后,基于第二增速将施加给患者的通气压力升高至所述目标压力,或者将施加给患者的通气压力瞬时升高至所述目标压力,其中,所述第二增速大于所述预设的通气策略中的第一增速;确定到所述患者的通气状态为窒息后,将施加给患者的通气压力瞬时升高至所述目标压力;确定到所述患者的通气状态为通气平衡后,基于第三增速将施加给患者的通气压力升高至所述目标压力,其中,所述第三增速大于所述预设的通气策略中的第一增速。示例性的,第三增速可以等于第二增速,或者可以大于第二增速,也可以小于第二增速。
请参阅图5中的曲线A,延迟升压过程中,在确定到所述患者的通气状态为人机不同步后,说明患者不耐受当前较高的压力和气流修改后的通气控制程序用于指示所述医疗通气设备暂时性维持施加给患者的通气压力不变;还可以在确定所述患者的通气状态从人机不同步恢复至正常,如患者呼吸平稳,无明显的人机不同步之后时,例如人机不同步指数小于所述指数阈值时,再启动升压过程,示例性的,将所述通气控制程序再修改为所述预设的通气策略中的通气控制程序,例如继续基于所述第一增速升高施加给该患者的通气压力。
请参阅图5中的曲线B,延迟升压过程中,若检测到患者的血氧饱和度等于或低于饱和度阈值,如92%,则确定所述患者的通气状态为缺氧;若检测到患者没有自主呼吸的时长等于或大于窒息时长阈值,如一分钟,则确定所述患者的通气状态为窒息;在确定到所述患者的通气状态为缺氧或窒息后,如曲线B所示,可以将施加给患者的通气压力瞬时升高至所述目标压力,以保证患者的通气氧合需求,确保患者安全;示例性的,在确定到所述患者的通气状态为缺氧或窒息后,可以立即停止延迟升压过程,并将通气压力调整到所述目标压力,例如调整到医生设置的目标压力值。示例性的,在确定到所述患者的通气状态为缺氧或窒息后,还可以给出提示信息提醒医护人员尽快处理。在另一些实施方式中,在确定到所述患者的通气状态为缺氧时,也可以基于第二增速将施加给患者的通气压力升高至所述目标压力,其中,所述第二增速大于所述预设的通气策略中的第一增速,以保证患者的通气氧合需求且使患者能够耐受, 确保患者安全。
如果病人状况持续良好,则可以加快通气压力增加的速度,更快达到所述目标压力。请参阅图5中的曲线C,延迟升压过程中,若确定到所述患者的通气状态为通气平衡后,基于第三增速将施加给患者的通气压力升高至所述目标压力,其中,所述第三增速大于所述预设的通气策略中的第一增速。示例性的,延迟升压过程中,如果识别到患者呼吸一直比较平稳,此时说明患者耐受情况良好,则可尝试增大升压过程的速度,使患者尽快达到所述目标压力,以保证患者的通气治疗效果。
需要说明的是,在每次延迟升压任务中,也可以有不只一次确定到所述患者的通气状态符合预设条件,例如在一次延迟升压任务中的不同时间确定到所述患者的一种或多种通气状态符合预设条件。举例而言,在某一时间确定到所述患者的通气状态为人机不同步后暂时性维持施加给患者的通气压力不变,之后患者的通气状态从人机不同步恢复至正常时继续基于所述第一增速升高施加给该患者的通气压力,但是在之后的另一时间再次确定到所述患者的通气状态为人机不同步后可以再次暂时性维持施加给患者的通气压力不变。或者在某一时间确定到患者的通气状态为人机不同步后暂时性维持施加给患者的通气压力不变,之后患者的通气状态从人机不同步恢复至正常时继续基于所述第一增速升高施加给该患者的通气压力,在之后的另一时间如果确定到所述患者的通气状态为通气平衡后,可以基于第三增速将施加给患者的通气压力升高至所述目标压力,增大升压速度。或者在某一时间确定到患者的通气状态为人机不同步后暂时性维持施加给患者的通气压力不变,但是在之后的另一时间若确定到所述患者的通气状态为缺氧或窒息时,可以基于第二增速将施加给患者的通气压力升高至所述目标压力,或者将施加给患者的通气压力瞬时升高至所述目标压力。或者在某一时间确定到患者的通气状态为通气平衡后,基于第三增速将施加给患者的通气压力升高至所述目标压力,但是在之后的另一时间若确定到所述患者的通气状态为缺氧或窒息时,可以基于第四增速将施加给患者的通气压力升高至所述目标压力,或者将施加给患者的通气压力瞬时升高至所述目标压力,其中所述第四增速可以大于所述第三增速,所述第四增速也可以等于所述第二增速。
在一些实施方式中,所述方法还可以包括:根据用户的设置操作确定所述 预设条件对应的通气状态。示例性的,当确定所述预设条件对应的通气状态包括人机不同步、缺氧、窒息,而不包括通气平衡时,可以只监测患者的通气状态是否为人机不同步、缺氧和窒息,可以不监测患者的通气是否平衡,也可以不用在患者的通气状态为通气平衡时修改所述通气策略中的通气控制程序,例如不需要基于第三增速将施加给患者的通气压力升高至所述目标压力。从而用户可以根据使用场景更灵活的设置医疗通气设备的通气策略。
可选的,请参阅图4、图6至图9,所述人机交互界面还包括判决指征设置入口Z40。判决指征设置入口可以用于打开所述判决指征的类型和阈值的界面。示例性的,所述方法还包括:根据用户对所述指征设置入口的触发操作,显示用于设置所述判决指征的类型和阈值的界面,如图10所示,该界面可以称为判决指征设置界面。示例性的,可以根据用户在所述界面的设置操作确定所述预设条件对应的通气状态,以及所述通气状态对应的判决指征的阈值。
请参阅图10,用于设置所述判决指征的类型和阈值的界面包括多个判决指征的类型(可以称为判决指征项),如人机不同步指数(%)、血氧饱和度(SpO2,%)和窒息时长(秒,s),当然也不限于此,例如还可以包括CO2,呼吸率等信息。用户可以选择一项或几项判决指征项,因此可以根据用户在所述界面选取的判决指征的类型确定所述预设条件对应的通气状态。举例而言,如图10所示,用户在所述界面选取的判决指征的类型包括人机不同步指数,则可以确定所述预设条件对应的通气状态包括人机不同步。在检测到人机不同步指数等于或大于指数阈值时,确定所述患者的通气状态为人机不同步,以及暂时性维持施加给患者的通气压力不变。
请参阅图10,用于设置所述判决指征的类型和阈值的界面还包括多个判决指征的阈值的设置区域,可以根据用户在所述设置区域的设置操作确定所述通气状态对应的判决指征的阈值,如图10所示,设置用于判定是否人机不同步的指数阈值为10%,用于判定是否缺氧的饱和度阈值为92%,用于判定是否窒息的窒息时长阈值为30秒。从而可以根据患者的实际情况,如年龄、病情等调整患者的通气状态对应的预设条件,可以在更合适的时机修改所述通气策略中的通气控制程序。
在一些实施方式中,请参阅图6至图9,所述人机交互界面上用于显示所述延迟升压任务相关的监测参数趋势图的区域Z30可以用于显示用户选取的判 决指征对应的监测参数,还可以显示用户设置的判决指征的阈值(或者可以称为警示设置限)。显示的监测参数可以用于指示患者的通气状态,将显示的监测参数和显示的判决指征的阈值比较可以确定所述患者的通气状态是否符合预设条件。
举例而言,若确定所述预设条件对应的通气状态包括人机不同步,如图6和图10所示,若用户选择“人机不同步指数”作为判决指征,当检测到的人机不同步指数超过用户设置的限值,即指数阈值(如10%)时,说明患者人机不同步严重、不稳定,可以确定患者的通气状态为人机不同步,以及暂时性维持施加给患者的通气压力不变;待人机不同步指数恢复到限值以下时,说明患者通气状况比较稳定,可以继续执行升压过程。
举例而言,若用户在图10中用于设置所述判决指征的类型和阈值的界面上选择血氧饱和度(SpO2)作为判决指征,则确定所述预设条件对应的通气状态包括缺氧(血氧饱和度等于或低于饱和度阈值)。请参阅图7,所述人机交互界面上用于显示所述延迟升压任务相关的监测参数趋势图的区域Z30显示患者的血氧饱和度趋势图,当检测到患者的血氧饱和度等于或低于饱和度阈值时,说明患者氧合不足存在风险,确定所述患者的通气状态为缺氧,以及将施加给患者的通气压力瞬时升高至所述目标压力,以保证患者的通气需求。
举例而言,若用户在图10中用于设置所述判决指征的类型和阈值的界面上选择窒息时间作为判决指征,则确定所述预设条件对应的通气状态包括窒息。请参阅图8,所述人机交互界面上用于显示所述延迟升压任务相关的监测参数趋势图的区域Z30显示患者的窒息事件趋势图,当检测到患者没有自主呼吸的时长等于或大于窒息时长阈值时,确定所述患者的通气状态为窒息,即患者存在窒息的风险,将施加给患者的通气压力瞬时升高至所述目标压力,以保证患者的通气需求。
举例而言,若用户在图10中用于设置所述判决指征的类型和阈值的界面上选择人机不同步指数、血氧饱和度和窒息时长作为判决指征,则确定所述预设条件对应的通气状态包括人机不同步、缺氧、窒息。请参阅图9,所述人机交互界面上用于显示所述延迟升压任务相关的监测参数趋势图的区域Z30显示人机不同步指数趋势图、血氧饱和度趋势图以及窒息事件趋势图,如果检测到人机不同步指数小于所述指数阈值,且患者的血氧饱和度高于所述饱和度阈值, 以及未发生窒息事件,则可以确定所述患者的通气状态为通气平衡,可以自动增大延迟升压的速率,例如基于第三增速将施加给患者的通气压力升高至所述目标压力,其中,所述第三增速大于所述预设的通气策略中的第一增速,使压力尽快达到医生设置的目标值,提供充足的呼吸支持。
可选的,请参阅图4、图6至图9,所述人机交互界面还包括提示区域Z50,提示区域Z50可以作为提示信息区,所述提示区域用于在确定到所述患者的通气状态符合预设条件后显示提示信息。
示例性的,所述通气控制方法还包括:确定到所述患者的通气状态为缺氧或窒息后,在所述提示区域显示用于提示所述延迟升压任务异常中止的提示信息。如图7和图8所示,在确定到所述患者的通气状态为缺氧或窒息,和/或将施加给患者的通气压力瞬时升高至所述目标压力时,在提示区域显示提示信息“延迟升压过程异常中止”,提醒医护人员处理。
示例性的,所述通气控制方法还包括:确定到所述患者的通气状态为通气平衡时,在所述提示区域显示用于提示加速升高施加给患者的通气压力的提示信息。示例性的,所述通气控制方法还包括:确定到所述患者的通气状态为人机不同步时,在所述提示区域显示用于提示暂时性维持施加给患者的通气压力不变的提示信息。
在一些实施时方式中,在所述延迟升压任务过程中,用户也可以手动调整对应的设置参数的信息,例如获取用户对所述延迟升压任务对应的设置参数的设置操作,并基于所述设置操作调整所述延迟升压任务对应的设置参数的大小。可以理解的,在启动延迟升压过程之后,也允许医生手动调节延迟升压的时间,可以缩短或延长延迟升压过程。例如,医生可以根据人机交互界面显示的延迟升压任务相关的监测参数的波形或趋势图,调整延迟升压时间,例如在患者的血氧饱和度有低于饱和度阈值的趋势时,调低延迟升压时间,以缩短延迟升压过程,升高通气压力的增速。
在一些实施方式中,所述通气控制方法还包括:生成日志信息。示例性的,所述日志信息包括但不限于以下至少一种:确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序的信息;延迟升压任务异常中止的信息;所述延迟升压任务过程中,用户手动调整对应的设置参数的信息,便于医护人员查看,了解患者的整个延迟升压过程。
示例性的,在获取到用户对所述延迟升压任务对应的设置参数的设置操作时,记录设置操作的时间,以及调整前和/或调整后所述延迟升压任务对应的设置参数的大小。
示例性的,在获取到用户设置所述判决指征的类型和阈值的设置操作时,记录设置操作的时间,以及调整前和/或调整后的所述判决指征的类型和阈值。
示例性的,在确定到所述患者的通气状态符合预设条件时,记录通气状态符合预设条件的时间,以及何种通气状态符合预设条件;在修改所述通气策略中的通气控制程序时,记录通气控制程序修改的方式。例如记录暂时性维持施加给患者的通气压力不变的开始时间和持续时间。
示例性的,所述日志信息还可以包括人机交互界面的提示区域Z50显示提示信息的时间和内容,如延迟升压过程异常中止。
示例性的,所述日志信息还可以包括所述医疗通气设备施加给患者的通气压力升高至所述目标压力的时间。
本申请实施例提供的医疗通气设备的通气控制方法,包括:启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力;在所述延迟升压任务中,监测所述患者的通气状态;确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。通过根据患者的通气状态修改所述通气策略中的通气控制程序,以调整所述延迟升压任务的进程,可以实现能够根据患者状态动态调整延迟升压策略的功能。例如可以根据患者的状态动态调整延迟升压过程,可以自动暂停、中止或加快升压过程,可以提高医疗通气设备进行延迟升压的过程中的安全性,降低医护人员的工作量。
请结合上述实施例参阅图2,图2是本申请实施例提供的医疗通气设备的结构示意图。
如图2所示,该医疗通气设备可以包括气流提供装置10和呼吸管路20,气流提供装置10用于产生通气气流,呼吸管路20与气流提供装置10连通,用于将气流提供装置10产生的通气气流传送到患者的气道。气流提供装置10例如包括气源接口和/或气源,例如气源能够可拆卸的连接于气源接口。
示例性的,该医疗通气设备还可以包括患者接口30,患者接口30可以包括面罩、鼻罩、鼻套管、以及气管插管等,其附接到患者。其中,气流提供装置10通过呼吸管路20与患者接口30连通,将通气气流传送到患者的气道。
示例性的,该医疗通气设备还可以包括监测装置40,用来获取通气任务相关的监测参数,举例而言,监测装置40例如包括设置在呼吸管路或患者接口上的通气检测装置,用来检测通气参数,该通气参数可以包括通气气流的流速、通气压力、呼吸频率、潮气量、吸气时间、呼吸***或肺部的顺应性等。示例性的,一些监测参数,如血氧饱和度、窒息时间也可以通过医疗通气设备之外的其他设备获取,例如通过监护仪获取。需要说明的是,监测参数的检测可以是直接检测得到,也可以是检测得到某些基础参数后,再进行计算得出,例如可以根据基础参数确定通气时的人机不同步指数。
具体的,医疗通气设备包括一个或多个处理器50,一个或多个处理器50单独地或共同地工作,用于执行医疗通气设备的通气控制方法的步骤。
示例性的,医疗通气设备还包括存储器60,处理器50和存储器60之间可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种医疗通气设备的通气控制方法。
存储器60可以是易失性存储器(volatile memory),例如随机存取存储器(Random Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者以上种类的存储器的组合。存储器60用于存储计算机程序,可以向处理器50提供指令和数据。
其中,处理器50用于执行存储在存储器60的计算机程序,并在执行所述计算机程序时,实现本申请实施例提供的任一种医疗通气设备的通气控制方法。
医疗通气设备还可以包括人机交互装置,人机交互装置可以用于提供人机交互界面,举例而言,该人机交互装置可以包括显示器70,显示器70用于显示医疗通气设备给患者通气时的压力、流速和容积,以及显示患者的状态信息、监测参数等,显示具体内容可以包括文字、图表、数字、颜色、波形、字符等,用于直观地显示各类信息。实际应用中,人机交互装置还可以包括输入装置, 医护人员可以通过该输入装置进行各类参数的设置,以及显示器70的显示界面的选择和控制等,实现人机之间的信息交互。该显示器70也可以是一触控显示器。
在一些实施方式中,医疗通气设备可以是呼吸机或麻醉机。
具体的,一个或多个处理器50单独地或共同地工作,用于执行如下步骤:
启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力;
在所述延迟升压任务中,监测所述患者的通气状态;
确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。
可选的,符合所述预设条件的通气状态包括以下至少一种:人机不同步、缺氧、窒息、通气平衡。
可选的,所述预设的通气策略包括:基于第一增速将施加给患者的通气压力在预设时间内从所述起始压力升高至所述目标压力。
可选的,所述处理器执行所述监测所述患者的通气状态时,用于执行:基于预设的判决指征确定所述患者的通气状态;所述判决指征包括以下至少一种:人机不同步指数、血氧饱和度、窒息时间。
可选的,所述处理器执行所述基于预设的判决指征确定所述患者的通气状态时,用于执行以下至少一种:
检测到人机不同步指数等于或大于指数阈值,确定所述患者的通气状态为人机不同步;
检测到患者的血氧饱和度等于或低于饱和度阈值,确定所述患者的通气状态为缺氧;
检测到患者没有自主呼吸的时长等于或大于窒息时长阈值,确定所述患者的通气状态为窒息;
检测到人机不同步指数小于所述指数阈值,且患者的血氧饱和度高于所述饱和度阈值,确定所述患者的通气状态为通气平衡。
可选的,所述处理器执行所述确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序时,用于执行以下至少一种:
确定到所述患者的通气状态为人机不同步后,暂时性维持施加给患者的通气压力不变;
确定到所述患者的通气状态为缺氧后,基于第二增速将施加给患者的通气压力升高至所述目标压力,或者将施加给患者的通气压力瞬时升高至所述目标压力,其中,所述第二增速大于所述预设的通气策略中的第一增速;
确定到所述患者的通气状态为窒息后,将施加给患者的通气压力瞬时升高至所述目标压力;
确定到所述患者的通气状态为通气平衡后,基于第三增速将施加给患者的通气压力升高至所述目标压力,其中,所述第三增速大于所述预设的通气策略中的第一增速。
可选的,所述处理器还用于执行:
显示人机交互界面,所述人机交互界面包括以下至少一种:
用于显示所述延迟升压任务对应的设置参数的区域;所述延迟升压任务对应的设置参数包括初始吸气压力、初始呼气压力、目标压力、延迟升压时间中的至少一种;
用于显示所述延迟升压任务相关的监测参数波形的区域;所述延迟升压任务相关的监测参数波形包括吸气压力波形、呼气压力波形中的至少一种;
用于显示所述延迟升压任务相关的监测参数趋势图的区域;所述延迟升压任务相关的监测参数趋势图包括人机不同步指数趋势图、血氧饱和度趋势图、窒息事件趋势图中的至少一种。
可选的,所述处理器还用于执行:
获取用户对所述延迟升压任务对应的设置参数的设置操作,并基于所述设置操作调整所述延迟升压任务对应的设置参数的大小。
可选的,所述处理器还用于执行:
根据设置的起始压力、目标压力和延迟升压时间确定所述预设的通气策略中施加给患者的通气压力的第一增速。
可选的,所述人机交互界面还包括判决指征设置入口;可选的,所述处理器还用于执行:
根据用户对所述指征设置入口的触发操作,显示用于设置所述判决指征的类型和阈值的界面。
可选的,所述人机交互界面包括还包括提示区域,所述提示区域用于在确定到所述患者的通气状态符合预设条件后显示提示信息。
可选的,所述处理器还用于执行:
确定到所述患者的通气状态为缺氧或窒息后,在所述提示区域显示用于提示所述延迟升压任务异常中止的提示信息。
可选的,所述处理器还用于执行:
生成日志信息,所述日志信息包括以下至少一种:
确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序的信息;
延迟升压任务异常中止的信息;
所述延迟升压任务过程中,用户手动调整对应的设置参数的信息。
本申请实施例提供的医疗通气设备的具体原理和实现方式均与前述实施例的医疗通气设备的通气控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的医疗通气设备的通气控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的医疗通气设备的内部存储单元,例如所述医疗通气设备的硬盘或内存。所述计算机可读存储介质也可以是所述医疗通气设备的外部存储设备,例如所述医疗通气设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
可以理解的,本说明书及附图中的“第一”、“第二”是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到 各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种医疗通气设备的通气控制方法,其特征在于,包括:
    启动延迟升压任务,以对患者进行通气治疗;所述延迟升压任务用于基于预设的通气策略中的通气控制程序,将所述医疗通气设备施加给患者的通气压力由起始压力非瞬时性的升高至目标压力;
    在所述延迟升压任务中,监测所述患者的通气状态;
    确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,并执行修改后的通气控制程序,以继续所述延迟升压任务。
  2. 根据权利要求1所述的通气控制方法,其特征在于,符合所述预设条件的通气状态包括以下至少一种:人机不同步、缺氧、窒息、通气平衡。
  3. 根据权利要求1所述的通气控制方法,其特征在于,所述预设的通气策略包括:
    基于第一增速将施加给患者的通气压力在预设时间内从所述起始压力升高至所述目标压力。
  4. 根据权利要求2所述的通气控制方法,其特征在于,所述监测所述患者的通气状态,包括:
    基于预设的判决指征确定所述患者的通气状态;所述判决指征包括以下至少一种:人机不同步指数、血氧饱和度、窒息时间。
  5. 根据权利要求4所述的通气控制方法,其特征在于,所述基于预设的判决指征确定所述患者的通气状态,包括以下至少一种:
    检测到人机不同步指数等于或大于指数阈值,确定所述患者的通气状态为人机不同步;
    检测到患者的血氧饱和度等于或低于饱和度阈值,确定所述患者的通气状态为缺氧;
    检测到患者没有自主呼吸的时长等于或大于窒息时长阈值,确定所述患者的通气状态为窒息;
    检测到人机不同步指数小于所述指数阈值,且患者的血氧饱和度高于所述饱和度阈值,确定所述患者的通气状态为通气平衡。
  6. 根据权利要求1所述的通气控制方法,其特征在于,所述确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序,包括以下至少一种:
    确定到所述患者的通气状态为人机不同步后,暂时性维持施加给患者的通气压力不变;
    确定到所述患者的通气状态为缺氧后,基于第二增速将施加给患者的通气压力升高至所述目标压力,或者将施加给患者的通气压力瞬时升高至所述目标压力,其中,所述第二增速大于所述预设的通气策略中的第一增速;所述预设的通气策略包括基于第一增速将施加给患者的通气压力在预设时间内从所述起始压力升高至所述目标压力;
    确定到所述患者的通气状态为窒息后,将施加给患者的通气压力瞬时升高至所述目标压力;
    确定到所述患者的通气状态为通气平衡后,基于第三增速将施加给患者的通气压力升高至所述目标压力,其中,所述第三增速大于所述预设的通气策略中的第一增速;所述预设的通气策略包括基于第一增速将施加给患者的通气压力在预设时间内从所述起始压力升高至所述目标压力。
  7. 根据权利要求1所述的通气控制方法,其特征在于,还包括:
    通过人机交互界面获取用户输入的起始压力设置值;或者,根据预设策略确定所述起始压力,所述预设策略包括根据所述患者的历史通气数据确定所述患者能够耐受的最大起始压力,并将所述最大起始压力作为当前延迟升压任务中的起始压力。
  8. 根据权利要求1-7中任一项所述的通气控制方法,其特征在于,还包括:
    显示人机交互界面,所述人机交互界面包括以下至少一种:
    用于显示所述延迟升压任务对应的设置参数的区域;所述延迟升压任务对应的设置参数包括初始吸气压力、初始呼气压力、目标压力、延迟升压时间中的至少一种;
    用于显示所述延迟升压任务相关的监测参数波形的区域;所述延迟升压任务相关的监测参数波形包括吸气压力波形、呼气压力波形中的至少一种;
    用于显示所述延迟升压任务相关的监测参数趋势图的区域;所述延迟升压任务相关的监测参数趋势图包括人机不同步指数趋势图、血氧饱和度趋势图、 窒息事件趋势图中的至少一种。
  9. 根据权利要求8所述的通气控制方法,其特征在于,还包括:
    获取用户对所述延迟升压任务对应的设置参数的设置操作,并基于所述设置操作调整所述延迟升压任务对应的设置参数的大小。
  10. 根据权利要求9所述的通气控制方法,其特征在于,还包括:
    根据设置的起始压力、目标压力和延迟升压时间确定所述预设的通气策略中施加给患者的通气压力的第一增速。
  11. 根据权利要求8所述的通气控制方法,其特征在于,所述人机交互界面还包括判决指征设置入口;所述方法还包括:
    根据用户对所述判决指征设置入口的触发操作,显示用于设置所述判决指征的类型和阈值的界面。
  12. 根据权利要求8所述的通气控制方法,其特征在于,所述人机交互界面包括还包括提示区域,所述提示区域用于在确定到所述患者的通气状态符合预设条件后显示提示信息。
  13. 根据权利要求12所述的通气控制方法,其特征在于,还包括:
    确定到所述患者的通气状态为缺氧或窒息后,在所述提示区域显示用于提示所述延迟升压任务异常中止的提示信息。
  14. 根据权利要求1-7中任一项所述的通气控制方法,其特征在于,还包括:
    生成日志信息,所述日志信息包括以下至少一种:
    确定到所述患者的通气状态符合预设条件后,修改所述通气策略中的通气控制程序的信息;
    延迟升压任务异常中止的信息;
    所述延迟升压任务过程中,用户手动调整对应的设置参数的信息。
  15. 一种医疗通气设备,其特征在于,包括:
    气流提供装置,用于产生通气气流;
    呼吸管路,与所述气流提供装置连通,用于将所述气流提供装置产生的通气气流传送到患者的气道;
    一个或多个处理器,单独地或共同地工作,用于执行如权利要求1-14中任一项所述的通气控制方法的步骤。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储 有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-14中任一项所述的通气控制方法。
PCT/CN2021/108450 2021-07-26 2021-07-26 医疗通气设备及其通气控制方法、存储介质 WO2023004542A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/108450 WO2023004542A1 (zh) 2021-07-26 2021-07-26 医疗通气设备及其通气控制方法、存储介质
CN202180100405.0A CN117642199A (zh) 2021-07-26 2021-07-26 医疗通气设备及其通气控制方法、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108450 WO2023004542A1 (zh) 2021-07-26 2021-07-26 医疗通气设备及其通气控制方法、存储介质

Publications (1)

Publication Number Publication Date
WO2023004542A1 true WO2023004542A1 (zh) 2023-02-02

Family

ID=85086146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108450 WO2023004542A1 (zh) 2021-07-26 2021-07-26 医疗通气设备及其通气控制方法、存储介质

Country Status (2)

Country Link
CN (1) CN117642199A (zh)
WO (1) WO2023004542A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103656817A (zh) * 2013-12-13 2014-03-26 科迈(常州)电子有限公司 一种提高呼吸机舒适性的控制方法
CN103721330A (zh) * 2013-12-13 2014-04-16 科迈(常州)电子有限公司 一种呼吸机数据分析方法
CN110404146A (zh) * 2018-04-27 2019-11-05 日本光电工业株式会社 患者治疗***和监控装置
CN112449607A (zh) * 2018-08-21 2021-03-05 深圳迈瑞生物医疗电子股份有限公司 通气触发检测方法、装置、通气设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103656817A (zh) * 2013-12-13 2014-03-26 科迈(常州)电子有限公司 一种提高呼吸机舒适性的控制方法
CN103721330A (zh) * 2013-12-13 2014-04-16 科迈(常州)电子有限公司 一种呼吸机数据分析方法
CN110404146A (zh) * 2018-04-27 2019-11-05 日本光电工业株式会社 患者治疗***和监控装置
CN112449607A (zh) * 2018-08-21 2021-03-05 深圳迈瑞生物医疗电子股份有限公司 通气触发检测方法、装置、通气设备及存储介质

Also Published As

Publication number Publication date
CN117642199A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US11638796B2 (en) Methods and systems for exhalation control and trajectory optimization
US9089657B2 (en) Methods and systems for gating user initiated increases in oxygen concentration during ventilation
EP2539001B1 (en) Spontaneous breathing trial manager
US10709854B2 (en) Methods and systems for adaptive base flow and leak compensation
US8776792B2 (en) Methods and systems for volume-targeted minimum pressure-control ventilation
US20120090611A1 (en) Systems And Methods For Controlling An Amount Of Oxygen In Blood Of A Ventilator Patient
US20140261424A1 (en) Methods and systems for phase shifted pressure ventilation
US8554298B2 (en) Medical ventilator with integrated oximeter data
US20100218766A1 (en) Customizable mandatory/spontaneous closed loop mode selection
WO2013033419A1 (en) Methods and systems for adjusting tidal volume during ventilation
JP2008541849A (ja) 吸気酸素濃度を制御するための装置および方法
WO2007062400A2 (en) Method and apparatus for providing positive airway pressure to a patient
CN114028677A (zh) 一种呼吸机气压调节监控***及其应用
CN112955204B (zh) 呼吸支持设备及其通气控制方法和计算机可读存储介质
CN110368561A (zh) 一种呼吸机智能***及其工作方法
EP4272788A1 (en) Respiratory support device and control method therefor, and storage medium
US20240066243A1 (en) High flow respiratory therapy device and method through breath synchronization
US20170368280A1 (en) Artificial ventilation apparatus with ventilation modes suited to cardiac massage
WO2023004542A1 (zh) 医疗通气设备及其通气控制方法、存储介质
CN114949523A (zh) 具有血氧饱和度控制功能的智能呼吸机***及控制方法
US20200078547A1 (en) Methods and systems for high pressure controlled ventilation
WO2023019551A1 (zh) 一种通气设备及压力上升时间的调节方法
US20230157574A1 (en) End tidal carbon dioxide measurement during high flow oxygen therapy
Gill et al. Non-invasive ventilatory support
TWI605841B (zh) 呼吸器的控制方法、控制系統及處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100405.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE