WO2023002785A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023002785A1
WO2023002785A1 PCT/JP2022/024176 JP2022024176W WO2023002785A1 WO 2023002785 A1 WO2023002785 A1 WO 2023002785A1 JP 2022024176 W JP2022024176 W JP 2022024176W WO 2023002785 A1 WO2023002785 A1 WO 2023002785A1
Authority
WO
WIPO (PCT)
Prior art keywords
tone
entropy
user
air conditioner
movement amount
Prior art date
Application number
PCT/JP2022/024176
Other languages
French (fr)
Japanese (ja)
Inventor
悠二 渡邉
庸浩 金森
正宣 広田
大輔 川添
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023002785A1 publication Critical patent/WO2023002785A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants

Definitions

  • the present disclosure relates to air conditioners.
  • Patent Document 1 performs spectral analysis of the waveform portion of the RR interval in the heartbeat waveform, calculates the ratio HF / LF of the high frequency component (HF) to the low frequency component (LF) based on this analysis, and HF / LF Disclosed is an air conditioner that determines a user's stress level and controls operation based on the stress level. For example, when the degree of stress is high, the air conditioner according to Patent Document 1 reduces the air volume to reduce the stress, or directs the air upward so that the air does not hit the user. In addition, when the stress level is low, the air conditioner increases the air volume to increase the stress, directs the air downward so that the air hits the user, or lowers the temperature.
  • the present disclosure provides an air conditioner that performs comfortable operation for the user, taking into account the user's thermal sensation.
  • the air conditioner in the present disclosure includes a vital sign measuring device that measures the pulse or heart rate of the user in the room, and a tone value and an entropy value that are calculated using the tone entropy method from the detection result of the vital sign measuring device. It has an entropy calculator and an operation controller that controls the operation of the air conditioner.
  • the operation control unit operates the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit becomes a combination of the tone value and the entropy value corresponding to the user's comfortable thermal sensation. Control.
  • the air conditioner according to the present disclosure can perform comfortable operation for the user, taking into account the user's thermal sensation.
  • FIG. 1 is a diagram showing an example of a heartbeat waveform.
  • FIG. 2 is a diagram showing an example of PI frequency distribution.
  • FIG. 3 is a diagram showing a tone-entropy map in this disclosure.
  • FIG. 4 is a diagram showing changes in tone value and entropy value depending on the temperature environment.
  • FIG. 5 is a diagram showing converged tone values and entropy values that differ depending on the temperature environment.
  • FIG. 6 is a diagram showing a room in which air conditioners according to an embodiment of the present disclosure are arranged.
  • FIG. 7 is a diagram schematically showing the configuration of the air conditioner according to the embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing the control system of the air conditioner according to the embodiment of the present disclosure.
  • FIG. 1 is a diagram showing an example of a heartbeat waveform.
  • FIG. 2 is a diagram showing an example of PI frequency distribution.
  • FIG. 3 is a diagram showing a tone-entropy map in
  • FIG. 9 is a diagram showing a tone-entropy map for explaining driving control when it is too hot and uncomfortable.
  • FIG. 10 is a diagram showing a tone-entropy map for explaining driving control when it is too cold and uncomfortable.
  • FIG. 11 is a schematic diagram showing changes in the tone value and the entropy value, which differ depending on the temperature environment, as shift amounts.
  • FIG. 12 is a schematic diagram showing the difference in movement amount depending on the temperature environment.
  • FIG. 13 is a diagram showing actual measurement values of the amount of movement obtained from experiments with respect to changes in the tone value and the entropy value, which differ depending on the temperature environment.
  • FIG. 14 is a diagram showing actual measurement values obtained from experiments with respect to movement amounts that differ depending on the temperature environment.
  • FIG. 15 is a diagram showing a room in which air conditioners according to another embodiment of the present disclosure are arranged.
  • An air conditioner includes a vital signs measuring device that measures the pulse or heartbeat of a user in a room, and a tone value and an entropy value using the tone entropy method from the detection results of the vital signs measuring device.
  • a tone/entropy calculator for calculating and an operation controller for controlling the operation of the air conditioner.
  • the operation control unit operates the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit becomes a combination of the tone value and the entropy value corresponding to the user's comfortable thermal sensation. Control.
  • the air conditioner can be operated comfortably for the user, taking into account the user's thermal sensation.
  • the operation control unit controls the operation of the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the comfort region corresponding to the user's comfortable thermal sensation in the tone-entropy map. You can control driving.
  • the operation control unit determines that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is too hot and uncomfortable in the tone-entropy map. If the user is in the first discomfort region corresponding to a warm or cold sensation, an operation that lowers the indoor temperature may be executed. Further, when the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the second discomfort region corresponding to the thermal sensation that is too cold and uncomfortable in the tone-entropy map, the room temperature is adjusted. You may perform the driving
  • the air conditioner can operate in a way that makes the user comfortable, even if the user feels uncomfortable because it is too hot or too cold.
  • the operation control unit calculates the tone value and the entropy value calculated by the tone/entropy calculation unit. If the combination of is in the first discomfort region corresponding to too hot and uncomfortable thermal sensation in the tone-entropy map, an operation is performed to increase the air blow volume, and the tone / entropy calculation unit calculated If the combination of tone value and entropy value lies in a second discomfort region corresponding to too cold and uncomfortable thermal sensations in the tone-entropy map, then an airflow reduction operation may be performed.
  • the operation control unit reduces the air blow volume.
  • an operation to increase the air blow rate may be performed.
  • the air conditioner can perform a user-friendly operation for a user who feels uncomfortable because it is too hot or too cold during cooling operation or heating operation.
  • the operation control unit determines that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is too hot and uncomfortable in the tone-entropy map. If it is in the first discomfort region corresponding to the thermal sensation, an operation that lowers the indoor humidity may be executed. Further, when the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the second discomfort region corresponding to the thermal sensation that is too cold and uncomfortable in the tone-entropy map, the room humidity is adjusted. You may perform the driving
  • the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
  • the air conditioner is a straight line between the plot showing the combination of the (n-1)th beat tone value and entropy value and the plot showing the nth beat tone value and entropy value combination on the tone-entropy map
  • the operation control unit further includes a movement amount calculation unit that calculates a movement amount that is a distance, and the operation control unit adjusts the air flow so that the movement amount calculated by the movement amount calculation unit corresponds to a user's comfortable thermal sensation. You may control the operation
  • the operation control unit adjusts the movement amount range Dh corresponding to the uncomfortable thermal sensation due to the excessive heat calculated by the movement amount calculation unit. , the operation for lowering the indoor temperature is executed, and if the movement amount calculated by the movement amount calculation unit is too cold and exists in the movement amount range Dc corresponding to the uncomfortable thermal sensation , an operation that raises the indoor temperature may be executed.
  • the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
  • the operation control unit determines that the movement amount calculated by the movement amount calculation unit is too hot. If the amount of movement is within the range Dh of the movement amount corresponding to the uncomfortable thermal sensation, an operation is performed to increase the amount of air blown, and the amount of movement calculated by the movement amount calculation unit is too cold, resulting in an uncomfortable thermal sensation. If it is within the range Dc of the corresponding amount of movement, an operation that reduces the amount of air blown may be performed.
  • the operation control unit reduces the air blow amount. and if the movement amount calculated by the movement amount calculation unit is too cold and is within the movement amount range Dc corresponding to the uncomfortable thermal sensation, an operation to increase the air blow amount may be executed. .
  • the air conditioner can perform a comfortable operation for the user who is feeling too hot or too cold to feel uncomfortable during the cooling operation or the heating operation.
  • the operation control unit adjusts the movement amount range Dh corresponding to the uncomfortable thermal sensation due to the excessive heat calculated by the movement amount calculation unit. , the operation for reducing the indoor humidity is executed, and if the movement amount calculated by the movement amount calculation unit is too cold and exists in the movement amount range Dc corresponding to the uncomfortable thermal sensation , an operation for increasing the indoor humidity may be performed.
  • the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
  • a vital sign measuring device of an air conditioner is a heartbeat measuring device that emits millimeter waves toward a user, receives millimeter waves reflected by the user, and measures the heartbeat of the user based on the received millimeter waves. There may be.
  • a vital sign measuring device for an air conditioner is a pulse measuring device that continuously photographs a user with a camera and measures the pulse based on changes in the hue of the image of the user in the continuously photographed images. good too.
  • the vital signs measuring device may be an electrocardiograph worn by the user to measure the user's heartbeat.
  • a vital signs measuring device is a pulse measuring device that is worn by a user, emits infrared rays toward the user, receives infrared rays reflected by the user, and measures the user's pulse based on the received infrared rays. good too.
  • Embodiment 1 The air conditioner according to Embodiment 1 of the present disclosure controls operation based on the "tone entropy method". Specifically, the operation is controlled using the "tone value” and “entropy value” calculated based on the “tone entropy method”. Further, in Embodiment 2 described later, further, the distance between two points calculated using the "tone value” and the “entropy value” calculated based on the “tone entropy method” for each beat " The operation is controlled using the “movement amount”. Therefore, first, the "tone entropy method” will be explained here.
  • FIG. 1 is a diagram showing an example of a heartbeat waveform.
  • FIG. 2 is a diagram showing an example of PI frequency distribution.
  • the "tone entropy method" as shown in FIG. 1, is a cardiac autonomic nerve activity measurement method based on the rate of change of the RR interval in a heartbeat waveform (electrocardiogram waveform), and is used in various fields. .
  • an RR interval change rate PI Percentage Index
  • a rate of change PI(n) from the n (integer) RR interval RRI(n) to the n+1 RR interval RRI(n+1) is calculated using equation (1).
  • the PI calculated using Equation (1) is related to heart rate.
  • a positive value of PI indicates an increase in heart rate.
  • An increase in heart rate indicates that sympathetic nervous system activity predominates over parasympathetic nervous system activity.
  • the PI is a negative value, it indicates that the heart rate is decreasing.
  • a decrease in heart rate indicates that parasympathetic nervous system activity predominates over sympathetic nervous system activity.
  • PI is measured for a certain period of time to calculate the tone value and the entropy value. That is, N (integer) PI values are obtained at a certain time. The obtained N PI values are classified into M (integer) classes. As a result, a PI histogram (PI frequency distribution) as shown in FIG. 2 is created. For example, class i ranges from 0 to 1%. In the PI frequency distribution shown in FIG. 2, the frequency of class i is fi.
  • the tone value T is the average value of PI in the PI frequency distribution.
  • the tone value T is calculated using Equation (2).
  • the tone value T calculated using formula (2) indicates the balance between increases and decreases in the heart rate, and also indicates the balance in which the sympathetic nervous system and the parasympathetic nervous system are active.
  • the entropy value E is an index that indicates the uniformity of the PI frequency distribution.
  • the entropy value E is calculated using Equation (3).
  • Equation (3) p(i) in formula (3) is the probability of occurrence of class i.
  • the occurrence probability p(i) is calculated using Equation (4).
  • fsum in formula (4) is the sum of the frequencies of all classes.
  • the PI frequency distribution has a class close to the zero PI value (in the case of FIG. 2, classes i, i- The frequency of 1) takes a distribution (steep mountain-shaped distribution) that is significantly larger than the frequency of other classes. This indicates that the activity of the autonomic nerves is weak and the heart rate hardly changes.
  • the entropy value E is a relatively large value
  • the PI frequency distribution takes a distribution in which the frequency of each class is generally uniform. That is, the width of change in the RR interval is large, and the absolute value of the PI value is large. This indicates that the autonomic nerves are active and the heart rate fluctuates greatly. Therefore, the entropy value indicates the intensity of autonomic nerve activity.
  • the movement amount D is calculated using the Pythagorean formula (5).
  • expression (5) the "tone value T1" and “entropy value E1” calculated based on the “tone entropy method” for RRI(n) and RRI(n+1), RRI(n+1) and RRI(n+2)
  • the amount of movement is the difference between the plot showing the combination of the tone value and entropy value at the (n-1)th beat and the plot showing the combination of the tone value and entropy value at the nth beat on the tone-entropy map. Corresponds to straight-line distance.
  • the heart rate and pulse rate instead of the RR interval RRI in the heartbeat waveform necessary for calculating the tone value and the entropy value.
  • the RR interval has a corresponding relationship with the heart rate and pulse rate. For example, if the RR interval is 1 second, the heart rate (per minute) is 60 because the ventricles of the heart are contracting once per second. Moreover, when there is no disease such as arrhythmia, the heart rate and the pulse rate are the same. Therefore, heart rate and pulse rate can be used to calculate tone and entropy values.
  • FIG. 3 is a diagram showing a tone-entropy map in the present disclosure.
  • the inventor of the present disclosure has found that the tone value T and the entropy value E correspond to the "thermal sensation" of the user of the air conditioner, as shown in FIG. Therefore, in the air conditioner of the present disclosure, operation control is performed using the tone value T and the entropy value E based on such tone entropy method.
  • the findings newly discovered by the inventors will be described.
  • thermo sensation refers to the user's bodily sensation of the surrounding environment temperature, such as heat, warmth, coolness, and coldness.
  • FIG. 3 is a tone-entropy map in which one axis (vertical axis) represents the tone value T and the other axis (horizontal axis) represents the entropy value E.
  • the inventor found a combination of the tone value and the entropy value corresponding to a comfortable feeling that is neither too hot nor too cold (for example, the feeling when being in a room with a room temperature of 18 to 28 degrees). It was found experimentally that That is, in the tone-entropy map, the existence of a comfortable region As where the user feels comfortable was found.
  • the inventor experimentally determined the combination of the tone value and the entropy value corresponding to the sensation of being too hot and uncomfortable, that is, the discomfort region Ah (first discomfort region) in the tone-entropy map. I pinpointed it.
  • the inventor experimentally determined the combination of the tone value and the entropy value corresponding to the feeling of being too cold and uncomfortable, that is, the discomfort area Ac (second discomfort area) in the tone-entropy map. I pinpointed it.
  • the correspondence relationship between the combination of the tone value T and the entropy value E and the user's thermal sensation is obtained by placing a plurality of users (subjects) under a plurality of temperature environments with different temperatures, and comparing the tone values of the plurality of users. It is ascertained by measuring the entropy value E.
  • FIG. 4 shows changes in tone value and entropy value under multiple temperature environments for one subject.
  • FIG. 5 also shows converged tone values and entropy values under a plurality of temperature environments.
  • the tone value T and the entropy value E under a temperature environment of 35 degrees, that is, an environment where the subject is too hot to feel uncomfortable, and a temperature environment of 2 degrees, that is, when the subject is cold.
  • the tone value T and the entropy value E in an environment that is too uncomfortable have different distribution ranges in the tone-entropy map.
  • the tone value T when it is too hot and uncomfortable (35 degrees) is concentrated in the range of 0 to -0.05%, while when it is too cold and uncomfortable (2 degrees), the tone value T is concentrated in the range of -0.25 to -0.4%.
  • the entropy value E when it is too hot and uncomfortable (35 degrees) is concentrated in the range of 3 to 3.5, while the entropy value E when it is too cold and uncomfortable (2 degrees) are concentrated in the range of 4.5-5.
  • the discomfort region Ah containing the combination of tone value and entropy value in a certain case has a high tone value and a low entropy value with respect to the discomfort region Ac containing the combination of tone value and entropy value when it is too cold to be uncomfortable. (weak). Therefore, based on the tone value T and the entropy value E, it is possible to distinguish whether the user is too hot to be uncomfortable or too cold to be uncomfortable.
  • the combination of the tone value and the entropy value is the discomfort area Ah when it is too hot, and the discomfort area Ah when it is too cold. It is generally distributed between the discomfort area Ac of the case. Therefore, as shown in FIG. 3, in the tone-entropy map, the user's comfort area As is located between the discomfort area Ah and the discomfort area Ac.
  • the air conditioner of the present disclosure Based on new knowledge obtained about the correspondence relationship between the tone-entropy map as described above, that is, the combination of the tone value and the entropy value and the user's thermal sensation, the air conditioner of the present disclosure: To control the operation of an air conditioner so that a user feels comfortable.
  • the air conditioner of the present disclosure controls the operation of the air conditioner so that the user's tone value T and entropy value E are within the comfort area As. Also, when the tone value T and the entropy value E are in the discomfort region Ah or Ac, the user clearly feels uncomfortable because it is too hot or too cold and feels uncomfortable. .
  • the air conditioner of the present disclosure will be specifically described below.
  • FIG. 6 schematically shows a room (room R) in which the air conditioner 10 according to the embodiment of the present disclosure is installed.
  • 7 is a schematic configuration diagram of the air conditioner 10.
  • FIG. 8 is a block diagram of the control system of the air conditioner 10. As shown in FIG.
  • the air conditioner 10 has an indoor unit 12 and an outdoor unit 14.
  • the indoor unit 12 of the air conditioner 10 is installed in the room R (indoor).
  • the outdoor unit 14 is installed outside the room R (outdoor).
  • a user U of the air conditioner 10 is in a room R in which the indoor unit 12 is installed.
  • the air conditioner 10 includes an indoor heat exchanger 16 provided in the indoor unit 12, an outdoor heat exchanger 18 provided in the outdoor unit 14, a compressor 20 for compressing the refrigerant, It has a four-way valve 22 that switches the flow direction of the refrigerant, an expansion valve 24 that reduces the pressure of the refrigerant, and a refrigerant pipe 26 that connects them.
  • the indoor unit 12 is provided with an indoor fan 28 that blows the air after heat exchange with the indoor heat exchanger 16 into the room, and an up-down louver 30 that changes the direction of the wind W sent out from the indoor unit 12.
  • the outdoor unit 14 is provided with an outdoor fan 32 that blows the air after heat exchange with the outdoor heat exchanger 18 to the outdoors.
  • FIG. 7 shows the state of the air conditioner 10 during cooling operation.
  • the refrigerant discharged from the compressor 20 returns to the compressor 20 through the four-way valve 22, the outdoor heat exchanger 18, the expansion valve 24, the indoor heat exchanger 16, and the four-way valve 22 in order.
  • the refrigerant discharged from the compressor 20 passes through the four-way valve 22, the indoor heat exchanger 16, the expansion valve 24, the outdoor heat exchanger 18, and the four-way valve 22 in order and returns to the compressor 20. .
  • the indoor fan 28 blows air cooled by heat exchange with the indoor heat exchanger 16 into the room R during cooling operation, and warmed air by heat exchange with the indoor heat exchanger 16 during heating operation. is blown into the room R.
  • the upper and lower louvers 30 change the direction of air (air after heat exchange with the indoor heat exchanger 16) (wind W) blown from the indoor unit 12 into the room R.
  • the upper and lower louvers 30 change the blowing direction, for example, between the direction in which the air is directed toward the ceiling of the room R and the direction in which the air is directed toward the floor.
  • the outdoor fan 32 discharges the air after heat exchange with the outdoor heat exchanger 18 to the outside.
  • the air conditioner 10 has a controller 50 that controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
  • the control device 50 has an operation control unit 52 that controls the operation of the air conditioner 10, that is, controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
  • the control device 50 also has a heartbeat data acquisition unit 54 that acquires heartbeat data of the user, a tone/entropy calculation unit 56 that calculates the tone value T and the entropy value E of the user, and a storage unit 58 .
  • the control device 50 is provided, for example, in the outdoor unit 14, and includes a CPU (arithmetic processing unit) such as a microcomputer, a memory (storage unit 58) such as a ROM and a RAM, a circuit connecting them, and a circuit for communicating with the outside. It is composed of a control board provided with ports and the like.
  • the controller 50 is connected to the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32 via signal lines in order to control them.
  • the control device 50 executes various operations by causing the arithmetic processing device to execute programs stored in the storage unit 58 .
  • the operation of the air conditioner described in the embodiment of the present disclosure is also stored in the storage unit 58 as an operation program.
  • control device 50 is connected to the remote controller 34 and the vital signs measuring device 36 by communication means.
  • the remote controller 34 is a device for the user U to operate the air conditioner 10, as shown in FIG. That is, the remote controller 34 is a device for the user U to set the operating conditions of the air conditioner 10 . For example, when the set temperature is input by the user setting the indoor temperature in the room R via the remote controller 34, the operation control unit 52 of the controller 50 controls the indoor temperature so as to maintain the input set temperature. Adjust the output of the compressor 20 to regulate the temperature.
  • the operation control unit 52 controls the four-way valve 22 to change the flow direction of the refrigerant. switch.
  • the operation control unit 52 controls the indoor fan 28 to maintain the input set air volume. to adjust the number of rotations.
  • the operation control unit 52 adjusts the tilt of the vertical louver 30 with respect to the horizontal axis so as to achieve the set blowing direction. That is, the amount of air blown to the user U is adjusted by changing the wind direction.
  • the operation control unit 52 controls the compressor 20 and the four-way valve 22 to achieve the set humidity. to execute the dehumidifying operation.
  • the vital signs measuring device 36 is a non-contact heart rate measuring device that measures the user's heart rate without contacting the user.
  • the vital signs measuring device 36 is mounted on the indoor unit 12 as shown in FIG.
  • the vital sign measuring device 36 emits millimeter waves toward the user U, receives millimeter waves reflected by the user U, and measures the heartbeat of the user based on the received millimeter waves. is configured to measure The vital sign measuring device 36 periodically measures the heart rate of the user U. The heartbeat data measured by the vital signs measuring device 36 is also transmitted to the heartbeat data acquisition unit 54 of the control device 50 .
  • the vital signs measuring device 36 may be a pulse device that continuously captures images of the user U with a camera and measures the pulse based on changes in the hue of the image of the user captured in the continuously captured images. In this case, a change in hue of the image of the user's face may be used. This is because, as described above, heartbeat and pulse correspond to each other.
  • the tone/entropy calculation unit 56 calculates the tone based on the above-described formulas (1) to (4) from the acquired heartbeat data. Calculate the value T and the entropy value E.
  • the operation control unit 52 calculates the user's Check the thermal sensation of U.
  • the operation control unit 52 operates so as to maintain the current indoor temperature, airflow, airflow direction, and indoor humidity. This makes it possible to maintain a comfortable feeling for the user.
  • the operation control unit 52 controls the tone value calculated after that by the tone/entropy calculation unit 56. Driving is controlled so that T and the entropy value E are in the comfort zone As. Specifically, the operation control unit 52 controls at least one of the compressor 20, the four-way valve 22, the indoor fan 28, and the upper and lower louvers 30 to control at least one of the indoor temperature, airflow, airflow direction, and indoor humidity. adjust one. Whether or not the adjustment is appropriate can be determined by whether or not the tone value T and the entropy value E calculated after the adjustment approach the comfort area As. This makes it possible for the user to feel comfortable.
  • the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for lowering the indoor humidity.
  • the operation control unit 52 increases the output of the compressor 20 .
  • the operation control unit 52 performs at least one of control to increase the rotation speed of the indoor fan 28 and control to change the air blow direction to the floor direction by the vertical louvers 30 .
  • the operation control unit 52 performs a dehumidifying operation to lower the indoor humidity. For example, when the output of the compressor 20 is maximum, the operation control unit 52 controls the indoor fan 28 to increase its rotational speed.
  • a situation in which the user U is too hot during cooling operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a hot summer day, returns to a room R that is not sufficiently cooled. .
  • the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for reducing the amount of air blown to the user U, and an operation for lowering the indoor humidity.
  • an operation for lowering the indoor temperature is, for example, immediately after the user U has taken a hot meal or just after taking a bath.
  • the user U's tone value T and entropy value E can be shifted from the discomfort region Ah to the comfort region As.
  • the feeling of the user U who is too hot and uncomfortable can be shifted to a comfortable feeling.
  • the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for decreasing the amount of air blown to the user U, and an operation for increasing the indoor humidity.
  • the operation control unit 52 reduces the output of the compressor 20 . In order to reduce the amount of air blown to the user U, the operation control unit 52 performs at least one of control to lower the rotation speed of the indoor fan 28 and control to change the air blow direction to the ceiling direction by the vertical louvers 30 .
  • situations in which the user U feels uncomfortable due to being too cold during air-conditioning operation include, for example, situations in which the user has taken off their clothes or immediately after eating a cold meal.
  • the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for increasing the indoor humidity.
  • an operation for increasing the indoor temperature is, for example, a situation in which the user U, who has been out on a cold day in winter, returns to a room R that is not sufficiently warmed. .
  • the user U's tone value T and entropy value E can be shifted from the discomfort area Ac to the comfort area As.
  • the feeling of the user U who is too cold and uncomfortable can be shifted to a comfortable feeling.
  • the user's thermal sensation can be taken into account in the air conditioner, and comfortable operation can be executed for the user.
  • Embodiment 2 performs operation control described below in place of or in addition to the operation control of the air conditioner described in Embodiment 1.
  • FIG. 1 is a diagrammatic representation of Embodiment 2
  • FIG. 11 is a schematic diagram showing changes in tone/entropy values in a plurality of temperature environments of one subject as moving amounts connecting consecutive tone/entropy values in a converged state in time series with straight lines.
  • FIG. 12 is a schematic diagram showing the difference in movement amount depending on the temperature environment.
  • the inventors found a tone/entropy value corresponding to a comfortable feeling that is neither too hot nor too cold, for example, a feeling in a room with a room temperature of 18 to 28 degrees. It was found experimentally this time that there is a range of the amount of movement. In other words, the existence of a comfortable moving amount range Ds that the user feels comfortable has been found.
  • the inventor experimentally determined the amount of movement of the tone/entropy value corresponding to the feeling of being too hot and uncomfortable, that is, the range Dh of the amount of movement being too hot and uncomfortable in the tone-entropy map. I pinpointed it.
  • the inventor experimentally determined the amount of movement of the tone/entropy value corresponding to the feeling of being too cold and uncomfortable, that is, the range Dc of the amount of movement being too cold and uncomfortable in the tone-entropy map. I pinpointed it.
  • the correspondence relationship between the amount of change in tone/entropy value and the user's thermal sensation can be obtained by placing a plurality of users (subjects) under a plurality of temperature environments with different temperatures and calculating the tone/entropy values of the plurality of users. It was ascertained by measuring the amount of movement of
  • FIG. 13 shows the actual measurement values of the amount of movement connecting the converged tone value and entropy value with a straight line with respect to changes in tone/entropy value under multiple temperature environments of one subject.
  • FIG. 14 shows changes in tone/entropy values under multiple temperature environments for one subject. , and a graph when locating the too cold discomfort area.
  • the amount of tone/entropy value shift under a temperature environment of 35 degrees i.e., an environment where the subject feels too hot and uncomfortable, is less than that in a temperature environment of 2 degrees, i. It is different from the amount of movement of the tone/entropy value under the environment that is felt in the environment.
  • the amount of change in tone/entropy value when it is too hot and uncomfortable (35 degrees) is 19 or less.
  • the shift in tone/entropy value is 27 or more.
  • the amount of movement when it is too hot and uncomfortable is smaller than the amount of movement when it is too cold and uncomfortable. Therefore, based on the amount of shift in tone/entropy value, it is possible to distinguish whether the user is too hot to be uncomfortable or too cold to be uncomfortable.
  • the amount of movement of the tone/entropy value is the range of movement Dh when it is too hot and uncomfortable, and when it is too cold. It converges to a range intermediate to the range Dc of the amount of movement when it is uncomfortable.
  • the air conditioner of the present disclosure provides the user control the operation of the air conditioner so that the feeling of air conditioning is comfortable.
  • the operation of the air conditioner is controlled so that the user's tone/entropy value movement amount is within the comfortable movement amount range Ds. Further, when the user's tone/entropy value movement amount is in the movement amount range Dh or the movement amount range Dc, the user clearly feels uncomfortable because it is too hot or uncomfortable because it is too cold. Execute the driving that is eliminated.
  • the operation of such an air conditioner will be specifically described below.
  • FIG. 6 schematically shows a room (room R) in which an air conditioner according to Embodiment 2 of the present disclosure is installed.
  • FIG. 7 is a schematic block diagram of an air conditioner.
  • FIG. 8 is a block diagram of the control system of the air conditioner.
  • the air conditioner 10 has an indoor unit 12 and an outdoor unit 14.
  • the indoor unit 12 of the air conditioner 10 is installed in the room R (indoor).
  • the outdoor unit 14 is installed outside the room R (outdoor).
  • a user U of the air conditioner 10 is in a room R in which the indoor unit 12 is installed.
  • the air conditioner 10 includes an indoor heat exchanger 16 provided in the indoor unit 12, an outdoor heat exchanger 18 provided in the outdoor unit 14, a compressor 20 for compressing the refrigerant, It has a four-way valve 22 that switches the flow direction of the refrigerant, an expansion valve 24 that reduces the pressure of the refrigerant, and a refrigerant pipe 26 that connects them.
  • the indoor unit 12 is provided with an indoor fan 28 that blows the air after heat exchange with the indoor heat exchanger 16 into the room, and an up-down louver 30 that changes the direction of the wind W sent out from the indoor unit 12.
  • the outdoor unit 14 is provided with an outdoor fan 32 that blows the air after heat exchange with the outdoor heat exchanger 18 to the outdoors.
  • FIG. 7 shows the state of the air conditioner 10 during cooling operation.
  • the refrigerant discharged from the compressor 20 returns to the compressor 20 through the four-way valve 22, the outdoor heat exchanger 18, the expansion valve 24, the indoor heat exchanger 16, and the four-way valve 22 in order.
  • the refrigerant discharged from the compressor 20 passes through the four-way valve 22, the indoor heat exchanger 16, the expansion valve 24, the outdoor heat exchanger 18, and the four-way valve 22 in order and returns to the compressor 20. .
  • the indoor fan 28 blows air cooled by heat exchange with the indoor heat exchanger 16 into the room R during cooling operation, and blows air warmed by heat exchange with the indoor heat exchanger 16 during heating operation. Air is blown into the room R.
  • the upper and lower louvers 30 change the direction of air (air after heat exchange with the indoor heat exchanger 16) (wind W) blown from the indoor unit 12 into the room R.
  • the upper and lower louvers 30 change the blowing direction, for example, between the direction in which the air is directed toward the ceiling of the room R and the direction in which the air is directed toward the floor.
  • the outdoor fan 32 discharges the air after heat exchange with the outdoor heat exchanger 18 to the outside.
  • the air conditioner 10 has a controller 50 that controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
  • the control device 50 has an operation control unit 52 that controls the operation of the air conditioner 10, that is, controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
  • the control device 50 also includes a heartbeat data acquisition unit 54 that acquires heartbeat data of the user, a tone/entropy calculation unit 56 that calculates the tone value T and the entropy value E of the user, a storage unit 58, and a movement amount calculation unit. 61.
  • the control device 50 is provided, for example, in the outdoor unit 14, and includes a CPU (arithmetic processing unit) such as a microcomputer, a memory (storage unit 58) such as a ROM and a RAM, a circuit connecting them, and a circuit for communicating with the outside. It is composed of a control board provided with ports and the like.
  • the controller 50 is connected to the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32 via signal lines in order to control them.
  • the control device 50 executes various operations by causing the arithmetic processing device to execute programs stored in the storage unit 58 .
  • control device 50 is connected to the remote controller 34 and the vital signs measuring device 36 by communication means.
  • the remote controller 34 is a device for the user U to operate the air conditioner 10, as shown in FIG. That is, the remote controller 34 is a device for the user U to set the operating conditions of the air conditioner 10 . For example, when the set temperature is input by the user setting the indoor temperature in the room R via the remote controller 34, the operation control unit 52 of the controller 50 controls the indoor temperature so as to maintain the input set temperature. To regulate the temperature, the output of compressor 20 is adjusted.
  • the operation control unit 52 controls the four-way valve 22 to change the flow direction of the refrigerant. switch.
  • the operation control unit 52 controls the indoor fan 28 to maintain the input set air volume. to adjust the number of rotations.
  • the operation control unit 52 adjusts the tilt of the vertical louver 30 with respect to the horizontal axis so as to achieve the set blowing direction. That is, the amount of air blown to the user U is adjusted by changing the wind direction.
  • the operation control unit 52 controls the compressor 20 and the four-way valve 22 to achieve the set humidity. to execute the dehumidifying operation.
  • the vital signs measuring device 36 is a non-contact heart rate measuring device that measures the user's heart rate without contacting the user.
  • the vital signs measuring device 36 is mounted on the indoor unit 12 as shown in FIG.
  • the vital sign measuring device 36 emits millimeter waves toward the user U, receives millimeter waves reflected by the user U, and measures the heartbeat of the user based on the received millimeter waves. is configured to measure The vital sign measuring device 36 periodically measures the heart rate of the user U. The heartbeat data measured by the vital signs measuring device 36 is also transmitted to the heartbeat data acquisition unit 54 of the control device 50 .
  • the vital signs measuring device 36 may be a pulse device that continuously captures images of the user U with a camera and measures the pulse based on changes in the hue of the image of the user captured in the continuously captured images. In this case, a change in hue of the image of the user's face may be used. This is because, as described above, heartbeat and pulse correspond to each other.
  • the tone/entropy calculation unit 56 calculates the tone based on the above-described formulas (1) to (4) from the acquired heartbeat data. Calculate the value T and the entropy value E.
  • the movement amount calculation unit 61 calculates the movement amount from the acquired heartbeat data based on the above-described formulas (1) to (5).
  • the operation control unit 52 calculates the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56, the tone-entropy map (ET map) 60 stored in the storage unit 58, and the movement amount calculation unit 61.
  • the thermal sensation of the user U is confirmed based on the amount of movement calculated by and.
  • the operation control unit 52 When the movement amount of the tone/entropy value calculated by the tone/entropy calculation unit 56 is within the comfortable movement amount range Ds in FIG. 12, the operation control unit 52 maintains an environment in which the user feels comfortable. To maintain the current running operation. That is, the operation control unit 52 operates so as to maintain the current indoor temperature, airflow, airflow direction, and indoor humidity. Thereby, the user's comfortable feeling can be maintained.
  • the operation control unit 52 controls at least one of the compressor 20, the four-way valve 22, the indoor fan 28, and the upper and lower louvers 30 to control at least one of the indoor temperature, the air flow rate, the air blowing direction, and the indoor humidity. adjust one. Whether or not the adjustment is appropriate can be determined by whether or not the movement amount calculated after the adjustment falls within the comfortable movement amount range Ds. This makes it possible for the user to feel comfortable.
  • the tone/entropy calculation unit 56 calculates the amount of movement based on the amount of movement calculated by the tone/entropy calculation unit 56 .
  • the operation control section 52 increases the output of the compressor 20 .
  • the operation control unit 52 performs at least one of control to increase the rotation speed of the indoor fan 28 and control to change the air blow direction to the floor direction by the vertical louver 30. Furthermore, the operation control unit 52 performs a dehumidifying operation to lower the indoor humidity. For example, when the output of the compressor 20 is maximum, the operation control unit 52 controls the indoor fan 28 to increase its rotational speed.
  • a situation in which the user U is too hot during cooling operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a hot summer day, returns to a room R that is not sufficiently cooled. .
  • the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for reducing the amount of air blown to the user U, and an operation for lowering the indoor humidity.
  • an operation for lowering the indoor temperature is, for example, immediately after the user U has taken a hot meal or just after taking a bath.
  • the movement amount of the tone/entropy value calculated for the user U can be shifted from the uncomfortable movement amount range Dh to the comfortable movement amount range Ds.
  • the feeling of the user U who is too hot and uncomfortable can be shifted to a comfortable feeling.
  • the tone/entropy calculation unit 56 calculates the amount of movement corresponding to the feeling of being too cold and uncomfortable for the user U shown in FIG.
  • at least one of an operation to increase the indoor temperature, an operation to decrease the amount of air blown to the user U, and an operation to increase the indoor humidity is performed.
  • the operation control unit 52 reduces the output of the compressor 20 in order to raise the indoor temperature. In order to reduce the amount of air blown to the user U, the operation control unit 52 performs at least one of control to lower the rotation speed of the indoor fan 28 and control to change the air blow direction to the ceiling direction by the vertical louvers 30 .
  • situations in which the user U feels uncomfortable due to being too cold during air-conditioning operation include, for example, situations in which the user has taken off their clothes or immediately after eating a cold meal.
  • the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for increasing the indoor humidity.
  • an operation for increasing the indoor temperature is, for example, a situation in which the user U, who has been out on a cold day in winter, returns to a room R that is not sufficiently warmed. .
  • the movement amount of the tone/entropy value calculated for the user U can be shifted from the uncomfortable movement amount range Dc to the comfortable movement amount range Ds.
  • the feeling of the user U who is too cold and uncomfortable can be shifted to a comfortable feeling.
  • the user's thermal sensation can be taken into account in the air conditioner, and comfortable operation for the user can be executed.
  • the tone-entropy map shown in FIG. 3 is used to control the operation of the air conditioner 10 so that it is comfortable for the user.
  • the present disclosure is not limited to a tone-entropy map, and may use, for example, a table or mathematical formula showing the correspondence between a combination of pre-determined tone and entropy values and the user's thermal sensation.
  • the vital sign measuring device 36 for measuring the heartbeat of the user U or the pulse corresponding to the heartbeat is mounted on the indoor unit 12 of the air conditioner 10. It has been described as a non-contact measuring device.
  • the vital signs measuring device is not limited to a non-contact type, and may be a contact type.
  • FIG. 15 shows a room R in which an air conditioner 110 according to yet another embodiment of the present disclosure is arranged.
  • the air conditioner 110 shown in FIG. 15 is the same as the air conditioner 10 shown in FIG. 6 except for the vital sign measuring device.
  • the system including the air conditioner 110 has a contact-type vital signs measuring device 136 detachably attached to the user.
  • the vital signs measuring device 136 is a heart rate monitor that is worn on the chest of the user U by a belt, for example, and measures the heart rate of the user U.
  • the vital signs measuring device 136 is configured to transmit heartbeat data to a heartbeat data acquisition unit of the controller arranged in the indoor unit 112 via wireless communication.
  • the contact-type vital signs measuring device 136 worn by the user may be a wristwatch-type pulse measuring device.
  • a wristwatch-type pulse measuring device for example, emits infrared rays toward the user's blood (blood vessels), receives the reflected infrared rays, and measures the user's pulse based on the received infrared rays (the amount of reflection). do.
  • the present disclosure is applicable to various air conditioners.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Fuzzy Systems (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Fluid Mechanics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Mathematical Physics (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

An air conditioner (10) according to the present disclosure comprises: a vital sign measurement device (36) that measures the pulse or the heartbeat of a user; a tone/entropy calculation unit (56) that uses a tone-entropy method to calculate a tone value and an entropy value from a detected value from the vital sign measurement device (36); and an operation control unit (52) that controls the operation of the air conditioner. The operation control unit (52) controls the operation of the air conditioner (10) such that the combination of the tone value and the entropy value that are calculated by the tone/entropy calculation unit (56) become a combination of a tone value and an entropy value that correspond to a pleasant warm-cold sensation for the user.

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.
 特許文献1は、心拍波形におけるR-R間隔の波形部分をスペクトル解析し、この解析に基づいて低周波成分(LF)に対する高周波成分(HF)の比HF/LFを算出し、HF/LFによりユーザのストレス度を判断し、そのストレス度に基づいて運転を制御する空気調和機を開示する。特許文献1に係る空気調和機は、例えばストレス度が高い場合、そのストレスを下げるために風量を減少させる、またはユーザに風が当たらないように風向を上向きにする。また、この空気調和機は、ストレス度が低い場合、そのストレスを上げるために風量を増加させる、またはユーザに風が当たるように風向を下向きする、または温度を下げるといった制御をする。 Patent Document 1 performs spectral analysis of the waveform portion of the RR interval in the heartbeat waveform, calculates the ratio HF / LF of the high frequency component (HF) to the low frequency component (LF) based on this analysis, and HF / LF Disclosed is an air conditioner that determines a user's stress level and controls operation based on the stress level. For example, when the degree of stress is high, the air conditioner according to Patent Document 1 reduces the air volume to reduce the stress, or directs the air upward so that the air does not hit the user. In addition, when the stress level is low, the air conditioner increases the air volume to increase the stress, directs the air downward so that the air hits the user, or lowers the temperature.
特開2002-89927号公報JP-A-2002-89927
 本開示は、ユーザの温冷感を考慮した、ユーザにとって快適な運転を実行する空気調和機を提供する。 The present disclosure provides an air conditioner that performs comfortable operation for the user, taking into account the user's thermal sensation.
 本開示における空気調和機は、室内にいるユーザの脈拍または心拍を測定するバイタルサイン測定デバイスと、バイタルサイン測定デバイスの検出結果からトーン・エントロピー法を用いてトーン値およびエントロピー値を算出するトーン/エントロピー算出部と、空気調和機の運転を制御する運転制御部とを有する。運転制御部は、トーン/エントロピー算出部によって算出されるトーン値およびエントロピー値の組み合わせが、ユーザの快適な温冷感に対応するトーン値およびエントロピー値の組み合わせとなるように空気調和機の運転を制御する。 The air conditioner in the present disclosure includes a vital sign measuring device that measures the pulse or heart rate of the user in the room, and a tone value and an entropy value that are calculated using the tone entropy method from the detection result of the vital sign measuring device. It has an entropy calculator and an operation controller that controls the operation of the air conditioner. The operation control unit operates the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit becomes a combination of the tone value and the entropy value corresponding to the user's comfortable thermal sensation. Control.
 本開示における空気調和機は、ユーザの温冷感を考慮した、ユーザにとって快適な運転を実行することができる。 The air conditioner according to the present disclosure can perform comfortable operation for the user, taking into account the user's thermal sensation.
図1は、心拍波形の一例を示す図である。FIG. 1 is a diagram showing an example of a heartbeat waveform. 図2は、PI度数分布の一例を示す図である。FIG. 2 is a diagram showing an example of PI frequency distribution. 図3は、本開示におけるトーン-エントロピーマップを示す図である。FIG. 3 is a diagram showing a tone-entropy map in this disclosure. 図4は、温度環境によって異なる、トーン値とエントロピー値の変化を示す図である。FIG. 4 is a diagram showing changes in tone value and entropy value depending on the temperature environment. 図5は、温度環境によって異なる、収束状態のトーン値とエントロピー値とを示す図である。FIG. 5 is a diagram showing converged tone values and entropy values that differ depending on the temperature environment. 図6は、本開示の実施の形態に係る空気調和機が配置された部屋を示す図である。FIG. 6 is a diagram showing a room in which air conditioners according to an embodiment of the present disclosure are arranged. 図7は、本開示の実施の形態に係る空気調和機の構成を概略的に示す図である。FIG. 7 is a diagram schematically showing the configuration of the air conditioner according to the embodiment of the present disclosure. 図8は、本開示の実施の形態に係る空気調和機の制御系を示すブロック図である。FIG. 8 is a block diagram showing the control system of the air conditioner according to the embodiment of the present disclosure. 図9は、暑すぎて不快であるときの運転制御を説明するためのトーン-エントロピーマップを示す図である。FIG. 9 is a diagram showing a tone-entropy map for explaining driving control when it is too hot and uncomfortable. 図10は、寒すぎて不快であるときの運転制御を説明するためのトーン-エントロピーマップを示す図である。FIG. 10 is a diagram showing a tone-entropy map for explaining driving control when it is too cold and uncomfortable. 図11は、温度環境によって異なる、トーン値およびエントロピー値の変化を移動量として示した模式図である。FIG. 11 is a schematic diagram showing changes in the tone value and the entropy value, which differ depending on the temperature environment, as shift amounts. 図12は、温度環境によって異なる移動量の違いを示す模式図である。FIG. 12 is a schematic diagram showing the difference in movement amount depending on the temperature environment. 図13は、温度環境によって異なる、トーン値とエントロピー値の変化について、実験から得られた移動量の実測値を示す図である。FIG. 13 is a diagram showing actual measurement values of the amount of movement obtained from experiments with respect to changes in the tone value and the entropy value, which differ depending on the temperature environment. 図14は、温度環境によって異なる移動量について、実験から得られた実測値を示す図である。FIG. 14 is a diagram showing actual measurement values obtained from experiments with respect to movement amounts that differ depending on the temperature environment. 図15は、本開示の他の実施の形態に係る空気調和機が配置された部屋を示す図である。FIG. 15 is a diagram showing a room in which air conditioners according to another embodiment of the present disclosure are arranged.
 本開示の一態様に係る空気調和機は、室内にいるユーザの脈拍または心拍を測定するバイタルサイン測定デバイスと、バイタルサイン測定デバイスの検出結果からトーン・エントロピー法を用いてトーン値およびエントロピー値を算出するトーン/エントロピー算出部と、空気調和機の運転を制御する運転制御部と、を備える。運転制御部は、トーン/エントロピー算出部によって算出されるトーン値およびエントロピー値の組み合わせが、ユーザの快適な温冷感に対応するトーン値およびエントロピー値の組み合わせとなるように空気調和機の運転を制御する。 An air conditioner according to an aspect of the present disclosure includes a vital signs measuring device that measures the pulse or heartbeat of a user in a room, and a tone value and an entropy value using the tone entropy method from the detection results of the vital signs measuring device. A tone/entropy calculator for calculating and an operation controller for controlling the operation of the air conditioner. The operation control unit operates the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit becomes a combination of the tone value and the entropy value corresponding to the user's comfortable thermal sensation. Control.
 このような構成により、空気調和機において、ユーザの温冷感を考慮した、ユーザにとって快適な運転を実行することができる。 With such a configuration, the air conditioner can be operated comfortably for the user, taking into account the user's thermal sensation.
 運転制御部は、トーン/エントロピー算出部によって算出されるトーン値およびエントロピー値の組み合わせが、トーン-エントロピーマップにおいてユーザの快適な温冷感に対応する快適領域に存在するように、空気調和機の運転を制御してもよい。 The operation control unit controls the operation of the air conditioner so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the comfort region corresponding to the user's comfortable thermal sensation in the tone-entropy map. You can control driving.
 空気調和機が室内の室内温度を調節可能に構成されている場合、運転制御部は、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせが、トーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、室内温度を低下させる運転を実行してもよい。また、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、室内温度を上昇させる運転を実行してもよい。 When the air conditioner is configured to be able to adjust the room temperature in the room, the operation control unit determines that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is too hot and uncomfortable in the tone-entropy map. If the user is in the first discomfort region corresponding to a warm or cold sensation, an operation that lowers the indoor temperature may be executed. Further, when the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the second discomfort region corresponding to the thermal sensation that is too cold and uncomfortable in the tone-entropy map, the room temperature is adjusted. You may perform the driving|running to raise.
 これにより、空気調和機は、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となるような運転を実行することができる。 As a result, the air conditioner can operate in a way that makes the user comfortable, even if the user feels uncomfortable because it is too hot or too cold.
 空気調和機が冷房運転および暖房運転を実行可能且つユーザへの送風量を調節可能に構成されている場合、冷房運転時に運転制御部は、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、送風量を増加させる運転を実行し、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、送風量を減少させる運転を実行してもよい。一方、暖房運転時に運転制御部は、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて第1の不快領域に存在する場合には、送風量を減少させる運転を実行し、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて第2の不快領域に存在する場合には、送風量を増加させる運転を実行してもよい。 When the air conditioner is configured to be able to perform cooling operation and heating operation and to be able to adjust the amount of air blown to the user, during the cooling operation, the operation control unit calculates the tone value and the entropy value calculated by the tone/entropy calculation unit. If the combination of is in the first discomfort region corresponding to too hot and uncomfortable thermal sensation in the tone-entropy map, an operation is performed to increase the air blow volume, and the tone / entropy calculation unit calculated If the combination of tone value and entropy value lies in a second discomfort region corresponding to too cold and uncomfortable thermal sensations in the tone-entropy map, then an airflow reduction operation may be performed. On the other hand, during the heating operation, if the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is present in the first discomfort region in the tone-entropy map, the operation control unit reduces the air blow volume. , and if the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the second discomfort region in the tone-entropy map, an operation to increase the air blow rate may be performed. .
 これにより、空気調和機は、冷房運転時または暖房運転時において、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となる運転を実行することができる。 As a result, the air conditioner can perform a user-friendly operation for a user who feels uncomfortable because it is too hot or too cold during cooling operation or heating operation.
 空気調和機が室内の室内湿度を調節可能に構成されている場合、運転制御部は、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、室内湿度を低下させる運転を実行してもよい。また、トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせがトーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、室内湿度を上昇させる運転を実行してもよい。 When the air conditioner is configured to be able to adjust the indoor humidity, the operation control unit determines that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is too hot and uncomfortable in the tone-entropy map. If it is in the first discomfort region corresponding to the thermal sensation, an operation that lowers the indoor humidity may be executed. Further, when the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the second discomfort region corresponding to the thermal sensation that is too cold and uncomfortable in the tone-entropy map, the room humidity is adjusted. You may perform the driving|running to raise.
 これにより、空気調和機は、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となる運転を実行することができる。 As a result, the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
 空気調和機は、トーン-エントロピーマップ上における、(n-1)拍目のトーン値およびエントロピー値の組み合わせを示すプロットとn拍目のトーン値およびエントロピー値の組み合わせを示すプロットとの間の直線距離である移動量を算出する移動量算出部をさらに有し、運転制御部は、移動量算出部によって算出される移動量がユーザの快適な温冷感に対応する移動量となるように空気調和機の運転を制御してもよい。 The air conditioner is a straight line between the plot showing the combination of the (n-1)th beat tone value and entropy value and the plot showing the nth beat tone value and entropy value combination on the tone-entropy map The operation control unit further includes a movement amount calculation unit that calculates a movement amount that is a distance, and the operation control unit adjusts the air flow so that the movement amount calculated by the movement amount calculation unit corresponds to a user's comfortable thermal sensation. You may control the operation|movement of a harmony machine.
 空気調和機が室内の室内温度を調節可能に構成されている場合、運転制御部は、移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、室内温度を低下させる運転を実行し、移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、室内温度を上昇させる運転を実行してもよい。 When the air conditioner is configured to be able to adjust the room temperature in the room, the operation control unit adjusts the movement amount range Dh corresponding to the uncomfortable thermal sensation due to the excessive heat calculated by the movement amount calculation unit. , the operation for lowering the indoor temperature is executed, and if the movement amount calculated by the movement amount calculation unit is too cold and exists in the movement amount range Dc corresponding to the uncomfortable thermal sensation , an operation that raises the indoor temperature may be executed.
 これにより、空気調和機は、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となる運転を実行することができる。 As a result, the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
 空気調和機が冷房運転および暖房運転を実行可能且つユーザへの送風量を調節可能に構成されている場合、冷房運転時に運転制御部は、移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、送風量を増加させる運転を実行し、移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、送風量を減少させる運転を実行してもよい。一方、暖房運転時に運転制御部は、移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、送風量を減少させる運転を実行し、移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、送風量を増加させる運転を実行してもよい。 When the air conditioner is configured to be able to perform cooling operation and heating operation and to be able to adjust the amount of air blown to the user, during the cooling operation, the operation control unit determines that the movement amount calculated by the movement amount calculation unit is too hot. If the amount of movement is within the range Dh of the movement amount corresponding to the uncomfortable thermal sensation, an operation is performed to increase the amount of air blown, and the amount of movement calculated by the movement amount calculation unit is too cold, resulting in an uncomfortable thermal sensation. If it is within the range Dc of the corresponding amount of movement, an operation that reduces the amount of air blown may be performed. On the other hand, during heating operation, if the movement amount calculated by the movement amount calculation unit is too hot and is within the movement amount range Dh corresponding to the uncomfortable thermal sensation, the operation control unit reduces the air blow amount. and if the movement amount calculated by the movement amount calculation unit is too cold and is within the movement amount range Dc corresponding to the uncomfortable thermal sensation, an operation to increase the air blow amount may be executed. .
 これにより、空気調和機は、冷房運転時または暖房運転時に、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となる運転を実行することができる。 As a result, the air conditioner can perform a comfortable operation for the user who is feeling too hot or too cold to feel uncomfortable during the cooling operation or the heating operation.
 空気調和機が室内の室内湿度を調節可能に構成されている場合、運転制御部は、移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、室内湿度を低下させる運転を実行し、移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、室内湿度を上昇させる運転を実行してもよい。 When the air conditioner is configured to be able to adjust the indoor humidity, the operation control unit adjusts the movement amount range Dh corresponding to the uncomfortable thermal sensation due to the excessive heat calculated by the movement amount calculation unit. , the operation for reducing the indoor humidity is executed, and if the movement amount calculated by the movement amount calculation unit is too cold and exists in the movement amount range Dc corresponding to the uncomfortable thermal sensation , an operation for increasing the indoor humidity may be performed.
 これにより、空気調和機は、暑すぎて不快または寒すぎて不快に感じているユーザに対して、ユーザが快適となる運転を実行することができる。 As a result, the air conditioner can perform user-comfortable operation for users who feel uncomfortable because they are too hot or too cold.
 空気調和機のバイタルサイン測定デバイスは、ミリ波をユーザに向かって出射し、当該ユーザによって反射されたミリ波を受信し、受信したミリ波に基づいて当該ユーザの心拍を測定する心拍測定デバイスであってもよい。 A vital sign measuring device of an air conditioner is a heartbeat measuring device that emits millimeter waves toward a user, receives millimeter waves reflected by the user, and measures the heartbeat of the user based on the received millimeter waves. There may be.
 空気調和機のバイタルサイン測定デバイスは、ユーザをカメラによって連続的に撮影し、連続的に撮影された撮影画像に写るユーザの像の色合いの変化に基づいて脈拍を測定する脈拍測定デバイスであってもよい。 A vital sign measuring device for an air conditioner is a pulse measuring device that continuously photographs a user with a camera and measures the pulse based on changes in the hue of the image of the user in the continuously photographed images. good too.
 バイタルサイン測定デバイスは、ユーザに装着され、ユーザの心拍を測定する心電計であってもよい。 The vital signs measuring device may be an electrocardiograph worn by the user to measure the user's heartbeat.
 バイタルサイン測定デバイスは、ユーザに装着され、赤外線をユーザに向かって出射し、当該ユーザによって反射された赤外線を受信し、受信した赤外線に基づいて当該ユーザの脈拍を測定する脈拍測定デバイスであってもよい。 A vital signs measuring device is a pulse measuring device that is worn by a user, emits infrared rays toward the user, receives infrared rays reflected by the user, and measures the user's pulse based on the received infrared rays. good too.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter of the claims.
 (実施の形態1)
 本開示の実施の形態1に係る空気調和機は、「トーン・エントロピー法」に基づいて運転を制御する。具体的には、「トーン・エントロピー法」に基づいて算出される「トーン値」と「エントロピー値」を用いて運転を制御する。また、後述する実施の形態2ではさらに、一拍毎の「トーン・エントロピー法」に基づいて算出される「トーン値」と「エントロピー値」を用いて算出される2点間の距離である「移動量」を用いて運転を制御する。そのため、ここではまず、「トーン・エントロピー法」について説明する。
(Embodiment 1)
The air conditioner according to Embodiment 1 of the present disclosure controls operation based on the "tone entropy method". Specifically, the operation is controlled using the "tone value" and "entropy value" calculated based on the "tone entropy method". Further, in Embodiment 2 described later, further, the distance between two points calculated using the "tone value" and the "entropy value" calculated based on the "tone entropy method" for each beat " The operation is controlled using the "movement amount". Therefore, first, the "tone entropy method" will be explained here.
 図1は、心拍波形の一例を示す図である。図2は、PI度数分布の一例を示す図である。「トーン・エントロピー法」は、図1に示すように、心拍波形(心電図波形)におけるR-R間隔の変化率に基づく心臓自律神経活動計測法のことであり、様々な分野で使用されている。このトーン・エントロピー法では、まず、R-R間隔の変化率PI(Percentage Index)を算出する。n(整数)番目のR-R間隔RRI(n)からn+1番目のR-R間隔RRI(n+1)への変化率PI(n)は、数式(1)を用いて算出される。 FIG. 1 is a diagram showing an example of a heartbeat waveform. FIG. 2 is a diagram showing an example of PI frequency distribution. The "tone entropy method", as shown in FIG. 1, is a cardiac autonomic nerve activity measurement method based on the rate of change of the RR interval in a heartbeat waveform (electrocardiogram waveform), and is used in various fields. . In this tone entropy method, first, an RR interval change rate PI (Percentage Index) is calculated. A rate of change PI(n) from the n (integer) RR interval RRI(n) to the n+1 RR interval RRI(n+1) is calculated using equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)を用いて算出されるPIは、心拍数に関連している。PIが正の値である場合、それは心拍数が上昇していることを示している。心拍数の上昇は、交感神経系の活動が、副交感神経系の活動に比べて優位であることを示している。 The PI calculated using Equation (1) is related to heart rate. A positive value of PI indicates an increase in heart rate. An increase in heart rate indicates that sympathetic nervous system activity predominates over parasympathetic nervous system activity.
 一方、PIが負の値である場合、それは心拍数が減少していることを示している。心拍数の減少は、副交感神経系の活動が、交感神経系の活動に比べて優位であることを示している。 On the other hand, if the PI is a negative value, it indicates that the heart rate is decreasing. A decrease in heart rate indicates that parasympathetic nervous system activity predominates over sympathetic nervous system activity.
 トーン値とエントロピー値とを算出するために、PIは一定の時間の間計測される。すなわち、一定の時間において、N(整数)個のPI値が取得される。取得されたN個のPI値は、M(整数)個の階級別に分類される。その結果、図2に示すようなPIヒストグラム(PI度数分布)が作製される。例えば、階級iは、0~1%の範囲である。図2に示すPI度数分布においては、階級iの度数は、fiである。  PI is measured for a certain period of time to calculate the tone value and the entropy value. That is, N (integer) PI values are obtained at a certain time. The obtained N PI values are classified into M (integer) classes. As a result, a PI histogram (PI frequency distribution) as shown in FIG. 2 is created. For example, class i ranges from 0 to 1%. In the PI frequency distribution shown in FIG. 2, the frequency of class i is fi.
 トーン値Tは、PI度数分布におけるPIの平均値である。トーン値Tは、数式(2)を用いて算出される。 The tone value T is the average value of PI in the PI frequency distribution. The tone value T is calculated using Equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(2)を用いて算出されるトーン値Tは、心拍数の増減のバランスを示しており、また、交感神経系と副交感神経系がどのようなバランスで活動しているかを示している。 The tone value T calculated using formula (2) indicates the balance between increases and decreases in the heart rate, and also indicates the balance in which the sympathetic nervous system and the parasympathetic nervous system are active.
 エントロピー値Eは、PI度数分布における分布の均一性を示す指標である。エントロピー値Eは、数式(3)を用いて算出される。 The entropy value E is an index that indicates the uniformity of the PI frequency distribution. The entropy value E is calculated using Equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、数式(3)内のp(i)は、階級iの生起確率である。生起確率p(i)は、数式(4)を用いて算出される。 Here, p(i) in formula (3) is the probability of occurrence of class i. The occurrence probability p(i) is calculated using Equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、数式(4)内のfsumは、全階級の度数の合計である。 Here, fsum in formula (4) is the sum of the frequencies of all classes.
 数式(3)~(4)を用いて算出されるエントロピー値Eが相対的に小さい値である場合、PI度数分布は、ゼロのPI値に近い階級(図2の場合、階級i、i-1)の度数が他の階級の度数に比べて著しく大きい分布(急峻な山形状の分布)をとる。このことは、自律神経の活動が弱く、心拍数がほとんど変化していないことを示している。一方、エントロピー値Eが相対的に大きい値である場合、PI度数分布は、各階級の度数が概ね均一な分布をとる。すなわち、R-R間隔の変化幅が大きく、PI値の絶対値が大きい。このことは、自律神経の活動が活発で、心拍数が大きく変動していることを示している。したがって、エントロピー値は、自律神経の活動の強弱を示している。 When the entropy value E calculated using the formulas (3) to (4) is a relatively small value, the PI frequency distribution has a class close to the zero PI value (in the case of FIG. 2, classes i, i- The frequency of 1) takes a distribution (steep mountain-shaped distribution) that is significantly larger than the frequency of other classes. This indicates that the activity of the autonomic nerves is weak and the heart rate hardly changes. On the other hand, when the entropy value E is a relatively large value, the PI frequency distribution takes a distribution in which the frequency of each class is generally uniform. That is, the width of change in the RR interval is large, and the absolute value of the PI value is large. This indicates that the autonomic nerves are active and the heart rate fluctuates greatly. Therefore, the entropy value indicates the intensity of autonomic nerve activity.
 移動量Dは、三平方の定理である数式(5)を用いて算出される。数式(5)では、RRI(n)およびRRI(n+1)について「トーン・エントロピー法」に基づいて算出される「トーン値T1」および「エントロピー値E1」と、RRI(n+1)およびRRI(n+2)について「トーン・エントロピー法」に基づいて算出される「トーン値T2」および「エントロピー値T2」が用いられる。なお、移動量は、トーン-エントロピーマップ上における、(n-1)拍目のトーン値およびエントロピー値の組み合わせを示すプロットとn拍目のトーン値およびエントロピー値の組み合わせを示すプロットとの間の直線距離に該当する。 The movement amount D is calculated using the Pythagorean formula (5). In expression (5), the "tone value T1" and "entropy value E1" calculated based on the "tone entropy method" for RRI(n) and RRI(n+1), RRI(n+1) and RRI(n+2) A "tone value T2" and an "entropy value T2" calculated based on the "tone entropy method" are used. Note that the amount of movement is the difference between the plot showing the combination of the tone value and entropy value at the (n-1)th beat and the plot showing the combination of the tone value and entropy value at the nth beat on the tone-entropy map. Corresponds to straight-line distance.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、トーン値とエントロピー値とを算出するために必要な心拍波形におけるR-R間隔RRIの代わりに、心拍数や脈拍数を利用することも可能である。R-R間隔が、心拍数や脈拍数と対応関係にあるからである。例えば、R-R間隔が1秒である場合、心臓の心室が一秒間に一回収縮しているため、心拍数(1分あたり)は60回である。また、不整脈などの疾患がない場合には、心拍数と脈拍数は同一である。したがって、トーン値やエントロピー値を算出するために、心拍数や脈拍数を利用することが可能である。 It is also possible to use the heart rate and pulse rate instead of the RR interval RRI in the heartbeat waveform necessary for calculating the tone value and the entropy value. This is because the RR interval has a corresponding relationship with the heart rate and pulse rate. For example, if the RR interval is 1 second, the heart rate (per minute) is 60 because the ventricles of the heart are contracting once per second. Moreover, when there is no disease such as arrhythmia, the heart rate and the pulse rate are the same. Therefore, heart rate and pulse rate can be used to calculate tone and entropy values.
 図3は、本開示におけるトーン-エントロピーマップを示す図である。今回、本開示の発明者は、トーン値Tとエントロピー値Eが、図3に示すように、空気調和機のユーザの「温冷感」と対応していることを見出した。このため、本開示の空気調和機では、このようなトーン・エントロピー法に基づくトーン値Tおよびエントロピー値Eを用いて運転制御を行う。ここではまず、発明者によって今回新たに見出された知見について説明する。 FIG. 3 is a diagram showing a tone-entropy map in the present disclosure. This time, the inventor of the present disclosure has found that the tone value T and the entropy value E correspond to the "thermal sensation" of the user of the air conditioner, as shown in FIG. Therefore, in the air conditioner of the present disclosure, operation control is performed using the tone value T and the entropy value E based on such tone entropy method. Here, first, the findings newly discovered by the inventors will be described.
 なお、ここでの「温冷感」は、暑さ、温かさ、涼しさ、寒さなどの周囲環境温度についてのユーザの体感を言う。 It should be noted that the "thermal sensation" here refers to the user's bodily sensation of the surrounding environment temperature, such as heat, warmth, coolness, and coldness.
 図3は、一方の軸(縦軸)がトーン値Tを表し、他方の軸(横軸)がエントロピー値Eを表す、トーン-エントロピーマップである。 FIG. 3 is a tone-entropy map in which one axis (vertical axis) represents the tone value T and the other axis (horizontal axis) represents the entropy value E.
 発明者は、図3に示すように、暑すぎることもなくまた寒すぎることもない快適な体感(例えば室温18~28度の室内にいるときの体感)に対応するトーン値とエントロピー値の組み合わせが存在することを、実験的に突き止めた。すなわち、トーン-エントロピーマップにおいて、ユーザが快適と感じる快適領域Asの存在を突き止めた。 As shown in FIG. 3, the inventor found a combination of the tone value and the entropy value corresponding to a comfortable feeling that is neither too hot nor too cold (for example, the feeling when being in a room with a room temperature of 18 to 28 degrees). It was found experimentally that That is, in the tone-entropy map, the existence of a comfortable region As where the user feels comfortable was found.
 また、発明者は、図3に示すように、暑すぎて不快な体感に対応するトーン値とエントロピー値の組み合わせ、すなわちトーン-エントロピーマップにおける不快領域Ah(第1の不快領域)を実験的に突き止めた。 In addition, as shown in FIG. 3, the inventor experimentally determined the combination of the tone value and the entropy value corresponding to the sensation of being too hot and uncomfortable, that is, the discomfort region Ah (first discomfort region) in the tone-entropy map. I pinpointed it.
 さらに、発明者は、図3に示すように、寒すぎて不快な体感に対応するトーン値とエントロピー値の組み合わせ、すなわちトーン-エントロピーマップにおける不快領域Ac(第2の不快領域)を実験的に突き止めた。 Furthermore, as shown in FIG. 3, the inventor experimentally determined the combination of the tone value and the entropy value corresponding to the feeling of being too cold and uncomfortable, that is, the discomfort area Ac (second discomfort area) in the tone-entropy map. I pinpointed it.
 このようなトーン値Tとエントロピー値Eの組み合わせとユーザの温冷感との対応関係は、温度が異なる複数の温度環境下に複数のユーザ(被験者)をおき、その複数のユーザのトーン値とエントロピー値Eを計測することによって突き止められる。 The correspondence relationship between the combination of the tone value T and the entropy value E and the user's thermal sensation is obtained by placing a plurality of users (subjects) under a plurality of temperature environments with different temperatures, and comparing the tone values of the plurality of users. It is ascertained by measuring the entropy value E.
 例えば、図4は、一被験者の複数の温度環境下におけるトーン値とエントロピー値の変化を示している。また、図5は、複数の温度環境下における収束状態のトーン値とエントロピー値とを示している。 For example, Fig. 4 shows changes in tone value and entropy value under multiple temperature environments for one subject. FIG. 5 also shows converged tone values and entropy values under a plurality of temperature environments.
 図4および図5に示すように、35度の温度環境下、すなわち被験者が暑すぎて不快に感じる環境下でのトーン値Tとエントロピー値Eと、2度の温度環境下、すなわち被験者が寒すぎて不快に感じる環境下でのトーン値Tとエントロピー値Eとは、トーン-エントロピーマップにおいて分布範囲が異なる。 As shown in FIGS. 4 and 5, the tone value T and the entropy value E under a temperature environment of 35 degrees, that is, an environment where the subject is too hot to feel uncomfortable, and a temperature environment of 2 degrees, that is, when the subject is cold. The tone value T and the entropy value E in an environment that is too uncomfortable have different distribution ranges in the tone-entropy map.
 具体的には、図4に示すように、暑すぎて不快である場合(35度の場合)のトーン値Tは、0~-0.05%の範囲に集中し、一方、寒すぎて不快である場合(2度の場合)のトーン値Tは、-0.25~-0.4%の範囲に集中している。 Specifically, as shown in FIG. 4, the tone value T when it is too hot and uncomfortable (35 degrees) is concentrated in the range of 0 to -0.05%, while when it is too cold and uncomfortable (2 degrees), the tone value T is concentrated in the range of -0.25 to -0.4%.
 また暑すぎて不快である場合(35度の場合)のエントロピー値Eは、3~3.5の範囲に集中し、一方、寒すぎて不快である場合(2度の場合)のエントロピー値Eは、4.5~5の範囲に集中している。 The entropy value E when it is too hot and uncomfortable (35 degrees) is concentrated in the range of 3 to 3.5, while the entropy value E when it is too cold and uncomfortable (2 degrees) are concentrated in the range of 4.5-5.
 したがって、図3に示すトーン-エントロピーマップにも示すように、また、トーン値Tとエントロピー値Eが収束した状態(安定した状態)を示す図5からも明らかなように、暑すぎて不快である場合のトーン値とエントロピー値の組み合わせを含む不快領域Ahは、寒すぎて不快である場合のトーン値とエントロピー値の組み合わせを含む不快領域Acに対して、トーン値が高く且つエントロピー値が低い(弱い)。したがって、トーン値Tとエントロピー値Eとに基づいて、ユーザが、暑すぎて不快であるのか、あるいは寒すぎて不快であるのかを区別することが可能である。 Therefore, as shown in the tone-entropy map shown in FIG. 3, and also as is clear from FIG. The discomfort region Ah containing the combination of tone value and entropy value in a certain case has a high tone value and a low entropy value with respect to the discomfort region Ac containing the combination of tone value and entropy value when it is too cold to be uncomfortable. (weak). Therefore, based on the tone value T and the entropy value E, it is possible to distinguish whether the user is too hot to be uncomfortable or too cold to be uncomfortable.
 また、図4および図5に示すように、ユーザが快適と感じる場合(20度および23度の場合)、そのトーン値とエントロピー値との組み合わせは、暑すぎる場合の不快領域Ahと、寒すぎる場合の不快領域Acとの間に概ね分布する。したがって、図3に示すように、トーン-エントロピーマップにおいて、ユーザが快適な快適領域Asは、不快領域Ahと不快領域Acとの間に位置する。 Also, as shown in FIGS. 4 and 5, when the user feels comfortable (20 degrees and 23 degrees), the combination of the tone value and the entropy value is the discomfort area Ah when it is too hot, and the discomfort area Ah when it is too cold. It is generally distributed between the discomfort area Ac of the case. Therefore, as shown in FIG. 3, in the tone-entropy map, the user's comfort area As is located between the discomfort area Ah and the discomfort area Ac.
 以上のようなトーン-エントロピーマップ、すなわちトーン値およびエントロピー値の組み合わせとユーザの温冷感との間の対応関係にについて得られた新たな知見に基づいて、本開示の空気調和機においては、ユーザの体感が快適になるように空気調和機の運転を制御する。 Based on new knowledge obtained about the correspondence relationship between the tone-entropy map as described above, that is, the combination of the tone value and the entropy value and the user's thermal sensation, the air conditioner of the present disclosure: To control the operation of an air conditioner so that a user feels comfortable.
 すなわち、本開示の空気調和機では、ユーザのトーン値Tとエントロピー値Eが快適領域As内に存在するように空気調和機の運転を制御する。また、トーン値Tとエントロピー値Eが不快領域AhまたはAcに存在するときは、ユーザが明らかに暑すぎて不快または寒すぎて不快と感じているので、その不快が解消される運転を実行する。以下、本開示の空気調和機について、具体的に説明する。 That is, the air conditioner of the present disclosure controls the operation of the air conditioner so that the user's tone value T and entropy value E are within the comfort area As. Also, when the tone value T and the entropy value E are in the discomfort region Ah or Ac, the user clearly feels uncomfortable because it is too hot or too cold and feels uncomfortable. . The air conditioner of the present disclosure will be specifically described below.
 図6は、本開示の実施の形態に係る空気調和機10が設置された室内(部屋R)を概略的に示している。また、図7は、空気調和機10の概略的な構成図である。さらに、図8は、空気調和機10の制御系のブロック図である。 FIG. 6 schematically shows a room (room R) in which the air conditioner 10 according to the embodiment of the present disclosure is installed. 7 is a schematic configuration diagram of the air conditioner 10. As shown in FIG. Furthermore, FIG. 8 is a block diagram of the control system of the air conditioner 10. As shown in FIG.
 図7に示すように、本実施の形態に係る空気調和機10は、室内機12と室外機14とを有する。 As shown in FIG. 7, the air conditioner 10 according to the present embodiment has an indoor unit 12 and an outdoor unit 14.
 図6に示すように、空気調和機10の室内機12は、部屋R内(室内)に設置される。室外機14は、部屋Rの外部(室外)に設置される。空気調和機10のユーザUは、室内機12が設置された部屋R内に居る。 As shown in FIG. 6, the indoor unit 12 of the air conditioner 10 is installed in the room R (indoor). The outdoor unit 14 is installed outside the room R (outdoor). A user U of the air conditioner 10 is in a room R in which the indoor unit 12 is installed.
 図7に示すように、空気調和機10は、室内機12に設けられた室内熱交換器16と、室外機14に設けられた室外熱交換器18と、冷媒を圧縮する圧縮機20と、冷媒の流れ方向を切り換える四方弁22と、冷媒を減圧する膨張弁24と、これらを接続する冷媒配管26とを有する。また、室内機12には、室内熱交換器16と熱交換した後の空気を室内に送風する室内ファン28と、室内機12から送出される風Wの向きを変更する上下ルーバー30とが設けられている。室外機14には、室外熱交換器18と熱交換した後の空気を屋外に送風する室外ファン32が設けられている。 As shown in FIG. 7, the air conditioner 10 includes an indoor heat exchanger 16 provided in the indoor unit 12, an outdoor heat exchanger 18 provided in the outdoor unit 14, a compressor 20 for compressing the refrigerant, It has a four-way valve 22 that switches the flow direction of the refrigerant, an expansion valve 24 that reduces the pressure of the refrigerant, and a refrigerant pipe 26 that connects them. In addition, the indoor unit 12 is provided with an indoor fan 28 that blows the air after heat exchange with the indoor heat exchanger 16 into the room, and an up-down louver 30 that changes the direction of the wind W sent out from the indoor unit 12. It is The outdoor unit 14 is provided with an outdoor fan 32 that blows the air after heat exchange with the outdoor heat exchanger 18 to the outdoors.
 図7は、冷房運転時の空気調和機10の状態を示している。冷房運転時、圧縮機20から吐出された冷媒は、四方弁22、室外熱交換器18、膨張弁24、室内熱交換器16、および四方弁22を順に通過して圧縮機20に戻る。一方、暖房運転時、圧縮機20から吐出された冷媒は、四方弁22、室内熱交換器16、膨張弁24、室外熱交換器18、および四方弁22を順に通過して圧縮機20に戻る。 FIG. 7 shows the state of the air conditioner 10 during cooling operation. During cooling operation, the refrigerant discharged from the compressor 20 returns to the compressor 20 through the four-way valve 22, the outdoor heat exchanger 18, the expansion valve 24, the indoor heat exchanger 16, and the four-way valve 22 in order. On the other hand, during heating operation, the refrigerant discharged from the compressor 20 passes through the four-way valve 22, the indoor heat exchanger 16, the expansion valve 24, the outdoor heat exchanger 18, and the four-way valve 22 in order and returns to the compressor 20. .
 室内ファン28は、冷房運転時には室内熱交換器16との熱交換によって冷やされた空気を部屋R内に向かけて送風し、暖房運転時には室内熱交換器16との熱交換によって温められた空気を部屋R内に向けて送風する。 The indoor fan 28 blows air cooled by heat exchange with the indoor heat exchanger 16 into the room R during cooling operation, and warmed air by heat exchange with the indoor heat exchanger 16 during heating operation. is blown into the room R.
 上下ルーバー30は、室内機12から部屋R内に向けて送風される空気(室内熱交換器16と熱交換した後の空気)(風W)の向きを変更する。上下ルーバー30は、例えば部屋Rの天井に空気が向かう方向と床に空気が向かう方向との間で、送風方向を変更する。 The upper and lower louvers 30 change the direction of air (air after heat exchange with the indoor heat exchanger 16) (wind W) blown from the indoor unit 12 into the room R. The upper and lower louvers 30 change the blowing direction, for example, between the direction in which the air is directed toward the ceiling of the room R and the direction in which the air is directed toward the floor.
 室外ファン32は、室外熱交換器18と熱交換した後の空気を屋外に排出する。 The outdoor fan 32 discharges the air after heat exchange with the outdoor heat exchanger 18 to the outside.
 図8に示すように、空気調和機10は、圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御する制御装置50を有する。 As shown in FIG. 8, the air conditioner 10 has a controller 50 that controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
 制御装置50は、空気調和機10の運転を制御する、すなわち圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御する運転制御部52を有する。また、制御装置50は、ユーザの心拍データを取得する心拍データ取得部54と、ユーザのトーン値Tとエントロピー値Eとを算出するトーン/エントロピー算出部56と、記憶部58とを有する。 The control device 50 has an operation control unit 52 that controls the operation of the air conditioner 10, that is, controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32. The control device 50 also has a heartbeat data acquisition unit 54 that acquires heartbeat data of the user, a tone/entropy calculation unit 56 that calculates the tone value T and the entropy value E of the user, and a storage unit 58 .
 制御装置50は、例えば室外機14に設けられており、マイクロコンピュータなどのCPU(演算処理装置)、ROMやRAMなどのメモリ(記憶部58)、これらを接続する回路、外部と通信するためのポートなどが設けられた制御基板により構成される。 The control device 50 is provided, for example, in the outdoor unit 14, and includes a CPU (arithmetic processing unit) such as a microcomputer, a memory (storage unit 58) such as a ROM and a RAM, a circuit connecting them, and a circuit for communicating with the outside. It is composed of a control board provided with ports and the like.
 制御装置50は、圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御するために、信号線を介してこれらと接続されている。制御装置50は、記憶部58に記憶されているプログラムを演算処理装置が実行することにより、様々な動作を実行する。なお、本開示の実施の形態において説明する空気調和機の運転についても、運転プログラムとして記憶部58に記憶されている。 The controller 50 is connected to the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32 via signal lines in order to control them. The control device 50 executes various operations by causing the arithmetic processing device to execute programs stored in the storage unit 58 . The operation of the air conditioner described in the embodiment of the present disclosure is also stored in the storage unit 58 as an operation program.
 図8に示すように、制御装置50は、リモートコントローラ34およびバイタルサイン測定デバイス36と通信手段により接続されている。 As shown in FIG. 8, the control device 50 is connected to the remote controller 34 and the vital signs measuring device 36 by communication means.
 リモートコントローラ34は、図6に示すように、ユーザUが空気調和機10を操作するためのデバイスである。すなわち、リモートコントローラ34は、空気調和機10の運転条件をユーザUが設定するためのデバイスである。例えば、ユーザがリモートコントローラ34を介して部屋R内の室内温度を設定することにより設定温度が入力されると、制御装置50の運転制御部52は、入力された設定温度を維持するように室内温度を調節するために圧縮機20の出力を調節する。 The remote controller 34 is a device for the user U to operate the air conditioner 10, as shown in FIG. That is, the remote controller 34 is a device for the user U to set the operating conditions of the air conditioner 10 . For example, when the set temperature is input by the user setting the indoor temperature in the room R via the remote controller 34, the operation control unit 52 of the controller 50 controls the indoor temperature so as to maintain the input set temperature. Adjust the output of the compressor 20 to regulate the temperature.
 また、ユーザUがリモートコントローラ34を介して冷房運転から暖房運転またはその逆に暖房運転から冷房運転へと運転を変更した場合、運転制御部52が四方弁22を制御して冷媒の流れ方向を切り換える。 Further, when the user U changes the operation from the cooling operation to the heating operation or vice versa from the heating operation to the cooling operation via the remote controller 34, the operation control unit 52 controls the four-way valve 22 to change the flow direction of the refrigerant. switch.
 さらに、ユーザUがリモートコントローラ34を介して室内機12からの送風量を設定することにより設定風量が入力されると、運転制御部52は、入力された設定風量を維持するように室内ファン28の回転数を調節する。 Furthermore, when the set air volume is input by the user U setting the air volume from the indoor unit 12 via the remote controller 34, the operation control unit 52 controls the indoor fan 28 to maintain the input set air volume. to adjust the number of rotations.
 さらにまた、ユーザUがリモートコントローラ34を介して室内機12の送風方向を設定すると、運転制御部52は、設定された送風方向になるように上下ルーバー30の水平軸に対する傾きを調節する。すなわち、風向を変えることにより、ユーザUへの送風量を調節する。 Furthermore, when the user U sets the blowing direction of the indoor unit 12 via the remote controller 34, the operation control unit 52 adjusts the tilt of the vertical louver 30 with respect to the horizontal axis so as to achieve the set blowing direction. That is, the amount of air blown to the user U is adjusted by changing the wind direction.
 ユーザUがリモートコントローラ34を介して所定の室内湿度を設定することにより設定湿度が入力されると、その設定湿度を実現するために、運転制御部52は圧縮機20と四方弁22とを制御して除湿運転を実行する。 When the set humidity is input by the user U setting a predetermined indoor humidity via the remote controller 34, the operation control unit 52 controls the compressor 20 and the four-way valve 22 to achieve the set humidity. to execute the dehumidifying operation.
 バイタルサイン測定デバイス36は、本実施の形態の場合、ユーザに接触することなくユーザの心拍測定を実行する非接触式心拍測定デバイスである。本実施の形態では、バイタルサイン測定デバイス36は、図6に示すように室内機12に搭載されている。 In this embodiment, the vital signs measuring device 36 is a non-contact heart rate measuring device that measures the user's heart rate without contacting the user. In this embodiment, the vital signs measuring device 36 is mounted on the indoor unit 12 as shown in FIG.
 バイタルサイン測定デバイス36は、本実施の形態の場合、ミリ波をユーザUに向かって出射し、当該ユーザUによって反射されたミリ波を受信し、その受信したミリ波に基づいて当該ユーザの心拍を測定するように構成されている。バイタルサイン測定デバイス36は、定期的にユーザUの心拍測定を行う。また、バイタルサイン測定デバイス36によって測定された心拍データは、制御装置50の心拍データ取得部54に送信される。 In this embodiment, the vital sign measuring device 36 emits millimeter waves toward the user U, receives millimeter waves reflected by the user U, and measures the heartbeat of the user based on the received millimeter waves. is configured to measure The vital sign measuring device 36 periodically measures the heart rate of the user U. The heartbeat data measured by the vital signs measuring device 36 is also transmitted to the heartbeat data acquisition unit 54 of the control device 50 .
 なお、バイタルサイン測定デバイス36は、ユーザUをカメラによって連続的に撮影し、撮影された連続撮影画像に写るユーザの像の色合いの変化に基づいて脈拍を測定する脈拍デバイスであってもよい。この場合において、特にユーザの顔の像の色合いの変化を用いるようにしてもよい。上述したように、心拍と脈拍は対応するからである。 It should be noted that the vital signs measuring device 36 may be a pulse device that continuously captures images of the user U with a camera and measures the pulse based on changes in the hue of the image of the user captured in the continuously captured images. In this case, a change in hue of the image of the user's face may be used. This is because, as described above, heartbeat and pulse correspond to each other.
 バイタルサイン測定デバイス36からの心拍データを制御装置50の心拍データ取得部54が取得すると、トーン/エントロピー算出部56は、取得した心拍データから上述の数式(1)~(4)に基づいてトーン値Tおよびエントロピー値Eを算出する。 When the heartbeat data acquisition unit 54 of the control device 50 acquires the heartbeat data from the vital signs measuring device 36, the tone/entropy calculation unit 56 calculates the tone based on the above-described formulas (1) to (4) from the acquired heartbeat data. Calculate the value T and the entropy value E.
 運転制御部52は、トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eと、記憶部58に記憶されているトーン-エントロピーマップ(E-Tマップ)60とに基づいて、ユーザUの温冷感を確認する。 The operation control unit 52 calculates the user's Check the thermal sensation of U.
 トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eが図3に示すトーン-エントロピーマップにおける快適領域Asに存在する場合、運転制御部52は、ユーザが快適と感じている環境を維持するために、現在実行中の運転を維持する。すなわち、運転制御部52は、現在の室内温度、送風量、送風方向、および室内湿度を維持するように運転する。これにより、ユーザの快適な体感を維持することができる。 When the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56 are present in the comfort region As in the tone-entropy map shown in FIG. To maintain, maintain the currently running run. That is, the operation control unit 52 operates so as to maintain the current indoor temperature, airflow, airflow direction, and indoor humidity. This makes it possible to maintain a comfortable feeling for the user.
 また、トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eが快適領域Asの外に存在する場合、運転制御部52は、トーン/エントロピー算出部56によってその後に算出されるトーン値Tおよびエントロピー値Eが快適領域Asに存在することとなるように、運転を制御する。具体的には、運転制御部52は、圧縮機20、四方弁22、および室内ファン28、上下ルーバー30の少なくとも1つを制御して、室内温度、送風量、送風方向、および室内湿度の少なくとも1つを調節する。調節が適当であるか否かは、調節後に算出されたトーン値Tとエントロピー値Eが快適領域Asに接近したか否かで判定することができる。これにより、ユーザの体感を快適にすることができる。 Further, when the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56 are outside the comfort region As, the operation control unit 52 controls the tone value calculated after that by the tone/entropy calculation unit 56. Driving is controlled so that T and the entropy value E are in the comfort zone As. Specifically, the operation control unit 52 controls at least one of the compressor 20, the four-way valve 22, the indoor fan 28, and the upper and lower louvers 30 to control at least one of the indoor temperature, airflow, airflow direction, and indoor humidity. adjust one. Whether or not the adjustment is appropriate can be determined by whether or not the tone value T and the entropy value E calculated after the adjustment approach the comfort area As. This makes it possible for the user to feel comfortable.
 さらに、図9のC1点に示すように、トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eが、ユーザUにとって暑すぎて不快な体感に対応する不快領域Ahに存在する場合、運転制御部52は、冷房運転時において、室内温度を低下させる運転、ユーザUへの送風量を増加させる運転、および室内湿度を低下させる運転の少なくとも1つを実行する。 Furthermore, as indicated by point C1 in FIG. 9, when the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56 are present in the discomfort region Ah corresponding to the sensation of being too hot and uncomfortable for the user U. During the cooling operation, the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for lowering the indoor humidity.
 室内温度を低下させるためには、運転制御部52は圧縮機20の出力を上昇させる。ユーザUへの送風量を増加させるために、運転制御部52は、室内ファン28の回転数を上げる制御および上下ルーバー30によって送風方向を床方向に変更する制御の少なくともいずれかを行う。さらに運転制御部52は、室内湿度を低下させるために除湿運転を行う。例えば、圧縮機20の出力が最大である場合には、運転制御部52は、室内ファン28の回転数を上げるように制御を行う。  In order to lower the indoor temperature, the operation control unit 52 increases the output of the compressor 20 . In order to increase the amount of air blown to the user U, the operation control unit 52 performs at least one of control to increase the rotation speed of the indoor fan 28 and control to change the air blow direction to the floor direction by the vertical louvers 30 . Furthermore, the operation control unit 52 performs a dehumidifying operation to lower the indoor humidity. For example, when the output of the compressor 20 is maximum, the operation control unit 52 controls the indoor fan 28 to increase its rotational speed.
 なお、冷房運転時にユーザUが暑すぎて不快な体感となる状況として、例えば、夏の暑い日に外出していたユーザUが、十分には冷えていない部屋Rに帰ってきた状況が挙げられる。 A situation in which the user U is too hot during cooling operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a hot summer day, returns to a room R that is not sufficiently cooled. .
 一方、暖房運転時においては、運転制御部52は、室内温度を低下させる運転、ユーザUへの送風量を減少させる運転、および室内湿度を低下させる運転の少なくとも1つを実行する。なお、暖房運転時にユーザUが暑すぎて不快な体感となる状況として、例えば、ユーザUが温かい食事をとった直後や風呂あがりの直後が挙げられる。 On the other hand, during the heating operation, the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for reducing the amount of air blown to the user U, and an operation for lowering the indoor humidity. A situation in which the user U is too hot during the heating operation and feels uncomfortable is, for example, immediately after the user U has taken a hot meal or just after taking a bath.
 これらの運転制御により、図9に示すように、ユーザUのトーン値Tおよびエントロピー値E(点C1)を、不快領域Ahから快適領域Asへとシフトさせることができる。これにより、暑すぎて不快なユーザUの体感を快適な体感へとシフトさせることができる。 By these driving controls, as shown in FIG. 9, the user U's tone value T and entropy value E (point C1) can be shifted from the discomfort region Ah to the comfort region As. As a result, the feeling of the user U who is too hot and uncomfortable can be shifted to a comfortable feeling.
 また、図10のC2点に示すように、トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eが、ユーザUにとって寒すぎて不快な体感に対応する不快領域Acに存在する場合、運転制御部52は、冷房運転時において、室内温度を上昇させる運転、ユーザUへの送風量を減少させる運転、および室内湿度を上昇させる運転の少なくとも1つを実行する。 10, when the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56 are present in the uncomfortable region Ac corresponding to the feeling of being too cold and uncomfortable for the user U. During the cooling operation, the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for decreasing the amount of air blown to the user U, and an operation for increasing the indoor humidity.
 室内温度を上昇させるためには、運転制御部52は、圧縮機20の出力を低下させる。ユーザUへの送風量を減少させるために、運転制御部52は、室内ファン28の回転数を下げる制御、および上下ルーバー30によって送風方向を天井方向に変更する制御の少なくともいずれかを行う。  In order to increase the indoor temperature, the operation control unit 52 reduces the output of the compressor 20 . In order to reduce the amount of air blown to the user U, the operation control unit 52 performs at least one of control to lower the rotation speed of the indoor fan 28 and control to change the air blow direction to the ceiling direction by the vertical louvers 30 .
 なお、冷房運転時にユーザUが寒すぎて不快な体感となる状況として、例えば、ユーザが冷たい食事をとった直後や服を脱いだ状況が挙げられる。 It should be noted that situations in which the user U feels uncomfortable due to being too cold during air-conditioning operation include, for example, situations in which the user has taken off their clothes or immediately after eating a cold meal.
 一方、暖房運転時においては、運転制御部52は、室内温度を上昇させる運転、ユーザUへの送風量を増加させる運転、および室内湿度を上昇させる運転の少なくとも1つを実行する。なお、暖房運転時にユーザUが寒すぎて不快な体感となる状況として、例えば、冬の寒い日に外出していたユーザUが十分には温められていない部屋Rに帰ってきた状況が挙げられる。 On the other hand, during the heating operation, the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for increasing the indoor humidity. A situation in which the user U is too cold during the heating operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a cold day in winter, returns to a room R that is not sufficiently warmed. .
 これらの運転制御により、図10に示すように、ユーザUのトーン値Tおよびエントロピー値E(点C2)を、不快領域Acから快適領域Asへとシフトさせることができる。これにより、寒すぎて不快なユーザUの体感を快適な体感へとシフトさせることができる。 By these driving controls, as shown in FIG. 10, the user U's tone value T and entropy value E (point C2) can be shifted from the discomfort area Ac to the comfort area As. As a result, the feeling of the user U who is too cold and uncomfortable can be shifted to a comfortable feeling.
 以上、本実施の形態によれば、空気調和機において、ユーザの温冷感を考慮して、ユーザにとって快適な運転を実行することができる。 As described above, according to the present embodiment, the user's thermal sensation can be taken into account in the air conditioner, and comfortable operation can be executed for the user.
 (実施の形態2)
 実施の形態2は、実施の形態1で説明した空気調和機の運転制御に代えて、または当該運転制御に加えて、以下に説明する運転制御を行う。
(Embodiment 2)
Embodiment 2 performs operation control described below in place of or in addition to the operation control of the air conditioner described in Embodiment 1. FIG.
 図11は、一被験者の複数の温度環境下におけるトーン/エントロピー値の変化について、時系列的に連続した収束状態のトーン/エントロピー値同士を直線で結んだ移動量として示した模式図である。また、図12は、温度環境によって異なる移動量の違いを示す模式図である。 FIG. 11 is a schematic diagram showing changes in tone/entropy values in a plurality of temperature environments of one subject as moving amounts connecting consecutive tone/entropy values in a converged state in time series with straight lines. Moreover, FIG. 12 is a schematic diagram showing the difference in movement amount depending on the temperature environment.
 発明者は、図12の模式図に示すように、暑すぎることもなくまた寒すぎることもない快適な体感、例えば室温18~28度の室内にいるときの体感に対応するトーン/エントロピー値の移動量の範囲が存在することを、今回実験的に突き止めた。すなわち、ユーザが快適と感じる快適な移動量の範囲Dsの存在を突き止めた。 As shown in the schematic diagram of FIG. 12, the inventors found a tone/entropy value corresponding to a comfortable feeling that is neither too hot nor too cold, for example, a feeling in a room with a room temperature of 18 to 28 degrees. It was found experimentally this time that there is a range of the amount of movement. In other words, the existence of a comfortable moving amount range Ds that the user feels comfortable has been found.
 また、発明者は、図12に示すように、暑すぎて不快な体感に対応するトーン/エントロピー値の移動量、すなわちトーン-エントロピーマップにおける暑すぎて不快な移動量の範囲Dhを実験的に突き止めた。 In addition, as shown in FIG. 12, the inventor experimentally determined the amount of movement of the tone/entropy value corresponding to the feeling of being too hot and uncomfortable, that is, the range Dh of the amount of movement being too hot and uncomfortable in the tone-entropy map. I pinpointed it.
 さらに、発明者は、図12に示すように、寒すぎて不快な体感に対応するトーン/エントロピー値の移動量、すなわちトーン-エントロピーマップにおける寒すぎて不快な移動量の範囲Dcを実験的に突き止めた。 Furthermore, as shown in FIG. 12, the inventor experimentally determined the amount of movement of the tone/entropy value corresponding to the feeling of being too cold and uncomfortable, that is, the range Dc of the amount of movement being too cold and uncomfortable in the tone-entropy map. I pinpointed it.
 このようなトーン/エントロピー値の移動量と、ユーザの温冷感との対応関係は、温度が異なる複数の温度環境下に複数のユーザ(被験者)をおき、その複数のユーザのトーン/エントロピー値の移動量を計測することによって突き止められた。 The correspondence relationship between the amount of change in tone/entropy value and the user's thermal sensation can be obtained by placing a plurality of users (subjects) under a plurality of temperature environments with different temperatures and calculating the tone/entropy values of the plurality of users. It was ascertained by measuring the amount of movement of
 図13は、一被験者の複数の温度環境下におけるトーン/エントロピー値の変化について、収束状態のトーン値およびエントロピー値を直線で結んだ移動量の実測値を示している。また、図14は、一被験者の複数の温度環境下におけるトーン/エントロピー値の変化について、収束状態のトーン値およびエントロピー値を直線で結んで得られる移動量から、暑すぎて不快領域、快適領域、および寒すぎて不快領域を突き止めた際のグラフを示している。  Fig. 13 shows the actual measurement values of the amount of movement connecting the converged tone value and entropy value with a straight line with respect to changes in tone/entropy value under multiple temperature environments of one subject. In addition, FIG. 14 shows changes in tone/entropy values under multiple temperature environments for one subject. , and a graph when locating the too cold discomfort area.
 図14に示すように、35度の温度環境下、すなわち被験者が暑すぎて不快に感じる環境下でのトーン/エントロピー値の移動量は、2度の温度環境下、すなわち被験者が寒すぎて不快に感じる環境下でのトーン/エントロピー値の移動量と異なる。 As shown in FIG. 14, the amount of tone/entropy value shift under a temperature environment of 35 degrees, i.e., an environment where the subject feels too hot and uncomfortable, is less than that in a temperature environment of 2 degrees, i. It is different from the amount of movement of the tone/entropy value under the environment that is felt in the environment.
 具体的には、図14に示すように、暑すぎて不快である場合(35度の場合)のトーン/エントロピー値の移動量は、19以下である。一方、寒すぎて不快である場合(2度の場合)のトーン/エントロピー値の移動量は、27以上である。 Specifically, as shown in FIG. 14, the amount of change in tone/entropy value when it is too hot and uncomfortable (35 degrees) is 19 or less. On the other hand, when it is too cold to be comfortable (at 2 degrees), the shift in tone/entropy value is 27 or more.
 したがって、図14からも明らかなように、暑すぎて不快である場合の移動量は、寒すぎて不快である移動量よりも小さい。したがって、トーン/エントロピー値の移動量に基づいて、ユーザが、暑すぎて不快であるのか、あるいは寒すぎて不快であるのかを区別することが可能である。 Therefore, as is clear from FIG. 14, the amount of movement when it is too hot and uncomfortable is smaller than the amount of movement when it is too cold and uncomfortable. Therefore, based on the amount of shift in tone/entropy value, it is possible to distinguish whether the user is too hot to be uncomfortable or too cold to be uncomfortable.
 また、図14に示すように、ユーザが快適と感じる場合(20度および23度の場合)、トーン/エントロピー値の移動量は、暑すぎて不快な場合の移動量の範囲Dhと、寒すぎて不快な場合の移動量の範囲Dcとの中間の範囲に収束する。 Also, as shown in FIG. 14, when the user feels comfortable (at 20 degrees and 23 degrees), the amount of movement of the tone/entropy value is the range of movement Dh when it is too hot and uncomfortable, and when it is too cold. It converges to a range intermediate to the range Dc of the amount of movement when it is uncomfortable.
 以上のようなトーン-エントロピーマップ、すなわちトーン/エントロピー値の移動量とユーザの温冷感との間の対応関係について得られた新たな知見に基づいて、本開示の空気調和機においては、ユーザの体感が快適になるように空気調和機の運転を制御する。 Based on the new knowledge obtained about the correspondence relationship between the tone-entropy map as described above, that is, the amount of movement of the tone/entropy value and the user's thermal sensation, the air conditioner of the present disclosure provides the user control the operation of the air conditioner so that the feeling of air conditioning is comfortable.
 すなわち、本開示の空気調和機では、ユーザのトーン/エントロピー値の移動量が快適な移動量の範囲Ds内に存在するように空気調和機の運転を制御する。また、ユーザのトーン/エントロピー値の移動量が移動量の範囲Dhまたは移動量の範囲Dcに存在するときは、ユーザが明らかに暑すぎて不快または寒すぎて不快と感じているので、その不快が解消される運転を実行する。以下、このような空気調和機の運転について、具体的に説明する。 That is, in the air conditioner of the present disclosure, the operation of the air conditioner is controlled so that the user's tone/entropy value movement amount is within the comfortable movement amount range Ds. Further, when the user's tone/entropy value movement amount is in the movement amount range Dh or the movement amount range Dc, the user clearly feels uncomfortable because it is too hot or uncomfortable because it is too cold. Execute the driving that is eliminated. The operation of such an air conditioner will be specifically described below.
 図6は、本開示の実施の形態2に係る空気調和機が設置された室内(部屋R)を概略的に示している。また、図7は、空気調和機の概略的な構成図である。さらに、図8は、空気調和機の制御系のブロック図である。 FIG. 6 schematically shows a room (room R) in which an air conditioner according to Embodiment 2 of the present disclosure is installed. Moreover, FIG. 7 is a schematic block diagram of an air conditioner. Furthermore, FIG. 8 is a block diagram of the control system of the air conditioner.
 図7に示すように、本実施の形態に係る空気調和機10は、室内機12と室外機14とを有する。 As shown in FIG. 7, the air conditioner 10 according to the present embodiment has an indoor unit 12 and an outdoor unit 14.
 図6に示すように、空気調和機10の室内機12は、部屋R内(室内)に設置される。室外機14は、部屋Rの外部(室外)に設置される。空気調和機10のユーザUは、室内機12が設置された部屋R内に居る。 As shown in FIG. 6, the indoor unit 12 of the air conditioner 10 is installed in the room R (indoor). The outdoor unit 14 is installed outside the room R (outdoor). A user U of the air conditioner 10 is in a room R in which the indoor unit 12 is installed.
 図7に示すように、空気調和機10は、室内機12に設けられた室内熱交換器16と、室外機14に設けられた室外熱交換器18と、冷媒を圧縮する圧縮機20と、冷媒の流れ方向を切り換える四方弁22と、冷媒を減圧する膨張弁24と、これらを接続する冷媒配管26とを有する。また、室内機12には、室内熱交換器16と熱交換した後の空気を室内に送風する室内ファン28と、室内機12から送出される風Wの向きを変更する上下ルーバー30とが設けられている。室外機14には、室外熱交換器18と熱交換した後の空気を屋外に送風する室外ファン32が設けられている。 As shown in FIG. 7, the air conditioner 10 includes an indoor heat exchanger 16 provided in the indoor unit 12, an outdoor heat exchanger 18 provided in the outdoor unit 14, a compressor 20 for compressing the refrigerant, It has a four-way valve 22 that switches the flow direction of the refrigerant, an expansion valve 24 that reduces the pressure of the refrigerant, and a refrigerant pipe 26 that connects them. In addition, the indoor unit 12 is provided with an indoor fan 28 that blows the air after heat exchange with the indoor heat exchanger 16 into the room, and an up-down louver 30 that changes the direction of the wind W sent out from the indoor unit 12. It is The outdoor unit 14 is provided with an outdoor fan 32 that blows the air after heat exchange with the outdoor heat exchanger 18 to the outdoors.
 図7は、冷房運転時の空気調和機10の状態を示している。冷房運転時、圧縮機20から吐出された冷媒は、四方弁22、室外熱交換器18、膨張弁24、室内熱交換器16、および四方弁22を順に通過して圧縮機20に戻る。一方、暖房運転時、圧縮機20から吐出された冷媒は、四方弁22、室内熱交換器16、膨張弁24、室外熱交換器18、および四方弁22を順に通過して圧縮機20に戻る。 FIG. 7 shows the state of the air conditioner 10 during cooling operation. During cooling operation, the refrigerant discharged from the compressor 20 returns to the compressor 20 through the four-way valve 22, the outdoor heat exchanger 18, the expansion valve 24, the indoor heat exchanger 16, and the four-way valve 22 in order. On the other hand, during heating operation, the refrigerant discharged from the compressor 20 passes through the four-way valve 22, the indoor heat exchanger 16, the expansion valve 24, the outdoor heat exchanger 18, and the four-way valve 22 in order and returns to the compressor 20. .
 室内ファン28は、冷房運転時には室内熱交換器16との熱交換によって冷やされた空気を部屋R内に向けて送風し、暖房運転時には室内熱交換器16との熱交換によって温められた空気を部屋R内に向けて送風する。 The indoor fan 28 blows air cooled by heat exchange with the indoor heat exchanger 16 into the room R during cooling operation, and blows air warmed by heat exchange with the indoor heat exchanger 16 during heating operation. Air is blown into the room R.
 上下ルーバー30は、室内機12から部屋R内に向けて送風される空気(室内熱交換器16と熱交換した後の空気)(風W)の向きを変更する。上下ルーバー30は、例えば部屋Rの天井に空気が向かう方向と床に空気が向かう方向との間で、送風方向を変更する。 The upper and lower louvers 30 change the direction of air (air after heat exchange with the indoor heat exchanger 16) (wind W) blown from the indoor unit 12 into the room R. The upper and lower louvers 30 change the blowing direction, for example, between the direction in which the air is directed toward the ceiling of the room R and the direction in which the air is directed toward the floor.
 室外ファン32は、室外熱交換器18と熱交換した後の空気を屋外に排出する。 The outdoor fan 32 discharges the air after heat exchange with the outdoor heat exchanger 18 to the outside.
 図8に示すように、空気調和機10は、圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御する制御装置50を有する。 As shown in FIG. 8, the air conditioner 10 has a controller 50 that controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32.
 制御装置50は、空気調和機10の運転を制御する、すなわち圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御する運転制御部52を有する。また、制御装置50は、ユーザの心拍データを取得する心拍データ取得部54と、ユーザのトーン値Tとエントロピー値Eとを算出するトーン/エントロピー算出部56と、記憶部58と移動量算出部61とを有する。 The control device 50 has an operation control unit 52 that controls the operation of the air conditioner 10, that is, controls the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32. The control device 50 also includes a heartbeat data acquisition unit 54 that acquires heartbeat data of the user, a tone/entropy calculation unit 56 that calculates the tone value T and the entropy value E of the user, a storage unit 58, and a movement amount calculation unit. 61.
 制御装置50は、例えば室外機14に設けられており、マイクロコンピュータなどのCPU(演算処理装置)、ROMやRAMなどのメモリ(記憶部58)、これらを接続する回路、外部と通信するためのポートなどが設けられた制御基板により構成される。 The control device 50 is provided, for example, in the outdoor unit 14, and includes a CPU (arithmetic processing unit) such as a microcomputer, a memory (storage unit 58) such as a ROM and a RAM, a circuit connecting them, and a circuit for communicating with the outside. It is composed of a control board provided with ports and the like.
 制御装置50は、圧縮機20、四方弁22、室内ファン28、上下ルーバー30、および室外ファン32を制御するために、信号線を介してこれらと接続されている。制御装置50は、記憶部58に記憶されているプログラムを演算処理装置が実行することにより、様々な動作を実行する。 The controller 50 is connected to the compressor 20, the four-way valve 22, the indoor fan 28, the upper and lower louvers 30, and the outdoor fan 32 via signal lines in order to control them. The control device 50 executes various operations by causing the arithmetic processing device to execute programs stored in the storage unit 58 .
 図8に示すように、制御装置50は、リモートコントローラ34およびバイタルサイン測定デバイス36と通信手段により接続されている。 As shown in FIG. 8, the control device 50 is connected to the remote controller 34 and the vital signs measuring device 36 by communication means.
 リモートコントローラ34は、図6に示すように、ユーザUが空気調和機10を操作するためのデバイスである。すなわち、リモートコントローラ34は、空気調和機10の運転条件をユーザUが設定するためのデバイスである。例えば、ユーザがリモートコントローラ34を介して部屋R内の室内温度を設定することにより設定温度が入力されると、制御装置50の運転制御部52は、入力された設定温度を維持するように室内温度を調節するために、圧縮機20の出力を調節する。 The remote controller 34 is a device for the user U to operate the air conditioner 10, as shown in FIG. That is, the remote controller 34 is a device for the user U to set the operating conditions of the air conditioner 10 . For example, when the set temperature is input by the user setting the indoor temperature in the room R via the remote controller 34, the operation control unit 52 of the controller 50 controls the indoor temperature so as to maintain the input set temperature. To regulate the temperature, the output of compressor 20 is adjusted.
 また、ユーザUがリモートコントローラ34を介して冷房運転から暖房運転またはその逆に暖房運転から冷房運転へと運転を変更した場合、運転制御部52が四方弁22を制御して冷媒の流れ方向を切り換える。 Further, when the user U changes the operation from the cooling operation to the heating operation or vice versa from the heating operation to the cooling operation via the remote controller 34, the operation control unit 52 controls the four-way valve 22 to change the flow direction of the refrigerant. switch.
 さらに、ユーザUがリモートコントローラ34を介して室内機12からの送風量を設定することにより設定風量が入力されると、運転制御部52は、入力された設定風量を維持するように室内ファン28の回転数を調節する。 Furthermore, when the set air volume is input by the user U setting the air volume from the indoor unit 12 via the remote controller 34, the operation control unit 52 controls the indoor fan 28 to maintain the input set air volume. to adjust the number of rotations.
 さらにまた、ユーザUがリモートコントローラ34を介して室内機12の送風方向を設定すると、運転制御部52は、設定された送風方向になるように上下ルーバー30の水平軸に対する傾きを調節する。すなわち、風向を変えることにより、ユーザUへの送風量を調節する。 Furthermore, when the user U sets the blowing direction of the indoor unit 12 via the remote controller 34, the operation control unit 52 adjusts the tilt of the vertical louver 30 with respect to the horizontal axis so as to achieve the set blowing direction. That is, the amount of air blown to the user U is adjusted by changing the wind direction.
 ユーザUがリモートコントローラ34を介して所定の室内湿度を設定することにより設定湿度が入力されると、その設定湿度を実現するために、運転制御部52は圧縮機20と四方弁22とを制御して除湿運転を実行する。 When the set humidity is input by the user U setting a predetermined indoor humidity via the remote controller 34, the operation control unit 52 controls the compressor 20 and the four-way valve 22 to achieve the set humidity. to execute the dehumidifying operation.
 バイタルサイン測定デバイス36は、本実施の形態の場合、ユーザに接触することなくユーザの心拍測定を実行する非接触式心拍測定デバイスである。本実施の形態では、バイタルサイン測定デバイス36は、図6に示すように室内機12に搭載されている。 In this embodiment, the vital signs measuring device 36 is a non-contact heart rate measuring device that measures the user's heart rate without contacting the user. In this embodiment, the vital signs measuring device 36 is mounted on the indoor unit 12 as shown in FIG.
 バイタルサイン測定デバイス36は、本実施の形態の場合、ミリ波をユーザUに向かって出射し、当該ユーザUによって反射されたミリ波を受信し、その受信したミリ波に基づいて当該ユーザの心拍を測定するように構成されている。バイタルサイン測定デバイス36は、定期的にユーザUの心拍測定を行う。また、バイタルサイン測定デバイス36によって測定された心拍データは、制御装置50の心拍データ取得部54に送信される。 In this embodiment, the vital sign measuring device 36 emits millimeter waves toward the user U, receives millimeter waves reflected by the user U, and measures the heartbeat of the user based on the received millimeter waves. is configured to measure The vital sign measuring device 36 periodically measures the heart rate of the user U. The heartbeat data measured by the vital signs measuring device 36 is also transmitted to the heartbeat data acquisition unit 54 of the control device 50 .
 なお、バイタルサイン測定デバイス36は、ユーザUをカメラによって連続的に撮影し、撮影された連続撮影画像に写るユーザの像の色合いの変化に基づいて脈拍を測定する脈拍デバイスであってもよい。この場合において、特にユーザの顔の像の色合いの変化を用いるようにしてもよい。上述したように、心拍と脈拍は対応するからである。 It should be noted that the vital signs measuring device 36 may be a pulse device that continuously captures images of the user U with a camera and measures the pulse based on changes in the hue of the image of the user captured in the continuously captured images. In this case, a change in hue of the image of the user's face may be used. This is because, as described above, heartbeat and pulse correspond to each other.
 バイタルサイン測定デバイス36からの心拍データを制御装置50の心拍データ取得部54が取得すると、トーン/エントロピー算出部56は、取得した心拍データから前述の数式(1)~(4)に基づいてトーン値Tおよびエントロピー値Eを算出する。移動量算出部61は、前述の数式(1)~(5)に基づいて、取得した心拍データから移動量を算出する。 When the heartbeat data acquisition unit 54 of the control device 50 acquires the heartbeat data from the vital signs measuring device 36, the tone/entropy calculation unit 56 calculates the tone based on the above-described formulas (1) to (4) from the acquired heartbeat data. Calculate the value T and the entropy value E. The movement amount calculation unit 61 calculates the movement amount from the acquired heartbeat data based on the above-described formulas (1) to (5).
 運転制御部52は、トーン/エントロピー算出部56によって算出されたトーン値Tおよびエントロピー値Eと、記憶部58に記憶されているトーン-エントロピーマップ(E-Tマップ)60と移動量算出部61とによって算出された移動量と、に基づいてユーザUの温冷感を確認する。 The operation control unit 52 calculates the tone value T and the entropy value E calculated by the tone/entropy calculation unit 56, the tone-entropy map (ET map) 60 stored in the storage unit 58, and the movement amount calculation unit 61. The thermal sensation of the user U is confirmed based on the amount of movement calculated by and.
 トーン/エントロピー算出部56によって算出されたトーン/エントロピー値の移動量が図12における快適な移動量の範囲Dsに存在する場合、運転制御部52は、ユーザが快適と感じている環境を維持するために、現在実行中の運転を維持する。すなわち、運転制御部52は、現在の室内温度、送風量、送風方向、および室内湿度を維持するように運転する。これにより、ユーザの快適な体感を維持することができる。 When the movement amount of the tone/entropy value calculated by the tone/entropy calculation unit 56 is within the comfortable movement amount range Ds in FIG. 12, the operation control unit 52 maintains an environment in which the user feels comfortable. To maintain the current running operation. That is, the operation control unit 52 operates so as to maintain the current indoor temperature, airflow, airflow direction, and indoor humidity. Thereby, the user's comfortable feeling can be maintained.
 また、トーン/エントロピー算出部56によって算出されたトーン/エントロピー値の移動量が図12における快適な移動量の範囲Dsの外に存在する場合、運転制御部52は、トーン/エントロピー算出部56によってその後に算出されるトーン値Tおよびエントロピー値Eが快適な移動量の範囲Dsに存在することとなるように、運転を制御する。 Further, when the movement amount of the tone/entropy value calculated by the tone/entropy calculation unit 56 is outside the comfortable movement amount range Ds in FIG. Driving is controlled so that the tone value T and the entropy value E calculated thereafter are within the comfortable movement amount range Ds.
 具体的には、運転制御部52は、圧縮機20、四方弁22、および室内ファン28、上下ルーバー30の少なくとも1つを制御して、室内温度、送風量、送風方向、および室内湿度の少なくとも1つを調節する。調節が適当であるか否かは、調節後に算出された移動量が快適な移動量の範囲Dsに収まるか否かで判定することができる。これにより、ユーザの体感を快適にすることができる。 Specifically, the operation control unit 52 controls at least one of the compressor 20, the four-way valve 22, the indoor fan 28, and the upper and lower louvers 30 to control at least one of the indoor temperature, the air flow rate, the air blowing direction, and the indoor humidity. adjust one. Whether or not the adjustment is appropriate can be determined by whether or not the movement amount calculated after the adjustment falls within the comfortable movement amount range Ds. This makes it possible for the user to feel comfortable.
 さらに、トーン/エントロピー算出部56によって算出された移動量が、図12に示すユーザUにとって暑すぎて不快な体感に対応する移動量の範囲Dhに存在する場合、運転制御部52は、冷房運転時において、室内温度を低下させる運転、ユーザUへの送風量を増加させる運転、および室内湿度を低下させる運転の少なくとも1つを実行する。室内温度を低下させるためには、運転制御部52は圧縮機20の出力を上昇させる。 Furthermore, when the amount of movement calculated by the tone/entropy calculation unit 56 is within the range Dh of the amount of movement corresponding to the sensation of being too hot and uncomfortable for the user U shown in FIG. At some times, at least one of an operation for lowering the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for lowering the indoor humidity is performed. In order to lower the indoor temperature, the operation control section 52 increases the output of the compressor 20 .
 ユーザUへの送風量を増加させるために、運転制御部52は、室内ファン28の回転数を上げる制御、および上下ルーバー30によって送風方向を床方向に変更する制御の少なくともいずれかを行う。さらに運転制御部52は、室内湿度を低下させるために除湿運転を行う。例えば、圧縮機20の出力が最大である場合には、運転制御部52は、室内ファン28の回転数を上げるように制御を行う。 In order to increase the amount of air blown to the user U, the operation control unit 52 performs at least one of control to increase the rotation speed of the indoor fan 28 and control to change the air blow direction to the floor direction by the vertical louver 30. Furthermore, the operation control unit 52 performs a dehumidifying operation to lower the indoor humidity. For example, when the output of the compressor 20 is maximum, the operation control unit 52 controls the indoor fan 28 to increase its rotational speed.
 なお、冷房運転時にユーザUが暑すぎて不快な体感になる状況として、例えば、夏の暑い日に外出していたユーザUが、十分には冷えていない部屋Rに帰ってきた状況が挙げられる。 A situation in which the user U is too hot during cooling operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a hot summer day, returns to a room R that is not sufficiently cooled. .
 一方、暖房運転時においては、運転制御部52は、室内温度を低下させる運転、ユーザUへの送風量を減少させる運転、および室内湿度を低下させる運転の少なくとも1つを実行する。なお、暖房運転時にユーザUが暑すぎて不快な体感となる状況として、例えば、ユーザUが温かい食事をとった直後や風呂あがりの直後が挙げられる。 On the other hand, during the heating operation, the operation control unit 52 executes at least one of an operation for lowering the indoor temperature, an operation for reducing the amount of air blown to the user U, and an operation for lowering the indoor humidity. A situation in which the user U is too hot during the heating operation and feels uncomfortable is, for example, immediately after the user U has taken a hot meal or just after taking a bath.
 これらの運転制御により、ユーザUについて算出されるトーン/エントロピー値の移動量を、不快な移動量の範囲Dhから快適な移動量の範囲Dsへとシフトさせることができる。これにより、暑すぎて不快なユーザUの体感を快適な体感へとシフトさせることができる。 Through these driving controls, the movement amount of the tone/entropy value calculated for the user U can be shifted from the uncomfortable movement amount range Dh to the comfortable movement amount range Ds. As a result, the feeling of the user U who is too hot and uncomfortable can be shifted to a comfortable feeling.
 また、トーン/エントロピー算出部56によって算出された移動量が、図12に示すユーザUにとって寒すぎて不快な体感に対応する移動量の範囲Dcに存在する場合、運転制御部52は、冷房運転時において、室内温度を上昇させる運転、ユーザUへの送風量を減少させる運転、および室内湿度を上昇させる運転の少なくとも1つを実行する。 Further, when the amount of movement calculated by the tone/entropy calculation unit 56 is within the range Dc of the amount of movement corresponding to the feeling of being too cold and uncomfortable for the user U shown in FIG. At the time, at least one of an operation to increase the indoor temperature, an operation to decrease the amount of air blown to the user U, and an operation to increase the indoor humidity is performed.
 室内温度を上昇させるために、運転制御部52は圧縮機20の出力を低下させる。ユーザUへの送風量を減少させるために、運転制御部52は、室内ファン28の回転数を下げる制御、および上下ルーバー30によって送風方向を天井方向に変更する制御の少なくともいずれかを行う。 The operation control unit 52 reduces the output of the compressor 20 in order to raise the indoor temperature. In order to reduce the amount of air blown to the user U, the operation control unit 52 performs at least one of control to lower the rotation speed of the indoor fan 28 and control to change the air blow direction to the ceiling direction by the vertical louvers 30 .
 なお、冷房運転時にユーザUが寒すぎて不快な体感となる状況として、例えば、ユーザが冷たい食事をとった直後や服を脱いだ状況が挙げられる。 It should be noted that situations in which the user U feels uncomfortable due to being too cold during air-conditioning operation include, for example, situations in which the user has taken off their clothes or immediately after eating a cold meal.
 一方、暖房運転時においては、運転制御部52は、室内温度を上昇させる運転、ユーザUへの送風量を増加させる運転、および室内湿度を上昇させる運転の少なくとも1つを実行する。なお、暖房運転時にユーザUが寒すぎて不快な体感となる状況として、例えば、冬の寒い日に外出していたユーザUが十分には温められていない部屋Rに帰ってきた状況が挙げられる。 On the other hand, during the heating operation, the operation control unit 52 executes at least one of an operation for increasing the indoor temperature, an operation for increasing the amount of air blown to the user U, and an operation for increasing the indoor humidity. A situation in which the user U is too cold during the heating operation and feels uncomfortable is, for example, a situation in which the user U, who has been out on a cold day in winter, returns to a room R that is not sufficiently warmed. .
 これらの運転制御により、ユーザUについて算出されるトーン/エントロピー値の移動量を、不快な移動量の範囲Dcから快適な移動量の範囲Dsへとシフトさせることができる。これにより、寒すぎて不快なユーザUの体感を快適な体感へとシフトさせることができる。 Through these driving controls, the movement amount of the tone/entropy value calculated for the user U can be shifted from the uncomfortable movement amount range Dc to the comfortable movement amount range Ds. As a result, the feeling of the user U who is too cold and uncomfortable can be shifted to a comfortable feeling.
 本実施の形態によれば、空気調和機において、ユーザの温冷感を考慮して、ユーザにとって快適な運転を実行することができる。 According to the present embodiment, the user's thermal sensation can be taken into account in the air conditioner, and comfortable operation for the user can be executed.
 以上、上述の実施の形態を挙げて本開示を説明したが、本開示は上述の実施の形態に限定されない。 Although the present disclosure has been described with reference to the above-described embodiments, the present disclosure is not limited to the above-described embodiments.
 例えば、上述の実施の形態の場合、図3に示すトーン-エントロピーマップを用いて、空気調和機10の運転がユーザにとって快適な運転となるように制御される。しかしながら、本開示は、トーン-エントロピーマップに限られず、例えば、予め求められたトーン値およびエントロピー値の組み合わせとユーザの温冷感との間の対応関係を示すテーブルや数式を用いてもよい。 For example, in the case of the above embodiment, the tone-entropy map shown in FIG. 3 is used to control the operation of the air conditioner 10 so that it is comfortable for the user. However, the present disclosure is not limited to a tone-entropy map, and may use, for example, a table or mathematical formula showing the correspondence between a combination of pre-determined tone and entropy values and the user's thermal sensation.
 また例えば、上述の実施の形態の場合、図6に示すように、ユーザUの心拍または心拍に対応する脈拍を測定するバイタルサイン測定デバイス36は、空気調和機10の室内機12に搭載される非接触式の測定デバイスとして説明した。しかしながら、バイタルサイン測定デバイスは非接触式に限られず、接触式であってもよい。 Further, for example, in the case of the above embodiment, as shown in FIG. 6, the vital sign measuring device 36 for measuring the heartbeat of the user U or the pulse corresponding to the heartbeat is mounted on the indoor unit 12 of the air conditioner 10. It has been described as a non-contact measuring device. However, the vital signs measuring device is not limited to a non-contact type, and may be a contact type.
 また、図15は、本開示のさらに別の実施の形態に係る空気調和機110が配置された部屋Rを示している。 Also, FIG. 15 shows a room R in which an air conditioner 110 according to yet another embodiment of the present disclosure is arranged.
 図15に示す空気調和機110は、バイタルサイン測定デバイスを除いて図6に示す空気調和機10と同じである。図15に示すように、空気調和機110を含むシステムは、ユーザに着脱可能に装着される接触式のバイタルサイン測定デバイス136を有する。バイタルサイン測定デバイス136は、例えばベルトによってユーザUの胸に装着され、ユーザUの心拍を測定する心拍計である。また、バイタルサイン測定デバイス136は、無線通信を介して、室内機112に配置された制御装置の心拍データ取得部に心拍データを送信するように構成されている。 The air conditioner 110 shown in FIG. 15 is the same as the air conditioner 10 shown in FIG. 6 except for the vital sign measuring device. As shown in FIG. 15, the system including the air conditioner 110 has a contact-type vital signs measuring device 136 detachably attached to the user. The vital signs measuring device 136 is a heart rate monitor that is worn on the chest of the user U by a belt, for example, and measures the heart rate of the user U. In addition, the vital signs measuring device 136 is configured to transmit heartbeat data to a heartbeat data acquisition unit of the controller arranged in the indoor unit 112 via wireless communication.
 なお、ユーザに装着される接触式のバイタルサイン測定デバイス136は、腕時計型の脈拍測定デバイスであってもよい。腕時計型の脈拍測定デバイスは、例えば、赤外線をユーザの血液(血管)に向かって出射し、反射された赤外線を受信し、その受信した赤外線(その反射量)に基づいて当該ユーザの脈拍を測定する。 The contact-type vital signs measuring device 136 worn by the user may be a wristwatch-type pulse measuring device. A wristwatch-type pulse measuring device, for example, emits infrared rays toward the user's blood (blood vessels), receives the reflected infrared rays, and measures the user's pulse based on the received infrared rays (the amount of reflection). do.
 本開示は、種々の空気調和機に適用可能である。 The present disclosure is applicable to various air conditioners.
 10 空気調和機
 12 室内機
 14 室外機
 16 室内熱交換器
 20 圧縮機
 22 四方弁
 26 冷媒配管
 28 室内ファン
 30 上下ルーバー
 32 室外ファン
 34 リモートコントローラ
 36 バイタルサイン測定デバイス
 50 制御装置
 52 運転制御部
 54 心拍データ取得部
 56 トーン/エントロピー算出部
 58 記憶部
 61 移動量算出部
 110 空気調和機
 112 室内機
 136 バイタルサイン測定デバイス
REFERENCE SIGNS LIST 10 air conditioner 12 indoor unit 14 outdoor unit 16 indoor heat exchanger 20 compressor 22 four-way valve 26 refrigerant pipe 28 indoor fan 30 vertical louver 32 outdoor fan 34 remote controller 36 vital sign measuring device 50 controller 52 operation control unit 54 heartbeat Data acquisition unit 56 Tone/entropy calculation unit 58 Storage unit 61 Movement amount calculation unit 110 Air conditioner 112 Indoor unit 136 Vital sign measurement device

Claims (14)

  1. 空気調和機であって、
     室内にいるユーザの脈拍または心拍を測定するバイタルサイン測定デバイスと、
     前記バイタルサイン測定デバイスの検出結果からトーン・エントロピー法を用いてトーン値およびエントロピー値を算出するトーン/エントロピー算出部と、
     前記空気調和機の運転を制御する運転制御部と、
    を有し、
    前記運転制御部は、
     前記トーン/エントロピー算出部によって算出されるトーン値およびエントロピー値の組み合わせが、前記ユーザの快適な温冷感に対応するトーン値およびエントロピー値の組み合わせとなるように前記空気調和機の運転を制御する、
    空気調和機。
    an air conditioner,
    a vital signs measuring device for measuring the pulse or heart rate of a user in the room;
    A tone/entropy calculation unit that calculates a tone value and an entropy value using a tone entropy method from the detection result of the vital sign measuring device;
    an operation control unit that controls the operation of the air conditioner;
    has
    The operation control unit is
    The operation of the air conditioner is controlled so that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit corresponds to the comfortable thermal sensation of the user. ,
    Air conditioner.
  2. 前記運転制御部は、前記トーン/エントロピー算出部によって算出される前記トーン値および前記エントロピー値の前記組み合わせが、トーン-エントロピーマップにおいて前記ユーザの快適な温冷感に対応する快適領域に存在するように、前記空気調和機の運転を制御する、
    請求項1に記載の空気調和機。
    The operation control unit is arranged such that the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is in a comfort region corresponding to the comfortable thermal sensation of the user in the tone-entropy map. to control the operation of the air conditioner;
    The air conditioner according to claim 1.
  3. 前記空気調和機は前記室内の室内温度を調節可能に構成され、
    前記運転制御部は、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが、前記トーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、前記室内温度を低下させる運転を実行し、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが、前記トーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、前記室内温度を上昇させる運転を実行する、
    請求項2に記載の空気調和機。
    The air conditioner is configured to be able to adjust the room temperature in the room,
    The operation control unit is
    when the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in a first discomfort region corresponding to a thermal sensation that is too hot and uncomfortable in the tone-entropy map; , executing an operation to lower the indoor temperature,
    if the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is in a second discomfort region corresponding to a thermal sensation that is too cold and uncomfortable in the tone-entropy map; , executing an operation to increase the indoor temperature;
    The air conditioner according to claim 2.
  4.  前記空気調和機は、冷房運転および暖房運転を実行可能且つ前記ユーザへの送風量を調節可能に構成され、
    冷房運転時に前記運転制御部は、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが前記トーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、前記送風量を増加させる運転を実行し、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが前記トーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、前記送風量を減少させる運転を実行し、
    暖房運転時に前記運転制御部は、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが前記トーン-エントロピーマップにおいて前記第1の不快領域に存在する場合には、前記送風量を減少させる運転を実行し、
     前記トーン/エントロピー算出部によって算出された前記トーン値および前記エントロピー値の前記組み合わせが前記トーン-エントロピーマップにおいて前記第2の不快領域に存在する場合には、前記送風量を増加させる運転を実行する、
    請求項2に記載の空気調和機。
    The air conditioner is configured to be able to perform cooling operation and heating operation and to adjust the amount of air blown to the user,
    During cooling operation, the operation control unit
    When the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is in a first discomfort region corresponding to a thermal sensation that is too hot and uncomfortable in the tone-entropy map, Execute the operation to increase the air blow volume,
    If the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is in a second discomfort region corresponding to a thermal sensation that is too cold and uncomfortable in the tone-entropy map, Execute the operation to reduce the air blow volume,
    During heating operation, the operation control unit
    When the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is present in the first discomfort region in the tone-entropy map, an operation is performed to reduce the air blow volume. ,
    When the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is present in the second discomfort region in the tone-entropy map, an operation is performed to increase the air blow volume. ,
    The air conditioner according to claim 2.
  5. 前記空気調和機は前記室内の室内湿度を調節可能に構成され、
    前記運転制御部は、
     前記トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせが前記トーン-エントロピーマップにおいて暑すぎて不快な温冷感に対応する第1の不快領域に存在する場合には、前記室内湿度を低下させる運転を実行し、
     前記トーン/エントロピー算出部によって算出されたトーン値およびエントロピー値の組み合わせが前記トーン-エントロピーマップにおいて寒すぎて不快な温冷感に対応する第2の不快領域に存在する場合には、前記室内湿度を上昇させる運転を実行する、
    請求項2に記載の空気調和機。
    The air conditioner is configured to be able to adjust the indoor humidity in the room,
    The operation control unit is
    When the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit exists in the first discomfort region corresponding to the thermal sensation that is too hot and uncomfortable in the tone-entropy map, the indoor humidity perform a drive that lowers the
    If the combination of the tone value and the entropy value calculated by the tone/entropy calculation unit is present in the second discomfort region corresponding to the thermal sensation that is too cold and uncomfortable in the tone-entropy map, the indoor humidity perform a drive that raises the
    The air conditioner according to claim 2.
  6.  トーン-エントロピーマップ上における、(n-1)拍目のトーン値およびエントロピー値の組み合わせを示すプロットとn拍目のトーン値およびエントロピー値の組み合わせを示すプロットとの間の直線距離である移動量を算出する移動量算出部をさらに有し、
    前記運転制御部は、前記移動量算出部によって算出される前記移動量が前記ユーザの快適な温冷感に対応する移動量となるように前記空気調和機の運転を制御する、
    請求項2から請求項5のいずれか一項に記載の空気調和機。
    Movement amount, which is the linear distance between the plot showing the combination of the tone value and entropy value at the (n-1)th beat and the plot showing the combination of the tone value and entropy value at the nth beat on the tone-entropy map further comprising a movement amount calculation unit that calculates
    The operation control unit controls the operation of the air conditioner so that the movement amount calculated by the movement amount calculation unit corresponds to a comfortable thermal sensation of the user.
    The air conditioner according to any one of claims 2 to 5.
  7. 前記空気調和機は前記室内の室内温度を調節可能に構成され、
    前記運転制御部は、
     前記移動量算出部によって算出された前記移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、前記室内温度を低下させる運転を実行し、
     前記移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、前記室内温度を上昇させる運転を実行する、
    請求項6に記載の空気調和機。
    The air conditioner is configured to be able to adjust the room temperature in the room,
    The operation control unit is
    If the movement amount calculated by the movement amount calculation unit is too hot and is within a movement amount range Dh corresponding to an uncomfortable thermal sensation, executing an operation for lowering the indoor temperature,
    If the movement amount calculated by the movement amount calculation unit is too cold and is within the movement amount range Dc corresponding to an uncomfortable thermal sensation, an operation for increasing the indoor temperature is performed.
    The air conditioner according to claim 6.
  8. 前記空気調和機は、冷房運転および暖房運転を実行可能且つ前記ユーザへの送風量を調節可能に構成され、
    冷房運転時に前記運転制御部は、
     前記移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、前記送風量を増加させる運転を実行し、
     前記移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在する場合には、前記送風量を減少させる運転を実行し、
    暖房運転時に前記運転制御部は、
     前記移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の前記範囲Dhに存在する場合には、前記送風量を減少させる運転を実行し、
     前記移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の前記範囲Dcに存在する場合には、前記送風量を増加させる運転を実行する、請求項6に記載の空気調和機。
    The air conditioner is configured to be able to perform cooling operation and heating operation and to adjust the amount of air blown to the user,
    During cooling operation, the operation control unit
    if the movement amount calculated by the movement amount calculation unit is too hot and is within the movement amount range Dh corresponding to an uncomfortable thermal sensation, executing an operation to increase the air blow amount;
    when the movement amount calculated by the movement amount calculation unit is too cold and is within the movement amount range Dc corresponding to an uncomfortable thermal sensation, executing an operation to decrease the air blow amount;
    During heating operation, the operation control unit
    when the movement amount calculated by the movement amount calculation unit is too hot and is within the range Dh of the movement amount corresponding to the uncomfortable thermal sensation, executing an operation to decrease the air blow amount;
    7. When the movement amount calculated by the movement amount calculating unit is too cold and is within the range Dc of the movement amount corresponding to an uncomfortable thermal sensation, an operation for increasing the air blow amount is executed. The air conditioner described in .
  9. 前記空気調和機は前記室内の室内湿度を調節可能に構成され、
    前記運転制御部は、
     前記移動量算出部によって算出された移動量が暑すぎて不快な温冷感に対応する移動量の範囲Dhに存在する場合には、前記室内湿度を低下させる運転を実行し、
     前記移動量算出部によって算出された移動量が寒すぎて不快な温冷感に対応する移動量の範囲Dcに存在するには、前記室内湿度を上昇させる運転を実行する、
    請求項6に記載の空気調和機。
    The air conditioner is configured to be able to adjust the indoor humidity in the room,
    The operation control unit is
    If the movement amount calculated by the movement amount calculation unit is too hot and is within the movement amount range Dh corresponding to the uncomfortable thermal sensation, executing the operation to reduce the indoor humidity,
    If the movement amount calculated by the movement amount calculation unit is too cold and is within the movement amount range Dc corresponding to an uncomfortable thermal sensation, an operation for increasing the indoor humidity is performed.
    The air conditioner according to claim 6.
  10. 前記移動量算出部は、所定の心拍回数毎または所定時間毎に前記移動量を算出し、
    前記移動量の大小によって、「快適」の状態と「不快」の状態との区別、および「暑すぎて不快」の状態と「寒すぎて不快」の状態との区別がされる、
    請求項6から請求項9のいずれか一項に記載の空気調和機。
    The movement amount calculation unit calculates the movement amount for each predetermined number of heartbeats or for each predetermined period of time,
    Depending on the magnitude of the amount of movement, a distinction is made between a ``comfortable'' state and an ``uncomfortable'' state, and between a ``too hot and uncomfortable'' state and a ``too cold and uncomfortable'' state.
    The air conditioner according to any one of claims 6 to 9.
  11. 前記バイタルサイン測定デバイスは、ミリ波を前記ユーザに向かって出射し、前記ユーザによって反射されたミリ波を受信し、受信したミリ波に基づいて前記ユーザの心拍を測定する心拍測定デバイスである、
    請求項1から10のいずれか一項に記載の空気調和機。
    The vital signs measuring device is a heart rate measuring device that emits millimeter waves toward the user, receives millimeter waves reflected by the user, and measures the user's heart rate based on the received millimeter waves.
    The air conditioner according to any one of claims 1 to 10.
  12. 前記バイタルサイン測定デバイスは、前記ユーザをカメラによって連続的に撮影し、連続的に撮影された撮影画像に写る前記ユーザの像の色合いの変化に基づいて脈拍を測定する脈拍測定デバイスである、
    請求項1から10のいずれか一項に記載の空気調和機。
    The vital signs measuring device is a pulse measuring device that continuously photographs the user with a camera and measures the pulse based on changes in the hue of the image of the user appearing in the continuously photographed images.
    The air conditioner according to any one of claims 1 to 10.
  13. 前記バイタルサイン測定デバイスは、前記ユーザに装着され、前記ユーザの心拍を測定する心電計である、
    請求項1から10のいずれか一項に記載の空気調和機。
    The vital signs measuring device is an electrocardiograph that is worn by the user and measures the user's heartbeat.
    The air conditioner according to any one of claims 1 to 10.
  14. 前記バイタルサイン測定デバイスは、前記ユーザに装着され、赤外線を前記ユーザに向かって出射し、前記ユーザによって反射された赤外線を受信し、受信した赤外線に基づいて前記ユーザの脈拍を測定する脈拍測定デバイスである、
    請求項1から10のいずれか一項に記載の空気調和機。
    The vital signs measuring device is worn by the user, emits infrared rays toward the user, receives infrared rays reflected by the user, and measures the pulse of the user based on the received infrared rays. is
    The air conditioner according to any one of claims 1 to 10.
PCT/JP2022/024176 2021-07-21 2022-06-16 Air conditioner WO2023002785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-120124 2021-07-21
JP2021120124A JP2023016071A (en) 2021-07-21 2021-07-21 Air-conditioner

Publications (1)

Publication Number Publication Date
WO2023002785A1 true WO2023002785A1 (en) 2023-01-26

Family

ID=84979956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024176 WO2023002785A1 (en) 2021-07-21 2022-06-16 Air conditioner

Country Status (2)

Country Link
JP (1) JP2023016071A (en)
WO (1) WO2023002785A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032203A (en) * 2015-07-31 2017-02-09 ダイキン工業株式会社 Air-conditioning control system
JP2017124014A (en) * 2016-01-13 2017-07-20 富士通株式会社 Drowsiness detection program, drowsiness detection method, and drowsiness detection device
JP2019045050A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Air conditioner
JP2020169738A (en) * 2019-04-01 2020-10-15 パナソニックIpマネジメント株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032203A (en) * 2015-07-31 2017-02-09 ダイキン工業株式会社 Air-conditioning control system
JP2017124014A (en) * 2016-01-13 2017-07-20 富士通株式会社 Drowsiness detection program, drowsiness detection method, and drowsiness detection device
JP2019045050A (en) * 2017-08-31 2019-03-22 パナソニックIpマネジメント株式会社 Air conditioner
JP2020169738A (en) * 2019-04-01 2020-10-15 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2023016071A (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN102042659B (en) Humidity estimation device and method
JP6861366B2 (en) Air conditioner
CN106440249B (en) Air-conditioner control method, device and air conditioner based on wearable device
WO2019034123A1 (en) Smart air conditioner control method and smart air conditioner
KR20130058909A (en) An air conditioner and a control method the same
CN106679122A (en) Air conditioner control method and air conditioner
JP6939841B2 (en) Air conditioning system
JP6917552B2 (en) Air conditioner
JP4836967B2 (en) Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system
JP7219392B2 (en) air conditioning control system
CN106524406B (en) Air-conditioner control method, device and air conditioner based on wearable device
JP2003120989A (en) Air conditioner
JP6937946B2 (en) Air conditioner control system
WO2023002785A1 (en) Air conditioner
CN106907832A (en) Air-conditioner control method, device and air-conditioner
CN113446712A (en) Control method and device of air conditioner, air conditioner and computer readable storage medium
KR20000034767A (en) Method of controlling air conditioner
JP7127347B2 (en) Environmental control system and environmental control device
CN114777308A (en) Air conditioner and control method thereof
JPH06347077A (en) Indoor environment control device
KR101137662B1 (en) PMV control methods of air handling unit
JPH0842900A (en) Control device for air-conditioner
JP2020041716A (en) Air conditioner
CN106765963A (en) The control method of air-conditioner, device and air-conditioner
JPH07120043A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE