WO2023002573A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2023002573A1
WO2023002573A1 PCT/JP2021/027174 JP2021027174W WO2023002573A1 WO 2023002573 A1 WO2023002573 A1 WO 2023002573A1 JP 2021027174 W JP2021027174 W JP 2021027174W WO 2023002573 A1 WO2023002573 A1 WO 2023002573A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
unavailable
information
resource
transmission
Prior art date
Application number
PCT/JP2021/027174
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
翔平 吉岡
慎也 熊谷
聡 永田
ジン ワン
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023536265A priority Critical patent/JPWO2023002573A1/ja
Priority to PCT/JP2021/027174 priority patent/WO2023002573A1/ja
Publication of WO2023002573A1 publication Critical patent/WO2023002573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • uplink (UL) resources will be insufficient compared to downlink (DL) resources.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that improve resource utilization efficiency.
  • a terminal receives at least one of configuration information of a pattern of resources unavailable for UL transmission of a particular type in a certain time resource, and indication information about the pattern of resources. Control to perform the specific type of UL transmission in resources other than resources unavailable for UL, based on at least one of the configuration information and the indication information, and resources unavailable for UL and a control unit that controls not to perform the specific type of UL transmission.
  • resource utilization efficiency can be improved.
  • FIG. 1 is a diagram showing the RRC information element “ServingCellConfig”.
  • FIG. 2 is a diagram showing the RRC information element “PDSCH-Config”.
  • FIG. 3 is a diagram showing the RRC information element "RateMatchPattern”.
  • 4A and 4B are diagrams showing an example of slot configuration settings.
  • FIG. 5 is a diagram showing an example of the configuration of XDD.
  • 6A and 6B are diagrams illustrating an example of time domain and frequency domain resource configuration for XDD operation.
  • FIG. 7 is a diagram showing an example of an information element related to the list of patterns of unavailable resources according to the embodiment 1-1-1.
  • FIGS. 8A and 8B are diagrams showing an example of applying the unavailable resource pattern according to Embodiments 1-2-1 and 1-2-2.
  • FIG. 9A and 9B are diagrams illustrating an example of application of the unavailable resource pattern according to the embodiment 2-2.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 13 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • TDD setting Rel.
  • the UE is configured for UL and DL (UL and DL resources) in Time Division Duplex (TDD).
  • the UE receives higher layer parameters for cell-specific UL/DL TDD configuration (TDD-UL-DL-ConfigCommon) or higher layer parameters for UE-specific UL/DL TDD configuration (TDD-UL-DL-ConfigDedicated). You may
  • the cell-specific UL/DL TDD configuration related upper layer parameters include a parameter for setting reference subcarrier spacing (referenceSubcarrierSpacing) and a parameter for TDD UL and DL patterns (TDD- UL-DL-Pattern) and
  • TDD-UL-DL-Pattern includes a parameter for setting the period of the DL-UL pattern (dl-UL-TransmissionPeriodicity), a parameter for setting the number of consecutive DL slots (nrofDownlinkSlots), and a parameter for setting the number of consecutive DL symbols. (nrofDownlinkSymbols), a parameter for setting the number of consecutive UL slots (nrofUplinkSlots) and a parameter for setting the number of consecutive UL symbols (nrofUplinkSymbols).
  • the slot setting and the slot index setting are performed with the higher layer parameter (TDD-UL-DL-ConfigDedicated) related to the UE-specific UL/DL TDD setting.
  • TDD-UL-DL-ConfigDedicated the higher layer parameter related to the UE-specific UL/DL TDD setting.
  • TDD-UL-DL-SlotConfig includes a parameter (TDD-UL-DL-SlotIndex) related to the slot index and a parameter (symbols) related to the symbols forming the slot.
  • the parameters (symbols) related to the symbols that make up the slot include a parameter (allDownlink) that indicates that all the symbols that make up the slot are used for DL, a parameter (allUplink) that indicates that all the symbols that make up the slot are used for UL, Alternatively, set one of the parameters (explicit) that explicitly indicate the number of symbols.
  • Parameters (explicit) that explicitly indicate the number of symbols include a parameter (nrofDownlinkSymbols) for setting the number of DL symbols and a parameter (nrofUplinkSymbols) for setting the number of UL symbols.
  • the UE determines the slots/symbols to use for transmission of UL signals/channels and/or reception of DL signals/channels based on the parameters described above.
  • the UE is specified for Resource Block (RB) symbol level PDSCH resource mapping.
  • RB Resource Block
  • the UE determines resources to which the PDSCH is not mapped based on the set/instructed rate match pattern.
  • information about one rate matching pattern list included in information about the configuration of the serving cell is configured (see FIG. 1).
  • the list includes setting information (RateMatchPattern) of rate match patterns of the number (for example, four) defined by the maximum maxNrofRateMatchPatterns.
  • Each rate match pattern is identified by a rate match pattern ID (RateMatchPatternId).
  • the UE does not use the union of unusable patterns (resources) configured in one or more rate matching patterns included in the rate matching pattern list for PDSCH resource mapping. In other words, the UE can reduce the PDSCH rate around the union of the unavailable patterns (resources) configured in one or more rate matching patterns, included in the information about one rate matching pattern list. make a match.
  • Semi-static rate matching may thus mean PDSCH rate matching based only on higher layer signaling (eg, ServingCellConfig).
  • higher layer signaling eg, ServingCellConfig
  • information on one rate match pattern list and information on the rate match pattern group (RateMatchPatternGroup) included in the information on the UE-specific PDSCH configuration for example, RRC information element "PDSCH-Config"
  • the list includes rate match pattern setting information (RateMatchPattern) of the number (for example, four) defined by the maximum maxNrofRateMatchPatterns (see FIG. 2).
  • RateMatchPatternId rate match pattern ID of the number (for example, four) defined by the maximum maxNrofRateMatchPatterns (see FIG. 2).
  • Each rate match pattern is identified by a rate match pattern ID (RateMatchPatternId).
  • RateMatchPatternGroup Information about the rate matching pattern group (RateMatchPatternGroup) is set by information about the first rate matching pattern group (rateMatchPatternGroup1) and information about the second rate matching pattern group (rateMatchPatternGroup2).
  • the information about the first rate matching pattern group (rateMatchPatternGroup1) and the information about the second rate matching pattern group (rateMatchPatternGroup2) are each the rate matching pattern IDs (e.g., eight) of the number defined by the maximum maxNrofRateMatchPatternsPerGroup. RateMatchPatternId).
  • the rate match pattern ID (RateMatchPatternId) included in the information about the first rate match pattern group (rateMatchPatternGroup1) and the information about the second rate match pattern group (rateMatchPatternGroup2) is the cell level (cellLevel) or the BWP level (bwpLevel). (see FIG. 2).
  • the cell level (cellLevel) rate match pattern ID (RateMatchPatternId) is associated with the rate match pattern set in the serving cell configuration information (ServingCellConfig). Also, the rate match pattern ID (RateMatchPatternId) of the BWP level (bwpLevel) is associated with the rate match pattern set in the information (PDSCH-Config) on PDSCH configuration.
  • the UE selects a first rate matching pattern group and a second rate matching pattern group based on a rate matching field (rate matching indicator) included in a DCI format that schedules the PDSCH (eg, DCI format 1_1/1_2). and activation.
  • a rate matching field rate matching indicator included in a DCI format that schedules the PDSCH (eg, DCI format 1_1/1_2).
  • the number of bits in the rate matching field has 0 to 2 bits according to the number of set rate matching pattern groups.
  • the UE When the UE is configured with a first rate match pattern group and a second rate match pattern group, based on the most significant bit (MSB) of the rate match related field, the first rate match pattern group and based on the least significant bit (LSB) of the field for that rate match, determine whether to activate a second rate match pattern group.
  • MSB most significant bit
  • LSB least significant bit
  • the UE does not use the union of unavailable patterns (resources) configured in one or more rate matching patterns associated with the activated rate matching pattern group for PDSCH resource mapping. In other words, the UE rate-matches the PDSCH around the union of unavailable patterns (resources) configured in one or more rate-match patterns associated with the activated rate-match pattern group. conduct.
  • Dynamic rate matching may thus mean PDSCH rate matching based on higher layer signaling (eg, ServingCellConfig and/or PDSCH-Config) and DCI.
  • higher layer signaling eg, ServingCellConfig and/or PDSCH-Config
  • the rate match pattern setting information includes at least one of information on the rate match pattern ID (rateMatchPatternId), information on the pattern type (patternType), and information on the setting of the subcarrier spacing (subcarrierSpacing) (FIG. 3). reference).
  • PatternType is bitmap information (bitmaps) consisting of information on resource blocks (resourceBlocks), information on symbols in resource blocks (symbolsInResourceBlock), and information on periods and patterns (periodicityAndPattern). , and includes information about the CORESET ID.
  • the information about resource blocks may be a resource block level bitmap in the frequency domain.
  • the information about the symbols in the resource block may be a symbol-level bitmap in the time domain.
  • resourceBlocks In each bit of the resource block information (resourceBlocks), an unavailable (to which rate match is applied) frequency position is set in the resource block corresponding to the bit indicated by 1. Rel. 16, it is possible to specify a range of up to 275 RBs by information about resource blocks (resourceBlocks).
  • an unavailable (applies rate match) time position is set in the resource block corresponding to the bit indicated by 1.
  • symbolsInResourceBlock may be a bitmap representing symbols in one slot or a bitmap representing symbols in two slots. That is, Rel. 16, it is possible to specify a range of up to 2 slots (28 symbols) by information about resource blocks (resourceBlocks).
  • XDD frequency division duplex
  • TDD time division duplex
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • FDD Frequency Division Duplex
  • DL reception and UL transmission can be performed simultaneously, which is preferable from the viewpoint of delay reduction.
  • the DL and UL resource ratio is fixed (eg, 1:1).
  • TDD Time Division Duplex
  • DL and UL resources for example, in a general environment where DL traffic is relatively large, it is possible to increase the amount of DL resources and improve DL throughput. It is possible.
  • TDD Time Division Duplex
  • the transmission opportunities for UL signals/channels are less than the reception opportunities for DL signals/channels.
  • the UE may not be able to transmit UL signals/channels frequently, which may cause delays in transmission of critical UL signals/channels.
  • Signal/channel congestion at UL transmission opportunities is also a concern, as there are fewer UL transmission opportunities compared to DL reception opportunities.
  • TDD limits the time resources available for transmission of UL signals/channels, which limits the application of UL coverage extension techniques by, for example, repetition transmission (Repetition).
  • the division duplex method may be called XDD (Cross Division Duplex).
  • XDD may refer to a duplexing method that frequency division multiplexes the DL and UL within one component carrier (CC) of the TDD band or on multiple CCs (DL and UL can be used simultaneously). If the duplexing method is applied to multiple CCs, it may mean that UL is available on another CC in time resources where DL is available on another CC.
  • the plurality of CCs may be CCs in the same band.
  • FIG. 4A shows the Rel. 16 is a diagram showing an example of setting of TDD defined up to 16.
  • FIG. 4A the UE is configured with TDD slots/symbols in the bandwidth of one component carrier (CC) (cell, which may also be called a serving cell).
  • CC component carrier
  • the time ratio between DL slots and UL slots is 4:1.
  • FIG. 4B is a diagram showing an example of the configuration of XDD.
  • resources used for DL reception and resources used for UL transmission temporally overlap within one component carrier (CC).
  • CC component carrier
  • both ends of the frequency domain in one CC are configured as DL, and the DL sandwiches the UL resource, thereby causing cross-link interference (Cross It is possible to avoid and mitigate the occurrence of Link Interference (CLI).
  • a guard area may be set at the boundary between the DL resource and the UL resource.
  • FIG. 5 is a diagram showing an example of the configuration of XDD.
  • a part of the DL resource of the TDD band is used as the UL resource, and the DL and the UL are partially overlapped in terms of time.
  • each of the multiple UEs receives the DL channel/signal during the DL-only period.
  • a certain UE (UE #1 in the example of FIG. 5) performs reception of the DL channel/signal, and another UE (UE #2 in the example of FIG. 5) ) carries out the transmission of the UL channels/signals.
  • the base station performs simultaneous DL and UL transmission and reception.
  • each of the multiple UEs transmits UL channels/signals.
  • the DL frequency resource and UL frequency resource in the UE carrier are set as DL bandwidth part (BWP) and UL BWP, respectively. be.
  • BWP DL bandwidth part
  • UL BWP UL bandwidth part
  • the time resource in the TDD carrier for UE is configured as at least one of DL, UL and flexible (FL) in TDD configuration.
  • the XDD resource (the period in which DL and UL overlap) is avoided from using the UL resource portion used by other UEs (for example, UE #2). (see FIG. 6A).
  • XDD resources may be set after avoiding the use of the DL resource portion used by other UEs (for example, UE #1). (See Figure 6B).
  • the time resource of the XDD part is set as DL.
  • sufficient consideration has not been given to setting frequency resources for the XDD part separately from frequency resources for the DL part (pure DL part) that is not the XDD part.
  • Resources that cannot be used by UE#1 in the XDD part can be used as UL by other UEs, so there is concern that CLI will occur if a DL signal/channel is received in this resource.
  • rate match patterns there are some limitations to rate match patterns in existing specifications.
  • existing rate matching patterns are applicable only to PDSCH reception, and one semi-static rate matching pattern and two dynamic rate matching patterns can be configured.
  • the time resource of the XDD part is set as UL.
  • sufficient consideration has not been given as to whether to set frequency resources for the XDD part separately from frequency resources for the UL part (pure UL part) that is not the XDD part.
  • resource settings for specific UL channels/signals for example, configured grant PUSCH/PUCCH/SRS/PRACH
  • resource settings for specific UL channels/signals for example, configured grant PUSCH/PUCCH/SRS/PRACH
  • separate configurations for UL resources of the XDD part and UL resources that are not the XDD part are required.
  • the inventors have conceived a method that can achieve resource configuration/indication that does not require BWP/slot format changes and avoids inefficient restrictions on DL/UL resource configuration.
  • DL signals/channels in the present disclosure may be transmitted using unicast or may be transmitted using multicast/broadcast to multiple UEs.
  • the multicast/broadcast/unicast configuration may be performed using higher layer signaling.
  • channel and signal may be read interchangeably.
  • transmissions of UL channels/signals may be simply referred to as “UL transmissions.”
  • reception of DL channels/signals may simply be referred to as “DL reception”.
  • uplink control channels e.g., PUCCH
  • uplink shared channels e.g., PUSCH
  • measurement reference signals e.g., sounding reference signals (SRS)
  • random access channels For example, physical random access channel (PRACH)
  • sidelink control channel e.g., physical sidelink control channel (PSCCH)
  • sidelink shared channel e.g., physical sidelink shared channel (Physical Sidelink Shared Channel (PSSCH))
  • sidelink feedback channel for example, Physical Sidelink Feedback Channel (PSFCH)
  • sidelink synchronization signal for example, Sidelink Primary Synchronization Signal (S -PSS)) or Sidelink Secondary Synchronization Signal (S-SSS)
  • sidelink broadcast channel for example, Physical Sidelink Broadcast Channel (PSBCH)
  • PSBCH Physical Sidelink Broadcast Channel
  • DL signals/channels in this disclosure are, for example, downlink control channels (eg, PDCCH), downlink shared channels (eg, PDSCH), Channel State Information Reference Signal (CSI-RS), tracking CSI-RS (Tracking Reference Signal (TRS)), Positioning Reference Signal (PRS), Synchronization Signal Block (SSB), Broadcast Channel (PBCH), Sidelink Control Channel (for example, PSCCH), Side At least one of a link sharing channel (eg, PSSCH), a sidelink feedback channel (eg, PSFCH), a sidelink synchronization signal (eg, S-PSS or S-SSS), a sidelink broadcast channel (eg, PSBCH) may
  • a link sharing channel eg, PSSCH
  • a sidelink feedback channel eg, PSFCH
  • a sidelink synchronization signal eg, S-PSS or S-SSS
  • a sidelink broadcast channel eg, PSBCH
  • A/B may mean at least one of A and B.
  • A/B/C may mean "at least one of A, B and C.”
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • TRP Transmission Configuration Indication or Transmission Configuration Indicator
  • TCI state Transmission Configuration Indicator
  • reception of DL signals/channels and transmission of UL signals/channels may be transmitted and received using the same BWP/CC/band/operating band, or using different BWP/CC/band/operating bands. may be sent and received.
  • XDD may be operated within a carrier (Intra-carrier) or may be operated between carriers (multiple carriers, Inter-carrier).
  • BWP, CC, cell, serving cell, band, carrier, operating band, physical resource block group (PRG), PRB, RB, RE, resource may be read interchangeably.
  • a overlaps with B, A overlaps with B, and at least part of A overlaps with at least part of B may be read interchangeably.
  • each embodiment of the present disclosure when the UE reports the UE capability corresponding to at least one function / capability in each embodiment to the NW, and for the UE, at least one function in each embodiment and/or when configured/activated/indicated by higher layer signaling for the UE capability corresponding to the capability.
  • Embodiments of the present disclosure may apply when certain higher layer parameters are configured/activated/indicated for the UE.
  • DL/UL resources in the XDD part are XDD DL/UL resources, XDD DL/UL, first DL/UL resources, first DL/UL part, DL/UL where unavailable resources can be set/indicated Resources, may be interchanged with the DL/UL portion where unavailable resources may be configured/indicated.
  • DL/UL resources in which the DL and UL of the TDD band do not temporally overlap are non-XDD DL/UL resources, pure DL/UL resources, non-XDD DL/UL resources, second DL/UL resources, second DL /UL part, DL/UL resources in which unavailable resources are not configured/indicated, DL/UL parts in which unavailable resources are not configured/indicated, and the like.
  • the XDD operation may indicate the operation during the period in which the XDD DL/UL resource is set, or may indicate the operation of the entire TDD in which the XDD may be used.
  • DL/UL BWP in the TDD band Rel.
  • DL/UL BWP defined by 15/16 and normal DL/UL BWP may be read interchangeably.
  • the XDD part is at least one of the time resource when the UL resource is configured in the same time resource as the DL resource, and the time resource when the DL resource is configured in the same time resource as the UL resource. may mean.
  • the XDD part is the time resource when the FL resource (available resource for DL and UL) is configured in the same time resource as the DL resource, the FL resource (used for DL and UL) in the same time resource as the UL resource possible resource), and/or the time resource when it is configured.
  • information in the present disclosure, information, setting information, instruction information, information elements, parameters, fields, and code points may be read interchangeably.
  • configuration information RRC information elements, RRC parameters, higher layer parameters, and higher layer signaling may be read interchangeably.
  • drop, abort, cancel, puncture, rate match, postpone, etc. may be read interchangeably.
  • unavailable resources may be read interchangeably.
  • each embodiment of the present disclosure can be applied without being limited to the case of operating XDD. In other words, each embodiment of the present disclosure is applicable even in cases where TDD/FDD is applied, and XDD operation is not essential.
  • the UE may be configured/indicated of unavailable resources for DL based on higher layer signaling, physical layer signaling, and combinations thereof.
  • the UE may be configured with unavailable resources for DL based on certain RRC parameters.
  • the specific RRC parameter may be included in the information regarding the configuration of the serving cell.
  • the information on the serving cell configuration may be at least one of information on the UE-specific serving cell configuration (eg, ServingCellConfig) and information on the serving cell configuration common to multiple UEs (eg, ServingCellConfigCommon).
  • the specific RRC parameter may be, for example, list information containing one or more patterns of unavailable resources.
  • information on the setting of the serving cell may be included at least one of:
  • the above list may contain information on patterns of unavailable resources up to a specific number.
  • the specific number may be predefined in the specification.
  • the information on the list of unavailable resource patterns includes information on the list for adding/changing patterns of unavailable resources and information on the list for releasing patterns of unavailable resources. , information about a group of patterns of unavailable resources.
  • the information on the PDSCH rate matching pattern list includes information on the list for adding/changing the PDSCH rate matching pattern, information on the list for releasing the PDSCH rate matching pattern, and a group of PDSCH rate matching patterns. information about.
  • Information about groups of patterns of unavailable resources may be set for multiple (for example, two) groups.
  • the information about the serving cell configuration may include information about a first group of patterns of unavailable resources and information about a second group of patterns of unavailable resources.
  • the number of groups may be two, the number of groups may be three or more.
  • the number of such groups may be predefined in the specification, configured in the UE via higher layer signaling, or determined based on the UE capabilities.
  • the information about the group of patterns of unavailable resources may correspond to a specific frequency resource level.
  • information about groups of patterns of unavailable resources may be addressed either at the cell level or at the BWP level.
  • the UE may determine resources unavailable for DL based on the union of one or more patterns (resources) included in the list.
  • FIG. 7 is a diagram showing an example of information elements related to the list of patterns of unavailable resources according to Embodiment 1-1-1.
  • ServingCellConfig contains list information (rateMatchPatternXDDToAddModList) for adding/changing unusable resource patterns and list information (rateMatchPatternXDDToReleaseList) for releasing unusable resource patterns.
  • the information about the configuration of the serving cell includes information about the first group of patterns of unavailable resources (rateMatchPatternXDDGroup1), information about the second group of patterns of unavailable resources (rateMatchPatternXDDGroup2).
  • the RRC information element (for example, RateMatchPattern) used for PDSCH rate matching may be used as the configuration information for the pattern of unavailable resources (see FIG. 2).
  • bit size and name of each parameter in each embodiment of the present disclosure are merely examples, and are not limited to the described examples.
  • setting information for patterns of unavailable resources can be obtained from Rel. It may be an RRC information element/parameter newly specified after V.17.
  • the UE may be indicated the unavailable resources for DL in the XDD part based on certain RRC parameters and certain indication information/indicators.
  • the specific RRC parameter may be at least one parameter described in Embodiment 1-1-1 above.
  • the specific indication information/indicator may be notified to the UE using at least one of MAC CE and DCI.
  • the specific indication information/indicator may be a specific field included in a specific DCI format.
  • the specific DCI format may be a DCI format that schedules the PDSCH (eg, DCI format 1_1/1_2) or other DCI formats.
  • the number of bits of a particular indication information/indicator may be determined based on the number of groups of patterns of unavailable resources. For example, the number of bits of a particular indication/indicator may be common to the number of groups of patterns of unavailable resources.
  • the specific indication/indicator may then be configured as a bitmap such that the Nth bit of the specific indication/indicator corresponds to the Nth group of patterns of unavailable resources.
  • resources that are unavailable for DL can be appropriately set/indicated to the UE using at least one of higher layer signaling and physical layer signaling.
  • the resources available for the UL may be configured/indicated based on the configuration/indication of the resources unavailable for the DL.
  • Resources unavailable for DL and resources available for UL may be the same time and frequency resources. Also, resources available for UL may be configured/directed to be included in the same time and frequency resources as resources unavailable for DL.
  • the configuration/indication of resources that are not available for DL may be performed in addition to/instead of the existing PDSCH rate match pattern configuration/indication. Configuration/indication of resources not available to DL may be done semi-statically/dynamically.
  • Dynamic DL unavailable resource configuration may refer to DL unavailable resource configuration based on higher layer signaling and physical layer signaling (DCI).
  • DCI physical layer signaling
  • Embodiment 1-2-1 configuration of resources unavailable for DL based on higher layer signaling will be described.
  • the UE may configure resources that are not available for DL in common with PDSCH rate match pattern configuration (Embodiment 1-2-1-1).
  • the number of bits of the parameter regarding the PDSCH rate matching pattern and the number of bits of the parameter regarding the pattern of unavailable resources may be the same.
  • the number of rate matching patterns included in the PDSCH rate matching pattern list may be the same as the number of patterns included in the list of unavailable resource patterns.
  • the resource granularity indicated by the PDSCH rate match pattern and the resource granularity indicated by the unavailable resource pattern may be the same.
  • the resource granularity may be set for each specific frequency resource and for each specific time resource.
  • the resource granularity may be configured per RB and per symbol.
  • the resource range indicated by the PDSCH rate match pattern and the resource range indicated by the unavailable resource pattern may be the same.
  • the range of resources may be at least one of a maximum specified number of frequency resources and a maximum specified number of time resources.
  • the maximum number of specified number of frequency resources that can be specified may be 275 RBs.
  • the maximum number of specified number of time resources that can be specified may be 2 slots (28 symbols).
  • the UE may configure resources that are not available for DL separately from configuring PDSCH rate match patterns (Embodiment 1-2-1-2).
  • the number of bits of a parameter related to PDSCH rate matching patterns and the number of bits of parameters related to patterns of unavailable resources may be set/defined separately.
  • the number of rate matching patterns included in the list of PDSCH rate matching patterns and the number of patterns included in the list of unavailable resource patterns may be set separately.
  • the number of rate matching patterns included in the list of PDSCH rate matching patterns and the number of patterns included in the list of patterns of unavailable resources are configured differently.
  • the resource granularity indicated by the PDSCH rate match pattern and the resource granularity indicated by the unavailable resource pattern may be defined separately.
  • the resource granularity may be set for each specific frequency resource and for each specific time resource.
  • the resource granularity may be configured per RB and per symbol.
  • the resource range indicated by the PDSCH rate match pattern and the resource range indicated by the unavailable resource pattern may be defined separately.
  • the range of resources may be at least one of a maximum specified number of frequency resources and a maximum specified number of time resources.
  • the maximum number of specified number of frequency resources that can be specified may be larger (or smaller) than 275 RBs.
  • the maximum number of specified number of time resources that can be specified may be larger (or smaller) than 2 slots (28 symbols).
  • list information for adding/changing patterns of unavailable resources may be configured separately from the information about the list of PDSCH rate matching patterns.
  • One or more lists of patterns of unavailable resources may be set.
  • FIG. 8A is a diagram showing an example of application of the unavailable resource pattern according to Embodiment 1-2-1.
  • the pattern of unavailable resources for DL which is set by higher layer signaling, is applied.
  • Embodiment 1-2-2 describes configuration/indication of resources unavailable for DL based on higher layer signaling and physical layer signaling (DCI).
  • DCI physical layer signaling
  • Embodiment 1-2-2 at least one of the methods described in Embodiment 1-2-1 above may be applied to configure resources unavailable for DL by higher layer signaling to the UE.
  • the UE may utilize certain fields included in the DCI that schedules the DL transmission (e.g., DCI format 1_0/1_1/1_2) to determine indication/activation of unavailable resources for the DL ( Embodiment 1-2-2-1).
  • DCI format 1_0/1_1/1_2 DCI format 1_0/1_1/1_2
  • the specific field may be a field different from the PDSCH rate matching field.
  • the specific field may be a field that enables (or disables) or activates a pattern of unavailable resources for the configured DL.
  • that particular field may have a particular number of bits.
  • the specific number may be the same as the number of groups of unavailable resource patterns configured by higher layer signaling.
  • the UE may also utilize specific fields included in DCI formats other than the DCI that schedules DL transmission to determine indication/activation of unavailable resources for DL (Embodiment 1-2 -2-2).
  • the DCI format may be, for example, a common (group common) DCI format for a plurality of terminals.
  • a common (group common) DCI format for a plurality of terminals can be suitably applied to a case where a pattern of unavailable resources is applied to reception of channels/signals other than the PDSCH.
  • the UE may determine which resources are not available for DL based on at least one of a Radio Network Temporary Identifier (RNTI), sequence, reference signal sequence, format applied to the DL channel/signal. (Embodiment 1-2-2-3).
  • RNTI Radio Network Temporary Identifier
  • the UE may determine activation/deactivation of resources unavailable for DL based on specific fields included in a specific MAC CE (Embodiment 1-2-2-4) .
  • FIG. 8B is a diagram showing an example of application of the unavailable resource pattern according to Embodiment 1-2-2.
  • the pattern of unavailable resources for DL which is set/indicated by higher layer signaling and DCI, is applied.
  • resources unavailable for DL can be appropriately set/indicated/activated for the UE using at least one of higher layer signaling and physical layer signaling.
  • Embodiments 1-3 describe DL channels/signals to which the DL unavailable resource configuration/indication is applied.
  • the DL channel/signal to which the DL unavailable resource configuration/indication applies may be at least one of the channels/signals described below: - PDSCH. - PDCCH. • CSI-RS. - CSI-RS (Tracking Reference Signal (TRS)) for tracking. • Positioning Reference Signal (PRS). - SSBs. • Physical Sidelink Control Channel (PSCCH). • Physical Sidelink Shared Channel (PSSCH). • Physical Sidelink Feedback Channel (PSFCH). • A sidelink synchronization signal (eg, Sidelink Primary Synchronization Signal (S-PSS) or Sidelink Secondary Synchronization Signal (S-SSS)). • Physical Sidelink Broadcast Channel (PSBCH).
  • S-PSS Sidelink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • configuration/indication of resources unavailable for DL may be applied only to PDSCH (Embodiment 1-3-1).
  • the UE is configured / indicated in unavailable resources for DL (available resources for UL), it is assumed that reception of DL channels / signals other than PDSCH is scheduled You don't have to.
  • the UE when PDSCH scheduling is performed on an unavailable resource, the UE may rate-match the PDSCH around that resource.
  • the UE may follow the setting/instruction for reception of DL channels/signals other than the PDSCH.
  • setting/instruction of resources unavailable for DL may be applied to PDSCH and DL channels/signals other than PDSCH (hereinafter referred to as other DL channels/signals) (Embodiments 1-3 -2).
  • the UE is configured / indicated / activated resources that are not available for DL, and if the resource and other DL channels / signals overlap, the UE is Other DL channels/signals may not be received (embodiment 1-3-2-1).
  • Embodiment 1-3-2 for the UE, configuration / indication / activation of resources unavailable for DL is performed, and if the resource and other DL channels / signals overlap, the UE , may rate match/puncture the other DL channel/signal around the resource (embodiment 1-3-2-2).
  • Embodiments 1 to 3 different settings/indications/activations of unavailable resources may be performed separately for different channels/signals. For example, different rate matching/puncturing patterns may be set/indicated for different channels/signals.
  • resources that are not available for DL can be appropriately applied to channels/signals other than PDSCH in addition to PDSCH.
  • UE capability information may be defined to indicate support for the functions/features described in at least one of the above embodiments 1-1 to 1-3.
  • the UE may report the UE capability information to the network (eg, base station).
  • the capability information may be reported for each UE, may be reported for each frequency range, may be reported for each band, or may be reported for each feature set (FS) (in units of multiple band combinations per band), or per cell in FS units (per CC per band in multiple band combination units).
  • FS feature set
  • the capability information may be defined only for TDD, may be defined for FDD and TDD, or may be defined separately for FDD and TDD.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • resources can be appropriately set/instructed/activated in the DL.
  • resources unavailable for UL may refer to resources unavailable for certain types of UL transmissions.
  • UL channel/signal setting in the UL for the second period may be performed.
  • the maximum number of configurable resources in existing UL channel/signal configurations may be added.
  • multiple (e.g., two) different Frequency Domain Resource Allocation (FDRA) configurations are set for the UE, and using higher layer signaling/DCI, semi-static / dynamically indicated / changed.
  • one of the two settings may be applied to the configured grant PUSCH on the UL in the first period and the other may be applied to the configured grant PUSCH on the UL in the second period.
  • the UE may perform the instruction/change based on at least one of the configuration/pattern of XDD and an instruction as to whether or not to perform the change (switching).
  • configured grant PUSCH may mean PUSCH that is semi-statically scheduled using only higher layer signaling or using higher layer signaling and physical layer signaling.
  • a PUSCH that is semi-statically scheduled using higher layer signaling may be a Configured Grant Type 1 PUSCH.
  • a PUSCH that is semi-statically scheduled using higher layer signaling and physical layer signaling may be a configured grant type 2 PUSCH.
  • the PUCCH resource/resource set in the first period and the PUCCH resource/resource set in the second period may be configured separately.
  • a plurality of PUCCH resources / resource sets are configured, based on semi-static / dynamic configuration / instruction by higher layer signaling / DCI, selection / determination of the PUCCH resource / resource set may be performed.
  • Semi-static/dynamic configuration/indication by higher layer signaling/DCI may be performed based on, for example, at least one of XDD configuration/pattern, PUCCH resource pattern, PUCCH resource indicator.
  • the SRS resource/resource set in the first period and the SRS resource/resource set in the second period may be configured separately.
  • a plurality of SRS resources/resource sets are configured, and based on semi-static/dynamic configuration/instruction by higher layer signaling (eg, RRC signaling/MAC CE)/DCI, SRS resources/resource sets A selection/decision may be made.
  • the semi-static/dynamic configuration/indication by higher layer signaling/DCI may be performed based on at least one of, for example, XDD configuration/pattern, SRS resource pattern, SRS resource indicator.
  • setting of PRACH in the first period and setting of PRACH in the second period may be performed separately.
  • Embodiment 2-1 even when a period in which a resource that is not available for UL can be set/instructed and a period in which a resource that is not available for UL is not set/instructed are set, UL is appropriately performed. Channel/signal settings can be made.
  • the UE may be configured/indicated/activated for UL unavailable resources based on higher layer signaling, physical layer signaling, and combinations thereof.
  • the method of setting/indicating/activating resources unavailable to the UL for the UE includes at least one method described in Embodiments 1-1 and 1-2 above, with "DL” set to “UL”. , and “UL” may be read and applied to “DL” respectively.
  • Resources available for DL may be set/indicated based on setting/indication of resources unavailable for UL.
  • the resources unavailable for UL and the resources available for DL may be the same time and frequency resources. Also, resources available for DL may be configured/directed to be included in the same time and frequency resources as resources unavailable for UL.
  • the configuration/indication of resources that are not available for UL may be performed in addition to/instead of the existing PDSCH rate match pattern configuration/indication. Configuration/indication of resources not available for UL may be done semi-statically/dynamically.
  • configuration/indication of resources not available for UL may be performed using at least one of higher layer signaling (eg, RRC signaling/MAC CE) and physical layer signaling (eg, DCI).
  • the DCI may be a DCI for scheduling UL/DL channels/signals and/or a group common DCI for multiple UEs.
  • FIG. 9A is a diagram showing an example of application of the unavailable resource pattern according to Embodiment 2-2.
  • a pattern of unavailable resources for the UL which is set by higher layer signaling, is applied.
  • FIG. 9B is a diagram showing another example of applying the unavailable resource pattern according to Embodiment 2-2.
  • a pattern of unavailable resources for the UL configured/indicated by higher layer signaling and DCI, is applied.
  • the pattern of resources unavailable for UL may be set/indicated in addition to setting/indicating the pattern of resources unavailable for DL.
  • the pattern of unavailable resources for UL may be configured/indicated separately from the pattern of unavailable resources for DL.
  • the pattern of resources unavailable for UL may be set/indicated together with the pattern of resources unavailable for DL.
  • higher layer parameters that set the pattern of resources unavailable for UL and the pattern of resources unavailable for DL may be included in a common information element.
  • the DCI that indicates the pattern of resources unavailable for UL and the pattern of resources unavailable for DL may be DCI common to multiple UEs.
  • a pattern of UL unavailable resources may be applied for a particular UL channel/signal.
  • the particular channel may be at least one of PUSCH scheduled using DCI, configured grant PUSCH, PUCCH, SRS, PRACH.
  • the specific channel may be a UL channel/signal other than PUSCH scheduled using DCI.
  • the UE may assume that the UL unavailable resource pattern does not apply to PUSCH scheduled with DCI.
  • setting/indication/activation of different unavailable resources may be performed separately for each separate channel/signal.
  • different rate matching/puncturing patterns may be set/indicated for different channels/signals.
  • Embodiment 2-2 it is possible to appropriately configure/indicate UL unavailable resources for a plurality of UL channels/signals.
  • UE capability information may be defined to indicate support for the functions/features described in at least one of embodiments 2-1 and 2-2 above.
  • the UE may report the UE capability information to the network (eg, base station).
  • the capability information may be reported for each UE, may be reported for each frequency range, may be reported for each band, or may be reported for each feature set (FS) (in units of multiple band combinations per band), or per cell in FS units (per CC per band in multiple band combination units).
  • FS feature set
  • the capability information may be defined only for TDD, may be defined for FDD and TDD, or may be defined separately for FDD and TDD.
  • Capability information related to the first embodiment e.g., capability information about resources not available for DL
  • capability information related to the second embodiment e.g., capabilities about resources not available to UL information
  • Capability information related to the first embodiment e.g., capability information about resources not available for DL
  • capability information related to the second embodiment e.g., capabilities about resources not available to UL
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • the pattern of available resources for the UL may be indicated using the scheduling/trigger DCI.
  • UL channels/signals configured using higher layer signaling are e.g. periodic UL transmissions (e.g. SRS), semi-persistent scheduled UL transmissions, configured grant UL transmissions (e.g. PUSCH), Repeat transmission (eg, PUSCH/PUCCH).
  • periodic UL transmissions e.g. SRS
  • semi-persistent scheduled UL transmissions e.g. PUSCH
  • PUSCH PUSCH
  • Repeat transmission e.g. PUSCH/PUCCH
  • UL in Embodiments 2-4 may be appropriately read as “DL”.
  • UL in Embodiments 2-4 may be read as "DL” and applied to the first embodiment.
  • the DL in a period (first period) in which unavailable resources can be configured/instructed, and the DL in a period (second period) in which unavailable resources are not configured/instructed, Straddling DL reception may be configured/indicated.
  • the DL reception may be repeated transmission (repetition).
  • the UE may apply the pattern of unavailable resources only in the resources in the first period when the DL reception is configured/indicated.
  • the UE may apply the pattern of unavailable resources for DL on the resources in the first period and the resources in the second period when the DL reception is configured/indicated.
  • the UE assumes that the pattern of unavailable resources for DL is applied only in either the resources in the first period or the resources in the second period. You don't have to.
  • the UE may assume that DL reception setting/instruction across the DL in the first period and the DL in the second period is not performed.
  • the UL in the period (first period) in which the unavailable resource can be set/instructed, and the UL in the period (second period) in which the unavailable resource is not set/instructed, A straddling UL transmission may be configured/indicated.
  • the UL transmission may be repeated transmission (repetition).
  • the UE may apply the pattern of unavailable resources only on resources in the first period when the UL transmission is configured/indicated.
  • the UE may also apply the pattern of unavailable resources for the UL on resources in the first period and resources in the second period when the UL transmission is configured/indicated.
  • the UE assumes that when the UL transmission is configured/indicated, the pattern of unavailable resources for UL is applied only in either the resources in the first period or the resources in the second period. You don't have to.
  • the UE may assume that UL transmission across the UL of the first period and the UL of the second period is not configured/instructed.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit at least one of setting information of a pattern of resources unavailable for DL in a certain time resource and instruction information regarding the pattern of the resource. Using at least one of the setting information and the instruction information, the control unit 110 instructs to perform DL reception in a resource other than a resource that is not available for DL, and in a resource that is not available for DL, the above It may be instructed not to perform DL reception (first embodiment).
  • the transmitting/receiving unit 120 may transmit at least one of configuration information of a resource pattern that cannot be used for a specific type of UL transmission in a certain time resource, and instruction information regarding the resource pattern. Using at least one of the configuration information and the instruction information, the control unit 110 instructs to perform the specific type of UL transmission in resources other than resources unavailable to UL, and resource, the specific type of UL transmission may be instructed not to be performed (second embodiment).
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive at least one of setting information of a pattern of resources unavailable for DL in a certain time resource and instruction information regarding the pattern of the resource. Based on at least one of the setting information and the instruction information, the control unit 210 controls to perform DL reception in resources other than resources unavailable for DL, and in resources unavailable for DL, the above You may control not to perform DL reception (1st Embodiment).
  • the certain time resource may be a resource (for example, an XDD part resource) in which DL and uplink may be configured to overlap in time (first embodiment).
  • the number of bits of the parameter included in the configuration information may be equal to the number of bits of the parameter included in the configuration information related to the DL shared channel rate match pattern (first embodiment).
  • the setting information may be set separately for each DL channel or DL signal (first embodiment).
  • the transmitting/receiving unit 220 may receive at least one of setting information of a pattern of resources unavailable for a specific type of UL transmission in a certain time resource, and instruction information regarding the pattern of resources. Based on at least one of the setting information and the instruction information, the control unit 210 controls to perform the specific type of UL transmission in a resource other than the resource unavailable for UL. resource, the specific type of UL transmission may be controlled not to be performed (second embodiment).
  • the specific type of UL transmission may be at least one of a UL shared channel, a UL control channel, a sounding reference signal and a random access channel configured using higher layer signaling (second embodiment).
  • the control unit may control transmission of the UL shared channel scheduled using the downlink control information in the UL unavailable resource (second embodiment).
  • the setting information may be set separately for each UL channel or UL signal (second embodiment).
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots, and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell Cell
  • femtocell small cell
  • picocell a base station
  • serving cell a base station
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信する受信部と、前記設定情報と前記指示情報との少なくとも1つに基づいて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう制御し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう制御する制御部と、を有する。本開示の一態様によれば、リソースの利用効率を高めることができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)において、複数のユーザ端末(user terminal、User Equipment(UE))が、超高密度かつ高トラヒックな環境下で通信を行うことが想定される。
 このような環境下において、下りリンク(DL)のリソースと比較し、上りリンク(UL)のリソースが不足することが想定される。
 しかしながら、これまでのNR仕様においては、上りリンクのリソースを増大させる方法について、十分検討がなされていない。当該方法を適切に制御できなければ、遅延の増大やカバレッジ性能の低下など、システム性能が低下するおそれがある。
 そこで、本開示は、リソースの利用効率を高める端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信する受信部と、前記設定情報と前記指示情報との少なくとも1つに基づいて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう制御し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう制御する制御部と、を有する。
 本開示の一態様によれば、リソースの利用効率を高めることができる。
図1は、RRC情報要素「ServingCellConfig」を示す図である。 図2は、RRC情報要素「PDSCH-Config」を示す図である。 図3は、RRC情報要素「RateMatchPattern」を示す図である。 図4A及び図4Bは、スロット構成の設定の一例を示す図である。 図5は、XDDの構成の一例を示す図である。 図6A及び図6Bは、XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定の一例を示す図である。 図7は、実施形態1-1-1に係る利用不可能なリソースのパターンのリストに関する情報要素の一例を示す図である。 図8A及び図8Bは、実施形態1-2-1及び実施形態1-2-2に係る利用不可能なリソースのパターンの適用の一例を示す図である。 図9A及び図9Bは、実施形態2-2に係る利用不可能なリソースのパターンの適用の一例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(TDD設定)
 Rel.15において、UEに対し、時分割複信(Time Division Duplex(TDD))におけるUL及びDL(ULリソース及びDLリソース)の設定が行われる。UEは、セル固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigCommon)又はUE固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigDedicated)を受信してもよい。
 セル固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigCommon)には、参照サブキャリア間隔を設定するパラメータ(referenceSubcarrierSpacing)と、TDDのUL及びDLのパターンに関するパラメータ(TDD-UL-DL-Pattern)とが含まれる。
 TDD-UL-DL-Patternには、DL-ULパターンの周期を設定するパラメータ(dl-UL-TransmissionPeriodicity)、連続するDLスロット数を設定するパラメータ(nrofDownlinkSlots)、連続するDLシンボル数を設定するパラメータ(nrofDownlinkSymbols)、連続するULスロット数を設定するパラメータ(nrofUplinkSlots)及び連続するULシンボル数を設定するパラメータ(nrofUplinkSymbols)が含まれる。
 UE固有のUL/DLのTDD設定に関する上位レイヤパラメータ(TDD-UL-DL-ConfigDedicated)で、スロットの設定及びスロットインデックスの設定が行われる。
 スロットの設定は、パラメータTDD-UL-DL-SlotConfigによって行われる。TDD-UL-DL-SlotConfigには、スロットインデックスに関するパラメータ(TDD-UL-DL-SlotIndex)と、スロットを構成するシンボルに関するパラメータ(symbols)が含まれる。スロットを構成するシンボルに関するパラメータ(symbols)は、スロットを構成するシンボルが全てDLに用いられることを示すパラメータ(allDownlink)、スロットを構成するシンボルが全てULに用いられることを示すパラメータ(allUplink)、又は、シンボル数を明示的に示すパラメータ(explicit)のいずれかを設定する。
 シンボル数を明示的に示すパラメータ(explicit)は、DLシンボル数を設定するパラメータ(nrofDownlinkSymbols)及びULシンボル数を設定するパラメータ(nrofUplinkSymbols)が含まれる。
 UEは、上述したパラメータに基づいて、UL信号/チャネルの送信及びDL信号/チャネルの受信の少なくとも一方に用いるスロット/シンボルを判断する。
(PDSCHのレートマッチパターン)
 Rel.16までに規定されるNRにおいて、UEは、リソースブロック(Resource Block(RB))シンボルレベルのPDSCHリソースマッピングについて規定されている。
 UEは、設定/指示されるレートマッチパターンに基づいて、PDSCHをマッピングしないリソースを判断する。
 UEに対し、サービングセルの設定に関する情報(例えば、RRC情報要素「ServingCellConfig」)に含まれる1つのレートマッチパターンのリストに関する情報が設定される(図1参照)。当該リストには、最大maxNrofRateMatchPatternsで規定される個数(例えば、4つ)のレートマッチパターンの設定情報(RateMatchPattern)が含まれる。各レートマッチパターンは、レートマッチパターンID(RateMatchPatternId)によって識別される。
 UEは、レートマッチパターンのリストに関する情報に含まれる、1つ以上のレートマッチパターンで設定される使用不可能なパターン(リソース)の結合部分(union)を、PDSCHのリソースのマッピングに使用しない。言い換えれば、UEは、1つのレートマッチパターンのリストに関する情報に含まれる、1つ以上のレートマッチパターンで設定される使用不可能なパターン(リソース)の結合部分(union)周りで、PDSCHのレートマッチを行う。
 準静的なレートマッチは、このように、上位レイヤシグナリング(例えば、ServingCellConfig)のみに基づくPDSCHのレートマッチであることを意味してもよい。
 また、UEに対し、UE固有のPDSCHの設定に関する情報(例えば、RRC情報要素「PDSCH-Config」)に含まれる、1つのレートマッチパターンのリストに関する情報、レートマッチパターングループに関する情報(RateMatchPatternGroup)が設定される。当該リストには、最大maxNrofRateMatchPatternsで規定される個数(例えば、4つ)のレートマッチパターンの設定情報(RateMatchPattern)が含まれる(図2参照)。各レートマッチパターンは、レートマッチパターンID(RateMatchPatternId)によって識別される。
 レートマッチパターングループに関する情報(RateMatchPatternGroup)に関する情報は、第1のレートマッチパターングループに関する情報(rateMatchPatternGroup1)と、第2のレートマッチパターングループに関する情報(rateMatchPatternGroup2)とによって設定される。
 第1のレートマッチパターングループに関する情報(rateMatchPatternGroup1)と、第2のレートマッチパターングループに関する情報(rateMatchPatternGroup2)とは、それぞれ、最大maxNrofRateMatchPatternsPerGroupで規定される個数(例えば、8つ)のレートマッチパターンID(RateMatchPatternId)を含む。
 第1のレートマッチパターングループに関する情報(rateMatchPatternGroup1)と、第2のレートマッチパターングループに関する情報(rateMatchPatternGroup2)とに含まれるレートマッチパターンID(RateMatchPatternId)は、セルレベル(cellLevel)又はBWPレベル(bwpLevel)のいずれかに関連付く(図2参照)。
 セルレベル(cellLevel)のレートマッチパターンID(RateMatchPatternId)は、サービングセルの設定に関する情報(ServingCellConfig)内で設定されるレートマッチパターンに関連付く。また、BWPレベル(bwpLevel)のレートマッチパターンID(RateMatchPatternId)は、PDSCHの設定に関する情報(PDSCH-Config)内で設定されるレートマッチパターンに関連付く。
 UEは、PDSCHをスケジュールするDCIフォーマット(例えば、DCIフォーマット1_1/1_2)に含まれるレートマッチに関するフィールド(レートマッチングインジケータ)に基づいて、第1のレートマッチパターングループと、第2のレートマッチパターングループと、のアクティベーションを行う。
 レートマッチに関するフィールド(レートマッチングインジケータ)のビット数は、設定されるレートマッチパターングループの数に従って0から2ビットのビット数を有する。
 UEは、第1のレートマッチパターングループと、第2のレートマッチパターングループと、を設定されるとき、当該レートマッチに関するフィールドの最上位ビット(MSB)に基づいて、第1のレートマッチパターングループをアクティベートするかを判断し、当該レートマッチに関するフィールドの最下位ビット(LSB)に基づいて、第2のレートマッチパターングループをアクティベートするかを判断する。
 UEは、アクティベートされるレートマッチパターングループに関連する、1つ以上のレートマッチパターンで設定される使用不可能なパターン(リソース)の結合部分(union)を、PDSCHのリソースのマッピングに使用しない。言い換えれば、UEは、アクティベートされるレートマッチパターングループに関連する、1つ以上のレートマッチパターンで設定される使用不可能なパターン(リソース)の結合部分(union)周りで、PDSCHのレートマッチを行う。
 動的なレートマッチは、このように、上位レイヤシグナリング(例えば、ServingCellConfig及びPDSCH-Configの少なくとも一方)とDCIとに基づくPDSCHのレートマッチであることを意味してもよい。
 レートマッチパターンの設定情報(RateMatchPattern)には、レートマッチパターンIDに関する情報(rateMatchPatternId)、パターンタイプに関する情報(patternType)、サブキャリア間隔の設定に関する情報(subcarrierSpacing)、の少なくとも1つが含まれる(図3参照)。
 パターンタイプに関する情報(patternType)は、リソースブロックに関する情報(resourceBlocks)と、リソースブロック内のシンボルに関する情報(symbolsInResourceBlock)と、周期及びパターンに関する情報(periodicityAndPattern)と、から構成されるビットマップ情報(bitmaps)、及び、CORESET IDに関する情報を含む。
 リソースブロックに関する情報(resourceBlocks)は、周波数領域におけるリソースブロックレベルのビットマップであってもよい。リソースブロック内のシンボルに関する情報(symbolsInResourceBlock)は、時間領域におけるシンボルレベルのビットマップであってもよい。
 リソースブロックに関する情報(resourceBlocks)の各ビットにおいて、1が示されるビットに対応するリソースブロックにおいて、利用不可能な(レートマッチを適用する)周波数位置が設定される。Rel.16において、リソースブロックに関する情報(resourceBlocks)によって、最大275RBのレンジで指定することが可能である。
 リソースブロック内のシンボルに関する情報(symbolsInResourceBlock)の各ビットにおいて、1が示されるビットに対応するリソースブロックにおいて、利用不可能な(レートマッチを適用する)時間位置が設定される。
 リソースブロック内のシンボルに関する情報(symbolsInResourceBlock)は、1つのスロット内のシンボルを表すビットマップであってもよいし、2つのスロット内のシンボルを表すビットマップであってもよい。つまり、Rel.16において、リソースブロックに関する情報(resourceBlocks)によって、最大2スロット(28シンボル)のレンジで指定することが可能である。
(XDD)
 Rel.14までのLTEにおいては、周波数分割複信(Frequency Division Duplex(FDD))をメインに実用化され、時分割複信(Time Division Duplex(TDD))にも対応した。
 一方、Rel.15からのNRにおいては、TDDがメインに検討され、同時にFDDにも対応(例えば、LTEバンドのマイグレーション等)した。
 FDDにおいては、DL受信及びUL送信を同時に行うことができ、遅延削減の観点で好ましい。一方で、FDDにおいては、DL及びULのリソース比は固定(例えば、1対1)である。
 TDDにおいては、DL及びULリソースの比率を変更することが可能であり、例えば、DLのトラヒックが相対的に大きい一般的な環境において、DLリソース量を増加させ、DLのスループット向上を図ることが可能である。
 一方で、Rel.16までの時分割複信(Time Division Duplex(TDD))による送受信の時間比を考慮すると、UL信号/チャネルの送信機会が、DL信号/チャネルの受信機会に対して少なくなるケースが考えられる。このようなケースだと、UEは頻繁なUL信号/チャネルの送信を行うことができず、重要なUL信号/チャネルの送信の遅延が発生することが懸念される。また、DL受信機会と比較してUL送信機会が少なくなるため、UL送信機会における信号/チャネルの混雑も懸念される。さらに、TDDではUL信号/チャネルの送信を行うことができる時間リソースが限定されるため、例えば、繰り返し送信(Repetition)によるULカバレッジ拡張技術の適用も限定的となってしまう。
 将来の無線通信システム(例えば、Rel.17/18以降)において、UL及びDLに対してTDDと周波数分割複信(Frequency Division Duplex(FDD))とを組み合わせた分割複信方法が導入されることが検討されている。
 当該分割複信方法は、XDD(Cross Division Duplex)と呼ばれてもよい。XDDは、TDDバンドの1コンポーネントキャリア(CC)内における、又は、複数のCCにおける、DL及びULを周波数分割多重する(DL及びULを同時に利用可能な)複信方法を意味してもよい。当該複信方法が複数のCCに適用される場合、あるCCでDLを利用可能である時間リソースにおいて、別のCCではULを利用可能であることを意味してもよい。当該複数のCCは、同一バンドにおけるCCであってもよい。
 図4Aは、Rel.16までに規定されるTDDの設定の一例を示す図である。図4Aに示す例において、UEに対し、1つのコンポーネントキャリア(CC)(セル、サービングセルと呼ばれてもよい)の帯域幅で、TDDのスロット/シンボルの設定が行われる。
 図4Aに示す例では、DLスロットとULスロットの時間比は、4:1である。このような従来のTDDにおけるスロット/シンボルの設定では、UL時間リソースを十分に確保できず、UL送信遅延の発生やカバレッジ性能低下の恐れがある。
 図4Bは、XDDの構成の一例を示す図である。図4Bの例では、1コンポーネントキャリア(CC)内で、DLの受信に用いられるリソースと、ULの送信に用いられるリソースと、が時間的に重複する。このようなリソースの構成によれば、ULリソースを確保することができ、リソースの利用効率の向上を図ることができる。
 例えば、図4Bに示す例のように、1CCにおける周波数領域のうち、両端をDLに構成し、そのDLでULリソースを挟むような構成とすることで、近隣のキャリアとのクロスリンク干渉(Cross Link Interference(CLI))の発生を回避及び緩和することができる。また、DLリソースとULリソースとの境界には、ガードのための領域が設定されてもよい。
 自己干渉の処理の複雑さを考慮すると、基地局のみがDLリソース及びULリソースを同時に使用することが考えられる。つまり、DL及びULが時間的に重複しているリソースでは、あるUEがDLリソースを使用し、別のUEがULリソースを使用する構成としてもよい。
 図5は、XDDの構成の一例を示す図である。図5に示す例では、TDDバンドのDLリソースの一部をULリソースとし、DLとULとが一部時間的に重複する構成としている。
 図5に示す例において、DLのみの期間は、複数のUE(図5では、UE#1及びUE#2)のそれぞれがDLチャネル/信号を受信する。
 また、DL及びULが時間的に重複する期間では、あるUE(図5の例では、UE#1)がDLチャネル/信号の受信を行い、別のUE(図5の例では、UE#2)がULチャネル/信号の送信を行う。この期間では、基地局は、DL及びULの同時送受信を行う。
 さらに、ULのみの期間は、複数のUEのそれぞれがULチャネル/信号を送信する。
 既存の(例えば、Rel.15/16までに規定される)NRでは、UE用キャリアにおけるDL周波数リソース及びUL周波数リソースは、それぞれDL帯域幅部分(Bandwidth Part(BWP))及びUL BWPとして設定される。DL/ULの周波数リソースを別のDL/ULの周波数リソースに切り替えるためには、複数のBWPの設定とBWPのアダプテーションのメカニズムとが必要である。
 また、既存のNRでは、UE用TDDキャリアにおける時間リソースは、TDD設定において、DL、UL及びフレキシブル(FL)の少なくとも1つとして設定される。
 XDD動作に対する時間ドメイン及び周波数ドメインのリソースの設定方法が、検討されている。例えば、図5のUE#1に対しては、XDDのリソース(DL及びULが重複する期間)を、他のUE(例えば、UE#2)が使用するULリソースの部分の使用を避けた上で設定することが考えられる(図6A参照)。
 また、例えば、図5のUE#2に対しては、XDDのリソースを、他のUE(例えば、UE#1)が使用するDLリソースの部分の使用を避けた上で設定することが考えられる(図6B参照)。
 しかしながら、UEに対するXDDのリソースの設定について検討が十分でない。
 例えば、図5のUE#1に対して、XDD部分の時間リソースがDLとして設定される。しかしながら、XDD部分でないDL部分(pure DL部分)の周波数リソースとは別々に、XDD部分の周波数リソースを設定するかについて検討が十分でない。
 XDD部分におけるUE#1が利用できないリソースは、他のUEがULとして使用しうるため、当該リソースにおいてDL信号/チャネルを受信すると、CLIが発生することが懸念される。
 また、XDD部分におけるUE#1が利用できないリソースに対して、DLリソースの割り当てを無効にすることも検討が必要である。この検討は、例えば、当該利用できないリソース以外の残りのリソースを、1つのUE又は1つのRSに割り当てる場合に検討すべきである。
 そこで、XDD部分におけるDLリソースと、XDD部分でないDLリソースと、を別々に設定/指示する場合には、XDD部分におけるUL部分を含むように利用不可能なリソース(例えば、レートマッチパターン)を設定し、UEが当該UL部分においてDL受信を行わないようにすることが検討されている。
 しかしながら、既存の仕様におけるレートマッチパターンにはいくつかの制限がある。例えば、既存のレートマッチパターンは、PDSCHの受信にのみ適用可能であり、準静的なレートマッチパターンは1つ、動的なレートマッチパターンは2つ、それぞれ設定可能である。
 また、例えば、図5のUE#2に対して、XDD部分の時間リソースがULとして設定される。しかしながら、XDD部分でないUL部分(pure UL部分)の周波数リソースとは別々に、XDD部分の周波数リソースを設定するかについて検討が十分でない。
 特に、XDD部分において、特定のULチャネル/信号(例えば、コンフィギュアドグラントPUSCH/PUCCH/SRS/PRACH)のリソースの設定が制限することが考えられる。XDD部分のULリソースにおいて当該特定のULチャネル/信号を送信するためには、XDD部分のULリソース用と、XDD部分でないULリソース用と、の別々の設定が必要となることが考えられる。
 また、XDD部分のULリソースと、XDD部分でないULリソースとの両方に共通の設定を行うことも考えられるが、利用可能なULリソースは限定される。
 当該特定のULチャネル/信号ごとに、XDD部分のULリソースと、XDD部分でないULリソースとを別々に設定する場合、シグナリングオーバヘッドが増大することになる。
 そこで、シグナリングオーバヘッド削減のため、XDD部分におけるULリソースと、XDD部分でないULリソースと、を別々に設定/指示する場合には、XDD部分におけるDL部分を含むように利用不可能なリソース(例えば、レートマッチパターン)を設定し、UEが当該DL部分においてUL送信を行わないようにすることが検討されている。
 しかしながら、DL/ULに利用不可能なリソースをどのように設定/指示するかについて検討が十分でない。リソースの設定/指示方法が明らかでなければ、適切な送受信を行うことができず、通信品質/通信スループットが低下するおそれがある。
 そこで、本発明者らは、BWP/スロットフォーマットの変更を要しないリソースの設定/指示、及び、DL/ULリソースの設定における非効率な制限の回避、を達成できる方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
 本開示におけるDL信号/チャネルは、ユニキャストが利用されて送信されてもよいし、複数のUEに対するマルチキャスト/ブロードキャストが利用されて送信されてもよい。当該マルチキャスト/ブロードキャスト/ユニキャストの設定は、上位レイヤシグナリングを用いて行われてもよい。
 本開示において、チャネルと信号は互いに読み替えられてもよい。また、本開示において、ULチャネル/信号の送信は、単に「UL送信」と呼ばれてもよい。また、本開示において、DLチャネル/信号の受信は、単に「DL受信」と呼ばれてもよい。
 本開示におけるUL信号/チャネルは、例えば、上りリンク制御チャネル(例えば、PUCCH)、上りリンク共有チャネル(例えば、PUSCH)、測定用参照信号(例えば、サウンディング参照信号(SRS))、ランダムアクセスチャネル(例えば、物理らンダムアクセスチャネル(PRACH))、サイドリンク制御チャネル(例えば、物理サイドリンク制御チャネル(Physical Sidelink Control Channel(PSCCH)))、サイドリンク共有チャネル(例えば、物理サイドリンク共有チャネル(Physical Sidelink Shared Channel(PSSCH)))、サイドリンクフィードバックチャネル(例えば、物理サイドリンクフィードバックチャネル(Physical Sidelink Feedback Channel(PSFCH)))、サイドリンク同期信号(例えば、サイドリンクプライマリ同期信号(Sidelink Primary Synchronization Signal(S-PSS))又はサイドリンクセカンダリ同期信号(Sidelink Secondary Synchronization Signal(S-SSS)))、サイドリンク報知チャネル(例えば、物理サイドリンク報知チャネル(Physical Sidelink Broadcast Channel(PSBCH)))の少なくとも1つであってもよい。
 本開示におけるDL信号/チャネルは、例えば、下りリンク制御チャネル(例えば、PDCCH)、下りリンク共有チャネル(例えば、PDSCH)、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS))、位置決定参照信号(Positioning Reference Signal(PRS))、同期信号ブロック(SSB)、ブロードキャストチャネル(PBCH)、サイドリンク制御チャネル(例えば、PSCCH)、サイドリンク共有チャネル(例えば、PSSCH)、サイドリンクフィードバックチャネル(例えば、PSFCH)、サイドリンク同期信号(例えば、S-PSS又はS-SSS)、サイドリンク報知チャネル(例えば、PSBCH)の少なくとも1つであってもよい。
 本開示において、A/Bは、A及びBの少なくとも一方を意味してもよい。本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(DCI)であってもよい。
 なお、本開示において、ポート、アンテナ、アンテナポート、パネル、ビーム、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、空間関係情報、空間関係、送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))、擬似コロケーション(Quasi-Co-Location(QCL))想定、制御リソースセット(COntrol REsource SET(CORESET))、PDSCH、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ、パネルグループ、ビームグループ、空間関係グループ、PUCCHグループ)、CORESETプール、は、互いに読み替えられてもよい。
 本開示において、DL信号/チャネルの受信及びUL信号/チャネルの送信は、同一のBWP/CC/帯域/運用バンドを用いて送受信されてもよいし、異なるBWP/CC/帯域/運用バンドを用いて送受信されてもよい。
 以下本開示の各図面では、1CCにおける構成を説明するが、周波数方向のリソース数はこれに限られず、複数のCCが利用されてもよい。すなわち、XDDは、キャリア内(Intra-carrier)で運用されてもよいし、キャリア間(複数キャリア、Inter-carrier)で運用されてもよい。
 本開示において、BWP、CC、セル、サービングセル、帯域(band)、キャリア、運用バンド、物理リソースブロックグループ(PRG)、PRB、RB、RE、リソース、は互いに読み替えられてもよい。
 本開示において、AがBとオーバーラップする、AがBと重複する、Aの少なくとも一部がBの少なくとも一部と重複する、は互いに読み替えられてもよい。
 なお、本開示の各実施形態は、UEが、各実施形態における少なくとも1つの機能/能力に対応するUE能力をNWに報告した場合、および、UEに対して、各実施形態における少なくとも1つの機能/能力に対応するUE能力について上位レイヤシグナリングによって設定/アクティベート/指示された場合、の少なくとも一方の条件下において適用されてもよい。本開示の各実施形態は、UEに対して、特定の上位レイヤパラメータが設定/アクティベート/指示された場合において適用されてもよい。
 本開示において、TDDバンドの特定数のCC内におけるDLリソース及びULリソースを同時に利用可能である時間領域(期間/部分)、XDD部分、XDD期間、XDD構成、第1のDL/UL部分、第1の期間、DL受信/UL送信が制限される期間、DLとULが混在する期間、DL期間においてUL送信が可能な期間、利用不可能なリソースが設定/指示されうる期間、は互いに読み替えられてもよい。
 XDD部分におけるDL/ULリソースは、XDD DL/ULリソース、XDD DL/UL、第1のDL/ULリソース、第1のDL/UL部分、利用不可能なリソースが設定/指示されうるDL/ULリソース、利用不可能なリソースが設定/指示されうるDL/UL部分と互いに読み替えられてもよい。
 TDDバンドのDL及びULが時間的に重複しないDL/ULリソースは、非XDD DL/ULリソース、pure DL/ULリソース、XDDでないDL/ULリソース、第2のDL/ULリソース、第2のDL/UL部分、利用不可能なリソースが設定/指示されないDL/ULリソース、利用不可能なリソースが設定/指示されないDL/UL部分第2の期間、などと互いに読み替えられてもよい。
 XDD動作は、XDD DL/ULリソースが設定される期間における動作を示してもよいし、XDDが用いられ得るTDD全体の動作を示してもよい。
 また、本開示において、TDDバンドにおけるDL/UL BWP、Rel.15/16までに規定されるDL/UL BWP、通常DL/UL BWPは互いに読み替えられてもよい。
 本開示において、XDD部分は、DLリソースと同じ時間リソースにおいてULリソースが設定されるときの当該時間リソース、ULリソースと同じ時間リソースにおいてDLリソースが設定されるときの当該時間リソース、の少なくとも一方を意味してもよい。また、XDD部分は、DLリソースと同じ時間リソースにおいてFLリソース(DL及びULに利用可能なリソース)が設定されるときの当該時間リソース、ULリソースと同じ時間リソースにおいてFLリソース(DL及びULに利用可能なリソース)が設定されるときの当該時間リソース、の少なくとも一方を意味してもよい。
 本開示において、情報、設定情報、指示情報、情報要素、パラメータ、フィールド、コードポイントは互いに読み替えられてもよい。本開示において、設定情報、RRC情報要素、RRCパラメータ、上位レイヤパラメータ、上位レイヤシグナリング、は互いに読み替えられてもよい。
 本開示において、ドロップ、中止、キャンセル、パンクチャ、レートマッチ、延期(postpone)などは互いに読み替えられてもよい。
 本開示において、利用不可能な(unavailable)リソース、利用不可能な(unavailable)リソースのパターン、利用可能でないリソース、利用可能でないリソースのパターン、利用しない(unuse)リソース、利用しないリソースのパターン、レートマッチパターン、レートマッチングパターン、パンクチャパターン、パンクチャリングパターン、ミューティングリソースパターン、無効(invalid)リソース、無効リソースパターン、などは互いに読み替えられてもよい。
 本開示の各実施形態は、XDDを運用するケースに限定せず適用可能である。言い換えれば、本開示の各実施形態は、TDD/FDDが適用されるケースにおいても適用可能であり、XDDの運用は必須ではない。
<第1の実施形態>
 第1の実施形態では、DLリソースの設定/指示/アクティベーションに関して説明する。
《実施形態1-1》
 実施形態1-1において、UEは、上位レイヤシグナリング、物理レイヤシグナリング、及びそれらの組み合わせに基づいて、DLに利用不可能なリソースを設定/指示されてもよい。
[実施形態1-1-1]
 例えば、UEは、特定のRRCパラメータに基づいて、DLに利用不可能なリソースを設定されてもよい。
 例えば、当該特定のRRCパラメータは、サービングセルの設定に関する情報にふくまれてもよい。サービングセルの設定に関する情報は、UE固有のサービングセルの設定に関する情報(例えば、ServingCellConfig)、及び、複数のUEに共通のサービングセルの設定に関する情報(例えば、ServingCellConfigCommon)の少なくとも一方であってもよい。
 当該特定のRRCパラメータは、例えば、利用不可能なリソースのパターンを1つ以上含むリストの情報であってもよい。
 例えば、サービングセルの設定に関する情報に、利用不可能なリソースのパターンを追加/変更するためのリストの情報、利用不可能なリソースのパターンをリリースするためのリストの情報、利用不可能なリソースのパターンのグループに関する情報、の少なくとも1つが含まれてもよい。
 上記リストには、最大で特定数の利用不可能なリソースのパターンの情報が含まれてもよい。当該特定数は、仕様で予め定義されてもよい。
 本開示において、利用不可能なリソースのパターンのリストに関する情報は、利用不可能なリソースのパターンを追加/変更するためのリストの情報、利用不可能なリソースのパターンをリリースするためのリストの情報、利用不可能なリソースのパターンのグループに関する情報、の少なくとも1つを意味してもよい。また、PDSCHのレートマッチパターンのリストに関する情報は、PDSCHのレートマッチパターンを追加/変更するためのリストの情報、PDSCHのレートマッチパターンをリリースするためのリストの情報、PDSCHのレートマッチパターンのグループに関する情報、の少なくとも1つを意味してもよい。
 利用不可能なリソースのパターンのグループに関する情報は、複数の(例えば、2つの)グループについて設定されてもよい。例えば、サービングセルの設定に関する情報に、利用不可能なリソースのパターンの第1のグループに関する情報と、利用不可能なリソースのパターンの第2のグループに関する情報と、が含まれてもよい。
 なお、本開示において、当該グループの数が2の場合を説明するが、当該グループの数は3以上であってもよい。当該グループの数は、仕様で予め定義されてもよいし、上位レイヤシグナリングでUEに設定されてもよいし、UE能力に基づいて決定されてもよい。
 利用不可能なリソースのパターンのグループに関する情報は、特定の周波数リソースレベルに対応してもよい。例えば、利用不可能なリソースのパターンのグループに関する情報は、セルレベル又はBWPレベルのいずれかが対応してもよい。
 UEは、リストに含まれる1つ以上のパターン(リソース)の結合部分(union)に基づいて、DLに利用不可能なリソースを判断してもよい。
 図7は、実施形態1-1-1に係る利用不可能なリソースのパターンのリストに関する情報要素の一例を示す図である。図7に示す例では、ServingCellConfig内に、利用不可能なリソースのパターンを追加/変更するためのリストの情報(rateMatchPatternXDDToAddModList)、利用不可能なリソースのパターンをリリースするためのリストの情報(rateMatchPatternXDDToReleaseList)、サービングセルの設定に関する情報に、利用不可能なリソースのパターンの第1のグループに関する情報(rateMatchPatternXDDGroup1)、利用不可能なリソースのパターンの第2のグループに関する情報(rateMatchPatternXDDGroup2)が含まれる。
 また、利用不可能なリソースのパターンの設定情報に、PDSCHのレートマッチに用いられるRRC情報要素(例えば、RateMatchPattern)が用いられてもよい(図2参照)。
 なお、本開示の各実施形態における各パラメータのビットサイズ及び名称はあくまで一例であり、記載した例に限られない。
 また、利用不可能なリソースのパターンの設定情報は、Rel.17以降に新たに規定されるRRC情報要素/パラメータであってもよい。
[実施形態1-1-2]
 例えば、UEは、特定のRRCパラメータと、特定の指示情報/インジケータと、に基づいて、XDD部分におけるDLに利用不可能なリソースを指示されてもよい。
 当該特定のRRCパラメータは、上記実施形態1-1-1に記載した少なくとも1つのパラメータであってもよい。
 当該特定の指示情報/インジケータは、MAC CE及びDCIの少なくとも一方を用いてUEに通知されてもよい。
 例えば、特定の指示情報/インジケータは、特定のDCIフォーマットに含まれる特定のフィールドであってもよい。当該特定のDCIフォーマットは、PDSCHをスケジュールするDCIフォーマット(例えば、DCIフォーマット1_1/1_2)であってもよいし、それ以外のDCIフォーマットであってもよい。
 例えば、特定の指示情報/インジケータのビット数は、利用不可能なリソースのパターンのグループ数に基づいて決定されてもよい。例えば、特定の指示情報/インジケータのビット数は、利用不可能なリソースのパターンのグループ数と共通であってもよい。このとき、特定の指示情報/インジケータのN番目のビットが、利用不可能なリソースのパターンのN番目のグループに対応するようなビットマップとして、特定の指示情報/インジケータが構成されてもよい。
 実施形態1-1によれば、UEに対し、DLに利用不可能なリソースを、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて適切に設定/指示することができる。
《実施形態1-2》
 DLに利用不可能なリソースの設定/指示に基づいて、ULに利用可能なリソースが設定/指示されてもよい。
 DLに利用不可能なリソースとULに利用可能なリソースとが同じ時間及び周波数リソースであってもよい。また、ULに利用可能なリソースが、DLに利用不可能なリソースと同じ時間及び周波数リソースに含まれるよう設定/指示されてもよい。
 DLに利用可能でないリソースの設定/指示は、既存のPDSCHのレートマッチパターンの設定/指示に加えて/代えて、行われてもよい。DLに利用可能でないリソースの設定/指示は、準静的に/動的に行われてもよい。
 準静的なDLに利用可能でないリソースの設定は、上位レイヤシグナリングに基づくDLに利用可能でないリソースの設定を意味してもよい。動的なDLに利用可能でないリソースの設定は、上位レイヤシグナリング及び物理レイヤシグナリング(DCI)に基づくDLに利用可能でないリソースの設定を意味してもよい。
[実施形態1-2-1]
 実施形態1-2-1では、上位レイヤシグナリングに基づくDLに利用不可能なリソースの設定について説明する。
 UEは、PDSCHのレートマッチパターンの設定と共通に、DLに利用可能でないリソースの設定が行われてもよい(実施形態1-2-1-1)。
 例えば、PDSCHのレートマッチパターンに関するパラメータのビット数と、利用不可能なリソースのパターンに関するパラメータのビット数とが同じであってもよい。
 例えば、PDSCHのレートマッチパターンに関するリストに含まれるレートマッチパターンの数と、利用不可能なリソースのパターンに関するリストに含まれるパターン数とが同じであってもよい。
 例えば、PDSCHのレートマッチパターンで示されるリソースの粒度と、利用不可能なリソースのパターンで示されるリソースの粒度とが同じであってもよい。当該リソースの粒度は、特定の周波数リソースごと及び特定の時間リソースごとに設定されてもよい。例えば、当該リソースの粒度は、RBごと及びシンボルごとに設定されてもよい。
 例えば、PDSCHのレートマッチパターンで示されるリソースのレンジと、利用不可能なリソースのパターンで示されるリソースのレンジとが同じであってもよい。当該リソースのレンジは、最大で指定できる特定数の周波数リソースの数、及び、最大で指定できる特定数の時間リソースの数、の少なくとも1つであってもよい。例えば、最大で指定できる特定数の周波数リソースの数は、275RBであってもよい。また、最大で指定できる特定数の時間リソースの数は、2スロット(28シンボル)であってもよい。
 また、UEは、PDSCHのレートマッチパターンの設定と別々に、DLに利用可能でないリソースの設定が行われてもよい(実施形態1-2-1-2)。
 例えば、PDSCHのレートマッチパターンに関するパラメータのビット数と、利用不可能なリソースのパターンに関するパラメータのビット数とが別々に設定/規定されてもよい。
 例えば、PDSCHのレートマッチパターンに関するリストに含まれるレートマッチパターンの数と、利用不可能なリソースのパターンに関するリストに含まれるパターン数とが別々に設定されてもよい。例えば、PDSCHのレートマッチパターンに関するリストに含まれるレートマッチパターンの数と、利用不可能なリソースのパターンに関するリストに含まれるパターン数とが、異なって設定されることがサポートされてもよい。
 例えば、PDSCHのレートマッチパターンで示されるリソースの粒度と、利用不可能なリソースのパターンで示されるリソースの粒度とが、別々に規定されてもよい。当該リソースの粒度は、特定の周波数リソースごと及び特定の時間リソースごとに設定されてもよい。例えば、当該リソースの粒度は、RBごと及びシンボルごとに設定されてもよい。
 例えば、PDSCHのレートマッチパターンで示されるリソースのレンジと、利用不可能なリソースのパターンで示されるリソースのレンジとが別々に規定されてもよい。当該リソースのレンジは、最大で指定できる特定数の周波数リソースの数、及び、最大で指定できる特定数の時間リソースの数、の少なくとも1つであってもよい。例えば、利用不可能なリソースのパターンで示されるリソースについて、最大で指定できる特定数の周波数リソースの数は、275RBより大きく(又は、小さく)てもよい。また、最大で指定できる特定数の時間リソースの数は、2スロット(28シンボル)より大きく(又は、小さく)てもよい。
 また、UEに対し、利用不可能なリソースのパターンを追加/変更するためのリストの情報、利用不可能なリソースのパターンをリリースするためのリストの情報、利用不可能なリソースのパターンのグループに関する情報、の少なくとも1つが、PDSCHのレートマッチパターンのリストに関する情報と別々に設定されてもよい。利用不可能なリソースのパターンに関するリストは、1つ以上設定されてもよい。
 図8Aは、実施形態1-2-1に係る利用不可能なリソースのパターンの適用の一例を示す図である。図8Aに示す例では、上位レイヤシグナリングによって設定される、DLに利用不可能なリソースのパターンが適用される。
[実施形態1-2-2]
 実施形態1-2-2では、上位レイヤシグナリング及び物理レイヤシグナリング(DCI)に基づくDLに利用不可能なリソースの設定/指示について説明する。
 実施形態1-2-2において、UEに対する上位レイヤシグナリングによるDLに利用不可能なリソースの設定は、上記実施形態1-2-1に記載した少なくとも1つの方法が適用されてもよい。
 UEは、DL送信をスケジュールするDCI(例えば、DCIフォーマット1_0/1_1/1_2)に含まれる特定のフィールドを利用して、DLに利用不可能なリソースの指示/アクティベーションを判断してもよい(実施形態1-2-2-1)。
 当該特定のフィールドは、PDSCHのレートマッチに関するフィールドとは異なるフィールドであってもよい。
 当該特定のフィールドは、設定されるDLに利用不可能なリソースのパターンを有効(又は、無効)にする、又は、アクティベーションするフィールドであってもよい。この場合、当該特定のフィールドは、特定数のビットを有してもよい。当該特定数は、上位レイヤシグナリングで設定される利用不可能なリソースのパターンのグループの数と共通であってもよい。
 また、UEは、DL送信をスケジュールするDCI以外のDCIフォーマットに含まれる特定のフィールドを利用して、DLに利用不可能なリソースの指示/アクティベーションを判断してもよい(実施形態1-2-2-2)。当該DCIフォーマットは、例えば、複数の端末に共通の(group commonの)DCIフォーマットであってもよい。複数の端末に共通の(group commonの)DCIフォーマットは、PDSCH以外のチャネル/信号の受信に、利用不可能なリソースのパターンを適用するケースに好適に適用できる。
 また、UEは、DLチャネル/信号に適用される無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、系列、参照信号系列、フォーマット、の少なくとも1つに基づいて、DLに利用不可能なリソースの指示/アクティベーションを判断してもよい(実施形態1-2-2-3)。
 また、UEは、特定のMAC CEに含まれる特定のフィールドに基づいて、DLに利用不可能なリソースのアクティベーション/ディアクティベーションを判断してもよい(実施形態1-2-2-4)。
 図8Bは、実施形態1-2-2に係る利用不可能なリソースのパターンの適用の一例を示す図である。図8Bに示す例では、上位レイヤシグナリング及びDCIによって設定/指示される、DLに利用不可能なリソースのパターンが適用される。
 実施形態1-2によれば、UEに対し、DLに利用不可能なリソースを、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いて適切に設定/指示/アクティベーションすることができる。
《実施形態1-3》
 実施形態1-3においては、DLに利用不可能なリソースの設定/指示が適用されるDLチャネル/信号について説明する。
 DLに利用不可能なリソースの設定/指示が適用されるDLチャネル/信号は、以下に記載するチャネル/信号の少なくとも1つであってもよい:
 ・PDSCH。
 ・PDCCH。
 ・CSI-RS。
 ・トラッキング用CSI-RS(Tracking Reference Signal(TRS))。
 ・位置決定参照信号(Positioning Reference Signal(PRS))。
 ・SSB。
 ・物理サイドリンク制御チャネル(Physical Sidelink Control Channel(PSCCH))。
 ・物理サイドリンク共有チャネル(Physical Sidelink Shared Channel(PSSCH))。
 ・物理サイドリンクフィードバックチャネル(Physical Sidelink Feedback Channel(PSFCH))。
 ・サイドリンク同期信号(例えば、サイドリンクプライマリ同期信号(Sidelink Primary Synchronization Signal(S-PSS))又はサイドリンクセカンダリ同期信号(Sidelink Secondary Synchronization Signal(S-SSS)))。
 ・物理サイドリンク報知チャネル(Physical Sidelink Broadcast Channel(PSBCH))。
 例えば、DLに利用不可能なリソースの設定/指示が、PDSCHのみに適用されてもよい(実施形態1-3-1)。
 実施形態1-3-1において、UEは、設定/指示されるDLに利用不可能なリソース(ULに利用可能なリソース)において、PDSCH以外のDLチャネル/信号の受信をスケジュールされることを想定しなくてもよい。
 実施形態1-3-1において、UEは、利用不可能なリソースにおいてPDSCHのスケジューリングが行われる場合、当該リソース周りでPDSCHをレートマッチしてもよい。
 また、実施形態1-3-1において、UEは、PDSCH以外のDLチャネル/信号の受信の設定/指示に従ってもよい。
 また、例えば、DLに利用不可能なリソースの設定/指示が、PDSCH及びPDSCH以外のDLチャネル/信号(以下、他のDLチャネル/信号と記載)に適用されてもよい(実施形態1-3-2)。
 実施形態1-3-2において、UEに対し、DLに利用不可能なリソースの設定/指示/アクティベーションが行われ、当該リソースと他のDLチャネル/信号がオーバーラップする場合、UEは、当該他のDLチャネル/信号の受信を行わなくてもよい(実施形態1-3-2-1)。
 また、実施形態1-3-2において、UEに対し、DLに利用不可能なリソースの設定/指示/アクティベーションが行われ、当該リソースと他のDLチャネル/信号がオーバーラップする場合、UEは、当該リソース周りで当該他のDLチャネル/信号をレートマッチ/パンクチャしてもよい(実施形態1-3-2-2)。
 なお、実施形態1-3において、異なるチャネル/信号ごとに別々に、別々の利用不可能なリソースの設定/指示/アクティベーションが行われてもよい。例えば、異なるチャネル/信号に対して、異なるレートマッチングパターン/パンクチャリングパターンが設定/指示されてもよい。
 実施形態1-3によれば、PDSCHに加えてPDSCH以外のチャネル/信号に対しても、DLに利用不可能なリソースを適切に適用することができる。
《実施形態1-4》
 上述の実施形態1-1から1-3の少なくとも1つに記載される機能/特徴をサポートすることを示すUE能力情報が規定されてもよい。UEは、当該UE能力情報をネットワーク(例えば、基地局)に報告してもよい。
 当該能力情報は、UEごとに報告されてもよいし、周波数レンジごとに報告されてもよいし、バンドごとに報告されてもよいし、feature set(FS)ごと(複数のバンドの組み合わせ単位におけるバンドごと)に報告されてもよいし、FS単位におけるセルごと(複数のバンドの組み合わせ単位におけるバンドごとのCCごと)に報告されてもよい。
 当該能力情報は、TDDのみのために規定されてもよいし、FDD及びTDDのために規定されてもよいし、FDDとTDDとで別々に規定されてもよい。
 以上のUE能力/上位レイヤパラメータによれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
 以上第1の実施形態によれば、DLにリソースを適切に設定/指示/アクティベーションすることができる。
<第2の実施形態>
 第2の実施形態では、ULリソースの設定/指示に関して説明する。
《実施形態2-1》
 ULに利用可能でないリソースが設定/指示されうる期間(第1の期間)のULと、ULに利用可能でないリソースが設定/指示されない期間(第2の期間)のULとにおいて、別々にULチャネル/信号の設定が行われてもよい。
 本開示において、ULに利用不可能なリソースは、特定種類のUL送信に利用不可能なリソースを意味してもよい。
 例えば、既存のULチャネル/信号の設定に加えて、第2の期間のULにおけるULチャネル/信号の設定が行われてもよい。
 また、例えば、既存のULチャネル/信号の設定における設定可能なリソースの最大数が追加されてもよい。
 例えば、1つのコンフィギュアドグラントPUSCHについて、UEに対し、複数の(例えば、2つ)の異なる周波数ドメインリソース割り当て(FDRA)の設定がセットされ、上位レイヤシグナリング/DCIを用いて、準静的/動的に指示/変更が行われてもよい。例えば、2つの設定のうち、一方が第1の期間のULにおけるコンフィギュアドグラントPUSCHに適用され、他方が第2の期間のULにおけるコンフィギュアドグラントPUSCHに適用されてもよい。例えば、UEは、当該指示/変更を、XDDの構成/パターン、変更(スイッチング)を行うか否かの指示、の少なくとも1つに基づいて行ってもよい。
 なお、本開示において、コンフィギュアドグラントPUSCHは、上位レイヤシグナリングのみを用いて、又は、上位レイヤシグナリング及び物理レイヤシグナリングを用いて準静的にスケジュールされるPUSCHを意味してもよい。例えば、上位レイヤシグナリングを用いて準静的にスケジュールされるPUSCHは、コンフィギュアドグラントタイプ1のPUSCHであってもよい。また、例えば、上位レイヤシグナリング及び物理レイヤシグナリングを用いて準静的にスケジュールされるPUSCHは、コンフィギュアドグラントタイプ2のPUSCHであってもよい。
 例えば、第1の期間におけるPUCCHリソース/リソースセットと、第2の期間におけるPUCCHリソース/リソースセットとが、別々に設定されてもよい。
 また、例えば、複数のPUCCHリソース/リソースセットが設定され、上位レイヤシグナリング/DCIによる準静的/動的な設定/指示に基づいて、PUCCHリソース/リソースセットの選択/決定が行われてもよい。上位レイヤシグナリング/DCIによる準静的/動的な設定/指示は、例えば、XDDの構成/パターン、PUCCHリソースのパターン、PUCCHリソースインジケータ、の少なくとも1つに基づいて行われてもよい。
 例えば、第1の期間におけるSRSリソース/リソースセットと、第2の期間におけるSRSリソース/リソースセットとが、別々に設定されてもよい。
 また、例えば、複数のSRSリソース/リソースセットが設定され、上位レイヤシグナリング(例えば、RRCシグナリング/MAC CE)/DCIによる準静的/動的な設定/指示に基づいて、SRSリソース/リソースセットの選択/決定が行われてもよい。上位レイヤシグナリング/DCIによる準静的/動的な設定/指示は、例えば、XDDの構成/パターン、SRSリソースのパターン、SRSリソースインジケータ、の少なくとも1つに基づいて行われてもよい。
 例えば、第1の期間におけるPRACHの設定と、第2の期間におけるPRACHの設定とが、別々に行われてもよい。
 実施形態2-1によれば、ULに利用可能でないリソースが設定/指示されうる期間と、ULに利用可能でないリソースが設定/指示されない期間とが設定される場合であっても、適切にULチャネル/信号の設定を行うことができる。
《実施形態2-2》
 実施形態2-2において、UEは、上位レイヤシグナリング、物理レイヤシグナリング、及びそれらの組み合わせに基づいて、ULに利用不可能なリソースを設定/指示/アクティベーションされてもよい。
 UEに対する、ULに利用不可能なリソースの設定/指示/アクティベーションの方法は、上述の実施形態1-1及び1-2に記載される少なくとも1つの方法を、「DL」を「UL」に、「UL」を「DL」に、それぞれ読み替えて適用してもよい。
 ULに利用不可能なリソースの設定/指示に基づいて、DLに利用可能なリソースが設定/指示されてもよい。
 ULに利用不可能なリソースとDLに利用可能なリソースとが同じ時間及び周波数リソースであってもよい。また、DLに利用可能なリソースが、ULに利用不可能なリソースと同じ時間及び周波数リソースに含まれるよう設定/指示されてもよい。
 ULに利用可能でないリソースの設定/指示は、既存のPDSCHのレートマッチパターンの設定/指示に加えて/代えて、行われてもよい。ULに利用可能でないリソースの設定/指示は、準静的に/動的に行われてもよい。
 例えば、ULに利用可能でないリソースの設定/指示は、上位レイヤシグナリング(例えば、RRCシグナリング/MAC CE)及び物理レイヤシグナリング(例えば、DCI)の少なくとも1つを用いて行われてもよい。当該DCIは、UL/DLチャネル/信号をスケジュールするDCI、及び、複数のUEに共通の(group common)DCIの少なくとも一方であってもよい。
 図9Aは、実施形態2-2に係る利用不可能なリソースのパターンの適用の一例を示す図である。図9Aに示す例では、上位レイヤシグナリングによって設定される、ULに利用不可能なリソースのパターンが適用される。
 図9Bは、実施形態2-2に係る利用不可能なリソースのパターンの適用の他の例を示す図である。図9Bに示す例では、上位レイヤシグナリング及びDCIによって設定/指示される、ULに利用不可能なリソースのパターンが適用される。
 ULに利用不可能なリソースのパターンは、DLに利用不可能なリソースのパターンの設定/指示に加えて、設定/指示されてもよい。言い換えれば、ULに利用不可能なリソースのパターンは、DLに利用不可能なリソースのパターンの設定/指示とは別々に、設定/指示されてもよい。
 また、ULに利用不可能なリソースのパターンは、DLに利用不可能なリソースのパターンの設定/指示とともに、設定/指示されてもよい。例えば、ULに利用不可能なリソースのパターンと、DLに利用不可能なリソースのパターンと、を設定する上位レイヤパラメータは、共通の情報要素に含まれてもよい。また、ULに利用不可能なリソースのパターンと、DLに利用不可能なリソースのパターンと、を指示するDCIは、複数のUEに共通のDCIであってもよい。
 ULに利用不可能なリソースのパターンは、特定のULチャネル/信号に対して適用されてもよい。当該特定のチャネルは、DCIを用いてスケジュールされるPUSCH、コンフィギュアドグラントPUSCH、PUCCH、SRS、PRACH、の少なくとも1つであってもよい。
 また、当該特定のチャネルは、DCIを用いてスケジュールされるPUSCH以外のULチャネル/信号であってもよい。UEは、ULに利用不可能なリソースのパターンを、DCIを用いてスケジュールされるPUSCHに適用しないと想定してもよい。
 なお、実施形態2-2において、別々のチャネル/信号ごとに別々に、異なる利用不可能なリソースの設定/指示/アクティベーションが行われてもよい。例えば、異なるチャネル/信号に対して、異なるレートマッチングパターン/パンクチャリングパターンが設定/指示されてもよい。
 実施形態2-2によれば、複数のULチャネル/信号に対する、ULに利用不可能なリソースを適切に設定/指示することができる。
《実施形態2-3》
 上述の実施形態2-1及び2-2の少なくとも1つに記載される機能/特徴をサポートすることを示すUE能力情報が規定されてもよい。UEは、当該UE能力情報をネットワーク(例えば、基地局)に報告してもよい。
 当該能力情報は、UEごとに報告されてもよいし、周波数レンジごとに報告されてもよいし、バンドごとに報告されてもよいし、feature set(FS)ごと(複数のバンドの組み合わせ単位におけるバンドごと)に報告されてもよいし、FS単位におけるセルごと(複数のバンドの組み合わせ単位におけるバンドごとのCCごと)に報告されてもよい。
 当該能力情報は、TDDのみのために規定されてもよいし、FDD及びTDDのために規定されてもよいし、FDDとTDDとで別々に規定されてもよい。
 上記第1の実施形態に関連する能力情報(例えば、DLに利用不可能なリソースに関する能力情報)と、上記第2の実施形態に関連する能力情報(例えば、ULに利用不可能なリソースに関する能力情報)とは、共通に設定されてもよいし、別々に設定されてもよい。
 以上のUE能力/上位レイヤパラメータによれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。
《実施形態2-4》
 DCIを用いてULチャネル/信号の送信をスケジュール/トリガされるとき、上記ULに利用可能なリソースのパターンは、上位レイヤシグナリンングのみを用いて設定されてもよい。
 また、DCIを用いてULチャネル/信号の送信をスケジュール/トリガされるとき、上記ULに利用可能なリソースのパターンは、当該スケジュールする/トリガするDCIを用いて指示されてもよい。
 上位レイヤシグナリングを用いてULチャネル/信号の送信を設定されるとき、上記ULに利用可能なリソースのパターンは、上位レイヤシグナリンングのみを用いて設定されてもよい。上位レイヤシグナリングを用いて設定されるULチャネル/信号は、例えば、周期的なUL送信(例えば、SRS)、セミパーシステントスケジューリングされるUL送信、コンフィギュアドグラントのUL送信(例えば、PUSCH)、繰り返し送信(例えば、PUSCH/PUCCH)、の少なくとも1つであってもよい。
 なお、本実施形態2-4の「UL」は、「DL」に適宜読み替えられてもよい。本実施形態2-4の「UL」を、「DL」に読み替え、上記第1の実施形態に適用してもよい。
 実施形態2-4によれば、例えば、ULに利用可能なリソースが動的に指示される場合であって、UEが当該指示の検出に失敗した場合であっても、利用可能でないリソースにおける送受信を避けることができ、CLIの発生を回避することが可能である。
 以上第2の実施形態によれば、ULに利用不可能なリソースを適切に設定/指示/アクティベーションすることができる。
<変形例>
 上記第1の実施形態において、利用可能でないリソースが設定/指示されうる期間(第1の期間)のDLと、利用可能でないリソースが設定/指示されない期間(第2の期間)のDLと、にまたがるDL受信が設定/指示されてもよい。
 例えば、当該DL受信は、繰り返し送信(repetition)であってもよい。
 UEは、当該DL受信が設定/指示されるとき、利用可能でないリソースのパターンを、第1の期間におけるリソースのみにおいて適用してもよい。
 また、UEは、当該DL受信が設定/指示されるとき、DLについての利用可能でないリソースのパターンを、第1の期間におけるリソース及び第2の期間におけるリソースにおいて適用してもよい。
 また、UEは、当該DL受信が設定/指示されるとき、DLについての利用可能でないリソースのパターンを、第1の期間におけるリソース又は第2の期間におけるリソースのいずれかにおいてのみ適用することを想定しなくてもよい。
 上記第1の実施形態において、第1の期間のDLと第2の期間のDLとにまたがるDL受信の設定/指示を行われないことを、UEは想定してもよい。
 上記第2の実施形態において、利用可能でないリソースが設定/指示されうる期間(第1の期間)のULと、利用可能でないリソースが設定/指示されない期間(第2の期間)のULと、にまたがるUL送信が設定/指示されてもよい。
 例えば、当該UL送信は、繰り返し送信(repetition)であってもよい。
 UEは、当該UL送信が設定/指示されるとき、利用可能でないリソースのパターンを、第1の期間におけるリソースのみにおいて適用してもよい。
 また、UEは、当該UL送信が設定/指示されるとき、ULについての利用可能でないリソースのパターンを、第1の期間におけるリソース及び第2の期間におけるリソースにおいて適用してもよい。
 また、UEは、当該UL送信が設定/指示されるとき、ULについての利用可能でないリソースのパターンを、第1の期間におけるリソース又は第2の期間におけるリソースのいずれかにおいてのみ適用することを想定しなくてもよい。
 上記第1の実施形態において、第1の期間のULと第2の期間のULとにまたがるUL送信の設定/指示を行われないことを、UEは想定してもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、ある時間リソースにおけるDLに利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを送信してもよい。制御部110は、前記設定情報と前記指示情報との少なくとも1つを用いて、DLに利用不可能なリソース以外のリソースにおけるDL受信を行うよう指示し、DLに利用不可能なリソースにおいて、前記DL受信を行わないよう指示してもよい(第1の実施形態)。
 送受信部120は、ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを送信してもよい。制御部110は、前記設定情報と前記指示情報との少なくとも1つを用いて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう指示し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう指示してもよい(第2の実施形態)。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、ある時間リソースにおけるDLに利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信してもよい。制御部210は、前記設定情報と前記指示情報との少なくとも1つに基づいて、DLに利用不可能なリソース以外のリソースにおけるDL受信を行うよう制御し、DLに利用不可能なリソースにおいて、前記DL受信を行わないよう制御してもよい(第1の実施形態)。
 前記ある時間リソースは、DL及び上りリンクが時間的に重複して設定されうるリソース(例えば、XDD部分のリソース)であってもよい(第1の実施形態)。
 前記設定情報に含まれるパラメータのビット数は、DL共有チャネルのレートマッチパターンに関する設定情報に含まれるパラメータのビット数と等しくてもよい(第1の実施形態)。
 前記設定情報は、DLチャネル又はDL信号ごとに別々に設定されてもよい(第1の実施形態)。
 送受信部220は、ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信してもよい。制御部210は、前記設定情報と前記指示情報との少なくとも1つに基づいて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう制御し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう制御してもよい(第2の実施形態)。
 前記特定の種類のUL送信は、上位レイヤシグナリングを用いて設定されるUL共有チャネル、UL制御チャネル、サウンディング参照信号及びランダムアクセスチャネルの少なくとも1つであってもよい(第2の実施形態)。
 前記制御部は、前記ULに利用不可能なリソースにおいて、下りリンク制御情報を用いてスケジュールされるUL共有チャネルの送信を行うよう制御してもよい(第2の実施形態)。
 前記設定情報は、ULチャネル又はUL信号ごとに別々に設定されてもよい(第2の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「サービングセル」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信する受信部と、
     前記設定情報と前記指示情報との少なくとも1つに基づいて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう制御し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう制御する制御部と、を有する端末。
  2.  前記特定の種類のUL送信は、上位レイヤシグナリングを用いて設定されるUL共有チャネル、UL制御チャネル、サウンディング参照信号及びランダムアクセスチャネルの少なくとも1つである、請求項1に記載の端末。
  3.  前記制御部は、前記ULに利用不可能なリソースにおいて、下りリンク制御情報を用いてスケジュールされるUL共有チャネルの送信を行うよう制御する、請求項1に記載の端末。
  4.  前記設定情報は、ULチャネル又はUL信号ごとに別々に設定される、請求項1に記載の端末。
  5.  ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを受信するステップと、
     前記設定情報と前記指示情報との少なくとも1つに基づいて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう制御し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう制御するステップと、を有する、端末の無線通信方法。
  6.  ある時間リソースにおける特定の種類のUL送信に利用不可能なリソースのパターンの設定情報と、前記リソースのパターンに関する指示情報と、の少なくとも1つを送信する送信部と、
     前記設定情報と前記指示情報との少なくとも1つを用いて、ULに利用不可能なリソース以外のリソースにおける前記特定の種類のUL送信を行うよう指示し、ULに利用不可能なリソースにおいて、前記特定の種類のUL送信を行わないよう指示する制御部と、を有する基地局。
PCT/JP2021/027174 2021-07-20 2021-07-20 端末、無線通信方法及び基地局 WO2023002573A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023536265A JPWO2023002573A1 (ja) 2021-07-20 2021-07-20
PCT/JP2021/027174 WO2023002573A1 (ja) 2021-07-20 2021-07-20 端末、無線通信方法及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027174 WO2023002573A1 (ja) 2021-07-20 2021-07-20 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2023002573A1 true WO2023002573A1 (ja) 2023-01-26

Family

ID=84979244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027174 WO2023002573A1 (ja) 2021-07-20 2021-07-20 端末、無線通信方法及び基地局

Country Status (2)

Country Link
JP (1) JPWO2023002573A1 (ja)
WO (1) WO2023002573A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194760A1 (ja) * 2019-03-28 2020-10-01 株式会社Nttドコモ ユーザ装置及び基地局装置
WO2021024482A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194760A1 (ja) * 2019-03-28 2020-10-01 株式会社Nttドコモ ユーザ装置及び基地局装置
WO2021024482A1 (ja) * 2019-08-08 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Initial Views on Release 18 NR", 3GPP DRAFT; RP-210293, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210316 - 20210326, 15 March 2021 (2021-03-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051985648 *
SAMSUNG: "Moderator’s summary for discussion [RAN93e-R18Prep-11] Evolution of duplex operation", 3GPP DRAFT; RP-211661, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052049062 *

Also Published As

Publication number Publication date
JPWO2023002573A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2020245973A1 (ja) 端末及び無線通信方法
JP7193550B2 (ja) 端末、無線通信方法及びシステム
JP7252251B2 (ja) 端末、無線通信方法及びシステム
JP7305763B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7244545B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
WO2022220109A1 (ja) 端末、無線通信方法及び基地局
JP7293253B2 (ja) 端末、無線通信方法及びシステム
JP7413414B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7308942B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020144871A1 (ja) ユーザ端末及び無線通信方法
WO2022024377A1 (ja) 端末、無線通信方法及び基地局
JP7335349B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021106167A1 (ja) 端末及び無線通信方法
WO2022244491A1 (ja) 端末、無線通信方法及び基地局
WO2021241210A1 (ja) 端末、無線通信方法及び基地局
WO2022215142A1 (ja) 端末、無線通信方法及び基地局
JP7375017B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7265001B2 (ja) 端末、無線通信方法及びシステム
JP7330597B2 (ja) 端末、無線通信方法及びシステム
WO2020148839A1 (ja) ユーザ端末及び無線通信方法
WO2023002573A1 (ja) 端末、無線通信方法及び基地局
WO2023002574A1 (ja) 端末、無線通信方法及び基地局
WO2022254675A1 (ja) 端末、無線通信方法及び基地局
WO2022254673A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536265

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE