WO2023000920A1 - 一种基于关键层再造原理减缓采场矿压的方法 - Google Patents

一种基于关键层再造原理减缓采场矿压的方法 Download PDF

Info

Publication number
WO2023000920A1
WO2023000920A1 PCT/CN2022/101150 CN2022101150W WO2023000920A1 WO 2023000920 A1 WO2023000920 A1 WO 2023000920A1 CN 2022101150 W CN2022101150 W CN 2022101150W WO 2023000920 A1 WO2023000920 A1 WO 2023000920A1
Authority
WO
WIPO (PCT)
Prior art keywords
grouting
key layer
thickness
rock
coal seam
Prior art date
Application number
PCT/CN2022/101150
Other languages
English (en)
French (fr)
Inventor
张广超
陶广哲
李友
左昊
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2023000920A1 publication Critical patent/WO2023000920A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the invention relates to the field of mine pressure and strata control, in particular to a method for alleviating mine pressure in a stope based on the principle of key layer reconstruction.
  • Underground coal mining is the activity of mining and transporting coal at a certain depth below the surface, and the coal seam is covered with layered rock strata of tens of meters or even nearly a thousand meters.
  • the lithology, thickness, strength, and chemical composition of layered rocks show great differences.
  • mine pressure and rock formation control in the mining discipline the distribution characteristics of rock formations and their breaking rules are important reasons that affect the safety of coal mining. There are two situations as follows:
  • the form of key layer instability depends on the innate conditions of formation occurrence such as the thickness, strength, and geometric relationship of the key layer. Due to the influence of pressure, measures such as increasing the support resistance, adjusting the hydraulic position, and reinforcing the surrounding rock at the end face are mainly taken in the stope.
  • measures such as increasing the support resistance, adjusting the hydraulic position, and reinforcing the surrounding rock at the end face are mainly taken in the stope.
  • the instability movement of the key layer is the root cause of disaster accidents, and the existing stope control measures It is taken after the mine pressure caused by the movement of the key layer appears, and it is a lagging and passive measure.
  • the patent proposes a method for slowing down the mine pressure in the stope by rebuilding the key layer in view of the stratum condition where the key layer cannot be formed in the upper rock strata of the coal seam.
  • First determine the geometric dimensions of the rebuilt key layer through theoretical calculations, including the four parameters of dip length, strike length, thickness, and distance from the mining coal seam; secondly, determine the site plan for the rebuilt key layer, including the drilling layout plan and parameters, and grouting materials , grouting pressure, etc.; finally, determine the key layer reconstruction construction process, including grouting time, process, labor organization, etc.
  • a method for slowing down mine pressure in a stope based on the principle of key layer reconstruction which is divided into the following steps:
  • the second step is to determine the spatial position and thickness of the key layer of reconstruction
  • Step 2.1 Determine the spatial location of the key layer for reconstruction
  • Step 2.1.1 Determine the height H of the reconstruction key layer from the mining coal seam
  • the height H of the rebuilt key layer from the mined coal seam is determined, and the expression is:
  • k 1 , k 2 ... ... k i are the cracking expansion coefficients of the 1st, 2nd ... i layers above the coal seam;
  • Step 2.1.2 Determine the size of the key layer for reconstruction
  • l' is the inclination length of the working face
  • w' is the strike length of the working face
  • H is the height of the rebuilt key layer from the mining coal seam
  • is the rock formation fracture angle
  • Step 2.2 Determine the thickness of the key layer for reconstruction
  • h is the thickness of the rebuilt key layer
  • h1 is the thickness of the load layer
  • ⁇ c is the compressive strength of the rebuilt key layer
  • i is the fracture degree of the key block
  • Acceleration where the expression for i is:
  • h is the thickness of the reconstructed key layer
  • a is the breaking length of the reconstructed key layer
  • the thickness of the load layer h 1 is expressed as:
  • the third step is the key layer reconstruction and grouting reinforcement design scheme
  • Step 3.1.1 Use the reverse grouting scheme at the bottom of the cross step to arrange the pipeline: that is, the grouting workstations are dislocated in the return air roadway and the transportation roadway of the working face.
  • the dislocation distance is 4-6m, and the grouting workstations in the same roadway 8 ⁇ 11m, two adjacent grouting workstations in two roadways form a group.
  • Step 3.1.2) Add an inclined drill hole from the roadway to the roof, the angle ⁇ between the inclined drill hole and the roof is 40° ⁇ 60°, the vertical height of the drill hole is (h+H), and the length of the pipeline is (H+h)/sin ⁇ .
  • Step 3.1.3 In order to have a better grouting reinforcement effect, the grouting pipeline is divided into two parts, and the casing is placed in the inclined borehole in the weak rock layer to prevent the grout from spreading to the irrelevant rock layer.
  • the diameter of the drill hole is 80 ⁇ 100mm;
  • Step 3.1.4 The diameter of the oblique drill hole in the grouting reinforced rock formation section is 50-70mm, and the horizontal pipeline is arranged along the working face by using directional drilling, the length is 1/4, and the horizontal and vertical distance is 3m ⁇ d ⁇ 5m.
  • Step 3.2 Determine the grouting material and the amount of grouting
  • is the grouting loss coefficient
  • V is the grouting volume
  • is the porosity
  • is the grout filling rate
  • m is the grouting stone rate
  • the expression of the grouting volume V is:
  • l is the inclined length of the reconstructed key layer
  • w is the strike length of the reconstructed key layer
  • h is the thickness of the reconstructed key layer
  • the formula for calculating the grouting time T is:
  • Q is the total amount of grouting
  • c is the amount of grouting per hour
  • n is the number of grouting levels
  • is the influence coefficient of the diameter of the grouting pipeline
  • Step 3.3.1 The grouting of the rebuilt key layer is completed within two cycles ahead of the working face within the step distance.
  • Step 3.3.2 The first group of grouting holes is located directly above the starting position of coal seam mining.
  • the hydraulic drilling rig is used to drill the grouting holes in the weak rock formation upwards from the two roadways, and the casing is arranged.
  • Step 3.3.3 After continuing to extend the inclined grouting hole to the first horizontal position A1, use directional drilling to arrange horizontal pipelines along the working face, and use a high-pressure pump to inject grout into the horizontal borehole A1.
  • the grouting time T is determined by the formula (10 )Sure;
  • Step 3.3.4 After the horizontal grouting of the first group A1 is completed, let it stand for 5-7 hours, continue to extend the inclined drilling to the second horizontal position A2, and perform grouting according to the horizontal grouting procedure of A1, and the grouting time is T, Stand still for 5 to 7 hours, and complete all drilling and grouting operations on the entire working face according to the above steps.
  • the present invention proposes a calculation method for recreating the spatial position (spacing, dip length, and strike length) of the key layer; the quantitative mutual feed relationship of the key layer strength and thickness is established, from ensuring the key From the perspective of not slipping and destabilizing the layer, a method for determining the strength and thickness of the key layer is proposed, and the quantitative design of the key layer reconstruction scheme is realized.
  • Figure 1a is the front view of the key layer for reconstruction.
  • Figure 1b is the left view of the location of the rebuilt key layer (A-A section in Figure 1a).
  • Figure 1c is a top view of the location of the rebuilt key layer (section B-B in Figure 1a).
  • Figure 2 shows the relationship between the thickness and strength of the reconstructed key layer.
  • Fig. 3a is a perspective view of the reverse grouting scheme at the bottom of the cross steps.
  • Fig. 3b is a perspective view of a single group of grouting pipelines.
  • Figure 3c is a projection of a single grouting pipeline (note: Figure 3a is a projection of a single grouting pipeline along the coal seam).
  • Figure 3d is a projection of a single grouting pipeline (Note: Figure 3a is a projection of a single grouting pipeline along the coal seam).
  • Figure 4 is a rock columnar diagram of the 1101 working face of a certain mine.
  • Figure 5 is a comparison table of different rock formation thicknesses and compressive strengths.
  • Figure 6 is a comparison curve of different rock formation thickness and compressive strength.
  • Fig. 7a is a perspective view of the reverse grouting scheme at the bottom of the cross step in Embodiment 1.
  • Fig. 7b is a perspective view of a single group of grouting pipelines in Embodiment 1.
  • Fig. 7c is a top projection view of the grouting pipeline in Embodiment 1.
  • Fig. 7d is a projected view of a single grouting pipeline along the coal seam inclination in Example 1.
  • Fig. 7e is a projected view of a single grouting pipeline along the coal seam in Example 1.
  • a method for slowing down mine pressure in a stope based on the principle of key layer reconstruction which is divided into the following steps:
  • the second step is to determine the spatial position and thickness of the reconstruction key layer (as shown in Figure 1)
  • Step 2.1 Determine the spatial location of the key layer for reconstruction
  • the height H of the rebuilt key layer from the mined coal seam is determined, and the expression is:
  • k 1 , k 2 ... ... k i are the cracking expansion coefficients of the 1st, 2nd ... i layers above the coal seam;
  • l' is the inclination length of the working face
  • w' is the strike length of the working face
  • H is the height of the rebuilt key layer from the mining coal seam
  • is the rock formation fracture angle
  • Step 2.2 Determine the thickness of the key layer for reconstruction
  • h is the thickness of the rebuilt key layer
  • h1 is the thickness of the load layer
  • ⁇ c is the compressive strength of the rebuilt key layer
  • i is the fracture degree of the key block
  • Acceleration where the expression for i is:
  • h is the thickness of the reconstructed key layer
  • a is the breaking length of the reconstructed key layer
  • the expression of the load layer thickness h1 is:
  • ⁇ h is the total thickness of the weak rock formation
  • ⁇ h m is the height of the caving zone of the weak rock formation
  • Table 1 The formula for determining the height of the caving zone and fissure zone in weak rock strata
  • the quantitative relationship between the strength and thickness of the reconstructed key layer is obtained, and the strength-thickness relationship curve is drawn (as shown in Figure 2). It should be noted that the relationship between the thickness and strength of the reconstructed key layer determined by formula (5) is a critical relationship. Taking C(h c , ⁇ cc ) in the figure as an example, when the thickness of the reconstructed key layer is determined to be h c , it must be Only when its strength is greater than or equal to ⁇ cc can it meet the requirement of forming a key layer without slipping and destabilizing.
  • the third step is the key layer reconstruction and grouting reinforcement design scheme
  • Step 3.1 Layout the grouting pipeline (as shown in Figure 3a, 3b, 3c, 3d)
  • Step 3.1.1 Use the reverse grouting scheme at the bottom of the cross step to arrange the pipeline: that is, the grouting workstations are dislocated in the return air roadway and the transportation roadway of the working face.
  • the dislocation distance is 4-6m, and the grouting workstations in the same roadway 8 ⁇ 11m, two adjacent grouting workstations in two roadways form a group.
  • Step 3.1.2) Add an inclined drill hole from the roadway to the roof, the angle ⁇ between the inclined drill hole and the roof is 40° ⁇ 60°, the vertical height of the drill hole is (h+H), and the length of the pipeline is (H+h)/sin ⁇ .
  • Step 3.1.3 In order to have a better grouting reinforcement effect, the grouting pipeline is divided into two parts, and the casing is placed in the inclined borehole in the weak rock layer to prevent the grout from spreading to the irrelevant rock layer.
  • the diameter of the drill hole is 80 ⁇ 100mm;
  • Step 3.1.4 The diameter of the oblique drill hole in the grouting reinforced rock formation section is 50-70mm, and the horizontal pipeline is arranged along the working face by using directional drilling, the length is 1/4, and the horizontal and vertical distance is 3m ⁇ d ⁇ 5m.
  • Step 3.2 Determination of grouting material and grouting amount
  • is the grouting loss coefficient
  • V is the grouting volume
  • is the porosity
  • is the grout filling rate
  • m is the grouting stone rate
  • the expression of the grouting volume V is:
  • l is the inclined length of the reconstructed key layer
  • w is the strike length of the reconstructed key layer
  • h is the thickness of the reconstructed key layer
  • the formula for calculating the grouting time T is:
  • Step 3.3.1 The grouting of the rebuilt key layer is completed within two cycles ahead of the working face within the step distance.
  • Step 3.3.2 The first group of grouting holes is located directly above the starting position of coal seam mining.
  • the hydraulic drilling rig is used to drill the grouting holes in the weak rock formation upwards from the two roadways, and the casing is arranged.
  • Step 3.3.3 After continuing to extend the inclined grouting hole to the first horizontal position A1, use directional drilling to arrange horizontal pipelines along the working face, and use a high-pressure pump to inject grout into the horizontal borehole A1.
  • the grouting time T is determined by the formula (10 )Sure;
  • Step 3.3.4 After the horizontal grouting of the first group A1 is completed, let it stand for 5-7 hours, continue to extend the inclined drilling to the second horizontal position A2, and perform grouting according to the horizontal grouting procedure of A1, and the grouting time is T, Stand still for 5 to 7 hours, and complete all drilling and grouting operations on the entire working face according to the above steps.
  • the 3# coal seam is mainly mined in the 1101 working face of a mine in the west of the field survey, with an average thickness of 4m, and the overlying rock layer is a weak rock layer with a thickness of 35m.
  • the size of the working face is 150m ⁇ 100m. 10°; rock stratum rotation angle ⁇ , take 20°; reconstruction key layer breaking length a, take 14m; grouting loss coefficient ⁇ , take 1.1; grout filling rate ⁇ , take 0.75; grout firming rate m, take 0.85;
  • the slurry volume c is taken as 1500m 3 /h; the influence coefficient ⁇ of the diameter of the grouting pipe is taken as 1.2 ⁇ 1.5.
  • the laboratory measured the dilation coefficients k 1 and k 2 of the weak rock above the coal seam to be 1.5 and 1.6 respectively; the density ⁇ of the weak rock was 2500g/m 3 ; the porosity ⁇ was 70%; the compressive strength ⁇ c of the overlying rock was 30MPa.
  • the second step is to reconstruct the spatial position and thickness of the key layer
  • Step 2.1 Determination of the spatial position of the key layer of reconstruction
  • Step 2.1.1 Determination of the height H of the rebuilt key layer from the mining coal seam
  • Step 2.1.2 Determine the size of the key layer for reconstruction
  • Step 2.2 Determine the thickness of the key layer for reconstruction
  • the thickness of the rebuilt key layer is finally chosen to be 8m, and the strength is 35MPa.
  • Step 3.1.1 Use the reverse grouting scheme at the bottom of the cross step to arrange the pipeline: that is, the grouting workstations are dislocated in the return air roadway and the transportation roadway of the working face.
  • the dislocation distance is 5m
  • the grouting workstation interval in the same roadway is 10m.
  • Two adjacent grouting workstations in two roadways form a group.
  • Step 3.1.2 Add inclined boreholes from the roadway to the roof, the angle between the inclined boreholes and the roof is 45°, the vertical height of the boreholes is 20.6m, and the length of the pipeline is 29.13m.
  • Step 3.1.3 In order to have a better grouting reinforcement effect, the grouting pipeline is divided into two parts, and the casing is placed in the inclined drill hole in the weak rock layer to prevent the grout from spreading to the irrelevant rock layer.
  • the diameter of the drill hole is 90mm .
  • Step 3.1.4 The diameter of the oblique drill hole in the grouting reinforced rock formation section is 60mm, and the horizontal pipeline is arranged along the working face by using directional drilling, the length is 25m, and the horizontal and vertical distance is 4m.
  • Step 3.2 Determination of grouting material and grouting amount
  • the porosity of the rebuilt key layer in the 1101 working face is 40%, which belongs to the low porosity rock formation.
  • the grouting material is ordinary cement-sodium silicate double grout
  • Step 3.3.1 The grouting of the rebuilt key layer is completed within two cycles ahead of the working face within the step distance.
  • Step 3.3.2 The first group of grouting holes is located directly above the starting position of coal seam mining.
  • the hydraulic drilling rig is used to drill the grouting holes in the weak rock formation upwards from the two roadways, and the casing is arranged.
  • Step 3.3.3 After continuing to extend the inclined grouting hole to the first horizontal position A1, use directional drilling to arrange horizontal pipelines along the working face, and use a high-pressure pump to inject grout into the A1 horizontal borehole, and the grouting time is 10.6 hours;
  • Step 3.3.4) After the first group of A1 horizontal grouting is completed, let it stand for 5-7 hours, continue to extend the inclined drilling to the second horizontal position A2, and perform grouting according to the A1 horizontal grouting procedure, and the grouting time is 10.6 hours , Stand still for 5-7 hours, and complete all drilling and grouting operations on the entire working face according to the above steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Civil Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Remote Sensing (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明公开一种基于关键层再造原理减缓采场矿压的方法。首先,通过理论计算确定再造关键层的几何尺寸,包括倾向长度、走向长度、厚度、距开采煤层距离四个参数,充分考虑煤层厚度、岩性差异;建立了关键层强度与厚度的定量互馈关系,从确保关键层不发生滑落失稳的角度出发,提出了关键层强度与厚度的确定方法,实现了关键层再造方案的量化设计。其次,确定关键层再造现场方案,提出了交叉迈步底部逆式注浆方案,对钻孔布置、钻孔变径、注浆材料、注浆时间等参数进行了设计,该方案设计合理、可操作性强。最后,确定关键层再造施工流程,包括注浆时间、工序、劳动组织等。

Description

一种基于关键层再造原理减缓采场矿压的方法 技术领域
本发明涉及矿山压力与岩层控制领域,尤其涉及到一种基于关键层再造原理减缓采场矿压的方法。
背景技术
煤炭井工开采是在地表以下一定深度的地层内进行煤炭开采、运输的活动,煤层上覆盖着几十米甚至近千米的层状岩层。层状岩层的岩性、厚度、强度、化学组成等均呈现较大差异性。根据矿业学科矿山压力与岩层控制理论可知,岩层分布特征及其破断规律是影响煤炭开采安全性的重要原因,存在如下述两种情况:
(1)当煤层上部岩层中存在一层至数层厚度较大、强度较高的坚硬岩层时,随着煤层不断采出,该坚硬岩层会发生规律性破断,并在煤层上方形成稳定梁式或拱式平衡结构,从而避免覆岩压力全部作用于采场支架,对于避免采场支架压架、预防端面煤岩体冒漏等灾害事故具有重要作用,该类对于采场围岩控制发挥积极作用的岩层被称为关键层。进一步地,根据关键层的厚度和强度差异,关键层失稳形式分为滑落失稳与回转变形失稳,其中滑落失稳不利采场围岩控制。
(2)当煤层不存在可以作为关键层的坚硬岩层时,如我国西部宁东矿区部分煤层仅被50~150m沙土层覆盖或华北巨野、皖北等矿区煤层被软弱岩层和数百米的冲积层覆盖,上述沙土层、软弱岩层或冲积层具有强度低、整体性差的特点,无法起到关键层的作用。在这种地质条件下,煤层开采过程中,上部岩层的重量将全部或者大部分施加到采场支架上,造成采场支架压力增大甚至压死,端面煤岩体大范围冒落等强烈矿压现象,直接影响矿井安全生产和经济效益。对于该类地层条件下的围岩控制,主要采取增大液压支架工作阻力、提高支柱活量、采场围岩注浆等措施。
就现有研究成果而言,关键层失稳形式(滑落或回转)取决于关键层厚度、强度、几何关系等地层赋存的先天条件,而针对不同关键层失稳形式对采场造成的矿压影响,当前主要在采场内采取增大支护阻力、调整液压位态、端面围岩加固等措施。考虑到关键层发生失稳运动→引起采场矿压显现→采场内采取控制措施的发生过程,可知,关键层发生失稳运动是灾害事故发生的根本原因,而现有的采场控制措施是在关键层运动造成的矿压显现之后采取的,属于滞后、被动的措施。当前尚未有通过再造关键层强度和尺寸,进而影响关键层破断失稳形式, 改善采场矿压的报道,这属于一类超前的、主动的控制措施。
发明内容
本发明为了解决无关键层地层条件下采场强烈矿压事故频发难题,针对煤层上部岩层无法形成关键层的地层条件,本专利提出一种通过再造关键层来减缓采场矿压的方法。首先,通过理论计算确定再造关键层的几何尺寸,包括倾向长度、走向长度、厚度、距开采煤层距离四个参数;其次,确定关键层再造现场方案,包括钻孔布置方案及参数、注浆材料、注浆压力等;最后,确定关键层再造施工流程,包括注浆时间、工序、劳动组织等。
一种基于关键层再造原理减缓采场矿压的方法,分为如下步骤:
第一步 现场调研与室内实验
现场调研煤层顶板及其上覆岩层岩性、煤层厚度M、软弱岩层总厚度∑h、工作面尺寸、岩层破断角β、岩层回转角θ、再造关键层破断长度a、注浆损失系数λ、浆液充填率ε、浆液结实率m、每小时注浆量c;实验室测定煤层顶板岩层的抗压强度σ c、碎胀系数k i、再造关键层密度ρ和孔隙率η、注浆管道直径变化影响系数Δ;
第二步 确定再造关键层空间位置与厚度
步骤2.1)确定再造关键层空间位置
步骤2.1.1)确定再造关键层距开采煤层高度H
基于煤层采出后岩体垮落发生碎胀变形应能充填煤体采出空间的原则,确定再造关键层距开采煤层高度H,表达式为:
Figure PCTCN2022101150-appb-000001
式中,H为再造关键层距开采煤层高度;δ为影响系数,一般认为δ≥90%时能够保证再造关键层稳定;M为开采煤层厚度;k p为垮落岩体复合碎胀系数,其表达式为:
Figure PCTCN2022101150-appb-000002
式中,k 1、k 2………k i为煤层上方第1、2…….i层岩层碎胀系数;
步骤2.1.2)确定再造关键层尺寸
考虑到煤层开采后采动影响范围,确定再造关键层倾向长度l与走向长度w,表达式为:
Figure PCTCN2022101150-appb-000003
w=w'+20       (4)
式中,l'为工作面倾向长度;w'为工作面走向长度;H为再造关键层距开采煤层高度;β为岩层断裂角;
步骤2.2)确定再造关键层厚度
根据关键层形成条件,同时避免关键层发生滑落失稳,确定再造关键层厚度,表达式:
Figure PCTCN2022101150-appb-000004
式中,h为再造关键层厚度;h 1为载荷层厚度;σ c为再造关键层抗压强度;i为关键块断裂度;θ为岩层回转角;ρ为再造关键层密度;g为重力加速度,其中i的表达式为:
Figure PCTCN2022101150-appb-000005
式中,h为再造关键层厚度;a为再造关键层破断长度;载荷层厚度h 1,表达式为:
h 1=∑h-∑h m-∑h l       (7)
式中∑h为软弱岩层总厚度;∑h m为软弱岩层冒落带高度;∑h l为软弱岩层裂隙带高度;
第三步 关键层再造注浆加固设计方案
步骤3.1)布置注浆管道
步骤3.1.1)采用交叉迈步底部逆式注浆方案进行管道布置:即在工作面回风巷道与运输巷道内错位布置注浆工作站,错位距离为4~6m,同一巷道内注浆工作站间隔为8~11m,两个巷道内相临的两个注浆工作站为一组。
步骤3.1.2)由巷道向顶板增设倾斜钻孔,倾斜钻孔与顶板夹角φ为40°~60°,钻孔垂直高度为(h+H),管道长度为(H+h)/sinφ。
步骤3.1.3)为有更好的注浆加固效果,将注浆管道分为两部分,其中在软弱岩层段倾斜钻孔内下套管,防止浆液向无关岩层段扩散,钻孔直径为80~100mm;
步骤3.1.4)注浆加固岩层段倾斜钻孔直径为50~70mm,并利用定向钻沿工作面倾向布置水平管道,长度为l/4,水平垂直距离3m≤d≤5m。
步骤3.2)确定注浆材料与注浆量
根据再造关键层岩层裂隙率选择不同的注浆材料和配比,根据步骤2.2)计算的再造关键层厚度,考虑到岩层裂隙程度与浆液充填率,注浆总量Q计算公式为:
Figure PCTCN2022101150-appb-000006
式中,λ为注浆损失系数;V为注浆体积;η为孔隙率;ε为浆液充填率;m为浆液结石率;其中注浆体积V表达式为:
V=lwh      (9)
式中l为再造关键层倾向长度;w为再造关键层走向长度;h再造关键层厚度;
注浆时间T的计算公式为:
Figure PCTCN2022101150-appb-000007
式中,Q为注浆总量;c为每小时注浆量;n为注浆水平个数;Δ为注浆管道直径变化影响系数;
步骤3.3)施工工艺
步骤3.3.1)再造关键层的注浆工作超前于工作面两个周期来压步距内完成。
步骤3.3.2)第一组注浆孔位于煤层开采起始位置的正上方,实施过程中,采用液压钻机、自两个巷道向上钻出软弱岩层段内注浆孔,并进行套管布置。
步骤3.3.3)继续延伸倾斜注浆孔至第一水平位置A1后,利用定向钻沿工作面倾向布置水平管道,利用高压泵向A1水平钻孔内注浆,注浆时间T由公式(10)确定;
步骤3.3.4)第一组A1水平注浆完毕后,静置5~7小时,继续延伸倾斜钻孔至第二水平位置A2,按照A1水平注浆程序进行注浆,注浆时间为T,静置5~7小时,按照上述步骤完成整个工作面所有钻孔注浆作业。
有益效果:
(1)不同于现有的在采场内增大支架工作阻力、提高支柱活量、采场围岩 注浆等被动、滞后控制措施,本专利提出了通过在煤层上部再造关键层以减缓采场矿压的原理和方法,其是一类从根本上切断采场矿压显现动力来源的主动、超前措施方法,极大减缓了采场矿压显现程度。
(2)充分考虑煤层厚度、岩性差异,本发明提出了再造关键层空间位置(间距、倾向长度、走向长度)的计算方法;建立了关键层强度与厚度的定量互馈关系,从确保关键层不发生滑落失稳的角度出发,提出了关键层强度与厚度的确定方法,实现了关键层再造方案的量化设计。
(3)提出了交叉迈步底部逆式注浆方案,对钻孔布置、钻孔变径、注浆材料、注浆时间等参数进行了设计,该方案设计合理、可操作性强。
附图说明
图1a为再造关键层位置主视图。
图1b为再造关键层位置左视图(图1a A-A剖面)。
图1c为再造关键层位置俯视图(图1a B-B剖面)。
图2为再造关键层厚度与强度关系。
图3a为交叉迈步底部逆式注浆方案立体图。
图3b为单组注浆管路立体图。
图3c为单个注浆管路投影图(注释:图3a沿煤层倾向的单个注浆管路投影)。
图3d为单个注浆管路投影图(注释:图3a沿煤层走向的单个注浆管路投影)。
图4为某矿1101工作面岩石柱状图。
图5为不同岩层厚度与抗压强度对照表。
图6为不同岩层厚度与抗压强度对照关系曲线。
图7a为实施例1交叉迈步底部逆式注浆方案立体图。
图7b为实施例1单组注浆管路立体图。
图7c为实施例1注浆管路俯视投影图。
图7d为实施例1沿煤层倾向的单个注浆管路投影图。
图7e为实施例1沿煤层走向的单个注浆管路投影图。
图中,1-煤层;2-再造关键层;3-软弱岩层;4-回风巷道;5-运输巷道;6- 钻孔套管;7-水平注浆管路;l-再造关键层倾向长度;l'-工作面倾向长度;w-再造关键层走向长度;w′-工作面走向长度;H-再造关键层距煤层高度;h-再造关键层厚度;β-岩层断裂角;φ-倾斜钻孔与顶板夹角。
具体实施方式
一种基于关键层再造原理减缓采场矿压的方法,分为如下步骤:
第一步 现场调研与室内实验
现场调研煤层顶板及其上覆岩层岩性、煤层厚度M、软弱岩层总厚度∑h、工作面尺寸、岩层破断角β、岩层回转角θ、再造关键层破断长度a、注浆损失系数λ、浆液充填率ε、浆液结实率m、每小时注浆量c;实验室测定煤层顶板岩层的抗压强度σ c、碎胀系数k i、再造关键层密度ρ和孔隙率η、注浆管道直径变化影响系数Δ;
第二步 确定再造关键层空间位置与厚度(如图1所示)
步骤2.1)确定再造关键层空间位置
基于煤层采出后岩体垮落发生碎胀变形应能充填煤体采出空间的原则,确定再造关键层距开采煤层高度H,表达式为:
Figure PCTCN2022101150-appb-000008
式中,H为再造关键层距开采煤层高度;δ为影响系数,一般认为δ≥90%时能够保证再造关键层稳定;M为开采煤层厚度;k p为垮落岩体复合碎胀系数,其表达式为:
Figure PCTCN2022101150-appb-000009
式中,k 1、k 2………k i为煤层上方第1、2…….i层岩层碎胀系数;
考虑到煤层开采后采动影响范围,确定再造关键层倾向长度l与走向长度w,表达式为:
Figure PCTCN2022101150-appb-000010
w=w'+20        (4)
式中,l'为工作面倾向长度;w'为工作面走向长度;H为再造关键层距开采煤层高度;β为岩层断裂角;
步骤2.2)确定再造关键层厚度
根据关键层形成条件,同时避免关键层发生滑落失稳,确定再造关键层厚度,表达式:
Figure PCTCN2022101150-appb-000011
式中,h为再造关键层厚度;h 1为载荷层厚度;σ c为再造关键层抗压强度;i为关键块断裂度;θ为岩层回转角;ρ为再造关键层密度;g为重力加速度,其中i的表达式为:
Figure PCTCN2022101150-appb-000012
式中,h为再造关键层厚度;a为再造关键层破断长度;载荷层厚度h 1的表达式为:
h 1=∑h-∑h m-∑h l        (7)
式中∑h为软弱岩层总厚度;∑h m为软弱岩层冒落带高度;∑h l为软弱岩层裂隙带高度,其中∑h m、∑h l确定公式如表1所示:
表1 软弱岩层冒落带、裂隙带高度确定公式
Figure PCTCN2022101150-appb-000013
将相关参数代入公式(5),得到再造关键层强度与厚度的定量关系,并绘制强度与厚度关系曲线(如图2所示)。需要说明的是,公式(5)所确定的再造关键层厚度与强度关系为临界关系,以图中C(h c,σ cc)为例,当确定再造关键层厚度为h c时,必须使其强度大于或等于σ cc,才能满足形成关键层,并不发生滑落失稳的要求。
在图2的基础上,根据关键层形成的基本条件σ c≥σ c1且h≥h 1,确定再造关键层的可选范围,如阴影区域所示,即对应图中AB曲线及其上方区域内的强度与厚度组合。
第三步 关键层再造注浆加固设计方案
步骤3.1)布置注浆管道(如图3a、3b、3c、3d所示)
步骤3.1.1)采用交叉迈步底部逆式注浆方案进行管道布置:即在工作面回风巷道与运输巷道内错位布置注浆工作站,错位距离为4~6m,同一巷道内注浆工作站间隔为8~11m,两个巷道内相临的两个注浆工作站为一组。
步骤3.1.2)由巷道向顶板增设倾斜钻孔,倾斜钻孔与顶板夹角φ为40°~60°,钻孔垂直高度为(h+H),管道长度为(H+h)/sinφ。
步骤3.1.3)为有更好的注浆加固效果,将注浆管道分为两部分,其中在软弱岩层段倾斜钻孔内下套管,防止浆液向无关岩层段扩散,钻孔直径为80~100mm;
步骤3.1.4)注浆加固岩层段倾斜钻孔直径为50~70mm,并利用定向钻沿工作面倾向布置水平管道,长度为l/4,水平垂直距离3m≤d≤5m。
步骤3.2)注浆材料与注浆量确定
根据再造关键层岩层裂隙率选择不同的注浆材料和配比,注浆材料的选择如下表所示:
表2 注浆材料选择表
Figure PCTCN2022101150-appb-000014
根据步骤2.2)计算的关键层厚度,考虑到岩层裂隙程度与浆液充填率,注浆总量Q计算公式为:
Figure PCTCN2022101150-appb-000015
式中,λ为注浆损失系数;V为注浆体积;η为孔隙率;ε为浆液充填率;m 为浆液结石率;其中注浆体积V表达式为:
V=lwh         (9)
式中l为再造关键层倾向长度;w为再造关键层走向长度;h再造关键层厚度;
注浆时间T的计算公式为:
Figure PCTCN2022101150-appb-000016
式中,Q为注浆总量;c为每小时注浆量;n为注浆水平个数;Δ为注浆管道直径变化影响系数,其是根据交叉迈步底部逆式注浆方案中倾斜钻孔长度、岩层布置确定的。
步骤3.3)施工工艺
步骤3.3.1)再造关键层的注浆工作超前于工作面两个周期来压步距内完成。
步骤3.3.2)第一组注浆孔位于煤层开采起始位置的正上方,实施过程中,采用液压钻机、自两个巷道向上钻出软弱岩层段内注浆孔,并进行套管布置。
步骤3.3.3)继续延伸倾斜注浆孔至第一水平位置A1后,利用定向钻沿工作面倾向布置水平管道,利用高压泵向A1水平钻孔内注浆,注浆时间T由公式(10)确定;
步骤3.3.4)第一组A1水平注浆完毕后,静置5~7小时,继续延伸倾斜钻孔至第二水平位置A2,按照A1水平注浆程序进行注浆,注浆时间为T,静置5~7小时,按照上述步骤完成整个工作面所有钻孔注浆作业。
实施例1
第一步 现场调研与室内实验
如图4所示,现场调研西部某矿1101工作面主采3#煤层,平均厚度为4m,上覆岩层为厚度为35m的软弱岩层,工作面尺寸为150m×100m,岩层破断角β,取10°;岩层回转角θ,取20°;再造关键层破断长度a,取14m;注浆损失系数λ,取1.1;浆液充填率ε,取0.75;浆液结实率m,取0.85;每小时注浆量c,取1500m 3/h;注浆管道直径影响系数Δ,取1.2~1.5。
实验室测得煤层上方软弱岩层碎胀系数k 1、k 2分别为1.5、1.6;软弱岩层密度ρ为2500g/m 3;孔隙率η为70%;上覆岩层抗压强度σ c为30MPa。
第二步 再造关键层空间位置与厚度确定
步骤2.1)再造关键层空间位置确定
步骤2.1.1)再造关键层距开采煤层高度H确定
将第一步数据代入公式(1)和(2)计算再造关键层距开采煤层高度H:
Figure PCTCN2022101150-appb-000017
Figure PCTCN2022101150-appb-000018
步骤2.1.2)确定再造关键层尺寸
将第一步数据代入公式(3)和(4)计算再造关键层倾向长度l与走向长度w:
Figure PCTCN2022101150-appb-000019
w=w′+20=150+20=170m
步骤2.2)确定再造关键层厚度
将第一步数据代入公式(6)与(7)计算载荷层厚度h 1
Figure PCTCN2022101150-appb-000020
Figure PCTCN2022101150-appb-000021
h 1=∑h-∑h m-∑h l=35-5.5-18.9=10.6m
根据关键层形成条件,同时避免关键层发生滑落失稳,绘制不同岩层厚度与强度对照表,基于关键层理论,当岩层厚度大于等于7.5m,且强度大于等于30MPa时才能作为关键层,根据不同岩层厚度与抗压强度对照表(如图5所示)以及不同岩层厚度与抗压强度对照曲线(如图6所示),通过方案比较法选取合适一组再造关键层厚度与强度,代入公式(5)得:
Figure PCTCN2022101150-appb-000022
经过方案比较法,考虑到技术经济效益最终选择再造关键层厚度为8m,强度为35MPa。
第三步 关键层再造方案
步骤3.1)注浆管道布置
步骤3.1.1)采用交叉迈步底部逆式注浆方案进行管道布置:即在工作面回风巷道与运输巷道内错位布置注浆工作站,错位距离为5m,同一巷道内注浆工作站间隔为10m,两个巷道内相临的两个注浆工作站为一组。
步骤3.1.2)由巷道向顶板增设倾斜钻孔,倾斜钻孔与顶板夹角φ为45°,钻孔垂直高度为20.6m,管道长度为29.13m。
步骤3.1.3)为有更好的注浆加固效果,将注浆管道分为两部分,其中在软弱岩层段倾斜钻孔内下套管,防止浆液向无关岩层段扩散,钻孔直径为90mm。
步骤3.1.4)注浆加固岩层段倾斜钻孔直径为60mm,并利用定向钻沿工作面倾向布置水平管道,长度为25m,水平垂直距离为4m。
步骤3.2)注浆材料与注浆量确定
根据现场调研结果,1101工作面再造关键层孔隙率为40%,属于低孔隙率岩层,根据注浆材料表选择注浆材料为普通水泥-水玻璃双浆液
根据步骤2.2)计算的关键层厚度与强度,将第一步数据代入公式(8)、(9)、(10)得到:
V=lwh=145×170×4=98600m 3
Figure PCTCN2022101150-appb-000023
Figure PCTCN2022101150-appb-000024
步骤3.3)施工工艺
步骤3.3.1)再造关键层的注浆工作超前于工作面两个周期来压步距内完成。
步骤3.3.2)第一组注浆孔位于煤层开采起始位置的正上方,实施过程中,采用液压钻机、自两个巷道向上钻出软弱岩层段内注浆孔,并进行套管布置。
步骤3.3.3)继续延伸倾斜注浆孔至第一水平位置A1后,利用定向钻沿工作面倾向布置水平管道,利用高压泵向A1水平钻孔内注浆,注浆时间为10.6小时;
步骤3.3.4)第一组A1水平注浆完毕后,静置5~7小时,继续延伸倾斜钻孔至第二水平位置A2,按照A1水平注浆程序进行注浆,注浆时间为10.6小时, 静置5~7小时,按照上述步骤完成整个工作面所有钻孔注浆作业。

Claims (6)

  1. 一种基于关键层再造原理减缓采场矿压的方法,其特征在于,包括如下步骤:
    第一步 现场调研与室内实验
    现场调研煤层顶板及其上覆岩层岩性、煤层厚度M、软弱岩层总厚度∑h、工作面尺寸、岩层破断角β、岩层回转角θ、再造关键层破断长度a、注浆损失系数λ、浆液充填率ε、浆液结实率m、每小时注浆量c;实验室测定煤层顶板岩层的抗压强度σ c、碎胀系数k i、再造关键层密度ρ和孔隙率η、注浆管道直径变化影响系数Δ;
    第二步 确定再造关键层空间位置与厚度
    步骤2.1)确定再造关键层空间位置
    步骤2.1.1)确定再造关键层距开采煤层高度H
    基于煤层采出后岩体垮落发生碎胀变形应能充填煤体采出空间的原则,确定再造关键层距开采煤层高度H,表达式为:
    Figure PCTCN2022101150-appb-100001
    式中,H为再造关键层距开采煤层高度;δ为影响系数,一般认为δ≥90%时能够保证再造关键层稳定;M为开采煤层厚度;k p为垮落岩体复合碎胀系数,其表达式为:
    Figure PCTCN2022101150-appb-100002
    式中,k 1、k 2………k i为煤层上方第1、2…….i层岩层碎胀系数;
    步骤2.1.2)确定再造关键层尺寸
    考虑到煤层开采后采动影响范围,确定再造关键层倾向长度l与走向长度w,表达式为:
    Figure PCTCN2022101150-appb-100003
    w=w'+20  (4)
    式中,l'为工作面倾向长度;w'为工作面走向长度;H为再造关键层距开采煤层高度;β为岩层断裂角;
    步骤2.2)确定再造关键层厚度
    根据关键层形成条件,同时避免关键层发生滑落失稳,确定再造关键层厚度,表达式:
    Figure PCTCN2022101150-appb-100004
    式中,h为再造关键层厚度;h 1为载荷层厚度;σ c为再造关键层抗压强度;i为关键块断裂度;θ为岩层回转角;ρ为再造关键层密度;g为重力加速度,其中i的表达式为:
    Figure PCTCN2022101150-appb-100005
    式中,h为再造关键层厚度;a为再造关键层破断长度;载荷层厚度h 1的表达式为:
    h 1=∑h-∑h m-∑h l  (7)
    式中∑h为软弱岩层总厚度;∑h m为软弱岩层冒落带高度;∑h l为软弱岩层裂隙带高度;
    第三步 关键层再造注浆加固设计方案
    步骤3.1)布置注浆管道
    采用交叉迈步底部逆式注浆方案进行管道布置,在工作面回风巷道与运输巷道向顶板增设倾斜钻孔,在再造关键层厚度范围内,倾斜钻孔自下而上划分为多个水平层;在单一水平层内,在倾斜钻孔周围沿着工作面倾向布置水平钻孔;
    步骤3.2)确定注浆材料与注浆量
    根据再造关键层岩层裂隙率选择不同的注浆材料和配比,根据步骤2.2)计算的再造关键层厚度,考虑到岩层裂隙程度与浆液充填率,注浆总量Q计算公式为:
    Figure PCTCN2022101150-appb-100006
    式中,λ为注浆损失系数;V为注浆体积;η为孔隙率;ε为浆液充填率;m为浆液结石率;其中注浆体积V表达式为:
    V=lwh  (9)
    式中l为再造关键层倾向长度;w为再造关键层走向长度;h再造关键层厚度;
    注浆时间T的计算公式为:
    Figure PCTCN2022101150-appb-100007
    式中,T为注浆时间;Q为注浆总量;c为每小时注浆量;n为注浆水平个数;Δ为注浆管道直径变化影响系数,其是根据交叉迈步底部逆式注浆方案中倾斜钻孔长度、岩层布置确定的;
    步骤3.3)施工工艺
    再造关键层的注浆工作超前于工作面两个周期来压步距内完成,第一组注浆孔位于煤层开采起始位置的正上方,实施过程中,采用液压钻机、自两个巷道向上钻出倾斜注浆孔,至第一水平位置A1后,利用高压泵向A1水平钻孔内注浆,注浆时间T由公式(10)确定;
    第一水平位置A1水平注浆完毕后,静置一段时间,继续延伸倾斜钻孔至第二水平位置A2,按照第一水平位置A1注浆程序进行注浆,完成整个工作面所有钻孔注浆作业。
  2. 根据权利要求1所述的一种基于关键层再造原理减缓采场矿压的方法,其特征在于,步骤2.2)中,软弱岩层冒落带高度∑h m公式以及软弱岩层裂隙带高度∑h l公式分别由覆岩岩性以及单轴抗压强度/MPa确定:
    当覆岩岩性为坚硬岩层,单轴抗压强度为40-80MPa时,
    Figure PCTCN2022101150-appb-100008
    Figure PCTCN2022101150-appb-100009
    当覆岩岩性为中硬岩层,单轴抗压强度为20-40MPa时,
    Figure PCTCN2022101150-appb-100010
    Figure PCTCN2022101150-appb-100011
    当覆岩岩性为软弱岩层,单轴抗压强度为10-20MPa时,
    Figure PCTCN2022101150-appb-100012
    Figure PCTCN2022101150-appb-100013
    当覆岩岩性为极软弱岩层,单轴抗压强度小于10MPa时,
    Figure PCTCN2022101150-appb-100014
    Figure PCTCN2022101150-appb-100015
  3. 根据权利要求1所述的一种基于关键层再造原理减缓采场矿压的方法,其特征在于,步骤3.1)中,回风巷道和运输巷道断面尺寸为高3m×宽4m。
  4. 根据权利要求1所述的一种基于关键层再造原理减缓采场矿压的方法,其 特征在于,步骤3.2)中,倾斜钻孔与顶板夹角为40°~60°,钻孔垂直高度为(H+h),两个巷道内相邻注浆工作站间距为5m,同一巷道内注浆工作站间隔为10m,软弱岩层段倾斜钻孔直径为80~100mm,注浆加固岩层段倾斜钻孔直径为50~70mm,相邻水平层垂直间距为d,3m≤d≤5m;根据工作面尺寸确定水平钻孔长度为l/4,钻孔直径为50~70mm。
  5. 根据权利要求1所述的一种基于关键层再造原理减缓采场矿压的方法,其特征在于,步骤3.3)中,注浆材料的选择和配比由裂隙率类型和孔隙率决定;
    在高裂隙率,孔隙率为80%-100%的情况下,注浆材料由A、B组材料混合,其中A组成分硫酸盐水泥,B组成分石灰及石膏,其比例为0.6:1;
    在中裂隙率,孔隙率为50%-80%的情况下,注浆材料由A、B组材料混合,其中A组成分硫酸盐水泥,B组成分石灰及石膏,其比例为1.3:1;
    在低裂隙率,孔隙率为35%-50%的情况下,注浆材料为普通水泥-水玻璃双浆液;
    在极低裂隙率,孔隙率小于35%的情况下,注浆材料选用普通硫酸盐水泥,水灰比3.2:1~2.8:1。
  6. 根据权利要求1所述的一种基于关键层再造原理减缓采场矿压的方法,其特征在于,步骤3.3)中,第一水平位置A1水平注浆完毕后,静置一段5~7小时。
PCT/CN2022/101150 2021-07-22 2022-06-24 一种基于关键层再造原理减缓采场矿压的方法 WO2023000920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110830519.2A CN113389549B (zh) 2021-07-22 2021-07-22 一种基于关键层再造原理减缓采场矿压的方法
CN202110830519.2 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023000920A1 true WO2023000920A1 (zh) 2023-01-26

Family

ID=77626774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101150 WO2023000920A1 (zh) 2021-07-22 2022-06-24 一种基于关键层再造原理减缓采场矿压的方法

Country Status (2)

Country Link
CN (1) CN113389549B (zh)
WO (1) WO2023000920A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116167223A (zh) * 2023-02-08 2023-05-26 中煤科工开采研究院有限公司 一种人造解放层确定方法
CN116380188A (zh) * 2023-05-19 2023-07-04 山东科技大学 一种采空区地下水库有效储水量测量方法
CN117195526A (zh) * 2023-08-31 2023-12-08 山东能源集团有限公司 一种井工煤矿工作面顶板靶向***岩层层位识别方法及***
CN117436291A (zh) * 2023-12-21 2024-01-23 山东科技大学 一种基于覆岩运动学理论的采场三带辨别方法
CN117948143A (zh) * 2024-03-26 2024-04-30 煤炭科学技术研究院有限公司 初采阶段煤矿工作面顶板致裂方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113389549B (zh) * 2021-07-22 2022-07-08 山东科技大学 一种基于关键层再造原理减缓采场矿压的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1129369A2 (ru) * 1983-06-08 1984-12-15 Институт горного дела Севера Якутского филиала СО АН СССР Способ подготовки зоны геологического нарушени к переходу очистным забоем
CN106869934A (zh) * 2017-04-06 2017-06-20 安徽理工大学 一种适用于倾斜煤层的注浆开采方法
CN107989613A (zh) * 2017-11-14 2018-05-04 太原理工大学 一种覆岩离层分区隔离注浆充填开采煤层全部回采方法
AU2020100227A4 (en) * 2020-02-16 2020-03-26 Xi'an University Of Science And Technology Method for determining coal wall rib spalling of large mining-height fully-mechanized mining face of shallow coal seam
CN111810196A (zh) * 2020-07-15 2020-10-23 中勘资源勘探科技股份有限公司 一种地面注浆加固破碎顶板的方法
CN112096380A (zh) * 2020-01-17 2020-12-18 中国矿业大学(北京) 一种高强度开采岩层运移注浆控制及注浆量计算方法
CN112377221A (zh) * 2020-10-30 2021-02-19 中煤科工集团西安研究院有限公司 采前注浆建造结构关键层抑制导水裂缝带发育的方法
CN113389549A (zh) * 2021-07-22 2021-09-14 山东科技大学 一种基于关键层再造原理减缓采场矿压的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1129369A2 (ru) * 1983-06-08 1984-12-15 Институт горного дела Севера Якутского филиала СО АН СССР Способ подготовки зоны геологического нарушени к переходу очистным забоем
CN106869934A (zh) * 2017-04-06 2017-06-20 安徽理工大学 一种适用于倾斜煤层的注浆开采方法
CN107989613A (zh) * 2017-11-14 2018-05-04 太原理工大学 一种覆岩离层分区隔离注浆充填开采煤层全部回采方法
CN112096380A (zh) * 2020-01-17 2020-12-18 中国矿业大学(北京) 一种高强度开采岩层运移注浆控制及注浆量计算方法
AU2020100227A4 (en) * 2020-02-16 2020-03-26 Xi'an University Of Science And Technology Method for determining coal wall rib spalling of large mining-height fully-mechanized mining face of shallow coal seam
CN111810196A (zh) * 2020-07-15 2020-10-23 中勘资源勘探科技股份有限公司 一种地面注浆加固破碎顶板的方法
CN112377221A (zh) * 2020-10-30 2021-02-19 中煤科工集团西安研究院有限公司 采前注浆建造结构关键层抑制导水裂缝带发育的方法
CN113389549A (zh) * 2021-07-22 2021-09-14 山东科技大学 一种基于关键层再造原理减缓采场矿压的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116167223A (zh) * 2023-02-08 2023-05-26 中煤科工开采研究院有限公司 一种人造解放层确定方法
CN116167223B (zh) * 2023-02-08 2024-02-13 中煤科工开采研究院有限公司 一种人造解放层确定方法
CN116380188A (zh) * 2023-05-19 2023-07-04 山东科技大学 一种采空区地下水库有效储水量测量方法
CN116380188B (zh) * 2023-05-19 2023-11-03 山东科技大学 一种采空区地下水库有效储水量测量方法
CN117195526A (zh) * 2023-08-31 2023-12-08 山东能源集团有限公司 一种井工煤矿工作面顶板靶向***岩层层位识别方法及***
CN117195526B (zh) * 2023-08-31 2024-03-15 山东能源集团有限公司 一种井工煤矿工作面顶板靶向***岩层层位识别方法及***
CN117436291A (zh) * 2023-12-21 2024-01-23 山东科技大学 一种基于覆岩运动学理论的采场三带辨别方法
CN117948143A (zh) * 2024-03-26 2024-04-30 煤炭科学技术研究院有限公司 初采阶段煤矿工作面顶板致裂方法
CN117948143B (zh) * 2024-03-26 2024-05-31 煤炭科学技术研究院有限公司 初采阶段煤矿工作面顶板致裂方法

Also Published As

Publication number Publication date
CN113389549A (zh) 2021-09-14
CN113389549B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023000920A1 (zh) 一种基于关键层再造原理减缓采场矿压的方法
Li et al. Study on deformation failure mechanism and support technology of deep soft rock roadway
Liu et al. Research on roof damage mechanism and control technology of gob-side entry retaining under close distance gob
Ning et al. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining
Kang et al. Improved compound support system for coal mine tunnels in densely faulted zones: a case study of China's Huainan coal field
WO2023000837A1 (zh) 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法
CN108194132B (zh) 一种墩式连拱式采空区处理方法
CN106150545B (zh) 一种根据顶板垮落特征进行采空区部分充填的方法
CN106150546B (zh) 一种根据地表沉陷特征进行采空区部分充填的方法
CN106014423A (zh) 一种近距离煤层巷道的开挖及支护方法
CN112377221B (zh) 采前注浆建造结构关键层抑制导水裂缝带发育的方法
Zhang et al. Squeezing deformation control during bench excavation for the Jinping deep soft-rock tunnel
CN104018849B (zh) 一种基于冒落拱矢高确定的回采巷道支护方法
CN105971630B (zh) 一种近距离煤层巷道顶板冒落防治方法
CN111608726A (zh) 一种间隔式覆岩碎胀充填钢筋笼囊袋注浆减损方法
Liu et al. Characteristics analysis of roof overburden fracture in thick coal seam in deep mining and engineering application of super high water material in backfill mining
CN112253187A (zh) 基于粘土基浆液超前注浆改性底板硬岩抑制采动破坏深度的方法
CN115199273A (zh) 基于地表沉陷控制要求的采煤-充填工作面布局方法
Yuan et al. Case study on rock support technology for roadways based on characteristics of plastic area
CN106907152A (zh) 一种土型注浆钻孔布置及注浆方法
CN107448204A (zh) 砂卵石堆积层浅埋暗挖法隧道近距离下穿深基坑施工方法
Wu et al. Failure mechanism and stability control of surrounding rock of docking roadway under multiple dynamic pressures in extrathick coal seam
CN117167080A (zh) 一种三软厚煤层开采覆岩多层位离层注浆减沉方法
Wen et al. Factors that affect the stability of roads around rocks
BELL The history and techniques of coal mining and the associated effects and influence on construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE