WO2023000824A1 - 天线模组及通信设备 - Google Patents

天线模组及通信设备 Download PDF

Info

Publication number
WO2023000824A1
WO2023000824A1 PCT/CN2022/095796 CN2022095796W WO2023000824A1 WO 2023000824 A1 WO2023000824 A1 WO 2023000824A1 CN 2022095796 W CN2022095796 W CN 2022095796W WO 2023000824 A1 WO2023000824 A1 WO 2023000824A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
insulating
antenna
antenna array
Prior art date
Application number
PCT/CN2022/095796
Other languages
English (en)
French (fr)
Inventor
钟永卫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023000824A1 publication Critical patent/WO2023000824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present application relates to the technical field of communication, and in particular to an antenna module and communication equipment.
  • a communication device usually includes an antenna module to communicate with an antenna module of another communication device.
  • the performance of transmitting and receiving electromagnetic wave signals of the antenna module is not good, resulting in insufficient communication performance of the communication device.
  • the first aspect of the embodiment of the present application provides an antenna module, and the antenna module includes:
  • the first antenna array is carried on the carrier board
  • the second antenna array, the second antenna array is carried on the carrier board, wherein the angle formed by the main lobe direction of the first antenna array and the main lobe direction of the second antenna array in three-dimensional space is greater than or is equal to 45°;
  • a radio frequency chip the radio frequency chip is carried on the carrier board, and the radio frequency chip is used to provide radio frequency signals to the first antenna array and the second antenna array.
  • a second aspect of the embodiments of the present application provides a communication device, where the communication device includes the antenna module as provided in the first aspect.
  • FIG. 1 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a partial structure of the antenna module shown in FIG. 1 along line I-I.
  • FIG. 3 is a top view of a first antenna in the first antenna array in FIG. 1 .
  • FIG. 4 is a schematic perspective view of the first antenna in FIG. 3 .
  • FIG. 5 is a schematic diagram of removing the first conductive layer in FIG. 4 .
  • FIG. 6 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 along II-II according to an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 along II-II according to another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 along II-II according to another embodiment of the present application.
  • Fig. 9 is a top view of a first antenna provided in another embodiment of the present application.
  • FIG. 10 is a schematic perspective view of the first antenna shown in FIG. 9 .
  • FIG. 11 is a partial structural schematic diagram of the first antenna shown in FIG. 10 .
  • Fig. 12 is a sectional view along line IV-IV in Fig. 9 .
  • FIG. 13 is a schematic cross-sectional view of the structure of the first antenna in an embodiment of the present application.
  • FIG. 14 is a schematic cross-sectional view of the structure of the first antenna in another embodiment of the present application.
  • FIG. 15 is a cross-sectional view along line I-I of an antenna module provided by another embodiment of the present application.
  • FIG. 16 is a cross-sectional view of an antenna module along line I-I according to another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of the first feeder shown in FIG. 5 .
  • FIG. 18 is a schematic structural diagram of the second feeder shown in FIG. 5 .
  • Fig. 19 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • Fig. 20 is a sectional view along line A-A in Fig. 19 .
  • the embodiment of the present application provides an antenna module, and the antenna module includes:
  • the first antenna array is carried on the carrier board
  • the second antenna array, the second antenna array is carried on the carrier board, wherein the angle formed by the main lobe direction of the first antenna array and the main lobe direction of the second antenna array in three-dimensional space is greater than or is equal to 45°;
  • a radio frequency chip is carried on the carrier board or arranged on one side of the carrier board, and the radio frequency chip is used to provide radio frequency signals to the first antenna array and the second antenna array.
  • the carrier board includes:
  • a second surface is connected to and intersects with the first surface, and the second surface faces a second direction, wherein the main lobe direction of the second antenna array is the second direction.
  • the first direction is perpendicular to the second direction.
  • the carrier board includes:
  • the second conductive layer is opposite to the first conductive layer and arranged at intervals;
  • the multi-layer third conductive layer is sequentially stacked along the first extending direction and arranged at intervals between the first conductive layer and the second conductive layer;
  • a multi-layer first insulating layer is arranged between the first conductive layer and the third conductive layer closest to the first conductive layer, the second conductive layer and the second conductive layer between the nearest third conductive layers of the conductive layers, and between two adjacent third conductive layers;
  • a multi-layer fourth conductive layer is sequentially stacked along the first extension direction and arranged at intervals between the first conductive layer and the second conductive layer, and the multi-layer fourth conductive layer a layer spaced apart from the multi-layer third conductive layer along the second extension direction;
  • a multi-layer second insulating layer is arranged between the first conductive layer and the fourth conductive layer closest to the first conductive layer, the second conductive layer and the second between the nearest fourth conductive layers of the conductive layer, and between two adjacent fourth conductive layers;
  • the first antenna array includes a plurality of first antennas, the first antenna includes the first conductive layer, the second conductive layer, the multi-layer third conductive layer, the multi-layer fourth conductive layer as well as:
  • a plurality of first connecting wires are used to electrically connect the first conductive layer, the multi-layer third conductive layer and the second conductive layer, and the plurality of first connecting wires are spaced apart settings;
  • a plurality of second connection lines are opposite to the plurality of first connection lines and arranged at intervals to form gaps, the second connection lines are used to electrically connect the first conductive layer, the The multi-layer fourth conductive layer and the second conductive layer, and the plurality of second connection lines are arranged at intervals.
  • At least one first insulating layer is connected to the second insulating layer of the same layer.
  • each layer of the first insulating layer is connected to each layer of the second insulating layer.
  • the first layer of the first insulating layer is connected to the first layer of the second insulating layer; and/or, the last layer of the first insulating layer is connected to the last layer of the first insulating layer
  • One layer of the second insulating layer is connected; the other layers of the first insulating layer and the second insulating layer are arranged at intervals relative to each other.
  • the carrier board includes:
  • the second conductive layer is opposite to the first conductive layer and arranged at intervals;
  • the first insulating layer is disposed between the first conductive layer and the second conductive layer;
  • the first antenna array includes a plurality of first antennas, the first antenna includes the first conductive layer, the second conductive layer, and:
  • first connecting wires are used to electrically connect the first conductive layer and the second conductive layer, and the plurality of first connecting wires are arranged at intervals;
  • the plurality of second connection lines are opposite to the plurality of first connection lines and arranged at intervals to form gaps, and the second connection lines are used to electrically connect the first conductive layer and the The second conductive layer, and the plurality of second connection lines are arranged at intervals.
  • the first insulating layer includes:
  • the second insulating part is connected to the first insulating part, and the first connecting wire passes through the second insulating part, wherein the electromagnetic characteristic of the second insulating part is better than that of the first insulating part Electromagnetic properties of an insulating part.
  • the second insulating layer includes:
  • a fourth insulating part, the fourth insulating part is connected to the third insulating part, and the second connecting wire passes through the fourth insulating part, wherein the electromagnetic characteristics of the fourth insulating part are better than those of the first insulating part Electromagnetic properties of three insulating parts.
  • the antenna module also includes:
  • a first feeding line the first feeding line includes a connected first end and a second end, the first end is electrically connected to the radio frequency chip, and the second end is located between the plurality of first connecting lines and the second end. In the gap formed by the plurality of second connection lines.
  • the antenna module also includes:
  • the second feeding line includes a connected third end and a fourth end, the third end is electrically connected to the radio frequency chip, and the fourth end is located between the plurality of first connecting lines and the fourth end. In the gap formed by the plurality of second connection lines, the fourth end is perpendicular to the second end.
  • the carrying plate also includes:
  • a multi-layer fifth conductive layer is stacked in sequence along the first extension direction and arranged at intervals, and is located between the first conductive layer and the second conductive layer, and the fifth conductive layer Layers are electrically connected to the first conductive layer and the second conductive layer of the same layer, wherein one layer of the fifth conductive layer has a receiving part, and the first feeder is arranged in the receiving part, and Insulated from the fifth conductive layer.
  • the first antenna also includes:
  • the plurality of third connecting wires are electrically connected to the multi-layer fifth conductive layer, the first conductive layer and the second conductive layer, and the plurality of third connecting wires surround At least part of the first feeder is provided.
  • the carrying board has a connected antenna arrangement area and a non-antenna arrangement area, the first antenna array and the second antenna array are located in the antenna arrangement area, and the carrying plate includes sequentially stacked and spaced Multiple layers of load-bearing insulation, each layer of load-bearing insulation comprising:
  • the first bearing insulating part is located in the antenna arrangement area
  • the second bearing insulating part, the second bearing insulating part is located in the non-antenna arrangement area, wherein at least part of the first bearing insulating part has better electromagnetic properties than the second bearing insulating part.
  • the carrier board includes multiple layers of carrier insulating layers stacked in sequence and arranged at intervals
  • the second antenna array includes a plurality of second antennas arranged in an array, wherein at least one second antenna includes a circuit board electrically connected to the radio frequency chip
  • the third feeder, the third feeder includes:
  • a first power feeding part one end of the first power feeding part is electrically connected to the radio frequency chip, and the first power feeding part passes through at least one of the multi-layer insulating layers;
  • connection part one end of the connection part is bent and connected to the first power feeding part, and the connection part is sandwiched between two adjacent layers of load-bearing insulating layers;
  • a second power feeding part one end of the second power feeding part is bent and connected to the other end of the connecting part, and the second power feeding part passes through at least one layer of the multi-layer insulating layers, wherein, the electromagnetic properties of at least one of the two load-bearing insulating layers sandwiching the connecting portion are better than those of the rest of the load-bearing insulating layers in the multi-layer load-bearing insulating layers.
  • the second antenna array further includes a plurality of second antennas, and the plurality of second antennas are embedded in the carrier board.
  • the carrier board includes a first conductive layer on the first surface, and the second antenna is on the same layer as the first conductive layer and arranged at intervals.
  • an implementation mode of the present application provides a communication device, where the communication device includes the antenna module according to the first aspect or any one of the first aspect.
  • the communication device further includes a middle frame and a back cover, the middle frame and the back cover are accommodated to form a storage space, the antenna module is arranged in the storage space, and the middle frame includes a bent and connected A bearing part and a frame part, the frame part has a body part and a sub-wave-transmitting part, the main lobe direction of the first antenna faces the sub-wave-transmitting part, wherein, the transmittance of the sub-wave-transmitting part Greater than the transmittance of the main body part, the direction of the main lobe of the second antenna is toward the rear cover.
  • FIG. 1 is a schematic structural diagram of an antenna module provided by an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional diagram of a part of the structure of the antenna module shown in FIG.
  • This embodiment provides an antenna module 10 .
  • the antenna module 10 includes a carrier board 110 , a first antenna array 120 , a second antenna array 130 and a radio frequency chip 140 .
  • the first antenna array 120 is carried on the carrying board 110 .
  • the second antenna array 130 is carried on the carrier board 110, wherein the angle formed by the main lobe direction of the first antenna array 120 and the main lobe direction of the second antenna array 130 in three-dimensional space is greater than or equal to 45°.
  • the radio frequency chip 140 is carried on the carrier board 110 or arranged on one side of the carrier board 110, and the radio frequency chip 140 is used to provide radio frequency signals to the first antenna array 120 and the second antenna array 130.
  • the carrier board 110 may be, but not limited to, a printed circuit board (Printed Circuit Board, PCB) prepared by a printing process or a board prepared by a high density interconnection process (High Density Interconnection, HDI).
  • PCB printed Circuit Board
  • HDI High Density Interconnection
  • the carrying board 110 may be, but not limited to, a main board or a stacked board.
  • the first antenna array 120 carried in the carrying board 110 may be, but not limited to being embedded in the carrying board 110 , or disposed on the surface of the carrying board 110 .
  • the second antenna array 130 carried in the carrying board 110 may be, but not limited to being embedded in the carrying board 110 , or disposed on the surface of the carrying board 110 .
  • the specific manner in which the first antenna array 120 and the second antenna array 130 are carried on the carrier board 110 in the implementation manner of the present application will be introduced later in combination with specific embodiments.
  • the material of the first antenna array 120 can be, but not limited to, metal or non-metal conductive material; when the first antenna array 120 is a non-metal conductive material, the first antenna array 120 can be opaque, Can also be transparent.
  • the material of the second antenna array 130 can be, but not limited to, metal or non-metal conductive material; when the second antenna array 130 is a non-metal conductive material, the second antenna array 130 can be Opaque can also be transparent.
  • the material of the first antenna array 120 and the material of the second antenna array 130 may be the same or different.
  • the first antenna array 120 is a directional antenna array
  • the second antenna array 130 is a directional antenna array.
  • the first antenna array 120 may be, but not limited to, a horn antenna array, a patch antenna array, a dipole antenna array, and the like.
  • the second antenna array 130 may be, but not limited to, a horn antenna array, a patch antenna array, a dipole antenna array, and the like.
  • the directional antenna array is easier to integrate on the carrier board 110 .
  • the radio frequency chip 140 is used to provide radio frequency signals to the first antenna array 110, including the direct connection between the radio frequency chip 140 and the first antenna array 110, or the radio frequency chip 140 and the first antenna array 110 coupling connection.
  • the radio frequency chip 140 is used to provide radio frequency signals to the second antenna array 120, including that the radio frequency chip 140 is directly connected to the second antenna array 120, or the radio frequency chip 140 is connected to the second antenna array 120.
  • the antenna array 120 is coupled and connected.
  • the frequency band of the radio frequency signal provided by the radio frequency chip 140 to the first antenna array 110 may be the same as or different from that of the radio frequency signal provided to the second antenna array 120, which is not limited here.
  • the antenna pattern usually has two or more lobes, of which the lobe with the greatest radiation intensity is called the main lobe, the remaining lobes are called side lobes or side lobes, and the side lobes in the opposite direction to the main lobe are called back lobes.
  • the main lobe refers to the largest radiation beam located on the radiation pattern of the antenna. Therefore, the main lobe direction refers to the direction of the largest radiation beam on the pattern of the antenna.
  • the so-called angle formed by the main lobe direction of the first antenna array 120 and the main lobe direction of the second antenna array 130 in three-dimensional space is greater than or equal to 45°.
  • the main lobe direction of the first antenna array 120 faces left
  • the main lobe direction of the second antenna array 130 faces upward
  • the main lobe direction of the first antenna array 120 The angle with the main lobe direction of the second antenna array 130 is 90°.
  • the main lobe direction of the first antenna array 120 faces to the left, the main lobe direction of the second antenna array 130 faces to the right, and the main lobe direction of the first antenna array 120 is in the same direction as the The angle between the main lobe directions of the second antenna array 130 is 180°.
  • the main lobe direction of the first antenna array 120 faces left, the main lobe direction of the second antenna array 130 faces downward, and the main lobe direction of the first antenna array 120 is the same as that of the second antenna array 130.
  • the angle between the main lobe directions of the two antenna arrays 130 is 90°.
  • the frequency band of the electromagnetic wave signal sent and received by the first antenna array 120 is the same as the frequency band of the electromagnetic wave signal sent and received by the second antenna array 130 .
  • the frequency band of the electromagnetic wave signal sent and received by the first antenna array 120 is different from the frequency band of the electromagnetic wave signal sent and received by the second antenna array 130 .
  • the size of one of the radiator arrays is limited, so that the frequency band of the electromagnetic wave signal sent and received by the first antenna array 120 is different from that of the second antenna array 130.
  • the frequency bands of electromagnetic wave signals are different.
  • the frequency bands of the electromagnetic wave signals transmitted and received by the first antenna array 120 and the second antenna array 130 in the antenna module 10 can be designed according to requirements, so that the first The frequency band of the electromagnetic wave signal sent and received by the first antenna array 120 is different from the frequency band of the electromagnetic wave signal sent and received by the second antenna array 130 .
  • the first antenna array 120 is a horn antenna array and the second antenna array 130 is a patch antenna array as an example, but it should not be understood as the antenna module 10 provided by this application. limit.
  • the first antenna array 120 can receive electromagnetic wave signals, and can also radiate electromagnetic wave signals. That is, the first antenna array 120 can send and receive electromagnetic wave signals.
  • the first antenna array 120 can receive electromagnetic wave signals, and can also radiate electromagnetic wave signals.
  • the second antenna array 130 can receive electromagnetic wave signals, and can also radiate electromagnetic wave signals. In other words, the second antenna array 130 can send and receive electromagnetic wave signals.
  • the electromagnetic wave signals transmitted and received by the first antenna array 120 and the second antenna array 130 may be, but not limited to, electromagnetic wave signals supported by the fourth generation mobile communication technology (4th generation wireless systems, 4G), or the fifth band mobile Electromagnetic wave signals supported by communication technology (5th generation wireless systems, 5G), etc.
  • the frequency bands of the electromagnetic wave signals sent and received by the first antenna array 120 and the second antenna array 130 should not be construed as a limitation to the antenna module 10 provided in the embodiment of the present application.
  • the signals transmitted and received by the first antenna array 120 and the second antenna array 130 may be, but not limited to, radio frequency signals in the millimeter wave band or radio frequency signals in the terahertz band.
  • 5G new air interface (new radio, NR) mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz-6GHz, also known as the sub-6GHz frequency band; the frequency range of the FR2 frequency band is 24.25GHz-52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • 3GPP Release 15 specifies the current 5G millimeter wave frequency bands including: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the angle formed by the main lobe direction of the first antenna array 120 and the main lobe direction of the second antenna array 130 in three-dimensional space is greater than or equal to 45°, so that the second The electromagnetic wave signals transmitted and received by the first antenna array 120 and the electromagnetic wave signals transmitted and received by the second antenna array 130 can cover different directions in space and cover a wider range, so as to improve the spatial coverage of the electromagnetic wave signals transmitted and received by the antenna module 10, Furthermore, the antenna module 10 has a better communication effect.
  • one radio frequency chip 140 is used to control the two arrays of the first antenna array 120 and the second antenna array 130. Compared with the first antenna array 120 and the second antenna array 130 Both are controlled by one radio frequency chip, which can save one radio frequency chip and reduce the cost of the antenna module 10 .
  • both the first antenna array 120 and the second antenna array 130 are carried on the same carrier board 110, so that the integration degree of the antenna module 10 is high, and the cross-section Lower and smaller.
  • the assembly is simple and convenient to assemble with other components in the communication device 1, which is beneficial to improve the integration of the communication device 1.
  • the carrying board 110 includes a first surface 110a and a second surface 110b.
  • the first surface 110a faces a first direction d1
  • the second surface 110b is connected to and intersects with the first surface 110a
  • the second surface 110b faces a second direction d2, wherein the first antenna array
  • the main lobe direction of the antenna array 120 is the first direction d1
  • the main lobe direction of the second antenna array 130 is the second direction d2.
  • the shape of the carrying plate 110 is a cuboid or similar to a cuboid as an example.
  • the first surface 110a can be any one surface of the carrier board 110
  • the second surface 110b is a surface of the carrier board 110
  • the second surface 110b and the first surface 110a Connected and intersected it is illustrated by taking the first surface 110 a as the left side of the bearing plate 110 as an example, and taking the second surface 110 b as the upper surface of the bearing plate 110 as an example.
  • the direction of the main lobe of the first antenna array 120 is the same as the direction of the first surface 110a, and the direction of the main lobe of the second antenna array 130 is the same as the direction of the second surface 110b, which can facilitate the first
  • the antenna array 120 and the second antenna array 130 are disposed on the carrier board 110 .
  • the orientation of the first antenna array 120 and the orientation of the second antenna array 130 can also enable the electromagnetic wave signal radiated by the first antenna array 120 and the electromagnetic wave signal radiated by the second antenna array 130 to cover the space.
  • the antenna module 10 has a higher spatial coverage, which in turn enables the antenna module 10 to have a better communication effect.
  • the first direction d1 is perpendicular to or approximately perpendicular to the second direction d2. That is, the first surface 110 a intersects the second surface 110 b and forms an angle of 90° or approximately 90°.
  • the intersection area between the electromagnetic wave signals transmitted and received by the first antenna array 120 and the electromagnetic wave signals transmitted and received by the second antenna array 130 is small, so that the The electromagnetic wave signal transmitted and received by the antenna module 10 covers a relatively large area, that is, has a relatively high spatial coverage rate, thereby enabling the antenna module 10 to have a better communication effect.
  • FIG. 3 is a top view of a first antenna in the first antenna array in Fig. 1;
  • Fig. 4 is a three-dimensional view of the first antenna in Fig. 3 Schematic diagram;
  • FIG. 5 is a schematic diagram of removing the first conductive layer in FIG. 4;
  • FIG. 6 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 shown in FIG. 3 provided by an embodiment of the present application.
  • FIG. 1 is a top view of a first antenna in the first antenna array in Fig. 1
  • Fig. 4 is a three-dimensional view of the first antenna in Fig. 3 Schematic diagram
  • FIG. 5 is a schematic diagram of removing the first conductive layer in FIG. 4
  • FIG. 6 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 shown in FIG. 3 provided by an embodiment of the present application.
  • FIG. 3 in order to illustrate the positional relationship of the first conductive layer 111, the second conductive layer 112, the multi-layer
  • the first antenna array 120 includes a plurality of first antennas 121 . Specifically, the plurality of first antennas 121 are spaced and regularly arranged to form the first antenna array 120 .
  • the second antenna array 130 includes a plurality of second antennas 131 . Specifically, the plurality of second antennas 131 are spaced and regularly arranged to form the second antenna array 130 .
  • the carrier board 110 includes a first conductive layer 111, a second conductive layer 112, a multi-layer third conductive layer 113, a multi-layer first insulating layer 115, a multi-layer fourth conductive layer 114, and a multi-layer second insulating layer 116 .
  • the second conductive layer 112 is opposite to and spaced from the first conductive layer 111 .
  • the multiple third conductive layers 113 are sequentially stacked along the first extension direction D1 and are spaced between the first conductive layer 111 and the second conductive layer 112 .
  • the first insulating layer 115 is disposed between the first conductive layer 111 and the multi-layer third conductive layer 113, between the second conductive layer 112 and the multi-layer third conductive layer 113, and Between two adjacent third conductive layers 113 .
  • the multi-layer fourth conductive layer 114 is sequentially stacked along the first extending direction D1 and spaced between the first conductive layer 111 and the second conductive layer 112, and the multi-layer fourth conductive layer 114 and The multiple third conductive layers 113 are arranged at intervals along the second extending direction D2.
  • the second insulating layer 116 is disposed between the first conductive layer 111 and the fourth conductive layer 114 closest to the first conductive layer 111 , the second conductive layer 112 and the second conductive layer 112 between the nearest fourth conductive layers 114 and between two adjacent fourth conductive layers 114 .
  • the second conductive layer 112 and the first conductive layer 111 are arranged at intervals along the first extending direction D1.
  • the first extending direction D1 is the positive direction of the Z axis
  • the second extending direction D2 is the positive direction of the Y axis. It can be understood that the above-mentioned reference to the first extending direction D1 and the second extending direction in the XYZ coordinate axis is only an explanation of a situation of the first extending direction D1 and the second extending direction D2, which is for the convenience of understanding the present case. It does not constitute a limitation to this case.
  • first extension direction D1 can also be the positive direction of the Z axis
  • second extension direction D2 can also be the positive direction of the X axis
  • first extending direction D1 is the positive direction of the X axis
  • second extending direction D2 is the positive direction of the Y axis; as long as the first extending direction D1 is different from the second extending direction D2.
  • the multi-layer third conductive layer 113 is disposed between the first conductive layer 111 and the second conductive layer 112 as a whole, and the multi-layer third conductive layer 113 is arranged in the first extending direction D1
  • the upper layers are stacked sequentially and set at intervals. It can be understood that the first conductive layer 111 is spaced apart from the third conductive layer 113 that is closest to the first conductive layer 111 among the multiple third conductive layers 113 . That is, in this embodiment, the third conductive layer 113 on the topmost layer is spaced apart from the first conductive layer 111 .
  • the second conductive layer 112 is spaced apart from the third conductive layer 113 closest to the second conductive layer 112 among the multiple third conductive layers 113 .
  • a first insulating layer 115 is provided between the first conductive layer 111 and the multi-layer third conductive layer 113 (see FIG. 6 and FIG. 7 ), in other words, the first conductive layer 111 and the The first insulating layer 115 is disposed between the third conductive layer 113 closest to the first conductive layer 111 among the multi-layer third conductive layers 113 .
  • the first insulating layer 115 is also disposed between two adjacent third conductive layers 113 in the multi-layer third conductive layer 113 .
  • a first insulating layer 115 is disposed between the second conductive layer 112 and the multi-layer third conductive layer 113 , in other words, the second conductive layer 112 and the multi-layer third conductive layer 113
  • the first insulating layer 115 is disposed between the third conductive layer 113 closest to the second conductive layer 112 .
  • the multi-layer fourth conductive layer 114 is disposed between the first conductive layer 111 and the second conductive layer 112 as a whole, and the multi-layer fourth conductive layer 114 is arranged in the first extending direction D1
  • the upper layers are stacked sequentially and set at intervals. It can be understood that the first conductive layer 111 is spaced apart from the fourth conductive layer 114 that is closest to the first conductive layer 111 among the multiple fourth conductive layers 114 .
  • the second conductive layer 112 is spaced apart from the nearest fourth conductive layer 114 among the multiple fourth conductive layers 114 and among the second conductive layers 112 .
  • a second insulating layer 116 is provided between the first conductive layer 111 and the multi-layer fourth conductive layer 114 (see FIG. 6 and FIG. 7 ), in other words, the first conductive layer 111
  • the second insulating layer 116 is disposed between the fourth conductive layer 114 closest to the first conductive layer 111 among the multiple fourth conductive layers 114 .
  • the second insulating layer 116 is also disposed between two adjacent fourth conductive layers 114 in the multi-layer fourth conductive layer 114 .
  • a second insulating layer 116 is disposed between the second conductive layer 112 and the multi-layer fourth conductive layer 114 , in other words, the second conductive layer 112 and the multi-layer fourth conductive layer 114 The second insulating layer 116 is disposed between the fourth conductive layer 114 closest to the second conductive layer 112 .
  • the first insulating layer 115 can be made of a material with a lower loss factor (Dissipation Factor, DF), so that the first insulating layer 115 has less influence on the first antenna array 120 transmitting and receiving electromagnetic wave signals;
  • the thickness of an insulating layer 115 can be equal or not.
  • the so-called loss factor refers to the ratio of the energy that has been lost (Loss) into the insulating material in the signal line to the energy that is still stored (Stored) in the signal line.
  • DF is an inherent property of insulating materials. The smaller the loss factor, the smaller the ratio of the energy lost to the insulating material in the signal line to the energy remaining in the signal line; the larger the loss factor, the smaller the ratio of the energy lost to the insulating material in the signal line to the energy remaining in the signal line The ratio of the energy in the signal line is larger.
  • the second insulating layer 116 can also be made of a material with a lower dissipation factor DF, so that the second insulating layer 116 has less influence on the second antenna array 130 to send and receive electromagnetic wave signals;
  • the thicknesses of the insulating layers 116 may or may not be equal.
  • the thickness of the second insulating layer 116 and the thickness of the first insulating layer 115 may or may not be equal.
  • the thickness of the second insulating layer 116 is equal to the thickness of the first insulating layer 115.
  • the thickness of the second insulating layer 116 is equal to the thickness of the first insulating layer 115
  • the preparation of the carrier board 110 is convenient.
  • the distance between the multi-layer third conductive layer 113 and the multi-layer fourth conductive layer 114 in the second extending direction D2 starts from the end adjacent to the first surface 110a toward the end away from the first surface.
  • One end of 110a is gradually reduced, and then the preset distance is kept constant, forming a horn-like structure.
  • the first antenna 121 includes the first conductive layer 111, the second conductive layer 112, the multi-layer third conductive layer 113, the multi-layer fourth conductive layer 114, and a plurality of first connecting wires 1211 and a plurality of second connection lines 1212 .
  • the first connection wires 1211 are used to electrically connect the first conductive layer 111 , the multi-layer third conductive layer 113 and the second conductive layer 112 , and the plurality of first connection wires 1211 are arranged at intervals.
  • the plurality of second connection lines 1212 are opposite to and spaced from the plurality of first connection lines 1211, and the second connection lines 1212 are used to electrically connect the first conductive layer 111, the multi-layer fourth conductive layer layer 114 and the second conductive layer 112, and the plurality of second connection lines 1212 are arranged at intervals.
  • through holes are opened on the plurality of first insulating layers 115, and the first connecting wires 1211 are arranged in the through holes in the plurality of first insulating layers 115, To electrically connect the conductive layers on both sides of the first insulating layer 115 .
  • the two sides of the first insulating layer 115 on the top layer are respectively the first conductive layer 111 and the third conductive layer 113 on the top layer (that is, the third conductive layer 113 closest to the first conductive layer 111), then,
  • the first connection line 1211 in the first insulating layer 115 of the top layer electrically connects the first conductive layer 111 and the third conductive layer 113 closest to the first conductive layer 111;
  • the two sides of 115 are respectively the third conductive layer 113 of the bottom layer (that is, the third conductive layer 113 closest to the second conductive layer 112) and the second conductive layer 112, then, located in the first insulating layer 115 of the bottom layer
  • the first connection line 1211 of the bottom layer electrically connects the third conductive layer 113 and the second conductive layer 112; both sides of the first insulating layer 115 located in the middle layer are the third conductive layer 113, then, located in the middle layer
  • the first conductive layer 111 is located on the top layer and the second conductive layer 112 is located on the bottom layer for illustration. (The first conductive layer 111 , the second conductive layer 112 , and the third conductive layer 113 ) and the positional relationship of the first insulating layer 115 also change.
  • the first insulating layer 115 is provided with through holes
  • the multi-layer third conductive layer 113 is provided with through holes
  • the first conductive layer 111 and the second conductive layer 112 are not A through hole is opened
  • the through hole on the first insulating layer 115 communicates with the through hole in the third conductive layer 113
  • the first connection line 1211 is arranged in the through hole in the first insulating layer 115. holes and through holes in the third conductive layer 113 .
  • the first insulating layer 115 is provided with through holes
  • the multi-layer third conductive layer 113 is provided with through holes
  • the first conductive layer 111 and the second conductive layer 112 At least one of them is provided with a through hole, and the through hole on the first insulating layer 115, the through hole in the third conductive layer 113, and the through hole in the first conductive layer 111 and the second conductive layer 112
  • the first connection line 1211 is set in the through hole in the first insulating layer 115, the through hole in the third conductive layer 113, and the through hole in the first conductive layer 111 and the second conductive layer 112. at least one of the through holes. As long as the first connection line 1211 electrically connects the first conductive layer 111 , the multi-layer third conductive layer 113 and the second conductive layer 112 .
  • the extension direction of the plurality of first connection lines 1211 is the first extension direction D1, and the arrangement direction of the plurality of first connection lines 1211 is arranged at intervals in a plane including the second extension direction D2 .
  • through holes are opened on the plurality of second insulating layers 116, and the second connection lines 1212 are disposed in the through holes in the plurality of second insulating layers 116, To electrically connect the conductive layers on both sides of the second insulating layer 116 .
  • the two sides of the second insulating layer 116 on the top layer are respectively the first conductive layer 111 and the fourth conductive layer 114 on the top layer (that is, the fourth conductive layer 114 closest to the first conductive layer 111), then,
  • the second connection wire 1212 in the second insulating layer 116 on the top layer electrically connects the first conductive layer 111 to the fourth conductive layer 114 closest to the first conductive layer 111;
  • Both sides of the layer 115 are respectively the fourth conductive layer 114 of the bottom layer (that is, the fourth conductive layer 114 closest to the second conductive layer 112) and the second conductive layer 112, then, the second insulating layer 116 located at the bottom layer
  • the second connection line 1212 electrically connects the bottom fourth conductive layer 114 and the second conductive layer 112; both sides of the second insulating layer 116 in the middle layer are the fourth conductive layer 114, and the second insulating layer in the middle layer
  • the second connection lines 1212 in the layer 116 respectively electrical
  • the first conductive layer 111 is located on the top layer and the second conductive layer 112 is located on the bottom layer.
  • the positional relationship of the layers (the first conductive layer 111 , the second conductive layer 112 , and the third conductive layer 113 ) and the second insulating layer 116 also changes.
  • the second insulating layer 116 is provided with through holes
  • the multi-layer fourth conductive layer 114 is provided with through holes
  • the first conductive layer 111 and the second conductive layer 112 are not A through hole is opened
  • the through hole on the second insulating layer 116 communicates with the through hole in the fourth conductive layer 114
  • the second connection line 1212 is arranged in the through hole in the second insulating layer 116. holes and through holes in the fourth conductive layer 114 .
  • the second insulating layer 116 is provided with through holes
  • the multi-layer fourth conductive layer 114 is provided with through holes
  • the first conductive layer 111 and the second conductive layer 112 At least one of them is provided with a through hole, and the through hole on the second insulating layer 116, the through hole in the fourth conductive layer 114, and the through hole in the first conductive layer 111 and the second conductive layer 112
  • the second connection line 1212 is set in the through hole in the second insulating layer 116, the through hole in the fourth conductive layer 114, and the through hole in the first conductive layer 111 and the second conductive layer 112. at least one of the through holes.
  • the second connection line 1212 electrically connects the first conductive layer 111 , the multi-layer fourth conductive layer 114 and the second conductive layer 112 .
  • the extension direction of the plurality of second connection lines 1212 is the first extension direction D1, and the arrangement direction of the plurality of second connection lines 1212 is arranged at intervals in a plane including the second extension direction D2 .
  • the plurality of first connection lines 1211 are electrically connected to the first conductive layer 111, the multi-layer third conductive layer 113 and the second conductive layer 112, that is, the plurality of first conductive layers
  • a connection wire 1211 is embedded in the carrier board 110;
  • the second connection wire 1212 electrically connects the first conductive layer 111, the multi-layer fourth conductive layer 114 and the second conductive layer 112 , that is, the plurality of second connecting wires 1212 are embedded in the carrying board 110 .
  • the radiator of the first antenna 121 in the embodiment of the present application is integrated in the carrier board 110, which can reduce the cost of the carrier board 110.
  • the cross-sectional height of the carrier plate 110 in the first extending direction D1 can be made smaller. In addition, the cost can be reduced and the production speed can be increased.
  • At least one first insulating layer 115 is connected to the second insulating layer 116 on the same layer.
  • at least one first insulating layer 115 is connected to the second insulating layer 116 on the same layer as a whole, therefore, the connected first insulating layer 115 and second insulating layer 116 can also be regarded as a A full layer of insulation.
  • the at least one first insulating layer 115 is connected to the second insulating layer 116 on the same layer, so that the carrying board 110 has stronger structural strength.
  • each layer of the first insulating layer 115 is connected to each layer of the second insulating layer 116 .
  • Each layer of the first insulating layer 115 is connected to each layer of the second insulating layer 116.
  • the Nth layer of the first insulating layer 115 and the Nth layer of the second insulating layer 116 are connected as a whole, and the connected first insulating layer
  • the layer 115 and the second insulating layer 116 can be regarded as a whole insulating layer.
  • Each layer of the first insulating layer 115 is connected to each layer of the second insulating layer 116 , which can further enhance the structural strength of the carrying board 110 .
  • the first insulating layer 115 of the first layer is connected with the second insulating layer 116 of the first layer; and/or, the first insulating layer 115 of the last layer is connected with the second insulating layer 116 of the last layer; the first insulating layer of the remaining layers
  • the layer 115 is disposed opposite to the second insulating layer 116 at intervals.
  • FIG. 7 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 along II-II provided in another embodiment of the present application.
  • the first insulating layer 115 is connected to the first second insulating layer 116; the last first insulating layer 115 is connected to the last second insulating layer 116; The first insulating layer 115 and the second insulating layer 116 of the remaining layers are arranged at intervals. In other words, the first insulating layer 115 and the second insulating layer 116 of the remaining layers are not connected together.
  • the weight of the carrying plate 110 is relatively light, which facilitates thinning of the antenna module 10 .
  • FIG. 8 is a schematic cross-sectional structure diagram of the first antenna shown in FIG. 3 along II-II according to another embodiment of the present application.
  • the first first insulating layer 115 is connected to the first second insulating layer 116; the last first insulating layer 115 is connected to the last One layer of the second insulating layer 116 is not connected; the first insulating layer 115 and the second insulating layer 116 of the remaining layers are arranged at intervals relative to each other.
  • FIG. 9 is a top view of the first antenna provided in another embodiment of the present application;
  • FIG. 10 is a perspective view of the first antenna shown in FIG. 9;
  • FIG. 11 is a partial structural schematic diagram of the first antenna shown in FIG. 10;
  • FIG. 12 is a cross-sectional view along line IV-IV in FIG. 9.
  • the insulating layer between each conductive layer is omitted in FIG. 9 .
  • the second antenna in FIG. 10 is a schematic diagram of the second antenna in FIG. 9 without the first conductive layer and the corresponding connecting wires.
  • the carrier board 110 includes a first conductive layer 111 , a second conductive layer 112 and a first insulating layer 115 .
  • the second conductive layer 112 is opposite to and spaced from the first conductive layer 111 .
  • the first insulating layer 115 is disposed between the first conductive layer 111 and the second conductive layer 112 .
  • the first antenna array 120 includes a plurality of first antennas 121 .
  • the plurality of first antennas 121 are spaced and regularly arranged to form the first antenna array 120 .
  • the first antenna 121 includes a plurality of first connecting wires 1211 and a plurality of second connecting wires 1212 .
  • the first connecting wires 1211 are used to electrically connect the first conductive layer 111 and the second conductive layer 112 , and the plurality of first connecting wires 1211 are arranged at intervals.
  • the plurality of second connection lines 1212 are opposite to the plurality of first connection lines 1211 and arranged at intervals to form a gap 121a, and the second connection lines 1212 are used to electrically connect the first conductive layer 111 and the first conductive layer 111 Two conductive layers 112, and the plurality of second connection lines 1212 are arranged at intervals.
  • FIG. 13 is a schematic cross-sectional view of the structure of the first antenna in an embodiment of the present application.
  • the first antenna 121 described in this embodiment is basically the same as the first antenna 121 shown in FIG. 6 , except that the first insulating layer 115 includes a first insulating portion 1151 and a second insulating portion 1152 .
  • the second insulating part 1152 is connected to the first insulating part 1151, and the first connecting wire 1211 passes through the second insulating part 1152, wherein the electromagnetic characteristic of the second insulating part 1152 is better than that of the first insulating part 1152.
  • An electromagnetic characteristic of the insulating part 1151 is a schematic cross-sectional view of the structure of the first antenna in an embodiment of the present application.
  • the first antenna 121 described in this embodiment is basically the same as the first antenna 121 shown in FIG. 6 , except that the first insulating layer 115 includes a first insulating portion 1151 and a second insulating portion 1152 .
  • the first insulating layer 115 including the first insulating part 1151 and the second insulating part 1152 in this embodiment is combined into the first antenna 121 shown in FIG. 6 as an example for illustration. However, it should not be understood as a limitation to the first antenna 121 applied to the first insulating layer 115 in this application.
  • the electromagnetic characteristics of the second insulating part 1152 are better than those of the first insulating part 1151, and the electromagnetic wave signals transmitted and received by the first antenna 121 are transmitted and received in the second insulating part 1152.
  • the radiation efficiency and bandwidth are better than the radiation efficiency and bandwidth of the electromagnetic wave signal sent and received by the first antenna 121 in the first insulating part 1151 .
  • the electromagnetic properties at least include loss factor (DF) and dielectric constant (DK).
  • DF loss factor
  • DK dielectric constant
  • the DF of the first insulating part 1151 is named DF1
  • the DF of the second insulating part 1152 is named DF2.
  • the setting of the first insulating layer 115 in this embodiment, and DF2 is smaller than DF1 can make the signal transmitted on the first connection line 1211 The loss is small.
  • the radio frequency chip 140 transmits and receives electromagnetic wave signals through the first connection line 1211, the transmission power required by the radio frequency chip 140 is small when the transmission distance of the electromagnetic wave signal is constant;
  • the power emitted by the radio frequency chip 140 is constant, the transmission distance of the electromagnetic wave signal emitted by the radio frequency chip 140 is relatively long.
  • the DF of the first insulating part 1151 is DF1
  • the DF of the second insulating part 1152 is DF2, which can reduce the cost of the carrier board 110 .
  • the DK is higher (for example, equal).
  • the dissipation factors of the first insulating part 1151 and the second insulating part 1152 are constant (for example, equal)
  • the DK is higher
  • the loss factors of the first insulating part 1151 and the second insulating part 1152 are constant (for example, equal)
  • the DK needs to select a higher dielectric constant when the radiation efficiency and bandwidth of the electromagnetic wave signals transmitted and received by the antenna module 10 are satisfied.
  • the electromagnetic properties of the second insulating part 1152 are better than those of the first insulating part 1151 , including: the DK of the second insulating part 1152 is smaller than the DK of the first insulating part 1151 .
  • FIG. 14 is a schematic cross-sectional view of the structure of the first antenna in another embodiment of the present application.
  • the carrier board 110 includes the second insulating layer 116
  • the second insulating layer 116 includes a third insulating portion 1161 and a fourth insulating portion 1162 .
  • the fourth insulating part 1162 is connected to the third insulating part 1161, and the second connection wire 1212 passes through the fourth insulating part 1162, wherein the electromagnetic characteristic of the fourth insulating part 1162 is better than that of the first insulating part 1162. Electromagnetic properties of the three insulating parts 1161.
  • the electromagnetic properties of the fourth insulating portion 1162 are better than those of the third insulating portion 1161 , so the electromagnetic wave signals transmitted and received by the first antenna 121 are transmitted and received in the fourth insulating portion 116
  • the radiation efficiency and bandwidth are better than the radiation efficiency and bandwidth of the electromagnetic wave signal sent and received by the first antenna 121 in the third insulating part 1161 .
  • the electromagnetic properties at least include loss factor (DF) and dielectric constant (DK).
  • DF loss factor
  • DK dielectric constant
  • the DF of the fourth insulating portion 1162 is smaller than the DF of the third insulating portion 1161, which means that the The electromagnetic performance of the fourth insulating part 1162 is better than that of the third insulating part 1161 .
  • the DF of the third insulating part 1161 is named DF3
  • the DF of the fourth insulating part 1162 is named DF4.
  • the setting of the second insulating layer 116 in this embodiment, and DF4 is smaller than DF3 can make the loss of the signal transmitted on the second connecting line 1212 smaller.
  • the radio frequency chip 140 transmits and receives electromagnetic wave signals through the second connection line 1212, the transmission power required by the radio frequency chip 140 is relatively small when the transmission distance of the electromagnetic wave signal is constant;
  • the transmission distance of the electromagnetic wave signal emitted by the radio frequency chip 140 is relatively long.
  • the DF of the third insulating part 1161 is DF1
  • the DF of the second insulating part 1152 is DF2, which can reduce the load of the carrier plate. 110 cost.
  • the dissipation factors of the third insulating part 1161 and the fourth insulating part 1162 are constant (for example, equal)
  • the DK is higher
  • the loss factors of the third insulating part 1161 and the fourth insulating part 1162 are constant (for example, equal)
  • the DK needs to select a higher dielectric constant when the radiation efficiency and bandwidth of the electromagnetic wave signals transmitted and received by the antenna module 10 are satisfied.
  • the electromagnetic properties of the fourth insulating part 1162 are better than those of the third insulating part 1161 , including: the DK of the fourth insulating part 1162 is smaller than the DK of the third insulating part 1161 .
  • FIG. 15 is a cross-sectional view of an antenna module along line I-I according to another embodiment of the present application.
  • the carrying board 110 has a connected antenna arrangement area 11a and a non-antenna arrangement area 11b. Both the first antenna array 120 and the second antenna array 130 are located in the antenna arrangement area 11a, and the carrier board 110 includes multiple layers of carrier insulation layers 118 stacked in sequence and arranged at intervals.
  • Each bearing insulating layer 118 includes a first bearing insulating portion 1181 and a second bearing insulating portion 1182 .
  • the first bearing insulating part 1181 is located in the antenna arrangement area 11a.
  • the second bearing insulating part 1182 is located in the non-antenna arrangement area 11b, wherein at least part of the first bearing insulating part 1181 has better electromagnetic properties than the second bearing insulating part 1182 .
  • the second insulating portion 1182 is formed by connecting the previous first insulating layer 115 and the second insulating layer 116 . In other implementation manners, the first insulating layer 115 and the second insulating layer 116 are not connected.
  • the electromagnetic performance of at least part of the first bearing insulating part 1181 is better than that of the second bearing insulating part 1182, that is, the first antenna array 120 and the second antenna array 130
  • the radiation efficiency and bandwidth in the antenna arrangement area 11a are better than those in the non-antenna arrangement area 11b.
  • the electromagnetic properties at least include loss factor (DF) and dielectric constant (DK).
  • DF loss factor
  • DK dielectric constant
  • the DF of at least part of the first bearing insulating part 1181 is smaller than the DF of the second bearing insulating part 1182 .
  • the DF of the first bearing insulating part 1181 is smaller than that of the second bearing insulating part 1181 .
  • the DF of the bearing insulating part 1182 indicates that the electromagnetic performance of the first bearing insulating part 1181 is better than that of the second bearing insulating part 1182 .
  • the DF of the first bearing insulating part 1181 is named as DF11
  • the DF of the second bearing insulating part 1182 is named as DF12.
  • the setting of the bearing insulating layer 118 in the embodiment of the present application can make the first antenna array 120 And the loss of the signal transmitted in the second antenna array 130 is small, when the radio frequency chip 140 utilizes the first antenna array 120 and the second antenna array 130 to send and receive electromagnetic wave signals, when the distance of electromagnetic wave signal transmission is constant Under normal circumstances, the transmission power required by the radio frequency chip 140 is small; if the power of the radio frequency chip 140 to send and receive electromagnetic wave signals is constant, the radio frequency chip 140 uses the first antenna array 120 and the first antenna array 120 The transmission distance of the electromagnetic wave signal emitted by the two antenna arrays 130 is relatively long. Compared with the material of DF11 used for the DF of the second carrying insulating portion 1182 located in the non-antenna arrangement area 11 b , the cost of the carrying plate 110 in the embodiment of the present application is lower.
  • the electromagnetic performance of at least part of the first bearing insulating part 1181 is better than that of the second bearing insulating part 1182, including: the DK of at least part of the first bearing insulating part 1181 is smaller than the DK of the second carrier insulation 1182 .
  • FIG. 16 is a cross-sectional view of an antenna module along line I-I according to another embodiment of the present application.
  • the carrier board 110 includes multiple layers of carrier insulating layers 118 stacked in sequence and arranged at intervals.
  • the second antenna array 130 includes a plurality of second antennas 131 , specifically, the plurality of first antennas 121 are spaced and regularly arranged to form the first antenna array 120 .
  • at least one second antenna 131 includes a third feeder 170 electrically connected to the radio frequency chip 140 .
  • the third feeding line 170 includes a first feeding part 171 , a connecting part 172 and a second feeding part 173 .
  • One end of the first power feeding portion 171 is electrically connected to the radio frequency chip 140 , and the first power feeding portion 171 passes through at least one layer of the multi-layer insulating layers 118 .
  • One end of the connecting portion 172 is bent and connected to the first power feeding portion 171 , and the connecting portion 172 is sandwiched between two adjacent insulating layers 118 .
  • One end of the second power feeding part 173 is bent and connected to the other end of the connecting part 172 , and the second power feeding part 173 passes through at least one layer of the multi-layer insulating layers 118 , wherein, The electromagnetic performance of at least one of the two load-bearing insulating layers 118 sandwiching the connecting portion 172 is better than that of the rest of the load-bearing insulating layers 118 in the multi-layer load-bearing insulating layers 118 .
  • the electromagnetic performance of at least one of the two load-bearing insulating layers 118 sandwiching the connecting portion 172 is better than that of the rest of the multi-layer load-bearing insulating layers 118.
  • the electromagnetic performance of the layer 118 that is, the radiation efficiency and bandwidth of at least one of the two layers of the insulating layer 118 sandwiching the connecting portion 172 is better than that of the rest of the insulating layers 118.
  • the electromagnetic properties at least include loss factor (DF) and dielectric constant (DK).
  • DF loss factor
  • DK dielectric constant
  • the DF of at least one of the two load-bearing insulating layers 118 sandwiching the connection portion 172 is smaller than that of the rest of the load-bearing insulating layers 118 of the multi-layer load-bearing insulating layers 118 DF.
  • the second antenna array 130 includes a plurality of second antennas 131 , the plurality of second antennas 131 are spaced and regularly arranged to form the second antenna array 130 . There will be some second antennas 131 that cannot be connected to the radio frequency chip 140 through relatively straight feeders. Therefore, in the embodiment of the present application, at least one second antenna 131 is electrically connected to the third feeding line 170 of the radio frequency chip 140 including a first feeding part 171 , a connecting part 172 and a second feeding part 173 .
  • the so-called two layers of load-carrying insulating layers 118 sandwiching the connecting portion 172 refer to the two layers of carrying insulating layers that are arranged on opposite sides of the connecting portion 172 and that are closest to the connecting portion 172 .
  • the two insulating layers 118 sandwiching the connecting portion 172 are respectively named bearing insulating layer 118a and bearing insulating layer 118b, wherein the bearing insulating layer 118a is disposed adjacent to the radio frequency chip 140 compared to the bearing insulating layer 118b.
  • the dielectric constant of at least one carrier insulating layer 118 among the two layers of carrier insulating layers 118 sandwiching the connecting portion 172 is constant (for example, equal) to the dielectric constant of the carrier insulating layers 118 of the remaining layers.
  • the DF of at least one of the two load-bearing insulating layers 118 sandwiching the connecting portion 172 is smaller than the DF of the rest of the load-bearing insulating layers 118 in the multi-layer load-bearing insulating layers 118 DF includes the following situations: the DF of the bearing insulating layer 118a and the DF of the bearing insulating layer 118b are both smaller than the DF of the bearing insulating layer 118 of the remaining layers; or, only the DF of the bearing insulating layer 118a is smaller than the bearing insulating layer 118 of the remaining layers DF; or, only the DF of the bearing insulating layer 118b is smaller than the DF of the bearing insulating layer 118 of the remaining layers.
  • the DF of at least one of the two load-bearing insulating layers 118 sandwiching the connecting portion 172 is smaller than the DF of the other layers of the load-bearing insulating layers 118 in the multi-layer load-bearing insulating layers 118, so that all The loss of the radio frequency signal transmitted on the third feeding line 170 is relatively small.
  • the radio frequency chip 140 transmits and receives electromagnetic wave signals through the third feeding line 170, when the transmission distance of the electromagnetic wave signal is constant, the The transmission power required by the radio frequency chip 140 is small; if the power transmitted by the radio frequency chip 140 is constant, the transmission distance of the electromagnetic wave signal transmitted by the radio frequency chip 140 is relatively long.
  • the conductive layer and the carrier insulating layer 118 are usually sequentially formed at intervals.
  • the DF of the insulating layer 118 is set to be smaller than the DF of the other layers of the multi-layer insulating layer 118 , which makes the carrier board 110 easier to manufacture. It is only necessary to use a material with a smaller DF in the preparation of the bearing insulating layer 118 sandwiching the connecting portion 172 .
  • the DK of at least one of the two load-bearing insulating layers 118 sandwiching the connecting portion 172 is smaller than the DK of the rest of the load-bearing insulating layers 118 of the multi-layer load-bearing insulating layers 118 The DK.
  • the antenna module 10 further includes a first feeder 150 .
  • the first feeder 150 includes a connected first end 151 and a second end 152, the first end 151 is electrically connected to the radio frequency chip 140, and the second end 152 is located on the plurality of first connecting lines 1211 and the plurality of second connection lines 1212 in the gap 121a (see FIG. 10 and FIG. 15 ).
  • the first end 151 of the first feeding line 150 is electrically connected to the radio frequency chip 140, and the second end 152 is arranged in the gap, so that the first antenna 121 can pass through the first Signal transmission is realized between a feeder 150 and the radio frequency signal.
  • the radio frequency signal When the first antenna 121 is used to radiate electromagnetic wave signals, the radio frequency signal generates a radio frequency signal, and the radio frequency signal is transmitted to the first end 151 of the first feeder line 150 to the first end 151 of the first feeder line 150.
  • the second end 152, the first antenna 121 generates an electromagnetic wave signal according to the radio frequency signal transmitted to the second end 152, and radiates it out.
  • the first antenna 121 When the first antenna 121 is used to receive electromagnetic wave signals, the first antenna 121 generates electrical signals according to the electromagnetic wave signals, and the electrical signals pass through the second end 152 of the first feeding line 150 and the second The first ends 151 of the two feeding lines 160 are transmitted to the radio frequency chip 140 .
  • the antenna module 10 includes a second feeder 160 in addition to the first feeder 150 .
  • FIG. 17 is a schematic diagram of the structure of the first feeder shown in FIG. 5 ;
  • FIG. 18 is a schematic diagram of the structure of the second feeder shown in FIG. 5 .
  • the first feeder 150 includes a connected first end 151 and a second end 152, the first end 151 is electrically connected to the radio frequency chip 140, and the second end 152 is located on the plurality of first connecting lines 1211 and the plurality of second connection lines 1212 in the gap 121a formed.
  • the second feed line 160 includes a connected third end 161 and a fourth end 162, the third end 161 is electrically connected to the radio frequency chip 140, and the fourth end 162 is located on the plurality of first connecting lines 1211 and the plurality of second connection lines 1212 in the gap 121a, wherein the fourth end 162 is perpendicular to the second end 152 .
  • the fourth end 162 is orthogonal to the second end 152 , so that the first antenna 121 is a dual-polarized antenna radiator.
  • the first antenna 121 can send and receive electromagnetic wave signals whose polarization directions are vertical polarization direction and horizontal polarization direction.
  • the communication effect of the antenna module 10 can be improved, and compared with the related art using two antennas to achieve different polarizations, the present embodiment provides The antenna module 10 can reduce the number of antennas in the antenna module 10 .
  • the first feeder 150 may be in the form of a coplanar waveguide (CPW), or in the form of a stripline, or a combination of CPW and stripline.
  • the second feeder 160 may be in the form of CPW, stripline or the like, or a combination of CPW and stripline.
  • the third feeder 170 may be in the form of CPW, stripline or the like, or a combination of CPW and stripline.
  • the carrier board 110 further includes a multi-layer fifth conductive layer 117 .
  • the multi-layer fifth conductive layer 117 is sequentially stacked and arranged at intervals along the first extending direction D1, and is located between the first conductive layer 111 and the second conductive layer 112, and the fifth conductive layer 117 and The first conductive layer 111 and the second conductive layer 112 located on the same layer are electrically connected, wherein one layer of the fifth conductive layer 117 has a receiving portion 1171, and the first feeder 150 is arranged on the second conductive layer 117.
  • the accommodating portion 1171 (see FIG. 11 ) is insulated from the fifth conductive layer 117 .
  • the electrical connection between the fifth conductive layer 117 on the same layer and the first conductive layer 111 and the second conductive layer 112 includes but not limited to the following situations: In one embodiment, the fifth conductive layer on the same layer 117.
  • the first conductive layers 111 are electrically connected through electrical connectors, and the fifth conductive layer 117 on the same layer is electrically connected to the first conductive layer 111 through electrical connectors; in another implementation, the fifth conductive layer 117 on the same layer
  • the fifth conductive layer 117 , the first conductive layer 111 and the second conductive layer 112 are connected as a whole, that is, the fifth conductive layer 117 , the first conductive layer 111 and the second conductive layer 112 in the same layer are integrated.
  • the fifth conductive layer 117 , the first conductive layer 111 and the second conductive layer 112 located in the same layer are connected as a whole as an example for illustration.
  • An insulating layer is disposed between adjacent fifth conductive layers 117 on both sides, and the insulating layer is used to separate two adjacent fifth conductive layers 117 .
  • the first antenna 121 further includes a plurality of third connecting wires 1213 .
  • the plurality of third connecting wires 1213 are electrically connected to the multi-layer fifth conductive layer 117, the first conductive layer 111 and the second conductive layer 112, and the plurality of third connecting wires 1213 surround at least part of the The first feeder 150 is provided.
  • An insulating layer is disposed between adjacent fifth conductive layers 117 on both sides, and the insulating layer is used to separate two adjacent fifth conductive layers 117 .
  • the insulating layer is also provided with a through hole, and the third connection wire 1213 is arranged in the through hole to electrically connect the multi-layer fifth conductive layer 117, the first conductive layer 111 and the first conductive layer 111.
  • the plurality of third connecting wires 1213 are arranged around at least part of the first feeding wire 150, which can improve the electrical connection performance of the fifth conductive layer 117, the first conductive layer 111 and the second conductive layer 112. better.
  • the second antenna array 130 further includes a plurality of second antennas 131 .
  • the plurality of second antennas 131 are spaced and regularly arranged to form the second antenna array 130 .
  • the plurality of second antennas 131 are embedded in the carrying board 110 .
  • the second antenna 131 is embedded in the carrier board 110 so that the second antenna 131 is integrated in the carrier board 110 without increasing or even slightly increasing the thickness of the carrier board 110 , so that the integration degree of the antenna module 10 is high and the volume is small.
  • the antenna module 10 is applied in the communication device 1 , it is convenient to be assembled with other components in the communication device 1 , and it is beneficial to improve the integration of the communication device 1 .
  • the carrier board 110 includes a first conductive layer 111 located on the first surface 110a, and the second antenna 131 is arranged on the same layer as the first conductive layer 111 and spaced apart from each other.
  • the first conductive layer 111 is located on the first surface 110a, when the second antenna 131 is on the same layer as the first conductive layer 111 and arranged at intervals, that is, the second antenna 131 is located on the first surface 110a,
  • the electromagnetic wave signals sent and received by the second antenna 131 can be less or even not blocked by the conductive layer and the insulating layer in the carrier board 110, thereby improving the ability of the antenna module 10 to use the second antenna 131 to send and receive electromagnetic wave signals. the quality of.
  • the second antenna 131 may also be connected to any layer located between the first conductive layer 111 and the second conductive layer 112 .
  • the carrying plate 110 further includes a third surface 110c (see FIG. 15 ).
  • the third surface 110c is connected to and intersects with the first surface 110a, and the third surface 110c is disposed opposite to the second surface 110b, and the radio frequency chip 140 is disposed on the third surface 110c.
  • the carrier board 110 is located on the third surface 110c, which can make the distance between the radio frequency chip 140 and the second antenna 131 shorter, thereby shortening the distance between the radio frequency chip 140 and the second antenna.
  • the length of the feeder line of 131 therefore, the loss of the radio frequency signal caused by the longer feeder line can be avoided.
  • a surface of the radio frequency chip 140 facing the third surface 110c is provided with a plurality of first output terminals 141 and a plurality of second output terminals 142 .
  • the first output terminal 141 is used to electrically connect to the first feeder 150 and the second feeder 160 .
  • the plurality of second output ends 142 are used to be electrically connected to a third feeder 170 , wherein the third feeder 170 is used to be electrically connected to the second antenna 131 .
  • the surface of the radio frequency chip 140 facing the third surface 110c is provided with a plurality of first output terminals 141 and a plurality of second output terminals 142, can further make the length of the first feeder 150, the second feeder 160 and the third feeder 170 shorter, thereby reducing the length of the first feeder 150, the second feeder
  • the loss of the radio frequency signal transmitted on the second feeding line 160 and the third feeding line 170 makes the first antenna array 120 and the second antenna array 130 have better radiation gain.
  • the first output end 141 and the second output end 142 can be connected to the carrier board 110 through a welding process, and the first output end 141 and the second output end 142 face the third surface 110c, therefore, this process is called a flip-chip process (Flip-Chip) process.
  • the first feeder 150 can be a feeder wire or a feeder probe; correspondingly, the second feeder 160 can be a feeder wire or a feeder probe; correspondingly, the third feeder 170 may be a feed guide or a feed probe.
  • the carrier board 110 includes 11 layers of wiring layers as an example. It can be understood that in other embodiments, the carrier board 110 is also Other layers are possible.
  • the carrying board 110 includes a first wiring layer TM1, a second wiring layer TM2, a third wiring layer TM3, a fourth wiring layer TM4, a fifth wiring layer TM5, a sixth wiring layer TM6, a seventh wiring layer TM7, an eighth wiring layer
  • the first wiring layer TM1, the second wiring layer TM2, the third wiring layer TM3, the fourth wiring layer TM4, the fifth wiring layer TM5, the sixth wiring layer TM6, the The seventh wiring layer TM7, the eighth wiring layer TM8, the ninth wiring layer TM9, the tenth wiring layer TM10, and the eleventh wiring layer TM11 are sequentially stacked and arranged in any of the above-mentioned 11 wiring layers.
  • An insulating layer is disposed between two adjacent wiring layers, and the surface of the first wiring layer TM1 away from the second wiring layer TM2 is the first surface 120 a of the carrier board 110 .
  • the radio frequency chip 140 is disposed adjacent to the eleventh wiring layer TM11 .
  • the second antenna 132 is disposed on the first wiring layer TM1 , and the third feeding line 170 passes through other wiring layers interposed between the first wiring layer TM1 and the radio frequency chip 140 .
  • the third feeding line 170 passes through the first wiring layer TM1 to the eleventh wiring layer TM11 . Understandably, when the second antenna 132 is disposed on the Nth wiring layer TMN, the third feeding line 170 runs through the wiring layer between the Nth wiring layer TMN and the radio frequency chip 140 .
  • the first conductive layer 111, the second conductive layer 112, the multi-layer conductive layer 113, the multi-layer fourth conductive layer 114 and the fifth conductive layer 117 utilize the The original wiring layers make the first antenna array 120 and the second antenna array 130 in the antenna module 10 easy to be carried on the carrier board 10 .
  • the devices that can be arranged in each wiring layer may be devices required for the operation of the antenna module 10 , such as receiving signal processing devices, transmitting signal processing devices, and the like.
  • some wiring layers are also provided with power lines and control lines, and the power lines and the control lines are respectively electrically connected to the radio frequency chip 140 .
  • the power line is used to provide the radio frequency chip 140 with power required by the radio frequency chip 140
  • the control line is used to transmit control signals to the radio frequency chip 140 to control the operation of the radio frequency chip 140 .
  • the present application also provides a communication device 1 .
  • the communication device 1 may be, but not limited to, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a Personal Digital Assistant, PDA), mobile phones and other devices.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the communication device 1 further includes a middle frame 50 and a rear cover 70 .
  • the middle frame 50 and the rear cover 70 are accommodated to form a storage space, the antenna module 10 is disposed in the storage space, and the direction of the first antenna 121 to transmit and receive electromagnetic wave signals faces the middle frame 50, the The second antenna 131 faces the rear cover 70 .
  • the middle frame 50 includes a bearing portion 510 and a frame portion 520 that are bent and connected together.
  • the transmission rate of the first antenna 121 is greater than the transmittance of the main body portion 521 , and the direction in which the first antenna 121 transmits and receives electromagnetic wave signals faces the sub-wave-transparent portion 522 .
  • the transmittance of the sub-wave transparent part 522 is greater than the transmittance of the main body part 521, and the direction of the first antenna 121 to send and receive electromagnetic wave signals is toward the sub-wave transparent part 522, therefore, the first antenna can be
  • the electromagnetic wave signals sent and received by 121 can pass through the sub-wave transparent part 522 more often, so that the antenna module 10 has better communication performance.
  • the body part 521 is made of conductive material, such as aluminum-magnesium alloy, aluminum alloy or copper alloy, etc.; the material of the sub-wave transparent part 522 is a non-electromagnetic wave shielding material, such as plastic or plastic .
  • the body part 521 is made of conductive material, such as aluminum-magnesium alloy, aluminum alloy or copper alloy; As long as the transmittance of the sub-wave-transparent portion 522 is greater than the transmittance of the main body portion 521 , it is sufficient.
  • the communication device 1 further includes a screen 30 carried by the middle frame 50 .
  • the screen 30 may be a screen 30 with both touch and display functions; it may also be a screen with only a display function; a screen with only a touch function, which is not limited here.
  • the screen 30 is disposed on a side of the middle frame 50 away from the rear cover 70 . In other words, the screen 30 and the rear cover 70 are respectively disposed on opposite sides of the middle frame 50 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线模组及通信设备。所述天线模组包括:承载板、第一天线阵列、第二天线阵列以及射频芯片。所述第一天线阵列承载于所述承载板;所述第二天线阵列承载于所述承载板,其中,所述第一天线阵列的主瓣方向与所述第二天线阵列的主瓣方向在三维空间中形成的角度大于或等于45°;所述射频芯片承载于所述承载板或设置于承载板的一侧,且所述射频芯片用于提供射频信号至所述第一天线阵列及所述第二天线阵列。本申请的天线模组的通信效果较好。

Description

天线模组及通信设备
本申请要求2021年7月19日递交的申请名称为“天线模组及通信设备”的申请号为202110818158.X的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线模组及通信设备。
背景技术
随着通信技术的发展,通信设备通常与其他通信设备进行通信,以实现信息的交互。通信设备中通常包括天线模组以和另外的通信设备的天线模组进行通信。然而,相关技术中,天线模组的收发电磁波信号的性能不好,导致通信设备的通信性能不够好。
发明内容
本申请实施例第一方面提供一种天线模组,所述天线模组包括:
承载板;
第一天线阵列,所述第一天线阵列承载于所述承载板;
第二天线阵列,所述第二天线阵列承载于所述承载板,其中,所述第一天线阵列的主瓣方向与所述第二天线阵列的主瓣方向在三维空间中形成的角度大于或等于45°;以及
射频芯片,所述射频芯片承载于所述承载板,且所述射频芯片用于提供射频信号至所述第一天线阵列及所述第二天线阵列。
本申请实施例第二方面提供一种通信设备,所述通信设备包括如第一方面提供的天线模组。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的天线模组的结构示意图。
图2为图1中所示的天线模组沿I-I线的部分结构的剖面示意图。
图3为图1中第一天线阵列中的一个第一天线的俯视图。
图4为图3中的第一天线的立体示意图。
图5为图4中去掉第一导电层的示意图。
图6为本申请一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。
图7为本申请另一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。
图8为本申请又一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。
图9为本申请另一实施方式提供的第一天线的俯视图。
图10为图9中所示的第一天线的立体示意图。
图11为图10中所示的第一天线的部分结构示意图。
图12为图9中沿IV-IV线的剖视图。
图13为本申请一实施方式中第一天线的结构剖面示意图。
图14为本申请另一实施方式中第一天线的结构剖面示意图。
图15为本申请另一实施方式提供的天线模组沿I-I线的剖视图。
图16为本申请又一实施方式提供的天线模组沿I-I线的剖视图。
图17为图5中所示的第一馈电线的结构示意图。
图18为图5中所示的第二馈电线的结构示意图。
图19为本申请一实施方式提供的通信设备的示意图。
图20为图19中沿着A-A线的剖视图。
具体实施方式
第一方面,本申请实施方式提供一种天线模组,所述天线模组包括:
承载板;
第一天线阵列,所述第一天线阵列承载于所述承载板;
第二天线阵列,所述第二天线阵列承载于所述承载板,其中,所述第一天线阵列的主瓣方向与所述第二天线阵列的主瓣方向在三维空间中形成的角度大于或等于45°;以及
射频芯片,所述射频芯片承载于所述承载板或设置于所述承载板的一侧,且所述射频芯片用于提供射频信号至所述第一天线阵列及所述第二天线阵列。
其中,所述承载板包括:
第一表面,所述第一表面朝向第一方向,其中,所述第一天线阵列的主瓣方向为所述第一方向;以及
第二表面,所述第二表面与所述第一表面相连且相交,且所述第二表面朝向第二方向,其中,所述第二天线阵列的主瓣方向为所述第二方向。
其中,所述第一方向与所述第二方向垂直正交。
其中,所述承载板包括:
第一导电层;
第二导电层,所述第二导电层与所述第一导电层相背且间隔设置;
多层第三导电层,所述多层第三导电层沿第一延伸方向依次层叠且间隔设置于所述第一导电层与所述第二导电层之间;
多层第一绝缘层,所述第一绝缘层设置于所述第一导电层与距离所述第一导电层最近的第三导电层之间、所述第二导电层与距离所述第二导电层最近的第三导电层之间、以及相邻的两层第三导电层之间;
多层第四导电层,所述多层第四导电层沿第一延伸方向依次层叠且间隔设置于所述第一导电层与所述第二导电层之间,且所述多层第四导电层与所述多层第三导电层沿第二延伸方向间隔设置;以及
多层第二绝缘层,所述第二绝缘层设置于所述第一导电层与距离所述第一导电层最近的第四导电层之间、所述第二导电层与距离所述第二导电层最近的第四导电层之间、以及相邻的两层第四导电层之间;
所述第一天线阵列包括多个第一天线,所述第一天线包括所述第一导电层、所述第二导电层、所述多层第三导电层、所述多层第四导电层以及:
多个第一连接线,所述第一连接线用于电连接所述第一导电层、所述多层第三导电层及所述第二导电层,且所述多个第一连接线间隔设置;以及
多个第二连接线,所述多个第二连接线与所述多个第一连接线相对且间隔设置以形成间隙,所述第二连接线用于电连接所述第一导电层、所述多层第四导电层及所述第二导电层,且所述多个第二连接线间隔设置。
其中,至少一层第一绝缘层与同层的第二绝缘层相连。
其中,每层所述第一绝缘层与每层第二绝缘层相连接。
其中,在所述第三导电层层叠方向上,第一层所述第一绝缘层与第一层所述第二绝缘层相连接;和/或,最后一层所述第一绝缘层与最后一层所述第二绝缘层相连接;其余层的所述第一绝缘层与所述第二绝缘层相对间隔设置。
其中,所述承载板包括:
第一导电层;
第二导电层,所述第二导电层与所述第一导电层相背且间隔设置;以及
第一绝缘层,所述第一绝缘层设置于所述第一导电层与所述第二导电层之间;
所述第一天线阵列包括多个第一天线,所述第一天线包括所述第一导电层、所述第二导电层以及:
多个第一连接线,所述第一连接线用于电连接所述第一导电层及所述第二导电层,且所述多个第一连接线间隔设置;
多个第二连接线,所述多个第二连接线与所述多个第一连接线相对且间隔设置以形成间隙,所述第二连接线用于电连接所述第一导电层及所述第二导电层,且所述多个第二连接线间隔设置。
其中,所述第一绝缘层包括:
第一绝缘部;及
第二绝缘部,所述第二绝缘部与所述第一绝缘部相连,且所述第一连接线穿过所述第二绝缘部,其中,所述第二绝缘部的电磁特性优于第一绝缘部的电磁特性。
其中,当所述承载板包括第二绝缘层时,所述第二绝缘层包括:
第三绝缘部;及
第四绝缘部,所述第四绝缘部与所述第三绝缘部相连,且所述第二连接线穿过所述第四绝缘部,其中,所述第四绝缘部的电磁特性优于第三绝缘部的电磁特性。
其中,所述天线模组还包括:
第一馈电线,所述第一馈电线包括相连的第一端及第二端,所述第一端电连接至所述射频芯片,所述第二端位于所述多个第一连接线与所述多个第二连接线形成的间隙内。
其中,所述天线模组还包括:
第二馈电线,所述第二馈电线包括相连的第三端及第四端,所述第三端电连接至所述射频芯片,所述第四端位于所述多个第一连接线与所述多个第二连接线形成的所述间隙内,其中,所述第四端与所述第二端正交。
其中,所述承载板还包括:
多层第五导电层,所述多层第五导电层沿第一延伸方向依次层叠且间隔设置,并位于所述第一导电层与所述第二导电层之间,且所述第五导电层与同层的所述第一导电层及所述第二导电层电连接,其中一层所述第五导电层中具有收容部,所述第一馈电线设置于所述收容部中,且与所述第五导电层绝缘设置。
其中,所述第一天线还包括:
多个第三连接线,所述多个第三连接线电连接所述多层第五导电层、所述第一导电层及所述第二导电层,且所述多个第三连接线围绕至少部分所述第一馈电线设置。
其中,所述承载板具有相连的天线布置区及非天线布置区,所述第一天线阵列及所述第二天线阵列均位于所述天线布置区,所述承载板包括依次层叠且间隔设置的多层承载绝缘层,每层承载绝缘层均包括:
第一承载绝缘部,所述第一承载绝缘部位于所述天线布置区;以及
第二承载绝缘部,所述第二承载绝缘部位于所述非天线布置区,其中,至少部分所述第一承载绝缘部的电磁特性优于所述第二承载绝缘部的电磁特性。
其中,所述承载板包括依次层叠且间隔设置的多层承载绝缘层,所述第二天线阵列包括多个阵列排布的第二天线,其中,至少一第二天线包括电连接所述射频芯片的第三馈电线,所述第三馈电线包括:
第一馈电部,所述第一馈电部的一端电连接所述射频芯片,且所述第一馈电部穿过所述多层承载绝缘层中的至少一层;
连接部,所述连接部的一端与所述第一馈电部弯折相连,且所述连接部夹设于相邻的两层承载绝缘层之间;以及
第二馈电部,所述第二馈电部的一端与所述连接部的另一端弯折相连,且所述第二馈电部穿过所述多层承载绝缘层中的至少一层,其中,夹设所述连接部的所述两层承载绝缘层中的至少一层承载绝缘层的电磁特性优于所述多层承载绝缘层中其余层的承载绝缘层的电磁特性。
其中,所述第二天线阵列还包括多个第二天线,所述多个第二天线内嵌于所述承载板。
其中,所述承载板包括位于第一表面的第一导电层,所述第二天线与所述第一导电层同层且间隔设 置。
第二方面,本申请实施方式提供一种通信设备,所述通信设备包括如第一方面或第一方面任意一项所述的天线模组。
其中,所述通信设备还包括中框及后盖,所述中框与所述后盖收容形成收容空间,所述天线模组设置于所述收容空间中,所述中框包括弯折相连的承载部及边框部,所述边框部具有本体部及子透波部,所述第一天线的主瓣方向朝向所述子透波部,其中,其中,所述子透波部的透过率大于所述本体部的透过率,所述第二天线的主瓣方向朝向所述后盖。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
此外,需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
请一并参阅图1及图2,图1为本申请一实施方式提供的天线模组的结构示意图;图2为图1中所示的天线模组沿I-I线的部分结构的剖面示意图。本实施方式提供一种天线模组10。所述天线模组10包括承载板110、第一天线阵列120、第二天线阵列130以及射频芯片140。所述第一天线阵列120承载于所述承载板110。所述第二天线阵列130承载于所述承载板110,其中,所述第一天线阵列120的主瓣方向与所述第二天线阵列130的主瓣方向在三维空间中形成的角度大于或等于45°。所述射频芯片140承载于所述承载板110或设置于所述承载板110的一侧,且所述射频芯片140用于提射频信号至所述第一天线阵列120及所述第二天线阵列130。
需要说明的是,鉴于第一天线阵列120中的连接线较多,因此,在图2中仅仅示意出部分连接线。
所述承载板110可以为但不仅限于为采用印刷工艺制备出来的电路板(Printed Circuit Board,PCB)或者高密度互连工艺(High Density Interconnection,HDI)制备出来的板子。当所述承载板110为印刷电路板时,所述承载板110可以为但不仅限于主板或者叠板。
所述第一天线阵列120承载于所述承载板110中可以为但不仅限于内嵌在所述承载板110中,或者设置于所述承载板110的表面等。所述第二天线阵列130承载于所述承载板110中可以为但不仅限于为内嵌于所述承载板110中,或者设置于所述承载板110的表面等。稍后会结合具体实施例对本申请实施方式中第一天线阵列120及第二天线阵列130承载于所述承载板110中的具体方式进行介绍。
所述第一天线阵列120的材质可以为但不仅限于为金属或非金属导电材质;当所述第一天线阵列120为非金属的导电材质时,所述第一天线阵列120可以为不透明的,也可以为透明的。相应地,所述第二天线阵列130的材质可以为但不仅限于为金属或非金属导电材质;当所述第二天线阵列130为非金属的导电材质时,所述第二天线阵列130可以为不透明的,也可以为透明的。所述第一天线阵列120的材质与所述第二天线阵列130的材质可以相同,也可以不同。
在本实施方式中,所述第一天线阵列120为定向天线阵列,所述第二天线阵列130为定向天线阵列。举例而言,所述第一天线阵列120可以为但不仅限于为喇叭天线阵列、贴片天线阵列、偶极子天线阵列等。所述第二天线阵列130可以为但不仅限于为喇叭天线阵列、贴片天线阵列、偶极子天线阵列等。所述定向天线阵列较容易集成在所述承载板110上。
所述射频芯片140用于提供射频信号至所述第一天线阵列110,包括所述射频芯片140与所述第一天线阵列110直接连接,或者所述射频芯片140与所述第一天线阵列110耦合连接。相应地,所述射频芯片140用于提供射频信号至所述第二天线阵列120,包括所述射频芯片140与所述第二天线阵列120直接连接,或者所述射频芯片140与所述第二天线阵列120耦合连接。所述射频芯片140提供至所述第 一天线阵列110的射频信号的频段可以与提供给所述第二天线阵列120的射频信号的频段相同,也可以不同,在此不做限定。
天线的方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣,与主瓣相反方向上的旁瓣叫后瓣。换而言之,所述主瓣是指位于天线的方向图上最大辐射波束。因此,主瓣方向是指天线的方向图上最大辐射波束的方向。
所谓所述第一天线阵列120的主瓣方向与所述第二天线阵列130的主瓣方向在三维空间中形成的角度大于或等于45°。举例而言,在一种实施方式中,所述第一天线阵列120的主瓣方向朝左,所述第二天线阵列130的主瓣方向朝上,所述第一天线阵列120的主瓣方向与所述第二天线阵列130的主瓣方向之间的角度为90°。在另一种实施方式中,所述第一天线阵列120的主瓣方向朝左,所述第二天线阵列130的主瓣方向朝右,所述第一天线阵列120的主瓣方向与所述第二天线阵列130的主瓣方向之间的角度为180°。在另一实施方式中,所述第一天线阵列120的主瓣方向朝左,所述第二天线阵列130的主瓣方向朝下,所述第一天线阵列120的主瓣方向与所述第二天线阵列130的主瓣方向之间的角度为90°。
在一实施方式中,所述第一天线阵列120收发的电磁波信号的频段与所述第二天线阵列130收发的电磁波信号的频段相同。在另一实施方式中,所述第一天线阵列120收发的电磁波信号的频段与所述第二天线阵列130收发的电磁波信号的频段不相同。举例而言,由于所述承载板110的尺寸的限制,其中的一个辐射体阵列的尺寸受到限制,导致所述第一天线阵列120收发的电磁波信号的频段与所述第二天线阵列130收发的电磁波信号的频段不同。此外,即便所述承载板110的尺寸不受限制,可根据需求设计所述天线模组10中的第一天线阵列120及所述第二天线阵列130收发的电磁波信号的频段,使得所述第一天线阵列120收发的电磁波信号的频段与所述第二天线阵列130收发的电磁波信号的频段不相同。
在后面的实施方式中,以所述第一天线阵列120为喇叭天线阵列以及所述第二天线阵列130为贴片天线阵列为例进行介绍,但是不应当理解为对本申请提供的天线模组10的限定。
在本实施方式中,所述第一天线阵列120能够接收电磁波信号,也可以辐射电磁波信号。即,所述第一天线阵列120能够收发电磁波信号。在一实施方式中,所述第一天线阵列120可接收电磁波信号,也可辐射电磁波信号。相应地,在其他实施方式中,所述第二天线阵列130可接收电磁波信号,也可辐射电磁波信号。换而言之,所述第二天线阵列130能够收发电磁波信号。
所述第一天线阵列120及所述第二天线阵列130收发的电磁波信号可以为但不仅限于为***移动通信技术(4th generation wireless systems,4G)所支持的电磁波信号,或者第五带移动通信技术(5th generation wireless systems,5G)所支持的电磁波信号等。所述第一天线阵列120及所述第二天线阵列130收发的电磁波信号的频段不应当理解为对本申请实施方式提供的天线模组10的限定。所述第一天线阵列120及所述第二天线阵列130收发的信号可以为但不仅限于为毫米波频段的射频信号或者太赫兹频段的射频信号。目前,在5G中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。
本申请实施方式提供的天线模组10中,第一天线阵列120的主瓣方向与所第二天线阵列130的主瓣方向在三维空间中形成的角度大于或等于45°,从而使得所述第一天线阵列120收发的电磁波信号与所述第二天线阵列130收发的电磁波信号能够覆盖空间中不同的方向以及覆盖较广的范围,提高所述天线模组10收发的电磁波信号的空间覆盖率,进而使得所述天线模组10具有较好的通信效果。
此外,本申请实施方式提供的天线模组10中,采用一个射频芯片140控制第一天线阵列120及第二天线阵列130这两个阵列,相较于第一天线阵列120及第二天线阵列130均采用一个射频芯片控制而言,可节约一个射频芯片,降低了所述天线模组10的成本。
此外,本申请实施方式提供的天线模组10中,第一天线阵列120及所述第二天线阵列130均承载于同一承载板110,从而使得所述天线模组10的集成度较高,剖面较低,体积较小。当所述天线模组 10应用于通信设备1中时,装配简单且便于与所述通信设备1中的其他器件组装,有利于提升所述通信设备1的集成度。
进一步地,在本实施方式中,所述承载板110包括第一表面110a及第二表面110b。所述第一表面110a朝向第一方向d1,所述第二表面110b与所述第一表面110a相连且相交,且所述第二表面110b朝向第二方向d2,其中,所述第一天线阵列120的主瓣方向为所述第一方向d1,所述第二天线阵列130的主瓣方向为所述第二方向d2。
本实施方式中,以所述承载板110的形状为长方体或者类似长方体为例进行示意。所述第一表面110a可以为所述承载板110中任意的一个表面,所述第二表面110b为所述承载板110中的一个表面,且所述第二表面110b与所述第一表面110a相连且相交。在本实施方式中,以所述第一表面110a为所述承载板110的左侧面为例进行示意,且以所述第二表面110b为所述承载板110的上表面为例进行示意。
所述第一天线阵列120的主瓣方向和所述第一表面110a的朝向相同,所述第二天线阵列130的主瓣方向和所述第二表面110b的朝向相同,可便于所述第一天线阵列120及所述第二天线阵列130在所述承载板110上设置。此外,所述第一天线阵列120的朝向及所述第二天线阵列130的朝向也可使得所述第一天线阵列120辐射的电磁波信号与所述第二天线阵列130辐射的电磁波信号能够覆盖空间中不同的方向,使得所述天线模组10具有较高的空间覆盖率,进而使得所述天线模组10具有较好的通信效果。在一实施方式中,所述第一方向d1与所述第二方向d2垂直正交或者近似垂直相交。即,所述第一表面110a与所述第二表面110b相交且形成的角度为90°或者近似为90°。所述第一方向d1与所述第二方向d2垂直正交时,所述第一天线阵列120收发的电磁波信号与所述第二天线阵列130收发的电磁波信号相交的区域较小,使得所述天线模组10收发的电磁波信号覆盖的区域较大,即,具有较高的空间覆盖率,进而使得所述天线模组10具有较好的通信效果。
请一并参阅图1、图3、图4、图5及图6,图3为图1中第一天线阵列中的一个第一天线的俯视图;图4为图3中的第一天线的立体示意图;图5为图4中去掉第一导电层的示意图;图6为本申请一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。在本实施方式中,为了方便示意出第一导电层111、第二导电层112、及多层第三导电层113及多层第四导电层114的位置关系,在图4及图5中省略了多层第一绝缘层115和多层第二绝缘层116。所述第一天线阵列120包括多个第一天线121。具体地,所述多个第一天线121间隔且规律排布以形成所述第一天线阵列120。所述第二天线阵列130包括多个第二天线131。具体地,所述多个第二天线131间隔且规律排布以形成所述第二天线阵列130。所述承载板110包括第一导电层111、第二导电层112、多层第三导电层113、多层第一绝缘层115、多层第四导电层114、以及多层第二绝缘层116。所述第二导电层112与所述第一导电层111相背且间隔设置。所述多层第三导电层113沿第一延伸方向D1依次层叠且间隔设置于所述第一导电层111与所述第二导电层112之间。所述第一绝缘层115设置于所述第一导电层111与所述多层第三导电层113之间、所述第二导电层112与所述多层第三导电层113之间、以及相邻的两层第三导电层113之间。所述多层第四导电层114沿第一延伸方向D1依次层叠且间隔设置于所述第一导电层111与所述第二导电层112之间,且所述多层第四导电层114与所述多层第三导电层113沿第二延伸方向D2间隔设置。所述第二绝缘层116设置于所述第一导电层111与距离所述第一导电层111最近的第四导电层114之间、所述第二导电层112与距离所述第二导电层112最近的第四导电层114之间、以及相邻的两层第四导电层114之间。
在本实施方式中,所述第二导电层112及所述第一导电层111沿着第一延伸方向D1间隔排布。
请参阅图4及图6,在本实施方式中,所述第一延伸方向D1为Z轴的正方向,所述第二延伸方向D2为Y轴的正方向。可以理解地,上述对第一延伸方向D1及第二延伸方向在XYZ坐标轴中的参照仅仅为对第一延伸方向D1和第二延伸方向D2的一种情况的说明,是为了方便理解本案,并不构成对本案的限定,可以理解地,在其他实施方式中,所述第一延伸方向D1也可以为Z轴的正方向,所述第二延伸方向D2也可以为X轴的正方向;或者,所述第一延伸方向D1为X轴的正方向,所述第二延伸方向D2为Y轴的正方向;只要满足所述第一延伸方向D1与所述第二延伸方向D2不同即可。
所述多层第三导电层113作为一个整体设置于所述第一导电层111及所述第二导电层112之间,且所述多层第三导电层113在所述第一延伸方向D1上依次层叠且间隔设置。可以理解地,所述第一导电层111与所述多层第三导电层113中和所述第一导电层111距离最近的第三导电层113之间间隔设置。即,在本实施方式中,处于最顶层的第三导电层113与所述第一导电层111间隔设置。所述第二导电层112与所述多层第三导电层113中和所述第二导电层112距离最近的第三导电层113间隔设置。所述第一导电层111与所述多层第三导电层113之间设置有第一绝缘层115(见图6及图7),换而言之,所述第一导电层111与所述多层第三导电层113中和所述第一导电层111距离最近的第三导电层113之间设置有所述第一绝缘层115。所述多层第三导电层113中相邻的两层第三导电层113之间也设置有所述第一绝缘层115。所述第二导电层112与所述多层第三导电层113中之间设置有第一绝缘层115,换而言之,所述第二导电层112与所述多层第三导电层113中和所述第二导电层112距离最近的第三导电层113之间设置有所述第一绝缘层115。
所述多层第四导电层114作为一个整体设置于所述第一导电层111及所述第二导电层112之间,且所述多层第四导电层114在所述第一延伸方向D1上依次层叠且间隔设置。可以理解地,所述第一导电层111与所述多层第四导电层114中和所述第一导电层111距离最近的第四导电层114间隔设置。所述第二导电层112与所述多层第四导电层114中和第二导电层112中距离最近的第四导电层114间隔设置。具体地,所述第一导电层111与所述多层第四导电层114之间设置有第二绝缘层116(见图6及图7),换而言之,所述第一导电层111与所述多层第四导电层114中和所述第一导电层111距离最近的第四导电层114之间设置有所述第二绝缘层116。所述多层第四导电层114中相邻的两层第四导电层114之间也设置有所述第二绝缘层116。所述第二导电层112与所述多层第四导电层114中之间设置有第二绝缘层116,换而言之,所述第二导电层112与所述多层第四导电层114中和所述第二导电层112距离最近的第四导电层114之间设置有所述第二绝缘层116。
所述第一绝缘层115可采用损耗因子(Dissipation Factor,DF)较低的材质,以使得所述第一绝缘层115对所述第一天线阵列120收发电磁波信号的影响较小;各层第一绝缘层115的厚度可以相等也可以不相等。举例而言,所述第一绝缘层115的损耗因子DF可以为但不仅限于为Df=0.004;所述第一绝缘层115的厚度可以为但不仅限于为0.40mm~0.45mm。
所谓损耗因子,是指信号线中已漏失(Loss)到绝缘材料中的能量与尚存在(Stored)信号线中的能量的比值。DF是绝缘材料的一种固有的性质。损耗因子越小,则表明信号线中漏失到绝缘材料中的能量与尚存在信号线中的能量的比值越小;损耗因子越大,则表明信号线中漏失到绝缘材料中的能量与尚存在信号线中的能量的比值越大。由此可见,信号线在DF越小的材质中的传输性能越好,漏失的能量的比例越小;相反地,信号线在DF越大的材质中传输的性能越差,漏失的能量的比例越大。
相应地,所述第二绝缘层116也可采用损耗因子DF较低的材质,以使得所述第二绝缘层116对所述第二天线阵列130收发电磁波信号的影响较小;各层第二绝缘层116的厚度可以相等也可以不相等。举例而言,所述第二绝缘层116的损耗因子DF可以为但不仅限于为Df=0.004;所述第二绝缘层116的厚度可以为但不仅限于为0.40mm~0.45mm。所述第二绝缘层116的厚度与所述第一绝缘层115的厚度可以相等也可以不相等。在本实施方式中,以所述第二绝缘层116的厚度与所述第一绝缘层115的厚度相等为例进行说明,当所述第二绝缘层116的厚度与所述第一绝缘层115的厚度相等时,方便所述承载板110的制备。
所述多层第三导电层113与所述多层第四导电层114之间在所述第二延伸方向D2上的间距先自邻近所述第一表面110a的一端朝向背离所述第一表面110a的一端逐渐减小,再保持预设距离不变,形成类似喇叭的结构。所述第一天线121包括所述第一导电层111、所述第二导电层112、所述多层第三导电层113、所述多层第四导电层114、多个第一连接线1211及多个第二连接线1212。所述第一连接线1211用于电连接所述第一导电层111、所述多层第三导电层113及所述第二导电层112,且所述多个第一连接线1211间隔设置。所述多个第二连接线1212与所述多个第一连接线1211相对且间隔设置,所述第二连接线1212用于电连接所述第一导电层111、所述多层第四导电层114及所述第二导电层112,且所述多个第二连接线1212间隔设置。
具体地,在一实施方式中,所述多个第一绝缘层115上开设有通孔,所述第一连接线1211设置在所述多个第一绝缘层115中的所述通孔内,以将所述第一绝缘层115两侧导电层电连接。具体地,位于顶层的第一绝缘层115的两侧分别为第一导电层111和顶层第三导电层113(即距离所述第一导电层111最近的第三导电层113),则,位于顶层的第一绝缘层115中的第一连接线1211将所述第一导电层111和距离所述第一导电层111最近的所述第三导电层113电连接;位于底层的第一绝缘层115的两侧分别为底层的第三导电层113(即,距离所述第二导电层112最近的第三导电层113)和第二导电层112,则,位于底层的第一绝缘层115中的第一连接线1211将底层的所述第三导电层113和第二导电层112电连接;位于中间层的第一绝缘层115的两侧均为第三导电层113,则,位于中间层的第一绝缘层115中的第一连接线1211分别将两侧的第三导电层113电连接。可以理解地,本实施方式中以所述第一导电层111位于顶层且所述第二导电层112位于底层为例进行说明,随着所述天线模组10的摆放位置不同,各个导电层(第一导电层111、第二导电层112及第三导电层113)以及第一绝缘层115的位置关系也会发生变化。
在另一实施方式中,所述第一绝缘层115开设有通孔,且所述多层第三导电层113开设有通孔,所述第一导电层111及所述第二导电层112未开设有通孔,所述述第一绝缘层115上的通孔与第三导电层113中的通孔相连通,且所述第一连接线1211设置于所述第一绝缘层115中的通孔以及第三导电层113中的通孔中。在另一实施方式中,所述第一绝缘层115开设有通孔,且所述多层第三导电层113开设有通孔,以及所述第一导电层111及所述第二导电层112中的至少一个开设有通孔,且所述第一绝缘层115上的通孔、所述第三导电层113中的通孔、以及第一导电层111及第二导电层112中的通孔相连通,所述第一连接线1211设置于所述第一绝缘层115中的通孔、所述第三导电层113中的通孔、以及第一导电层111及第二导电层112中所述至少一个的通孔中。只要满足所述第一连接线1211将所第一导电层111、所述多层第三导电层113以及所述第二导电层112电连接即可。
所述多个第一连接线1211的延伸方向为所述第一延伸方向D1,所述多个第一连接线1211的排布方向为在包括第二延伸方向D2在内的平面内间隔排布。
相应地,在一实施方式中,所述多个第二绝缘层116上开设有通孔,所述第二连接线1212设置在所述多个第二绝缘层116中的所述通孔内,以将所述第二绝缘层116两侧的导电层电连接。具体地,位于顶层的第二绝缘层116的两侧分别为第一导电层111和顶层的第四导电层114(即距离所述第一导电层111最近的第四导电层114),则,位于顶层的第二绝缘层116中的第二连接线1212将所述第一导电层111和距离所述第一导电层111最近的所述第四导电层114电连接;位于底层的第一绝缘层115的两侧分别为底层的第四导电层114(即,距离第二导电层112最近的第四导电层114)和第二导电层112,则,位于底层的第二绝缘层116中的第二连接线1212将底层的第四导电层114和第二导电层112电连接;位于中间层的第二绝缘层116两侧的均为第四导电层114,则位于中间层的第二绝缘层116中的第二连接线1212分别将两侧的第四导电层114电连接。可以理解地,在本实施方式中以所述第一导电层111位于顶层且所述第二导电层112位于底层为例进行说明,随着所述天线模组10的摆放位置不同,各个导电层(第一导电层111、第二导电层112及第三导电层113)以及第二绝缘层116的位置关系也会发生变化。
在另一实施方式中,所述第二绝缘层116开设有通孔,且所述多层第四导电层114开设有通孔,所述第一导电层111及所述第二导电层112未开设有通孔,所述述第二绝缘层116上的通孔与第四导电层114中的通孔相连通,且所述第二连接线1212设置于所述第二绝缘层116中的通孔以及第四导电层114中的通孔中。在另一实施方式中,所述第二绝缘层116开设有通孔,且所述多层第四导电层114开设有通孔,以及所述第一导电层111及所述第二导电层112中的至少一个开设有通孔,且所述第二绝缘层116上的通孔、所述第四导电层114中的通孔、以及第一导电层111及第二导电层112中的通孔相连通,所述第二连接线1212设置于所述第二绝缘层116中的通孔、所述第四导电层114中的通孔、以及第一导电层111及第二导电层112中所述至少一个的通孔中。只要满足所述第二连接线1212将所第一导电层111、所述多层第四导电层114以及所述第二导电层112电连接即可。
所述多个第二连接线1212的延伸方向为所述第一延伸方向D1,所述多个第二连接线1212的排布 方向为在包括第二延伸方向D2在内的平面内间隔排布。
在本实施方式中,所述多个第一连接线1211电连接所述第一导电层111、所述多层第三导电层113及所述第二导电层112,即,所述多个第一连接线1211内嵌于所述承载板110中;相应地,所述第二连接线1212电连接所述第一导电层111、所述多层第四导电层114及所述第二导电层112,即,所述多个第二连接线1212内嵌于所述承载板110中。由此可见,相比于采用分立的辐射体贴附在承载板110等方式而言,本申请实施方式中的第一天线121辐射体集成在所述承载板110中,可降低所述承载板110的剖面高度,即可使得所述承载板110在所述第一延伸方向D1上的高度较小,此外,还可降低成本,提高了生产速度。
在一实施方式中,至少一层第一绝缘层115与位于同一层的的第二绝缘层116相连。换而言之,至少一层第一绝缘层115与位于同一层的所述第二绝缘层116连接为一个整体,因此,相连的第一绝缘层115及第二绝缘层116也可视为是一整层的绝缘层。所述至少一层第一绝缘层115位于同一层的的第二绝缘层116相连,可使得所述承载板110具有较强的结构强度。
请参阅图6,在本实施方式中,每层所述第一绝缘层115与每层第二绝缘层116相连接。每层第一绝缘层115与每层的第二绝缘层116相连接,可以理解地,第N层第一绝缘层115与第N层第二绝缘层116连接为一个整体,相连的第一绝缘层115及第二绝缘层116可视为是一整层的绝缘层。每层第一绝缘层115与每层第二绝缘层116相连,可进一步增强所述承载板110的结构强度。
第一层第一绝缘层115与第一层第二绝缘层116相连接;和/或,最后一层第一绝缘层115与最后一层第二绝缘层116相连接;其余层的第一绝缘层115与第二绝缘层116相对间隔设置。在本实施方式中,请一并参阅图7,图7为本申请另一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。在所述第三导电层113的层叠方向上,第一层绝缘层115和第一层第二绝缘层116相连接;最后一层第一绝缘层115与最后一层第二绝缘层116相连;其余层的第一绝缘层115与第二绝缘层116相对且间隔设置。换而言之,其余层的第一绝缘层115与所述第二绝缘层116未连接到一起。
本实施方式提供的天线模组10中,承载板110的质量较轻,便于所述天线模组10的轻薄化。
请参阅图8,图8为本申请又一实施方式提供的图3中所示的第一天线沿II-II的剖面结构示意图。在本实施方式中,在所述多个第三导电层113层叠方向上,第一层第一绝缘层115与第一层第二绝缘层116相连接;最后一层第一绝缘层115与最后一层第二绝缘层116未相连接;其余层的第一绝缘层115与第二绝缘层116相对间隔设置。
请一并参阅图9、图10、图11及图12,图9为本申请另一实施方式提供的第一天线的俯视图;图10为图9中所示的第一天线的立体示意图;图11为图10中所示的第一天线的部分结构示意图;图12为图9中沿IV-IV线的剖视图。为了方便示意出所述第一天线110中的各个导电层,在图9中省略了各个导电层之间的绝缘层。图10中的第二天线为图9中的第二天线去掉了第一导电层及相应的连接线的示意图。在本实施方式中,所述承载板110包括第一导电层111、第二导电层112以及第一绝缘层115。所述第二导电层112与所述第一导电层111相背且间隔设置。所述第一绝缘层115设置于所述第一导电层111与所述第二导电层112之间。所述第一天线阵列120包括多个第一天线121。所述多个第一天线121间隔且规律排布以形成所述第一天线阵列120。所述第一天线121包括多个第一连接线1211及多个第二连接线1212。所述第一连接线1211用于电连接所述第一导电层111及所述第二导电层112,且所述多个第一连接线1211间隔设置。所述多个第二连接线1212与所述多个第一连接线1211相对且间隔设置以形成间隙121a,所述第二连接线1212用于电连接所述第一导电层111及所述第二导电层112,且所述多个第二连接线1212间隔设置。
请一并参阅图13,图13为本申请一实施方式中第一天线的结构剖面示意图。在本实施方式所述的第一天线121和图6中所示的第一天线121基本相同,不同之处在于所述第一绝缘层115包括第一绝缘部1151及第二绝缘部1152。所述第二绝缘部1152与所述第一绝缘部1151相连,且所述第一连接线1211穿过所述第二绝缘部1152,其中,所述第二绝缘部1152的电磁特性优于第一绝缘部1151的电磁特性。
可以理解地,在本实施方式中,以本实施方式的第一绝缘层115包括第一绝缘部1151及第二绝缘部1152结合到图6中所示的第一天线121中为例进行示意,但不应当理解为对本申请中第一绝缘层115 所应用的第一天线121的限定。
在本实施方式中,所述第二绝缘部1152的电磁特性优于所述第一绝缘部1151的电磁特性,则所述第一天线121收发的电磁波信号在所述第二绝缘部1152中的辐射效率及带宽均优于所述第一天线121收发的电磁波信号在所述第一绝缘部1151中的辐射效率及带宽。
其中,所述电磁特性至少包括损耗因子(DF)及介电常数(DK)。在本实施方式中,所述第二绝缘部1152的DF小于所述第一绝缘部1151的DF。
在所述第一绝缘部1151及所述第二绝缘部1152的介电常数一定(比如相等)的情况下,所述第二绝缘部1152的DF小于所述第一绝缘部1151的DF,则表明所述第二绝缘部1152的电磁性能优于所述第一绝缘部1151的电磁性能。为了方便描述,所述第一绝缘部1151的DF命名为DF1,所述第二绝缘部1152的DF命名为DF2。相较于第一绝缘层115的各处的DF均为DF1而言,本实施方式中的第一绝缘层115的设置,且DF2小于DF1可使得所述第一连接线1211上传输的信号的损耗较小,当所述射频芯片140通过所述第一连接线1211收发电磁波信号时,在所述电磁波信号传输的距离一定的情况下,所述射频芯片140所需要的发射功率较小;若在所述射频芯片140发射的功率一定的情况下,所述射频芯片140发射的电磁波信号的传输的距离较长。相较于所述第一绝缘层115各处的DF均为DF2而言,第一绝缘部1151的DF为DF1,第二绝缘部1152的DF为DF2,可降低所述承载板110的成本。
在所述第一绝缘部1151和所述第二绝缘部1152的损耗因子一定(比如相等)的情况下,若不需要用高介电常数来实现天线模组10的小型化,则,DK越小则电磁性能越优,即DK越小,所述天线模组10的辐射效率及带宽均较大。相应地,在所述第一绝缘部1151和所述第二绝缘部1152的损耗因子一定(比如相等)的情况下,若所述天线模组10的设计空间不够大,则需要采用高DK的材质来实现天线模组10的小型化,则在满足所述天线模组10收发的电磁波信号的辐射效率及带宽的情况下,DK需要选取较高的介电常数。然,DK越大,则天线模组10的辐射效率及带宽均会下降。在本实施方式中,所述第二绝缘部1152的电磁特性优于第一绝缘部1151的电磁特性,包括:所述第二绝缘部1152的DK小于所述第一绝缘部1151的DK。
请一并参阅图14,图14为本申请另一实施方式中第一天线的结构剖面示意图。在本实施方式中,所述承载板110包括第二绝缘层116时,所述第二绝缘层116包括第三绝缘部1161及第四绝缘部1162。所述第四绝缘部1162与所述第三绝缘部1161相连,且所述第二连接线1212穿过所述第四绝缘部1162,其中,所述第四绝缘部1162的电磁特性优于第三绝缘部1161的电磁特性。
在本实施方式中,所述第四绝缘部1162的电磁特性优于所述第三绝缘部1161的电磁特性,则所述第一天线121收发的电磁波信号在所述第四绝缘部116中的辐射效率及带宽均优于所述第一天线121收发的电磁波信号在所述第三绝缘部1161中的辐射效率及带宽。
其中,所述电磁特性至少包括损耗因子(DF)及介电常数(DK)。在本实施方式中,所述第四绝缘部1162的DF小于所述第三绝缘部1161的DF。
在所述第三绝缘部1161及所述第四绝缘部1162的介电常数一定(比如相等)的情况下,所述第四绝缘部1162的DF小于第三绝缘部1161的DF,则表明所述第四绝缘部1162的电磁性能优于所述第三绝缘部1161的电磁性能。为了方便描述,所述第三绝缘部1161的DF命名为DF3,所述第四绝缘部1162的DF命名为DF4。相较于所述第三绝缘部1161均使用DF3的材质而言,本实施方式中第二绝缘层116的设置,且DF4小于DF3可使得所述第二连接线1212上传输的信号的损耗较小,当所述射频芯片140通过所述第二连接线1212收发电磁波信号时,在所述电磁波信号传输的距离一定的情况下,所述射频芯片140所需要的发射功率较小;若在所述射频芯片140发射的功率一定的情况下,所述射频芯片140发射的电磁波信号的传输距离较长。相较于所述第二绝缘层116各处的DF均为DF4而言,所述第三绝缘部1161的DF为DF1,所述第二绝缘部1152的DF为DF2,可降低所述承载板110的成本。
在所述第三绝缘部1161和所述第四绝缘部1162的损耗因子一定(比如相等)的情况下,若不需要用高介电常数来实现天线模组10的小型化,则,DK越小则电磁性能越优,即DK越小,所述天线模组10的辐射效率及带宽均较大。相应地,在所述第三绝缘部1161和所述第四绝缘部1162的损耗因子一定(比如相等)的情况下,若所述天线模组10的设计空间不够大,则需要采用高DK的材质来实现 天线模组10的小型化,则在满足所述天线模组10收发的电磁波信号的辐射效率及带宽的情况下,DK需要选取较高的介电常数。然,DK越大,则天线模组10的辐射效率及带宽均会下降。在本实施方式中,所述第四绝缘部1162的电磁特性优于第三绝缘部1161的电磁特性,包括:所述第四绝缘部1162的DK小于所述第三绝缘部1161的DK。
请一并参阅图1及图15,图15为本申请另一实施方式提供的天线模组沿I-I线的剖视图。所述承载板110具有相连的天线布置区11a及非天线布置区11b。所述第一天线阵列120及所述第二天线阵列130均位于所述天线布置区11a,所述承载板110包括依次层叠且间隔设置的多层承载绝缘层118。每层承载绝缘层118均包括第一承载绝缘部1181及第二承载绝缘部1182。所述第一承载绝缘部1181位于所述天线布置区11a。所述第二承载绝缘部1182位于所述非天线布置区11b,其中,至少部分所述第一承载绝缘部1181的电磁性能优于所述第二承载绝缘部1182的电磁性能。
在本实施方式的示意中,所述第二绝缘部1182即为前面第一绝缘层115和所述第二绝缘层116相连形成。在其他实施方式中,所述第一绝缘层115和所述第二绝缘层116不相连。
在本实施方式中,至少部分所述第一承载绝缘部1181的电磁性能优于所述第二承载绝缘部1182的电磁性能,即,所述第一天线阵列120及所述第二天线阵列130在所述天线布置区11a中的辐射效率及带宽优于在非天线布置区11b中的辐射效率及带宽。
其中,所述电磁特性至少包括损耗因子(DF)及介电常数(DK)。在本实施方式中,至少部分所述第一承载绝缘部1181的DF小于所述第二承载绝缘部1182的DF。
在所述第一承载绝缘部1181及所述第二承载绝缘部1182的介电常数一定(比如相等)的情况下,在本实施方式中,第一承载绝缘部1181的DF小于所述第二承载绝缘部1182的DF,则表明第一承载绝缘部1181的电磁性能优于所述第二承载绝缘部1182的电磁性能。为了方便描述,所述第一承载绝缘部1181的DF命名为DF11,所述第二承载绝缘部1182的DF命名为DF12。相较于所述第一承载绝缘部1181及所述第二承载绝缘部1182均使用DF12的材质而言,本申请实施方式中的承载绝缘层118的设置,可使得所述第一天线阵列120及第二天线阵列130中传输的信号的损耗较小,当所述射频芯片140利用所述第一天线阵列120及所述第二天线阵列130收发电磁波信号时,在电磁波信号传输的距离一定的情况下,所述射频芯片140所需要的发射功率较小;若在所述射频芯片140收发电磁波信号的功率一定的情况下,所述射频芯片140利用所述第一天线阵列120及所述第二天线阵列130发射的电磁波信号的传输距离较长。相较于位于非天线布置区11b的第二承载绝缘部1182的DF均使用DF11的材质而言,本申请实施方式的承载板110的成本较低。
在本实施方式中,至少部分所述第一承载绝缘部1181的电磁性能优于所述第二承载绝缘部1182的电磁性能,包括:至少部分所述第一承载绝缘部1181的DK小于所述第二承载绝缘部1182的DK。
请一并参阅图1及图16,图16为本申请又一实施方式提供的天线模组沿I-I线的剖视图。所述承载板110包括依次层叠且间隔设置的多层承载绝缘层118。所述第二天线阵列130包括多个第二天线131,具体地,所述多个第一天线121间隔且规律排布以形成所述第一天线阵列120。其中,至少一第二天线131包括电连接所述射频芯片140的第三馈电线170。所述第三馈电线170包括第一馈电部171、连接部172以及第二馈电部173。所述第一馈电部171的一端电连接所述射频芯片140,且所述第一馈电部171穿过所述多层承载绝缘层118中的至少一层。所述连接部172的一端与所述第一馈电部171弯折相连,且所述连接部172夹设于相邻的两层承载绝缘层118之间。所述第二馈电部173的一端与所述连接部172的另一端弯折相连,且所述第二馈电部173穿过所述多层承载绝缘层118中的至少一层,其中,夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的电磁性能优于所述多层承载绝缘层118中其余层的承载绝缘层118的电磁性能。
在本实施方式中,夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的电磁性能优于所述多层承载绝缘层118中其余层的承载绝缘层118的电磁性能,即,夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的辐射效率及带宽优于所述多层承载绝缘层118中其余层的承载绝缘层118的辐射效率及带宽。
其中,所述电磁特性至少包括损耗因子(DF)及介电常数(DK)。在本实施方式中,夹设所述连 接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的DF小于所述多层承载绝缘层118中其余层的承载绝缘层118的DF。
由于所述第二天线阵列130包括多个第二天线131,所述多个第二天线131间隔且规律排布以形成所述第二天线阵列130。则会有一些第二天线131不能够与所述射频芯片140通过较为笔直的馈电线连接。因此,本申请实施方式中,至少一第二天线131电连接至所述射频芯片140的第三馈电线170包括第一馈电部171、连接部172及第二馈电部173。需要说明的是,所谓的夹设所述连接部172的两层承载绝缘层118,是指设置在所述连接部172相背的两侧,且距离所述连接部172最近的两层承载绝缘层118。以夹设所述连接部172的两层绝缘层118分别命名为承载绝缘层118a及承载绝缘层118b,其中,承载绝缘层118a相较于承载绝缘层118b邻近所述射频芯片140设置。则,在夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的介电常数与所述其余层的承载绝缘层118的介电常数一定(比如相等)的情况下,夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的DF小于所述多层承载绝缘层118中其余层的承载绝缘层118的DF,包括如下几种情况:承载绝缘层118a的DF及承载绝缘层118b的DF均小于其余层的承载绝缘层118的DF;或者,仅承载绝缘层118a的DF小于其余层的承载绝缘层118的DF;或者,仅承载绝缘层118b的DF小于其余层的承载绝缘层118的DF。
夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的DF小于所述多层承载绝缘层118中其余层的承载绝缘层118的DF,可使得所述第三馈电线170上传输的射频信号的损耗较小,当所述射频芯片140通过所述第三馈电线170收发电磁波信号时,在所述电磁波信号传输的距离一定的情况下,所述射频芯片140所需要的发射功率较小;若在所述射频芯片140发射的功率一定的情况下,所述射频芯片140发射的电磁波信号的传输距离较长。此外,鉴于所述承载板110制备时,通常将导电层和承载绝缘层118依次间隔形成,本实施方式中,将夹设所述连接部172的两层承载绝缘层118中的至少一层承载绝缘层118的DF设置为小于所述多层承载绝缘层118中其余层的承载绝缘层118的DF的材质,可使得所述承载板110较为容易制备。只需要在夹设所述连接部172的承载绝缘层118的制备中使用DF较小的材质即可。
在本实施方式中,夹设所述连接部172的所述两层承载绝缘层118中的至少一层承载绝缘层118的DK小于所述多层承载绝缘层118中其余层的承载绝缘层118的DK。
请一并参阅图9、图10、图14及图15,所述天线模组10还包括第一馈电线150。所述第一馈电线150包括相连的第一端151及第二端152,所述第一端151电连接至所述射频芯片140,所述第二端152位于所述多个第一连接线1211与所述多个第二连接线1212形成的间隙121a(见图10及图15)内。
在本实施方式中,所述第一馈电线150的第一端151电连接所述射频芯片140,第二端152设置于所述间隙内,从而使得所述第一天线121能够通过所述第一馈电线150与所述射频信号之间实现信号传输。当所述第一天线121用于辐射电磁波信号时,所述射频信号产生射频信号,所述射频信号经由所述第一馈电线150的第一端151传输至所述第一馈电线150的第二端152,所述第一天线121根据传输至所述第二端152的射频信号产生电磁波信号,并辐射出去。当所述第一天线121用于接收电磁波信号时,所述第一天线121根据所述电磁波信号生成电信号,所述电信号经由所述第一馈电线150的第二端152及所述第二馈电线160的第一端151传输至所述射频芯片140中。
在本实施方式中,所述天线模组10除了包括第一馈电线150还包括第二馈电线160。请一并参阅图9、图10、图17及图18,图17为图5中所示的第一馈电线的结构示意图;图18为图5中所示的第二馈电线的结构示意图。所述第一馈电线150包括相连的第一端151及第二端152,所述第一端151电连接至所述射频芯片140,所述第二端152位于所述多个第一连接线1211与所述多个第二连接线1212形成的间隙121a内。所述第二馈电线160包括相连的第三端161及第四端162,所述第三端161电连接至所述射频芯片140,所述第四端162位于所述多个第一连接线1211与所述多个第二连接线1212形成的所述间隙121a内,其中,所述第四端162与所述第二端152正交。
在本实施方式中,所述第四端162与所述第二端152正交,从而使得所述第一天线121为双极化天线辐射体。换而言之,所述第一天线121能够收发极化方向为垂直极化方向以及水平极化方向的电磁波 信号。当所述第一天线121为双极化天线时,可提升所述天线模组10的通信效果,且相较于相关技术中使用两个天线实现不同的极化而言,本实施例提供的天线模组10可减小所述天线模组10中天线的个数。
所述第一馈电线150可采用共面波导(Coplanar waveguide,CPW)的形式,也可以为带状线等形式,或者CPW形式和带状线的组合。所述第二馈电线160可采用CPW的形式、也可采用带状线等形式,或者CPW形式和带状线的组合。相应地,所述第三馈电线170可采用CPW的形式、也可采用带状线等形式,或者CPW形式和带状线的组合。
请一并参阅图5、图10及图11,所述承载板110还包括多层第五导电层117。所述多层第五导电层117沿第一延伸方向D1依次层叠且间隔设置,并位于所述第一导电层111与所述第二导电层112之间,且所述第五导电层117与位于同层的所述第一导电层111及所述第二导电层112电连接,其中,其中一层所述第五导电层117中具有收容部1171,所述第一馈电线150设置于所述收容部1171(见图11)中,且与所述第五导电层117绝缘设置。
位于同层的第五导电层117与所述第一导电层111及所述第二导电层112电连接包括但不仅限于如下几种情况:在一实施方式中,位于同层的第五导电层117、第一导电层111之间通过电连接件电连接,且位于同层的第五导电层117与第一导电层111通过电连接件电连接;在另一实施中,位于同层的第五导电层117、第一导电层111及第二导电层112连接成为一个整体,即,位于同层的第五导电层117、第一导电层111及第二导电层112为一体结构。在本实施方式的示意图中,以位于同层的第五导电层117、第一导电层111及第二导电层112连接成为一个整体为例进行示意。
相邻的两侧第五导电层117之间设置有绝缘层,所述绝缘层用于将相邻的两层第五导电层117间隔开。
请一并参阅图5、图10及图11,所述第一天线121还包括多个第三连接线1213。所述多个第三连接线1213电连接所述多层第五导电层117、所述第一导电层111及所述第二导电层112,且所述多个第三连接线1213围绕至少部分所述第一馈电线150设置。
相邻的两侧第五导电层117之间设置有绝缘层,所述绝缘层用于将相邻的两层第五导电层117间隔开。所述绝缘层上还设置有贯孔,所述第三连接线1213设置于所述贯孔内,以电连接所述多层第五导电层117、所述第一导电层111及所述第二导电层112。所述多个第三连接线1213围绕至少部分所述第一馈电线150设置,可使得所述第五导电层117、所述第一导电层111及所述第二导电层112的电连接性能较好。
请一并参阅图1及图15在本实施方式中,所述第二天线阵列130还包括多个第二天线131。具体地,所述多个第二天线131间隔且规律排布以形成所述第二天线阵列130。所述多个第二天线131内嵌于所述承载板110。
在本实施方式中,所述第二天线131内嵌于所述承载板110可使得所述第二天线131集成在所述承载板110中,不增加甚至较少增加所述承载板110的厚度,使得所述天线模组10的集成度较高,体积较小。当所述天线模组10应用于通信设备1中时,便于与所述通信设备1中的其他器件组装,有利于提升所述通信设备1的集成度。
在本实施方式中,所述承载板110包括位于第一表面110a的第一导电层111,所述第二天线131与所述第一导电层111同层且间隔设置。所述第一导电层111位于所述第一表面110a,当所述第二天线131与所述第一导电层111同层且间隔设置,即,所述第二天线131位于第一表面110a,可使得所述第二天线131收发的电磁波信号较少甚至不被所述承载板110中的导电层及绝缘层遮挡,进而能够提升所述天线模组10利用所述第二天线131收发电磁波信号的质量。在其他实施方式中,所述第二天线131也可与位于所述第一导电层111与所述第二导电层112之间的任意一层。
结合前面任意实施方式,所述承载板110还包括第三表面110c(参见图15)。所述第三表面110c与所述第一表面110a相连且相交,且所述第三表面110c与所述第二表面110b相背设置,所述射频芯片140设置于所述第三表面110c。
所述承载板110位于所述第三表面110c,可使得所述射频芯片140与所述第二天线131之间的距 离较短,进而缩短了电连接所述射频芯片140与所述第二天线131的馈电线的长度,因此,可避免较长的馈电线造成的射频信号的损耗。
所述射频芯片140面对所述第三表面110c的表面上设置有多个第一输出端141及多个第二输出端142。所述第一输出端141用于电连接至所述第一馈电线150及第二馈电线160。所述多个第二输出端142用于电连接至第三馈电线170,其中所述第三馈电线170用于电连接所述第二天线131。
相较于所述第一输出端141及所述第二输出端142设置于其他表面上而言,所述射频芯片140面对所述第三表面110c的表面上设置有多个第一输出端141及多个第二输出端142,可进一步使得所述第一馈电线150、第二馈电线160及第三馈电线170的长度较短,进而减小了所述第一馈电线150、第二馈电线160及第三馈电线170上传输的射频信号的损耗,使得所述第一天线阵列120及所述第二天线阵列130具有较好的辐射增益。
所述第一输出端141及所述第二输出端142可通过焊接工艺连接到所述承载板110上,且所述第一输出端141及所述第二输出端142面对所述第三表面110c,因此,这种工艺称为倒焊芯片工艺(Flip-Chip)工艺。所述第一馈电线150可以为馈电导线或者为馈电探针;相应地,所述第二馈电线160可以为馈电导线或者为馈电探针;相应地,所述第三馈电线170可以为馈电导向或者为馈电探针。
请一并参阅图2等各个剖面示意图,在本实施方式中,以所述承载板110包括11层的布线层为例进行示意,可以理解地,在其他实施方式中,所述承载板110也可以为其他层数。所述承载板110包括第一布线层TM1、第二布线层TM2、第三布线层TM3、第四布线层TM4、第五布线层TM5、第六布线层TM6、第七布线层TM7、第八布线层TM8、第九布线层TM9、第十布线层层TM10及第十一布线层TM11。所述第一布线层TM1、所述第二布线层TM2、所述第三布线层TM3、所述第四布线层TM4、所述第五布线层TM5、所述第六布线层TM6、所述第七布线层TM7、所述第八布线层TM8、所述第九布线层TM9、所述第十布线层层TM10及所述第十一布线层TM11依次层叠间隔设置上述11层布线层中任意相邻的两层布线层之间设置有绝缘层,所述第一布线层TM1背离所述第二布线层TM2的表面为所述承载板110的第一表面120a。所述射频芯片140邻近所述第十一布线层TM11设置。
在实施方式的示意图中,以所述第二天线132设置于所述第一布线层TM1为例进行示意。
所述第二天线132设置于所述第一布线层TM1,且所述第三馈电线170贯穿所述第一布线层TM1与所述射频芯片140之间夹设的其他布线层。在本实施方式中,所述第三馈电线170贯穿所述第一布线层TM1至第十一布线层TM11。可以理解地,当所述第二天线132设在于第N布线层TMN时,所述第三馈电线170贯穿第N布线层TMN与所述射频芯片140之间的布线层。
所述第一导电层111、所述第二导电层112、所述多层导电层113、所述多层第四导电层114以及所述第五导电层117利用了所述承载板110中的原本的各个布线层,从而使得所述天线模组10中的第一天线阵列120及第二天线阵列130便于承载于所述承载板10中。
各个布线层可设置中设的器件可以为所述天线模组10中工作所需要的器件,比如,接收信号处理器件,发射信号处理器件等。
进一步地,一些布线层中还设置有电源线、及控制线,所述电源线及所述控制线分别与所述射频芯片140电连接。所述电源线用于为所述射频芯片140提供所述射频芯片140所需要的电能,所述控制线用于传输控制信号至所述射频芯片140,以控制所述射频芯片140工作。
本申请还提供了一种通信设备1。所述通信设备1可以为但不仅限于为蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、手机等设备。请一并参阅图19及图20,图19为本申请一实施方式提供的通信设备的示意图;图20为图19中沿着A-A线的剖视图。所述通信设备1包括前面任意一实施方式所述的天线模组10。所述天线模组10请参阅前面描述,在此不再赘述。
在本实施方中,所述通信设备1还包括中框50及后盖70。所述中框50与所述后盖70收容形成收容空间,所述天线模组10设置于所述收容空间中,且所述第一天线121的收发电磁波信号的方向朝向中框50,所述第二天线131朝向所述后盖70。
在本实施方式中,所述中框50包括弯折相连的承载部510及边框部520,所述边框部520具有本 体部521及子透波部522,所述子透波部522的透过率大于所述本体部521的透过率,所述第一天线121收发电磁波信号的方向朝向所述子透波部522。
所述子透波部522的透过率大于所述本体部521的透过率,且所述第一天线121收发电磁波信号的方向朝向所述子透波部522,因此,可使得第一天线121收发的电磁波信号能够较多地通过所述子透波部522,从而使得所述天线模组10具有较好的通信性能。
在一实施方式中,所述本体部521为导电材质,比如,铝镁合金,铝合金或铜合金等;所述子透波部522的材质为非电磁波屏蔽材质,比如,为塑料或塑胶等。在另一实施方式中,所述本体部521为导电材质,比如,铝镁合金,铝合金或铜合金等;所述子透波部522为所述边框部520中的挖空区域。只要满足所述子透波部522的透过率大于所述本体部521的通过率即可。
在本实施方式中,所述通信设备1还包括屏幕30,所述屏幕30承载于所述中框50。所述屏幕30可以为具有触控和显示功能的屏幕30;也可以为仅仅具有显示功能的屏幕;仅仅具有触控功能的屏幕,在此不做限定。所述屏幕30设置于所述中框50背离所述后盖70的一侧。换而言之,所述屏幕30及所述后盖70分别设置于所述中框50相背的两侧。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线模组,其中,所述天线模组包括:
    承载板;
    第一天线阵列,所述第一天线阵列承载于所述承载板;
    第二天线阵列,所述第二天线阵列承载于所述承载板,其中,所述第一天线阵列的主瓣方向与所述第二天线阵列的主瓣方向在三维空间中形成的角度大于或等于45°;以及
    射频芯片,所述射频芯片承载于所述承载板或设置于所述承载板的一侧,且所述射频芯片用于提供射频信号至所述第一天线阵列及所述第二天线阵列。
  2. 如权利要求1所述的天线模组,其中,所述承载板包括:
    第一表面,所述第一表面朝向第一方向,其中,所述第一天线阵列的主瓣方向为所述第一方向;以及
    第二表面,所述第二表面与所述第一表面相连且相交,且所述第二表面朝向第二方向,其中,所述第二天线阵列的主瓣方向为所述第二方向。
  3. 如权利要求2所述的天线模组,其中,所述第一方向与所述第二方向垂直正交。
  4. 如权利要求1所述的天线模组,其中,所述承载板包括:
    第一导电层;
    第二导电层,所述第二导电层与所述第一导电层相背且间隔设置;
    多层第三导电层,所述多层第三导电层沿第一延伸方向依次层叠且间隔设置于所述第一导电层与所述第二导电层之间;
    多层第一绝缘层,所述第一绝缘层设置于所述第一导电层与距离所述第一导电层最近的第三导电层之间、所述第二导电层与距离所述第二导电层最近的第三导电层之间、以及相邻的两层第三导电层之间;
    多层第四导电层,所述多层第四导电层沿第一延伸方向依次层叠且间隔设置于所述第一导电层与所述第二导电层之间,且所述多层第四导电层与所述多层第三导电层沿第二延伸方向间隔设置;以及
    多层第二绝缘层,所述第二绝缘层设置于所述第一导电层与距离所述第一导电层最近的第四导电层之间、所述第二导电层与距离所述第二导电层最近的第四导电层之间、以及相邻的两层第四导电层之间;
    所述第一天线阵列包括多个第一天线,所述第一天线包括所述第一导电层、所述第二导电层、所述多层第三导电层、所述多层第四导电层以及:
    多个第一连接线,所述第一连接线用于电连接所述第一导电层、所述多层第三导电层及所述第二导电层,且所述多个第一连接线间隔设置;以及
    多个第二连接线,所述多个第二连接线与所述多个第一连接线相对且间隔设置以形成间隙,所述第二连接线用于电连接所述第一导电层、所述多层第四导电层及所述第二导电层,且所述多个第二连接线间隔设置。
  5. 如权利要求4所述的天线模组,其中,至少一层第一绝缘层与同层的第二绝缘层相连。
  6. 如权利要求5所述的天线模组,其中,每层所述第一绝缘层与每层第二绝缘层相连接。
  7. 如权利要求5所述的天线模组,其中,在所述第三导电层层叠方向上,第一层所述第一绝缘层与第一层所述第二绝缘层相连接;和/或,最后一层所述第一绝缘层与最后一层所述第二绝缘层相连接;其余层的所述第一绝缘层与所述第二绝缘层相对间隔设置。
  8. 如权利要求1所述的天线模组,其中,所述承载板包括:
    第一导电层;
    第二导电层,所述第二导电层与所述第一导电层相背且间隔设置;以及
    第一绝缘层,所述第一绝缘层设置于所述第一导电层与所述第二导电层之间;
    所述第一天线阵列包括多个第一天线,所述第一天线包括所述第一导电层、所述第二导电层以及:
    多个第一连接线,所述第一连接线用于电连接所述第一导电层及所述第二导电层,且所述多个第一连接线间隔设置;
    多个第二连接线,所述多个第二连接线与所述多个第一连接线相对且间隔设置以形成间隙,所述第二连接线用于电连接所述第一导电层及所述第二导电层,且所述多个第二连接线间隔设置。
  9. 如权利要求4或8所述的天线模组,其中,所述第一绝缘层包括:
    第一绝缘部;及
    第二绝缘部,所述第二绝缘部与所述第一绝缘部相连,且所述第一连接线穿过所述第二绝缘部,其中,所述第二绝缘部的电磁特性优于第一绝缘部的电磁特性。
  10. 如权利要求9所述的天线模组,其中,当所述承载板包括第二绝缘层时,所述第二绝缘层包括:
    第三绝缘部;及
    第四绝缘部,所述第四绝缘部与所述第三绝缘部相连,且所述第二连接线穿过所述第四绝缘部,其中,所述第四绝缘部的电磁特性优于第三绝缘部的电磁特性。
  11. 如权利要求4或8所述的天线模组,其中,所述天线模组还包括:
    第一馈电线,所述第一馈电线包括相连的第一端及第二端,所述第一端电连接至所述射频芯片,所述第二端位于所述多个第一连接线与所述多个第二连接线形成的间隙内。
  12. 如权利要求11所述的天线模组,其中,所述天线模组还包括:
    第二馈电线,所述第二馈电线包括相连的第三端及第四端,所述第三端电连接至所述射频芯片,所述第四端位于所述多个第一连接线与所述多个第二连接线形成的所述间隙内,其中,所述第四端与所述第二端正交。
  13. 如权利要求11所述的天线模组,其中,所述承载板还包括:
    多层第五导电层,所述多层第五导电层沿第一延伸方向依次层叠且间隔设置,并位于所述第一导电层与所述第二导电层之间,且所述第五导电层与同层的所述第一导电层及所述第二导电层电连接,其中一层所述第五导电层中具有收容部,所述第一馈电线设置于所述收容部中,且与所述第五导电层绝缘设置。
  14. 如权利要求13所述的天线模组,其中,所述第一天线还包括:
    多个第三连接线,所述多个第三连接线电连接所述多层第五导电层、所述第一导电层及所述第二导电层,且所述多个第三连接线围绕至少部分所述第一馈电线设置。
  15. 如权利要求1所述的天线模组,其中,所述承载板具有相连的天线布置区及非天线布置区,所述第一天线阵列及所述第二天线阵列均位于所述天线布置区,所述承载板包括依次层叠且间隔设置的多层承载绝缘层,每层承载绝缘层均包括:
    第一承载绝缘部,所述第一承载绝缘部位于所述天线布置区;以及
    第二承载绝缘部,所述第二承载绝缘部位于所述非天线布置区,其中,至少部分所述第一承载绝缘部的电磁特性优于所述第二承载绝缘部的电磁特性。
  16. 如权利要求1所述的天线模组,其中,所述承载板包括依次层叠且间隔设置的多层承载绝缘层,所述第二天线阵列包括多个阵列排布的第二天线,其中,至少一第二天线包括电连接所述射频芯片的第三馈电线,所述第三馈电线包括:
    第一馈电部,所述第一馈电部的一端电连接所述射频芯片,且所述第一馈电部穿过所述多层承载绝缘层中的至少一层;
    连接部,所述连接部的一端与所述第一馈电部弯折相连,且所述连接部夹设于相邻的两层承载绝缘层之间;以及
    第二馈电部,所述第二馈电部的一端与所述连接部的另一端弯折相连,且所述第二馈电部穿过所述多层承载绝缘层中的至少一层,其中,夹设所述连接部的所述两层承载绝缘层中的至少一层承载绝缘层的电磁特性优于所述多层承载绝缘层中其余层的承载绝缘层的电磁特性。
  17. 如权利要求2所述的天线模组,其中,所述第二天线阵列还包括多个第二天线,所述多个第二天线内嵌于所述承载板。
  18. 如权利要求17所述的天线模组,其中,所述承载板包括位于第一表面的第一导电层,所述第二天线与所述第一导电层同层且间隔设置。
  19. 一种通信设备,其中,所述通信设备包括如权利要求1-18任意一项所述的天线模组。
  20. 如权利要求19所述的通信设备,其中,所述通信设备还包括中框及后盖,所述中框与所述后盖收容形成收容空间,所述天线模组设置于所述收容空间中,所述中框包括弯折相连的承载部及边框部,所述边框部具有本体部及子透波部,所述第一天线的主瓣方向朝向所述子透波部,其中,其中,所述子透波部的透过率大于所述本体部的透过率,所述第二天线的主瓣方向朝向所述后盖。
PCT/CN2022/095796 2021-07-19 2022-05-28 天线模组及通信设备 WO2023000824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110818158.XA CN115642394A (zh) 2021-07-19 2021-07-19 天线模组及通信设备
CN202110818158.X 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000824A1 true WO2023000824A1 (zh) 2023-01-26

Family

ID=84939756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095796 WO2023000824A1 (zh) 2021-07-19 2022-05-28 天线模组及通信设备

Country Status (2)

Country Link
CN (1) CN115642394A (zh)
WO (1) WO2023000824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082796A (zh) * 2023-10-16 2023-11-17 歌尔股份有限公司 电子设备、复合材料壳体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247491A (ja) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> ホーンアンテナ一体型mmicパッケージ及びアレーアンテナ
JP2013247494A (ja) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> ホーンアンテナ一体型mmicパッケージ
CN103765674A (zh) * 2011-08-31 2014-04-30 高通股份有限公司 具有3-d天线***的无线设备
CN205595462U (zh) * 2016-04-12 2016-09-21 中国电子科技集团公司第五十四研究所 一种喇叭阵列天线
CN108199130A (zh) * 2017-12-13 2018-06-22 瑞声科技(南京)有限公司 一种天线***和移动终端
US20210092702A1 (en) * 2016-09-27 2021-03-25 ZoneArt Networks Ltd. Wi-fi access point

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765674A (zh) * 2011-08-31 2014-04-30 高通股份有限公司 具有3-d天线***的无线设备
JP2013247491A (ja) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> ホーンアンテナ一体型mmicパッケージ及びアレーアンテナ
JP2013247494A (ja) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> ホーンアンテナ一体型mmicパッケージ
CN205595462U (zh) * 2016-04-12 2016-09-21 中国电子科技集团公司第五十四研究所 一种喇叭阵列天线
US20210092702A1 (en) * 2016-09-27 2021-03-25 ZoneArt Networks Ltd. Wi-fi access point
CN108199130A (zh) * 2017-12-13 2018-06-22 瑞声科技(南京)有限公司 一种天线***和移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082796A (zh) * 2023-10-16 2023-11-17 歌尔股份有限公司 电子设备、复合材料壳体及其制备方法
CN117082796B (zh) * 2023-10-16 2024-03-12 歌尔股份有限公司 电子设备、复合材料壳体及其制备方法

Also Published As

Publication number Publication date
CN115642394A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN110534924B (zh) 天线模组和电子设备
US20200119453A1 (en) Antenna module and communication device
WO2021083027A1 (zh) 天线模组及电子设备
EP4047746A1 (en) Antenna module and electronic device
CN110797640B (zh) 基于高频层压技术的Ka频段宽带低剖面双线极化微带天线
CN110098492B (zh) 一种双极化天线、射频前端装置和通信设备
US20210175613A1 (en) Chip antenna module
JP2012175624A (ja) ポスト壁導波路アンテナ及びアンテナモジュール
WO2022042231A1 (zh) 天线单元、天线阵列及电子设备
EP3688840B1 (en) Perpendicular end fire antennas
WO2023000824A1 (zh) 天线模组及通信设备
CN113678318B (zh) 一种封装天线装置及终端设备
CN109560387B (zh) 一种用于移动终端的毫米波双极化天线
WO2022134786A1 (zh) 一种天线和通信设备
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
KR102382241B1 (ko) 칩 안테나 및 이를 포함하는 칩 안테나 모듈
WO2023274193A1 (zh) 天线结构、天线模组、芯片与电子设备
CN213692344U (zh) 一种双脊喇叭天线
CN114665261B (zh) 一种天线和通信设备
CN209056604U (zh) 一种用于移动终端的毫米波双极化天线
WO2024017164A1 (zh) 天线及通讯设备
WO2024069858A1 (ja) 伝送装置及びアンテナ
KR102054237B1 (ko) 칩 안테나 및 이를 포함하는 칩 안테나 모듈
CN114336016A (zh) 一种天线结构及电子设备
CN115149250A (zh) 一种天线和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE