WO2022269836A1 - Battery module and battery power supply circuit - Google Patents

Battery module and battery power supply circuit Download PDF

Info

Publication number
WO2022269836A1
WO2022269836A1 PCT/JP2021/023860 JP2021023860W WO2022269836A1 WO 2022269836 A1 WO2022269836 A1 WO 2022269836A1 JP 2021023860 W JP2021023860 W JP 2021023860W WO 2022269836 A1 WO2022269836 A1 WO 2022269836A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
discharge
current
terminal
Prior art date
Application number
PCT/JP2021/023860
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2021/023860 priority Critical patent/WO2022269836A1/en
Publication of WO2022269836A1 publication Critical patent/WO2022269836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to battery modules and battery power circuits.
  • lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors of electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To make it possible to safely control electrical discharging. [Solution] A battery module characterized by comprising a battery cell group, a dedicated discharging terminal, and a dedicated charging terminal, wherein discharge current from the battery cell group is output to a load from the dedicated discharging terminal via a unidirectional current applying/interrupting element, and electrical current is not input from the exterior via the dedicated discharging terminal.

Description

電池モジュール及び電池電源回路Battery module and battery power circuit
 本発明は、電池モジュール及び電池電源回路に関する。 The present invention relates to battery modules and battery power circuits.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動するエンジン駆動式自動車がモータで駆動する電気自動車に置き換わりつつある。特に、前記電気自動車のモータを駆動するための電池電源にエネルギー密度の高いリチウムイオン二次電池が多く使用されている。 In recent years, in consideration of the global environment, internal combustion engines, that is, engine-driven vehicles are being replaced by motor-driven electric vehicles. In particular, lithium ion secondary batteries with high energy density are often used as battery power sources for driving motors of electric vehicles.
特開2014-183700号公報Japanese Patent Application Laid-Open No. 2014-183700
 内部短絡に伴う異常発熱への対応が求められている。 There is a need to deal with abnormal heat generation due to internal short circuits.
 本発明はこのような背景を鑑みてなされたものであり、安全な放電制御を行うことができる技術を提供することを目的とする。 The present invention has been made in view of such a background, and aims to provide a technology capable of performing safe discharge control.
 上記課題を解決するための本発明の主たる発明は、電池モジュールであって、電池セル群と、放電専用端子と、充電専用端子と、を備え、前記放電専用端子から一方向性通電遮断素子を介して負荷へ前記電池セル群の放電電流を出力する一方、前記放電専用端子を介して外部から電流を入力しないことを特徴とする。 The main invention of the present invention for solving the above-mentioned problems is a battery module comprising a battery cell group, a dedicated discharge terminal, and a dedicated charge terminal, and a unidirectional current breaking element is connected from the dedicated discharge terminal. The discharge current of the battery cell group is output to the load via the discharge-only terminal, while no current is input from the outside via the discharge-only terminal.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、安全な放電制御を行うことができる。 According to the present invention, safe discharge control can be performed.
本実施形態に係る電池モジュール2の構成の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of the configuration of a battery module 2 according to this embodiment; FIG. 本実施形態に係る電池電源回路100の構成の概略を示す回路ブロック図である。1 is a circuit block diagram showing an outline of a configuration of a battery power supply circuit 100 according to this embodiment; FIG. 内部短絡した少なくとも1個の内部短絡したリチウムイオン二次電池セルを含む2個の電池モジュール2間の外部短絡電流の流れ込みの状態を示す回路ブロック図である。FIG. 3 is a circuit block diagram showing the state of external short-circuit current flowing between two battery modules 2 each including at least one internally short-circuited lithium ion secondary battery cell. 本実施形態に係る電池モジュール20の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of a battery module 20 according to this embodiment; FIG. 本実施形態に係る電池電源回路200の概略を示す回路ブロック図である。2 is a circuit block diagram showing an outline of a battery power supply circuit 200 according to this embodiment; FIG. 本実施形態に係る電池電源回路200のメインコントローラ120の制御の概略を示すフローチャート図である。3 is a flow chart diagram showing an outline of control of a main controller 120 of the battery power supply circuit 200 according to the present embodiment; FIG.
 図1に示すように、電池モジュール2は、複数のリチウムイオン二次電池セルが直列接続されて成る高電圧定格の電池セル群1を、充電電流および放電電流を双方向に通電または遮断するための通電遮断素子として極性を対向して直列接続したFET4およびFET5を介して端子7に接続する。モジュールコントローラ30は、前記電池セル群1の内の少なくとも1個のリチウムイオン二次電池セルの電圧、または、シャント抵抗6の両端に現れる電圧すなわち前記電池セル群1の電流を検知し、それらの検知結果に応じて前記FET4およびFET5をオンまたはオフに操作する。 As shown in FIG. 1, the battery module 2 bidirectionally conducts or cuts off a charging current and a discharging current through a battery cell group 1 having a high voltage rating and formed by connecting a plurality of lithium ion secondary battery cells in series. FET4 and FET5, which are connected in series with opposite polarities, are connected to a terminal 7 as current-disconnecting elements. The module controller 30 detects the voltage of at least one lithium ion secondary battery cell in the battery cell group 1 or the voltage appearing across the shunt resistor 6, that is, the current of the battery cell group 1, and The FET4 and FET5 are turned on or off according to the detection result.
 図2に示すように、電池電源回路100は、例えば、3個の前記電池モジュール2を端子7を介して直列接続して電池モジュール2群を成し、前記電池モジュール2群が出力する高電圧定格の直流電圧を3相インバータ回路10へ印加する。3相インバータ回路10は入力した前記直流電圧を3相交流電圧に変換および出力し、3相モータ11へ前記3相交流電圧を印加しその3相モータ11の駆動を制御する。 As shown in FIG. 2, the battery power supply circuit 100 connects, for example, three battery modules 2 in series via terminals 7 to form two battery module groups. A rated DC voltage is applied to the three-phase inverter circuit 10 . The 3-phase inverter circuit 10 converts the input DC voltage into a 3-phase AC voltage and outputs the 3-phase AC voltage, applies the 3-phase AC voltage to the 3-phase motor 11 , and controls the driving of the 3-phase motor 11 .
 図3に示すように、電池電源回路100は、例えば、電気自動車の衝突事故の際、前記衝突に伴い、車体の多数の金属部品が無秩序に変形および接触し、例えば、矢印Aの方向に機械的衝撃が印加されて変形した電池モジュール2L内の少なくとも1個のリチウムイオン二次電池セルが変形して内部短絡し、および、太実線Sに示すように、電気自動車内に搭載される複数の電池モジュールの内、少なくとも2個の前記電池モジュール2が並列接続されるケースを想定できる。このようなケースにおいて、前記変形を免れた電池モジュール2Rから前記内部短絡電池セルを含む電池モジュール2Lへ前記2個の電池モジュール2間の電圧差に伴い外部短絡電流が流れる。前記電池モジュール2R内のモジュールコントローラ30が前記外部短絡電流の放電を検知した直後に前記電池モジュール2R内のFET4をオフに操作して前記外部短絡電流の放電を停止するよう機能し、および、前記電池モジュール2Lも前記電池モジュール2Rに連動してその内のFET4をオフに操作することができるが、何等かのタイムラグにより、例えば、前記電池モジュール2L内の前記FET4がオン状態にある場合は前記外部短絡電流が流れ込み、また、前記電池モジュール2L内のFET4をオフに操作した後の場合も、太線矢印8に示すように前記FET4が有する寄生ダイオードを通じて、前記内部短絡したリチウムイオン二次電池セルを含む電池セル群1へ前記外部短絡電流が流れ込むことが起こりうる。2個の電池モジュール2間の内部短絡点へ外部短絡電流が流れ込む事象の発生確率が相応に低くても、電気自動車に搭載される複数の電池モジュールの内、内部短絡点を含む1個の電池モジュール、および、それ以外の全ての電池モジュールとの組み合わせによる少なくとも2個の電池モジュールが前述の状態に至る確率は無視できない。 As shown in FIG. 3, the battery power supply circuit 100, for example, in the event of a collision accident of an electric vehicle, a large number of metal parts of the vehicle body are deformed and come into contact with each other in a chaotic manner, for example, in the direction of arrow A. At least one lithium ion secondary battery cell in the battery module 2L deformed by the application of a physical impact is deformed and internally short-circuited, and as indicated by the thick solid line S, a plurality of lithium ion secondary battery cells mounted in the electric vehicle are deformed. A case can be assumed in which at least two of the battery modules 2 are connected in parallel. In such a case, an external short-circuit current flows from the battery module 2R that has escaped deformation to the battery module 2L that includes the internal short-circuited battery cell due to the voltage difference between the two battery modules 2 . Immediately after the module controller 30 in the battery module 2R detects the discharge of the external short-circuit current, the FET 4 in the battery module 2R is turned off to stop the discharge of the external short-circuit current, and The battery module 2L can also turn off the FET 4 in the battery module 2R in conjunction with the battery module 2R. Even after an external short-circuit current flows in and the FET 4 in the battery module 2L is turned off, the internal short-circuited lithium ion secondary battery cell passes through the parasitic diode of the FET 4 as indicated by the thick arrow 8. The external short-circuit current may flow into the battery cell group 1 including Even if the probability of occurrence of an event in which an external short-circuit current flows into an internal short-circuit point between two battery modules 2 is reasonably low, one battery including an internal short-circuit point among a plurality of battery modules mounted on an electric vehicle. The probability that at least two battery modules in combination with the module and all other battery modules will reach the above state is not negligible.
 図4に示すように、電池モジュール20は、電池セル群1を、充電電流を通電または遮断する通電遮断素子としてのFET5を介して充電専用端子7へ接続し、および、放電方向のみ通電し、外部からの電流の入力、すなわち、充電方向に通電しないダイオード60を介して放電専用端子8へ接続する。前記ダイオード60をバイパスする位置にFET40を並列接続し、また、FET50は、放電専用端子8からの電流の出力または遮断の操作に用いるために前記ダイオード60に直列接続する。前記FET40およびFET50をオンに操作すると放電専用端子8を介して放電電流を出力する一方、前記FET40をオフに操作すると外部から放電専用端子8を介した電池セル群1への電流の流れ込みを前記ダイオード60およびFET40によって禁止する。すなわち、前記ダイオード60、および、前記FET40およびFET50が一方向性通電遮断素子としての機能を果たす。なお、前記ダイオード60、および、前記FET40およびFET50を1個の放熱器に固定して熱結合することにより予め一体化し省スペース化された1個のスイッチ部品として製造コストを下げることもできる。 As shown in FIG. 4, the battery module 20 connects the battery cell group 1 to the charging-only terminal 7 via an FET 5 serving as a current-disconnecting element that applies or interrupts charging current, and conducts electricity only in the discharging direction, A current is input from the outside, that is, it is connected to the discharge-only terminal 8 via a diode 60 that does not conduct electricity in the charging direction. An FET 40 is connected in parallel to bypass the diode 60 , and an FET 50 is connected in series with the diode 60 for use in controlling the output or blocking of current from the discharge-only terminal 8 . When the FET 40 and FET 50 are turned on, a discharge current is output through the discharge-only terminal 8, and when the FET 40 is turned off, current flows from the outside into the battery cell group 1 through the discharge-only terminal 8. Inhibited by diode 60 and FET 40 . That is, the diode 60 and the FETs 40 and 50 function as unidirectional current-breaking elements. By fixing the diode 60 and the FETs 40 and 50 to one heat sink and thermally coupling them, it is possible to integrate them in advance into one space-saving switch component, thereby reducing the manufacturing cost.
 前記電池モジュール2の放電時の発熱量が、その放電電流が直列接続された2個のFETを通電する状態に主に基づくことに対し、電池モジュール20の2個のFETすなわち前記FET40およびFET50は、放電電流が分流され同じ放電電流値であれば電池モジュール20の発熱が前記電池モジュール2の発熱より大きく抑えられ発熱対策に係るコストに影響しない。および、後述のフローチャート図に従い電池電源回路200において全ての電池モジュール20内の前記FET40およびFET50をオフに操作することにより、電気自動車の衝突事故の際の少なくとも2個の電池モジュール20間の内部短絡したリチウムイオン二次電池セルへの外部短絡電流の流れ込みを、いずれか1個の電池モジュール20の出力禁止および他方の電池モジュール20の入力禁止という形で互いに着実に防止することに奏功する。 The amount of heat generated during discharge of the battery module 2 is mainly based on the state in which the discharge current flows through the two FETs connected in series. If the discharge current is divided and the discharge current value is the same, the heat generation of the battery module 20 is suppressed more than the heat generation of the battery module 2, and the cost related to heat generation countermeasures is not affected. And, by turning off the FETs 40 and 50 in all the battery modules 20 in the battery power supply circuit 200 according to a flow chart to be described later, an internal short circuit between at least two battery modules 20 in the event of a collision accident of an electric vehicle can be prevented. This is effective in steadily preventing an external short-circuit current from flowing into the lithium-ion secondary battery cells that are connected to each other by inhibiting the output of one of the battery modules 20 and inhibiting the input of the other battery module 20 .
 なお、前記一方向性通電遮断素子としての前記ダイオード60、および、FET40およびFET50を1個のサイリスタに置き換えて用いることもできる。 It should be noted that the diode 60 and the FETs 40 and 50 as the unidirectional current-breaking elements can be replaced with one thyristor.
 図5に示すように、電池電源回路200は、3個の電池モジュール20を放電専用端子8を介して直列接続して電池モジュール20群を構成し電池モジュール20群が出力する直流電圧を3相インバータ回路10へ印加する。メインコントローラ120は前記電池モジュール20と、詳細図示しない絶縁性通信ライン3を用いて通信を行い、後述のフローチャート図に従う制御を行う。 As shown in FIG. 5, the battery power supply circuit 200 connects three battery modules 20 in series via the dedicated discharge terminal 8 to form a battery module 20 group. It is applied to the inverter circuit 10 . The main controller 120 communicates with the battery module 20 using the insulated communication line 3 (not shown in detail), and performs control according to the flowchart shown later.
 また、メインコントローラ120は、加速度センサ10を用いた加速度の検知結果を制御に反映する。 In addition, the main controller 120 reflects the detection result of acceleration using the acceleration sensor 10 in control.
 前記電池電源回路200のメインコントローラ120の制御について、次に、図6のフローチャート図を用いて説明する。 Next, the control of the main controller 120 of the battery power supply circuit 200 will be explained using the flowchart of FIG.
 前記電池電源回路200のメインコントローラ120は、前記電池モジュール20群の放電中、すなわち、電池電源回路200を搭載する電気自動車の走行中、Step1にて、前記電池モジュール20群のうち、少なくとも1個の電池モジュール20がそれ自身の判定により、例えば過電流検知等の何らかの要因により放電停止したか否かを検知し、前記放電停止した電池モジュール20が少なくとも1個存在すると判定した場合は、Step2へ移行する一方、そうでない場合はStep3へ移行する。 The main controller 120 of the battery power supply circuit 200 controls at least one of the battery modules 20 in Step 1 during discharging of the battery module 20 group, that is, while the electric vehicle equipped with the battery power supply circuit 200 is running. battery module 20 detects whether or not discharge has stopped due to some cause such as overcurrent detection, and if it is determined that there is at least one battery module 20 that has stopped discharging, go to Step 2. If not, go to Step 3.
 メインコントローラは、Step3にて、加速度センサ10を用いて、加速度または加速度変化率が所定値を上回るか否かを検知し、前記加速度または加速度変化率のいずれか1個が所定値を上回った、すなわち、衝突事故が発生したと判定した場合は、Step2へ移行する一方、そうでない場合は、Step1へ帰還する。 In Step 3, the main controller uses the acceleration sensor 10 to detect whether or not the acceleration or the rate of change in acceleration exceeds a predetermined value. That is, if it is determined that a collision accident has occurred, the process proceeds to Step 2, and if not, the process returns to Step 1.
 メインコントローラ120は、Step2にて、全ての電池モジュール20に対し放電停止を指示し電池モジュール群20内の全ての電池モジュ―ル20のモジュールコントローラ31が全てのFET、すなわち、FET5ないしFET50の全てをオフに操作する。これによって、電池モジュール20の放電専用端子8から電圧が出力されず、および、放電専用端子8または充電専用端子7へ外部からの電流の流れ込みを禁止する。前述の全ての電池モジュール20の放電専用端子8から電圧が出力されない状態により、電池電源回路200の電池モジュール20群内に存在する最高電位は、それ以前の3個の電池セル群1を直列接続した高電圧の定格電圧から前記電池セル群1の1個分の定格電圧に切り換わり、かつ、図3を用いて説明した内部短絡したリチウムイオン二次電池セルを有する電池モジュール20への他の電池モジュール20からの外部短絡電流の流れ込みを禁止する。前記Step1ないしStep2のシーケンスは、電池モジュール20群の内の少なくとも1個の電池モジュール20の放電停止の動作に対して直列接続された他の電池モジュール20が連動して放電停止することにより、電気自動車の衝突事故時に、前記内部短絡点への外部短絡電流の流れ込みに伴う発火事故、および、高電圧が存在することに伴う感電事故、に対する保護制御の冗長性の向上に奏功する。 In Step 2, the main controller 120 instructs all the battery modules 20 to stop discharging, and the module controllers 31 of all the battery modules 20 in the battery module group 20 all the FETs, that is, all the FETs 5 to 50. turn off. As a result, no voltage is output from the discharge-only terminal 8 of the battery module 20, and current is prohibited from flowing into the discharge-only terminal 8 or the charge-only terminal 7 from the outside. Due to the state in which no voltage is output from the discharge-only terminals 8 of all of the battery modules 20 described above, the highest potential existing within the battery module 20 group of the battery power supply circuit 200 is the series connection of the previous three battery cell groups 1 . The rated voltage of the battery cell group 1 is switched from the rated voltage of the high voltage to the rated voltage of one of the battery cell groups 1, and the battery module 20 having the internally short-circuited lithium ion secondary battery cells described with reference to FIG. Inflow of external short-circuit current from the battery module 20 is prohibited. In the sequence of Step 1 to Step 2, the other battery modules 20 connected in series interlock with the discharge stop operation of at least one battery module 20 in the battery module 20 group to stop discharging electricity. In the event of an automobile collision accident, the redundancy of the protection control against the accidental fire caused by the external short-circuit current flowing into the internal short-circuit point and the accidental electric shock caused by the presence of high voltage can be improved.
 これらによって、本発明の電池電源回路200は、コストアップを抑制しながら、電気自動車の万一の衝突事故の際の多数のリチウムイオン二次電池セルを有する複数の電池モジュールに起因する感電事故または火災事故から乗員および救助者の保護に貢献する。 As a result, the battery power supply circuit 200 of the present invention prevents an electric shock accident caused by a plurality of battery modules having a large number of lithium ion secondary battery cells in the unlikely event of a collision accident of an electric vehicle, while suppressing cost increases. Contributes to the protection of occupants and rescuers from fire accidents.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  2   電池モジュール
  20  電池モジュール
  100 電池電源回路
  120 メインコントローラ
  200 電池電源回路
2 battery module 20 battery module 100 battery power supply circuit 120 main controller 200 battery power supply circuit

Claims (6)

  1.  電池セル群と、
     放電専用端子と、
     充電専用端子と、
     を備え、
     前記放電専用端子から一方向性通電遮断素子を介して負荷へ前記電池セル群の放電電流を出力する一方、前記放電専用端子を介して外部から電流を入力しないことを特徴とする電池モジュール。
    a battery cell group;
    a discharge-only terminal;
    a dedicated charging terminal,
    with
    A battery module, wherein a discharge current of the battery cell group is output from the discharge-only terminal to a load through a unidirectional current-breaking element, while current is not input from the outside through the discharge-only terminal.
  2.  前記一方向性通電遮断素子は、ダイオード、および、前記ダイオードに並列接続または直列接続された少なくとも2個のFETで構成される回路を含む請求項1に記載の電池モジュール。 The battery module according to claim 1, wherein the unidirectional conduction/interruption element includes a circuit composed of a diode and at least two FETs connected in parallel or in series with the diode.
  3.  前記ダイオードおよび少なくとも2個の前記FETを少なくとも1個の放熱器に熱結合した請求項3に記載の電池モジュール。 The battery module according to claim 3, wherein said diode and at least two said FETs are thermally coupled to at least one heat sink.
  4.  電池セルを含む電池モジュールを備え、
     前記電池モジュールから電力供給する移動体の衝突を検知した場合に、内部に存在する最高電位を前記電池モジュールの定格電圧以下に切り換え、少なくとも1個の内部短絡した前記電池セルへの外部短絡電流の流れ込みを禁止する電池電源回路。
    comprising a battery module containing battery cells,
    When a collision of a moving object to which power is supplied from the battery module is detected, the maximum potential existing inside is switched to the rated voltage or less of the battery module, and an external short-circuit current to at least one of the battery cells that is internally short-circuited is discharged. Battery power circuit that prohibits inflow.
  5.  少なくとも1個の前記電池モジュールが放電停止した場合、他の前記電池モジュールも連動して放電停止する請求項4に記載の電池電源回路。 5. The battery power supply circuit according to claim 4, wherein when at least one of the battery modules stops discharging, the other battery modules also stop discharging in conjunction.
  6.  加速度センサを備え、
     前記車両衝突の検知は、前記加速度センサにより検知した加速度に基づいて行い、
     前記車両衝突を検知した場合に、全ての前記電池モジュール内の全ての前記通電遮断素子を遮断状態に操作する請求項4に記載の電池電源回路。
    Equipped with an accelerometer,
    The detection of the vehicle collision is performed based on the acceleration detected by the acceleration sensor,
    5. The battery power supply circuit according to claim 4, wherein when the vehicle collision is detected, all of the energization-breaking elements in all of the battery modules are operated to be in a cut-off state.
PCT/JP2021/023860 2021-06-23 2021-06-23 Battery module and battery power supply circuit WO2022269836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023860 WO2022269836A1 (en) 2021-06-23 2021-06-23 Battery module and battery power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023860 WO2022269836A1 (en) 2021-06-23 2021-06-23 Battery module and battery power supply circuit

Publications (1)

Publication Number Publication Date
WO2022269836A1 true WO2022269836A1 (en) 2022-12-29

Family

ID=84545415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023860 WO2022269836A1 (en) 2021-06-23 2021-06-23 Battery module and battery power supply circuit

Country Status (1)

Country Link
WO (1) WO2022269836A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106007A (en) * 2007-10-19 2009-05-14 Panasonic Corp Battery pack, and battery system
JP2014036469A (en) * 2012-08-07 2014-02-24 Toyota Industries Corp Power storage module controller
JP2021078223A (en) * 2019-11-08 2021-05-20 ダイムラー・アクチェンゲゼルシャフトDaimler AG Electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106007A (en) * 2007-10-19 2009-05-14 Panasonic Corp Battery pack, and battery system
JP2014036469A (en) * 2012-08-07 2014-02-24 Toyota Industries Corp Power storage module controller
JP2021078223A (en) * 2019-11-08 2021-05-20 ダイムラー・アクチェンゲゼルシャフトDaimler AG Electric vehicle

Similar Documents

Publication Publication Date Title
JP6883067B2 (en) Battery management system and its switching method
JP6304784B2 (en) Battery module shutoff structure
EP2448081B1 (en) Battery pack overcharge protection system
JP4969516B2 (en) Electric vehicle power control device
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
JP6378267B2 (en) vehicle
WO2017208750A1 (en) Relay device and power source device
WO2007096994A1 (en) System-cooperative inverter
US20170187179A1 (en) Junction box
JP2018166380A (en) Vehicle power supply device
JP2011004556A (en) Power supply device for vehicle
KR102066413B1 (en) Safety control system of battery
US11648851B2 (en) On-board electrical system and method for operating an on-board network
US10367345B2 (en) Temperature detection device
JP6722080B2 (en) Vehicle power supply
US9160163B2 (en) Battery management system, motor vehicle and battery system
WO2022269836A1 (en) Battery module and battery power supply circuit
KR100559398B1 (en) A power disconnecting unit for hybrid electric vehicle and fuel cell electric vehicle
KR20150127765A (en) High voltage battery system
WO2023073976A1 (en) Battery module and battery power supply circuit
JP6668210B2 (en) Power supply control device and power supply system
WO2023073978A1 (en) Battery module and battery power supply circuit
CN113363113A (en) Power relay assembly, control method thereof and vehicle comprising same
KR20170115358A (en) Hybrid vehicle having dcdc converter and method of controlling the same
JP7461093B2 (en) Discharge Control Circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947121

Country of ref document: EP

Kind code of ref document: A1