WO2022269804A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2022269804A1
WO2022269804A1 PCT/JP2021/023791 JP2021023791W WO2022269804A1 WO 2022269804 A1 WO2022269804 A1 WO 2022269804A1 JP 2021023791 W JP2021023791 W JP 2021023791W WO 2022269804 A1 WO2022269804 A1 WO 2022269804A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflow pipe
main
sub
oil
flow
Prior art date
Application number
PCT/JP2021/023791
Other languages
French (fr)
Japanese (ja)
Inventor
優 木庭
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/023791 priority Critical patent/WO2022269804A1/en
Publication of WO2022269804A1 publication Critical patent/WO2022269804A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a screw compressor provided with an oil separator.
  • a screw compressor with a cyclone oil separator has an outer cylinder and an inner cylinder formed inside the outer cylinder.
  • the cyclone oil separator spins the fluid discharged from the compressor main body between the outer cylinder and the inner cylinder, thereby centrifugally separating the fluid into refrigerant gas and refrigerating machine oil.
  • Patent Literature 1 discloses a screw compressor having a swirling flow reinforcing plate extending along the outer peripheral surface of an inner cylinder. The swirling flow reinforcing plate suppresses the vertical spread of the fluid that has flowed into the cyclone oil separator, and increases the swirling speed of the fluid.
  • Patent document 1 intends to improve the oil separation performance of the screw compressor.
  • Patent Document 1 the oil attached to the swirl flow strengthening plate drips from the lower end of the swirl flow strengthening plate. Since the oil dripping from the lower end of the swirling flow strengthening plate is discharged outside along with the upward flow from the lower part of the oil separation space toward the compressor outlet, the oil separation performance of the screw compressor deteriorates.
  • the present disclosure has been made to solve the above problems, and provides a screw compressor with improved oil separation performance.
  • a screw compressor includes a compressor body that compresses a fluid, and a cyclone-type oil separator that separates the fluid discharged from the compressor body into refrigerant gas and oil by centrifugal force.
  • the oil separator is connected to an outer cylindrical portion having an oil separation space formed therein, an inner cylindrical portion provided inside the outer cylindrical portion, and the outer cylindrical portion, and is connected to the outer cylindrical portion to separate the fluid discharged from the compressor main body from the oil. It has a main inflow pipe that flows into the separation space, and a sub-inflow pipe that is different from the main inflow pipe and is connected to the outer cylinder and that flows the fluid discharged from the compressor main body into the oil separation space. , the cross-sectional area of the sub-channel formed inside the sub-inflow pipe is smaller than the cross-sectional area of the main channel formed inside the main inflow pipe.
  • the oil separator of the screw compressor of the present disclosure has a main inlet pipe and a secondary inlet pipe.
  • the cross-sectional area of the sub-channel formed inside the sub-inflow pipe is smaller than the cross-sectional area of the main channel formed inside the main inflow pipe. Therefore, in the oil separation space, the main stream flowing in from the main inflow pipe joins with the side stream flowing into the oil separation space from the sub-inflow pipe at a faster speed than the main flow. Therefore, it is possible to prevent the mainstream from spreading in the vertical direction and reducing the swirling speed of the mainstream. As a result, the screw compressor can suppress the deterioration of the centrifugal separation effect and improve the oil separation performance.
  • FIG. 1 is a schematic cross-sectional view showing a screw compressor 1 according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing an oil separator 3 according to Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram which shows 3 A of oil separators which concern on Embodiment 2.
  • FIG. 11 is a schematic cross-sectional view showing an oil separator 3B according to Embodiment 3;
  • FIG. 11 is a schematic cross-sectional view showing a screw compressor 1C according to Embodiment 4;
  • Embodiment 1 A screw compressor 1 according to Embodiment 1 will be described below with reference to the drawings.
  • the screw compressor 1 compresses refrigerant gas, and is incorporated in, for example, a refrigeration cycle.
  • Refrigerating machine oil is supplied to the screw compressor 1 for the purpose of lubricating each part of the screw compressor 1 or sealing gaps.
  • the refrigerant gas and refrigerating machine oil flowing through the screw compressor 1 may be collectively referred to as fluid.
  • FIG. 1 is a cross-sectional schematic diagram showing a screw compressor 1 according to Embodiment 1.
  • FIG. FIG. 1 shows a vertical cross section of the screw compressor 1 .
  • the screw compressor 1 is, for example, a single screw compressor, and has a compressor body 2 and an oil separator 3 as shown in FIG.
  • the compressor main body 2 is arranged on the right side of the two-dot chain line W in FIG. 1, that is, on the X side.
  • the oil separator 3 is arranged on the left side of the two-dot chain line W in FIG. 1, that is, on the Y side.
  • the oil separator 3 is fixed to a casing 4 forming an outer shell of the compressor body 2 with bolts (not shown).
  • the compressor body 2 has a casing 4 , a motor 5 , a screw shaft 6 , a screw rotor 7 , bearings 8 , a gate rotor 9 and a slide valve 10 .
  • the casing 4 is formed in a cylindrical shape, and constitutes the outer shell of the compressor main body 2 as described above.
  • the casing 4 is separated into a suction pressure side filled with low-pressure refrigerant gas and a discharge pressure side filled with high-pressure refrigerant gas.
  • the motor 5 is housed inside the casing 4 .
  • the screw shaft 6 is fixed to the motor 5 and driven to rotate by the motor 5 .
  • a screw rotor 7 is fixed to the screw shaft 6 .
  • the screw rotor 7 faces a motor rotor 5b of the motor 5, which will be described later, in the direction in which the screw shaft 6 extends.
  • the bearing 8 rotatably supports the end of the screw shaft 6 that is not fixed to the motor 5 .
  • the compressor main body 2 has a pair of gate rotors 9 .
  • a pair of gate rotors 9 are arranged on the side surfaces of the screw rotor 7 so as to be axially symmetrical with respect to the screw shaft 6 .
  • a slide valve 10 is provided between the side surface of the casing 4 and the screw rotor 7 .
  • the slide valve 10 is arranged along the outer peripheral surface of the screw rotor 7 so as to be slidable between the suction pressure side and the discharge pressure side.
  • the slide valve 10 has an opening 10a formed in the center.
  • the motor 5 is composed of a stator 5a fixed to the inner peripheral surface of the casing 4 and a motor rotor 5b arranged inside the stator 5a.
  • the motor rotor 5 b is fixed to the screw shaft 6 .
  • the screw rotor 7 is columnar, and has a plurality of screw grooves 7a formed on its outer peripheral surface.
  • the screw groove 7a spirally extends from one end of the screw rotor 7 toward the other end.
  • One end side of the screw rotor 7 serves as a refrigerant gas suction side, and communicates the screw groove 7a with the suction pressure side.
  • the other end side of the screw rotor 7 serves as the refrigerant gas discharge side, and communicates the screw groove 7a with the discharge pressure side.
  • the gate rotor 9 is disc-shaped, and its axial direction is orthogonal to the axial direction of the screw rotor 7 .
  • the outer peripheral surface of the gate rotor 9 is provided with a plurality of teeth 9a along the circumferential direction.
  • the tooth portions 9 a of the gate rotor 9 are arranged so as to mesh with the screw grooves 7 a of the screw rotor 7 .
  • a space surrounded by the screw groove 7a, the tooth portion 9a, the inner peripheral surface of the casing 4, and the slide valve 10 functions as a compression chamber 11 filled with refrigerant gas to be compressed. Refrigerating machine oil for lubricating the bearings 8 and sealing the compression chamber 11 is injected into the compression chamber 11 .
  • a discharge port (not shown) connected to the discharge chamber 12 is open on the inner peripheral surface of the casing 4 on the discharge pressure side.
  • the high-pressure refrigerant gas and refrigerating machine oil filled in the compression chamber 11 are discharged into the discharge chamber 12 through the opening 10a of the slide valve 10 and the discharge port.
  • the discharge chamber 12 is a space into which high-pressure refrigerant gas and refrigerating machine oil are discharged from within the compression chamber 11 .
  • the high-pressure refrigerant gas and refrigerating machine oil filled in the discharge chamber 12 flow out to the oil separator 3 .
  • the oil separator 3 is a cyclone type oil separator for separating the fluid discharged from the compressor main body 2 into refrigerant gas and refrigerating machine oil.
  • the oil separator 3 has a main inflow pipe 16 , a subinflow pipe 16 a , an oil separation section 17 , an oil storage section 18 , a partition plate 19 and a lid section 20 .
  • the main inflow pipe 16, the auxiliary inflow pipe 16a, the later-described outer cylinder portion 21 of the oil separator 17, and the oil reservoir 18 of the oil separator 3 are cast.
  • the main inflow pipe 16 and the subinflow pipe 16a are different pipes.
  • the main inflow pipe 16 is connected to the casing 4 and the oil separator 17.
  • the main inflow pipe 16 extends substantially horizontally.
  • the main inflow pipe 16 allows the fluid discharged from the discharge chamber 12 of the compressor body 2 to flow into the oil separator 17 .
  • a main flow path 50 through which fluid flows is formed inside the main inflow pipe 16 .
  • the auxiliary inflow pipe 16a branches vertically downward from the main inflow pipe 16, and is further bent toward the oil separation section 17 side, ie, the Y side in FIG.
  • the auxiliary inflow pipe 16a is composed of a vertically extending portion from the branch with the main inflow pipe 16 to the bent portion, and a laterally extending portion from the bent portion to the oil separating portion 17.
  • a portion of the auxiliary inflow pipe 16 a extending in the left-right direction is provided substantially parallel to the main inflow pipe 16 . That is, the secondary inflow pipe 16a extends substantially horizontally.
  • the sub-inflow pipe 16 a allows part of the fluid discharged from the discharge chamber 12 of the compressor body 2 , which is branched from the main in-flow pipe 16 , to flow into the oil separating section 17 .
  • a secondary channel 50a through which fluid flows is formed inside the secondary inflow pipe 16a.
  • the secondary flow path 50 a branches off from the main flow path 50 .
  • the flow of fluid that flows only through the main flow path 50 and into the oil separation space 23 may be referred to as the main stream S.
  • the flow of fluid that flows into the oil separation space 23 through the sub-flow path 50a may be referred to as a sub-flow Sa.
  • the oil separation portion 17 has an outer cylinder portion 21 and an inner cylinder portion 22 provided inside the outer cylinder portion 21 .
  • the outer cylinder part 21 and the inner cylinder part 22 are arranged coaxially and form a double cylinder.
  • the space inside the outer cylindrical portion 21 is called an oil separation space 23 .
  • the space between the lower opening of the inner cylindrical portion 22 and the lower end of the outer cylindrical portion 21 in the oil separating space 23 is called a folded space 23a.
  • a main inlet 24 and a secondary inlet 24a are formed in the upper and side surfaces of the outer cylindrical portion 21 .
  • the main flow inlet 24 penetrates the inside and outside of the outer cylindrical portion 21 to allow the oil separation space 23 and the main flow passage 50 to communicate with each other.
  • the sub-inlet 24a penetrates the inside and outside of the outer cylindrical portion 21, and communicates the oil separation space 23 with the sub-flow path 50a.
  • the secondary inlet 24 a is formed below the main inlet 24 and above the lower end of the inner tubular portion 22 .
  • An oil return hole 25 communicating with the oil reservoir 18 is formed in the side surface of the lower portion of the outer cylindrical portion 21 .
  • the oil return hole 25 is formed along the side surface of the outer cylindrical portion 21 on the side of the compressor main body 2 , and has a circumferential length equal to or less than half the circumference of the outer cylindrical portion 21 .
  • the oil return hole 25 is formed at least up to the lower end of the side surface of the outer cylindrical portion 21 . Further, the oil return hole 25 is formed so that the upper portion thereof is positioned lower than the opening of the lower portion of the inner cylindrical portion 22 . In addition, it is preferable that the oil return hole 25 is formed so as to have a height up to the lower half of the folded space 23a.
  • the fluid that has flowed into the oil separation space 23 from the main inflow pipe 16 and the auxiliary inflow pipe 16a swirls between the outer cylinder part 21 and the inner cylinder part 22, and is centrifuged into refrigerant gas and refrigerating machine oil. After the centrifugally separated refrigerant gas descends, it is folded back by the partition plate 19 and ascends inside the inner cylindrical portion 22 . Further, the centrifuged refrigerating machine oil adheres to the inner wall surface of the outer cylindrical portion 21 and descends along the inner wall surface of the outer cylindrical portion 21 .
  • the refrigerator oil separated by the oil separator 17 flows over the partition plate 19 and flows out from the oil return hole 25 to the oil reservoir 18 .
  • the oil storage part 18 is provided below the outer cylinder part 21 and stores the refrigerating machine oil separated from the refrigerant gas.
  • the oil storage portion 18 is wider than the downward projected area of the oil separation portion 17 and is formed longer on the side of the compressor main body 2 .
  • the separated refrigerating machine oil passes through a passage (not shown) formed in the casing 4 and is again supplied to the bearing 8, the compression chamber 11, and the like.
  • the partition plate 19 partitions the oil separation portion 17 and the oil storage portion 18 .
  • the partition plate 19 covers the lower opening of the outer cylindrical portion 21 .
  • the partition plate 19 is arranged in parallel with the edge of the lower opening of the inner cylindrical portion 22 .
  • the partition plate 19 is provided integrally with the outer cylindrical portion 21 .
  • the lid portion 20 is formed in a disc shape and covers the upper openings of the outer cylinder portion 21 and the inner cylinder portion 22 .
  • An outlet 20 a is formed in the center of the lid portion 20 .
  • the outlet 20 a vertically penetrates the lid portion 20 and has a smaller diameter than the inner diameter of the inner cylindrical portion 22 .
  • the outlet 20a discharges the refrigerant gas separated from the fluid in the oil separator 3 to the outside of the screw compressor 1 such as the refrigeration cycle circuit side.
  • a check valve 26 is provided downstream of the outlet 20a. Note that the check valve 26 may be built in the lid portion 20 .
  • FIG. 2 is a schematic cross-sectional view showing the oil separator 3 according to Embodiment 1.
  • FIG. FIG. 2 shows a cross section obtained by cutting the oil separator 3 in the left-right direction.
  • FIG. 2 corresponds to the ZZ section of FIG.
  • the main inflow pipe 16 is connected to the outer tubular portion 21 such that the inner surface of the main inflow pipe 16 is continuous with the inner surface of the outer tubular portion 21 through the main inlet 24 .
  • the inner surface of the main inflow pipe 16 extends tangentially to the inner surface of the outer cylindrical portion 21 .
  • the main inlet 24 is provided at a position where the main flow S rotates counterclockwise when the oil separator 3 is viewed from above.
  • the sub-inflow pipe 16a is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16a is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24a.
  • the inner surface of the secondary inflow pipe 16 a extends tangentially to the inner surface of the outer cylindrical portion 21 .
  • the secondary inlet 24a overlaps a part of the main inlet 24 .
  • the secondary inlet 24a is provided at a position where the secondary flow Sa rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S and the side stream Sa are rotated in the same direction. If the main stream S and the side stream Sa rotate in the same direction, the main inlet 24 and the secondary inlet 24a are formed in the outer cylindrical portion 21 so that the main stream S and the side stream Sa rotate clockwise. good too.
  • the sub-channel 50 a has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sa has a higher velocity than the main stream S.
  • the cross-sectional area is the area of the main flow passage 50 in the cross section cut in the direction perpendicular to the pipe axis of the main inflow pipe 16, or the cross section cut in the direction perpendicular to the pipe axis of the sub-inflow pipe 16a. It means the area of the sub-channel 50a.
  • the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 flows into the compression chamber 11 .
  • the refrigerant gas that has flowed into the compression chamber 11 is sent to the discharge pressure side of the screw rotor 7 while being compressed in the compression chamber 11 .
  • the refrigerant gas that has been compressed to a high pressure is discharged from the opening 10 a of the slide valve 10 into the discharge chamber 12 together with the refrigerating machine oil that has been injected into the compression chamber 11 .
  • the discharged refrigerant gas and refrigerating machine oil flow out from the discharge chamber 12 to the main inflow pipe 16 of the oil separator 3 .
  • the refrigerant gas and refrigerating machine oil flowing through the main inflow pipe 16 are branched into a main flow S that flows directly through the main flow channel 50 and a secondary flow Sa that flows through a secondary flow channel 50a formed inside the secondary inflow pipe 16a.
  • the main flow S flows into the outer cylindrical portion 21 through a main inlet 24 formed in the outer cylindrical portion 21 .
  • Refrigerant gas and refrigerating machine oil that have flowed in from the main inlet 24 descend while swirling in the oil separation space 23 between the outer tubular portion 21 and the inner tubular portion 22 .
  • the refrigerant oil that has a higher density than the refrigerant gas is blown to the inner peripheral surface of the outer cylindrical portion 21 by the centrifugal force, and the refrigerant oil and the refrigerant gas are separated.
  • the secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a.
  • the main stream S flowing in from the main inflow pipe 16 joins with the secondary stream Sa flowing in from the secondary inflow pipe 16b at a faster speed than the main flow S.
  • the fluid flowing in from the main inlet 24 with a relatively low speed and the fluid flowing in from the secondary inlet 24a with a relatively high speed coexist.
  • the main stream S spreads in the vertical direction due to the side stream Sa, which has a higher speed, and the swirling speed of the main stream S is suppressed from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
  • the refrigerating machine oil separated by the centrifugal force falls along the inner peripheral surface of the outer cylindrical portion 21 due to its own weight and flows over the partition plate 19 .
  • Refrigerating machine oil flowing on the partition plate 19 flows out of the outer cylindrical portion 21 through the oil return hole 25 and is stored in the oil reservoir 18 .
  • Refrigerating machine oil stored in the oil reservoir 18 is returned to the compressor main body 2 through a path (not shown) provided in the casing 4 and supplied to the compression chamber 11 or the bearing 8 .
  • the refrigerant gas separated from the refrigerating machine oil becomes a downward flow while swirling, and contacts the partition plate 19 .
  • the refrigerant gas coming into contact with the partition plate 19 turns back inside the downward flowing refrigerant gas in the turning space 23 a and flows into the inner cylindrical portion 22 as an upward flow while continuing to swirl.
  • the refrigerant gas that has flowed into the inner cylindrical portion 22 passes through the inner side of the inner cylindrical portion 22, passes through the check valve 26 from the outlet 20a of the lid portion 20, and flows out to the refrigerating cycle circuit side.
  • the oil separator 3 of the screw compressor 1 of Embodiment 1 has the secondary inflow pipe 16b.
  • the cross-sectional area of the sub-channel 50 a formed inside the sub-inflow pipe 16 b is smaller than the cross-sectional area of the main channel 50 formed inside the main in-flow pipe 16 . Therefore, in the oil separation space 23, the main stream S flowing from the main inflow pipe 16 joins with the side stream Sa flowing into the oil separation space 23 from the sub-inflow pipe 16b at a faster speed than the main flow S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed. Thereby, screw compressor 1 can control that the effect of centrifugal separation falls, and can improve oil separation performance.
  • Embodiment 1 the amount of refrigerating machine oil discharged to the downstream side of the screw compressor 1 in the refrigerating cycle circuit is reduced, so the heat exchange performance of the condenser and the evaporator is less likely to deteriorate.
  • Embodiment 1 the main inflow pipe 16, the subinflow pipe 16a, the outer cylindrical portion 21, and the oil reservoir 18 of the oil separator 3 are cast. Therefore, there is no need to add other parts to be welded or fastened with bolts or the like.
  • the secondary inlet 24a is formed below the lower end of the inner cylindrical portion 22, the swirling speed of the main stream S is reduced in most of the oil separation space 23. In other words, the effect of improving the oil separation performance by introducing the side stream Sa cannot be expected to be high. In contrast, in Embodiment 1, the secondary inlet 24 a is formed above the lower end of the inner tubular portion 22 . Therefore, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
  • FIG. 3 is a schematic cross-sectional view showing an oil separator 3A according to Embodiment 2.
  • FIG. FIG. 3 shows a cross section obtained by cutting the oil separator 3A of the screw compressor 1A in the horizontal direction.
  • FIG. 3 corresponds to a cross section of the oil separator 3A of the screw compressor 1A cut at a position corresponding to the ZZ cross section of FIG.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • the oil separator 3A of Embodiment 2 has a main inflow pipe 16 and a sub-inflow pipe 16b, as shown in FIG.
  • the main inflow pipe 16 and the subinflow pipe 16b are different pipes.
  • the oil separator 3A of the second embodiment does not have the secondary inflow pipe 16a of the first embodiment.
  • the main inflow pipe 16 is connected to the casing 4 and the oil separator 17 .
  • the secondary inflow pipe 16b is connected to the casing 4 and the oil separator 17.
  • the secondary inflow pipe 16b extends substantially horizontally.
  • the secondary inflow pipe 16b allows the fluid discharged from the discharge chamber 12 of the compressor body 2 to flow into the oil separating portion 17.
  • a secondary channel 50b is formed inside the secondary inflow pipe 16b.
  • the flow of fluid that flows through the secondary flow path 50b and into the oil separation space 23 may be referred to as a secondary flow Sb.
  • the sub-inflow pipe 16b is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16b is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24b.
  • the inner surface of the secondary inflow pipe 16b extends tangentially to the inner surface of the outer cylindrical portion 21 .
  • the secondary inlet 24 b is provided below the main inlet 24 and above the lower end of the inner cylinder portion 22 .
  • the secondary inlet 24b is provided at a position where the secondary flow Sb rotates counterclockwise when the oil separator 3A is viewed from above. In other words, the main stream S and the side stream Sb rotate in the same direction.
  • the main inlet 24 and the secondary inlet 24b are formed in the outer cylindrical portion 21 so that the main stream S and the side stream Sb rotate clockwise. good too.
  • the sub-channel 50 b has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sb is faster than the main stream S.
  • the fluid flowing in from the main inlet 24 with a relatively slow velocity and the fluid flowing in from the secondary inlet 24b with a relatively high velocity are mixed.
  • the main stream S spreads in the vertical direction by the side stream Sb, which has a higher speed, and the reduction in the swirl speed of the main stream S is suppressed. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
  • the oil separator 3A of the screw compressor 1A of Embodiment 2 has the secondary inflow pipe 16b.
  • a secondary flow channel 50 b formed inside the secondary inflow pipe 16 b has a smaller cross-sectional area than the main flow channel 50 of the main inflow pipe 16 . Therefore, in the oil separation space 23, the main stream S is joined with the side stream Sb that flows at a faster speed than the main stream S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed.
  • screw compressor 1A of Embodiment 2 can control that the effect of centrifugal separation falls like screw compressor 1 of Embodiment 1, and can improve oil separation performance.
  • the secondary inlet 24b is formed above the lower end of the inner cylindrical portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
  • FIG. 4 is a schematic cross-sectional view showing an oil separator 3B according to Embodiment 3. As shown in FIG. FIG. 4 shows a horizontal cross section of the oil separator 3B of the screw compressor 1B. FIG. 4 corresponds to a cross section obtained by cutting the oil separator 3B of the screw compressor 1B at a position corresponding to the ZZ cross section of FIG.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is omitted, and the description focuses on the differences from the first and second embodiments. do.
  • the oil separator 3B of Embodiment 3 has a main inflow pipe 16, a sub-inflow pipe 16a, a sub-inflow pipe 16b and a sub-inflow pipe 16c.
  • the main inflow pipe 16, the sub-inflow pipe 16a, the sub-inflow pipe 16b, and the sub-inflow pipe 16c are different pipes.
  • the main inflow pipe 16 is connected to the casing 4 and the oil separator 17, as in the first embodiment.
  • the auxiliary inflow pipe 16 a branches vertically downward from the main inflow pipe 16 , bends toward the oil separator 3 side, and is connected to the oil separator 17 , as in the first embodiment.
  • the secondary inflow pipe 16b is connected to the casing 4 and the oil separator 17, as in the second embodiment.
  • the auxiliary inflow pipe 16c branches from the main inflow pipe 16 toward the outside of the oil separator 3B, extends along the outer surfaces of the main inflow pipe 16 and the outer cylindrical portion 21, and is connected to the oil separation portion 17.
  • the sub-inflow pipe 16 c causes part of the fluid discharged from the discharge chamber 12 of the compressor body 2 , which is branched from the main in-flow pipe 16 , to flow into the oil separator 17 .
  • the secondary inflow pipe 16c extends substantially horizontally.
  • a secondary channel 50c is formed inside the secondary inflow pipe 16c.
  • the secondary flow path 50 c branches off from the main flow path 50 .
  • the flow of fluid that flows through the secondary flow path 50c and into the oil separation space 23 may be referred to as a secondary flow Sc.
  • the sub-inflow pipe 16c is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16c is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24c.
  • the inner surface of the secondary inflow pipe 16c extends tangentially to the inner surface of the outer cylindrical portion 21 .
  • the secondary inlet 24 c is provided below the main inlet 24 and above the lower end of the inner tubular portion 22 . Further, the secondary inlet 24c is provided at a position where the secondary flow Sc rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S, the side stream Sa, the side stream Sb, and the side stream Sc rotate in the same direction.
  • the main inlet 24, the secondary inlet 24a, the secondary inlet 24b, and the secondary inlet 24c are configured to rotate the main stream S and the secondary inlet 24c.
  • the flow Sa, the side flow Sb, and the side flow Sc may be formed in the outer cylindrical portion 21 so as to rotate clockwise.
  • the sub-channel 50 c has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sc has a higher velocity than the main stream S.
  • the fluid flowing through the main inflow pipe 16 consists of a main flow S flowing as it is in the main flow channel 50 of the main inflow pipe 16, a sub flow Sa flowing through the sub flow channel 50a formed inside the sub inflow pipe 16a, and a sub flow Sa flowing through the sub flow channel 50a formed inside the sub inflow pipe 16c. It branches into a sub-flow Sc flowing through the formed sub-flow path 50c.
  • the main flow S flowing through the main flow path 50 of the main inflow pipe 16 passes through the main flow inlet 24 formed in the outer cylindrical portion 21 and flows into the outer cylindrical portion 21 .
  • the secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a.
  • the secondary flow Sb flows into the outer cylindrical portion 21 through the secondary inlet 24b.
  • the secondary flow Sc flows into the outer cylindrical portion 21 through the secondary inlet 24c.
  • the main stream S is joined with the substreams Sa, Sb, and Sc, which flow at a faster speed than the main stream S.
  • a relatively slow fluid flowing from the main inlet 24 and a relatively fast fluid flowing from the secondary inlets 24a, 24b, and 24c coexist.
  • the main stream S spreads in the vertical direction due to the higher-speed substreams Sa, Sb, and Sc, thereby suppressing the swirl speed of the main stream S from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
  • the oil separator 3B of the screw compressor 1B of Embodiment 3 has the secondary inflow pipe 16a, the secondary inflow pipe 16b, and the secondary inflow pipe 16c.
  • the cross-sectional areas of the sub-channels 50a, 50b, and 50c formed inside the sub-inflow pipes 16a, 16b, and 16c are larger than the cross-sectional area of the main flow channel 50 of the main inflow pipe 16. is also small. Therefore, in the oil separation space 23, the main flow S is joined with the subflows Sa, Sb, and Sc, which flow at a higher speed than the main flow S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed.
  • the screw compressor 1B of the third embodiment like the screw compressor 1 of the first embodiment, can suppress the deterioration of the centrifugal separation effect and improve the oil separation performance.
  • the secondary inlet 24c is formed above the lower end of the inner cylindrical portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
  • FIG. 5 is a cross-sectional schematic diagram showing a screw compressor 1C according to Embodiment 4. As shown in FIG. FIG. 5 shows a vertical cross section of the screw compressor 1C.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • the oil separator 3C of Embodiment 4 has a main inflow pipe 16, a sub-inflow pipe 16a and a sub-inflow pipe 16d.
  • the main inflow pipe 16, the secondary inflow pipe 16a, and the secondary inflow pipe 16d are different pipes.
  • the main inflow pipe 16 is connected to the casing 4 and the oil separator 17, as in the first embodiment.
  • the auxiliary inflow pipe 16a branches vertically downward from the main inflow pipe 16, bends toward the oil separation section 17 side, that is, toward Y in FIG. 5, and is connected to the oil separation section 17. .
  • the sub-inflow pipe 16d branches vertically downward from the bent portion of the sub-inflow pipe 16a, further bends toward the oil separation section 17 side, that is, the Y side in FIG. That is, the sub-inflow pipe 16d has a branched portion with the sub-inflow pipe 16a, that is, a portion where the pipe axis extends vertically from the bent portion of the sub-inflow pipe 16a to its own bent portion, and from the bent portion to the oil separation portion 17. It consists of a portion where the tube axis up to extends in the left-right direction. A portion of the sub-inflow pipe 16d where the pipe axis extends in the left-right direction is provided substantially parallel to the main inflow pipe 16 and the sub-inflow pipe 16a.
  • the secondary inflow pipe 16d extends substantially horizontally.
  • the sub-inflow pipe 16 d is discharged from the discharge chamber 12 of the compressor body 2 and diverted from the main in-flow pipe 16 . It is intended to flow into A secondary channel 50d is formed inside the secondary inflow pipe 16d.
  • the sub-channel 50d is branched from the sub-channel 50a.
  • the flow of fluid that flows through the secondary flow path 50d and into the oil separation space 23 may be referred to as a secondary flow Sd.
  • the sub-inflow pipe 16d is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16d is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24d.
  • the inner surface of the secondary inflow pipe 16 d extends tangentially to the inner surface of the outer cylindrical portion 21 .
  • the secondary inlet 24 d is provided in the outer tubular portion 21 vertically below the main inlet 24 and the secondary inlet 24 a and above the lower end of the inner tubular portion 22 . In addition, when the oil separator 3 is viewed from above, the secondary inlet 24d overlaps the secondary inlet 24a.
  • the secondary inlet 24d is provided at a position where the secondary flow Sd rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S, the side stream Sa, and the side stream Sd rotate in the same direction. If the main stream S, the side stream Sa, and the side stream Sd rotate in the same direction, the main stream S, the side stream Sa, and the side stream Sd rotate clockwise at the main inlet 24, the side inlet 24a, and the side inlet 24d. It may be formed in the outer cylindrical portion 21 so as to be The secondary flow path 50d has a smaller cross-sectional area than the main flow path 50 . Therefore, the side stream Sd is faster than the main stream S.
  • the fluid flows out from the discharge chamber 12 to the main inflow pipe 16.
  • the fluid flowing through the main inflow pipe 16 branches into a main flow S that flows directly through the main channel 50 of the main inflow pipe 16 and a subflow Sa that flows through a subflow channel 50a formed inside the subinflow pipe 16a.
  • the main flow S flowing through the main flow path 50 of the main inflow pipe 16 passes through the main flow inlet 24 formed in the outer cylindrical portion 21 and flows into the outer cylindrical portion 21 .
  • the fluid flowing through the sub-channel 50a of the sub-inflow pipe 16a is further divided into a sub-flow Sa that flows directly through the sub-flow channel 50a and a sub-flow Sd that flows through the sub-flow channel 50d formed inside the sub-inflow pipe 16d.
  • the secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a.
  • the secondary flow Sd flows into the outer cylindrical portion 21 through the secondary inlet 24d.
  • the main flow S is joined with the side flow Sa and the side flow Sd, which flow at a faster speed than the main flow S.
  • the fluid flowing in from the main inlet 24 with a relatively low speed and the fluid flowing in from the secondary inlets 24a and 24d with a relatively high speed coexist.
  • the main stream S spreads in the vertical direction due to the faster side streams Sa and Sd, thereby suppressing the swirling speed of the main stream S from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
  • the oil separator 3C of the screw compressor 1C of Embodiment 4 has the secondary inflow pipe 16a and the secondary inflow pipe 16d.
  • the cross-sectional areas of the sub-channels 50 a and 50 d formed inside the sub-inflow pipes 16 a and 16 d are smaller than the cross-sectional area of the main flow channel 50 of the main inflow pipe 16 . Therefore, in the oil separation space 23, the main stream S is joined with the side stream Sa and the side stream Sd that flow at a faster speed than the main stream S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed.
  • the screw compressor 1C of the fourth embodiment like the screw compressor 1 of the first embodiment, can suppress a decrease in the centrifugal separation effect and improve the oil separation performance.
  • the secondary inlet 24d is formed above the lower end of the inner tubular portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
  • auxiliary inflow pipe 16c of the third embodiment may be provided.
  • secondary inflow pipe 16d of the fourth embodiment may be added to the oil separator 3B having the secondary inflow pipes 16a, 16b and 16c of the third embodiment.
  • another sub-inflow pipe branching downward in the vertical direction may be added from the sub-inflow pipe 16d.
  • the main inlet 24, the secondary inlet 24a, the secondary inlet 24b, the secondary inlet 24c, and the secondary inlet 24d are formed such that the main flow S and the respective secondary flows have the same swirl direction. You may make it adjust suitably in a certain range.
  • the secondary inlet 24 a , secondary inlet 24 b , secondary inlet 24 c , and secondary inlet 24 d may be formed below the lower end of the inner tubular portion 22 .
  • the main stream S spreads in the vertical direction due to the higher velocity side stream Sa, side stream Sb, side stream Sc, or side stream Sd, and the decrease in the swirling speed of the main stream S can be suppressed.
  • the inflow position of the fluid flowing into the oil separation space 23 from the sub-flow path, the number of paths, etc. can be arbitrarily set.
  • an effective form that suppresses the decrease in the effect of centrifugal separation on the fluid that has flowed into the oil separation space 23 is adopted, and the oil separation performance can be improved.
  • the cross-sectional area of the sub-channel 50a, the sub-channel 50b, the sub-channel 50c, or the sub-channel 50d is not constant, but gradually decreases from upstream to downstream. good too. This makes it easier for the fluid to flow into the sub-inflow pipe, so that a high-velocity sub-flow can be introduced into the oil separation space.
  • the sub-inflow pipe 16a that branches vertically downward from the main inflow pipe 16 has a cross-sectional area of the branched portion of the sub-flow passage 50a that is the area of other portions, especially the sub-inflow port 24a. may be larger than Further, the secondary inflow pipe 16a may branch smoothly obliquely downward from the main inflow pipe 16 so as to form an acute relative angle with the main inflow pipe 16 instead of vertically downward. This makes it easier for the fluid to flow from the main inflow pipe 16 to the auxiliary inflow pipe 16a.
  • the main inflow pipe 16, the subinflow pipe 16a, the subinflow pipe 16b, the subinflow pipe 16c, and the subinflow pipe 16d have been described as extending substantially horizontally.
  • the main inflow pipe 16, the subinflow pipe 16a, the subinflow pipe 16b, the subinflow pipe 16c and the subinflow pipe 16d may extend upward or downward.
  • the sub-inflow pipe 16a, the sub-inflow pipe 16b, the sub-inflow pipe 16c, and the sub-inflow pipe 16d are preferably oriented upward within a range of 0° to 10° with the horizontal being 0°. As a result, it is possible to prevent the secondary flow from flowing upward into the oil separation space 23 and the main stream S from spreading downward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This screw compressor comprises a compressor body that compresses a fluid, and a cyclone oil separator that separates fluid discharged from the compressor body into refrigerant gas and oil using centrifugal force. The cyclone oil separator has an outer cylinder part having an oil separation space formed in the interior, an inner cylinder part provided on the inner side of the outer cylinder part, a main inflow pipe that is connected to the outer cylinder part and that allows the fluid discharged from the compressor body to flow into the oil separation space, and an auxiliary inflow pipe that is different from the main inflow pipe connected to the outer cylinder part and that allows the fluid discharged from the compressor body to flow into the oil separation space. The cross-sectional area of an auxiliary flow path formed inside the auxiliary inflow pipe is less than the cross-sectional area of a main flow path formed inside the main inflow pipe.

Description

スクリュー圧縮機screw compressor
 本開示は、油分離器を備えるスクリュー圧縮機に関する。 The present disclosure relates to a screw compressor provided with an oil separator.
 従来、サイクロン式油分離器を有するスクリュー圧縮機が知られている。サイクロン式油分離器は、外筒、及び外筒の内部に形成された内筒を有している。サイクロン式油分離器は、圧縮機本体から吐出された流体を外筒と内筒との間で旋回させることで、流体を冷媒ガスと冷凍機油とに遠心分離させる。特許文献1には、内筒の外周面に沿って延びた旋回流強化板を有するスクリュー圧縮機が開示されている。旋回流強化板は、サイクロン式油分離器に流入した流体が鉛直方向に広がることを抑制し、流体の旋回速度を高める。特許文献1は、これにより、スクリュー圧縮機の油分離性能を向上させようとするものである。 Conventionally, a screw compressor with a cyclone oil separator is known. A cyclone oil separator has an outer cylinder and an inner cylinder formed inside the outer cylinder. The cyclone oil separator spins the fluid discharged from the compressor main body between the outer cylinder and the inner cylinder, thereby centrifugally separating the fluid into refrigerant gas and refrigerating machine oil. Patent Literature 1 discloses a screw compressor having a swirling flow reinforcing plate extending along the outer peripheral surface of an inner cylinder. The swirling flow reinforcing plate suppresses the vertical spread of the fluid that has flowed into the cyclone oil separator, and increases the swirling speed of the fluid. Patent document 1 intends to improve the oil separation performance of the screw compressor.
特開2003-83272号公報JP-A-2003-83272
 特許文献1では、旋回流強化板に付着した油が、旋回流強化板の下端から滴下する。旋回流強化板の下端から滴下した油は、油分離空間の下部から圧縮機出口に向かう上昇流に乗って外部へ吐出されるため、スクリュー圧縮機の油分離性能が低下してしまう。 In Patent Document 1, the oil attached to the swirl flow strengthening plate drips from the lower end of the swirl flow strengthening plate. Since the oil dripping from the lower end of the swirling flow strengthening plate is discharged outside along with the upward flow from the lower part of the oil separation space toward the compressor outlet, the oil separation performance of the screw compressor deteriorates.
 本開示は、上術のような課題を解決するためになされたもので、油分離性能が向上したスクリュー圧縮機を提供するものである。 The present disclosure has been made to solve the above problems, and provides a screw compressor with improved oil separation performance.
 本開示に係るスクリュー圧縮機は、流体を圧縮する圧縮機本体と、圧縮機本体から吐出された流体を遠心力によって冷媒ガスと油とに分離するサイクロン式油分離器と、を備え、サイクロン式油分離器は、内部に油分離空間が形成された外筒部と、外筒部の内側に設けられた内筒部と、外筒部に接続され、圧縮機本体から吐出された流体を油分離空間に流入させる主流入管と、外筒部に接続された主流入管と異なる管であって、圧縮機本体から吐出された流体を油分離空間に流入させる副流入管と、を有しており、副流入管の内部に形成された副流路の断面積は、主流入管の内部に形成された主流路の断面積より小さい。 A screw compressor according to the present disclosure includes a compressor body that compresses a fluid, and a cyclone-type oil separator that separates the fluid discharged from the compressor body into refrigerant gas and oil by centrifugal force. The oil separator is connected to an outer cylindrical portion having an oil separation space formed therein, an inner cylindrical portion provided inside the outer cylindrical portion, and the outer cylindrical portion, and is connected to the outer cylindrical portion to separate the fluid discharged from the compressor main body from the oil. It has a main inflow pipe that flows into the separation space, and a sub-inflow pipe that is different from the main inflow pipe and is connected to the outer cylinder and that flows the fluid discharged from the compressor main body into the oil separation space. , the cross-sectional area of the sub-channel formed inside the sub-inflow pipe is smaller than the cross-sectional area of the main channel formed inside the main inflow pipe.
 本開示のスクリュー圧縮機の油分離器は、主流入管及び副流入管を有している。副流入管の内部に形成された副流路の断面積は、主流入管の内部に形成された主流路の断面積よりも小さい。このため、油分離空間では、主流入管からに流入する主流に対して、主流よりも速い速度で副流入管から油分離空間に流入する副流が合流する。よって、主流が鉛直方向に広がり、主流の旋回速度が低下することが抑制されている。これにより、スクリュー圧縮機は、遠心分離の効果が低下することを抑制し、油分離性能を向上させることができる。 The oil separator of the screw compressor of the present disclosure has a main inlet pipe and a secondary inlet pipe. The cross-sectional area of the sub-channel formed inside the sub-inflow pipe is smaller than the cross-sectional area of the main channel formed inside the main inflow pipe. Therefore, in the oil separation space, the main stream flowing in from the main inflow pipe joins with the side stream flowing into the oil separation space from the sub-inflow pipe at a faster speed than the main flow. Therefore, it is possible to prevent the mainstream from spreading in the vertical direction and reducing the swirling speed of the mainstream. As a result, the screw compressor can suppress the deterioration of the centrifugal separation effect and improve the oil separation performance.
実施の形態1に係るスクリュー圧縮機1を示す断面模式図である。1 is a schematic cross-sectional view showing a screw compressor 1 according to Embodiment 1. FIG. 実施の形態1に係る油分離器3を示す断面模式図である。1 is a schematic cross-sectional view showing an oil separator 3 according to Embodiment 1. FIG. 実施の形態2に係る油分離器3Aを示す断面模式図である。It is a cross-sectional schematic diagram which shows 3 A of oil separators which concern on Embodiment 2. FIG. 実施の形態3に係る油分離器3Bを示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing an oil separator 3B according to Embodiment 3; 実施の形態4に係るスクリュー圧縮機1Cを示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing a screw compressor 1C according to Embodiment 4;
実施の形態1.
 以下、実施の形態1に係るスクリュー圧縮機1について、図面を参照しながら説明する。スクリュー圧縮機1は、冷媒ガスを圧縮するものであり、例えば、冷凍サイクルに組み込まれる。スクリュー圧縮機1には、スクリュー圧縮機1の各部品の潤滑又は隙間のシールを目的として冷凍機油が供給されている。以下の説明において、スクリュー圧縮機1を流れる冷媒ガス及び冷凍機油を、流体と総称することがある。
Embodiment 1.
A screw compressor 1 according to Embodiment 1 will be described below with reference to the drawings. The screw compressor 1 compresses refrigerant gas, and is incorporated in, for example, a refrigeration cycle. Refrigerating machine oil is supplied to the screw compressor 1 for the purpose of lubricating each part of the screw compressor 1 or sealing gaps. In the following description, the refrigerant gas and refrigerating machine oil flowing through the screw compressor 1 may be collectively referred to as fluid.
 図1は、実施の形態1に係るスクリュー圧縮機1を示す断面模式図である。図1は、スクリュー圧縮機1を上下方向に切断した断面を示している。スクリュー圧縮機1は、例えば、シングルスクリュー圧縮機であり、図1に示すように、圧縮機本体2及び油分離器3を有している。圧縮機本体2は、図1の二点鎖線Wより右側、即ち、X側に配置されている。また、油分離器3は、図1の二点鎖線Wより左側、即ち、Y側に配置されている。油分離器3は、圧縮機本体2の外郭を構成するケーシング4にボルト(図示せず)によって固定されている。 FIG. 1 is a cross-sectional schematic diagram showing a screw compressor 1 according to Embodiment 1. FIG. FIG. 1 shows a vertical cross section of the screw compressor 1 . The screw compressor 1 is, for example, a single screw compressor, and has a compressor body 2 and an oil separator 3 as shown in FIG. The compressor main body 2 is arranged on the right side of the two-dot chain line W in FIG. 1, that is, on the X side. Further, the oil separator 3 is arranged on the left side of the two-dot chain line W in FIG. 1, that is, on the Y side. The oil separator 3 is fixed to a casing 4 forming an outer shell of the compressor body 2 with bolts (not shown).
 (圧縮機本体2の構成)
 圧縮機本体2は、ケーシング4、モータ5、スクリュー軸6、スクリューロータ7、軸受8、ゲートロータ9及びスライドバルブ10を有する。ケーシング4は、筒状に形成されており、上述のように圧縮機本体2の外郭を構成する。ケーシング4は、低圧の冷媒ガスで満たされる吸入圧力側と、高圧の冷媒ガスで満たされる吐出圧力側とに隔てられている。モータ5は、ケーシング4内に収容されている。スクリュー軸6は、モータ5に固定され、モータ5によって回転駆動される。スクリューロータ7は、スクリュー軸6に固定されている。スクリューロータ7は、スクリュー軸6の延びる方向において、後述する、モータ5のモータロータ5bと対向している。軸受8は、スクリュー軸6におけるモータ5に固定されていない側の端部を回転自在に支持している。
(Configuration of Compressor Main Body 2)
The compressor body 2 has a casing 4 , a motor 5 , a screw shaft 6 , a screw rotor 7 , bearings 8 , a gate rotor 9 and a slide valve 10 . The casing 4 is formed in a cylindrical shape, and constitutes the outer shell of the compressor main body 2 as described above. The casing 4 is separated into a suction pressure side filled with low-pressure refrigerant gas and a discharge pressure side filled with high-pressure refrigerant gas. The motor 5 is housed inside the casing 4 . The screw shaft 6 is fixed to the motor 5 and driven to rotate by the motor 5 . A screw rotor 7 is fixed to the screw shaft 6 . The screw rotor 7 faces a motor rotor 5b of the motor 5, which will be described later, in the direction in which the screw shaft 6 extends. The bearing 8 rotatably supports the end of the screw shaft 6 that is not fixed to the motor 5 .
 圧縮機本体2は、一対のゲートロータ9を有している。一対のゲートロータ9は、スクリューロータ7の側面に、スクリュー軸6に対して軸対象となるように配置されている。スライドバルブ10は、ケーシング4の側面とスクリューロータ7との間に設けられている。スライドバルブ10は、スクリューロータ7の外周面に沿って吸入圧力側と吐出圧力側とに摺動可能なように配置されている。スライドバルブ10は、中央部に開口10aが形成されている。 The compressor main body 2 has a pair of gate rotors 9 . A pair of gate rotors 9 are arranged on the side surfaces of the screw rotor 7 so as to be axially symmetrical with respect to the screw shaft 6 . A slide valve 10 is provided between the side surface of the casing 4 and the screw rotor 7 . The slide valve 10 is arranged along the outer peripheral surface of the screw rotor 7 so as to be slidable between the suction pressure side and the discharge pressure side. The slide valve 10 has an opening 10a formed in the center.
 モータ5は、ケーシング4の内周面に固定されたステータ5a、及びステータ5aの内側に配置されたモータロータ5bから構成されている。モータロータ5bは、スクリュー軸6に固定されている。 The motor 5 is composed of a stator 5a fixed to the inner peripheral surface of the casing 4 and a motor rotor 5b arranged inside the stator 5a. The motor rotor 5 b is fixed to the screw shaft 6 .
 スクリューロータ7は、円柱状であり、外周面に複数のスクリュー溝7aが形成されている。スクリュー溝7aは、スクリューロータ7の一端から他端に向かって螺旋状に延びている。スクリューロータ7の一端側は、冷媒ガスの吸入側となってスクリュー溝7aを吸入圧力側と連通させる。スクリューロータ7の他端側は、冷媒ガスの吐出側となってスクリュー溝7aを吐出圧力側と連通させる。 The screw rotor 7 is columnar, and has a plurality of screw grooves 7a formed on its outer peripheral surface. The screw groove 7a spirally extends from one end of the screw rotor 7 toward the other end. One end side of the screw rotor 7 serves as a refrigerant gas suction side, and communicates the screw groove 7a with the suction pressure side. The other end side of the screw rotor 7 serves as the refrigerant gas discharge side, and communicates the screw groove 7a with the discharge pressure side.
 ゲートロータ9は、円板状であり、軸方向がスクリューロータ7の軸方向と直交している。ゲートロータ9の外周面には、周方向に沿って複数の歯部9aが設けられている。ゲートロータ9の歯部9aは、スクリューロータ7のスクリュー溝7aに噛み合うように配置されている。スクリュー溝7aと歯部9aとケーシング4の内周面とスライドバルブ10とによって囲まれた空間は、圧縮される冷媒ガスが満たされる圧縮室11として機能する。圧縮室11には、軸受8の潤滑及び圧縮室11のシールを行う冷凍機油が注入されている。 The gate rotor 9 is disc-shaped, and its axial direction is orthogonal to the axial direction of the screw rotor 7 . The outer peripheral surface of the gate rotor 9 is provided with a plurality of teeth 9a along the circumferential direction. The tooth portions 9 a of the gate rotor 9 are arranged so as to mesh with the screw grooves 7 a of the screw rotor 7 . A space surrounded by the screw groove 7a, the tooth portion 9a, the inner peripheral surface of the casing 4, and the slide valve 10 functions as a compression chamber 11 filled with refrigerant gas to be compressed. Refrigerating machine oil for lubricating the bearings 8 and sealing the compression chamber 11 is injected into the compression chamber 11 .
 ケーシング4の吐出圧力側の内周面には、吐出室12へ繋がる吐出口(図示せず)が開口している。圧縮室11内に満たされた高圧の冷媒ガス及び冷凍機油は、スライドバルブ10の開口10a及び吐出口を介して吐出室12に吐出される。吐出室12は、圧縮室11内から高圧の冷媒ガス及び冷凍機油が吐出される空間である。吐出室12内に満たされた高圧の冷媒ガス及び冷凍機油は、油分離器3に流出する。 A discharge port (not shown) connected to the discharge chamber 12 is open on the inner peripheral surface of the casing 4 on the discharge pressure side. The high-pressure refrigerant gas and refrigerating machine oil filled in the compression chamber 11 are discharged into the discharge chamber 12 through the opening 10a of the slide valve 10 and the discharge port. The discharge chamber 12 is a space into which high-pressure refrigerant gas and refrigerating machine oil are discharged from within the compression chamber 11 . The high-pressure refrigerant gas and refrigerating machine oil filled in the discharge chamber 12 flow out to the oil separator 3 .
 (油分離器3の構成)
 油分離器3は、圧縮機本体2から吐出された流体を冷媒ガスと冷凍機油とに分離するためのサイクロン方式の油分離器である。油分離器3は、主流入管16、副流入管16a、油分離部17、油貯留部18、仕切板19及び蓋部20を有する。油分離器3の主流入管16、副流入管16a、油分離部17の後述する外筒部21、及び油貯留部18は、鋳造される。主流入管16と副流入管16aとは、それぞれ異なる管である。
(Configuration of oil separator 3)
The oil separator 3 is a cyclone type oil separator for separating the fluid discharged from the compressor main body 2 into refrigerant gas and refrigerating machine oil. The oil separator 3 has a main inflow pipe 16 , a subinflow pipe 16 a , an oil separation section 17 , an oil storage section 18 , a partition plate 19 and a lid section 20 . The main inflow pipe 16, the auxiliary inflow pipe 16a, the later-described outer cylinder portion 21 of the oil separator 17, and the oil reservoir 18 of the oil separator 3 are cast. The main inflow pipe 16 and the subinflow pipe 16a are different pipes.
 主流入管16は、ケーシング4と油分離部17とに接続されている。主流入管16は、略水平に延びている。主流入管16は、圧縮機本体2の吐出室12から吐出された流体を油分離部17の内部に流入させる。主流入管16の内部には、流体が流れる主流路50が形成されている。 The main inflow pipe 16 is connected to the casing 4 and the oil separator 17. The main inflow pipe 16 extends substantially horizontally. The main inflow pipe 16 allows the fluid discharged from the discharge chamber 12 of the compressor body 2 to flow into the oil separator 17 . A main flow path 50 through which fluid flows is formed inside the main inflow pipe 16 .
 副流入管16aは、主流入管16から鉛直下方に分岐し、さらに油分離部17側、即ち図1のY側に曲折して、油分離部17に接続されている。つまり、副流入管16aは、主流入管16との分岐部分から曲折部分までの管軸が上下に延びる部分、及び曲折部分から油分離部17までの管軸が左右方向に延びる部分からなる。副流入管16aの管軸が左右方向に延びる部分は、主流入管16と略平行に設けられている。即ち、副流入管16aは、略水平に延びている。副流入管16aは、圧縮機本体2の吐出室12から吐出された流体のうち、主流入管16から分流した一部の流体を油分離部17の内部に流入させるものである。副流入管16aの内部には、流体が流れる副流路50aが形成されている。副流路50aは、主流路50から分岐している。 The auxiliary inflow pipe 16a branches vertically downward from the main inflow pipe 16, and is further bent toward the oil separation section 17 side, ie, the Y side in FIG. In other words, the auxiliary inflow pipe 16a is composed of a vertically extending portion from the branch with the main inflow pipe 16 to the bent portion, and a laterally extending portion from the bent portion to the oil separating portion 17. A portion of the auxiliary inflow pipe 16 a extending in the left-right direction is provided substantially parallel to the main inflow pipe 16 . That is, the secondary inflow pipe 16a extends substantially horizontally. The sub-inflow pipe 16 a allows part of the fluid discharged from the discharge chamber 12 of the compressor body 2 , which is branched from the main in-flow pipe 16 , to flow into the oil separating section 17 . A secondary channel 50a through which fluid flows is formed inside the secondary inflow pipe 16a. The secondary flow path 50 a branches off from the main flow path 50 .
 なお、以下の説明において、主流路50のみを通り油分離空間23に流れる流体の流れを主流Sと称することがある。また、副流路50aを通り油分離空間23に流れる流体の流れを副流Saと称することがある。 In addition, in the following description, the flow of fluid that flows only through the main flow path 50 and into the oil separation space 23 may be referred to as the main stream S. Also, the flow of fluid that flows into the oil separation space 23 through the sub-flow path 50a may be referred to as a sub-flow Sa.
 油分離部17は、外筒部21、及び外筒部21の内部に設けられた内筒部22を有する。外筒部21と、内筒部22とは、同軸上に配置され、二重円筒状をなしている。ここで、外筒部21の内側の空間を油分離空間23と呼称する。また、油分離空間23のうち、内筒部22の下部の開口と外筒部21の下端との間の空間を折り返し空間23aと呼称する。外筒部21の上部且つ側面には、主流入口24、及び副流入口24aが形成されている。主流入口24は、外筒部21の内外を貫通し、油分離空間23と主流路50とを連通させている。副流入口24aは、外筒部21の内外を貫通し、油分離空間23と副流路50aとを連通させている。副流入口24aは、主流入口24よりも下方、且つ内筒部22の下端より上方に形成されている。また、外筒部21の下部の側面には、油貯留部18に連通する返油孔25が形成されている。 The oil separation portion 17 has an outer cylinder portion 21 and an inner cylinder portion 22 provided inside the outer cylinder portion 21 . The outer cylinder part 21 and the inner cylinder part 22 are arranged coaxially and form a double cylinder. Here, the space inside the outer cylindrical portion 21 is called an oil separation space 23 . In addition, the space between the lower opening of the inner cylindrical portion 22 and the lower end of the outer cylindrical portion 21 in the oil separating space 23 is called a folded space 23a. A main inlet 24 and a secondary inlet 24a are formed in the upper and side surfaces of the outer cylindrical portion 21 . The main flow inlet 24 penetrates the inside and outside of the outer cylindrical portion 21 to allow the oil separation space 23 and the main flow passage 50 to communicate with each other. The sub-inlet 24a penetrates the inside and outside of the outer cylindrical portion 21, and communicates the oil separation space 23 with the sub-flow path 50a. The secondary inlet 24 a is formed below the main inlet 24 and above the lower end of the inner tubular portion 22 . An oil return hole 25 communicating with the oil reservoir 18 is formed in the side surface of the lower portion of the outer cylindrical portion 21 .
 返油孔25は、外筒部21の圧縮機本体2側の側面に沿って形成され、周の長さが外筒部21の半周分以下の長さである。返油孔25は、少なくとも外筒部21の側面の下端に至って形成されている。また、返油孔25は、上部が内筒部22の下部の開口より低い位置になるように形成されている。なお、返油孔25は、高さが、折り返し空間23aの下半分までの高さとなるように形成されていると好ましい。 The oil return hole 25 is formed along the side surface of the outer cylindrical portion 21 on the side of the compressor main body 2 , and has a circumferential length equal to or less than half the circumference of the outer cylindrical portion 21 . The oil return hole 25 is formed at least up to the lower end of the side surface of the outer cylindrical portion 21 . Further, the oil return hole 25 is formed so that the upper portion thereof is positioned lower than the opening of the lower portion of the inner cylindrical portion 22 . In addition, it is preferable that the oil return hole 25 is formed so as to have a height up to the lower half of the folded space 23a.
 主流入管16及び副流入管16aから油分離空間23に流入した流体は、外筒部21と内筒部22との間で旋回し、冷媒ガスと冷凍機油とに遠心分離する。遠心分離した冷媒ガスは、下降した後、仕切板19で折り返し、内筒部22の内側を上昇する。また、遠心分離した冷凍機油は、外筒部21の内壁面に付着し、外筒部21の内壁面に沿って下降する。油分離部17で分離された冷凍機油は、仕切板19上を流れて、返油孔25から油貯留部18に流出する。 The fluid that has flowed into the oil separation space 23 from the main inflow pipe 16 and the auxiliary inflow pipe 16a swirls between the outer cylinder part 21 and the inner cylinder part 22, and is centrifuged into refrigerant gas and refrigerating machine oil. After the centrifugally separated refrigerant gas descends, it is folded back by the partition plate 19 and ascends inside the inner cylindrical portion 22 . Further, the centrifuged refrigerating machine oil adheres to the inner wall surface of the outer cylindrical portion 21 and descends along the inner wall surface of the outer cylindrical portion 21 . The refrigerator oil separated by the oil separator 17 flows over the partition plate 19 and flows out from the oil return hole 25 to the oil reservoir 18 .
 油貯留部18は、外筒部21の下方に設けられ、冷媒ガスと分離された冷凍機油を貯留する。油貯留部18は、油分離部17を下方に投影した領域よりも広く、圧縮機本体2側に長く形成されている。分離された冷凍機油は、ケーシング4に形成された通路(図示せず)を通って、再び、軸受8及び圧縮室11等に供給される。 The oil storage part 18 is provided below the outer cylinder part 21 and stores the refrigerating machine oil separated from the refrigerant gas. The oil storage portion 18 is wider than the downward projected area of the oil separation portion 17 and is formed longer on the side of the compressor main body 2 . The separated refrigerating machine oil passes through a passage (not shown) formed in the casing 4 and is again supplied to the bearing 8, the compression chamber 11, and the like.
 仕切板19は、油分離部17と油貯留部18とを仕切る。仕切板19は、外筒部21の下部の開口を覆っている。仕切板19は、内筒部22の下部の開口の端縁と平行に配置されている。仕切板19は、外筒部21と一体化して設けられている。 The partition plate 19 partitions the oil separation portion 17 and the oil storage portion 18 . The partition plate 19 covers the lower opening of the outer cylindrical portion 21 . The partition plate 19 is arranged in parallel with the edge of the lower opening of the inner cylindrical portion 22 . The partition plate 19 is provided integrally with the outer cylindrical portion 21 .
 蓋部20は、円板状に形成されており、外筒部21及び内筒部22の上部の開口を覆っている。蓋部20の中央には、出口20aが形成されている。出口20aは、蓋部20を上下方向に貫通し、内筒部22の内径より小径である。出口20aは、油分離器3において、流体から分離した冷媒ガスを冷凍サイクル回路側などスクリュー圧縮機1の外側に排出する。出口20aの下流側には、逆止弁26が設けられている。なお、逆止弁26は、蓋部20に内蔵されていてもよい。 The lid portion 20 is formed in a disc shape and covers the upper openings of the outer cylinder portion 21 and the inner cylinder portion 22 . An outlet 20 a is formed in the center of the lid portion 20 . The outlet 20 a vertically penetrates the lid portion 20 and has a smaller diameter than the inner diameter of the inner cylindrical portion 22 . The outlet 20a discharges the refrigerant gas separated from the fluid in the oil separator 3 to the outside of the screw compressor 1 such as the refrigeration cycle circuit side. A check valve 26 is provided downstream of the outlet 20a. Note that the check valve 26 may be built in the lid portion 20 .
 (主流入管16及び副流入管16a)
 図2は、実施の形態1に係る油分離器3を示す断面模式図である。図2は、油分離器3を左右方向に切断した断面を示している。図2は、図1のZ-Z断面に相当する。図2に示すように、主流入管16は、主流入管16の内面が主流入口24を介して外筒部21の内面に連続するようにして、外筒部21に接続している。換言すると、主流入管16の内面は、外筒部21の内面の接線方向に延びている。また、主流入口24は、油分離器3を上面視した際に、主流Sが半時計回りになる位置に設けられている。
(Main inflow pipe 16 and secondary inflow pipe 16a)
FIG. 2 is a schematic cross-sectional view showing the oil separator 3 according to Embodiment 1. FIG. FIG. 2 shows a cross section obtained by cutting the oil separator 3 in the left-right direction. FIG. 2 corresponds to the ZZ section of FIG. As shown in FIG. 2 , the main inflow pipe 16 is connected to the outer tubular portion 21 such that the inner surface of the main inflow pipe 16 is continuous with the inner surface of the outer tubular portion 21 through the main inlet 24 . In other words, the inner surface of the main inflow pipe 16 extends tangentially to the inner surface of the outer cylindrical portion 21 . Further, the main inlet 24 is provided at a position where the main flow S rotates counterclockwise when the oil separator 3 is viewed from above.
 副流入管16aは、副流入管16aの内面が副流入口24aを介して外筒部21の内面に連続するようにして、外筒部21に接続している。換言すると、副流入管16aの内面は、外筒部21の内面の接線方向に延びている。副流入口24aは、油分離器3を上面視した際に、主流入口24の一部と位置が重なる。また、副流入口24aは、油分離器3を上面視した際に、副流Saが半時計回りになる位置に設けられている。つまり、主流Sと副流Saとは、同一の回転方向となる。なお、主流Sと副流Saとが同一の回転方向となれば、主流入口24及び副流入口24aは、主流S及び副流Saが時計回りになるように外筒部21に形成されていてもよい。 The sub-inflow pipe 16a is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16a is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24a. In other words, the inner surface of the secondary inflow pipe 16 a extends tangentially to the inner surface of the outer cylindrical portion 21 . When the oil separator 3 is viewed from above, the secondary inlet 24a overlaps a part of the main inlet 24 . Further, the secondary inlet 24a is provided at a position where the secondary flow Sa rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S and the side stream Sa are rotated in the same direction. If the main stream S and the side stream Sa rotate in the same direction, the main inlet 24 and the secondary inlet 24a are formed in the outer cylindrical portion 21 so that the main stream S and the side stream Sa rotate clockwise. good too.
 副流路50aは、主流路50よりも断面積が小さい。よって、副流Saは、主流Sよりも速度が速い。ここで、断面積とは、主流入管16を管軸に対して直交する方向で切断した断面における主流路50の面積、又は副流入管16aを管軸に対して直交する方向で切断した断面における副流路50aの面積を意味している。 The sub-channel 50 a has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sa has a higher velocity than the main stream S. Here, the cross-sectional area is the area of the main flow passage 50 in the cross section cut in the direction perpendicular to the pipe axis of the main inflow pipe 16, or the cross section cut in the direction perpendicular to the pipe axis of the sub-inflow pipe 16a. It means the area of the sub-channel 50a.
(スクリュー圧縮機1の動作)
 ここで、スクリュー圧縮機1の動作について、説明する。先ず、モータ5が回転することで、スクリュー軸6が回転する。スクリュー軸6が回転することで、スクリュー軸6に固定されたスクリューロータ7が回転する。回転するスクリューロータ7は、スクリュー溝7aに噛み合う歯部9aを有するゲートロータ9を回転させる。
(Operation of screw compressor 1)
Here, the operation of the screw compressor 1 will be described. First, the screw shaft 6 rotates as the motor 5 rotates. As the screw shaft 6 rotates, the screw rotor 7 fixed to the screw shaft 6 rotates. The rotating screw rotor 7 rotates a gate rotor 9 having teeth 9a meshing with the screw grooves 7a.
 このとき、スクリューロータ7の吸入圧力側から吸い込まれた低圧の冷媒ガスは、圧縮室11に流入する。圧縮室11に流入した冷媒ガスは、圧縮室11にて圧縮されつつ、スクリューロータ7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは、圧縮室11に注入されている冷凍機油と一緒にスライドバルブ10の開口10aから吐出室12へ吐出される。吐出された冷媒ガス及び冷凍機油は、吐出室12から油分離器3の主流入管16に流出される。 At this time, the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 flows into the compression chamber 11 . The refrigerant gas that has flowed into the compression chamber 11 is sent to the discharge pressure side of the screw rotor 7 while being compressed in the compression chamber 11 . The refrigerant gas that has been compressed to a high pressure is discharged from the opening 10 a of the slide valve 10 into the discharge chamber 12 together with the refrigerating machine oil that has been injected into the compression chamber 11 . The discharged refrigerant gas and refrigerating machine oil flow out from the discharge chamber 12 to the main inflow pipe 16 of the oil separator 3 .
 主流入管16を流れる冷媒ガス及び冷凍機油は、主流路50をそのまま流れる主流Sと、副流入管16aの内部に形成された副流路50aを流れる副流Saとに分岐する。主流Sは、外筒部21に形成された主流入口24を通り、外筒部21の内部に流入する。主流入口24から流入した冷媒ガス及び冷凍機油は、外筒部21と内筒部22との間の油分離空間23を旋回しながら下降する。この際、旋回して下降する冷媒ガス及び冷凍機油のうち、冷媒ガスよりも密度の高い冷凍機油は遠心力によって外筒部21の内周面へ飛ばされ、冷凍機油と冷媒ガスとが分離される。 The refrigerant gas and refrigerating machine oil flowing through the main inflow pipe 16 are branched into a main flow S that flows directly through the main flow channel 50 and a secondary flow Sa that flows through a secondary flow channel 50a formed inside the secondary inflow pipe 16a. The main flow S flows into the outer cylindrical portion 21 through a main inlet 24 formed in the outer cylindrical portion 21 . Refrigerant gas and refrigerating machine oil that have flowed in from the main inlet 24 descend while swirling in the oil separation space 23 between the outer tubular portion 21 and the inner tubular portion 22 . At this time, of the refrigerant gas and refrigerant oil that swirl and descend, the refrigerant oil that has a higher density than the refrigerant gas is blown to the inner peripheral surface of the outer cylindrical portion 21 by the centrifugal force, and the refrigerant oil and the refrigerant gas are separated. be.
 副流Saは、副流入口24aを通り、外筒部21の内部に流入する。この際に、油分離空間23では、主流入管16から流入する主流Sに対して、主流Sよりも速い速度で副流入管16bから流入する副流Saが合流する。つまり、油分離空間23では、主流入口24から流入した比較的速度が遅い流体と副流入口24aから流入した比較的速度が速い流体とが混在する。主流Sは、より速度が速い副流Saによって、鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。したがって、油分離空間23内の流体は速い旋回速度を維持するため、遠心分離の効果が低下することが抑制されている。 The secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a. At this time, in the oil separation space 23, the main stream S flowing in from the main inflow pipe 16 joins with the secondary stream Sa flowing in from the secondary inflow pipe 16b at a faster speed than the main flow S. In other words, in the oil separation space 23, the fluid flowing in from the main inlet 24 with a relatively low speed and the fluid flowing in from the secondary inlet 24a with a relatively high speed coexist. The main stream S spreads in the vertical direction due to the side stream Sa, which has a higher speed, and the swirling speed of the main stream S is suppressed from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
 遠心力によって分離された冷凍機油は、外筒部21の内周面をつたって自重によって落下し、仕切板19上を流れる。仕切板19上を流れる冷凍機油は、返油孔25から外筒部21の外側に流出し、油貯留部18に溜められる。油貯留部18へ溜められた冷凍機油は、ケーシング4内に設けられた図示しない経路を通って圧縮機本体2に戻され、圧縮室11あるいは軸受8に供給される。 The refrigerating machine oil separated by the centrifugal force falls along the inner peripheral surface of the outer cylindrical portion 21 due to its own weight and flows over the partition plate 19 . Refrigerating machine oil flowing on the partition plate 19 flows out of the outer cylindrical portion 21 through the oil return hole 25 and is stored in the oil reservoir 18 . Refrigerating machine oil stored in the oil reservoir 18 is returned to the compressor main body 2 through a path (not shown) provided in the casing 4 and supplied to the compression chamber 11 or the bearing 8 .
 また、冷凍機油と分離した冷媒ガスは、旋回しながら下降流となり、仕切板19に接触する。仕切板19に接触した冷媒ガスは、折り返し空間23aにて下降流をなす冷媒ガスの内側に折り返して、旋回を継続しながら上昇流となって内筒部22の内部に流入する。内筒部22の内部に流入した冷媒ガスは、内筒部22の内側を経由し、蓋部20の出口20aから逆止弁26を通過して冷凍サイクル回路側に流出する。 Also, the refrigerant gas separated from the refrigerating machine oil becomes a downward flow while swirling, and contacts the partition plate 19 . The refrigerant gas coming into contact with the partition plate 19 turns back inside the downward flowing refrigerant gas in the turning space 23 a and flows into the inner cylindrical portion 22 as an upward flow while continuing to swirl. The refrigerant gas that has flowed into the inner cylindrical portion 22 passes through the inner side of the inner cylindrical portion 22, passes through the check valve 26 from the outlet 20a of the lid portion 20, and flows out to the refrigerating cycle circuit side.
 以上説明したように、実施の形態1のスクリュー圧縮機1の油分離器3は、副流入管16bを有している。副流入管16bの内部に形成された副流路50aの断面積は、主流入管16の内部に形成された主流路50の断面積よりも小さい。このため、油分離空間23では、主流入管16からに流入する主流Sに対して、主流Sよりも速い速度で副流入管16bから油分離空間23に流入する副流Saが合流する。よって、主流Sが鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。これにより、スクリュー圧縮機1は、遠心分離の効果が低下することを抑制し、油分離性能を向上させることができる。 As described above, the oil separator 3 of the screw compressor 1 of Embodiment 1 has the secondary inflow pipe 16b. The cross-sectional area of the sub-channel 50 a formed inside the sub-inflow pipe 16 b is smaller than the cross-sectional area of the main channel 50 formed inside the main in-flow pipe 16 . Therefore, in the oil separation space 23, the main stream S flowing from the main inflow pipe 16 joins with the side stream Sa flowing into the oil separation space 23 from the sub-inflow pipe 16b at a faster speed than the main flow S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed. Thereby, screw compressor 1 can control that the effect of centrifugal separation falls, and can improve oil separation performance.
 また、概して、スクリュー圧縮機1から吐出された冷凍機油が冷凍サイクル回路においてスクリュー圧縮機1の下流側に吐出された場合、凝縮器及び蒸発器での熱交換に悪影響を及ぼし、性能低下の要因となる。これに対して、本実施の形態1のスクリュー圧縮機1では、副流入口24aから流入した副流Saによって、油分離器3を旋回する流体が速い速度を維持しているため、流体にかかる遠心力が大きくなり、油分離性能が向上する。したがって、本実施の形態1では、冷凍サイクル回路においてスクリュー圧縮機1の下流側に吐出される冷凍機油が減少するため、凝縮器及び蒸発器での熱交換性能が低下し難い。 In general, when the refrigerating machine oil discharged from the screw compressor 1 is discharged to the downstream side of the screw compressor 1 in the refrigeration cycle circuit, it adversely affects the heat exchange in the condenser and the evaporator, which is a factor of performance deterioration. becomes. On the other hand, in the screw compressor 1 of Embodiment 1, the fluid swirling in the oil separator 3 maintains a high speed due to the secondary flow Sa that flows in from the secondary inlet 24a. The centrifugal force increases and the oil separation performance improves. Therefore, in Embodiment 1, the amount of refrigerating machine oil discharged to the downstream side of the screw compressor 1 in the refrigerating cycle circuit is reduced, so the heat exchange performance of the condenser and the evaporator is less likely to deteriorate.
 また、本実施の形態1では、油分離器3の主流入管16、副流入管16a、外筒部21、及び油貯留部18は、鋳造される。したがって、他の部品を追加して、溶接したり、ボルトなどによって締結したりする必要がない。 Further, in Embodiment 1, the main inflow pipe 16, the subinflow pipe 16a, the outer cylindrical portion 21, and the oil reservoir 18 of the oil separator 3 are cast. Therefore, there is no need to add other parts to be welded or fastened with bolts or the like.
 また、概して、副流入口24aが内筒部22の下端より下方に形成されていた場合、油分離空間23の大部分において、主流Sの旋回速度が低下した状態となってしまう。つまり、副流Saを導入することによる油分離性能の向上をさせる効果が高くは望めない。これに対して、本実施の形態1では、副流入口24aは、内筒部22の下端より上方に形成されている。このため、油分離空間23の大部分において、主流Sの旋回速度を維持することができる。 Also, in general, if the secondary inlet 24a is formed below the lower end of the inner cylindrical portion 22, the swirling speed of the main stream S is reduced in most of the oil separation space 23. In other words, the effect of improving the oil separation performance by introducing the side stream Sa cannot be expected to be high. In contrast, in Embodiment 1, the secondary inlet 24 a is formed above the lower end of the inner tubular portion 22 . Therefore, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
 また、近年の環境規制の高まりから、低GWP冷媒に注目が集まっているが、低GWP冷媒は密度が小さいために冷凍能力が小さくなりやすい。このため、スクリュー圧縮機には、インバータによって運転周波数を高める技術が採用される。これに伴い、サイクロン式油分離器による油分離方式が有用となる。サイクロン式油分離器では、一般に、油分離空間23内に流入した流体が鉛直方向に広がることを追加の板状部品で抑制し、旋回速度を高めることが知られている。しかしながら、追加の板状部品を油分離器に設ける場合、設置のために溶接等の作業が必要となることがある。また、溶接に対応する追加の板状部品を選定する上で、部品価格が高価になってしまう。これに対して、実施の形態1では、追加の板状部品等を必要としないため、コストを削減することができる。 In addition, due to the recent heightening of environmental regulations, low-GWP refrigerants are attracting attention, but low-GWP refrigerants tend to have low refrigerating capacity due to their low density. For this reason, screw compressors employ a technique of increasing the operating frequency using an inverter. Along with this, an oil separation method using a cyclone oil separator is useful. In a cyclone-type oil separator, it is generally known that an additional plate-like member is used to suppress the vertical spread of the fluid that has flowed into the oil separation space 23, thereby increasing the turning speed. However, when an additional plate-shaped part is provided in the oil separator, work such as welding may be required for installation. In addition, when selecting additional plate-shaped parts corresponding to welding, the part price becomes expensive. On the other hand, in Embodiment 1, since an additional plate-like component or the like is not required, the cost can be reduced.
実施の形態2.
 図3は、実施の形態2に係る油分離器3Aを示す断面模式図である。図3は、スクリュー圧縮機1Aの油分離器3Aを左右方向に切断した断面を示している。図3は、スクリュー圧縮機1Aの油分離器3Aを図1のZ-Z断面に相当する位置で切断した断面に相当する。実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 3 is a schematic cross-sectional view showing an oil separator 3A according to Embodiment 2. FIG. FIG. 3 shows a cross section obtained by cutting the oil separator 3A of the screw compressor 1A in the horizontal direction. FIG. 3 corresponds to a cross section of the oil separator 3A of the screw compressor 1A cut at a position corresponding to the ZZ cross section of FIG. In the second embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態2の油分離器3Aは、図3に示すように、主流入管16及び副流入管16bを有する。主流入管16と副流入管16bとは、それぞれ異なる管である。実施の形態2の油分離器3Aは、実施の形態1の副流入管16aを有しない。主流入管16は、ケーシング4と油分離部17とに接続されている。副流入管16bは、ケーシング4と油分離部17とに接続されている。副流入管16bは、略水平に延びている。副流入管16bは、圧縮機本体2の吐出室12から吐出された流体を油分離部17の内部に流入させる。副流入管16bの内部には、副流路50bが形成されている。なお、以下の説明において、副流路50bを通り油分離空間23に流れる流体の流れを副流Sbと称することがある。 The oil separator 3A of Embodiment 2 has a main inflow pipe 16 and a sub-inflow pipe 16b, as shown in FIG. The main inflow pipe 16 and the subinflow pipe 16b are different pipes. The oil separator 3A of the second embodiment does not have the secondary inflow pipe 16a of the first embodiment. The main inflow pipe 16 is connected to the casing 4 and the oil separator 17 . The secondary inflow pipe 16b is connected to the casing 4 and the oil separator 17. As shown in FIG. The secondary inflow pipe 16b extends substantially horizontally. The secondary inflow pipe 16b allows the fluid discharged from the discharge chamber 12 of the compressor body 2 to flow into the oil separating portion 17. As shown in FIG. A secondary channel 50b is formed inside the secondary inflow pipe 16b. In the following description, the flow of fluid that flows through the secondary flow path 50b and into the oil separation space 23 may be referred to as a secondary flow Sb.
 副流入管16bは、副流入管16bの内面が副流入口24bを介して外筒部21の内面に連続するようにして、外筒部21に接続している。換言すると、副流入管16bの内面は、外筒部21の内面の接線方向に延びている。副流入口24bは、主流入口24よりも下方、且つ内筒部22の下端より上方に設けられている。また、副流入口24bは、油分離器3Aを上面視した際に、副流Sbが半時計回りになる位置に設けられている。つまり、主流Sと副流Sbとは、同一の回転方向となる。なお、主流Sと副流Sbとが同一の回転方向となれば、主流入口24及び副流入口24bは、主流S及び副流Sbが時計回りになるように外筒部21に形成されていてもよい。副流路50bは、主流路50よりも断面積が小さい。よって、副流Sbは、主流Sよりも速度が速い。 The sub-inflow pipe 16b is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16b is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24b. In other words, the inner surface of the secondary inflow pipe 16b extends tangentially to the inner surface of the outer cylindrical portion 21 . The secondary inlet 24 b is provided below the main inlet 24 and above the lower end of the inner cylinder portion 22 . The secondary inlet 24b is provided at a position where the secondary flow Sb rotates counterclockwise when the oil separator 3A is viewed from above. In other words, the main stream S and the side stream Sb rotate in the same direction. If the main stream S and the side stream Sb rotate in the same direction, the main inlet 24 and the secondary inlet 24b are formed in the outer cylindrical portion 21 so that the main stream S and the side stream Sb rotate clockwise. good too. The sub-channel 50 b has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sb is faster than the main stream S.
 実施の形態2のスクリュー圧縮機1Aが動作した場合、吐出室12から主流入管16と、副流入管16bとに流体が流出する。主流入管16の主流路50を流れる主流Sは、外筒部21に形成された主流入口24を通り、外筒部21の内部に流入する。副流入管16bの副流路50bを流れる副流Sbは、副流入口24bを通り、外筒部21の内部に流入する。この際に、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sbが合流する。つまり、油分離空間23では、主流入口24から流入した比較的速度が遅い流体と副流入口24bから流入した比較的速度が速い流体とが混在する。主流Sは、より速度が速い副流Sbによって、鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。したがって、油分離空間23内の流体は速い旋回速度を維持するため、遠心分離の効果が低下することが抑制されている。 When the screw compressor 1A of Embodiment 2 operates, fluid flows out from the discharge chamber 12 to the main inflow pipe 16 and the auxiliary inflow pipe 16b. The main flow S flowing through the main flow path 50 of the main inflow pipe 16 passes through the main flow inlet 24 formed in the outer cylindrical portion 21 and flows into the outer cylindrical portion 21 . The secondary flow Sb flowing through the secondary flow path 50b of the secondary inflow pipe 16b flows into the outer cylindrical portion 21 through the secondary inlet 24b. At this time, in the oil separation space 23, the main stream S is joined with the side stream Sb that flows at a faster speed than the main stream S. That is, in the oil separation space 23, the fluid flowing in from the main inlet 24 with a relatively slow velocity and the fluid flowing in from the secondary inlet 24b with a relatively high velocity are mixed. The main stream S spreads in the vertical direction by the side stream Sb, which has a higher speed, and the reduction in the swirl speed of the main stream S is suppressed. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
 以上説明したように、実施の形態2のスクリュー圧縮機1Aの油分離器3Aは、副流入管16bを有している。副流入管16bの内部に形成された副流路50bは、主流入管16の主流路50の断面積よりも小さい。このため、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sbが合流する。よって、主流Sが鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。これにより、実施の形態2のスクリュー圧縮機1Aは、実施の形態1のスクリュー圧縮機1と同様に、遠心分離の効果が低下することを抑制し、油分離性能を向上させることができる。 As described above, the oil separator 3A of the screw compressor 1A of Embodiment 2 has the secondary inflow pipe 16b. A secondary flow channel 50 b formed inside the secondary inflow pipe 16 b has a smaller cross-sectional area than the main flow channel 50 of the main inflow pipe 16 . Therefore, in the oil separation space 23, the main stream S is joined with the side stream Sb that flows at a faster speed than the main stream S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed. Thereby, screw compressor 1A of Embodiment 2 can control that the effect of centrifugal separation falls like screw compressor 1 of Embodiment 1, and can improve oil separation performance.
 また、本実施の形態2では、副流入口24bは、内筒部22の下端より上方に形成されている。このため、実施の形態1と同様に、油分離空間23の大部分において、主流Sの旋回速度を維持することができる。 Further, in Embodiment 2, the secondary inlet 24b is formed above the lower end of the inner cylindrical portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
実施の形態3.
 図4は、実施の形態3に係る油分離器3Bを示す断面模式図である。図4は、スクリュー圧縮機1Bの油分離器3Bを左右方向に切断した断面を示している。図4は、スクリュー圧縮機1Bの油分離器3Bを図1のZ-Z断面に相当する位置で切断した断面に相当する。本実施の形態3では、実施の形態1及び実施の形態2と同一の部分は同一の符合を付して説明を省略し、実施の形態1及び実施の形態2との相違点を中心に説明する。
Embodiment 3.
FIG. 4 is a schematic cross-sectional view showing an oil separator 3B according to Embodiment 3. As shown in FIG. FIG. 4 shows a horizontal cross section of the oil separator 3B of the screw compressor 1B. FIG. 4 corresponds to a cross section obtained by cutting the oil separator 3B of the screw compressor 1B at a position corresponding to the ZZ cross section of FIG. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is omitted, and the description focuses on the differences from the first and second embodiments. do.
 実施の形態3の油分離器3Bは、図4に示すように、主流入管16、副流入管16a、副流入管16b及び副流入管16cを有する。主流入管16と、副流入管16aと、副流入管16bと、副流入管16cとは、それぞれ異なる管である。主流入管16は、実施の形態1と同様に、ケーシング4と油分離部17とに接続されている。副流入管16aは、実施の形態1と同様に、主流入管16から鉛直下方に分岐し、油分離器3側に曲折して、油分離部17に接続されている。副流入管16bは、実施の形態2と同様に、ケーシング4と油分離部17とに接続されている。 As shown in FIG. 4, the oil separator 3B of Embodiment 3 has a main inflow pipe 16, a sub-inflow pipe 16a, a sub-inflow pipe 16b and a sub-inflow pipe 16c. The main inflow pipe 16, the sub-inflow pipe 16a, the sub-inflow pipe 16b, and the sub-inflow pipe 16c are different pipes. The main inflow pipe 16 is connected to the casing 4 and the oil separator 17, as in the first embodiment. The auxiliary inflow pipe 16 a branches vertically downward from the main inflow pipe 16 , bends toward the oil separator 3 side, and is connected to the oil separator 17 , as in the first embodiment. The secondary inflow pipe 16b is connected to the casing 4 and the oil separator 17, as in the second embodiment.
 副流入管16cは、主流入管16から油分離器3Bの外側に向かって分岐し、主流入管16及び外筒部21の外面に沿うように延びて、油分離部17に接続されている。副流入管16cは、圧縮機本体2の吐出室12から吐出された流体のうち、主流入管16から分流した一部の流体を油分離部17の内部に流入させるものである。副流入管16cは、略水平に延びている。副流入管16cの内部には、副流路50cが形成されている。副流路50cは、主流路50から分岐している。なお、以下の説明において、副流路50cを通り油分離空間23に流れる流体の流れを副流Scと称することがある。 The auxiliary inflow pipe 16c branches from the main inflow pipe 16 toward the outside of the oil separator 3B, extends along the outer surfaces of the main inflow pipe 16 and the outer cylindrical portion 21, and is connected to the oil separation portion 17. The sub-inflow pipe 16 c causes part of the fluid discharged from the discharge chamber 12 of the compressor body 2 , which is branched from the main in-flow pipe 16 , to flow into the oil separator 17 . The secondary inflow pipe 16c extends substantially horizontally. A secondary channel 50c is formed inside the secondary inflow pipe 16c. The secondary flow path 50 c branches off from the main flow path 50 . In the following description, the flow of fluid that flows through the secondary flow path 50c and into the oil separation space 23 may be referred to as a secondary flow Sc.
 副流入管16cは、副流入管16cの内面が副流入口24cを介して外筒部21の内面に連続するようにして、外筒部21に接続している。換言すると、副流入管16cの内面は、外筒部21の内面の接線方向に延びている。副流入口24cは、主流入口24よりも下方、且つ内筒部22の下端より上方に設けられている。また、副流入口24cは、油分離器3を上面視した際に、副流Scが半時計回りになる位置に設けられている。つまり、主流Sと副流Saと副流Sbと副流Scとは、同一の回転方向となる。なお、主流Sと副流Saと副流Sbと副流Scとが同一の回転方向となれば、主流入口24、副流入口24a、副流入口24b及び副流入口24cは、主流S、副流Sa、副流Sb及び副流Scが時計回りになるように外筒部21に形成されていてもよい。副流路50cは、主流路50よりも断面積が小さい。よって、副流Scは、主流Sよりも速度が速い。 The sub-inflow pipe 16c is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16c is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24c. In other words, the inner surface of the secondary inflow pipe 16c extends tangentially to the inner surface of the outer cylindrical portion 21 . The secondary inlet 24 c is provided below the main inlet 24 and above the lower end of the inner tubular portion 22 . Further, the secondary inlet 24c is provided at a position where the secondary flow Sc rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S, the side stream Sa, the side stream Sb, and the side stream Sc rotate in the same direction. Note that if the main stream S, the side stream Sa, the side stream Sb, and the side stream Sc rotate in the same direction, the main inlet 24, the secondary inlet 24a, the secondary inlet 24b, and the secondary inlet 24c are configured to rotate the main stream S and the secondary inlet 24c. The flow Sa, the side flow Sb, and the side flow Sc may be formed in the outer cylindrical portion 21 so as to rotate clockwise. The sub-channel 50 c has a smaller cross-sectional area than the main channel 50 . Therefore, the side stream Sc has a higher velocity than the main stream S.
 実施の形態3のスクリュー圧縮機1Bが動作した場合、吐出室12から主流入管16と、副流入管16bとに流体が流出する。主流入管16を流れる流体は、主流入管16の主流路50をそのまま流れる主流Sと、副流入管16aの内部に形成された副流路50aを流れる副流Saと、副流入管16cの内部に形成された副流路50cを流れる副流Scとに分岐する。主流入管16の主流路50を流れる主流Sは、外筒部21に形成された主流入口24を通り、外筒部21の内部に流入する。 When the screw compressor 1B of Embodiment 3 operates, fluid flows out from the discharge chamber 12 to the main inflow pipe 16 and the auxiliary inflow pipe 16b. The fluid flowing through the main inflow pipe 16 consists of a main flow S flowing as it is in the main flow channel 50 of the main inflow pipe 16, a sub flow Sa flowing through the sub flow channel 50a formed inside the sub inflow pipe 16a, and a sub flow Sa flowing through the sub flow channel 50a formed inside the sub inflow pipe 16c. It branches into a sub-flow Sc flowing through the formed sub-flow path 50c. The main flow S flowing through the main flow path 50 of the main inflow pipe 16 passes through the main flow inlet 24 formed in the outer cylindrical portion 21 and flows into the outer cylindrical portion 21 .
 副流Saは、副流入口24aを通り、外筒部21の内部に流入する。副流Sbは、副流入口24bを通り、外筒部21の内部に流入する。副流Scは、副流入口24cを通り、外筒部21の内部に流入する。この際に、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sa、副流Sb及び副流Scが合流する。つまり、油分離空間23では、主流入口24から流入した比較的速度が遅い流体と副流入口24a、副流入口24b及び副流入口24cから流入した比較的速度が速い流体とが混在する。主流Sは、より速度が速い副流Sa、副流Sb及び副流Scによって、鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。したがって、油分離空間23内の流体は速い旋回速度を維持するため、遠心分離の効果が低下することが抑制されている。 The secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a. The secondary flow Sb flows into the outer cylindrical portion 21 through the secondary inlet 24b. The secondary flow Sc flows into the outer cylindrical portion 21 through the secondary inlet 24c. At this time, in the oil separation space 23, the main stream S is joined with the substreams Sa, Sb, and Sc, which flow at a faster speed than the main stream S. In other words, in the oil separation space 23, a relatively slow fluid flowing from the main inlet 24 and a relatively fast fluid flowing from the secondary inlets 24a, 24b, and 24c coexist. The main stream S spreads in the vertical direction due to the higher-speed substreams Sa, Sb, and Sc, thereby suppressing the swirl speed of the main stream S from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
 以上説明したように、実施の形態3のスクリュー圧縮機1Bの油分離器3Bは、副流入管16a、副流入管16b及び副流入管16cを有している。副流入管16a、副流入管16b及び副流入管16cの内部に形成された副流路50a、副流路50b及び副流路50cの断面積は、主流入管16の主流路50の断面積よりも小さい。このため、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sa、副流Sb及び副流Scが合流する。よって、主流Sが鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。これにより、実施の形態3のスクリュー圧縮機1Bは、実施の形態1のスクリュー圧縮機1と同様に、遠心分離の効果が低下することを抑制し、油分離性能を向上させることができる。 As described above, the oil separator 3B of the screw compressor 1B of Embodiment 3 has the secondary inflow pipe 16a, the secondary inflow pipe 16b, and the secondary inflow pipe 16c. The cross-sectional areas of the sub-channels 50a, 50b, and 50c formed inside the sub-inflow pipes 16a, 16b, and 16c are larger than the cross-sectional area of the main flow channel 50 of the main inflow pipe 16. is also small. Therefore, in the oil separation space 23, the main flow S is joined with the subflows Sa, Sb, and Sc, which flow at a higher speed than the main flow S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed. As a result, the screw compressor 1B of the third embodiment, like the screw compressor 1 of the first embodiment, can suppress the deterioration of the centrifugal separation effect and improve the oil separation performance.
 また、本実施の形態3では、副流入口24cは、内筒部22の下端より上方に形成されている。このため、実施の形態1と同様に、油分離空間23の大部分において、主流Sの旋回速度を維持することができる。 Further, in Embodiment 3, the secondary inlet 24c is formed above the lower end of the inner cylindrical portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
実施の形態4.
 図5は、実施の形態4に係るスクリュー圧縮機1Cを示す断面模式図である。図5は、スクリュー圧縮機1Cを上下方向に切断した断面を示している。本実施の形態3では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4.
FIG. 5 is a cross-sectional schematic diagram showing a screw compressor 1C according to Embodiment 4. As shown in FIG. FIG. 5 shows a vertical cross section of the screw compressor 1C. In the third embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 実施の形態4の油分離器3Cは、図5に示すように、主流入管16、副流入管16a及び副流入管16dを有している。主流入管16と、副流入管16aと、副流入管16dとは、それぞれ異なる管である。主流入管16は、実施の形態1と同様に、ケーシング4と油分離部17とに接続されている。副流入管16aは、実施の形態1と同様に、主流入管16から鉛直下方に分岐し、油分離部17側、即ち図5のY側に曲折して、油分離部17に接続されている。 As shown in FIG. 5, the oil separator 3C of Embodiment 4 has a main inflow pipe 16, a sub-inflow pipe 16a and a sub-inflow pipe 16d. The main inflow pipe 16, the secondary inflow pipe 16a, and the secondary inflow pipe 16d are different pipes. The main inflow pipe 16 is connected to the casing 4 and the oil separator 17, as in the first embodiment. As in the first embodiment, the auxiliary inflow pipe 16a branches vertically downward from the main inflow pipe 16, bends toward the oil separation section 17 side, that is, toward Y in FIG. 5, and is connected to the oil separation section 17. .
 副流入管16dは、副流入管16aの曲折部分から鉛直下方に分岐し、更に油分離部17側、即ち図5のY側に曲折して、油分離部17に接続されている。つまり、副流入管16dは、副流入管16aとの分岐部分、即ち副流入管16aの曲折部分から自身の曲折部分までの管軸が上下に延びる部分、及び自身の曲折部分から油分離部17までの管軸が左右方向に延びる部分からなる。副流入管16dの管軸が左右方向に延びる部分は、主流入管16及び副流入管16aと略平行に設けられている。即ち、副流入管16dは、略水平に延びている。副流入管16dは、圧縮機本体2の吐出室12から吐出され、主流入管16から分流した一部の流体のうち、更に副流入管16aから分流した一部の流体を油分離部17の内部に流入させるものである。副流入管16dの内部には、副流路50dが形成されている。副流路50dは、副流路50aから分岐している。なお、以下の説明において、副流路50dを通り油分離空間23に流れる流体の流れを副流Sdと称することがある。 The sub-inflow pipe 16d branches vertically downward from the bent portion of the sub-inflow pipe 16a, further bends toward the oil separation section 17 side, that is, the Y side in FIG. That is, the sub-inflow pipe 16d has a branched portion with the sub-inflow pipe 16a, that is, a portion where the pipe axis extends vertically from the bent portion of the sub-inflow pipe 16a to its own bent portion, and from the bent portion to the oil separation portion 17. It consists of a portion where the tube axis up to extends in the left-right direction. A portion of the sub-inflow pipe 16d where the pipe axis extends in the left-right direction is provided substantially parallel to the main inflow pipe 16 and the sub-inflow pipe 16a. That is, the secondary inflow pipe 16d extends substantially horizontally. The sub-inflow pipe 16 d is discharged from the discharge chamber 12 of the compressor body 2 and diverted from the main in-flow pipe 16 . It is intended to flow into A secondary channel 50d is formed inside the secondary inflow pipe 16d. The sub-channel 50d is branched from the sub-channel 50a. In the following description, the flow of fluid that flows through the secondary flow path 50d and into the oil separation space 23 may be referred to as a secondary flow Sd.
 副流入管16dは、副流入管16dの内面が副流入口24dを介して外筒部21の内面に連続するようにして、外筒部21に接続している。換言すると、副流入管16dの内面は、外筒部21の内面の接線方向に延びている。副流入口24dは、外筒部21において、主流入口24及び副流入口24aよりも鉛直下方、且つ内筒部22の下端より上方に設けられている。また、副流入口24dは、油分離器3を上面視した際に、副流入口24aと位置が重なる。また、副流入口24dは、油分離器3を上面視した際に、副流Sdが半時計回りになる位置に設けられている。つまり、主流Sと副流Saと副流Sdとは、同一の回転方向となる。なお、主流Sと副流Saと副流Sdとが同一の回転方向となれば、主流入口24、副流入口24a及び副流入口24dは、主流S、副流Sa及び副流Sdが時計回りになるように外筒部21に形成されていてもよい。副流路50dは、主流路50よりも断面積が小さい。よって、副流Sdは、主流Sよりも速度が速い。 The sub-inflow pipe 16d is connected to the outer cylinder portion 21 so that the inner surface of the sub-inflow pipe 16d is continuous with the inner surface of the outer cylinder portion 21 via the sub-inflow port 24d. In other words, the inner surface of the secondary inflow pipe 16 d extends tangentially to the inner surface of the outer cylindrical portion 21 . The secondary inlet 24 d is provided in the outer tubular portion 21 vertically below the main inlet 24 and the secondary inlet 24 a and above the lower end of the inner tubular portion 22 . In addition, when the oil separator 3 is viewed from above, the secondary inlet 24d overlaps the secondary inlet 24a. The secondary inlet 24d is provided at a position where the secondary flow Sd rotates counterclockwise when the oil separator 3 is viewed from above. That is, the main stream S, the side stream Sa, and the side stream Sd rotate in the same direction. If the main stream S, the side stream Sa, and the side stream Sd rotate in the same direction, the main stream S, the side stream Sa, and the side stream Sd rotate clockwise at the main inlet 24, the side inlet 24a, and the side inlet 24d. It may be formed in the outer cylindrical portion 21 so as to be The secondary flow path 50d has a smaller cross-sectional area than the main flow path 50 . Therefore, the side stream Sd is faster than the main stream S.
 実施の形態4のスクリュー圧縮機1Cが動作した場合、吐出室12から主流入管16に流体が流出する。主流入管16を流れる流体は、主流入管16の主流路50をそのまま流れる主流Sと、副流入管16aの内部に形成された副流路50aを流れる副流Saとに分岐する。主流入管16の主流路50を流れる主流Sは、外筒部21に形成された主流入口24を通り、外筒部21の内部に流入する。 When the screw compressor 1C of Embodiment 4 operates, the fluid flows out from the discharge chamber 12 to the main inflow pipe 16. The fluid flowing through the main inflow pipe 16 branches into a main flow S that flows directly through the main channel 50 of the main inflow pipe 16 and a subflow Sa that flows through a subflow channel 50a formed inside the subinflow pipe 16a. The main flow S flowing through the main flow path 50 of the main inflow pipe 16 passes through the main flow inlet 24 formed in the outer cylindrical portion 21 and flows into the outer cylindrical portion 21 .
 副流入管16aの副流路50aを流れる流体は、そのまま副流路50aを流れる副流Saと、副流入管16dの内部に形成された副流路50dを流れる副流Sdとに更に分岐する。副流Saは、副流入口24aを通り、外筒部21の内部に流入する。副流Sdは、副流入口24dを通り、外筒部21の内部に流入する。この際に、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sa及び副流Sdが合流する。つまり、油分離空間23では、主流入口24から流入した比較的速度が遅い流体と副流入口24a及び副流入口24dから流入した比較的速度が速い流体とが混在する。これにより、主流Sは、より速度が速い副流Sa及び副流Sdによって、鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。したがって、油分離空間23内の流体は速い旋回速度を維持するため、遠心分離の効果が低下することが抑制されている。 The fluid flowing through the sub-channel 50a of the sub-inflow pipe 16a is further divided into a sub-flow Sa that flows directly through the sub-flow channel 50a and a sub-flow Sd that flows through the sub-flow channel 50d formed inside the sub-inflow pipe 16d. . The secondary flow Sa flows into the outer cylindrical portion 21 through the secondary inlet 24a. The secondary flow Sd flows into the outer cylindrical portion 21 through the secondary inlet 24d. At this time, in the oil separation space 23, the main flow S is joined with the side flow Sa and the side flow Sd, which flow at a faster speed than the main flow S. That is, in the oil separation space 23, the fluid flowing in from the main inlet 24 with a relatively low speed and the fluid flowing in from the secondary inlets 24a and 24d with a relatively high speed coexist. As a result, the main stream S spreads in the vertical direction due to the faster side streams Sa and Sd, thereby suppressing the swirling speed of the main stream S from decreasing. Therefore, the fluid in the oil separation space 23 maintains a high swirling speed, thereby suppressing a decrease in the centrifugal separation effect.
 以上説明したように、実施の形態4のスクリュー圧縮機1Cの油分離器3Cは、副流入管16a及び副流入管16dを有している。副流入管16a及び副流入管16dの内部に形成された副流路50a及び副流路50dの断面積は、主流入管16の主流路50の断面積よりも小さい。このため、油分離空間23では、主流Sに対して、主流Sよりも速い速度で流れる副流Sa及び副流Sdが合流する。よって、主流Sが鉛直方向に広がり、主流Sの旋回速度が低下することが抑制されている。これにより、実施の形態4のスクリュー圧縮機1Cは、実施の形態1のスクリュー圧縮機1と同様に、遠心分離の効果が低下することを抑制し、油分離性能を向上させることができる。 As described above, the oil separator 3C of the screw compressor 1C of Embodiment 4 has the secondary inflow pipe 16a and the secondary inflow pipe 16d. The cross-sectional areas of the sub-channels 50 a and 50 d formed inside the sub-inflow pipes 16 a and 16 d are smaller than the cross-sectional area of the main flow channel 50 of the main inflow pipe 16 . Therefore, in the oil separation space 23, the main stream S is joined with the side stream Sa and the side stream Sd that flow at a faster speed than the main stream S. Therefore, the main stream S spreads in the vertical direction, and the decrease in the turning speed of the main stream S is suppressed. As a result, the screw compressor 1C of the fourth embodiment, like the screw compressor 1 of the first embodiment, can suppress a decrease in the centrifugal separation effect and improve the oil separation performance.
 また、本実施の形態4では、副流入口24dは、内筒部22の下端より上方に形成されている。このため、実施の形態1と同様に、油分離空間23の大部分において、主流Sの旋回速度を維持することができる。 Further, in Embodiment 4, the secondary inlet 24d is formed above the lower end of the inner tubular portion 22. As shown in FIG. Therefore, as in the first embodiment, the swirl speed of the main stream S can be maintained in most of the oil separation space 23 .
 以上が本開示の実施の形態の説明であるが、上記の実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形又は組み合わせが可能である。例えば、実施の形態3の副流入管16cのみを設けるようにしてもよい。また、実施の形態3の副流入管16a、副流入管16b及び副流入管16cを有する油分離器3Bに、実施の形態4の副流入管16dを追加してもよい。 The above is the description of the embodiment of the present disclosure, but it is not limited to the configuration of the above embodiment, and various modifications or combinations are possible within the scope of the technical idea. For example, only the auxiliary inflow pipe 16c of the third embodiment may be provided. Further, the secondary inflow pipe 16d of the fourth embodiment may be added to the oil separator 3B having the secondary inflow pipes 16a, 16b and 16c of the third embodiment.
 また、実施の形態4の油分離器3Cにおいて、副流入管16dから更に鉛直方向に下方に分岐する別の副流入管を追加するようにしてもよい。 Further, in the oil separator 3C of Embodiment 4, another sub-inflow pipe branching downward in the vertical direction may be added from the sub-inflow pipe 16d.
 また、各実施の形態において、主流入口24、副流入口24a、副流入口24b、副流入口24c及び副流入口24dの形成位置は、主流Sとそれぞれの副流との旋回方向が同一になる範囲で適宜調整するようにしてもよい。例えば、副流入口24a、副流入口24b、副流入口24c及び副流入口24dの形成位置を内筒部22の下端より下方にしてもよい。この場合も、主流Sは、より速度が速い副流Sa、副流Sb、副流Sc又は副流Sdによって、鉛直方向に広がり、主流Sの旋回速度が低下することを抑制することができる。なお、主流入口24、副流入口24a、副流入口24b、副流入口24c及び副流入口24dの形成位置を上下方向にずらすことが望ましい。これにより、油分離空間23において、流体がスムーズに合流し、合流時に流体の速度が低下することが抑制される。 Further, in each embodiment, the main inlet 24, the secondary inlet 24a, the secondary inlet 24b, the secondary inlet 24c, and the secondary inlet 24d are formed such that the main flow S and the respective secondary flows have the same swirl direction. You may make it adjust suitably in a certain range. For example, the secondary inlet 24 a , secondary inlet 24 b , secondary inlet 24 c , and secondary inlet 24 d may be formed below the lower end of the inner tubular portion 22 . In this case as well, the main stream S spreads in the vertical direction due to the higher velocity side stream Sa, side stream Sb, side stream Sc, or side stream Sd, and the decrease in the swirling speed of the main stream S can be suppressed. In addition, it is desirable to vertically shift the formation positions of the main inlet 24, the secondary inlet 24a, the secondary inlet 24b, the secondary inlet 24c, and the secondary inlet 24d. As a result, the fluids smoothly merge in the oil separation space 23, and a decrease in the speed of the fluids at the time of merging is suppressed.
 以上のように、各実施の形態において、副流路から油分離空間23に流入する流体の流入位置及び経路の数等を任意に設定することができる。これにより、スクリュー圧縮機1の全体的な設計を考慮した上で、油分離空間23に流入した流体に対する遠心分離の効果が低下することが抑制される効果的な形態を採用し、油分離性能を向上させることができる。 As described above, in each embodiment, the inflow position of the fluid flowing into the oil separation space 23 from the sub-flow path, the number of paths, etc. can be arbitrarily set. As a result, in consideration of the overall design of the screw compressor 1, an effective form that suppresses the decrease in the effect of centrifugal separation on the fluid that has flowed into the oil separation space 23 is adopted, and the oil separation performance can be improved.
 また、流体の遠心分離に必要な旋回流路の長さを決定する油分離部17の鉛直方向長さ及び直径等を短くして、油分離器3をコンパクトに設計した場合であっても、油分離性能が向上しているため、従来の油分離器と同等の油分離性能を維持することができる。よって、スクリュー圧縮機1の油分離性能を維持しつつ、小型化及び軽量化することができる。 In addition, even when the oil separator 3 is designed to be compact by shortening the vertical length, diameter, etc. of the oil separator 17 that determines the length of the swirl flow path necessary for centrifugal separation of the fluid, Since the oil separation performance is improved, it is possible to maintain the same oil separation performance as the conventional oil separator. Therefore, it is possible to reduce the size and weight while maintaining the oil separation performance of the screw compressor 1 .
 また、各実施の形態において、副流路50a、副流路50b、副流路50c、又は副流路50dの断面積は、一定ではなく、上流から下流に向けて徐々に小さくするようにしてもよい。これにより、流体がより副流入管に流入しやすく、速い流速の副流を油分離空間に導入することができる。 Further, in each embodiment, the cross-sectional area of the sub-channel 50a, the sub-channel 50b, the sub-channel 50c, or the sub-channel 50d is not constant, but gradually decreases from upstream to downstream. good too. This makes it easier for the fluid to flow into the sub-inflow pipe, so that a high-velocity sub-flow can be introduced into the oil separation space.
 また、実施の形態1において、主流入管16から鉛直下方に向けて分岐している副流入管16aは、副流路50aの分岐部分の断面積を、他の部分、特に副流入口24aの面積よりも大きくしてもよい。さらに、副流入管16aは、主流入管16から鉛直下方ではなく、主流入管16との相対角度が鋭角になるように、斜め下側に向かって滑らかに分岐していてもよい。これにより、主流入管16から副流入管16aへ流体を流れやすくすることができる。 Further, in Embodiment 1, the sub-inflow pipe 16a that branches vertically downward from the main inflow pipe 16 has a cross-sectional area of the branched portion of the sub-flow passage 50a that is the area of other portions, especially the sub-inflow port 24a. may be larger than Further, the secondary inflow pipe 16a may branch smoothly obliquely downward from the main inflow pipe 16 so as to form an acute relative angle with the main inflow pipe 16 instead of vertically downward. This makes it easier for the fluid to flow from the main inflow pipe 16 to the auxiliary inflow pipe 16a.
 また、各実施の形態において、主流入管16、副流入管16a、副流入管16b、副流入管16c及び副流入管16dは、略水平に延びている場合を説明していた。しかしながら、主流入管16、副流入管16a、副流入管16b、副流入管16c及び副流入管16dは、上向き又は下向きに延びていてもよい。特に、副流入管16a、副流入管16b、副流入管16c及び副流入管16dは、水平を0°として、0°以上10°以下の範囲で上向きにするとよい。これにより、副流が上向きに油分離空間23に流入し、主流Sが下方に拡がることを抑制することができる。 Also, in each embodiment, the main inflow pipe 16, the subinflow pipe 16a, the subinflow pipe 16b, the subinflow pipe 16c, and the subinflow pipe 16d have been described as extending substantially horizontally. However, the main inflow pipe 16, the subinflow pipe 16a, the subinflow pipe 16b, the subinflow pipe 16c and the subinflow pipe 16d may extend upward or downward. In particular, the sub-inflow pipe 16a, the sub-inflow pipe 16b, the sub-inflow pipe 16c, and the sub-inflow pipe 16d are preferably oriented upward within a range of 0° to 10° with the horizontal being 0°. As a result, it is possible to prevent the secondary flow from flowing upward into the oil separation space 23 and the main stream S from spreading downward.
 1 スクリュー圧縮機、1A スクリュー圧縮機、1B スクリュー圧縮機、1C スクリュー圧縮機、2 圧縮機本体、3 油分離器、3A 油分離器、3B 油分離器、3C 油分離器、4 ケーシング、5 モータ、5a ステータ、5b モータロータ、6 スクリュー軸、7 スクリューロータ、7a スクリュー溝、8 軸受、9 ゲートロータ、9a 歯部、10 スライドバルブ、10a 開口、11 圧縮室、12 吐出室、16 主流入管、16a 副流入管、16b 副流入管、16c 副流入管、16d 副流入管、17 油分離部、18 油貯留部、19 仕切板、20 蓋部、20a 出口、21 外筒部、22 内筒部、23 油分離空間、23a 折り返し空間、24 主流入口、24a 副流入口、24b 副流入口、24c 副流入口、24d 副流入口、25 返油孔、26 逆止弁、50 主流路、50a 副流路、50b 副流路、50c 副流路、50d 副流路。 1 screw compressor, 1A screw compressor, 1B screw compressor, 1C screw compressor, 2 compressor body, 3 oil separator, 3A oil separator, 3B oil separator, 3C oil separator, 4 casing, 5 motor , 5a stator, 5b motor rotor, 6 screw shaft, 7 screw rotor, 7a screw groove, 8 bearing, 9 gate rotor, 9a tooth, 10 slide valve, 10a opening, 11 compression chamber, 12 discharge chamber, 16 main inflow pipe, 16a Sub-inflow pipe, 16b sub-inflow pipe, 16c sub-inflow pipe, 16d sub-inflow pipe, 17 oil separation section, 18 oil storage section, 19 partition plate, 20 lid section, 20a outlet, 21 outer cylinder section, 22 inner cylinder section, 23 oil separation space, 23a return space, 24 main inlet, 24a secondary inlet, 24b secondary inlet, 24c secondary inlet, 24d secondary inlet, 25 oil return hole, 26 check valve, 50 main flow path, 50a secondary flow 50b sub-channel, 50c sub-channel, 50d sub-channel.

Claims (9)

  1.  流体を圧縮する圧縮機本体と、
     前記圧縮機本体から吐出された流体を遠心力によって冷媒ガスと油とに分離するサイクロン式油分離器と、を備え、
     前記サイクロン式油分離器は、
     内部に油分離空間が形成された外筒部と、
     前記外筒部の内側に設けられた内筒部と、
     前記外筒部に接続され、前記圧縮機本体から吐出された流体を前記油分離空間に流入させる主流入管と、
     前記外筒部に接続された前記主流入管と異なる管であって、前記圧縮機本体から吐出された流体を前記油分離空間に流入させる副流入管と、を有しており、
     前記副流入管の内部に形成された副流路の断面積は、前記主流入管の内部に形成された主流路の断面積より小さい
     スクリュー圧縮機。
    a compressor body that compresses a fluid;
    a cyclone oil separator that separates the fluid discharged from the compressor body into refrigerant gas and oil by centrifugal force,
    The cyclone oil separator is
    an outer cylindrical portion having an oil separation space formed therein;
    an inner cylindrical portion provided inside the outer cylindrical portion;
    a main inflow pipe connected to the outer cylindrical portion and allowing fluid discharged from the compressor main body to flow into the oil separation space;
    a sub-inflow pipe that is different from the main inflow pipe connected to the outer cylindrical portion and that allows the fluid discharged from the compressor main body to flow into the oil separation space;
    The cross-sectional area of the sub-flow path formed inside the sub-inflow pipe is smaller than the cross-sectional area of the main flow path formed inside the main inflow pipe.
  2.  前記サイクロン式油分離器は、
     前記副流入管は、前記主流入管よりも前記外筒部の下部に接続している
     請求項1に記載のスクリュー圧縮機。
    The cyclone oil separator is
    The screw compressor according to claim 1, wherein the secondary inflow pipe is connected to a lower portion of the outer cylindrical portion than the main inflow pipe.
  3.  前記副流入管は、前記主流入管から分岐したものである
     請求項1又は2に記載のスクリュー圧縮機。
    The screw compressor according to claim 1 or 2, wherein the secondary inflow pipe is branched from the main inflow pipe.
  4.  前記圧縮機本体は、
     圧縮された流体が吐出される吐出室を有し、
     前記副流入管の前記副流路は、前記吐出室に連通している
     請求項1又は2に記載のスクリュー圧縮機。
    The compressor main body is
    having a discharge chamber into which the compressed fluid is discharged;
    The screw compressor according to claim 1 or 2, wherein the sub-flow path of the sub-inflow pipe communicates with the discharge chamber.
  5.  前記副流入管は、前記主流入管と同一の回転方向に流体を流入させる
     請求項1~4の何れか1項に記載のスクリュー圧縮機。
    The screw compressor according to any one of claims 1 to 4, wherein the secondary inflow pipe allows the fluid to flow in the same rotational direction as the main inflow pipe.
  6.  前記サイクロン式油分離器は、
     複数の前記副流入管を有する
     請求項1~5の何れか1項に記載のスクリュー圧縮機。
    The cyclone oil separator is
    The screw compressor according to any one of claims 1 to 5, comprising a plurality of said secondary inflow pipes.
  7.  複数の前記副流入管のうち、一つの前記副流入管は、他の前記副流入管から分岐したものである
     請求項6に記載のスクリュー圧縮機。
    The screw compressor according to claim 6, wherein one of the plurality of sub-inflow pipes is branched from another sub-inflow pipe.
  8.  前記副流入管は、0°以上10°以下の範囲で上向きに延びている
     請求項1~7の何れか1項に記載のスクリュー圧縮機。
    The screw compressor according to any one of claims 1 to 7, wherein the secondary inflow pipe extends upward within a range of 0° or more and 10° or less.
  9.  前記副流入管は、前記内筒部の下端よりも上方に接続している
     請求項1~8の何れか1項に記載のスクリュー圧縮機。
    The screw compressor according to any one of claims 1 to 8, wherein the secondary inflow pipe is connected above the lower end of the inner cylindrical portion.
PCT/JP2021/023791 2021-06-23 2021-06-23 Screw compressor WO2022269804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023791 WO2022269804A1 (en) 2021-06-23 2021-06-23 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023791 WO2022269804A1 (en) 2021-06-23 2021-06-23 Screw compressor

Publications (1)

Publication Number Publication Date
WO2022269804A1 true WO2022269804A1 (en) 2022-12-29

Family

ID=84545350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023791 WO2022269804A1 (en) 2021-06-23 2021-06-23 Screw compressor

Country Status (1)

Country Link
WO (1) WO2022269804A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105789U (en) * 1986-12-27 1988-07-08
JPH05312438A (en) * 1992-03-09 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
JP2006233860A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Oil separating device, compressor, and air conditioner
JP2008240579A (en) * 2007-03-26 2008-10-09 Hitachi Industrial Equipment Systems Co Ltd Double-screw type air compressor
JP2010016215A (en) * 2008-07-04 2010-01-21 Tokyo Electron Ltd Trap device and reduced pressure-drying apparatus
WO2019146100A1 (en) * 2018-01-29 2019-08-01 三菱電機株式会社 Oil separator, compressor and refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105789U (en) * 1986-12-27 1988-07-08
JPH05312438A (en) * 1992-03-09 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
JP2006233860A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Oil separating device, compressor, and air conditioner
JP2008240579A (en) * 2007-03-26 2008-10-09 Hitachi Industrial Equipment Systems Co Ltd Double-screw type air compressor
JP2010016215A (en) * 2008-07-04 2010-01-21 Tokyo Electron Ltd Trap device and reduced pressure-drying apparatus
WO2019146100A1 (en) * 2018-01-29 2019-08-01 三菱電機株式会社 Oil separator, compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
TWI615551B (en) Screw compressor and chiller unit having the same
JP2008291849A (en) Compressor
JP5104644B2 (en) Compressor
KR102080623B1 (en) Compressor
JP4218373B2 (en) Compressor
JP2006283592A (en) Fluid machine
WO2022269804A1 (en) Screw compressor
US7484945B2 (en) Compressor for refrigerator-freezer having a porous member
JP2003269336A (en) Compressor and oil separator
JP2003083272A (en) Screw compressor
JP2009221960A (en) Compressor
JP6193306B2 (en) Screw compressor and chiller unit including the same
JP4919773B2 (en) Scroll compressor
WO2019146100A1 (en) Oil separator, compressor and refrigeration cycle device
JP2003214344A (en) Gas compressor
JP6762420B2 (en) Screw compressor
JP6385118B2 (en) Rotary compressor
JP2019056322A (en) Compressor
JP2015096781A (en) Oil separator
JP2003106282A (en) Gas compressor
US20020127121A1 (en) Gas compressor
JP5764733B2 (en) Rotary compressor and method for manufacturing the same
JP6710294B2 (en) Compressor and refrigeration cycle device
EP1277963B1 (en) Gas compressor with oil separator element
WO2023074214A1 (en) Compressor and freezer device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947089

Country of ref document: EP

Kind code of ref document: A1