WO2022269749A1 - 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置 - Google Patents

気相中のガス状物質及び粒子状物質の分解方法並びに分解装置 Download PDF

Info

Publication number
WO2022269749A1
WO2022269749A1 PCT/JP2021/023571 JP2021023571W WO2022269749A1 WO 2022269749 A1 WO2022269749 A1 WO 2022269749A1 JP 2021023571 W JP2021023571 W JP 2021023571W WO 2022269749 A1 WO2022269749 A1 WO 2022269749A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
fenton reaction
gas phase
raw material
particulate matter
Prior art date
Application number
PCT/JP2021/023571
Other languages
English (en)
French (fr)
Inventor
信幸 石川
康介 太田
広樹 滝口
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/023571 priority Critical patent/WO2022269749A1/ja
Publication of WO2022269749A1 publication Critical patent/WO2022269749A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption

Definitions

  • the present invention relates to a method and apparatus for decomposing gaseous substances and particulate matter in the gas phase.
  • a method using ozone or plasma is known as a method for decomposing gaseous substances and particulate matter in the gas phase. These techniques are useful as techniques for decomposing the above substances, but they have low processing capacity and have problems in processing the generated ozone. Therefore, it is currently used in a limited space where the air is relatively clean, and its applicability in a place with a high concentration of pollutants is low.
  • the above method is effective in that it can temporarily collect gaseous substances and particulate matter in the gas phase and reduce their concentrations, but it involves the disposal of dirty filters and adsorbents. , the cost of maintenance is high, and the load on the environment is large.
  • a method that is inexpensive, requires low maintenance frequency, and can efficiently decompose the above substances has not yet been established.
  • Patent Document 2 describes supplying an aqueous solution containing divalent iron ions in an atomized state into air containing hydrogen peroxide.
  • Patent Document 2 since an aqueous solution containing iron ions is sprayed into the air containing hydrogen peroxide, it is difficult to control the concentration of hydrogen peroxide taken into the aerosol particles containing iron ions. be. Therefore, it is extremely difficult to control the Fenton reaction, and gaseous substances and particulate matter in the gas phase cannot be decomposed with sufficient efficiency.
  • An object of the present invention is to provide a method and apparatus capable of efficiently decomposing gaseous substances and particulate matter in the gas phase.
  • the present invention includes the following embodiments.
  • a method for decomposing gaseous substances and particulate matter in a gas phase comprising: spraying a solution that causes a Fenton reaction into the gas phase to generate an aerosol; decomposing the gaseous substance and the particulate matter with the aerosol; method including.
  • the fine bubble generation method is at least one method selected from the group consisting of a pressurized dissolution method, an ultrasonic method, a swirling flow method, and an ejector method.
  • the solution that causes the Fenton reaction further contains at least one transition metal ion selected from the group consisting of copper ions, zinc ions, cobalt ions, manganese ions and nickel ions. Any method described.
  • a chamber containing gaseous matter and particulate matter in an internal gas phase containing gaseous matter and particulate matter in an internal gas phase; a tank holding a plurality of raw material liquids that are raw materials of the solution that causes the Fenton reaction; a sprayer for spraying a solution that causes a Fenton reaction obtained by mixing the plurality of raw material liquids into the gas phase inside the chamber;
  • An apparatus for decomposing gaseous and particulate matter in the gas phase comprising:
  • FIG. 2 is a diagram showing the number particle size distribution of aerosol particles in Reference Examples 1 and 2; 1 is a photograph of aerosol particles in Reference Examples 1 and 2 taken with a high-speed camera.
  • a method for decomposing gaseous substances and particulate matter in a gas phase includes the following steps.
  • a step of spraying a solution that causes a Fenton reaction into the gas phase to generate an aerosol hereinafter also referred to as an aerosol generating step; Also called a process).
  • the solution that causes the Fenton reaction (hereinafter also referred to as the Fenton reaction solution) is sprayed into the gas phase containing the gaseous substance and the particulate matter, the gaseous substance in the gas phase is efficiently It can decompose matter and particulate matter. It is believed that spraying the Fenton reaction solution makes it easier to control the concentrations of iron ions and hydrogen peroxide in the aerosol particles, and also accelerates the Fenton reaction due to the fluid cavitation effect. As will be described later, in the method according to the present embodiment, by further optimizing the conditions of the Fenton reaction solution for spraying, it is possible to suppress the coloring and sludge formation of the solution and further increase the decomposition efficiency.
  • the formation of sludge can be particularly suppressed.
  • there is an optimum pH of the Fenton reaction solution and when the pH is 3 or more and less than 5, the decomposition efficiency can be maximized, while the solution coloring and sludge formation can be suppressed.
  • the atomization conditions of the Fenton reaction solution are related to the particle size distribution and number concentration of the aerosol particles, and the decomposition efficiency can be further enhanced by controlling the particle size conditions.
  • the method according to the present embodiment includes, for example, a step of forming fine bubbles in a solution that causes a Fenton reaction or its raw material solution (hereinafter also referred to as a fine bubble formation step).
  • the gaseous substances and particulate substances contained in the gas phase are not particularly limited, but may be, for example, tobacco smoke, exhaust smoke or gases containing industrially generated organic substances, and the like.
  • the method according to this embodiment is particularly effective for decomposing tobacco smoke in the gas phase.
  • gaseous substances contained in tobacco smoke include aldehydes such as formaldehyde and acetaldehyde, and volatile organic compounds (VOCs) such as benzene.
  • Particulate matter contained in tobacco smoke includes, for example, polycyclic aromatic hydrocarbons and fatty acids, which are oily substances.
  • the Fenton reaction solution is a solution capable of generating hydroxyl radicals from hydrogen peroxide using iron as a catalyst, and can contain iron ions and hydrogen peroxide.
  • the iron ions can be, for example, iron ions derived from iron sulfate, iron chloride, iron nitrate, iron oxide, and the like.
  • the hydrogen peroxide can be hydrogen peroxide derived from aqueous hydrogen peroxide, sodium percarbonate, and the like.
  • the solvent for the Fenton reaction solution include water and ethanol, with water being preferred. The quality of water is not particularly limited, and a sufficient effect can be expected even with purified water or ordinary tap water.
  • the concentration of iron ions in the Fenton reaction solution is preferably 51 mg/L or more and less than 500 mg/L. When the concentration is 51 mg/L or more, higher decomposition efficiency can be obtained. Further, when the concentration is less than 500 mg/L, coloration of the solution and generation of sludge can be sufficiently suppressed.
  • the concentration is more preferably 60 mg/L or more and 250 mg/L or less, more preferably 70 mg/L or more and less than 200 mg/L.
  • the concentration of iron ions in the Fenton reaction solution can be measured by ion chromatography or the like.
  • the concentration of hydrogen peroxide in the Fenton reaction solution is preferably 1000 mg/L or more and 10000 mg/L or less. When the concentration is 1000 mg/L or more, higher decomposition efficiency can be obtained, and coloration of the solution and formation of sludge can be suppressed. Further, when the concentration is 10000 mg/L or less, the decomposition rate can be improved and maintained without significantly increasing sludge formation. At an excessive concentration of hydrogen peroxide, the generated radicals are scavenged by the hydrogen peroxide, so it is desirable to operate within this concentration range.
  • the concentration is more preferably 5000 mg/L or more and 10000 mg/L or less, more preferably 7500 mg/L or more and 10000 mg/L or less.
  • the concentration of hydrogen peroxide in the Fenton reaction solution can be measured with a hydrogen peroxide concentration meter or the like.
  • the Fenton reaction solution preferably further contains a pH adjuster.
  • a pH adjuster capable of forming a complex with iron ions is preferable, and examples thereof include citric acid and oxalic acid. Among these, citric acid is more preferable from the viewpoint of suppressing coloration of the solution and generation of sludge and having less effect on health.
  • These pH adjusters may be used alone or in combination of two or more.
  • the amount of the pH adjuster contained in the Fenton reaction solution can be appropriately selected so as to achieve a preferable pH range of the Fenton reaction solution, which will be described later.
  • the Fenton reaction solution further contains at least one transition metal ion (other than iron ions) selected from the group consisting of copper ions, zinc ions, cobalt ions, manganese ions and nickel ions.
  • the copper ions can be, for example, copper ions derived from copper sulfate, copper nitrate, copper oxide, and the like.
  • the zinc ions can be, for example, zinc ions derived from zinc sulfate and the like.
  • Cobalt ions can be, for example, cobalt ions derived from cobalt chloride, cobalt nitrate, and the like.
  • the manganese ions can be, for example, manganese ions derived from manganese sulfate and the like.
  • the nickel ions can be, for example, nickel ions derived from nickel chloride and the like.
  • the concentration of the transition metal ion in the Fenton reaction solution is preferably 0.1 mg/L or more and less than 500 mg/L, more preferably 51 mg/L or more and less than 500 mg/L.
  • the concentration of the transition metal ions in the Fenton reaction solution can be measured by an ion chromatograph or an inductively coupled plasma atomic emission spectrometer.
  • the Fenton reaction solution contains, in addition to iron ions, hydrogen peroxide, a pH adjuster, the transition metal ions (other than iron ions), and a solvent, for example, a reduction accelerator for promoting reduction to divalent iron and oxidation of divalent iron.
  • a reduction accelerator for promoting reduction to divalent iron and oxidation of divalent iron.
  • Antioxidants and the like can be included to prevent
  • the pH of the Fenton reaction solution is preferably 3 or more and less than 5. When the pH is 3 or more, higher decomposition efficiency can be obtained. Further, when the pH is less than 5, coloring of the solution and generation of sludge can be further suppressed.
  • the pH is more preferably 3 or more and less than 4, more preferably 3.5 or more and less than 4.
  • the pH of the Fenton reaction solution is a value measured using a pH meter (Toa DKK, HM-41).
  • the aerosol generated by spraying the Fenton reaction solution contains aerosol particles that exist in the form of particles and gasified components that exist around the aerosol particles.
  • the aerosol particles contained in the generated aerosol do not contain coarse particles having a particle size of 40 ⁇ m or more in the number particle size distribution, and have a particle size of 1 to 10 ⁇ m. It is preferable to have a peak within the range of . In the number particle size distribution, the aerosol particles do not contain coarse particles having a particle size of 40 ⁇ m or more, and have a peak in the range of 1 to 10 ⁇ m, so that a large amount of radicals are generated instantaneously, and the decomposition efficiency is higher.
  • aerosol particles within this range are less susceptible to the effects of gravity and can stably float in space, it is expected that the probability and time of contact with aerosol particles will be improved.
  • the peak particle size of the aerosol particles is more preferably 2 to 10 ⁇ m, even more preferably 2 to 5 ⁇ m.
  • the peak in the number particle size distribution refers to the mode (mode size).
  • the aerosol particles contained in the aerosol do not contain coarse particles having a particle size of 40 ⁇ m or more in the number particle size distribution and have a peak within the range of 1 to 10 ⁇ m.
  • the number particle size distribution of the aerosol particles is measured with a sensor HP2070 using a particle size distribution analyzer welas (PALAS, digital 2000). The number particle size distribution is measured at a point 50 cm away from the tip of the spray nozzle in the horizontal direction.
  • the method for spraying the Fenton reaction solution into the gas phase is preferably a two-fluid nozzle method, an ultrasonic atomization method, or a surface acoustic wave method.
  • the particle size of the aerosol particles contained in the aerosol can be easily controlled within the above range.
  • the two-fluid nozzle system is more preferable from the viewpoint of maximizing the fluid cavitation effect.
  • the pressure in the tank holding the Fenton reaction solution, which supplies the Fenton reaction solution to the nozzle is preferably 0.1 to 0.3 MPa.
  • the spray pressure is preferably 0.1 to 0.4 MPa, more preferably 0.21 to 0.4 MPa.
  • Examples of the gas to be introduced into the nozzle include air and nitrogen.
  • the raw material solution containing iron ions and the raw material solution containing hydrogen peroxide are held separately in the tank, and the two are mixed just before the nozzle, and the Fenton reaction solution can be sprayed from the nozzle.
  • the shape of the spray nozzle is not particularly limited, and one that can efficiently disperse the aerosol particles is desirable.
  • the spray rate for spraying the Fenton reaction solution into the gas phase is not particularly limited, but can be, for example, 0.01 to 10 L/hour. Spraying may be continuous or intermittent spraying with certain sprays and pauses. The spray speed here is the value for continuous spray.
  • the gaseous substances and particulate matter in the gas phase are decomposed by the aerosol generated in the aerosol generating step.
  • the Fenton reaction solution is sprayed and an aerosol is generated, radical generation is accelerated, and gaseous substances and particulate matter in the gas phase in contact with the radicals are instantaneously decomposed.
  • the Fenton reaction proceeds within the aerosol particles in the aerosol and radicals are further generated, gaseous substances and particulate substances that come into contact with the aerosol particles floating in the gas phase after spraying, and are taken into the aerosol particles Gaseous and particulate matter are also decomposed. Therefore, the method according to the present embodiment can efficiently decompose gaseous substances and particulate matter in the gas phase. In particular, the method according to this embodiment can efficiently decompose tobacco smoke in the gas phase (air).
  • the total concentration of gaseous substances and particulate matter in the gas phase is not particularly limited, but when the gaseous matter and particulate matter are tobacco smoke, the concentration of tobacco smoke is, for example, 0.1 in mass concentration of particles. It can be ⁇ 30 mg/m 3 .
  • the temperature of the gas phase is not particularly limited, it can be, for example, 10 to 30° C. From the viewpoint of acceleration of the Fenton reaction, the higher the temperature, the higher the reaction rate, so a high effect can be expected.
  • the method according to this embodiment preferably further includes a fine bubble forming step of forming fine bubbles in the Fenton reaction solution or its raw material solution. If the Fenton reaction solution to be sprayed contains fine bubbles, the decomposition efficiency is further improved. This is probably because the Fenton reaction solution originally contains fine air bubbles, and the air bubbles act as the nuclei of the cavities, resulting in a better fluid cavitation effect. Furthermore, due to the physical detergency of fine bubbles, the sprayer, the tank holding the Fenton reaction solution or its raw material liquid, and the flow path connecting the sprayer and the tank through which the Fenton reaction solution or its raw material liquid passes are dirty. becomes difficult to adhere, and more stable spraying can be achieved.
  • the fine bubble formation step may be performed before the aerosol generation step, or may be performed during the aerosol generation step.
  • the raw material solution of the Fenton reaction solution is a solution that can prepare the Fenton reaction solution by mixing or the like, and can be, for example, a solution containing iron ions, a solution containing hydrogen peroxide, or the like.
  • the fine bubble forming step may be performed for one raw material liquid, or the fine bubble forming step may be performed for two or more raw material liquids.
  • the fine bubble generation method is not particularly limited, but is selected from the group consisting of the pressurized dissolution method, the ultrasonic method, the swirl flow method, and the ejector method from the viewpoint of the ease of the generation method and the size and concentration of the fine bubbles to be generated. is preferably at least one type of method.
  • the fine bubbles preferably have a peak at 300 nm or less in the number particle size distribution.
  • the fine bubbles can remain in the liquid as bubbles for a longer period of time, and can further promote the generation of radicals.
  • the fine bubbles more preferably have a number particle size distribution peak within the range of 20 to 300 nm, more preferably within the range of 50 to 200 nm.
  • the number particle size distribution of fine bubbles can be measured using Nanosite (Malvern Panalytical, NS300) that measures and analyzes the Brownian motion of nanoparticles in liquid.
  • the number concentration of fine bubbles in the Fenton reaction solution or its raw material solution is preferably 1 ⁇ 10 7 /cc or more.
  • the number concentration is more preferably 5 ⁇ 10 7 to 1 ⁇ 10 9 pieces/cc, more preferably 1 ⁇ 10 8 to 1 ⁇ 10 9 pieces/cc.
  • the number concentration of fine bubbles can be measured using the nanosite described above.
  • An apparatus for decomposing gaseous substances and particulate matter in a gas phase has the following configuration.
  • the decomposition apparatus according to this embodiment can suitably perform the decomposition method according to this embodiment described above, and can efficiently decompose gaseous substances and particulate matter in the gas phase.
  • the decomposition apparatus further includes a fine bubble generator that is connected to the tank and that forms fine bubbles in at least one of the raw material liquids, from the viewpoint of further improving the decomposition efficiency.
  • a filter, an activated carbon filling layer, or the like may be provided at the exhaust outlet for capturing excess hydrogen peroxide or the like after decomposition.
  • the decomposing device is particularly effective for decomposing tobacco smoke in the gas phase.
  • FIG. 1 shows an example of a disassembling device according to this embodiment.
  • a decomposition apparatus 1 shown in FIG. 1 holds a chamber 2 containing tobacco smoke 6, which is a gaseous substance and particulate matter, in an internal gas phase, and raw material liquids 5a and 5b, which are raw materials of a solution that causes a Fenton reaction. and a sprayer 4 for spraying into the gas phase inside the chamber 2 a solution that causes the Fenton reaction obtained by mixing the raw material liquids 5a and 5b.
  • the chamber 2 includes an introduction portion 9 that introduces the tobacco smoke 6 into the chamber 2 , and an exhaust portion 10 that exhausts the gas obtained by decomposing the tobacco smoke 6 from the chamber 2 to the outside.
  • the discharge section 10 is provided with a filter 12 and a fan 13 .
  • the raw material liquids 5a and 5b in the tank 3 are mixed and supplied to the two-fluid nozzle type sprayer 4, and sprayed into the chamber 2 together with the compressed air 11 to generate the aerosol 7.
  • the aerosol 7 contains aerosol particles 8 which break up the tobacco smoke 6 in the chamber 2 .
  • Cigarette smoke 6 that has not been decomposed in chamber 2 is trapped in filter 12 together with aerosol particles 8 and decomposed in filter 12 . Therefore, the tobacco smoke 6 is efficiently decomposed.
  • the decomposition device 1 can further include a fine bubble generator that forms fine bubbles in at least one of the raw material liquids 5a and 5b in the tank 3. Fine bubbles may be formed by the fine bubble generator before mixing the raw material liquids 5a and 5b and spraying, or during spraying.
  • the raw material liquids A and B in both beakers are pushed out, and immediately before spraying, the raw material liquids A and B are mixed in equal amounts to prepare a Fenton reaction solution, which is then sprayed at the nozzle.
  • the solution was mixed with compressed air so that it could be atomized.
  • the pressure in the tank was 0.2 MPa, and the spray pressure was 0.2 MPa.
  • a two-fluid automatic spray gun (Spraying Co., 10535-1/4J-SS) was used for spraying, and a flat type nozzle cap (Spraying Co., PF1650DF-SS) was used.
  • the measurable range of the particle size distribution analyzer used for this measurement is limited (maximum particle size: 40 ⁇ m)
  • coarse particles having a particle size exceeding 40 ⁇ m were confirmed using a high-speed camera.
  • a high-speed camera (trade name: VW-9000 high speed microscope, Keyence Corporation) was used as the high-speed camera.
  • the photographing conditions were shutter speed: 1/30000 seconds, number of frames: 8000 fps, number of pixels: 640 ⁇ 240 pixels.
  • a photograph taken with a high-speed camera is shown in FIG.
  • the particles shown in the figure indicate the presence of large particles that can be imaged by the camera.
  • the sprayed Fenton reaction solution is colored by methylene blue, but as the Fenton reaction progresses, the methylene blue is decomposed and the color is reduced.
  • the decomposition performance was evaluated by evaluating the attenuation of this color. Specifically, the Fenton reaction solution that had settled after spraying was collected in a 1 L graduated cylinder, and the absorbance of the solution was measured 3 minutes after spraying. An absorbance photometer (Shimadzu Corporation, UV-1800) was used to measure the absorbance, and the reduction rate of methylene blue was evaluated by measuring absorbance attenuation at a wavelength of 664 nm. A smaller value of the reduction rate indicates that the methylene blue is more decomposed and the decomposition efficiency is higher. Table 1 shows the results.
  • Reference example 2 The procedure was carried out in the same manner as in Reference Example 1 except that the spray pressure was changed to 0.3 MPa, the number particle size distribution of the aerosol particles and the like were measured, and the decomposition performance was evaluated. The results are shown in FIGS. 2, 3 and Table 1.
  • the aerosol particles By spraying at high pressure, the aerosol particles have a very fine number particle size distribution, and the value of the reduction rate of methylene blue tends to decrease at the moment of spraying. Presumably produced in large quantities. This is believed to be due to the synergistic effect of fluid cavitation and cavity collapse during spraying and the Fenton reaction. Furthermore, in Reference Example 3, in which the sprayed Fenton reaction solution contained fine bubbles, a lower reduction rate value (higher decomposition efficiency) was obtained. This is probably because the solution originally contained fine air bubbles, and the air bubbles acted as cores of the cavities, resulting in a higher effect.
  • iron sulfate heptahydrate in an amount that makes the iron ion concentration 10 mg/L, hydrogen peroxide water in an amount that makes the hydrogen peroxide concentration 100 mg/L, and an amount that makes the pH 4.0 are added to the cigarette smoke solution.
  • citric acid Fluji Film Wako Pure Chemical Co., Ltd., 030-05525
  • TOC Total Organic Carbon measurement was performed using a total organic carbon meter (Shimadzu Corporation, TOC-L CPN) to evaluate the decomposition rate of tobacco smoke solution (TOC decomposition rate).
  • the decomposition rate means the attenuation rate of the TOC concentration before and after addition of iron sulfate heptahydrate and hydrogen peroxide solution to the cigarette smoke solution.
  • Table 2 shows the results. When the Fenton reaction solution is sprayed, the solution floats in space as very small aerosol particles, but since the aerosol particles exist as droplets, it is speculated that the same reaction as in the liquid phase occurs. be done. Therefore, this test was conducted in the liquid phase.
  • Reference Example 7 except that the amounts of iron sulfate heptahydrate, hydrogen peroxide solution, and citric acid added were changed so that the iron ion concentration, hydrogen peroxide concentration, and pH were the values shown in Table 2. was carried out in the same manner as in , and the presence or absence of coloration of the solution and sludge formation was observed, and the TOC decomposition rate was evaluated. Table 2 shows the results.
  • Example 1 Iron sulfate heptahydrate (Fuji Film Wako Pure Chemical Co., Ltd., 094-01082) was added to the ultrapure water so that the iron ion concentration was 200 mg/L. The pH of the solution was adjusted to 3.0 using citric acid (Fuji Film Wako Pure Chemical Co., Ltd., 030-05525). Thus, a raw material liquid A was prepared. Separately from the raw material solution A, a hydrogen peroxide solution (Fujifilm Wako Pure Chemical Co., Ltd., 081-04215) was added to ultrapure water so that the concentration of hydrogen peroxide was 10000 mg / L, and the pH was adjusted using citric acid. was similarly adjusted to 3.0.
  • a raw material liquid B was prepared.
  • fine bubbles were generated for 1 hour using a pressurized dissolution type fine bubble generator (LE3FS, Living Energy). kept happening. Fine bubbles had a peak at 95.1 nm in number particle size distribution. The number concentration of fine bubbles was 2.07 ⁇ 10 8 /cc.
  • the obtained raw material liquids A and B were placed in the tank of a two-fluid atomizer spray cart IIIX (Spraying Co., SCU3XVA-777).
  • the raw material liquids A and B are extruded, and immediately before spraying, the raw material liquids A and B are mixed in equal amounts to prepare a Fenton reaction solution, and the solution and the compressed air are sprayed at the nozzle. and can be sprayed by mixing.
  • the pressure in the tank was 0.2 MPa, and the spray pressure was 0.25 MPa.
  • a two-fluid automatic spray gun (Spraying Co., 10535-1/4J-SS) was used for spraying.
  • a flat type nozzle cap was used, but a small amount type nozzle cap (PF1050DF-SS by Spraying Co.) was used in order to reduce the amount of spray.
  • Example 2 The TVOC concentration was measured in the same manner as in Example 1, except that the pH of the raw material liquids A and B was changed to 4.0. Table 3 shows the results.
  • Example 3 The TVOC concentration was measured in the same manner as in Example 1, except that the pH of the raw material liquids A and B was changed to 5.0. Table 3 shows the results.
  • Example 4 Example 1 was repeated except that NaOH was used instead of citric acid in the preparation of raw material solutions A and B, and the pH of raw material solutions A and B was changed to 6.0, and the TVOC concentration was measured. . Table 3 shows the results.
  • Example 1 The TVOC concentration was measured in the same manner as in Example 1, except that ultrapure water was used as raw material solutions A and B (no iron sulfate heptahydrate, hydrogen peroxide solution, or citric acid was added). Table 3 shows the results.
  • Examples 1 to 4 in which tobacco smoke was decomposed by the method according to the present embodiment, exhibited a significant TVOC reduction rate and efficiently decomposed tobacco smoke. Especially when the pH of the Fenton reaction solution was around 3 to 4, a higher reduction rate was obtained. Based on the results of Reference Examples 28 to 30 in which the coloration of the solution and the formation of sludge were examined, it was found that the pH is preferably 3 or more and less than 5, and particularly preferably 3 or more and 4 or less.
  • decomposition device 2 chamber 3 tank 4 atomizer 5a, 5b raw material liquid 6 cigarette smoke 7 aerosol 8 aerosol particles 9 introduction part 10 discharge part 11 compressed air 12 filter 13 fan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

気相中のガス状物質及び粒子状物質を効率よく分解できる方法を提供する。気相中のガス状物質及び粒子状物質の分解方法であって、フェントン反応を起こす溶液を前記気相中に噴霧してエアロゾルを生成する工程と、前記エアロゾルにより前記ガス状物質及び前記粒子状物質を分解する工程と、を含む方法。

Description

気相中のガス状物質及び粒子状物質の分解方法並びに分解装置
 本発明は、気相中のガス状物質及び粒子状物質の分解方法並びに分解装置に関する。
 気相中のガス状物質及び粒子状物質を分解する手法として、オゾンやプラズマを用いた方法が知られている。これらの技術は前記物質を分解する手法としては有用であるが、処理能力が低く、また発生するオゾンの処理に課題を有する。そのため、現状では比較的空気がきれいな限られた空間で用いられており、汚染濃度が高い場所などでの適用性は低い。
 また、フィルターや吸着剤で捕集することで、気相中のガス状物質及び粒子状物質を除去する方法も知られている。前記方法は気相中のガス状物質及び粒子状物質を一時的に捕集し、それらの濃度を低減させることができる点では有効であるが、汚れたフィルターや吸着剤の廃棄が発生するため、メンテナンスのコストが掛かり、また環境への負荷が大きい。安価でメンテナンスの頻度が低く、かつ前記物質を効率よく分解できる手法は、未だ確立されていない。
 一方、液相での物質分解手法としてフェントン反応を用いる手法が、安価でありかつ実用的な手段として従来から着目されている。しかしながら液相処理においてはコスト低減等の観点から処理水を循環して用いるため、液相内で溶液の着色やスラッジの沈降が生じる課題がある。また、2価鉄を反応源とするため、例えば特許文献1に記載のように3価から2価への鉄の還元を促進する工夫が必要となる。フェントン反応を気相に応用した例はほとんどないが、例えば特許文献2には、2価の鉄イオンを含む水溶液を霧化した状態で過酸化水素を含む空気中に供給することが記載されている。
特許第6202770号公報 特許第6039834号公報
 しかしながら、特許文献2に開示された方法では、過酸化水素を含む空気中に鉄イオンを含む水溶液を噴霧するため、鉄イオンを含むエアロゾル粒子中に取り込まれる過酸化水素の濃度の制御が困難である。そのため、フェントン反応の制御が極めて困難であり、気相中のガス状物質及び粒子状物質を十分な効率で分解することができない。
 本発明は、気相中のガス状物質及び粒子状物質を効率よく分解できる方法及び装置を提供することを目的とする。
 本発明は以下の実施態様を含む。
[1]気相中のガス状物質及び粒子状物質の分解方法であって、
 フェントン反応を起こす溶液を前記気相中に噴霧してエアロゾルを生成する工程と、
 前記エアロゾルにより前記ガス状物質及び前記粒子状物質を分解する工程と、
を含む方法。
[2]前記エアロゾルに含まれるエアロゾル粒子が、個数粒子径分布において、40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有する、[1]に記載の方法。
[3]前記フェントン反応を起こす溶液を気相中に噴霧する方式が、2流体ノズル方式、超音波霧化方式、又は表面弾性波方式である、[1]又は[2]に記載の方法。
[4]前記フェントン反応を起こす溶液又はその原料液中にファインバブルを形成する工程をさらに含む、[1]~[3]のいずれかに記載の方法。
[5]前記ファインバブルの発生方式が、加圧溶解方式、超音波方式、旋回流方式、及びエジェクター方式からなる群から選択される少なくとも一種の方式である、[4]に記載の方法。
[6]前記ファインバブルが個数粒子径分布において300nm以下にピークを有する、[4]又は[5]に記載の方法。
[7]前記フェントン反応を起こす溶液又はその原料液中の前記ファインバブルの個数濃度が1×107 個/cc以上である、[4]~[6]のいずれかに記載の方法。
[8]前記フェントン反応を起こす溶液が、鉄イオンと、過酸化水素とを含む、[1]~[7]のいずれかに記載の方法。
[9]前記フェントン反応を起こす溶液中の前記鉄イオンの濃度が51~250mg/Lである、[8]に記載の方法。
[10]前記フェントン反応を起こす溶液中の前記過酸化水素の濃度が1000~10000mg/Lである、[8]又は[9]に記載の方法。
[11]前記フェントン反応を起こす溶液が、さらにpH調整剤を含む、[8]~[10]のいずれかに記載の方法。
[12]前記pH調整剤が、クエン酸及びシュウ酸からなる群から選択される少なくとも一種の化合物である、[11]に記載の方法。
[13]前記フェントン反応を起こす溶液のpHが3以上5未満である、[1]~[12]のいずれかに記載の方法。
[14]前記ガス状物質及び前記粒子状物質がたばこ煙である、[1]~[13]のいずれかに記載の方法。
[15]前記フェントン反応を起こす溶液が、銅イオン、亜鉛イオン、コバルトイオン、マンガンイオン及びニッケルイオンからなる群から選択される少なくとも一種の遷移金属イオンをさらに含む、[1]~[14]のいずれかに記載の方法。
[16]ガス状物質及び粒子状物質を内部の気相中に含むチャンバーと、
 フェントン反応を起こす溶液の原料である複数の原料液を保持するタンクと、
 前記複数の原料液が混合されて得られるフェントン反応を起こす溶液を前記チャンバー内部の前記気相中に噴霧する噴霧器と、
を備える、気相中のガス状物質及び粒子状物質の分解装置。
[17]前記タンクと接続され、少なくとも一つの前記原料液中にファインバブルを形成するファインバブル発生器をさらに備える、[16]に記載の装置。
[18]前記ガス状物質及び前記粒子状物質がたばこ煙である、[16]又は[17]に記載の装置。
 本発明によれば、気相中のガス状物質及び粒子状物質を効率よく分解できる方法及び装置を提供することができる。
本実施形態に係る分解装置の一例を示す模式図である。 参考例1及び2におけるエアロゾル粒子の個数粒子径分布を示す図である。 参考例1及び2におけるエアロゾル粒子をハイスピードカメラで撮影した写真である。
 [気相中のガス状物質及び粒子状物質の分解方法]
 本実施形態に係る気相中のガス状物質及び粒子状物質の分解方法は、以下の工程を含む。フェントン反応を起こす溶液を前記気相中に噴霧してエアロゾルを生成する工程(以下、エアロゾル生成工程ともいう。);前記エアロゾルにより前記ガス状物質及び前記粒子状物質を分解する工程(以下、分解工程ともいう。)。
 本実施形態に係る方法では、フェントン反応を起こす溶液(以下、フェントン反応溶液ともいう。)を、ガス状物質及び粒子状物質を含む気相中に噴霧するため、効率よく気相中のガス状物質及び粒子状物質を分解することができる。フェントン反応溶液を噴霧することで、エアロゾル粒子中の鉄イオン及び過酸化水素の濃度の制御がしやすくなり、且つまた流体キャビテーション効果によりフェントン反応が加速するためと考えられる。後述するように、本実施形態に係る方法では、さらにフェントン反応溶液の条件を噴霧用に最適化することで、溶液の着色やスラッジ生成を抑制でき、かつ分解効率をより高めることができる。具体的には、鉄イオンと錯体を形成するpH調整剤を用いること、また鉄イオンと過酸化水素の濃度を調整することで、スラッジの生成を特に抑制することができる。また、分解効率向上の観点からは最適なフェントン反応溶液のpHが存在し、pHが3以上5未満の条件にて分解効率を最大化しつつ、溶液の着色やスラッジ生成を抑制できる。さらに、フェントン反応溶液の噴霧条件はエアロゾル粒子の粒径分布および個数濃度と関係し、粒子径条件を制御することで分解効率をより高めることができる。
 本実施形態に係る方法は、前記エアロゾル生成工程及び前記分解工程以外にも、例えばフェントン反応を起こす溶液又はその原料液中にファインバブルを形成する工程(以下、ファインバブル形成工程ともいう。)等を含んでもよい。気相中に含まれるガス状物質及び粒子状物質は特に限定されないが、例えばたばこ煙、工業的に発生する有機物を含む排気煙やガス等であることができる。本実施形態に係る方法は、特に気相中のたばこ煙の分解に有効である。たばこ煙に含まれるガス状物質としては、例えばホルムアルデヒド、アセトアルデヒド等のアルデヒド、ベンゼン等の揮発性有機化合物(VOC)が挙げられる。また、たばこ煙に含まれる粒子状物質としては、例えば多環芳香族炭化水素や油状物質である脂肪酸等が挙げられる。
 (エアロゾル生成工程)
 本工程では、フェントン反応溶液をガス状物質及び粒子状物質が存在する気相中に噴霧して、エアロゾルを生成する。フェントン反応溶液は、鉄を触媒として過酸化水素からヒドロキシルラジカルを生成可能な溶液であり、鉄イオンと、過酸化水素とを含むことができる。鉄イオンは、例えば硫酸鉄、塩化鉄、硝酸鉄、酸化鉄等由来の鉄イオンであることができる。過酸化水素は、過酸化水素水、過炭酸ナトリウム等由来の過酸化水素であることができる。フェントン反応溶液の溶媒としては、例えば水、エタノール等が挙げられるが、水が好ましい。水は特に水質を限定されることはなく、精製水や一般的な水道水でも十分な効果が期待できる。
 フェントン反応溶液中の鉄イオンの濃度は51mg/L以上500mg/L未満であることが好ましい。該濃度が51mg/L以上であることにより、より高い分解効率が得られる。また、該濃度が500mg/L未満であることにより溶液の着色やスラッジの生成を十分に抑制できる。該濃度は60mg/L以上250mg/L以下がより好ましく、70mg/L以上200mg/L未満がさらに好ましい。フェントン反応溶液中の鉄イオンの濃度は、イオンクロマトグラフ等により測定することができる。
 フェントン反応溶液中の過酸化水素の濃度は1000mg/L以上10000mg/L以下であることが好ましい。該濃度が1000mg/L以上であることにより、より高い分解効率が得られ、溶液の着色やスラッジの生成を抑制できる。また、該濃度が10000mg/L以下であることにより、スラッジ生成を顕著に増加させず分解率を向上および維持することができる。過剰な過酸化水素濃度では、生成したラジカルを過酸化水素がスカベンジングするため、当該濃度範囲での実施が望ましい。該濃度は5000mg/L以上10000mg/L以下がより好ましく、7500mg/L以上10000mg/L以下がさらに好ましい。フェントン反応溶液中の過酸化水素の濃度は、過酸化水素濃度計等により測定することができる。
 フェントン反応溶液は、さらにpH調整剤を含むことが好ましい。フェントン反応溶液がpH調整剤を含むことにより、溶液の着色やスラッジの生成をより抑制することができる。pH調整剤としては、鉄イオンと錯体を形成できるpH調整剤が好ましく、例えばクエン酸、シュウ酸等が挙げられる。これらの中でも、溶液の着色やスラッジの生成をより抑制でき、健康への影響が少ない観点からクエン酸がより好ましい。これらのpH調整剤は一種を用いてもよく、二種以上を併用してもよい。フェントン反応溶液に含まれるpH調整剤の量としては、後述するフェントン反応溶液の好ましいpHの範囲を達成できる量を適宜選択できる。
 フェントン反応溶液は、分解効率をより向上させる観点から、さらに銅イオン、亜鉛イオン、コバルトイオン、マンガンイオン及びニッケルイオンからなる群から選択される少なくとも一種の遷移金属イオン(鉄イオン以外)を含むことができる。銅イオンは、例えば硫酸銅、硝酸銅、酸化銅等由来の銅イオンであることができる。亜鉛イオンは、例えば硫酸亜鉛等由来の亜鉛イオンであることができる。コバルトイオンは、例えば塩化コバルト、硝酸コバルト等由来のコバルトイオンであることができる。マンガンイオンは、例えば硫酸マンガン等由来のマンガンイオンであることができる。ニッケルイオンは、例えば塩化ニッケル等由来のニッケルイオンであることができる。フェントン反応溶液が前記遷移金属イオンを含む場合、フェントン反応溶液中の前記遷移金属イオンの濃度は、0.1mg/L以上500mg/L未満が好ましく、51mg/L以上500mg/L未満がより好ましい。フェントン反応溶液中の前記遷移金属イオンの濃度は、イオンクロマトグラフや誘導結合プラズマ発光分光分析器により測定することができる。
 フェントン反応溶液は、鉄イオン、過酸化水素、pH調整剤、前記遷移金属イオン(鉄イオン以外)、溶媒以外に、例えば2価への還元を促進するための還元促進剤や2価鉄の酸化を防止するための酸化防止剤等を含むことができる。
 フェントン反応溶液のpHは3以上5未満であることが好ましい。該pHが3以上であることにより、より高い分解効率が得られる。また、該pHが5未満であることにより、溶液の着色やスラッジの生成をより抑制できる。該pHは3以上4未満がより好ましく、3.5以上4未満がさらに好ましい。なお、フェントン反応溶液のpHは、pHメーター(東亜ディーケーケー、HM-41)を用いて測定される値である。
 フェントン反応溶液を噴霧して生成するエアロゾルは、粒子状で存在するエアロゾル粒子と、エアロゾル粒子の周囲に存在するガス化した成分とを含む。本実施形態に係る方法では、分解効率をより向上できる観点から、生成するエアロゾルに含まれるエアロゾル粒子が、個数粒子径分布において、40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有することが好ましい。個数粒子径分布において、エアロゾル粒子が40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有することにより、瞬間的に大量のラジカルが生成し、分解効率がより向上すると考えられる。これは、噴霧時の流体キャビテーション及びキャビティ崩壊とフェントン反応の相乗効果によるものと考えられる。またこの範囲のエアロゾル粒子は、重力の影響を受けにくく空間中に安定的に浮遊することができるため、エアロゾル粒子との接触確率や時間を向上させることが期待できる。エアロゾル粒子を非常に細かな個数粒子径分布とするためには、例えばある一定の条件以上の液圧及び空気圧を掛ける必要があり、この圧力や噴霧までの圧力差によって流体キャビテーション及びキャビティ崩壊が発生し、フェントン反応をさらに加速させると予測される。前記エアロゾル粒子のピーク粒径は、2~10μmであることがより好ましく、2~5μmであることがさらに好ましい。なおここでの個数粒子径分布でのピークとはモード(最頻径)を指す。
 なお、エアロゾルに含まれるエアロゾル粒子が、個数粒子径分布において、40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有することは、以下の方法により確認できる。粒径分布測定器welas(PALAS, digital 2000)を用いて、センサーHP2070によりエアロゾル粒子の個数粒子径分布を測定する。該個数粒子径分布の測定は、噴霧ノズル先端部から水平方向に50cm離れた地点で行う。
 フェントン反応溶液を気相中に噴霧する方式は、2流体ノズル方式、超音波霧化方式、又は表面弾性波方式であることが好ましい。これらの方式を採用することにより、エアロゾルに含まれるエアロゾル粒子の粒子径を前記範囲内に容易に制御することができる。特に、流体キャビテーション効果を最も活用できる観点から、2流体ノズル方式がより好ましい。2流体ノズル方式の場合、ノズル部へフェントン反応溶液を供給する、フェントン反応溶液を保持するタンク内の圧力は0.1~0.3MPaであることが好ましい。また、噴霧圧は0.1~0.4MPaであることが好ましく、0.21~0.4MPaがより好ましい。ノズル部に導入する気体としては、例えば空気、窒素等が挙げられる。なお、タンク内では鉄イオンを含む原料液と、過酸化水素を含む原料液とは別々に保持され、ノズル部直前において両者が混合され、ノズル部からフェントン反応溶液が噴霧されることができる。噴霧のノズルの形状は特に限定されなく、エアロゾル粒子を効率よく分散できるものが望ましい。
 フェントン反応溶液を気相中に噴霧する際の噴霧速度は特に限定されないが、例えば0.01~10L/時であることができる。噴霧は連続的に行ってもよく、ある一定の噴霧と休止を伴う間欠的な噴霧方式でも良い。なおここでの噴霧速度は連続噴霧の際の値である。
 (分解工程)
 本工程では、前記エアロゾル生成工程で生成したエアロゾルにより気相中のガス状物質及び粒子状物質を分解する。フェントン反応溶液が噴霧され、エアロゾルが生成するとラジカル生成が加速し、該ラジカルに接触した気相中のガス状物質及び粒子状物質は瞬間的に分解される。また、エアロゾル中のエアロゾル粒子内ではフェントン反応が進行し、ラジカルがさらに生成するため、噴霧後に気相中に漂うエアロゾル粒子に接触したガス状物質及び粒子状物質、該エアロゾル粒子内に取り込まれたガス状物質及び粒子状物質も分解される。したがって、本実施形態に係る方法では気相中のガス状物質及び粒子状物質を効率よく分解できる。特に、本実施形態に係る方法では気相(空気)中のたばこ煙を効率よく分解できる。
 気相中のガス状物質及び粒子状物質の合計の濃度は特に限定されないが、ガス状物質及び粒子状物質がたばこ煙である場合、たばこ煙の濃度は例えば粒子の質量濃度にして0.1~30mg/mであることができる。気相の温度は特に限定されないが、例えば10~30℃であることができ、フェントン反応の加速性の観点からは温度が高いほど反応速度が高まるため、高い効果が期待できる。
 (ファインバブル形成工程)
 本実施形態に係る方法は、フェントン反応溶液又はその原料液中にファインバブルを形成する、ファインバブル形成工程をさらに含むことが好ましい。噴霧されるフェントン反応溶液がファインバブルを含む場合、分解効率がさらに向上する。これは、フェントン反応溶液に元々微細な気泡が含まれることで、該気泡がキャビティの核として作用し、流体キャビテーション効果がより得られるためと考えられる。さらに、ファインバブルが有する物理洗浄力により、噴霧器や、フェントン反応溶液又はその原料液を保持するタンクや、該噴霧器と該タンクとを繋ぐフェントン反応溶液又はその原料液が通過する流路等に汚れが付着しにくくなり、より安定的な噴霧が達成可能となる。ファインバブル形成工程は、エアロゾル生成工程前に行われてもよく、エアロゾル生成工程中に行われてもよい。なお、フェントン反応溶液の原料液とは、混合等によりフェントン反応溶液を調製可能な溶液であり、例えば鉄イオンを含む溶液、過酸化水素を含む溶液等であることができる。原料液が複数ある場合、一つの原料液に対してファインバブル形成工程を実施してもよく、二つ以上の原料液に対してファインバブル形成工程を実施してもよい。
 ファインバブルの発生方式は特に限定されないが、発生方法の容易さや生成されるファインバブルの大きさや濃度の観点から、加圧溶解方式、超音波方式、旋回流方式、及びエジェクター方式からなる群から選択される少なくとも一種の方式であることが好ましい。
 ファインバブルは、個数粒子径分布において300nm以下にピークを有することが好ましい。ファインバブルが個数粒子径分布において300nm以下にピークを有することにより、液中にバブルとしてより長く留まることができることに加え、ラジカル生成をより促進させることができる。ファインバブルは、個数粒子径分布において20~300nmの範囲内にピークを有することがより好ましく、50~200nmの範囲内にピークを有することがさらに好ましい。なお、ファインバブルの個数粒子径分布の測定は、液体中のナノ粒子のブラウン運動を測定および解析するナノサイト(Malvern Panalytical、NS300)を用いて測定することができる。
 フェントン反応溶液又はその原料液中のファインバブルの個数濃度は1×10個/cc以上であることが好ましい。個数濃度が1×10個/cc以上であることにより、分解効率がより向上する。個数濃度は5×10~1×10個/ccであることがより好ましく、1×10~1×10個/ccであることがさらに好ましい。なお、ファインバブルの個数濃度の測定は、上述のナノサイトにより行うことができる。
 [気相中のガス状物質及び粒子状物質の分解装置]
 本実施形態に係る気相中のガス状物質及び粒子状物質の分解装置は、以下の構成を備える。ガス状物質及び粒子状物質を内部の気相中に含むチャンバー;フェントン反応を起こす溶液の原料である複数の原料液を保持するタンク;前記複数の原料液が混合されて得られるフェントン反応を起こす溶液を前記チャンバー内部の前記気相中に噴霧する噴霧器。本実施形態に係る分解装置は、前述した本実施形態に係る分解方法を好適に実施することができ、気相中のガス状物質及び粒子状物質を効率よく分解することができる。本実施形態に係る分解装置は、前記タンクと接続され、少なくとも一つの前記原料液中にファインバブルを形成するファインバブル発生器をさらに備えることが、分解効率をさらに向上させることができる観点から好ましい。また分解後に余剰となった過酸化水素などを捕捉するためのフィルターや活性炭充填層等を排気出口に設けても良い。本実施形態に係る分解装置は、特に気相中のたばこ煙の分解に有効である。
 本実施形態に係る分解装置の一例を図1に示す。図1に示される分解装置1は、ガス状物質及び粒子状物質であるたばこ煙6を内部の気相中に含むチャンバー2と、フェントン反応を起こす溶液の原料である原料液5a、5bを保持するタンク3と、原料液5a、5bが混合されて得られるフェントン反応を起こす溶液をチャンバー2内部の気相中に噴霧する噴霧器4と、を備える。チャンバー2は、たばこ煙6をチャンバー2の内部に導入する導入部9と、たばこ煙6が分解された気体をチャンバー2内から外部へ排出する排出部10と、を備える。排出部10には、フィルター12と、ファン13とが設けられている。タンク3内の原料液5a、5bは混合されて2流体ノズル方式の噴霧器4に供給され、圧縮空気11と共にチャンバー2内に噴霧されてエアロゾル7を生成する。エアロゾル7はエアロゾル粒子8を含み、これらによりチャンバー2内のたばこ煙6が分解される。また、チャンバー2内で分解されなかったたばこ煙6は、エアロゾル粒子8と共にフィルター12に捕捉され、フィルター12内で分解される。したがって、効率よくたばこ煙6が分解される。
 また、図1には図示されていないが、分解装置1は、タンク3内の原料液5a、5bの少なくとも一方にファインバブルを形成するファインバブル発生器をさらに備えることができる。ファインバブル発生器によるファインバブル形成は、原料液5a、5bを混合して噴霧する前に予め行ってもよく、噴霧中に行ってもよい。
 以下、本実施形態を実施例により詳細に説明するが、本実施形態はこれらの実施例に限定されない。
 [参考例1]
 1Lのビーカーに、メチレンブルー10.2mg/Lを溶かした超純水を用意した。該溶液に、鉄イオンの濃度が2mg/Lとなるように硫酸鉄七水和物(富士フイルム和光純薬、094-01082)を添加した。また、硫酸(富士フイルム和光純薬、198-09595)を用いて該溶液のpHが3.0となるように調整した。これにより、原料液Aを調製した。次に、新たなビーカーに、過酸化水素水(富士フイルム和光純薬、081-04215)を、過酸化水素の濃度が1580mg/Lとなるように超純水に添加し、硫酸を用いてpHを同様に3.0に調整した。これにより、原料液Bを調製した。両ビーカーを、2流体ノズル方式である二流体噴霧装置スプレーカートIIIX(スプレーイング社、SCU3XVA-777)のタンク内に設置した。圧縮空気にてタンク内を加圧することで両ビーカー内の原料液A及びBを押し出し、噴霧直前に原料液A及びBを等液量で混合してフェントン反応溶液を調製し、ノズル部で該溶液と圧縮空気とを混合して噴霧できるようにした。タンク内の圧力は0.2MPa、噴霧圧は0.2MPaとした。噴霧には二流体自動スプレーガン(スプレーイング社、10535-1/4J-SS)を使用し、ノズルキャップにはフラット型タイプ(スプレーイング社、PF1650DF-SS)を使用した。
 (エアロゾル粒子の個数粒子径分布等の測定)
 噴霧により生成したエアロゾルに含まれるエアロゾル粒子の個数粒子径分布を、粒径分布測定器welas(PALAS, digital 2000)を用いて、センサーHP2070により測定した。該個数粒子径分布の測定は、噴霧ノズル先端部から水平方向に50cm離れた地点で行った。結果を図2に示す。
 また、本測定に用いた粒径分布測定器の測定可能範囲には限りがあるため(最大粒子径:40μm)、40μmを超える粒子径を有する粗大な粒子についてはハイスピードカメラを用いて確認した。ハイスピードカメラには、ハイスピードカメラ(商品名:VW-9000 high speed microscope、(株)キーエンス)を用いた。撮影条件は、シャッタースピード:1/30000秒、フレーム数:8000fps、画素数:640×240ピクセルとした。ハイスピードカメラにより撮影された写真を図3に示す。図に示された粒子はカメラにて撮像可能な大きな粒子の存在を示している。なお粒径分布測定器のセンサーを変更することで、40μmを超える粒子を測定することは可能である。
 (分解性能の評価)
 噴霧したフェントン反応溶液はメチレンブルーにより着色されているが、フェントン反応の進行によりメチレンブルーが分解され、減色が生じる。この色の減衰を評価することにより、分解性能の評価を行った。具体的には、噴霧後に着床したフェントン反応溶液を1Lのメスシリンダー内に回収し、噴霧して3分後の該溶液の吸光度を測定した。吸光度の測定には、吸光光度計(島津製作所、UV-1800)を用い、波長664nmでの吸光度減衰を測定することで、メチレンブルーの低減率を評価した。低減率の値が小さい方が、メチレンブルーがより分解されており、分解効率が高いことを示す。結果を表1に示す。
 [参考例2]
 噴霧圧を0.3MPaに変更した以外は、参考例1と同様に実施し、エアロゾル粒子の個数粒子径分布等の測定を行い、また分解性能を評価した。結果を図2、図3及び表1に示す。
 [参考例3]
 原料液A及びBの調製において、硫酸鉄七水和物又は過酸化水素水を添加する前に、加圧溶解方式ファインバブル発生装置(オーラテック社、OM4-MDG-045)を用いて1時間ファインバブルを発生させ続けた以外は参考例1と同様に実施し、分解性能を評価した。結果を表1に示す。なお、ファインバブルは個数粒子径分布において81.6nmにピークを有していた。また、ファインバブルの個数濃度は7.23×10個/ccであった。
 [参考例4]
 原料液Aの調製において、硫酸鉄七水和物及び硫酸を添加しなかった。また、原料液Bの調製において、過酸化水素水及び硫酸を添加しなかった。また、噴霧圧を0MPa(ノズル部に圧縮空気を導入せず、フェントン反応溶液がノズルを通過するのみで、噴霧しない)とした。これら以外は参考例3と同様に実施し、分解性能を評価した。結果を表1に示す。
 [参考例5]
 原料液Aの調製において、硫酸鉄七水和物及び硫酸を添加しなかった。また、原料液Bの調製において、過酸化水素水及び硫酸を添加しなかった。これら以外は参考例3と同様に実施し、分解性能を評価した。結果を表1に示す。
 [参考例6]
 噴霧圧を0MPa(ノズル部に圧縮空気を導入せず、フェントン反応溶液がノズルを通過するのみで、噴霧しない)としたこと以外は参考例1と同様に実施し、分解性能を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、フェントン反応溶液を噴霧した参考例1~3では、フェントン反応溶液を噴霧しない参考例4~6より低減率の値が小さく、メチレンブルーがより分解されており、分解効率が高いことが分かった。また、図2及び図3より、高圧(0.3MPa)で噴霧した参考例2では、エアロゾル粒子が、個数粒子径分布において、40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有することが分かった。低圧(0.2MPa)で噴霧した参考例1と、高圧(0.3MPa)で噴霧した参考例2とを比較した場合、参考例2の方が低減率の値が小さく、分解効率が高かった。高圧で噴霧することで、エアロゾル粒子が非常に細かな個数粒子径分布となり、またメチレンブルーの低減率の値は噴霧した瞬間に低減する傾向が得られたため、参考例2では瞬間的にラジカルがより大量に生成していると考えられる。これは、噴霧時の流体キャビテーション及びキャビティ崩壊とフェントン反応の相乗効果によるものと考えられる。さらに噴霧するフェントン反応溶液がファインバブルを含む参考例3では、より低い低減率の値(より高い分解効率)が得られた。これは、溶液に元々微細な気泡が含まれることで該気泡がキャビティの核として作用し、より高い効果が得られたと考えられる。
 [参考例7]
 たばこ(メビウススーパーライト)を1本分ガラス管内にて線速0.1m/sとなる様に流量調整した上で自然燃焼させた。発生したたばこ煙をケンブリッジパッド(Borgwaldt、44mmφ)および100mlの超純水を添加したインピンジャーにて捕集した。ケンブリッジパッドはたばこ煙を捕集後、インピンジャーに添加した100mlの超純水にて振とう抽出し、シリンジ濾過することでたばこ煙溶液を得た。その後、たばこ煙溶液に鉄イオン濃度が10mg/Lとなる量の硫酸鉄七水和物、過酸化水素濃度が100mg/Lとなる量の過酸化水素水、及びpHが4.0となる量のクエン酸(富士フイルム和光純薬、030-05525)を添加し、24時間静置した。静置後、目視で溶液の着色とスラッジ生成の有無の観察を行った。また、全有機体炭素計(島津製作所、TOC-L CPN)を用いてTOC(Total Organic Carbon)測定を実施し、たばこ煙溶液の分解率(TOC分解率)を評価した。なお、ここでの分解率とは、たばこ煙溶液への硫酸鉄七水和物及び過酸化水素水の添加前後におけるTOC濃度の減衰割合を示す。結果を表2に示す。なお、フェントン反応溶液を噴霧する際、溶液はごく微小なサイズのエアロゾル粒子として空間を漂うが、エアロゾル粒子は液滴として存在することから、液相条件下と同様の反応が生じていると推測される。そのため本試験は液相の状態にて実施した。
 [参考例8~30]
 鉄イオン濃度、過酸化水素濃度、及びpHが表2に示される値となるように、硫酸鉄七水和物、過酸化水素水、及びクエン酸の添加量を変更した以外は、参考例7と同様に実施し、溶液の着色とスラッジ生成の有無の観察、及びTOC分解率の評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、溶液の着色及びスラッジの生成が観察されず、且つTOC分解率が高い値を示す、鉄イオン濃度:51~250mg/L、過酸化水素濃度:1000~10000mg/L、及びpH:3以上5未満の条件が、エアロゾル噴霧におけるフェントン反応溶液の最適な条件であることが分かった。
 [実施例1]
 超純水に、鉄イオンの濃度が200mg/Lとなるように硫酸鉄七水和物(富士フイルム和光純薬、094-01082)を添加した。また、クエン酸(富士フイルム和光純薬、030-05525)を用いて該溶液のpHが3.0となるように調整した。これにより、原料液Aを調製した。原料液Aとは別に、過酸化水素水(富士フイルム和光純薬、081-04215)を、過酸化水素の濃度が10000mg/Lとなるように超純水に添加し、クエン酸を用いてpHを同様に3.0に調整した。これにより、原料液Bを調製した。なお、原料液A及びBの調製において、硫酸鉄七水和物又は過酸化水素水を添加する前に、加圧溶解方式ファインバブル発生装置(リビングエナジー社、LE3FS)用いて1時間ファインバブルを発生させ続けた。ファインバブルは個数粒子径分布において95.1nmにピークを有していた。また、ファインバブルの個数濃度は2.07×10個/ccであった。得られた原料液A及びBを、二流体噴霧装置スプレーカートIIIX(スプレーイング社、SCU3XVA-777)のタンク内に設置した。圧縮空気にてタンク内を加圧することで原料液A及びBを押し出し、噴霧直前に原料液A及びBを等液量で混合してフェントン反応溶液を調製し、ノズル部で該溶液と圧縮空気とを混合して噴霧できるようにした。タンク内の圧力は0.2MPa、噴霧圧は0.25MPaとした。噴霧には二流体自動スプレーガン(スプレーイング社、10535-1/4J-SS)を使用した。ノズルキャップにはフラット型タイプを使用したが、噴霧量を少量とするため、少量タイプのノズルキャップ(スプレーイング社、PF1050DF-SS)を使用した。
 約45mの室内空間にたばこ(メビウススーパーライト)を同時に8本自然燃焼させ、たばこ副流煙が満ちた空間を作製した。その後、前記二流体噴霧装置により空間内にフェントン反応溶液を噴霧した。TVOC(総揮発性有機化合物)計(RAE systems、ppbRAE 3000+)により、TVOC濃度を約1時間測定した。フェントン反応溶液を噴霧した場合のTVOC濃度と、フェントン反応溶液を噴霧せずたばこを自然燃焼させて1時間後のTVOC濃度との差分から、TVOC低減率を算出した。結果を表3に示す。
 [実施例2]
 原料液A及びBのpHを4.0に変更した以外は、実施例1と同様に実施し、TVOC濃度を測定した。結果を表3に示す。
 [実施例3]
 原料液A及びBのpHを5.0に変更した以外は、実施例1と同様に実施し、TVOC濃度を測定した。結果を表3に示す。
 [実施例4]
 原料液A及びBの調製において、クエン酸の代わりにNaOHを使用し、原料液A及びBのpHを6.0に変更した以外は、実施例1と同様に実施し、TVOC濃度を測定した。結果を表3に示す。
 [比較例1]
 原料液A及びBとして超純水を使用した(硫酸鉄七水和物、過酸化水素水、クエン酸を添加しない)以外は、実施例1と同様に実施し、TVOC濃度を測定した。結果を表3に示す。
 [参考例31]
 たばこ副流煙が満ちた空間内に何も噴霧しなかったこと以外は、実施例1と同様に実施し、TVOC濃度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、本実施形態に係る方法によりたばこ煙の分解を行った実施例1~4では、有意なTVOC低減率を示し、たばこ煙が効率よく分解されていることが分かった。特にフェントン反応溶液のpHが3~4付近においてより高い低減率を示す結果が得られた。溶液の着色及びスラッジ生成を検討した参考例28~30の結果を踏まえると、pHは3以上5未満が好ましく、3以上4以下が特に好ましいことが分かった。
1     分解装置
2     チャンバー
3     タンク
4     噴霧器
5a、5b 原料液
6     たばこ煙
7     エアロゾル
8     エアロゾル粒子
9     導入部
10    排出部
11    圧縮空気
12    フィルター
13    ファン

Claims (18)

  1.  気相中のガス状物質及び粒子状物質の分解方法であって、
     フェントン反応を起こす溶液を前記気相中に噴霧してエアロゾルを生成する工程と、
     前記エアロゾルにより前記ガス状物質及び前記粒子状物質を分解する工程と、
    を含む方法。
  2.  前記エアロゾルに含まれるエアロゾル粒子が、個数粒子径分布において、40μm以上の粒子径を有する粗大な粒子を含まず、1~10μmの範囲内にピークを有する、請求項1に記載の方法。
  3.  前記フェントン反応を起こす溶液を気相中に噴霧する方式が、2流体ノズル方式、超音波霧化方式、又は表面弾性波方式である、請求項1又は2に記載の方法。
  4.  前記フェントン反応を起こす溶液又はその原料液中にファインバブルを形成する工程をさらに含む、請求項1~3のいずれか一項に記載の方法。
  5.  前記ファインバブルの発生方式が、加圧溶解方式、超音波方式、旋回流方式、及びエジェクター方式からなる群から選択される少なくとも一種の方式である、請求項4に記載の方法。
  6.  前記ファインバブルが個数粒子径分布において300nm以下にピークを有する、請求項4又は5に記載の方法。
  7.  前記フェントン反応を起こす溶液又はその原料液中の前記ファインバブルの個数濃度が1×10個/cc以上である、請求項4~6のいずれか一項に記載の方法。
  8.  前記フェントン反応を起こす溶液が、鉄イオンと、過酸化水素とを含む、請求項1~7のいずれか一項に記載の方法。
  9.  前記フェントン反応を起こす溶液中の前記鉄イオンの濃度が51~250mg/Lである、請求項8に記載の方法。
  10.  前記フェントン反応を起こす溶液中の前記過酸化水素の濃度が1000~10000mg/Lである、請求項8又は9に記載の方法。
  11.  前記フェントン反応を起こす溶液が、さらにpH調整剤を含む、請求項8~10のいずれか一項に記載の方法。
  12.  前記pH調整剤が、クエン酸及びシュウ酸からなる群から選択される少なくとも一種の化合物である、請求項11に記載の方法。
  13.  前記フェントン反応を起こす溶液のpHが3以上5未満である、請求項1~12のいずれか一項に記載の方法。
  14.  前記ガス状物質及び前記粒子状物質がたばこ煙である、請求項1~13のいずれか一項に記載の方法。
  15.  前記フェントン反応を起こす溶液が、銅イオン、亜鉛イオン、コバルトイオン、マンガンイオン及びニッケルイオンからなる群から選択される少なくとも一種の遷移金属イオンをさらに含む、請求項1~14のいずれか一項に記載の方法。
  16.  ガス状物質及び粒子状物質を内部の気相中に含むチャンバーと、
     フェントン反応を起こす溶液の原料である複数の原料液を保持するタンクと、
     前記複数の原料液が混合されて得られるフェントン反応を起こす溶液を前記チャンバー内部の前記気相中に噴霧する噴霧器と、
    を備える、気相中のガス状物質及び粒子状物質の分解装置。
  17.  前記タンクと接続され、少なくとも一つの前記原料液中にファインバブルを形成するファインバブル発生器をさらに備える、請求項16に記載の装置。
  18.  前記ガス状物質及び前記粒子状物質がたばこ煙である、請求項16又は17に記載の装置。
PCT/JP2021/023571 2021-06-22 2021-06-22 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置 WO2022269749A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023571 WO2022269749A1 (ja) 2021-06-22 2021-06-22 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023571 WO2022269749A1 (ja) 2021-06-22 2021-06-22 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置

Publications (1)

Publication Number Publication Date
WO2022269749A1 true WO2022269749A1 (ja) 2022-12-29

Family

ID=84545299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023571 WO2022269749A1 (ja) 2021-06-22 2021-06-22 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置

Country Status (1)

Country Link
WO (1) WO2022269749A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035598A (ja) * 2000-07-28 2002-02-05 Toto Ltd 光触媒部材
JP2008290060A (ja) * 2007-04-27 2008-12-04 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素処理装置
JP2009233059A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd 空気清浄装置
JP2012527254A (ja) * 2009-05-22 2012-11-08 サバン ベンチャーズ ピーティーワイ リミテッド 殺菌エアロゾル、殺菌エアロゾルの使用方法および殺菌エアロゾルの製造方法
JP2015211967A (ja) * 2015-06-29 2015-11-26 国立研究開発法人農業・食品産業技術総合研究機構 還元性有機物を原料とするフェントン反応触媒
JP2018090547A (ja) * 2016-12-06 2018-06-14 株式会社ピーズガード 除菌剤及びその製造方法
JP2018090514A (ja) * 2016-12-01 2018-06-14 日新技研株式会社 殺菌効果を有する微細気泡混合液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035598A (ja) * 2000-07-28 2002-02-05 Toto Ltd 光触媒部材
JP2008290060A (ja) * 2007-04-27 2008-12-04 Mitsui Eng & Shipbuild Co Ltd 二酸化炭素処理装置
JP2009233059A (ja) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd 空気清浄装置
JP2012527254A (ja) * 2009-05-22 2012-11-08 サバン ベンチャーズ ピーティーワイ リミテッド 殺菌エアロゾル、殺菌エアロゾルの使用方法および殺菌エアロゾルの製造方法
JP2015211967A (ja) * 2015-06-29 2015-11-26 国立研究開発法人農業・食品産業技術総合研究機構 還元性有機物を原料とするフェントン反応触媒
JP2018090514A (ja) * 2016-12-01 2018-06-14 日新技研株式会社 殺菌効果を有する微細気泡混合液
JP2018090547A (ja) * 2016-12-06 2018-06-14 株式会社ピーズガード 除菌剤及びその製造方法

Similar Documents

Publication Publication Date Title
US20040076563A1 (en) Active structure, apparatus for activating substance, and method of activating substance
ATE349278T1 (de) Verfahren und vorrichtung zur herstellung, extraktion und lieferung von nebel mit ultrafeinen tröpfchen
Kodama et al. Surface modification of adsorbents by dielectric barrier discharge
CA2595065A1 (en) Nebulizing treatment method
WO2017083323A1 (en) Method and systems for creating large volumes of highly concentrated plasma activated liquid using cold plasma
CN104402140B (zh) 一种去除水中土霉味致嗅物质的方法和装置
IL228356A (en) Gold-platinum nanoparticle nanotubes, electrochemical processes for them and their uses
CN104743712A (zh) 一种快速去除污水中油污的方法
WO2022269749A1 (ja) 気相中のガス状物質及び粒子状物質の分解方法並びに分解装置
RU2377052C1 (ru) Способ мокрой очистки воздуха
KR20100068977A (ko) 휘발성 유기화합물 제거장치
CN110330062A (zh) 用于重金属吸附的异相凝并吸附剂及其制备方法和应用
Gao et al. Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
KR101173445B1 (ko) 악취제거용 광촉매 조성물 및 그 제조방법
US20080034969A1 (en) Air Purification by Electromagnetic Rediation of a Dispersed System
US20130104918A1 (en) Filter and method of making same
CN208512210U (zh) 一种除臭***
JP7218841B2 (ja) 脱臭方法及び脱臭装置
CN111569642B (zh) 真空紫外光催化氧化去除空气中挥发性有机污染物的方法
CN113546206A (zh) 一种能释放远红外线、生物电、负氧离子液的制作方法
EP1022042A1 (en) Method for cleaning gases
CN101711884A (zh) 一种净化液及其制备方法和在车内空气净化上的应用
CN206560785U (zh) 废气的微纳米臭氧减排***
CN210448736U (zh) 一种新型沥青混合料检验燃烧废气的治理设备
JP2009279480A (ja) 揮発性有機化合物の除去方法および除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947036

Country of ref document: EP

Kind code of ref document: A1