WO2022268061A1 - 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法 - Google Patents

适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法 Download PDF

Info

Publication number
WO2022268061A1
WO2022268061A1 PCT/CN2022/100060 CN2022100060W WO2022268061A1 WO 2022268061 A1 WO2022268061 A1 WO 2022268061A1 CN 2022100060 W CN2022100060 W CN 2022100060W WO 2022268061 A1 WO2022268061 A1 WO 2022268061A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser
arc
thick
narrow gap
Prior art date
Application number
PCT/CN2022/100060
Other languages
English (en)
French (fr)
Inventor
黄瑞生
梁晓梅
徐锴
武鹏博
陈健
聂鑫
孙谦
邹吉鹏
滕彬
Original Assignee
哈尔滨焊接研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨焊接研究院有限公司 filed Critical 哈尔滨焊接研究院有限公司
Publication of WO2022268061A1 publication Critical patent/WO2022268061A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention belongs to the technical field of material processing and welding, and in particular relates to a laser-arc hybrid welding method suitable for narrow gap welding of thick-walled components.
  • Narrow gap welding methods for thick-walled components are mainly TIG welding, MIG welding, submerged arc welding, laser wire-fill welding, electron beam welding, laser-arc hybrid welding, etc., but none of the existing welding methods can simultaneously meet the requirements of efficient, high-quality, and automatic welding production needs.
  • the outstanding advantages of narrow gap TIG welding are: high joint quality can be obtained, heat input control is relatively easy, it can be applied to the welding of most materials and suitable for all-position welding, and the biggest disadvantage is also the problem that restricts its development. The reason is that the efficiency is too low.
  • the biggest advantage of narrow-gap MIG welding is the fast deposition speed, so its welding efficiency is high.
  • narrow-gap submerged arc welding has the advantages of single-pass control of multiple metals and high efficiency, it must be cleaned of interlayer slag after welding. Due to the narrow and deep groove, the cleaning of slag, especially the melting of the initial few layers of welds, must be carried out. Slag cleaning is very difficult.
  • Laser wire-filled welding is highly sensitive to the workpiece gap, alignment, and misalignment, and has strict requirements on the assembly accuracy of the workpiece.
  • each layer of welding has a greater impact on the quality of subsequent welding, which increases the The rejection rate of welding of thick-walled members.
  • narrow-gap electron beam welding has the characteristics of high energy density, large weld depth-to-width ratio, and small weld heat-affected zone, electron beam welding needs to be welded in a vacuum environment, and the welding process for thick-walled components is expensive.
  • Narrow-gap laser-arc hybrid welding technology has significant advantages such as high welding speed, good bridging ability, adjustable joint chemical composition through welding wire, and low requirements for equipment integration. Welding problems such as low welding efficiency and poor adaptability to working conditions, but still cannot effectively solve the problems of unfused side walls, pores, high welding speed and low melting efficiency of thick-walled components with narrow gap welding. Domestic and foreign researchers have also proposed many improvement methods to solve the problem of poor side wall fusion of narrow gap laser-arc hybrid welding, such as increasing the diameter of welding wire, motor-driven rotating arc, electromagnetically controlled arc swing, motor-driven arc swing, swinging laser beam, etc. .
  • the side wall is transferred to solve the problem of poor fusion of the side wall, but these methods need to improve the welding equipment and additional auxiliary equipment, which greatly increases the cost of the welding equipment;
  • the laser beam widens the area of the molten pool, increases the flow rate of the molten pool, and transfers the welding heat to the side wall better, thereby solving the problem of poor fusion of the side wall, but the swing of the laser beam will affect the stability of the keyhole during the welding process. Affect welding quality.
  • the invention solves the problems of poor side wall fusion and low deposition efficiency of narrow gap laser-arc hybrid welding by selecting multi-strand stranded welding wire with self-rotation characteristics, and proposes a thick-walled welding structure suitable for thick-walled structural parts. Narrow gap, efficient and controlled laser-arc hybrid welding method for wall components.
  • the present invention proposes a laser-arc hybrid welding method suitable for narrow gap welding of thick-walled components, which specifically includes the following steps:
  • Multi-strand welding wire twisting parameters include multi-strand welding wire lay length multiple and helix angle;
  • Clamping fix the welded test piece after cleaning or grinding on the welding fixture, and adjust the relative position of the welding equipment and the welding sample;
  • Welding Preset the arc striking plate and the arc closing plate, first connect the shielding gas, start the arc striking of the welding torch and emit the laser beam from the laser light source to complete the welding;
  • the narrow-gap laser-arc hybrid welding groove described in step (1) is I-shaped, U-shaped, V-shaped or K-shaped.
  • the welding material described in step (1) includes aluminum, steel, titanium, and nickel-based alloys.
  • the welding groove is an ultra-narrow gap groove, and the groove angle is controlled at 1°-5°.
  • the types of stranded welding wires described in step (3) include solid welding wires of different compositions, flux-cored welding wires of different compositions, or solid-cored welding wires and flux-cored welding wires mixed for stranding, thereby realizing diversification and customization of welding wires .
  • the laser light source in step (5) is a fiber laser, a YAG laser or a CO 2 laser.
  • the arc heat source in step (5) is MIG or MAG.
  • the cleaning in step (9) is mechanical cleaning or laser cleaning.
  • the present invention adopts the combination of laser welding and multi-strand welding wire melting electrode gas shielded welding to carry out narrow gap welding of thick-walled components
  • laser deep penetration welding and multi-strand welding wire self-rotating arc welding can be used as a single heat source advantages, and can take advantage of the many benefits brought about by the recombination of the two heat sources, for example: for root welding, when the rotating arc is in front and the laser is in the back, the liquid metal is guided to the molten pool by using the characteristics of the twisted wire eddy current to stir the molten pool.
  • the flow at the bottom of the pool can enhance the characteristics of laser deep penetration welding, appropriately increase the size of the blunt edge of the welding groove, and reduce the amount of weld metal filling; for filling cover welding, it can also maximize the efficient deposition of multi-strand welding wire Features, increase the filling amount of single-pass welding metal, and solve the problems of high-speed and low deposition efficiency of traditional laser-single-wire arc hybrid welding;
  • the present invention makes full use of the characteristics of the molten pool stirred by the rotating arc of the multi-strand welding wire in the welding process, and the suppression of narrow gap welding defects of thick-walled components and the improvement of joint mechanical properties are obvious, which is reflected in four aspects: the first , using the laser to have the function of stabilizing the arc and attracting the arc, through parameter setting, the rotating arc can stir the molten pool with a fixed direction and a certain amplitude, promote the rapid expansion of the molten pool to both sides, and increase the distance between the molten pool and the side wall Heat transfer, so that the heat can be transferred to the side wall faster, so as to ensure good fusion of the side wall; second, the composite heat source increases the directional stirring speed of the liquid metal in the molten pool, provides channels and sufficient time for the overflow of welding pores, and effectively reduces the welding time.
  • the addition of laser can increase the flow of molten pool in the direction of penetration of rotary arc welds, thereby eliminating defects such as lack of fusion between multi-layer and multi-pass welding layers; fourth, the agitation of molten pool can effectively Realize grain refinement of weld seam and homogenization of chemical composition, thereby improving the mechanical properties of welded joints;
  • the present invention aims at different service environments and usage requirements of narrow-gap welded joints of different thick-walled components, and realizes narrow-gap weld forming and
  • the dual control of joint performance solves the disadvantages of traditional welding wires such as long development cycle, complicated development process, and single welding wire composition, and realizes the customized requirements of welding wires that meet the special mechanical properties of narrow gap welding joints of thick-walled components.
  • Fig. 1 is a schematic diagram of a laser-arc hybrid welding method suitable for narrow gap welding of thick-walled members according to the present invention
  • Fig. 2 is the commonly used stranding structure of the multi-strand welding wire of the present invention, wherein, 1 ⁇ 3 indicates the structure of three strands of stranding welding wire, 3+3 indicates the structure of stranding welding wire composed of three strands of welding wire and other three strands of welding wire, and 1 ⁇ 7 indicates the structure of stranding welding wire composed of three strands of welding wire Seven-strand stranded welding wire structure, 1 ⁇ 19 means 19-strand stranded welding wire structure, 7 ⁇ 7+6 means stranded welding wire structure composed of seven and seven-strand welding wires and the other six strands of welding wire;
  • Fig. 3 is a schematic diagram of different narrow gap groove forms of the present invention, wherein, (a) represents a U-shaped groove, (b) represents a V-shaped groove, and (c) represents an I-shaped groove;
  • Fig. 4 is a schematic diagram of collocation of different solid-cored welding wires and flux-cored welding wires according to the present invention, wherein (a) indicates that both are solid-cored welding wires, (b) indicates that solid-cored welding wires are matched with flux-cored welding wires, and (c) indicates that both are flux-cored welding wires welding wire;
  • Fig. 5 is a schematic diagram of twist length and twist angle of multi-strand welding wire of the present invention.
  • Fig. 6 is the weld seam topography figure of embodiment 1;
  • Fig. 7 is the weld seam X-ray pattern of embodiment 1;
  • Fig. 8 is the weld seam topography figure of embodiment 2;
  • Fig. 9 is the weld seam X-ray figure of embodiment 2.
  • 1-welding torch 2-laser beam, 3-strand welding wire, 4-welding seam, 5-plate.
  • Step 1 Groove Design:
  • the welding groove of narrow gap laser-arc hybrid welding is designed.
  • the common narrow gap laser-arc hybrid welding groove forms are I type, U type, V type or K type, etc., as shown in Figure 3 Show.
  • the materials used in this experiment include: common welding materials such as aluminum, steel, titanium, and nickel-based alloys; the present invention is not limited to the above-mentioned welding materials and groove forms.
  • the groove design should consider the following points: 1 Considering the welding cost and welding deformation of thick plate components, it is necessary to improve welding efficiency and reduce welding heat input.
  • the welding groove should be as far as possible Select the ultra-narrow gap groove, and the groove angle is controlled between 1°-5°; 2
  • 3 Beam accessibility the laser beam cannot pass through the upper surface of the groove to the bottom of the groove during the process of reaching the bottom of the groove.
  • the laser beam is blocked by the edge of the groove due to deformation or the angle of the groove is too small, which affects the transmission of the laser beam; 4 The problem of cleaning between layers. Thorough cleaning of burnt particles in the groove; 5Accessibility of the shielding gas.
  • Step 2 Select the stranding structure of the multi-strand welding wire: first, select the structure of the multi-strand welding wire according to the actual appearance of the weld.
  • the common stranding structure of the multi-strand welding wire is shown in Figure 2.
  • the stranding structure of the welding wire and the selection of specific stranding parameters constitute its structural characteristics.
  • the structure of multi-strand welding wire is various, but from the practical point of view, there are mainly five strand structures as shown in Figure 2.
  • Each twisted structure has its application focus.
  • the multi-strand welding wire of the 1 ⁇ 3 structure focuses on enhancing the penetration of the weld
  • the multi-strand welding wire of the 3+3 structure focuses on the regulation of the weld composition.
  • the 7 ⁇ 7 structure of multi-strand welding wire focuses on the deposition speed of surfacing welding and so on.
  • Step 3 Select the type of stranded welding wire: select the required welding wire grade according to the organizational requirements of the welded joint. Taking the multi-strand stranded welding wire with 1 ⁇ 3 structure as an example, as shown in Figure 4, you can choose solid core welding wire with different components, different Composition of flux cored wire or solid wire mixed with flux cored wire for twisting, so as to realize the diversification and customization of welding wire.
  • Step 4 Select the twisting parameters of the multi-strand welding wire: the setting of the twisting parameters of the multi-strand welding wire will affect the quality of the multi-strand welding wire, and will also adjust the weld shape. Relatively important parameters are lay length and helix angle.
  • the twist length multiple and helix angle of the multi-strand welding wire can adjust the weld penetration and fusion width. When the multi-strand welding wire lay length multiple and the helix angle are reduced, under the same welding parameters, a smaller Penetration depth; when the multi-strand welding wire lay length multiple and helix angle increase, under the same welding parameters, greater penetration depth will be obtained.
  • the twisting parameters of multi-strand welding wire can be formulated according to the actual welding requirements to meet the requirements of welding production for penetration depth and penetration width weld size.
  • Step 5 Set the welding process parameters: design the test parameters and test conditions according to the twisted multi-strand welding wire, select the arc welding method (MIG/MAG), and the relative position of the heat source (laser front/arc front), Laser power 1kW-30kW, welding current 100A-500A, wire spacing 0-8mm, wire diameter 0.8mm-6mm, protector flow 15L/min-30L/min, welding speed 0.3m/min-4m/min, of which the laser The included angle relative to the vertical plane is 5-15°, and the inclination angle of the welding torch relative to the vertical plane is 15°-75°.
  • the laser light source is fiber laser, YAG laser or CO2 laser.
  • the arc heat source is MIG welding (MIG) or MIG welding (MAG).
  • Step 6 Groove cleaning: Mechanical grinding or laser cleaning is performed on the surface of the workpiece to be welded to remove surface oil and oxide film.
  • Step 7 Clamping: fix the welded test piece after cleaning or grinding on the welding fixture, and adjust the relative position of the welding equipment and the welding sample.
  • the relative positions of welding equipment and welding samples are shown in Figure 1.
  • Step 8 Welding: Preset the arc striking plate and the arc closing plate, first connect the shielding gas, start the arc striking of the welding torch and emit the laser beam from the laser light source for welding.
  • Step 9 Cleaning: It is very important to clean the interlayers of laser-arc composite welding with narrow gaps in thick-walled components. If the weld seam is not cleaned well, it will not only cause problems such as slag inclusions in the welded joints and poor fusion of the side walls, but also cause problems in the next pass welding. There is a problem of poorly formed seams. Cleaning can be done by mechanical cleaning or laser cleaning.
  • the twist length of multi-strand welding wire is 12mm, and the helix angle is 17.44°.
  • the penetration depth is 5.5-6mm, and the fusion width is 9-10mm.
  • the test plate is machined to remove the surface oxide film, and the surface is wiped with alcohol to remove the attached oil, and the weldment is fixed on the welding fixture; set welding parameters: laser power 5.5 kW, welding arc current 180A, light wire spacing 4mm, welding speed 0.5m/min, shielding gas flow 20L/min.
  • laser-multi-strand welding wire MIG composite welding Through laser-multi-strand welding wire MIG composite welding, a weld with a porosity of less than 1% is obtained, and the surface of the weld is smooth and smooth, and the shape is good. Compared with the solid welding wire, under the same welding heat input, it is more The wire feeding speed of stranded wire is 1.32 times that of solid wire (as shown in Figure 6-7).
  • the penetration depth is 8.5mm-9.5mm
  • the fusion width is 20mm-22mm.
  • the invention adopts the combination of laser welding and multi-strand welding wire gas shielded welding, utilizes the self-rotation characteristics of multi-strand welding wire in the welding process, and combines the functions of laser guiding arc and stabilizing arc, through welding process parameters and
  • the matching of welding wire twisting parameters realizes the eddy current agitation of the welding pool in a fixed direction and amplitude, significantly increases the flow speed of the molten pool, and solves the problem of non-fusion of thick-walled components with narrow gap welding side walls without adding any auxiliary equipment.
  • Welding defects such as slag inclusions, pores, and incomplete fusion between layers; take advantage of the composite heat source to further improve the utilization rate of efficient deposition of multi-strand welding wires, and realize the customization of trace alloy elements in joints through the introduction of different types of multi-strand welding wires. Therefore, a new welding method suitable for high efficiency, high quality, and simultaneous control of welding shape and property is obtained, which is suitable for narrow gaps of thick-walled components.
  • the multi-strand stranded welding wire is formed by helically twisting a plurality of single wires according to a certain structure, which is a new type of structure. Welding materials.
  • the effective solution to the problem of low welding efficiency in narrow gaps of thick-walled components is mainly reflected in the following two aspects:
  • the eddy current stirring effect of the strand welding wire on the molten pool metal is used, combined with the laser
  • the leading role in the front can effectively promote the flow of liquid metal to the bottom of the molten pool, further enhance the characteristics of laser deep penetration welding, and significantly increase the penetration depth of the bottom layer weld, so that the groove can be properly increased when designing the groove
  • the size of the blunt edge, thereby reducing the overall filling volume of the weld metal in the groove on the other hand, from the perspective of filling welding technology, the filling adopts medium and small power laser and multi-strand welding wire arc hybrid welding, through the introduction of small and medium power laser It can provide heat for the melting of multi-strand welding wire.
  • the main way to achieve the high-quality welding of thick-walled components with narrow gaps is to use laser and multi-strand welding wire with self-rotation characteristics to combine the melting electrode arc, and through the twisting parameters of multi-strand welding wire, wire feeding speed and welding
  • the selection and matching of speed can realize the agitation of the weld pool in a fixed direction and a fixed amplitude.
  • the laser when the laser is in front and the arc is behind, the laser can not only play a role in preheating , also has the function of drainage, guiding the arc to achieve directional agitation of the molten pool, providing an overflow channel and overflow time for the slag and gas in the narrow gap weld to float up, and at the same time increasing the directivity of the weld depth direction to ensure welding In the process of interlayer fusion, so as to reduce welding defects such as slag inclusions, pores, and interlayer incomplete fusion; The seam structure and composition are homogenized, the mechanical properties of welded joints are improved, and high-quality welding is realized.
  • the realization of the shape-property control of narrow gap welding of thick-walled components specifically refers to the realization of weld shape through the design of the composition and structure of multi-strand stranded welding wires according to the different service environments and application characteristics of the joints of different thick-walled components.
  • the adjustment of twisting parameters of multi-strand welding wire and the wire feeding speed and welding speed in the compound welding process the adjustment of the stirring diameter and stirring frequency of the molten pool by the strand welding wire can be adjusted, thereby Realize the adjustment of welding seam penetration and welding width to meet the requirements of actual application for weld size;
  • the special use requirements of a specific mechanical property of the welded joint so as to realize the shape-property control of the weld shape and joint performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

一种适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,先坡口设计,选定多股绞合焊丝绞合结构,选定绞合焊丝种类,选定多股绞合焊丝捻制参数,多股绞合焊丝捻制参数包括多股绞合焊丝捻距倍数和螺旋升角;设定焊接工艺参数,坡口清理,装夹,焊接,清理。该方法针对窄间隙厚壁焊接结构件,通过选用具有自旋转特性的多股绞合焊丝,解决窄间隙激光-电弧复合焊侧壁熔合不良、熔敷效率低等问题,将过多股绞合焊丝制作过程中单丝成分设计及捻指参数设置,实现厚壁构件窄间隙焊缝成形与接头性能的双重调控。

Description

适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法
本申请要求于2021年6月22日提交中国专利局、申请号为202110694928.4、发明名称为“适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于材料加工焊接技术领域,尤其涉及适一种适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法。
背景技术
厚壁构件窄间隙焊接方法主要是TIG焊、MIG焊、埋弧焊、激光填丝焊、电子束焊、激光-电弧复合焊等,但是现有焊接方法都不能同时满足高效、优质、自动化焊接的生产需求。窄间隙TIG焊,其突出优点为:能得到较高的接头质量、热输入量控制较为容易、能适用于大部分材料的焊接及适用于全位置焊接,最大的缺点也是制约其发展的问题就在于效率太低。窄间隙MIG焊接最大的优势就是熔敷速度快,因此其焊接效率较高,但当焊接喷嘴进入坡口时,电弧张角较小,坡口深处易产生侧壁未熔合等缺陷。窄间隙埋弧焊尽管具有单道调控金属多、效率高等优点,但焊完一道后必须进行层间熔渣清理,由于坡口窄而深,熔渣的清理尤其是初始几层焊缝的溶渣清理十分困难。激光填丝焊接对工件间隙、对中度、错边的敏感性大,对工件装配精度要求苛刻,厚壁构件多层多道焊接时,每一层焊接对后续焊接质量影响较大,增加了厚壁构件焊接的废品率。窄间隙电子束焊虽然具有能量密度高、焊缝深宽比大、焊缝热影响区小等特点,但是电子束焊需要在真空环境下进行焊接,对于厚壁构件焊接过程成本高。
窄间隙激光-电弧复合焊接技术由于具有高焊接速度、桥接能力好、可通过焊丝调整接头化学成分、设备集成要求较低等显著优势,虽然一定程度上解决了上述单一焊接热源的热输入大、焊接效率低、工况适应性差等焊接问题,但是仍不能有效解决厚壁构件窄间隙焊接侧壁未熔合、气孔、高焊速低熔效率的问题。关于解决窄间隙激光-电弧复合焊侧壁熔合不良问题国内外研究学者也提出很多改进方法,例如增大焊丝直径、电机驱动 旋转电弧、电磁控制电弧摆动、电机驱动电弧摆动、摆动激光束等方式。采用大直径焊丝时,焊接过程焊丝端部面积增大电弧面积增大,使得在窄间隙坡口焊接中电弧笼罩坡口使电弧热量传递给侧壁,从而解决侧壁熔合不良的问题。但增大焊接直径会导致焊接热输入大,接头软化现象严重,实际生产过程中容易出现气孔、裂纹等缺陷,接头力学性能降低。采用电机驱动旋转电弧、电磁控制电弧摆动、电机驱动电弧摆动方式解决窄间隙侧部熔合不良等问题时,通过外加辅助设备使电弧在坡口内做摆动或旋转运动,增加焊接热量向更好的向侧壁传递,从而解决侧壁熔合不良的问题,但是这些方法需要改进焊接设备和外加辅助设备,大大增加了焊接设备的成本;当采用摆动激光束焊接解决窄间隙侧部熔合不良等问题,摆动的激光束扩宽熔池面积,增加熔池流速,使焊接热量更好的向侧壁传递,从而解决侧壁熔合不良的问题,但是激光束的摆动会影响焊接过程中匙孔的稳定性,影响焊接质量。
因此针对上述厚壁构件窄间隙焊接侧壁未融合、气孔等焊接问题,开发一种适用于厚壁构件焊接的新型高效、优质、节能的焊接方法十分重要。
发明内容
本发明针对窄间隙厚壁焊接结构件,通过选用具有自旋转特性的多股绞合焊丝,解决窄间隙激光-电弧复合焊侧壁熔合不良、熔敷效率低等问题,提出一种适用于厚壁构件的窄间隙、高效、控性的激光-电弧复合焊接方法。
本发明提出一种适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,具体包括以下步骤:
(1)坡口设计:根据所焊接材料及板厚设计窄间隙激光-电弧复合焊的焊接坡口;
(2)选定多股绞合焊丝绞合结构;
(3)选定绞合焊丝种类;
(4)选定多股绞合焊丝捻制参数,所述多股绞合焊丝捻制参数包括多股绞合焊丝捻距倍数和螺旋升角;
(5)设定焊接工艺参数:根据绞合后的多股绞合焊丝设计试验参数与试验条件,选定弧焊方式和热源相对位置,其中激光功率1kW-30kW,焊 接电流100A-500A,光丝间距0-8mm,焊丝直径0.8mm-6mm,保护器流量15L/min-30L/min,焊接速度0.3m/min-4m/min,其中激光器相对于竖直平面夹角为5-15°,焊枪相对于竖直平面的倾角为15°-75°;
(6)坡口清理:在被焊工件表面进行机械打磨或采用激光清洗,除去表面油污和氧化膜;
(7)装夹:将清洗或打磨完成后的被焊试件固定在焊接夹具上,调整好焊接设备与焊接试样的相对位置;
(8)焊接:预设引弧板和收弧板,先接通保护气,进行焊枪电弧引弧和激光光源发射激光束完成焊接;
(9)清理:对厚壁构件窄间隙激光-电弧复合焊层间进行清理。
优选地,步骤(1)中所述的窄间隙激光-电弧复合焊坡口形式为I型、U型、V型或K型。
优选地,步骤(1)中所述的焊接材料包括铝、钢、钛、镍基合金。
优选地,焊接坡口选择超窄间隙坡口,坡口角度控制在1°-5°。
优选地,步骤(3)中所述的绞合焊丝种类包括不同成分的实芯焊丝、不同成分的药芯焊丝或实芯焊丝与药芯焊丝混合进行绞合,从而实现焊丝多元化和定制化。
优选地,步骤(5)中所述激光光源为光纤激光器、YAG激光器或CO 2激光器。
优选地,步骤(5)中所述电弧热源为熔化极惰性气体保护焊(MIG)或熔化极活性气体保护焊(MAG)。
优选地,步骤(9)中所述清理为采用机械清洗或激光清洗。
本发明所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法的有益效果为:
1.本发明采用激光焊与多股绞合焊丝熔化极气体保护焊相结合的方式进行厚壁构件窄间隙焊接时,不仅可以利用激光深熔焊、多股绞合焊丝自旋转电弧焊单一热源的优势,并且可以利用两热源复合后带来的诸多益处,比如:对于打底焊,当旋转电弧在前、激光在后时,利用绞股焊丝涡流型搅动熔池特性,引导液态金属向熔池底部流动,可以增强激光深熔焊的特点,适当增加焊接坡口钝边尺寸,减少焊缝金属填充量;对于填充盖 面焊,还可以最大限度地发挥多股绞合焊丝高效熔敷的特性,提高单道焊接金属填充量,解决传统激光-单丝电弧复合焊高速、低熔敷效率的问题;
2.本发明充分利用焊接过程中多股绞合焊丝的旋转电弧搅动熔池的特性,为厚壁构件窄间隙焊接缺陷的抑制、接头力学性能的提高效果明显,体现在四个方面:第一,利用激光在前具有稳定电弧和吸引电弧的作用,通过参数设置,实现旋转电弧定方向、定幅度地搅动熔池,促进熔池向两侧快速扩张,增加了熔池与侧壁之间的传热,使热量更快的传递给侧壁,从而保证侧壁熔合良好;第二,复合热源提高了熔池内液态金属定向搅动速度,为焊接气孔溢出提供通道和充足的时间,有效降低了焊缝气孔率;第三,激光的加入可以增加旋转电弧焊缝熔深方向的熔池流动,从而消除多层多道焊接层间未熔合等缺陷;第四,对熔池的搅动作用,有效地实现焊缝晶粒细化、化学成分均匀化,从而提高焊接接头力学性能;
3.本发明针对不同厚壁构件窄间隙焊接接头不同的服役环境和使用需求,通过多股绞合焊丝制作过程中单丝成分设计及捻指参数设置,实现厚壁构件窄间隙焊缝成形与接头性能的双重调控,解决传统焊丝开发周期长、研制过程复杂、焊丝成分单一的弊端,实现满足厚壁构件窄间隙焊接接头某一特殊力学性能的焊丝定制化需求。
说明书附图
图1为本发明所述的一种适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法的示意图;
图2为本发明的多股绞合焊丝常用的绞合结构,其中,1×3表示三股绞合焊丝结构,3+3表示三股焊丝与另外三股焊丝组成的绞合焊丝结构,1×7表示七股绞合焊丝结构,1×19表示十九股绞合焊丝结构,7×7+6表示七跟七股焊丝与另外六股焊丝组成的绞合焊丝结构;
图3为本发明的不同窄间隙坡口形式示意图,其中,(a)表示U型坡口,(b)表示V型坡口,(c)表示I型坡口;
图4为本发明的不同实芯焊丝与药芯焊丝搭配示意图,其中,(a)表示均为实芯焊丝,(b)表示实芯焊丝与药芯焊丝搭配,(c)表示均为药芯焊丝;
图5为本发明的多股绞合焊丝捻制参数捻距和捻角示意图;
图6为实施例1的焊缝形貌图;
图7为实施例1的焊缝X射线图;
图8为实施例2的焊缝形貌图;
图9为实施例2的焊缝X射线图;
其中,1-焊枪,2-激光束,3-多股绞合焊丝,4-焊缝,5-板材。
具体实施方式
以下结合附图对本发明的具体实施方式作进一步详细的说明:
具体实施方式一:参见图1-9说明本实施方式。本实施方式所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,具体包括以下步骤:
步骤1:坡口设计:
根据所焊接材料及板厚设计窄间隙激光-电弧复合焊的焊接坡口,常见的窄间隙激光-电弧复合焊坡口形式为I型、U型、V型或K型等,如图3所示。所述本实验使用材料包括:铝、钢、钛、镍基合金等常用焊接材料;本发明不限于上述的焊接材料和坡口形式。
在焊接前,对厚板进行窄间隙坡口设计,坡口设计需考虑以下几点:①考虑到厚板构件焊接成本及焊接变形,需提高焊接效率、降低焊接热输入,焊接坡口应尽量选择超窄间隙坡口,坡口角度控制在1°-5°之间;②焊丝可达性,焊接过程中热应力和组织应力的不断叠加,坡口尺寸会发生变化,不仅要求焊丝的末端能够送到激光束作用的焊接区域,而且要求焊接过程中送丝的稳定性和指向性波动要小;③光束可达性,激光束通过坡口上表面达到坡口底部的过程中不能因为试板变形或者是坡口角度过小导致激光束被坡口边缘位置遮挡而影响到激光束的传输;④层间清理问题,多层多道焊接时,应充分考虑焊后采用何种清理工具实现对坡口内的烧损颗粒的彻底清理;⑤保护气可达性,随焊接过程中坡口尺寸的变化,自上而下吹入窄间隙坡口的气流的流速和流量都会发生变化。因此,窄间隙焊接坡口设计时,应当充分的考虑以上几个因素对实际焊接过程中的影响。
步骤2:选定多股绞合焊丝绞合结构:首先根据实际的焊缝相貌选择多股绞合焊丝的结构,多股绞合焊丝常见的绞合结构如图2所示,多股绞合焊丝的绞合结构和具体绞合参数选定组成其结构特征。理论上多股绞合 焊丝结构是多种多样的,但从实用性的角度来说主要有如图2所示的5种绞合结构。每一种绞合结构都有其应用的侧重点,如1×3结构的多股绞合焊丝偏重于增强焊缝熔透性,3+3结构的多股绞合焊丝偏重于焊缝成分调控,7×7结构的多股绞合焊丝偏重于堆焊的熔敷速度等等。
步骤3:选定绞合焊丝种类:根据焊接接头组织需求选取所需要的焊丝牌号,以1×3结构的多股绞合焊丝为例如图4所示,可以选用不同成分的实芯焊丝、不同成分的药芯焊丝或实芯焊丝与药芯焊丝混合进行绞合,从而实现焊丝多元化和定制化。
步骤4:选定多股绞合焊丝捻制参数:多股绞合焊丝的捻制参数制定会影响多股绞合焊丝的质量,同时也会对焊缝形貌进行调节,制造工工艺参数中相对重要的参数是捻距和螺旋升角。多股绞合焊丝捻距倍数和螺旋升角可以调节焊缝熔深和熔宽,当多股绞合焊丝捻距倍数和螺旋升角减少时,在相同的焊接参数下,可以获得较小的熔深;当多股绞合焊丝捻距倍数和螺旋升角增大时,在相同的焊接参数下,会获得更大熔深。在实际焊接生产过程中,可以根据焊接实际需求制定多股绞合焊丝捻制参数,以满足焊接生产对熔深和熔宽焊缝尺寸的需求。
步骤5:设定焊接工艺参数:根据绞合后的多股绞合焊丝设计试验参数与试验条件,选定弧焊方式(MIG/MAG),热源相对位置(激光前置/电弧前置),激光功率1kW-30kW,焊接电流100A-500A,光丝间距0-8mm,焊丝直径0.8mm-6mm,保护器流量15L/min-30L/min,焊接速度0.3m/min-4m/min,其中激光器相对于竖直平面夹角为5-15°,焊枪相对于竖直平面的倾角为15°-75°。
所述激光光源为光纤激光器、YAG激光器或CO 2激光器。
所述电弧热源为熔化极惰性气体保护焊(MIG)或熔化极活性气体保护焊(MAG)。
步骤6:坡口清理:在被焊工件表面进行机械打磨或采用激光清洗,除去表面油污和氧化膜。
步骤7:装夹:将清洗或打磨完成后的被焊试件固定在焊接夹具上,调整好焊接设备与焊接试样的相对位置。焊接设备与焊接试样的相对位置如图1所示。
步骤8:焊接:预设引弧板、收弧板,先接通保护气,进行焊枪电弧引弧和激光光源发射激光束进行焊接。
步骤9:清理:对于厚壁构件窄间隙激光-电弧复合焊层间清理十分重要,如果焊缝清洗不好不但会引起焊接接头出现夹渣和侧壁熔合不良等问题,还会导致下道焊缝出现成形不良的问题。清洗可以采用机械清洗或激光清洗。
实施例1:
以5A06铝合金试板为例,选取1×3结构的ER5356多股绞合焊丝,多股绞合焊丝捻距为12mm、螺旋升角为17.44°,根据焊缝熔深和熔宽的需求,熔深5.5-6mm,熔宽9-10mm,施焊前试板通过机械加工去除表面氧化膜,并用酒精擦拭表面去除附着油污,将焊件固定在焊接夹具上;设定焊接参数:激光功率5.5kW,焊接电弧电流180A,光丝间距4mm,焊接速度0.5m/min,保护气流量20L/min。调整焊枪2、激光束4和试板1的相对位置,其中激光器相对于竖直平面夹角为15°,焊枪相对于竖直平面的倾角为35°,试板前后预置引弧板和收弧板,开启激光器、起弧,施焊;焊接结束后息弧、关闭激光器,焊接完毕。通过激光-多股绞合焊丝MIG复合焊接,得到气孔率低于1%的焊缝,且焊缝表面平整光滑,形貌良好,与实芯焊丝相比在形同的焊接热输入下,多股绞合焊丝的送丝速度是实芯焊丝的1.32倍(如图6-7所示)。
实施例2:
以实施例1为基础,根据焊缝熔深和熔宽的需求,熔深8.5mm-9.5mm,熔宽20mm-22mm施焊前试板通过机械加工去除表面氧化膜,并用酒精擦拭表面去除附着油污,将焊件固定在焊接夹具上;设定焊接参数:激光功率5.5kW,焊接电弧电流220A,光丝间距4mm,焊接速度2m/min,保护气流量20L/min。调整焊枪2、激光束4和试板1的相对位置,其中激光器相对于竖直平面夹角为15°,焊枪相对于竖直平面的倾角为35°,试板前后预置引弧板和收弧板,开启激光器、起弧,施焊;焊接结束后息弧、关闭激光器,焊接完毕。通过激光-多股绞合焊丝MIG复合焊接,得到气孔率低于1%的焊缝,且焊缝表面平整光滑,形貌良好与实芯焊丝相比在形同的焊接热输入下,多股绞合焊丝的送丝速度是实芯焊丝的1.36倍(如 图8-9所示)。
本发明采用激光焊与多股绞合焊丝熔化极气体保护焊相结合的方式,利用焊接过程中多股绞合焊丝的自旋转特性,结合激光引导电弧和稳定电弧的作用,通过焊接工艺参数与焊丝捻制参数的匹配,实现对焊接熔池定方向、定幅度的涡流型搅动,显著增加熔池流动速度,在不增加任何辅助设备情况下,解决厚壁构件窄间隙焊接侧壁未熔合、夹渣、气孔、层间未熔合等焊接缺陷问题;利用复合热源优势,进一步提高多股绞合焊丝高效熔敷的利用率,通过不同种类多股绞合焊丝的引入实现接头微量合金元素定制,从而获得一种适用于厚壁构件窄间隙的高效、优质、焊接形-性同步调控的新焊接方法。
所述的解决厚壁构件窄间隙侧壁未熔合问题主要体现在以下两个方面,一方面多股绞合焊丝是由多根单丝按照一定的结构螺旋绞合而成,是一种新型结构焊接材料。当多股绞合焊丝作为熔化极焊接材料时,会产生逆绞合方向的旋转电弧,旋转电弧作用到熔池,使得熔池产生涡流型搅动,增加熔池流速使熔融的液态金属向熔池边缘定向扩散,使焊接过程中的热量更好的向熔池边缘传递,增加熔池宽度。另一方面在电弧焊的基础上,激光的加入可以在增加熔池的面积的同时提高熔池的流速。两个方面都是在增加熔池流动的基础上,增加熔池中熔融的液态金属与窄间隙侧壁的接触机会,因此可以有效解决窄间隙焊接过程侧壁熔合不良的问题。
所述有效解决厚壁构件窄间隙焊接效率低的问题主要体现在以下两个方面:一方面从打底焊的工艺角度来说,利用绞股焊丝对熔池金属的涡流型搅动作用,结合激光在前的引导作用,可以有效地促进液态金属向熔池底部流动,进一步增强了激光深熔焊的特点,使打底层焊缝熔深显著增加,这样在坡口设计时可以适当地增加坡口的钝边尺寸,进而减少坡口内焊缝金属的整体填充体积;另一方面从填充焊的工艺角度来说,填充采用中小功率激光与多股绞合焊丝电弧复合焊,通过中小功率激光的引入可以为多股绞合焊丝熔化提供热量,相比于传统的多股绞合焊丝熔化极气体保护焊相比,可以适当提高多股绞合焊丝的送丝速度,从而提高多股绞合焊丝的熔敷效率,使单位时间熔敷金属填充量增加,从而减少填充焊的层数。综上所述减少厚壁构件熔敷金属填充量和增加单层熔敷金属填充量两个 角度提高焊接效率。
所述的实现厚壁构件窄间隙优质焊接主要实现方式是,采用激光与具有自旋转特性的多股绞合焊丝熔化极电弧复合,通过对多股绞合焊丝捻制参数、送丝速度与焊接速度的选择搭配,可以实现对焊缝熔池定方向、定幅度的搅动,这一特点带来两点益处,一是当激光在前、电弧在后时,激光不仅可以起到预热的作用,还具有引流的作用,引导电弧实现对熔池的定向搅动,为窄间隙焊缝中熔渣和气体上浮提供了溢出通道和溢出时间,同时增加了焊缝深度方向的指向性,保证了焊接过程层间熔合,从而减少夹渣、气孔、层间未熔合等焊接缺陷;另一方面,利用对熔池定向搅动的特点,有利于焊缝晶粒细化、化学成分均匀化,从而实现焊缝组织、成分均匀化,提高焊接接头力学性能,实现优质焊接。
所述实现厚壁构件窄间隙焊接的形-性控制具体是指在根据不同厚壁构件接头服役环境的不同和应用特性需求,通过对多股绞合焊丝成分、结构的设计,实现焊缝成形和接头力学性能的双重调控,一方面,通过多股绞合焊丝捻制参数及复合焊接过程送丝速度、焊接速度的调控,可以调节绞股焊丝对熔池搅动直径和搅动频率的调节,从而实现焊缝熔深、熔宽的调节,以满足实际应用对焊缝尺寸的需求;另一方面,通过绞合焊丝中单丝种类、成分组合,结合结构设计,对焊丝进行定制化,以满足焊接接头某一特定力学性能的特殊使用需求,从而实现焊缝成形、接头性能的形-性控制。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,具体包括以下步骤:
    (1)坡口设计:根据所焊接材料及板厚,设计窄间隙激光-电弧复合焊的焊接坡口;
    (2)选定多股绞合焊丝绞合结构;
    (3)选定绞合焊丝种类;
    (4)选定多股绞合焊丝捻制参数,所述多股绞合焊丝捻制参数包括多股绞合焊丝捻距倍数和螺旋升角;
    (5)设定焊接工艺参数:根据绞合后的多股绞合焊丝设计试验参数与试验条件,选定弧焊方式和热源相对位置,其中激光功率1kW-30kW,焊接电流100A-500A,光丝间距0-8mm,焊丝直径0.8mm-6mm,保护器流量15L/min-30L/min,焊接速度0.3m/min-4m/min,其中激光器相对于竖直平面夹角为5-15°,焊枪相对于竖直平面的倾角为15°-75°;
    (6)坡口清理:在被焊工件表面进行机械打磨或采用激光清洗,除去表面油污和氧化膜;
    (7)装夹:将清洗或打磨完成后的被焊试件固定在焊接夹具上,调整好焊接设备与焊接试样的相对位置;
    (8)焊接:预设引弧板和收弧板,先接通保护气,进行焊枪电弧引弧和激光光源发射激光束完成焊接;
    (9)清理:对厚壁构件窄间隙激光-电弧复合焊层间进行清理。
  2. 根据权利要求1所述的激光-电弧复合焊接方法,其特征在于,步骤(1)中所述的窄间隙激光-电弧复合焊的焊接坡口形式为I型、U型、V型或K型。
  3. 根据权利要求1所述的激光-电弧复合焊接方法,其特征在于,步骤(1)中所述的焊接材料包括铝、钢、钛或镍基合金。
  4. 根据权利要求1或2所述的激光-电弧复合焊接方法,其特征在于,焊接坡口为超窄间隙坡口,焊接坡口的角度控制在1°-5°。
  5. 根据权利要求1所述的激光-电弧复合焊接方法,其特征在于,步 骤(2)中所述多股绞合焊丝绞合结构包括1×3结构、3+3结构、1×7结构、1×19结构或7×7结构。
  6. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(3)中所述的绞合焊丝种类包括不同成分的实芯焊丝、不同成分的药芯焊丝或实芯焊丝与药芯焊丝混合进行绞合得到的绞合焊丝。
  7. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(4)中根据所述多股绞合焊丝捻距倍数和螺旋升角调节焊缝熔深和熔宽。
  8. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(5)中所述弧焊方式包括MIG焊或MAG焊。
  9. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(5)中所述热源相对位置包括激光前置或电弧前置。
  10. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(5)中所述激光器为光纤激光器、钇铝石榴石晶体激光器或CO 2激光器。
  11. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(5)中所述热源为熔化极惰性气体保护焊或熔化极活性气体保护焊。
  12. 根据权利要求1所述的适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法,其特征在于,步骤(9)中所述清理为采用机械清洗或激光清洗。
PCT/CN2022/100060 2021-06-22 2022-06-21 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法 WO2022268061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110694928.4 2021-06-22
CN202110694928.4A CN113399835A (zh) 2021-06-22 2021-06-22 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法

Publications (1)

Publication Number Publication Date
WO2022268061A1 true WO2022268061A1 (zh) 2022-12-29

Family

ID=77682478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100060 WO2022268061A1 (zh) 2021-06-22 2022-06-21 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法

Country Status (2)

Country Link
CN (1) CN113399835A (zh)
WO (1) WO2022268061A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564476A (zh) * 2024-01-17 2024-02-20 深圳市铭镭激光设备有限公司 一种激光电弧复合焊接设备及焊接方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113399835A (zh) * 2021-06-22 2021-09-17 哈尔滨焊接研究院有限公司 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法
CN114309932B (zh) * 2021-12-24 2023-11-10 中国机械总院集团哈尔滨焊接研究所有限公司 一种适用于厚壁钛合金构件超窄间隙焊接的高效焊接方法
CN114986014A (zh) * 2022-06-20 2022-09-02 马鞍山钢铁股份有限公司 一种用于含铝镀层热成形钢激光拼焊用焊丝、拼焊板及其制造方法
CN116652388B (zh) * 2023-06-13 2024-01-23 中国机械总院集团哈尔滨焊接研究所有限公司 一种tc4钛合金低热输入高效激光熔丝增材制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362256A (zh) * 2008-09-10 2009-02-11 机械科学研究院哈尔滨焊接研究所 一种激光-电弧复合热源窄间隙精密焊接方法
CN101474726A (zh) * 2009-01-16 2009-07-08 北京工业大学 采用填充焊丝的窄间隙激光-电弧复合焊接方法
JP2014036995A (ja) * 2012-08-20 2014-02-27 Toshiba Corp 溶接システムおよび溶接方法
CN104384717A (zh) * 2014-11-12 2015-03-04 中国船舶重工集团公司第七二五研究所 一种厚板窄间隙实施对焊的摆动激光-热丝焊接方法
CN106475684A (zh) * 2016-12-19 2017-03-08 中国矿业大学 一种减少铝合金焊接气孔的激光‑电弧复合焊接方法
CN112894073A (zh) * 2020-12-23 2021-06-04 苏州弧瀚科技有限公司 一种利用旋转电极复合旋转电弧的窄间隙焊接方法
CN113399835A (zh) * 2021-06-22 2021-09-17 哈尔滨焊接研究院有限公司 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362256A (zh) * 2008-09-10 2009-02-11 机械科学研究院哈尔滨焊接研究所 一种激光-电弧复合热源窄间隙精密焊接方法
CN101474726A (zh) * 2009-01-16 2009-07-08 北京工业大学 采用填充焊丝的窄间隙激光-电弧复合焊接方法
JP2014036995A (ja) * 2012-08-20 2014-02-27 Toshiba Corp 溶接システムおよび溶接方法
CN104384717A (zh) * 2014-11-12 2015-03-04 中国船舶重工集团公司第七二五研究所 一种厚板窄间隙实施对焊的摆动激光-热丝焊接方法
CN106475684A (zh) * 2016-12-19 2017-03-08 中国矿业大学 一种减少铝合金焊接气孔的激光‑电弧复合焊接方法
CN112894073A (zh) * 2020-12-23 2021-06-04 苏州弧瀚科技有限公司 一种利用旋转电极复合旋转电弧的窄间隙焊接方法
CN113399835A (zh) * 2021-06-22 2021-09-17 哈尔滨焊接研究院有限公司 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564476A (zh) * 2024-01-17 2024-02-20 深圳市铭镭激光设备有限公司 一种激光电弧复合焊接设备及焊接方法
CN117564476B (zh) * 2024-01-17 2024-04-26 深圳市铭镭激光设备有限公司 一种激光电弧复合焊接设备及焊接方法

Also Published As

Publication number Publication date
CN113399835A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2022268061A1 (zh) 适用于厚壁构件窄间隙焊接的激光-电弧复合焊接方法
CN102126088B (zh) 厚板t型接头双面激光电弧复合焊接方法
CN101811231B (zh) 一种激光-冷金属过渡电弧复合热源焊接方法
CN101143401B (zh) 中高强度厚件窄间隙磁控射流熔化焊接方法
CN101670495B (zh) 中厚航天高强铝合金板的激光-tig电弧复合焊接工艺
CN103862177B (zh) 激光-gma电弧复合热源填丝焊接方法
WO2022262788A1 (zh) 一种窄间隙激光-tig电弧复合焊接装置及焊接方法
CN105583523B (zh) 一种超声辅助激光深熔焊接板材的方法
AU2020103796A4 (en) A Laser-GMA Arc Composite Heat Source Wire-filled Welding Method
JP4786402B2 (ja) Uoe鋼管の製造方法
CN104772552B (zh) 一种三丝气体保护间接电弧焊接方法、装置、堆焊方法及窄间隙焊接方法
CN110961789A (zh) 一种激光扫描-振动热丝tig复合焊接方法
CN103231156B (zh) 一种x90管线钢制造的快速埋弧焊方法
CN102069306A (zh) 激光-双丝脉冲电弧复合焊接***
CN105215552A (zh) 一种不锈钢焊接工艺
JP5586182B2 (ja) 突き合わせガスシールドアーク溶接継手および方法
CN103831533A (zh) 钛合金激光-mig复合焊接方法
CN109807420B (zh) 铝/钢异种金属低功率激光耦合dp-mig熔钎焊方法
CN115229194A (zh) 高速激光熔覆增材CuNi合金实现钛钢中厚板连接方法
CN110340530B (zh) 一种中厚板激光-电弧复合焊焊缝双面成形控制方法
CN105057890A (zh) 汽车车身的激光-mig复合焊接工艺
CN111570979A (zh) 一种异种金属焊接试板的连接方法
JP2002011575A (ja) 鋼管の溶接方法
CN113172339B (zh) 一种中厚板铝/钢异种金属激光填丝焊接方法
CN115026388A (zh) 高过渡系数的超大线能量双丝气电立焊方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202300001422

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE