WO2022267779A1 - 光电双调制的三维显示方法、显示元件和三维显示装置 - Google Patents

光电双调制的三维显示方法、显示元件和三维显示装置 Download PDF

Info

Publication number
WO2022267779A1
WO2022267779A1 PCT/CN2022/093931 CN2022093931W WO2022267779A1 WO 2022267779 A1 WO2022267779 A1 WO 2022267779A1 CN 2022093931 W CN2022093931 W CN 2022093931W WO 2022267779 A1 WO2022267779 A1 WO 2022267779A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
layer
display element
dimensional
Prior art date
Application number
PCT/CN2022/093931
Other languages
English (en)
French (fr)
Inventor
张亮亮
韩成飞
Original Assignee
上海先研光电科技 有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海先研光电科技 有限公司 filed Critical 上海先研光电科技 有限公司
Publication of WO2022267779A1 publication Critical patent/WO2022267779A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems

Definitions

  • the present disclosure relates to the field of three-dimensional display, in particular to a photoelectric double modulation three-dimensional display method, a display element and a three-dimensional display device.
  • 3D display is generally divided into true holographic 3D display and volumetric 3D display.
  • True holographic 3D display has a smaller frame size and a lower refresh frame rate during use.
  • Volumetric 3D display is divided into rotary scanning type and solid volume type.
  • the problem of rotary scanning type is that it has low brightness and is not suitable for applications requiring large screens.
  • Solid-state volumetric methods such as 3D display based on up-conversion materials and 3D display technology based on liquid crystal stacking, the 3D display based on up-conversion materials also have the problems of low brightness and low image display contrast; the viewing angle of 3D display technology based on liquid crystal layer stacking Single, generally can only be viewed directly and the resolution in the depth direction is not high.
  • an object of the present disclosure aims to solve at least one of the technical problems existing in the prior art. Therefore, an object of the present disclosure is to provide a photoelectric dual modulation three-dimensional display method, a display element and a three-dimensional display device.
  • the three-dimensional display method of photoelectric double modulation is used for three-dimensional display of a display element, the display element has multiple display layers, and the three-dimensional display method includes: at least extracting the three-dimensional image to be displayed shape information; generating a scanning scheme for each display layer of the display element according to the shape information; the scanning scheme includes: light field modulation and electric field modulation for each display layer.
  • the modulation of the electric field includes: sequential control of the electric field opening and closing of each display layer of the display element, and the electric field control of each display layer includes the following two types: applying reverse voltage, not applying voltage, and the size of the reverse voltage can be adjusted , each display layer can photoluminescence when no voltage is applied, and can not emit light when a reverse voltage higher than a preset value is applied.
  • the modulation of the light field includes: zooming of each display layer, controlling the scanning trajectory of the beam, and adjusting the cross-sectional size of the beam. Control the light field and electric field according to the scanning scheme, and address and scan the display layer to which the reverse voltage is applied in sequence.
  • the light field and the electric field are applied, and the light field can adjust the area and direction of a single light beam by controlling the transmission path or scanning trajectory of the light beam, which is helpful for scanning and generating target patterns on the display element, and By independently applying reverse voltage and no voltage to each display layer, the independent control of whether to display each display layer is realized, which facilitates the realization of layer-by-layer addressing and scanning.
  • the electric field modulation speed is fast, and the display elements are easy to manufacture. Large size and easy to produce high-resolution depth, etc., solve the problems of other displays such as small display frame, slow refresh rate, low brightness, and small viewing angle range.
  • the step of generating the scanning scheme further includes: slice according to the shape information of the three-dimensional image to be displayed, obtain the corresponding pattern information to be displayed on each display layer, and designate each image according to the pattern information to be displayed on each display layer. Displays the scan scheme for the layer.
  • the photoelectric dual modulation three-dimensional display method further includes extracting color information of the three-dimensional image to be displayed.
  • every three adjacent display layers are divided into a color adjustment group, and the quanta of the three display layers in each group emit red light when irradiated.
  • Light, green light, blue light, the three display layers of each color mediation group are superimposed to display the target color.
  • the photoelectrically modulated display element includes: a plurality of display layers, and the plurality of display layers are sequentially stacked in the thickness direction.
  • Each display layer includes: a transparent substrate, electrodes, and quantum dots.
  • the electrodes are on both sides of the quantum dots to apply an electric field to the quantum dots. When no voltage is applied to the electrodes, the quantum dots can emit light. Luminescence, the quantum dots do not emit light when the electrode is applied with a reverse voltage higher than a preset value.
  • the electrode includes two semiconductors, the quantum dot is located between the two semiconductors, and the quantum dot forms a PN junction with the two semiconductors.
  • one of the semiconductors is P-type ITO or other P-type transparent semiconductor materials
  • the other semiconductor is N-type ITO or other N-type transparent semiconductor materials.
  • the display layer is a multi-layer structure
  • the electrode includes two ITO layers arranged in parallel, the quantum dots are sandwiched between the two ITO layers, and formed as a quantum dot layer, the transparent The substrate is on one side of one of the ITO layers.
  • the two semiconductors are further provided with tabs for connection with external circuits, and the two tabs are distributed in a dislocation manner.
  • the ratio of the photoluminescence intensity of the quantum dots when no electric field is applied to that when the electric field is applied is an on-off ratio, and the on-off ratio of the quantum dots is greater than 20.
  • every three adjacent display layers are divided into a color adjustment group, and the quantum dot layers of the three display layers in each group emit red light, green light, and blue light respectively when illuminated.
  • the three-dimensional display device is characterized in that it includes sequentially arranged in the direction of the optical axis: a light emitter, a light processing element, a scanning system, a zoom element, and any one of the above-mentioned embodiments.
  • the above-mentioned display element and control system are used to emit light that can excite the quantum dots to emit light; the light processing element is used to process the light; the scanning system is used to scan the light perpendicular to the plane of the optical axis; the zoom element is used to The focus position of light in the direction of the optical axis is adjusted, and the control system is electrically connected to the electrodes of the display element to control the electric field applied to the quantum dots.
  • the light processing element includes an optical shutter and a beam shaper
  • the optical shutter is used to control the opening and closing of the light emitter
  • the beam shaper is used to shrink or expand the light beam
  • the three-dimensional display device further includes a reflector, the reflector is used to adjust the propagation direction of the light emitted by the light emitter, and the reflector is arranged between the beam shaper and the between the scanning systems described above.
  • the 3D display method and the 3D display device of the embodiments of the present disclosure have the following advantages:
  • FIG. 1 is a schematic diagram of a three-dimensional display method for photoelectric dual modulation according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a working principle of a three-dimensional display device according to an embodiment of the disclosure.
  • Fig. 3 is a schematic diagram of a display element of photoelectric double modulation according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a photoelectric double modulation display element according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a display layer of a display element for photoelectric double modulation according to an embodiment of the present disclosure.
  • FIG. 6 is an exploded perspective view of a display layer of a display element of a photoelectric double modulation according to an embodiment of the present disclosure.
  • a three-dimensional display device 100 A three-dimensional display device 100;
  • light processing element 20 optical shutter 21; beam shaper 22;
  • Display element 50 display layer 51; transparent substrate 511; first ITO layer 512; second ITO layer 513; tab 512a; quantum dot 514;
  • mirror 60 electric field controller 70; control system 80;
  • the photoelectric double modulation three-dimensional display method, the display element 50 and the three-dimensional display device 100 according to the embodiments of the present disclosure will be described below with reference to FIGS. 1-6 .
  • the three-dimensional display method of photoelectric double modulation according to the embodiment of the first aspect of the present disclosure is used for three-dimensional display of a display element 50, the display element 50 has a plurality of display layers 51, and the three-dimensional display method includes:
  • S1 At least extract shape information of a three-dimensional image to be displayed.
  • the scanning scheme includes: light field modulation and electric field modulation for each display layer 51 .
  • the modulation of the electric field includes: sequential control of the electric field opening and closing of each display layer 51 of the display element 50, and the electric field control of each display layer 51 includes the following two types: applying reverse voltage, not applying voltage, and reverse voltage
  • the size can be adjusted, and each display layer 51 can photoluminescence when no voltage is applied, and can not emit light when a reverse voltage higher than a preset value is applied.
  • the modulation of the light field includes: zooming of each display layer 51 , controlling the scanning trajectory of the light 11 , and adjusting the cross-sectional size of the light 11 .
  • the three-dimensional image needs to be obtained first, and then the recognized image information can be segmented and displayed on each independent display layer 51. middle.
  • the direction and magnitude of the electric field and whether to apply a reverse voltage can be controlled to independently control the displayed content of each display layer 51 .
  • the display layer 51 can be a solid display structure with quantum dots 514, including but not limited to a plate shape.
  • the photoluminescence efficiency of the quantum dots 514 will change when a forward voltage, a reaction voltage, or no voltage is applied.
  • the quantum dot 514 has a relatively high photoluminescence quantum efficiency, and can electroluminescence when a forward voltage is applied; Quantum dots emit light. In this way, when the light 11 irradiates the display element, no voltage is applied to the scanned display layer 51 so that the target image can be displayed under the action of the light field.
  • each display layer 51 displays an image can be independently controlled.
  • other display layers 51 are applied with a reverse voltage, and the quantum dots 514 of other display layers do not emit light.
  • the light passes through the display layer 51 located between the current light-emitting display layer 51 and the light source, and irradiates onto the display layer 51 not applied with an electric field, so that the display layer 51 can display the target image according to the scanning scheme.
  • a reverse voltage can be passed into the display layer 51 that does not need to be lit to form a certain electric field for adjustment, so as to The photons absorbed by the quantum dots can be emitted in a non-radiative relaxation manner, so that the luminous efficiency of the quantum dots is reduced or close to zero, thereby reducing the impact of photoluminescence.
  • Radiative relaxation includes two processes: fluorescence and phosphorescence.
  • S1 ⁇ S0 singlet excitation
  • this radiation relaxation is called fluorescence, which often occurs in 10-8s ⁇ 10-9s after excitation
  • T1 ⁇ S0 triplet state
  • this radiation relaxation process is called phosphorescence, and the wavelength of phosphorescence is longer than that of fluorescence .
  • Zooming in the direction of the optical axis can make the light 11 cast on any display layer 51.
  • the shape and position of the image to be displayed in each display layer 51 have a large difference, and each display layer 51 can be independent.
  • different scanning schemes are formulated. Different scanning schemes can adjust the projection angle of the light 11 according to the image to be displayed, so as to be able to display corresponding image information on the corresponding display layer 51 .
  • the preset scanning scheme set the image information to be displayed on the corresponding display layers 51 in sequence, scan and light up the corresponding display layers 51 in sequence, and the image is a complete image stitched from the display layers 51 that are sequentially lit.
  • This disclosure utilizes the performance of quantum dots 514 that can be photoluminescent when no voltage is applied and hardly emit light when a reverse voltage is applied. Displaying an image on the display element 50 is realized. This is because the three-dimensional display through photoelectric double modulation has a higher image frame rate and three-dimensional imaging longitudinal resolution, and the adjustment time of the single-layer electric field modulation quantum dot screen can be less than 10us.
  • the refresh rate of an LCD panel is 1 ms, and based on the calculation of the persistence of vision effect of the human eye at 25 Hz, the LCD panel can be stacked up to 40 layers. If you want to stack more layers, you must sacrifice the frame rate.
  • the modulation time of the quantum dot screen modulated by a single-layer electric field is less than 10 ⁇ s. Calculated by the modulation time of 10 ⁇ s and the persistence of vision effect of the human eye at 25 Hz, 4000 layers can be stacked to make the resolution and color gamut of 3D imaging higher.
  • the LCD panel needs to be limited by the frame when it is installed, and the back and side of the LCD panel cannot be viewed, while the 3D display based on photoelectric dual modulation has a wider display area and can be viewed from multiple angles.
  • the light field can adjust the area and direction of a single light beam by controlling the transmission path of the light beam or the trajectory of the scan, which helps to scan and generate the target pattern on the display element 50, Moreover, by applying reverse voltage and no voltage to each display layer 51 independently, to realize independent control of whether each display layer 51 is displayed, it is convenient to realize layer-by-layer addressing and scanning.
  • the electric field modulation speed is fast, and the display elements 50 has the characteristics of easy production of large volume and high resolution depth, etc. It solves the problems of other displays such as small display frame, slow refresh rate, low brightness, and small viewing angle range.
  • the step of generating the scanning scheme further includes: slice according to the shape information of the three-dimensional image to be displayed, obtain the corresponding pattern information to be displayed by each display layer 51, and specify each The scan scheme for layer 51 is shown.
  • each image information corresponds to a display layer 51, since each display layer 51 has its own electrodes , the brightness of different display layers 51 can be changed by applying a reverse voltage.
  • the patterns to be displayed on each display layer 51 can form a separate scanning scheme. The interval between addressing and scanning is short, and they are superimposed in sequence to form a complete image. Due to the existence of the phenomenon of persistence of vision, the human eye will not feel the time difference when viewing the image.
  • the three-dimensional image information to be displayed is divided into multiple trivial slices, which are displayed in multiple display layers 51 by scanning one by one, so as to present complete image information, which can increase the display speed and image contrast, and improve The viewing experience.
  • the photoelectric dual modulation three-dimensional display method further includes: extracting color information of the three-dimensional image to be displayed.
  • the color information and shape information of the three-dimensional image can be obtained together and then sliced and displayed in the corresponding display layer 51 .
  • extracting the corresponding color information and attaching it to the displayed image can make the displayed image more vivid and have a higher degree of restoration, increase the recognition of the displayed image, and increase the contrast through color rendering, so that Presents a more refined picture quality.
  • every three adjacent display layers 51 are divided into a color adjustment group, and when the quantum dots of the three display layers 51 in each group are irradiated, they are respectively Red light, green light, and blue light are emitted, and the three display layers 51 of each color adjustment group are superimposed to display the target color.
  • each display layer 51 in the same color adjustment group is an independent quantum dot unit, and the quantum dot unit can be a red light-emitting quantum dot unit, a green light-emitting quantum dot unit, and a blue light-emitting quantum dot unit.
  • the quantum dot unit is emitted, and three adjacent quantum dot units of different colors are arranged periodically, and every three quantum dot units of different colors form a color adjustment group, and transparent glue can be used to bond between multiple color adjustment groups.
  • the three display layers 51 that can display different colors are arranged at intervals, and under the action of photoluminescence and applied reverse voltage, patterns and brightness of different colors can be displayed.
  • Red, green, and blue are the current scientific and technological
  • the three primary colors can be superimposed to display the colors required by the displayed image, which helps the display element 50 to display different colors, so that the displayed image is more colorful, more comprehensive, and more accurate in describing the image.
  • the photoelectrically modulated display element 50 includes: a plurality of display layers 51 , and the plurality of display layers 51 are sequentially stacked in the thickness direction.
  • Each display layer 51 includes: a transparent substrate 511, electrodes, and quantum dots 514.
  • the electrodes are on both sides of the quantum dots 514 to apply an electric field to the quantum dots 514.
  • the quantum dots 514 can photoluminescence.
  • the quantum dots 514 do not emit light when a reverse voltage higher than a preset value is applied.
  • the display layers 51 are arranged sequentially in their thickness direction (the first direction A).
  • one side of the transparent substrate 511 is provided with electrodes, and the electrodes are far away from the side of the transparent substrate 511.
  • Quantum dots 514 are provided on one side, and electrodes are provided on the side of the quantum dots 514 away from the transparent substrate 511 .
  • the side of the transparent substrate 511 of one display layer 51 away from the quantum dots 514 is in contact with the electrode of the other display layer 51 on the side away from the transparent substrate 511 , forming a stacked display element 50 .
  • the display element 50 may be a quantum dot composite block material, that is, a display area for three-dimensional imaging, and the material of the transparent substrate 511 may be glass.
  • a plurality of display layers 51 are stacked, so that images that are divided into multiple slices can correspond to a plurality of display layers 51, and the time to turn on the display element 50 is reduced.
  • the quantum Whether the dot 514 emits light or not, the control principle is simple and the control element is single, so that the display element 50 has higher stability.
  • the electrode includes two semiconductors, the quantum dot 514 is located between the two semiconductors, and the quantum dot 514 forms a PN junction with the two semiconductors. That is to say, different doping processes are used to make P-type semiconductors and N-type semiconductors on the same semiconductor substrate through diffusion, and a space charge region is formed at their interface called PN junction, which has unidirectional conductivity. .
  • the quantum dots 514 and the semiconductor form a PN junction to form a semiconductor, which can increase the unidirectional conductivity of the display element 50 and improve the conductivity of the display element 50 .
  • the display layer 51 is a multilayer structure
  • the electrodes include two parallel ITO (Indium Tin Oxide: Indium Tin Oxide) layers, and the quantum dots 514 are sandwiched between the two ITO layers between, and is formed as a quantum dot layer, and the transparent substrate 511 is located on one side of one of the ITO layers.
  • Indium tin oxide is plated on both sides of the quantum dot layer.
  • Indium tin oxide is a mixture that presents a transparent brown film or a yellowish gray block. It is made of a mixture of 90% and 10%.
  • Indium tin oxide has conductive properties , can be used as an electrode.
  • one of the ITO layers is used as a cathode, and the other ITO layer is used as an anode, forming an electric field between the two ITO layers.
  • the two ITO layers can also be provided with tabs 512a for connection with external circuits, so as to apply an electric field with adjustable size and direction to the quantum dots 514 located between the two ITO layers to control whether the display layer 51 is lit.
  • the first ITO layer 512 is located between the transparent substrate 511 and the quantum dots 514
  • the second ITO layer 513 is distributed symmetrically with the first ITO layer 512 with respect to the quantum dots 514 .
  • the two semiconductors are further provided with tabs 512 a for connecting to external circuits, and the two tabs 512 a are distributed in a misaligned manner.
  • the tabs 512a corresponding to the two ITO layers may be misaligned in the first direction A.
  • dislocation-connected tabs 512a are provided on the two semiconductors to facilitate the connection of the semiconductors to external circuits and reduce the influence of the generated electric field due to the short distance between the two tabs.
  • FIG. 5 and Figure 6 it is the structure of a single display layer 51.
  • the carriers (referring to the charged material particles that can move freely) of the ITO layer coated on both sides of the quantum dot 514 are not completely the same, and one of them is n Type ITO layer or other N-type transparent semiconductor material, the other is a p-type ITO layer or other P-type transparent semiconductor material, so "ITO-quantum dot layer-ITO" can be formed on the transparent substrate 511 of a single display layer 51 PN junction structure.
  • the photoluminescence quantum efficiency decreases, and can even be close to zero.
  • the photons absorbed by the quantum dots 514 are almost emitted in a non-radiative relaxation mode.
  • the electric field is removed, the luminous efficiency of the quantum dots 514 It can be restored to the initial state again, and the range of applied voltage is -0.5V ⁇ -20V.
  • quantum dots 514 This characteristic of quantum dots 514 is called the switching effect of quantum dots 514 modulated by an electric field. Under the condition of keeping the excitation light parameters constant, the ratio of the photoluminescence intensity of quantum dots 514 when no electric field is applied and when electric field is applied is the switching effect. Ratio, in the embodiment of the present disclosure, preferably the on-off ratio is greater than 20.
  • one side of the transparent substrate 511 is plated with indium tin oxide as an electrode, because indium oxide in indium tin oxide has high transmittance, and tin oxide has high conductivity, so it is plated with
  • the transparent substrate 511 of indium tin oxide forms a conductive glass with high transmittance, which facilitates the display element 50 to present a clear image, and at the same time facilitates the application of an electric field to control the brightness and darkness of the display layer 51 and increase the contrast, so as to improve the longitudinal direction of the display layer 51. resolution.
  • every three adjacent display layers 51 are divided into a color adjustment group, and the quantum dots 514 of the three display layers 51 in each group emit red light, green light, and blue light respectively when illuminated.
  • the three display layers 51 in each color adjustment group exhibit three primary colors of red, green and blue under the irradiation of the light 11, so as to realize the diversity of colors through the adjustment of the light field and the electric field, and can present
  • the full-color 3D display with a larger format enables high-contrast images and enhances the user's viewing experience.
  • the display element 50 is a three-dimensional display imaging area, and its material structure is a multi-layer transparent glass substrate quantum dot luminescent material.
  • the display layer 51 is bonded with the display layer 51 using transparent glue, and each layer has two sides of the quantum dot 514. Both are made with electrodes, and the function of the electrodes can apply an electric field with adjustable magnitude and direction to the quantum dots 514 .
  • the three-dimensional display device 100 includes sequentially arranged in the direction of the optical axis: a light emitter 10, a light processing element 20, a scanning system 30, a zoom element 40, any one of the above embodiments Display element 50 and control system 80 .
  • the light emitter 10 is used to emit light 11 capable of exciting quantum dots to emit light
  • the light processing element 20 is used to process the light 11
  • the scanning system 30 is used to scan the light 11 perpendicular to the optical axis plane
  • the zoom element 40 is used to Adjust the focus position of the light 11 in the direction of the optical axis
  • the control system 80 is electrically connected to the electrodes of the display element 50 to control the application of an electric field to the quantum dots 514 .
  • the control system 80 can control multiple components in the three-dimensional display device 100.
  • the light emitter 10 projects the light 11 to the light processing element 20. After being processed by the light processing element 20, the light 11 can be projected to the scanning system 30.
  • the scanning system 30 can deflect the light 11 in the extending direction (first direction A) of the vertical optical axis, so that it can be projected to the zoom member 40, and finally projected to the display element 50 and under the adjustment of the electric field controller 70, the light ray 11 is displayed on the display element 50. display the desired image.
  • the wavelength of the light emitter 10 is less than 410nm, and the power is adjustable between 0.1mw-500mw.
  • the light emitter 10 with a wavelength of 355nm, 375nm, or 405nm can be preferably selected.
  • Scanning system 30 can select microelectromechanical scanning system 30, digital micromirror 60 system and digital light processing system etc.;
  • Component 40 may include a f-field lens and a zoom lens.
  • the flat-field focusing lens has a flat image surface, and the image quality is consistent on the entire image surface, with small aberrations and no vignetting.
  • the deflection velocity corresponds to a certain scanning velocity, so the incident light with constant angular velocity can be used to realize linear scanning.
  • the deflection position of the incident ray 11 is generally placed at the focal point in front of the object space, and the chief ray 11 of the image side is parallel to the optical axis, which can achieve consistent image quality on-axis and off-axis to a large extent, and improve illumination uniformity.
  • the zoom lens can change the focal point in the first direction A in the propagation path of the light 11 .
  • the combination of the flat-field focusing lens and the zoom lens increases the clarity and accuracy of the light 11 projecting on the display element 50 , reducing the possibility of tilting or deflection of the presented image.
  • the acquisition of image information and the propagation path of the light 11 and the thickness of the light 11 are carried out through the light emitter 10, the light processing element 20, the scanning system 30 and the zoom element 40 arranged in sequence in the first direction A. Adjust so that the acquired light 11 can be projected to different display layers 51, and finally a complete image is displayed on the display element 50, increasing the size of the display frame can improve the contrast and brightness of the image, and realize viewing from multiple angles.
  • the light processing element 20 includes an optical shutter 21 and a beam shaper 22 , the optical shutter 21 is used to control the opening and closing of the light emitter 10 , and the beam shaper 22 is used to shrink or expand the light beam.
  • the optical aperture of the optical shutter 21 is larger than the spot size of the light emitter 10
  • the light emitter 10 may be a laser emitter
  • the maximum response frequency of the optical shutter 21 is greater than 5 MHz.
  • the beam shaper 22 has a light entrance hole and a light exit hole, and the aperture of the light exit hole of the light entrance hole is adjustable.
  • the light exit hole can be 1 to 6 times the light entrance hole;
  • the light entrance hole can be 1 to 6 times the light exit hole; when the light 11 does not need to be adjusted, the light entrance hole and the light exit hole of the beam shaper 22 can have the same aperture size.
  • the maximum diameter of the light exit hole of the light processing element 20 is controlled at 10 mm, and the transmittance of the light 11 excited by the light emitter 10 is greater than 90%.
  • the optical shutter 21 can control the opening and closing of the light emitter 10, and the beam shaper 22 can adjust the size of the emitted light 11, so that the image to be acquired can be adjusted and projected to the corresponding display screen through the light 11, improving the three-dimensional display.
  • the light transmittance of the device 100 increases the image quality so that the three-dimensional display device 100 can meet the projection requirements of different light rays 11 .
  • the three-dimensional display device 100 further includes a mirror 60, the mirror 60 is used to adjust the propagation direction of the light 11 emitted by the light emitter 10, and the mirror 60 is arranged between the beam shaper 22 and the scanning system 30 .
  • the scanning system 30 needs to maintain a certain angle with the light processing element 20 to facilitate the adjustment of the light 11. Therefore, in order for the light 11 to project to the scanning system 30, a reflection can be added during the transmission of the light 11 to the scanning system 30
  • the mirror 60 is used to accurately project the light 11 to the scanning system 30, and the mirror 60 may be a dielectric film mirror.
  • a reflective mirror 60 is provided between the beam shaper 22 and the scanning system 30, and the reflective mirror 60 changes the path of the light 11, so that the light 11 projected by the beam shaper 22 can be directed to the scanning system 30, so that the scanning system 30 It can receive the light 11 and project the light 11 to the zoom element 40 , and finally display complete image information on the display element 50 .
  • both the 3D display method and the 3D display device 100 of the embodiments of the present disclosure have the following advantages:
  • first feature and second feature may include one or more of these features.
  • plural means two or more.
  • a first feature being “on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but pass through them. Additional feature contacts between.
  • "above”, “above” and “above” a first feature on a second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than Second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种光电双调制的三维显示方法,用于显示元件(50)的三维显示,显示元件(50)具有多个显示层(51),三维显示方法包括:至少提取需要显示的三维图像的形状信息;根据形状信息生成显示元件(50)的每个显示层(51)的扫描方案;提取需要显示的三维图像的颜色信息。由此,有助于在显示元件(50)上扫描生成目标图案,而且通过对每个显示层(51)独立地施加反向电压与不施加电压,以实现对每个显示层(51)的是否显示的独立控制,便于实现逐层寻址扫描,此外,具有电场调制速度快、显示元件(50)具有易于制作大体积以及易于制作高分辨纵深的特点,解决了其他显示器显示画幅小、刷新频率慢、亮度低、观看角度范围小等问题。还公开了一种显示元件(50)和三维显示装置(100)。

Description

光电双调制的三维显示方法、显示元件和三维显示装置
相关申请的交叉引用
本公开要求于2021年06月23日提交的申请号为202110701335.6,名称为“光电双调制的三维显示方法、显示元件和三维显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及三维显示领域,尤其是涉及一种光电双调制的三维显示方法、显示元件和三维显示装置。
背景技术
在相关技术中,三维显示一般分为真全息三维显示和体积式三维显示,真全息三维显示显示的画幅较小,且在使用的过程中刷新帧频较低。
体积式三维显示分为旋转扫描式和固态体积式,旋转扫描式的问题在于亮度低、不适合在需要大屏幕的应用场合。固态体积式如基于上转换材料的三维显示和基于液晶层叠的三维显示技术,基于上转换材料的三维显示也存在亮度低、图像显示对比度不高的问题;基于液晶层层叠的三维显示技术观看角度单一,一般只能直面观看且其纵深方向的分辨率不高。
因此,亟需一种显示画幅大、刷新频率高、显示亮度高的光学显示元件。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种光电双调制的三维显示方法、显示元件和三维显示装置。
根据本公开第一方面实施例的光电双调制的三维显示方法,用于显示元件的三维显示,所述显示元件具有多个显示层,所述三维显示方法包括:至少提取需要显示的三维图像的形状信息;根据所述形状信息生成显示元件的每个显示层的扫描方案;所述扫描方案包括:对每个显示层的光场调制和电场调制。对电场的调制包括:对显示元件的各个显示层的电场开闭依序控制,对每个显示层的电场控制包括以下两种:施加反向电压、不施加电压,反向电压的大小可调节,每个显示层在不施加电压时能够光致发光,在被施加高于预设数值的反向电压时能够不发光。对光场的调制包括:每个显示层的变焦、控制光束的扫描轨迹、调节光束的截面大小。按照扫描方案控制光场和电场,依序对被 施加反向电压的显示层进行寻址扫描。
由此,在三维显示方法中施加光场和电场,光场可以通过控制光束的传递路径或者扫描的轨迹,调节单个光束射出的面积和方向,有助于在显示元件上扫描生成目标图案,而且通过对每个显示层独立地施加反向电压与不施加电压,以实现对每个显示层的是否显示的独立控制,便于实现逐层寻址扫描,此外电场调制速度快、显示元件具有易于制作大体积以及易于制作高分辨纵深等特点,解决了其他显示器显示画幅小、刷新频率慢、亮度低、观看角度范围小等问题。
在一些实施例中,生成扫描方案的步骤还包括:根据要显示的三维图像的形状信息进行切片,得到对应的各个显示层需要显示的图案信息,根据各个显示层需要显示的图案信息指定每个显示层的扫描方案。
在一些实施例中,所述的光电双调制的三维显示方法还包括提取需要显示的三维图像的颜色信息。
在一些实施例中,根据对显示元件的各个显示层的扫描顺序,将每三个相邻的显示层划分为一个颜色调节组,每组内的三个显示层的量子被照射时分别发出红光、绿光、蓝光,每个颜色调解组的三个显示层叠加后显示目标颜色。
根据本公开第二方面实施例的光电调制的显示元件包括:多个显示层,多个显示层在厚度方向依次层叠设置。每个所述显示层包括:透明基板、电极、量子点,所述电极于所述量子点的两侧,以为所述量子点施加电场,在所述电极不施加电压时所述量子点能够光致发光,在所述电极被施加高于预设数值的反向电压时所述量子点不发光。
在一些实施例中,所述电极包括两个半导体,量子点位于两个半导体之间,所述量子点与两个所述半导体形成PN结。
在一些实施例中,其中一个半导体为P型的ITO或其他P型透明半导体材料,另一个半导体为N型的ITO或其他N型透明半导体材料。
在一些实施例中,所述显示层为多层结构,所述电极包括两个平行设置的ITO层,所述量子点夹在两个ITO层之间,且形成为量子点层,所述透明基板位于其中一个ITO层的一侧。
在一些实施例中,两个半导体还设有用于与外部电路的连接的极耳,且两个所述极耳错位分布。
在一些实施例中,不加电场与加电场时所述量子点的光致发光强度比值为开关比,所述量子点的开关比大于20。
在一些实施例中,每三个相邻的显示层划分为一个颜色调节组,每组内的三个显示 层的量子点层被照射时分别发出红光、绿光、蓝光。
根据本公开第三方面实施例的三维显示装置,其特征在于,包括在光轴方向上依次排布的:光发射器、光处理元件、扫描***、变焦件、上述实施例中任一项所述的显示元件以及控制***。所述光发射器用于发出能够激发量子点发光的光线;所述光处理元件用于对光线进行处理;所述扫描***用于对光线进行垂直于光轴平面的扫描;所述变焦件用于对光线在光轴方向的聚焦位置进行调节,所述控制***与所述显示元件的电极电连接,以控制所述对所述量子点的施加电场。
在一些实施例中,所述光处理元件包括光学快门和光束整形器,所述光学快门用于控制所述光发射器的开闭,所述光束整形器用于对光线进行缩束或扩束。
在一些实施例中,所述的三维显示装置还包括反射镜,所述反射镜用于对光发射器所发出的光线的传播方向进行调整,所述反射镜设于所述光束整形器与所述扫描***之间。
综上,本公开实施例的三维显示方法、三维显示装置均具有以下优点:
1)实现可360°观看图像;
2)高对比度,通过对不同显示层面施加电场调控,得到高对比度图像;
3)实现全彩大画幅三维显示;
4)纵向分辨率高。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的光电双调制的三维显示方法示意图。
图2是根据本公开实施例的三维显示装置的工作原理示意图。
图3是根据本公开一种实施例的光电双调制的显示元件的示意图。
图4是根据本公开另一种实施例的光电双调制的显示元件的示意图。
图5是根据本公开实施例的光电双调制的显示元件的显示层的结构示意图。
图6是根据本公开实施例的光电双调制的显示元件的显示层的立体拆分示意图。
附图标记:
三维显示装置100;
光发射器10;光线11;
光处理元件20;光学快门21;光束整形器22;
扫描***30;变焦件40;
显示元件50;显示层51;透明基板511;第一IT0层512;第二IT0层513;极耳512a;量子点514;
反射镜60;电场控制器70;控制***80;
第一方向A。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考图1-图6描述根据本公开实施例的光电双调制的三维显示方法、显示元件50和三维显示装置100。
根据本公开第一方面实施例的光电双调制的三维显示方法,用于显示元件50的三维显示,显示元件50具有多个显示层51,三维显示方法包括:
S1、至少提取需要显示的三维图像的形状信息。
S2、根据形状信息生成显示元件50的每个显示层51的扫描方案。
扫描方案包括:对每个显示层51的光场调制和电场调制。对电场的调制包括:对显示元件50的各个显示层51的电场开闭依序控制,对每个显示层51的电场控制包括以下两种:施加反向电压、不施加电压,反向电压的大小可调节,每个显示层51在不施加电压时能够光致发光,在被施加高于预设数值的反向电压时能够不发光。对光场的调制包括:每个显示层51的变焦、控制光线11的扫描轨迹、调节光线11的截面大小。
也就是说,如图1所示,在需要将三维图像显示在显示元件50上时,需要先获取三维图像,然后对识别的图像信息进行切分,能分别显示在每个独立的显示层51中。在显示的过程中,可以控制电场的方向、大小以及是否施加反向电压,独立控制每个显示层51显示的内容。
举例而言,在一个具体实施例中,显示层51可以是具有量子点514的固体显示结构,包括但不限于板状,显示层51的显示是利用量子点514的性能实现的,即利用在电场的作用下,当施加正向电压、反应电压、不施加电压时,量子点514的光致发光的效率会改变的特性。具体而言,在不施加电场时,量子点514具有较高的光致发光量子效率,在施加正向电压时能够电发光,在施加反向电压时,当有光线照射到量子点514 上时量子点会发光。这样,当光线11照射显示元件时,被扫描的显示层51不施加电压从而能够在光场作用下显示目标图像。
每个显示层51是否显示图像能够被独立控制,在某一个显示层51显示目标图像时,其他显示层51被施加反向电压,其他显示层的量子点514不发光,在光线照射过来时,光线穿过位于当前发光显示层51与光源之间的显示层51,照射到未被施加电场的显示层51上,从而使该显示层51能够根据扫描方案显示目标图像。
换言之,为了避免光线11在经过显示层51时,对其他显示层51的亮度和清晰度存在干扰,可以向不需要点亮的显示层51中通入反向电压形成一定的电场进行调节,以使量子点吸收的光子能够以非辐射驰豫的方式散发出去,使量子点的发光效率降低或者接近于零,进而降低光致发光带来的影响。
辐射驰豫分子从能量较高的激发态通过弛豫过程回到基态并发射光子的衰变过程。辐射弛豫包括二种过程:荧光和磷光,当一个分子从其最低单线激发(S1)自发地发射光子回到基态(S0),即S1→S0,此辐射弛豫称荧光,它常发生在激发后的10-8s~10-9s;若一个分子从最低三重态(T1)自发的发射光子回到基态,即T1→S0,此辐射弛豫过程称磷光,磷光的波长比荧光的要长。
S3、按照扫描方案控制光场和电场,依序对被施加反向电压的显示层51进行寻址扫描。
在光轴方向的变焦,可以使光线11能够投向***示层51,显示图像时,每个显示层51中需要显示的图像的形状和位置具有较大的差异,每个显示层51都可以独立扫描,制定不同的扫描方案,不同的扫描方案可以根据需要显示的图像调节光线11投射的角度,以能够在对应的显示层51显示对应的图像信息。根据预设的扫描方案,设置依次与其对应的显示层51需要显示的图像信息,依次扫描点亮对应的显示层51,图像是依次点亮后的显示层51拼接出的完整图像。
在相关的技术中,通过控制多个液晶面板的亮暗,实现需要的图像信息,本公开利用量子点514在不施加电压时能够光致发光、施加反向电压时几乎不发光这一性能,实现在显示元件50上显示图像。这是因为通过光电双调制的三维显示,具有较高的图像帧率和三维成像纵向分辨率,单层电场调制量子点屏的调至时间可以小于10us。
具体地,由于液晶面板的刷新速度慢,限制了液晶面板的三维显示深度方向的分辨率。例如,液晶面板刷新速度1ms,按人眼视觉暂留效应25Hz计算,液晶面板最多层叠40层,若想层叠更多就必须牺牲帧频。单层电场调制的量子点屏调制时间小于10μs,以调制时间10μs,人眼视觉暂留效应25Hz计算,可以层叠4000层,以使三维成 像的分辨率和色域更高。其次,液晶面板在安装时需要边框对其进行限定,液晶面板的背面和侧面均无法观看,而基于光电双调制的三维显示的显示区域更广,可从多个角度进行观看。
由此,在三维显示方法中施加光场和电场,光场可以通过控制光束的传递路径或者扫描的轨迹,调节单个光束射出的面积和方向,有助于在显示元件50上扫描生成目标图案,而且通过对每个显示层51独立地施加反向电压与不施加电压,以实现对每个显示层51的是否显示的独立控制,便于实现逐层寻址扫描,此外电场调制速度快、显示元件50具有易于制作大体积以及易于制作高分辨纵深等特点,解决了其他显示器显示画幅小、刷新频率慢、亮度低、观看角度范围小等问题。
可选地,生成扫描方案的步骤还包括:根据要显示的三维图像的形状信息进行切片,得到对应的各个显示层51需要显示的图案信息,根据各个显示层51需要显示的图案信息指定每个显示层51的扫描方案。
在识别到三维显示的图像时,会对显示的图像进行分析并进行相应的切片,切分成多个图像信息,每个图像信息对应一个显示层51,由于每个显示层51都具有自己的电极,可以通入反向电压改变不同显示层51的亮度。每个显示层51需要显示的图案可以单独形成一个扫描方案,寻址扫描的间隔时间较短,依次叠加形成完整的图像,由于视觉暂留现象的存在,人眼观看图像不会感受到时间差。
由此,将要显示的三维图像信息切分成多个琐碎的切片,通过逐个扫描的方式分别显示在多个显示层51中,以能够呈现完整的图像信息,可以增加显示的速度和图像对比度,提升观看的体验。
在一些实施例中,光电双调制的三维显示方法还包括:提取需要显示的三维图像的颜色信息。三维图像的颜色信息和形状信息可以一起被获取后切片,显示在与之对应的显示层51中。
由此,提取与之对应的颜色信息并附着在显示的图像中,可以使显示的图像更为生动、还原度更高,增加显示的图像的辨识度,通过颜色的渲染增加对比度,以使能够呈现更加精致的画质。
具体地,根据对显示元件50的各个显示层51的扫描顺序,将每三个相邻的显示层51划分为一个颜色调节组,每组内的三个显示层51的量子点被照射时分别发出红光、绿光、蓝光,每个颜色调解组的三个显示层51叠加后显示目标颜色。
如图3和图5所示,同一个颜色调节组内的每个显示层51都是一个独立的量子点单元,量子点单元可以是红光发射量子点单元,绿光发射量子点单元,蓝光发射量子点 单元,且三个相邻的不同颜色的量子点单元周期性排列,每三个不同颜色的量子点单元形成一个颜色调节组,多个颜色调节组之间可以使用透明胶水粘接。
由此,将三个可以显示不同颜色的显示层51间隔排布,在光致发光和施加的反向电压的作用下,可以显示不同颜色的图案和亮度,红、绿、蓝作为现在科学技术的三原色,可以叠加显示出显示图像需要的颜色,有助于显示元件50显示不同的色彩,以使显示的图像更加五彩斑斓,显示的更加全面、且对图像描述的更加准确。
根据本公开第二方面实施例的光电调制的显示元件50包括:多个显示层51,多个显示层51在厚度方向依次层叠设置。每个显示层51包括:透明基板511、电极、量子点514,电极于量子点514的两侧,以为量子点514施加电场,在电极不施加电压时量子点514能够光致发光,在电极被施加高于预设数值的反向电压时量子点514不发光。
如图3和图5所示,显示层51在其厚度方向(第一方向A)上依次排布,在单个显示层51中,透明基板511的一侧设有电极,电极远离透明基板511的一侧设有量子点514,量子点514远离透明基板511的一侧设有电极。相邻两个显示层51中,其中一个显示层51的透明基板511远离量子点514的一侧与另一个显示层51的远离透明基板511一侧的电极接触,形成叠加的显示元件50。显示元件50可以是量子点复合体块材料,即用作三维成像的显示区域,透明基板511的材质可以是玻璃。
由此,多个显示层51层叠设置,便于切分多个切片的图像能够与多个显示层51对应,降低点亮显示元件50的时间,通过在显示层51中施加反向电压能够控制量子点514是否发光,控制原理简单、控制元素单一,以使显示元件50具有较高的稳定性。
进一步地,电极包括两个半导体,量子点514位于两个半导体之间,量子点514与两个半导体形成PN结。即指采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体基片上,在它们的交界面就形成空间电荷区称为PN结,其具有单向导电性。
由此,量子点514与半导体形成PN结集成为一个半导体,可以增加显示元件50的单向导电性,提高显示元件50的导电能力。
可选地,如图4和图5所示,显示层51为多层结构,电极包括两个平行设置的ITO(氧化铟锡:Indium Tin Oxide)层,量子点514夹在两个ITO层之间,且形成为量子点层,透明基板511位于其中一个ITO层的一侧。在量子点层的两侧分别镀有氧化铟锡,氧化铟锡是一种混合物,呈现出透明茶色薄膜或黄偏灰色块状,由90%和10%混合而成,氧化铟锡具有导电性能,可以作为电极。
这样,当两个ITO层与外界电连接时,其中一个ITO层作为阴极,另一个ITO层作 为阳极,在两个ITO层之间形成了电场。
两个ITO层还可以设有极耳512a,用于与外部电路的连接,以对位于两个ITO层之间的量子点514施加大小和方向可调的电场,控制显示层51的是否点亮。位于透明基板511和量子点514中间的为第一ITO层512,与第一ITO层512关于量子点514对称分布的为第二ITO层513。
可选地,如图6所示,两个半导体还设有用于与外部电路的连接的极耳512a,且两个极耳512a错位分布。两个ITO层对应的极耳512a在第一方向A上可以错位分布。
由此,在两个半导体上设置错位连接的极耳512a,便于半导体与外部电路的连接,降低由于两个极耳之间距离过近对产生的电场的影响
如图5和图6所示为单个显示层51的结构,量子点514两侧所镀ITO层的载流子(指可以自由移动的带有电荷的物质微粒)不完全相同,其中一个为n型的ITO层或者其他N型透明半导体材料,另一个为p型的ITO层或者其他P型透明半导体材料,于是在单个显示层51的透明基板511上可以形成“ITO—量子点层—ITO”的PN结结构。
在PN结施加一定反向电场后光致发光量子效率降低,甚至可以接近为零,量子点514吸收的光子几乎都以非辐射弛豫的方式散发出去,撤去电场后,量子点514的发光效率又可以恢复到初始状态,施加电压的范围为-0.5V~-20V。
量子点514的这种特性我们称之为量子点514在电场调制的开关效应,在保持激发光参数不变的情况下,不加电场与加电场时量子点514的光致发光强度比值为开关比,在本公开实施例中,优选开关比大于20。
由此,在单个显示层51中,透明基板511的一侧镀有氧化铟锡作为电极,是由于氧化铟锡中的氧化铟具有高透过率,氧化锡具有高的导电能力,所以镀有氧化铟锡的透明基板511形成了具有高透过率的导电玻璃,便于显示元件50呈现清晰的图像,同时便于施加电场控制显示层51的亮暗、增加对比度,以能够提高显示层51的纵向分辨率。
在一些实施例中,每三个相邻的显示层51划分为一个颜色调节组,每组内的三个显示层51的量子点514被照射时分别发出红光、绿光、蓝光。
由此,每个颜色调节组中的三个显示层51在光线11照射下呈现出红、绿、蓝三种原色,以便于能够通过光场和电场的调节实现色彩的多样性,能够呈现出较大画幅的全彩三维显示,使得到高对比度的图像,增加用户的观看体验。
具体地,显示元件50为三维显示成像区域,其材料结构为多层透明玻璃基板量子点发光材料,显示层51与显示层51之间使用透明胶水粘接,每层具有的量子点514的两面都制作有电极,电极的作用可以对量子点514施加可调控大小和方向的电场。
根据本公开第三方面实施例的三维显示装置100包括在光轴方向上依次排布的:光发射器10、光处理元件20、扫描***30、变焦件40、上述实施例中任一项的显示元件50以及控制***80。光发射器10用于发出能够激发量子点发光的光线11;光处理元件20用于对光线11进行处理;扫描***30用于对光线11进行垂直于光轴平面的扫描;变焦件40用于对光线11在光轴方向的聚焦位置进行调节;控制***80与显示元件50的电极电连接,以控制对量子点514施加电场。
如图2所示,控制***80可以控制三维显示装置100中的多个元件,光发射器10将光线11投向光处理元件20,经过光处理元件20的处理,光线11可以投向扫描***30,扫描***30可以在垂直光轴的延伸方向(第一方向A)对光线11进行偏转,以使能够投向变焦件40,最终投向显示元件50且在电场控制器70的调节下,在显示元件50上显示需要的图像。
其中,光发射器10的波长小于410nm,功率在0.1mw-500mw之间可调,这里为了能够更好的激发光致发光量子点514,可以优先选用355nm、375nm、405nm波长的光发射器10;扫描***30可以选用微机电扫描***30、数字微反射镜60***和数字光处理***等;变焦件40则优先选用变焦范围在50mm-200mm,变焦响应时间小于30ms的变焦件40,且变焦件40可以包括平场聚焦透镜和变焦透镜。
平场聚焦透镜对于单色光成像,像面为一平面,而且整个像面上像质一致,且像差小,无渐晕存在。对于一定的入射光线11偏转速度对应着一定的扫描速度,因此可用等角速度的入射光实现线性扫描。其入射光线11的偏转位置一般置于物空间前面焦点处,像方主光线11与光轴平行,可在很大程度上实现轴上、轴外像质一致,并提高照明均匀性。变焦透镜在光线11的传播路径中,可以改变在第一方向A的焦点。通过平场聚焦透镜和变焦透镜的组合增加光线11投向显示元件50的清晰度和准确度,降低呈现的图像出现倾斜或者偏转的可能性。
由此,通过在第一方向A上依次排布的光发射器10、光处理元件20、扫描***30和变焦件40等对图像信息的获取以及对光线11的传播路径、光线11的粗细进行调整,以使获取的光线11能够投向不同的显示层51,最终在显示元件50上显示完整的图像,增加显示画幅的大小,可以提高图像的对比度和亮度,实现多个角度的观看。
如图2所示,光处理元件20包括光学快门21和光束整形器22,光学快门21用于控制光发射器10的开闭,光束整形器22用于对光线进行缩束或扩束。
具体地,光学快门21的通光孔径大于光发射器10的光斑大小,光发射器10可以是激光发射器,光学快门21的最大响应频率大于5MHz。光束整形器22具有进光孔和 出光孔,且进光孔的出光孔的孔径可调,在需要对光线11整形扩束时,出光孔可以是进光孔的1至6倍;在需要对光线11整形缩束时,进光孔可以是出光孔的1至6倍;在不需要对光线11进行调节时,光束整形器22的进光孔和出光孔的孔径大小可以相同。此外,光处理元件20的出光孔最大直径控制在10mm,且对光发射器10激发的光线11透过率大于90%。
由此,光学快门21可以控制光发射器10的开闭,光束整形器22可以调节射出的光线11的大小,以使能够将需要获取的图像通过光线11调节投向对应的显示屏,提高三维显示装置100的透光率、增加画质,以使三维显示装置100能够满足不同光线11的投射需求。
可选地,三维显示装置100还包括反射镜60,反射镜60用于对光发射器10所发出的光线11的传播方向进行调整,反射镜60设于光束整形器22与扫描***30之间。
这是由于扫描***30需要和光处理元件20之间保持一定的角度,便于对光线11进行调节,所以为了光线11能够投向扫描***30,可以在光线11传播至扫描***30的过程中增加一个反射镜60,用来将光线11准确投向扫描***30,反射镜60可以是介质膜反射镜。
由此,在光束整形器22和扫描***30之间设置反射镜60,反射镜60改变光线11传递的路径,便于光束整形器22投射出的光线11能够投向扫描***30,以使扫描***30能够接受光线11并且将光线11投射出至变焦件40,最终在显示元件50上显示完整的图像信息。
综上,本公开实施例的三维显示方法、三维显示装置100均具有以下优点:
1)实现可360°观看图像;
2)高对比度,通过对不同显示层51面施加电场调控,得到高对比度图像;
3)实现全彩大画幅三维显示;
4)纵向分辨率高。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。 在本公开的描述中,“多个”的含义是两个或两个以上。在本公开的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。在本公开的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (14)

  1. 光电双调制的三维显示方法,用于显示元件的三维显示,所述显示元件具有多个显示层,所述三维显示方法包括:
    至少提取需要显示的三维图像的形状信息;
    根据所述形状信息生成显示元件的每个显示层的扫描方案,所述扫描方案包括:对每个显示层的光场调制和电场调制;
    对电场的调制包括:对显示元件的各个显示层的电场开闭依序控制,对每个显示层的电场控制包括以下两种:施加反向电压、不施加电压,反向电压的大小可调节,每个显示层在不施加电压时能够光致发光,在被施加高于预设数值的反向电压时能够不发光;
    对光场的调制包括:每个显示层的变焦、控制光束的扫描轨迹、调节光束的截面大小;
    按照扫描方案控制光场和电场,依序对被施加反向电压的显示层进行寻址扫描。
  2. 根据权利要求1所述的光电双调制的三维显示方法,其中,
    生成扫描方案的步骤还包括:根据要显示的三维图像的形状信息进行切片,得到对应的各个显示层需要显示的图案信息,根据各个显示层需要显示的图案信息制定每个显示层的扫描方案。
  3. 根据权利要求1-2中任一项所述的光电双调制的三维显示方法,其中,还包括提取需要显示的三维图像的颜色信息。
  4. 根据权利要求3所述的光电双调制的三维显示方法,其中,根据对显示元件的各个显示层的扫描顺序,将每三个相邻的显示层划分为一个颜色调节组,每组内的三个显示层的量子被照射时分别发出红光、绿光、蓝光,每个颜色调解组的三个显示层叠加后显示目标颜色。
  5. 光电双调制的显示元件,包括:多个显示层,多个显示层在厚度方向依次层叠设置,每个所述显示层包括:
    透明基板、电极、量子点,所述电极于所述量子点的两侧,以为所述量子点施加电场,在所述电极不施加电压时所述量子点能够光致发光,在所述电极被施加高于预设数值的反向电压时所述量子点不发光。
  6. 根据权利要求5所述的光电双调制的显示元件,其中,所述电极包括两个半导体,量子点位于两个半导体之间,所述量子点与两个所述半导体形成PN结。
  7. 根据权利要求6所述的光电双调制的显示元件,其中,其中一个半导体为P型的ITO或其他P型透明半导体材料,另一个半导体为N型的ITO或其他N型透明半导体材料。
  8. 根据权利要求7所述的光电双调制的显示元件,其中,所述显示层为多层结构,所述电极包括两个平行设置的ITO层,所述量子点夹在两个ITO层之间,且形成为量子点层,所述透明基板位于其中一个ITO层的一侧。
  9. 根据权利要求6所述的光电双调制的显示元件,其中,两个半导体还设有用于与外部电路的连接的极耳,且两个所述极耳错位分布。
  10. 根据权利要求5-9中任一项所述的光电双调制的显示元件,其中,不加电场与加电场时所述量子点的光致发光强度比值为开关比,所述量子点的开关比大于20。
  11. 根据权利要求5-9中任一项所述的光电双调制的显示元件,其中,每三个相邻的显示层划分为一个颜色调节组,每组内的三个显示层的量子点层被照射时分别发出红光、绿光、蓝光。
  12. 三维显示装置,包括在光轴方向上依次排布的:
    光发射器,所述光发射器用于发出能够激发量子点发光的光线;
    光处理元件,所述光处理元件用于对光线进行处理;
    扫描***,所述扫描***用于对光线进行垂直于光轴平面的扫描;
    变焦件,所述变焦件用于对光线在光轴方向的聚焦位置进行调节;
    如权利要求5-11中任一项所述的显示元件;以及
    控制***,所述控制***与所述显示元件的电极电连接,以控制所述对所述量子点的施加电场。
  13. 根据权利要求12所述的三维显示装置,其中,所述光处理元件包括光学快门和光束整形器,所述光学快门用于控制所述光发射器的开闭,所述光束整形器用于对光线进行缩束或扩束。
  14. 根据权利要求13所述的三维显示装置,其中,还包括反射镜,所述反射镜用于对光发射器所发出的光线的传播方向进行调整,所述反射镜设于所述光束整形器与所述扫描***之间。
PCT/CN2022/093931 2021-06-23 2022-05-19 光电双调制的三维显示方法、显示元件和三维显示装置 WO2022267779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110701335.6 2021-06-23
CN202110701335.6A CN113433715A (zh) 2021-06-23 2021-06-23 光电双调制的三维显示方法、显示元件和三维显示装置

Publications (1)

Publication Number Publication Date
WO2022267779A1 true WO2022267779A1 (zh) 2022-12-29

Family

ID=77753902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093931 WO2022267779A1 (zh) 2021-06-23 2022-05-19 光电双调制的三维显示方法、显示元件和三维显示装置

Country Status (2)

Country Link
CN (1) CN113433715A (zh)
WO (1) WO2022267779A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433715A (zh) * 2021-06-23 2021-09-24 上海先研光电科技有限公司 光电双调制的三维显示方法、显示元件和三维显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279989A1 (en) * 2004-06-16 2005-12-22 Exalos Ag Broadband light emitting device
CN106098957A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
CN107153273A (zh) * 2017-03-23 2017-09-12 上海九山电子科技有限公司 三维量子点显示***和方法
US20180131927A1 (en) * 2016-11-08 2018-05-10 Kevin Vora Three-Dimensional Volumetric Display Using Photoluminescent Materials
CN109188821A (zh) * 2018-09-17 2019-01-11 南京中电熊猫平板显示科技有限公司 一种显示面板、制造方法、显示装置及其控制方法
CN111416053A (zh) * 2020-05-11 2020-07-14 京东方科技集团股份有限公司 一种量子点发光器件及其制备方法、显示面板、显示装置
CN113433715A (zh) * 2021-06-23 2021-09-24 上海先研光电科技有限公司 光电双调制的三维显示方法、显示元件和三维显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946671B2 (ja) * 2002-07-23 2007-07-18 三星エスディアイ株式会社 光子発光抑制素子基盤の画像表示装置及びこれを利用した画像表示方法
US7119765B2 (en) * 2002-08-23 2006-10-10 Samsung Sdi Co., Ltd. Circuit for driving matrix display panel with photoluminescence quenching devices, and matrix display apparatus incorporating the circuit
KR100540548B1 (ko) * 2002-12-10 2006-01-11 엘지이노텍 주식회사 양자점 발광 소자 및 그의 제조 방법
TWI422088B (zh) * 2008-10-23 2014-01-01 Nat Univ Tsing Hua 具有奈米點之有機發光二極體及其製造方法
CN105140264A (zh) * 2015-09-06 2015-12-09 友达光电股份有限公司 一种多原色量子点显示器
CN110622056B (zh) * 2017-03-09 2022-04-29 安波福技术有限公司 多层显示***中的内容重定向
CN111338096B (zh) * 2020-03-26 2021-06-08 吉林大学 一种激发光三维聚焦扫描***及其图像扫描方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279989A1 (en) * 2004-06-16 2005-12-22 Exalos Ag Broadband light emitting device
CN106098957A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
US20180131927A1 (en) * 2016-11-08 2018-05-10 Kevin Vora Three-Dimensional Volumetric Display Using Photoluminescent Materials
CN107153273A (zh) * 2017-03-23 2017-09-12 上海九山电子科技有限公司 三维量子点显示***和方法
CN109188821A (zh) * 2018-09-17 2019-01-11 南京中电熊猫平板显示科技有限公司 一种显示面板、制造方法、显示装置及其控制方法
CN111416053A (zh) * 2020-05-11 2020-07-14 京东方科技集团股份有限公司 一种量子点发光器件及其制备方法、显示面板、显示装置
CN113433715A (zh) * 2021-06-23 2021-09-24 上海先研光电科技有限公司 光电双调制的三维显示方法、显示元件和三维显示装置

Also Published As

Publication number Publication date
CN113433715A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
EP3196696B1 (en) Laser light source and laser display system
EP1967020B1 (en) Rear projector and rear projecting method
TWI260088B (en) Display panel, method of manufacturing display panel, and display apparatus
JP3433647B2 (ja) プロジェクタ装置
CN100474098C (zh) 应用光致发光熄灭设备的显示装置及用其显示图像的方法
CN113966481B (zh) 一种针对观察者对图像进行方向性控制的显示器
JP2004511016A (ja) フラットパネルディスプレイ
CN112596263B (zh) 空间立体成像装置及方法
CN109283692A (zh) 一种显示装置和显示装置的驱动方法
WO2022267779A1 (zh) 光电双调制的三维显示方法、显示元件和三维显示装置
CN109378404A (zh) 一种3d显示面板及其制作方法,以及显示装置
US10838225B2 (en) Three-dimensional display device
CN107045227B (zh) 2d/3d可切换的液晶显示装置
TW201030426A (en) Addressable backlight for LCD panel
CN1677173A (zh) 图像显示装置
KR960016286B1 (ko) 투사형화상표시장치
US8585207B1 (en) Up converters and GaAs based semiconductor light source system for large color gamut display and projection displays
WO2021050918A1 (en) Switchable illumination apparatus and privacy display
WO2018133024A1 (en) Photoluminescent nanocrystals based color liquid crystal display for switchable two dimensional/three dimensional displays with wider color gamut and high energy efficiency
CN105045029B (zh) 显示装置及其制造方法
JP3762343B2 (ja) 投写型表示装置
JP2000180960A (ja) 表示装置
JP2003121769A (ja) 平面型表示装置
US10613408B2 (en) Luminous display substrate, display panel and method of controlling the same, and display apparatus
CN215181232U (zh) 定向背光模组及定向背光立体显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827277

Country of ref document: EP

Kind code of ref document: A1