WO2022267694A1 - 一种显示调节方法、装置、设备及介质 - Google Patents

一种显示调节方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022267694A1
WO2022267694A1 PCT/CN2022/090231 CN2022090231W WO2022267694A1 WO 2022267694 A1 WO2022267694 A1 WO 2022267694A1 CN 2022090231 W CN2022090231 W CN 2022090231W WO 2022267694 A1 WO2022267694 A1 WO 2022267694A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
angle
stereoscopic display
screen
change information
Prior art date
Application number
PCT/CN2022/090231
Other languages
English (en)
French (fr)
Inventor
张建伟
Original Assignee
纵深视觉科技(南京)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纵深视觉科技(南京)有限责任公司 filed Critical 纵深视觉科技(南京)有限责任公司
Priority to CN202280002547.8A priority Critical patent/CN115868158A/zh
Publication of WO2022267694A1 publication Critical patent/WO2022267694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • Embodiments of the present application relate to stereoscopic display technology, for example, to a display adjustment method, device, device and medium.
  • Three-dimensional (3-dimension, 3D) display technology uses various optical methods to enable people's left and right eyes to receive different parallax images, and superimpose and regenerate the image information through the brain to form a front-back, up-down, left-right , far-near and other stereoscopic effects.
  • Autostereoscopic display technology can use optical technologies such as parallax barriers, lenticular lenses, and pointing backlights to enable users to watch images with 3D effects without wearing auxiliary equipment. Deformation occurs, and the position will also change relative to the physical space, which affects the user's perception. How to keep the virtual display content relative to the user before and after the screen is flipped is very important to improve the user's viewing effect.
  • Embodiments of the present application provide a display adjustment method, device, device, and medium.
  • the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space can be maintained before and after the screen is flipped. unchanged, improving the user's viewing experience.
  • the embodiment of the present application provides a display adjustment method, the method includes:
  • the stereoscopic display content of the stereoscopic display screen is adjusted, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the embodiment of the present application also provides a display adjustment device, the device comprising:
  • the angle change information acquisition module is configured to acquire the angle change information before and after the flipping of the stereoscopic display screen
  • the display adjustment module is configured to adjust the stereoscopic display content of the stereoscopic display screen according to the angle change information, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the embodiment of the present application also provides an electronic device, including:
  • a memory configured to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is made to implement the display adjustment method provided in the first aspect of the present application.
  • the embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the display adjustment method provided in the first aspect of the present application is implemented.
  • Figure 1a is a flowchart of a display adjustment method in Embodiment 1 of the present application.
  • Fig. 1b is a schematic diagram of the change of the virtual display content before and after the screen is flipped according to one embodiment of the present application;
  • Fig. 2a is a flow chart of a display adjustment method in Embodiment 2 of the present application.
  • Fig. 2b is a schematic diagram of angle information acquisition using the keyboard as a reference plane in Embodiment 2 of the present application;
  • Fig. 2c is a schematic diagram of angle information acquisition using the horizontal plane as a reference plane in Embodiment 2 of the present application;
  • FIG. 2d is a schematic diagram of virtual camera pose adjustment in multi-viewpoint mode in Embodiment 2 of the present application.
  • Fig. 3a is a flowchart of a display adjustment method in Embodiment 3 of the present application.
  • FIG. 3b is a schematic diagram of virtual camera pose adjustment in dual-viewpoint mode in Embodiment 3 of the present application.
  • Fig. 4 is a schematic structural diagram of a display adjustment device in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a device provided in Embodiment 5 of the present application.
  • Figure 1a is a flow chart of a display adjustment method in Embodiment 1 of the present application.
  • the technical solution of this embodiment is applicable to the situation where the virtual display content viewed by the user remains unchanged by adjusting the three-dimensional display content.
  • the method can be executed by a display adjustment device, which can be realized by software and/or hardware, and can be integrated in various general-purpose computer equipment.
  • the display adjustment method in this embodiment includes the following steps:
  • Step 110 acquiring angle change information before and after flipping of the stereoscopic display screen.
  • the stereoscopic display screen is a free stereoscopic display device based on the stereoscopic vision mechanism of the human eye.
  • the stereoscopic display screen may be a display screen of a notebook computer or a desktop computer, or may be a dedicated screen for displaying stereoscopic content.
  • the angle change information is used as a basis for adjusting the stereoscopic display content.
  • the angle change information may be composed of the magnitude and direction of the angle change.
  • the angle change information is a 30° counterclockwise rotation.
  • the three-dimensional display screen when the user watches the three-dimensional display content through the three-dimensional display screen, in order to ensure viewing comfort, the three-dimensional display screen is often turned over.
  • the screen is flipped in any direction, but because the user's position remains unchanged, the screen flips, and the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space will change.
  • the change of presentation characteristics includes the virtual display content Deformation occurs, for example, the size changes, or the edge of the displayed content is stretched and deformed, and the position changes relative to the actual physical space.
  • the original position of the stereoscopic display screen is P1
  • the flipped position is P2.
  • the displayed cube is stretched in the depth direction, and its position relative to the actual physical space also changes.
  • the horizontal ground of the virtual display will also change with the flipping of the stereoscopic display screen, which will affect the viewing experience of the user.
  • the angle, and the direction of the screen flipping, the angle and the direction of the screen flipping are used together as angle change information, so as to adjust the stereoscopic display content of the stereoscopic display screen according to the angle change information.
  • the stereoscopic display screen is the display screen of a notebook computer placed on a horizontal plane
  • the plane where the keyboard of the notebook computer is located can be used as a reference plane
  • the stereoscopic display screen can be measured through an angle sensor arranged at the corner of the keyboard and the stereoscopic display screen.
  • the angle change information before and after flipping can be determined by the number of pulses output by the angle sensor during the rotation of the stereoscopic display screen, the magnitude of the rotation angle and the rotation direction.
  • the stereoscopic display screen is the display screen of a notebook computer placed on a notebook computer support
  • the horizontal plane in the environment where the notebook computer is located for example, the desktop on which the notebook computer is placed
  • the angle sensor between the stereoscopic display screen and the keyboard cannot directly calculate the angle between the screen and the ground.
  • the inertial sensor in the stereoscopic display screen can be used to calculate the attitude of the stereoscopic display screen relative to the actual physical world. Angle on the reference plane, and then according to the angle of the three-dimensional display screen measured by the inertial sensor relative to the reference plane before and after flipping, the angle change information is calculated.
  • the stereoscopic display screen is a lenticular lens type autostereoscopic display screen, a parallax barrier type autostereoscopic display screen, a pointing backlight type autostereoscopic display screen or a glasses type 3D display screen.
  • a type of stereoscopic display screen which may be a lenticular-type autostereoscopic display screen, a parallax barrier-type autostereoscopic display screen, a pointing backlight autostereoscopic display screen, or a glasses-type 3D display screen, etc.
  • a screen capable of stereoscopic content display may be in a multi-viewpoint mode, or in a dual-viewpoint mode.
  • Step 120 adjust the stereoscopic display content of the stereoscopic display screen according to the angle change information, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the stereoscopic display content of the stereoscopic display screen is adjusted accordingly.
  • the position and flip angle of the virtual camera that generates the parallax image can be adjusted along with the change of the deflection angle of the screen, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the virtual camera that generates the parallax image can be controlled to rotate 30° clockwise, so that the virtual display content viewed by the user is relative to the actual physical space. Presentation characteristics remain the same.
  • the angle change information before and after the flipping of the stereoscopic display screen is obtained, and according to the angle change information, the stereoscopic display content of the stereoscopic display screen is adjusted, so that the virtual display content viewed by the user is relative to the actual physical display content.
  • the presentation characteristics of the space remain unchanged, which solves the problem that the position and shape of the virtual display content change due to screen flipping.
  • the stereoscopic display content is adjusted to improve the viewing experience of the user.
  • Fig. 2a is a flow chart of a display adjustment method in Embodiment 2 of the present application.
  • This embodiment refines the above-mentioned embodiment, and provides steps for obtaining angle change information before and after the stereoscopic display screen is flipped, and according to The angle change information is a step of adjusting the stereoscopic display content of the stereoscopic display screen.
  • a display adjustment method provided by Embodiment 2 of the present application will be described below in conjunction with FIG. 2a, including the following steps:
  • Step 210 Obtain the first angle of the stereoscopic display screen relative to the reference plane before flipping, the second angle of the stereoscopic display screen relative to the reference plane after flipping, and the screen flipping direction of the stereoscopic display screen through an angle sensor or an inertial sensor.
  • a method for obtaining angle change information before and after the stereoscopic display screen is flipped is provided.
  • an angle sensor or an inertial sensor is used to obtain the first angle of the stereoscopic display screen relative to the reference plane before flipping, and the first angle relative to the reference plane after flipping. Two angles, and the screen flip direction of the stereoscopic display screen.
  • the above-mentioned first angle ⁇ 1 and second angle ⁇ 2 can be measured by an angle sensor installed at the corner of the stereoscopic display screen and the keyboard and flip direction.
  • the above-mentioned first angle ⁇ 3, second angle ⁇ 4 and flipping direction can be measured by an inertial sensor in the stereoscopic display screen.
  • the display mode of the stereoscopic display screen is multi-viewpoint display.
  • the display mode of the stereoscopic display screen is multi-viewpoint display. Since the multi-viewpoint display mode contains more than 2 viewpoints, the range that the user can move and watch can be increased. Therefore, this mode does not need to install human eyes.
  • the tracking mechanism can reduce the amount of calculation.
  • Step 220 calculate the absolute difference between the first angle and the second angle, and use the absolute difference and the screen flip direction as angle change information.
  • the absolute difference between the first angle and the second angle is calculated, and finally the angle change information is composed of the absolute difference and the screen flip direction.
  • the first angle is 60°
  • the second angle is 45°
  • the screen flip direction is clockwise.
  • the angle can be formed by the absolute difference between the first angle and the second angle of 15° and the clockwise direction change information.
  • the absolute difference between the first angle and the second angle in this application is the absolute value of the difference between the first angle and the second angle.
  • Step 230 Adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the screen flip direction, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged .
  • the pose of the virtual camera is adjusted according to the absolute difference between the first angle and the second angle, and the screen flip direction, so that the virtual display content viewed by the user is relatively
  • the presentation characteristics of the actual physical space remain unchanged.
  • the virtual camera may be rotated in a direction opposite to the screen flipping direction, so as to overcome the change of the virtual display content caused by the screen flipping.
  • the virtual camera when the screen is flipped backward along the rotation axis parallel to the horizontal plane (that is, flipped clockwise), the virtual camera can be rotated in the opposite direction of the screen flip direction (that is, counterclockwise); When the vertical rotation axis is flipped to the left (that is, clockwise), the virtual camera can be rotated in a direction opposite to the screen flip direction (that is, counterclockwise).
  • adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the screen flip direction including:
  • a method is provided to adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the direction of screen flipping.
  • the rotation axis is set as the rotation center, along the Rotate the virtual camera by an angle equal to the absolute difference between the first angle and the second angle in the direction opposite to the screen flip direction.
  • the angle sensor measures the first angle between the stereoscopic display screen and the reference plane before flipping is ⁇ 1, and the first angle between the stereoscopic display screen and the reference plane after flipping is ⁇ 1.
  • the second angle is ⁇ 2, and the flip direction is clockwise, then the absolute difference between the first angle and the second angle can be obtained, and then the virtual camera that generates the parallax image can be controlled, and the connection axis between the display screen and the keyboard of the laptop is used as the rotation axis axis, flipping counterclockwise by the same angle as the absolute difference, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the first angle of the stereoscopic display screen relative to the reference plane before being flipped, the second angle of the stereoscopic display screen relative to the reference plane after flipping, and the angle of the stereoscopic display screen are obtained by an angle sensor or an inertial sensor.
  • the screen flip direction calculate the absolute difference between the first angle and the second angle, and use the absolute difference and the screen flip direction as the angle change information, and finally according to the absolute difference between the first angle and the second angle, and the screen flip direction , the pose of the virtual camera is adjusted, and the stereoscopic display content can be adjusted according to the flipping direction and angle of the stereoscopic display screen, so that the viewing experience of the user will not be affected when the screen is flipped during the viewing process of the user.
  • Fig. 3a is a flow chart of a display adjustment method in Embodiment 3 of the present application. This embodiment is refined on the basis of the above-mentioned embodiments, and provides the steps of obtaining angle change information before and after the stereoscopic display screen is flipped, and according to The angle change information is a step of adjusting the stereoscopic display content of the stereoscopic display screen.
  • a display adjustment method provided by Embodiment 3 of the present application will be described below in conjunction with FIG. 3a, including the following steps:
  • Step 310 Obtain the first angle of the stereoscopic display screen relative to the reference plane before flipping, the second angle of the stereoscopic display screen relative to the reference plane after flipping, and the screen flipping direction of the stereoscopic display screen through an angle sensor or an inertial sensor.
  • the display mode of the stereoscopic display screen is dual-viewpoint display.
  • the display mode of the stereoscopic display screen can also be a dual-viewpoint display.
  • This is a display mode that has higher requirements on the viewing position of the user, which limits the degree of freedom of viewing, and can increase the human eye tracking mechanism.
  • the position of the human eye changes, by changing the layout position on the stereoscopic display screen or changing the position of the stereoscopic light splitting device (such as a lenticular lens, a parallax barrier, etc.) relative to the screen.
  • Step 320 Calculate the absolute difference between the first angle and the second angle, and use the absolute difference and the screen flip direction as angle change information.
  • Step 330 adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the screen flip direction.
  • adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the screen flip direction including:
  • the angle sensor measures the first angle between the stereoscopic display screen before flipping and the reference plane as ⁇ 1, and after flipping, the first angle with the reference plane is ⁇ 1.
  • the second angle between the reference planes is ⁇ 2, and the flip direction is clockwise, then the absolute difference between the first angle and the second angle can be obtained, and then the virtual camera that generates the parallax image can be controlled, and the display and keyboard of the laptop
  • the connection axis of is used as the rotation axis, flipping counterclockwise by the same angle as the absolute difference, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the stereoscopic display screen can also be a glasses-type 3D display screen.
  • the position and posture of the virtual camera can also be adjusted according to the angle change information according to the above method, so as to realize the virtual reality viewed by the user.
  • the presentation characteristics of the displayed content relative to the actual physical space remain unchanged, and the principle is the same as the above-mentioned adjustment principle using the autostereoscopic display screen, which will not be repeated here.
  • Step 340 acquiring the user's eye coordinates through an image sensor or a biometric sensor.
  • the human eye tracking mechanism when performing human eye tracking, first obtains the user's human eye coordinates through an image sensor or a biometric sensor, so as to adjust the display parameters of the stereoscopic display screen according to the human eye coordinates.
  • the human eye coordinates are determined by using an image algorithm through an image sensor, wherein the image sensor may be an infrared sensor or a visible light sensor.
  • FOV Field of view
  • Step 350 adjusting the layout position of the stereoscopic display screen or the position of the stereoscopic light splitting device relative to the stereoscopic display screen according to the coordinates of the human eyes.
  • the layout of the stereoscopic display screen or the position of the stereoscopic light splitting device relative to the stereoscopic display screen can be adjusted, so that the virtual display content viewed by the user is compared to the actual physical space.
  • the stereoscopic light splitting device may include a lenticular lens, a parallax barrier, and the like.
  • the first angle of the stereoscopic display screen relative to the reference plane is acquired by an angle sensor or an inertial sensor, the second angle of the stereoscopic display screen relative to the reference plane after the stereoscopic display screen is reversed, and the stereoscopic display screen
  • the screen flip direction calculate the absolute difference between the first angle and the second angle, and use the absolute difference and the screen flip direction as the angle change information, and then according to the absolute difference between the first angle and the second angle, and the screen flip Direction, adjust the pose of the virtual camera, and obtain the coordinates of the user's eyes through the image sensor or biometric sensor, according to the coordinates of the human eyes, adjust the layout position of the stereoscopic display screen or the position of the stereoscopic light splitting device relative to the stereoscopic display screen Adjustment, on the one hand, the stereoscopic display content can be adjusted according to the flip direction and angle of the stereoscopic display screen, so that the display effect of the virtual display content will not
  • FIG. 4 is a schematic structural diagram of a display adjustment device provided in Embodiment 4 of the present application.
  • the display adjustment device includes: an angle change information acquisition module 410 and a display adjustment module 420 .
  • the angle change information acquisition module 410 is configured to acquire the angle change information before and after the stereoscopic display screen is flipped;
  • the display adjustment module 420 is configured to adjust the stereoscopic display content of the stereoscopic display screen according to the angle change information, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the angle change information before and after the flipping of the stereoscopic display screen is obtained, and according to the angle change information, the stereoscopic display content of the stereoscopic display screen is adjusted, so that the virtual display content viewed by the user is relative to the actual physical display content.
  • the presentation characteristics of the space remain unchanged, which solves the problem that the position and shape of the virtual display content change due to screen flipping.
  • the stereoscopic display content is adjusted to improve the viewing experience of the user.
  • the angle change information acquisition module 410 includes:
  • An angle measurement unit configured to acquire a first angle of the stereoscopic display screen relative to a reference plane before being flipped, a second angle of the stereoscopic display screen relative to the reference plane after being flipped, and the The screen flip direction of the stereoscopic display screen;
  • the angle change information acquisition unit is configured to calculate the absolute difference between the first angle and the second angle, and use the absolute difference and the screen flip direction as the angle change information.
  • the display mode of the stereoscopic display screen is multi-viewpoint display.
  • the display mode of the stereoscopic display screen is dual-viewpoint display
  • the display adjustment device further includes:
  • the human eye coordinate acquisition module is configured to acquire the user's human eye coordinates through an image sensor or a biometric sensor after adjusting the stereoscopic display content of the stereoscopic display screen according to the angle change information;
  • the screen parameter adjustment module is configured to adjust the layout position of the stereoscopic display screen or the position of the stereoscopic light splitting device relative to the stereoscopic display screen according to the coordinates of the human eyes.
  • the stereoscopic display screen is a lenticular lens type autostereoscopic display screen, a parallax barrier type autostereoscopic display screen, a pointing backlight type autostereoscopic display screen or a glasses type 3D display screen.
  • the display adjustment module 420 includes:
  • the virtual camera adjustment unit is configured to adjust the pose of the virtual camera according to the absolute difference between the first angle and the second angle, and the screen flip direction.
  • the virtual camera adjustment unit is set to:
  • the virtual camera is rotated by an angle equal to the absolute difference along a direction opposite to the screen flip direction.
  • the display adjustment device provided in the embodiment of the present application can execute the display adjustment method provided in any embodiment of the present application, and has corresponding functional modules for executing the method.
  • FIG. 5 is a schematic structural diagram of an electronic device provided in Embodiment 5 of the present application.
  • the electronic device includes a processor 50, a memory 51, an input device 52, and an output device 53; the number of processors 50 in the device It can be at least one.
  • a processor 50 is taken as an example; the processor 50, memory 51, input device 52 and output device 53 in the device can be connected through a bus or in other ways. In FIG. 5, the connection through a bus is used as an example .
  • the memory 51 as a computer-readable storage medium, is configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the display adjustment method in the embodiment of the present application (for example, the angle change in the display adjustment device information acquisition module 410 and display adjustment module 420).
  • the processor 50 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 51, that is, realizes the above-mentioned display adjustment method, including:
  • the stereoscopic display content of the stereoscopic display screen is adjusted, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the memory 51 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 51 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • memory 51 includes memory located remotely from processor 50, which may be connected to the device via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Embodiment 6 of the present application also provides a computer-readable storage medium on which a computer program is stored, and the computer program is used to execute a display adjustment method when executed by a computer processor, and the method includes:
  • the stereoscopic display content of the stereoscopic display screen is adjusted, so that the presentation characteristics of the virtual display content viewed by the user relative to the actual physical space remain unchanged.
  • the computer-executable instructions are not limited to the above-mentioned method operations, and can also perform related operations in the display adjustment method provided in any embodiment of the present application. .
  • the included units and modules are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized; in addition , the specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本申请实施例公开了一种显示调节方法、装置、设备及介质。其中,显示调节方法,包括:获取立体显示屏幕翻转前后的角度变化信息;根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。

Description

一种显示调节方法、装置、设备及介质
本申请要求在2021年6月22日提交中国专利局、申请号为202110691828.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及立体显示技术,例如涉及一种显示调节方法、装置、设备及介质。
背景技术
三维(3-dimension,3D)显示技术利用各种光学方法,使人的左右眼接收不同的视差画面,并经过大脑对图像信息进行叠加重生,构成具有前-后、上-下、左-右、远-近等立体方向效果的影像。
自由立体显示技术可以通过视差屏障、柱镜透镜、指向背光等光学技术,实现用户无需佩戴辅助设备即可观看到3D效果的影像,但这种方式在屏幕发生翻转变动时,会导致立体显示内容发生形变,且位置也会相对于物理空间发生变化,影响用户观感,如何在屏幕翻转前后使虚拟显示内容相对用户保持不变,对于提升用户的观看效果十分重要。
发明内容
本申请实施例提供一种显示调节方法、装置、设备及介质,通过对立体显示屏幕的立体显示内容进行调节,实现在屏幕翻转前后用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变,提高了用户的观看体验。
第一方面,本申请实施例提供了一种显示调节方法,所述方法包括:
获取立体显示屏幕翻转前后的角度变化信息;
根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
第二方面,本申请实施例还提供了一种显示调节装置,所述装置包括:
角度变化信息获取模块,设置为获取立体显示屏幕翻转前后的角度变化信息;
显示调节模块,设置为根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
第三方面,本申请实施例还提供了一种电子设备,包括:
至少一个处理器;
存储器,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现本申请第一方面提供的显示调节方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请第一方面提供的显示调节方法。
附图说明
图1a是本申请实施例一中的一种显示调节方法的流程图;
图1b是本申请实施例一种的虚拟显示内容随屏幕翻转前后变化示意图;
图2a是本申请实施例二中的一种显示调节方法的流程图;
图2b是本申请实施例二中的键盘作为参考平面的角度信息获取示意图;
图2c是本申请实施例二中的水平面作为参考平面的角度信息获取示意图;
图2d是本申请实施例二中多视点模式下虚拟摄像机位姿调节示意图;
图3a是本申请实施例三中的一种显示调节方法的流程图;
图3b是本申请实施例三中双视点模式下虚拟摄像机位姿调节示意图;
图4是本申请实施例四中的一种显示调节装置的结构示意图;
图5是本申请实施例五提供的一种设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
实施例一
图1a为本申请实施例一中的一种显示调节方法的流程图,本实施例的技术方案适用于通过对立体显示内容进行调节,使用户观看到的虚拟显示内容保持不变的情况,该方法可以由显示调节装置执行,该装置可以由软件和/或硬件来实现,并可以集成在各种通用计算机设备中。本实施例中的显示调节方法,包括如下步骤:
步骤110、获取立体显示屏幕翻转前后的角度变化信息。
其中,立体显示屏幕是一种建立在人眼立体视觉机制上的自由立体显示设备,立体显示屏幕能够利用多通道自动立体显示技术,在不借助任何助视设备(例如,3D眼镜、头盔等)的情况下获得具有完整深度信息的图像。示例性的,立体显示屏幕可以是笔记本电脑或台式电脑的显示屏幕,也可以是用于进行立体内容展示的专用屏幕。角度变化信息用于作为调节立体显示内容的依据,角度变化信息可以由角度变化的大小和方向构成,示例性的,角度变化信息为逆时针旋转30°。
本实施例中,在用户通过立体显示屏幕观看立体显示内容时,为了保证观看舒适度,经常会对立体显示屏幕进行翻转,这种翻转可以是对笔记本电脑屏幕的前后翻转,也可以是对专用屏幕在任意方向进行翻转,但由于用户位置保持不变,屏幕发生翻转,用户观看到的虚拟显示内容相对于实际物理空间的呈现特征会发生变化,示例性的,呈现特征的变化包括虚拟显示内容发生形变,例如,大小发生变化,或者显示内容边缘被拉伸变形,且位置相对于实际物理空间发生变化,如图1b所示,立体显示屏幕原位置为P1,翻转后的位置为P2,虚拟显示的立方体在深度方向被拉伸,且相对与实际物理空间的位置也发生改变,虚拟显示水平地面也会随着立体显示屏幕的翻转发生变化,这都会影响用 户的观看体验,为了使屏幕翻转时,用户观看到的虚拟显示内容相对于实际物理空间保持不变,首先需要获取立体显示屏幕翻转前后的角度变化信息,示例性的,可以通过角度传感器获取立体显示屏幕翻转前后相对于参考平面的角度,以及屏幕翻转的方向,将角度和屏幕翻转的方向共同作为角度变化信息,以根据角度变化信息对立体显示屏幕的立体显示内容进行调节。
示例性的,在立体显示屏幕为放置在水平面的笔记本电脑的显示屏幕时,可以将笔记本电脑的键盘所在平面作为参考平面,通过设置在键盘与立体显示屏幕转角处的角度传感器,测量立体显示屏幕翻转前后的角度变化信息,示例性的,可以通过角度传感器在立体显示屏幕转动过程中输出的脉冲数确定转动的角度大小和旋转方向。
又示例性的,在立体显示屏幕为放置在笔记本电脑支架上的笔记本电脑的显示屏幕时,此时可以将笔记本电脑所在环境中的水平面,例如,放置笔记本电脑的桌面作为参考平面,此时,利用立体显示屏幕与键盘之间的角度传感器不能直接计算出屏幕与地面的夹角,可以采用立体显示屏幕中的惯性传感器计算立体显示屏幕相对实际物理世界的姿态,姿态中包含了立体显示屏幕相对于参考平面的角度,进而根据惯性传感器测量的立体显示屏幕在翻转前后相对于参考平面的角度,计算得到角度变化信息。
可选的,立体显示屏幕为柱状透镜式自动立体显示屏幕、视差屏障式自动立体显示屏幕、指向背光式自动立体显示屏幕或者眼镜式3D显示屏幕。
本可选的实施例中,提供了一种立体显示屏幕的类型,可以为柱状透镜式自动立体显示屏幕、视差屏障式自动立体显示屏幕、指向背光式自动立体显示屏幕或者眼镜式3D显示屏幕等能够进行立体内容显示的屏幕。其中,立体显示屏幕可以是多视点模式,也可以是双视点模式。
步骤120、根据角度变化信息,对立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
本实施例中,在获取到角度变化信息后,为了保证立体显示屏幕翻转前后 用户的观看效果不受影响,根据角度变化信息,对立体显示屏幕的立体显示内容进行相应的调节,示例性的,可以伴随屏幕偏转角度的变化,调整生成视差图像的虚拟摄像机的位置和翻转角度,使得用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
示例性的,在获取到角度变化信息是笔记本电脑的屏幕逆时针旋转30°后,可以控制生成视差图像的虚拟摄像机顺时针旋转30°,使得用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
本申请实施例的技术方案,通过获取立体显示屏幕翻转前后的角度变化信息,并根据角度变化信息,对立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变,解决了屏幕翻转使得虚拟显示内容的位置和形状发生变化的问题,在立体显示屏幕发生翻转前后,通过对立体显示内容进行调节,提高用户观看体验。
实施例二
图2a为本申请实施例二中的一种显示调节方法的流程图,本实施例在上述实施例的基础上进行细化,提供了获取立体显示屏幕翻转前后的角度变化信息的步骤,以及根据角度变化信息,对立体显示屏幕的立体显示内容进行调节的步骤。下面结合图2a对本申请实施例二提供的一种显示调节方法进行说明,包括以下步骤:
步骤210、通过角度传感器或者惯性传感器获取立体显示屏幕翻转前相对于参考平面的第一角度,立体显示屏幕翻转后相对于参考平面的第二角度,以及立体显示屏幕的屏幕翻转方向。
本实施例中,提供了获取立体显示屏幕翻转前后的角度变化信息的方式,首先通过角度传感器或者惯性传感器获取立体显示屏幕翻转前相对于参考平面的第一角度,翻转后相对于参考平面的第二角度,以及立体显示屏幕的屏幕翻转方向。
示例性的,如图2b所示,在参考平面是立体显示屏幕配合使用的键盘所在平面时,可以通过安装在立体显示屏幕和键盘转角处的角度传感器测量上述第一角度θ1、第二角度θ2以及翻转方向。又示例性的,如图2c所示,在参考平面是立体显示屏幕所处环境中的水平面时,可以通过立体显示屏幕中的惯性传感器测量上述第一角度θ3、第二角度θ4以及翻转方向。
可选的,立体显示屏幕的显示模式为多视点显示。
本可选的实施例中,立体显示屏幕的显示模式为多视点显示,多视点显示模式由于包含数量大于2的视点,可以增大用户可移动观看的范围,因此,这种模式无需安装人眼追踪机制,可以降低计算量。
步骤220、计算第一角度和第二角度的绝对差值,并将绝对差值和屏幕翻转方向作为角度变化信息。
本实施例中,在获取到第一角度和第二角度后,计算第一角度和第二角度的绝对差值,最终由绝对差值和屏幕翻转方向共同构成角度变化信息。示例性的,第一角度为60°,第二角度为45°,屏幕翻转方向为顺时针方向,此时,可以由第一角度和第二角度的绝对差值15°和顺时针方向共同构成角度变化信息。需要说明的是,本申请中的第一角度和第二角度的绝对差值为第一角度和第二角度的差值的绝对值。
步骤230、根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
本实施例中,在获取到角度变化信息后,根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,来调节虚拟摄像机的位姿,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。示例性的,可以将虚拟摄像机沿着屏幕翻转方向的反方向进行旋转,以克服屏幕翻转造成的虚拟显示内容发生变化的情况。例如,在将屏幕沿与水平面平行的旋转轴向后翻转(即顺时针翻转)时,可以将虚拟摄像机沿着屏幕翻转方向的反方向(即逆时针方向) 进行旋转;在将屏幕沿与水平面垂直的旋转轴向左翻转(即顺时针)时,可以将虚拟摄像机沿着屏幕翻转方向的反方向(即逆时针方向)进行旋转。
可选的,根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,包括:
以设定旋转轴为旋转中心,沿着屏幕翻转方向的相反方向,将虚拟摄像机旋转与绝对差值相同的角度。
本可选的实施例中,提供一种根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节的方式,以设定旋转轴为旋转中心,沿着屏幕翻转方向的相反方向,将虚拟摄像机旋转与第一角度和第二角度绝对差值相同的角度。
示例性的,如图2d所示,在以键盘所在平面为参考平面时,通过角度传感器测量到立体显示屏幕翻转前与参考平面之间的第一角度为θ1,翻转后与参考平面之间的第二角度为θ2,翻转方向为顺时针,则可以获取第一角度和第二角度的绝对差值,进而可以控制生成视差图像的虚拟摄像机,以笔记本电脑的显示屏与键盘的连接轴作为旋转轴,沿着逆时针方向翻转与绝对差值相同的角度,使得用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
本申请实施例的技术方案,通过角度传感器或者惯性传感器获取立体显示屏幕翻转前相对于参考平面的第一角度,立体显示屏幕翻转后相对于所述参考平面的第二角度,以及立体显示屏幕的屏幕翻转方向,进而计算第一角度和第二角度的绝对差值,并将绝对差值和屏幕翻转方向作为角度变化信息,最终根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,可以根据立体显示屏幕的翻转方向和角度来调节立体显示内容,使得在用户观看过程中进行屏幕翻转时不会影响用户观看体验。
实施例三
图3a为本申请实施例三中的一种显示调节方法的流程图,本实施例在上述 实施例的基础上进行细化,提供了获取立体显示屏幕翻转前后的角度变化信息的步骤,以及根据角度变化信息,对立体显示屏幕的立体显示内容进行调节的步骤。下面结合图3a对本申请实施例三提供的一种显示调节方法进行说明,包括以下步骤:
步骤310、通过角度传感器或者惯性传感器获取立体显示屏幕翻转前相对于参考平面的第一角度,立体显示屏幕翻转后相对于所述参考平面的第二角度,以及立体显示屏幕的屏幕翻转方向。
可选的,立体显示屏幕的显示模式为双视点显示。
本可选的实施例中,立体显示屏幕的显示模式也可以是双视点显示,这是显示模式对用户的观看位置具有较高要求,限制观看自由度,可以增加人眼追踪机制,在观看过程中,人眼位置发生变化时,通过改变立体显示屏幕上的排图位置或者改变立体分光器件(如柱状透镜、视差屏障等)相对屏幕的位置。
步骤320、计算第一角度和第二角度的绝对差值,并将绝对差值和屏幕翻转方向作为角度变化信息。
步骤330、根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节。
可选的,根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,包括:
以设定旋转轴为旋转中心,沿着屏幕翻转方向的相反方向,将虚拟摄像机旋转与绝对差值相同的角度。
本可选的实施例中,如图3b所示,在立体显示屏为双视点显示模式时,通过角度传感器测量到立体显示屏幕翻转前与参考平面之间的第一角度为θ1,翻转后与参考平面之间的第二角度为θ2,翻转方向为顺时针,则可以获取第一角度和第二角度的绝对差值,进而可以控制生成视差图像的虚拟摄像机,以笔记本电脑的显示屏与键盘的连接轴作为旋转轴,沿着逆时针方向翻转与绝对差值相同的角度,使得用户观看到的虚拟显示内容相对于实际物理空间的呈现特征 保持不变。
值得注意的是,立体显示屏幕也可以是眼镜式3D显示屏幕,在立体显示屏幕发生翻转前后,同样可以依据上述方法,根据角度变化信息,调节虚拟摄像机的位姿,实现使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变,其原理与上述采用自动立体显示屏幕的调节原理相同,此处不再赘述。
步骤340、通过图像传感器或者生物特征传感器获取用户的人眼坐标。
本实施例中,在双视点显示模式下,用户在观看过程中,若人眼相对于立体显示屏幕发生变化,也会导致用户观看到的虚拟显示内容发生形变以及位置的变化,因此,需要加入人眼追踪机制,在进行人眼追踪时,首先要通过图像传感器或者生物特征传感器获取用户的人眼坐标,以根据人眼坐标对立体显示屏幕的显示参数进行调节。示例性的,通过图像传感器采用图像算法确定人眼坐标,其中,图像传感器可以是红外传感器也可以是可见光传感器。
值得注意的是,考虑到传感器的视场角(Field of view,FOV)有限,在人眼与立体显示屏幕相对位置发生较大改变时,传感器可能无法追踪到人眼位置,基于上述问题,可以优化传感器的接收面角度,使得人眼与立体显示屏幕相对位置发生变化时,均能够使传感器追踪到人眼位置。另外,也可以在屏幕多处布放摄像头协同捕获人眼位置,解决上述FOV的限制。
步骤350、根据人眼坐标,对立体显示屏幕的排图位置或者立体分光器件相对立体显示屏幕的位置进行调节。
本实施例中,在获取到人眼坐标后,可以对立体显示屏幕的排图或者立体分光器件相对立体显示屏幕的位置进行调节,使得用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。其中,立体分光器件可以包括柱状透镜以及视差屏障等。
本申请实施例的技术方案,首先通过角度传感器或者惯性传感器获取立体显示屏幕翻转前相对于参考平面的第一角度,立体显示屏幕翻转后相对于所述 参考平面的第二角度,以及立体显示屏幕的屏幕翻转方向,然后计算第一角度和第二角度的绝对差值,并将绝对差值和屏幕翻转方向作为角度变化信息,进而根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,并且通过图像传感器或者生物特征传感器获取用户的人眼坐标,根据人眼坐标,对立体显示屏幕的排图位置或者立体分光器件相对立体显示屏幕的位置进行调节,一方面,可以根据立体显示屏幕的翻转方向和角度来调节立体显示内容,使得在用户观看过程中进行屏幕翻转时不会影响虚拟显示内容的显示效果,另一方面,加入人眼追踪,可以在双视点显示模式下,提高用户的观看自由度,使用户一直处于理想观看位置区域。
实施例四
图4为本申请实施例四提供的一种显示调节装置的结构示意图,该显示调节装置,包括:角度变化信息获取模块410和显示调节模块420。
角度变化信息获取模块410,设置为获取立体显示屏幕翻转前后的角度变化信息;
显示调节模块420,设置为根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
本申请实施例的技术方案,通过获取立体显示屏幕翻转前后的角度变化信息,并根据角度变化信息,对立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变,解决了屏幕翻转使得虚拟显示内容的位置和形状发生变化的问题,在立体显示屏幕发生翻转前后,通过对立体显示内容进行调节,提高用户观看体验。
可选的,所述角度变化信息获取模块410,包括:
角度测量单元,设置为通过角度传感器或者惯性传感器获取所述立体显示屏幕翻转前相对于参考平面的第一角度,所述立体显示屏幕翻转后相对于所述 参考平面的第二角度,以及所述立体显示屏幕的屏幕翻转方向;
角度变化信息获取单元,设置为计算所述第一角度和第二角度的绝对差值,并将所述绝对差值和屏幕翻转方向作为角度变化信息。
可选的,所述立体显示屏幕的显示模式为多视点显示。
可选的,所述立体显示屏幕的显示模式为双视点显示;
相应的,所述显示调节装置,还包括:
人眼坐标获取模块,设置为在根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节之后,通过图像传感器或者生物特征传感器获取用户的人眼坐标;
屏幕参数调节模块,设置为根据所述人眼坐标,对所述立体显示屏幕的排图位置或者立体分光器件相对立体显示屏幕的位置进行调节。
可选的,所述立体显示屏幕为柱状透镜式自动立体显示屏幕、视差屏障式自动立体显示屏幕、指向背光式自动立体显示屏幕或者眼镜式3D显示屏幕。
可选的,显示调节模块420,包括:
虚拟摄像机调节单元,设置为根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节。
可选的,所述虚拟摄像机调节单元,设置为:
以设定旋转轴为旋转中心,沿着所述屏幕翻转方向的相反方向,将所述虚拟摄像机旋转与所述绝对差值相同的角度。
本申请实施例所提供的显示调节装置可执行本申请任意实施例所提供的显示调节方法,具备执行方法相应的功能模块。
实施例五
图5为本申请实施例五提供的一种电子设备的结构示意图,如图5所示,该电子设备包括处理器50、存储器51、输入装置52和输出装置53;设备中处理器50的数量可以是至少一个,图5中以一个处理器50为例;设备中的处理 器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的显示调节方法对应的程序指令/模块(例如,显示调节装置中的角度变化信息获取模块410和显示调节模块420)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的显示调节方法,包括:
获取立体显示屏幕翻转前后的角度变化信息;
根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实施例六
本申请实施例六还提供一种其上存储有计算机程序的计算机可读存储介质,所述计算机程序在由计算机处理器执行时用于执行一种显示调节方法,该方法包括:
获取立体显示屏幕翻转前后的角度变化信息;
根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
当然,本申请实施例所提供的包含计算机可执行指令的存储介质,其计算机 可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的显示调节方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,应用服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述一种显示调节装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种显示调节方法,包括:
    获取立体显示屏幕翻转前后的角度变化信息;
    根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
  2. 根据权利要求1所述的方法,其中,获取立体显示屏幕翻转前后的角度变化信息,包括:
    通过角度传感器或者惯性传感器获取所述立体显示屏幕翻转前相对于参考平面的第一角度,所述立体显示屏幕翻转后相对于所述参考平面的第二角度,以及所述立体显示屏幕的屏幕翻转方向;
    计算所述第一角度和第二角度的绝对差值,并将所述绝对差值和屏幕翻转方向作为角度变化信息。
  3. 根据权利要求2所述的方法,其中,所述立体显示屏幕的显示模式为多视点显示。
  4. 根据权利要求2所述的方法,其中,所述立体显示屏幕的显示模式为双视点显示;
    在根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节之后,还包括:
    通过图像传感器或者生物特征传感器获取用户的人眼坐标;
    根据所述人眼坐标,对所述立体显示屏幕的排图位置或者立体分光器件相对立体显示屏幕的位置进行调节。
  5. 根据权利要求1所述的方法,其中,所述立体显示屏幕为柱状透镜式自动立体显示屏幕、视差屏障式自动立体显示屏幕、指向背光式自动立体显示屏幕或者眼镜式三维3D显示屏幕。
  6. 根据权利要求2-4任一所述的方法,其中,根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,包括:
    根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机 的位姿进行调节。
  7. 根据权利要求6所述的方法,其中,根据第一角度和第二角度的绝对差值,以及屏幕翻转方向,对虚拟摄像机的位姿进行调节,包括:
    以设定旋转轴为旋转中心,沿着所述屏幕翻转方向的相反方向,将所述虚拟摄像机旋转与所述绝对差值相同的角度。
  8. 一种显示调节装置,包括:
    角度变化信息获取模块,设置为获取立体显示屏幕翻转前后的角度变化信息;
    显示调节模块,设置为根据所述角度变化信息,对所述立体显示屏幕的立体显示内容进行调节,以使用户观看到的虚拟显示内容相对于实际物理空间的呈现特征保持不变。
  9. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的显示调节方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述显示调节方法。
PCT/CN2022/090231 2021-06-22 2022-04-29 一种显示调节方法、装置、设备及介质 WO2022267694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280002547.8A CN115868158A (zh) 2021-06-22 2022-04-29 一种显示调节方法、装置、设备及介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110691828.6 2021-06-22
CN202110691828.6A CN113438465A (zh) 2021-06-22 2021-06-22 一种显示调节方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022267694A1 true WO2022267694A1 (zh) 2022-12-29

Family

ID=77757002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090231 WO2022267694A1 (zh) 2021-06-22 2022-04-29 一种显示调节方法、装置、设备及介质

Country Status (2)

Country Link
CN (2) CN113438465A (zh)
WO (1) WO2022267694A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438465A (zh) * 2021-06-22 2021-09-24 纵深视觉科技(南京)有限责任公司 一种显示调节方法、装置、设备及介质
CN114566132A (zh) * 2022-02-28 2022-05-31 北京京东方显示技术有限公司 参数处理方法、装置、电子设备及计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510503A (zh) * 2011-09-30 2012-06-20 深圳超多维光电子有限公司 一种立体显示方法及立体显示设备
JP2014045474A (ja) * 2012-07-31 2014-03-13 Nlt Technologies Ltd 立体画像表示装置、画像処理装置及び立体画像処理方法
WO2014163214A1 (en) * 2013-04-01 2014-10-09 Lg Electronics Inc. Image display device for providing function of changing screen display direction and method thereof
CN106231285A (zh) * 2016-07-28 2016-12-14 深圳超多维科技有限公司 一种立体显示的方法和装置
CN106445339A (zh) * 2016-09-21 2017-02-22 青岛海信电器股份有限公司 一种双屏终端显示立体图像的方法和装置
CN108391117A (zh) * 2018-02-01 2018-08-10 周金润 一种基于视点定位、单视角立体画的手机裸眼3d显示技术
CN108572770A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 一种浏览图像的方法及装置
CN110197524A (zh) * 2019-06-12 2019-09-03 腾讯科技(深圳)有限公司 立体显示方法、设备、装置和计算机可读存储介质
CN112041728A (zh) * 2018-04-24 2020-12-04 阿利奥斯拷贝公司 用于在移动显示屏幕上显示具有n个视点的自动立体视觉图像的***和方法
CN113438465A (zh) * 2021-06-22 2021-09-24 纵深视觉科技(南京)有限责任公司 一种显示调节方法、装置、设备及介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510503A (zh) * 2011-09-30 2012-06-20 深圳超多维光电子有限公司 一种立体显示方法及立体显示设备
JP2014045474A (ja) * 2012-07-31 2014-03-13 Nlt Technologies Ltd 立体画像表示装置、画像処理装置及び立体画像処理方法
WO2014163214A1 (en) * 2013-04-01 2014-10-09 Lg Electronics Inc. Image display device for providing function of changing screen display direction and method thereof
CN106231285A (zh) * 2016-07-28 2016-12-14 深圳超多维科技有限公司 一种立体显示的方法和装置
CN106445339A (zh) * 2016-09-21 2017-02-22 青岛海信电器股份有限公司 一种双屏终端显示立体图像的方法和装置
CN108572770A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 一种浏览图像的方法及装置
CN108391117A (zh) * 2018-02-01 2018-08-10 周金润 一种基于视点定位、单视角立体画的手机裸眼3d显示技术
CN112041728A (zh) * 2018-04-24 2020-12-04 阿利奥斯拷贝公司 用于在移动显示屏幕上显示具有n个视点的自动立体视觉图像的***和方法
CN110197524A (zh) * 2019-06-12 2019-09-03 腾讯科技(深圳)有限公司 立体显示方法、设备、装置和计算机可读存储介质
CN113438465A (zh) * 2021-06-22 2021-09-24 纵深视觉科技(南京)有限责任公司 一种显示调节方法、装置、设备及介质

Also Published As

Publication number Publication date
CN115868158A (zh) 2023-03-28
CN113438465A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
US9554126B2 (en) Non-linear navigation of a three dimensional stereoscopic display
US10038887B2 (en) Capture and render of panoramic virtual reality content
US9877016B2 (en) Omnistereo capture and render of panoramic virtual reality content
CN103595987B (zh) 立体图像显示装置、图像处理装置及图像处理方法
US10757399B2 (en) Stereo rendering system
US9749619B2 (en) Systems and methods for generating stereoscopic images
WO2022267694A1 (zh) 一种显示调节方法、装置、设备及介质
EP3460746B1 (en) Generating stereoscopic light field panoramas using concentric viewing circles
US10546429B2 (en) Augmented reality mirror system
US9467685B2 (en) Enhancing the coupled zone of a stereoscopic display
WO2015068656A1 (ja) 画像生成装置および画像生成方法
US20150370322A1 (en) Method and apparatus for bezel mitigation with head tracking
US9813693B1 (en) Accounting for perspective effects in images
US20230245261A1 (en) Foveated rendering using eye motion
CN103595988A (zh) 立体图像显示装置、图像处理装置及图像处理方法
JP2021518701A (ja) Dibrシステムにおいて立体的視点を生じさせるための、多焦点面ベースの方法(mfp−dibr)
US10616567B1 (en) Frustum change in projection stereo rendering
WO2016118344A1 (en) Fixed size augmented reality objects
CN112655202B (zh) 用于头戴式显示器的鱼眼镜头的减小带宽立体失真校正
CN112513780A (zh) 用3d图像替换2d图像
US9791707B2 (en) Auto-stereoscopic display apparatus and non-transitory computer readable storage device
WO2023056840A1 (zh) 三维物体的显示方法、装置、设备及介质
JP2013098840A (ja) 情報処理装置、表示制御方法およびプログラム
US10296098B2 (en) Input/output device, input/output program, and input/output method
WO2020199070A1 (zh) 显示装置及其显示方法、显示***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827193

Country of ref document: EP

Kind code of ref document: A1