WO2022267271A1 - Polymère hybride, son procédé de préparation et son utilisation - Google Patents

Polymère hybride, son procédé de préparation et son utilisation Download PDF

Info

Publication number
WO2022267271A1
WO2022267271A1 PCT/CN2021/124669 CN2021124669W WO2022267271A1 WO 2022267271 A1 WO2022267271 A1 WO 2022267271A1 CN 2021124669 W CN2021124669 W CN 2021124669W WO 2022267271 A1 WO2022267271 A1 WO 2022267271A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid polymer
compound
preparation
reaction
monomer
Prior art date
Application number
PCT/CN2021/124669
Other languages
English (en)
Chinese (zh)
Inventor
尹家福
杨俊升
殷盼超
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022267271A1 publication Critical patent/WO2022267271A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/144Side-chains containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3342Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms derived from cycloolefins containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • the invention relates to the technical field of polymer nanocomposite materials, in particular to a hybrid polymer and its preparation method and application.
  • Impact-resistant materials are special materials with high strength and excellent toughness, which can withstand instantaneous severe impacts and quickly dissipate energy, so as to effectively protect internal structures and equipment.
  • the most widely used impact-resistant materials in the industry are polymer materials such as polyethylene (PE), polyurethane (PU), and acrylonitrile-butadiene-styrene copolymer (ABS).
  • PE polyethylene
  • PU polyurethane
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the impact effect requires ultra-high molecular weight, and as the molecular weight increases, the toughness of the system will decrease, and the viscosity coefficient of the system will increase accordingly, which will eventually lead to difficulties in molding and processing the material.
  • the recycling rate of ultra-high molecular weight polymers is low, and the environmental pollution problems caused by them cannot be underestimated.
  • the object of the present invention is to provide a hybrid polymer and its preparation method and application.
  • a hybrid polymer whose repeat unit structure is as follows:
  • the number average molecular weight of the hybrid polymer is 10000g/mol ⁇ 100000g/mol.
  • the preparation method of above-mentioned hybrid polymer comprises the following steps:
  • the preparation method of above-mentioned hybrid polymer comprises the following steps:
  • the molar ratio of trisilanol isooctyl-POSS to vinyltrichlorosilane in step 1) is 1:1.2 ⁇ 1:1.4.
  • the reaction in step 1) is carried out at 0°C to 5°C, and the reaction time is 15h to 25h.
  • the molar ratio of compound 1 and mercaptoethylamine hydrochloride in step 2) is 1:1.8 ⁇ 1:2.2.
  • the photoinitiator of step 2) is photoinitiator Igracure 2959.
  • the reaction in step 2) is carried out under ultraviolet light irradiation, and the reaction time is 10 minutes to 20 minutes.
  • the molar ratio of compound 2 and cis-5-norbornene-exo-2,3-dicarboxylic anhydride in step 3) is 1:1.8 ⁇ 1:2.2.
  • the reaction in step 3) is carried out at 130°C-140°C, and the reaction time is 30h-40h.
  • the catalyst in step 4) is [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]bis(2-bromopyridine)(phenylmethylene ) ruthenium dichloride, 1,3-bis(2,4,6-trimethylphenyl)-2-(imidazolidinylidene)(dichlorobenzylidene)(tricyclohexylphosphine)ruthenium at least one.
  • the catalyst in step 4) is Grubbs third-generation catalyst ([1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]bis(2-bromopyridine)( phenylmethylene) ruthenium dichloride).
  • the water and oxygen removal in step 4) adopts a cycle freezing and thawing method.
  • the polymerization reaction in step 4) is carried out at room temperature, and the reaction time is 0.5h-2h.
  • the hybrid polymer of the invention has the advantages of light weight, high strength, easy processing and molding, low cost, and environmental friendliness, and is suitable for large-scale popularization and application.
  • the impact resistance of the hybrid polymer of the present invention does not depend on high molecular weight, has good processability, is convenient for processing and molding, and is conducive to large-scale production and processing;
  • the hybrid polymer of the present invention can be reshaped through simple reprocessing operations when it becomes invalid due to impact, and the recycling rate is extremely high. It is a kind of resource-saving and environment-friendly polymer material.
  • Fig. 1 is the proton nuclear magnetic resonance spectrum figure of the compound 1 in the embodiment.
  • Fig. 2 is the proton nuclear magnetic resonance spectrum of compound 2 in the embodiment.
  • Fig. 3 is the proton nuclear magnetic resonance spectrogram of the monomer in the embodiment.
  • Fig. 4 is a comparison chart of the H NMR spectrum of the monomer and the hybrid polymer in the embodiment.
  • Fig. 5 is a comparison chart of gel permeation chromatograms of monomers and hybrid polymers in the examples.
  • Fig. 6 is a physical photo of the separated Hopkinson compression bar experimental device.
  • Fig. 7 is the stress-strain curve of the hybrid polymer in the embodiment after being impacted at different speeds.
  • Fig. 8 is a physical photo of the hybrid polymer in the embodiment after being impacted at different speeds.
  • Fig. 9 is the stress-strain curve of the hybrid polymer in the embodiment after multiple reprocessing.
  • a kind of hybrid polymer, its preparation method comprises the following steps:
  • the hybrid polymer exhibits excellent impact resistance at different strain rates.
  • the hybrid polymer can withstand a dynamic impact with a strain rate of 1000s -1 , and only the edge part will be damaged, and the middle part will be damaged.
  • the sample can still remain intact.
  • the strain rate reaches 1800s -1 , the specimen can no longer withstand the stress wave with such a high strain rate, so that the hybrid polymer completely fails after the impact .
  • the quantitative recovery of the sample can be achieved after simple reprocessing. Compared with the original sample, the impact resistance of the recovered sample has no obvious change, even after multiple impacts. The recovery situation is still the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Un polymère hybride, son procédé de préparation et son utilisation sont divulgués dans la présente invention. La structure du motif répétitif du polymère hybride selon la présente invention est telle que représentée dans la formule (I). Le procédé de préparation du polymère hybride selon la présente invention comprend les étapes suivantes consistant : 1) à faire réagir du trisilanol isooctyle-POSS et du trichlorosilane de vinyle pour obtenir un composé 1 ; 2) à faire réagir le composé 1 et du chlorhydrate de mercaptoéthylamine pour obtenir un composé 2 ; 3) à faire réagir le composé 2 et l'anhydride cis-5-norbornène-exo-2,3-dicarboxylique pour obtenir un monomère ; et 4) à soumettre le monomère à une réaction de polymérisation pour obtenir le polymère hybride. Le polymère hybride selon la présente invention a pour avantages un poids léger, une résistance élevée, une transformation et un moulage faciles, un faible coût, le respect de l'environnement, etc., et est approprié pour une popularisation et une application à grande échelle.
PCT/CN2021/124669 2021-06-24 2021-10-19 Polymère hybride, son procédé de préparation et son utilisation WO2022267271A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110715841.0 2021-06-24
CN202110715841.0A CN113372537B (zh) 2021-06-24 2021-06-24 一种杂化聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022267271A1 true WO2022267271A1 (fr) 2022-12-29

Family

ID=77579351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124669 WO2022267271A1 (fr) 2021-06-24 2021-10-19 Polymère hybride, son procédé de préparation et son utilisation

Country Status (2)

Country Link
CN (1) CN113372537B (fr)
WO (1) WO2022267271A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372537B (zh) * 2021-06-24 2022-06-14 华南理工大学 一种杂化聚合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923282A (zh) * 2014-01-08 2014-07-16 南开大学 含多金属氧酸盐-倍半硅氧烷的共聚物及制备方法
CN108997563A (zh) * 2018-08-09 2018-12-14 上海应用技术大学 一种romp聚合制备含poss基聚合物的方法
CN113372537A (zh) * 2021-06-24 2021-09-10 华南理工大学 一种杂化聚合物及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121982B2 (ja) * 1988-06-04 1995-12-25 日本ゼオン株式会社 熱硬化性樹脂の製造法およびその反応原液
JP4352648B2 (ja) * 2000-03-31 2009-10-28 日本ゼオン株式会社 ノルボルネン系樹脂成形品及びその製造方法
CN104877112A (zh) * 2015-03-03 2015-09-02 北京理工大学 一种降冰片烯酰亚胺的耐热聚合物多孔材料及其制备方法
CN107586385B (zh) * 2016-07-08 2019-11-15 华南农业大学 一种纳米二氧化锆/含硫聚合物有机无机杂化树脂及其制备与应用
CN106633087B (zh) * 2016-10-09 2019-04-12 苏州大学 一种八臂杂臂星形聚合物及其制备方法
CN109608624B (zh) * 2018-11-12 2021-05-07 天津大学 一种机械性能可控的离子自修复高分子材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923282A (zh) * 2014-01-08 2014-07-16 南开大学 含多金属氧酸盐-倍半硅氧烷的共聚物及制备方法
CN108997563A (zh) * 2018-08-09 2018-12-14 上海应用技术大学 一种romp聚合制备含poss基聚合物的方法
CN113372537A (zh) * 2021-06-24 2021-09-10 华南理工大学 一种杂化聚合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI RSC, POLYMERS /, CHAE CHANG-GEUN, YU YONG-GUEN, SEO HO-BIN, KIM MYUNG-JIN, KISHORE MALLELA Y L N, LEE JAE-SUK: "Polymer Chemistry Molecular and kinetic design for the expanded control of molecular weights in the ring-opening metathesis polymerization of norbornene- substituted polyhedral oligomeric silsesquioxanes", POLYMER CHEMISTRY, vol. 9, no. 42, 14 November 2018 (2018-11-14), pages 5167 - 5250, XP093017840 *
YIN JIA‐FU, XIAO HAIYAN, XU PEIDONG, YANG JUNSHENG, FAN ZHIWEI, KE YUBIN, OUYANG XIKAI, LIU GENG XIN, SUN TAO LIN, TANG LIQUN, CHE: "Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, vol. 60, no. 41, 4 October 2021 (2021-10-04), pages 22212 - 22218, XP093017837, ISSN: 1433-7851, DOI: 10.1002/anie.202108196 *

Also Published As

Publication number Publication date
CN113372537B (zh) 2022-06-14
CN113372537A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US10882967B2 (en) Method for preparing polyimide film having low dielectric constant and high fracture toughness
WO2022267271A1 (fr) Polymère hybride, son procédé de préparation et son utilisation
CN103450377A (zh) 二烯的聚合反应
CN105198892B (zh) 一种异山梨醇丙烯酸酯的合成方法及其提高聚合物热性能的应用
CN103951786B (zh) 一种环烯烃共聚物及其制备方法
CN111285970B (zh) 芘荧光基团和环氧基团接枝超支化聚乙烯及其制备和在制备荧光环氧树脂中的应用
CN103965402B (zh) 一种环烯烃共聚物及其制备方法
CN105367713A (zh) 环烯烃共聚物及其制备方法
Shu et al. Synthesis and polymerization of a amine‐terminated dendronized styrene
CN1737080A (zh) 一类芴的寡聚物电致发光材料及其合成方法
Schlueter Poly ([1.1. 1] propellane). A novel rigid-rod polymer obtained by ring-opening polymerization breaking a carbon-carbon. sigma.-bond
CN103951775B (zh) 一种环烯烃共聚物及其制备方法
CN107586369B (zh) 一种顺-1,4-反-1,4多嵌段聚丁二烯的制备方法
Oguni et al. Structure Analysis of Poly (propylene-α-d oxide) by High-Resolution Nuclear Magnetic Resonance Spectroscopy
CN111434705B (zh) 改性液体橡胶及其制备方法和应用
CN111662434A (zh) 一种阳离子光固化高导热液晶环氧树脂及其制备方法与应用
CN114591457B (zh) 一种基于氢键作用制备二维聚合物的方法
CN113061210B (zh) 一种具有圆偏振荧光的Janus型星形聚合物
CN104017121A (zh) 通过链转移反应制备异戊二烯、月桂烯的区域嵌段共聚物的方法
CN1793150A (zh) 双烯基硅氧烷桥联双苯并环丁烯单体及预聚体的制备方法
CN113637147A (zh) 一种合成沥青的制备方法及产品
CN100345880C (zh) 含稠环基聚硅烷制备方法
CN114031861B (zh) 一种高韧性聚丙烯基纳米复合材料及其制备方法
CN106916240B (zh) 一种制备稀土异戊橡胶催化剂的方法
CN111116926B (zh) 一种基于硅氧烷键高强度自修复材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE