WO2022267154A1 - 一种熔融盐热储能电站的化盐*** - Google Patents

一种熔融盐热储能电站的化盐*** Download PDF

Info

Publication number
WO2022267154A1
WO2022267154A1 PCT/CN2021/108087 CN2021108087W WO2022267154A1 WO 2022267154 A1 WO2022267154 A1 WO 2022267154A1 CN 2021108087 W CN2021108087 W CN 2021108087W WO 2022267154 A1 WO2022267154 A1 WO 2022267154A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
molten salt
heat
heat exchanger
furnace
Prior art date
Application number
PCT/CN2021/108087
Other languages
English (en)
French (fr)
Inventor
栾海峰
Original Assignee
北京蓝海翌能新能源集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京蓝海翌能新能源集团有限公司 filed Critical 北京蓝海翌能新能源集团有限公司
Priority to ES202390245A priority Critical patent/ES2961013R1/es
Publication of WO2022267154A1 publication Critical patent/WO2022267154A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a molten salt melting salt system of a solar photothermal power station, which belongs to the technical field of salt melting systems.
  • the heat storage system of solar thermal power plants usually uses molten salt as the heat storage medium.
  • the molten salt Before the molten salt is put into the solar thermal power station, it is mainly supplied in solid form. (Because molten salt is solid at room temperature) the supply in solid form is convenient for the transportation and storage of molten salt. And when the molten salt needs to be put into the solar thermal power station for heat storage, it is necessary to convert a large amount of solid molten salt into high temperature liquid molten salt. A key procedure before the system enters commissioning and operation. The molten salt changes from solid to liquid through this process. The high-temperature molten salt enters the system and starts to circulate, and remains liquid throughout the life of the power station.
  • the existing salt melting systems are mainly divided into two types: electric heating and natural gas heating according to different heat sources.
  • the electric heating device of the salt tank converts the initial solid molten salt into liquid molten salt, and the liquid molten salt is transported to the special natural gas salt furnace system through the salt pump to heat up, and the newly added solid molten salt is heated by the heated high-temperature molten salt Converted into liquid molten salt, the mixed molten salt enters the special natural gas salt furnace system to heat up again, and at the same time, part of the heated molten salt is transported to the cold salt storage tank to ensure the liquid level of the salt tank.
  • the natural gas salt furnace system needs to convert a large amount of solid molten salt into liquid molten salt every day.
  • the dedicated natural gas salt furnace system has a limited heating capacity. Costs remain high.
  • the present invention aims at shortening the period of desalting and reducing the cost of desalting.
  • a brief overview of the invention is given below in order to provide a basic understanding of some aspects of the invention. It should be understood that this summary is not an exhaustive overview of the invention. It is not intended to identify key or critical parts of the invention nor to delineate the scope of the invention.
  • a salt melting system of a molten salt thermal energy storage power station comprising a salt melting furnace, a heat exchanger and a molten salt storage tank, the melting salt furnace is connected to the molten salt inlet of the heat exchanger through a molten salt pipeline, and the salt melting furnace is transported through a
  • the pump is connected with the molten salt storage tank, the molten salt outlet of the heat exchanger is connected with the salt furnace, and the heat exchanger is connected with the heat source system, and the heat source system is used to provide heat exchange heat source for the heat exchanger.
  • valves and temperature measuring instruments are installed on the secondary molten salt pipeline.
  • a salt melting system of a molten salt thermal energy storage power station comprising a salt melting furnace, a heat exchanger, a molten salt storage tank and an auxiliary electric heater, the heat exchanger has a molten salt inlet, a molten salt outlet, a heat source outlet, and a heat source inlet,
  • the salt furnace is respectively connected to the molten salt inlet of the heat exchanger and the auxiliary electric heater, the salt furnace communicates with the molten salt storage tank through the delivery pump, and the molten salt outlet of the heat exchanger communicates with the salt furnace through the first pipeline
  • the heat exchanger is connected to the heat source system through the heat source outlet and the heat source inlet, the heat source system is used to provide heat exchange heat source for the heat exchanger, and the auxiliary electric heater communicates with the salt furnace through the second pipeline.
  • valves and temperature measuring instruments are respectively installed on the first pipeline and the second pipeline.
  • the electric energy used in the auxiliary electric heater comes from abandoned wind power, abandoned photovoltaic power or low valley power.
  • the heat source system is a heat transfer oil solar heat collection field, and the heat transfer heat source in the heat exchanger is heated by using the heat transfer oil solar heat collection field.
  • the heat source system is a natural gas heat-conducting oil furnace, and the heat exchange heat source in the heat exchanger is heated by adopting the natural gas heat-conducting oil furnace heating method.
  • the heat source system is heat storage heat transfer oil in a solar power generation system.
  • the heat exchanger is a shell-and-tube heat exchanger, a shell-and-tube heat exchanger or a plate heat exchanger.
  • the salt furnace is respectively connected to the molten salt solar thermal field and the auxiliary electric heater, and the molten salt solar thermal field passes through the A pipeline communicates with the salt furnace, and the auxiliary electric heater communicates with the salt furnace through the second pipeline.
  • a circulation pump is installed on the connection pipeline between the salt furnace, the molten salt solar heat collection field and the auxiliary electric heater.
  • the salt melting system of the present invention solves the problem that the solid molten salt of conventional photothermal power plants is melted through the special natural gas salt melting furnace system, while the conventional special natural gas salt melting furnace realizes the salt melting process.
  • the consumption and other factors are limited, the salt conversion efficiency is not high, the entire salt conversion cycle cannot be guaranteed, and the cost of salt conversion fuel is high.
  • the present invention utilizes the photothermal power generation system to carry out the salt conversion work, so that both power generation and salt conversion are correct, and the salt conversion capacity is much greater than that of the dedicated natural gas salt conversion furnace system;
  • the salt when there is sun in the daytime, the salt is converted by light and heat, and when there is no sun at night, the salt is converted by electric heating to absorb abandoned electricity or low-peak electricity, which effectively shortens the cycle of salt conversion.
  • the present invention realizes salt melting through photothermal method, and its speed of salt melting is significantly improved, and the system is simple, easy to operate, high in safety, energy-saving and environment-friendly.
  • the salt melting speed exceeds 210 tons per hour, which is five times faster than the traditional salt melting speed, and can exceed 4,000 tons per day, which is more than four times the previous single-day salt melting world record. It only takes two and a half weeks to melt 70,000 tons of salt, which is two months faster than the traditional way of salt melting, saving tens of millions of yuan in fossil fuels for salt melting, and saving 20% in equipment investment compared with traditional salt melting systems. According to calculations, the realization of energy storage power generation two months in advance can create 60 million kWh of power generation revenue.
  • Fig. 1 is the composition diagram of the chemical salt system in the specific embodiment one;
  • Fig. 2 is the composition diagram of the chemical salt system in the second specific embodiment
  • Fig. 3 is a system schematic diagram of a salt melting system of a molten salt thermal energy storage power station
  • Fig. 4 is a composition diagram of the chemical salt system in the specific embodiment thirteen;
  • Fig. 5 is a composition diagram of the chemical salt system in Embodiment 9;
  • Fig. 6 is a composition diagram of the chemical salt system in the tenth embodiment
  • Fig. 7 is a schematic diagram of the relationship between the amount of salt and the cycle of salt in the traditional way of salt and the way of salt in the present invention.
  • this embodiment provides a salt furnace 1, a heat exchanger 2 and a molten salt storage tank 3, the salt furnace 1 communicates with the molten salt inlet of the heat exchanger 2 through a molten salt pipeline 4, and the salt The furnace 1 communicates with the molten salt storage tank 3 through the delivery pump 5, and the molten salt outlet of the heat exchanger 2 communicates with the salt furnace 1.
  • the heat exchanger 2 establishes a connection relationship with the heat source system 6, and the heat source system 6 is used to exchange Heater 2 provides heat exchange heat source.
  • the chemical salt furnace 1 after the solid salt and the high-temperature molten salt are mixed in the chemical salt furnace 1, a medium-temperature liquid molten salt is formed, and a part of the medium-temperature liquid molten salt is sent to the molten salt storage tank 3 through the delivery pump 5 for storage.
  • the other part is pumped into the heat source system 6 through the circulation pump, and the medium-temperature liquid molten salt is reheated by using the heat source system 6 and other chemical salt heat sources, and transported to the chemical salt furnace 1 to realize the circulation of chemical salt;
  • the heat exchanger 2 is used to raise the medium-temperature molten salt to a liquid molten salt in a high-temperature state;
  • solid salt and 300-440°C high-temperature molten salt are mixed in the salt furnace 1 to form 280-340°C medium-temperature liquid molten salt, and the formed medium-temperature liquid molten salt is sent to the molten salt storage through the delivery pump 5.
  • the tank 3 is stored, and the other part is injected into the heat source of the chemical salt such as the heat exchanger 2 or the electric heater through the circulation pump, and then heated to 300-440 degrees to form a high-temperature molten salt, which is transported to the chemical salt furnace 1 to realize Circulating the salt, the amount of delivery ensures that the solid molten salt newly added to the salt furnace 1 can reach a certain temperature and melt the solid molten salt.
  • this embodiment provides a salt system for a molten salt thermal energy storage power station.
  • the difference from Embodiment 1 is that there are multiple heat exchangers 2, and multiple heat exchangers 2 are connected in parallel. Installation method. Multiple heat exchangers 2 arranged in parallel can simultaneously heat medium-temperature liquid molten salt at 280-340 degrees to reach high-temperature molten salt at 300-440 degrees.
  • the work/work of any one of the heat exchangers 2 can also be individually controlled. It is closed without affecting the work of other heat exchangers 2.
  • the method of connecting multiple heat exchangers 2 in parallel is flexible and easy to use. When an accident occurs in a single heat exchanger 2, it will not affect the operation of the entire salt chemical system The advantages.
  • this embodiment provides a salt system for a molten salt thermal energy storage power station.
  • the difference from Embodiment 1 is that there are multiple heat exchangers 2, and multiple heat exchangers 2 Installed in series.
  • medium-temperature liquid molten salt at 280-340 degrees can flow through one channel and undergo multiple heat exchanges to achieve high-temperature molten salt at 300-440 degrees, and the whole system has only one channel in series, which is convenient for switching control the entire system.
  • two adjacent heat exchangers 2 are communicated through a secondary molten salt pipeline 7 .
  • a valve 8 for opening/closing the secondary molten salt pipeline 7 and a temperature measuring instrument 8 for measuring the temperature of liquid molten salt circulating in the secondary molten salt pipeline 7 are installed on the secondary molten salt pipeline 7 .
  • the 280-340°C medium-temperature liquid molten salt flowing out of the salt furnace 1 enters the heat exchanger 2, and in the heat exchanger 2, the 280-340°C medium-temperature liquid molten salt is raised to a 300-440°C high-temperature molten salt; If the medium-temperature liquid molten salt in the heat exchanger 2 cannot effectively exchange heat to the high-temperature molten salt temperature state, the secondary molten salt pipeline 7 is opened to transport the liquid molten salt to another parallel heat exchanger 2 again , and further heat-exchange the liquid molten salt until it reaches a high temperature molten salt state of 300-440 degrees.
  • this embodiment provides a salt melting system of a molten salt thermal energy storage power station, including a salt melting furnace 1, a heat exchanger 2, a molten salt storage tank 3, an auxiliary electric heater 10, and a heat exchanger 2 It has a molten salt inlet 21, a molten salt outlet 22, a heat source outlet 23 and a heat source inlet 24.
  • the salt furnace 1 is connected to the molten salt inlet 21 of the heat exchanger 2 and the auxiliary electric heater 10 respectively.
  • the molten salt outlet 22 of the heat exchanger 2 communicates with the salt furnace 1 through the first pipeline 11, and the heat exchanger 2 communicates with the heat source outlet 23 and the heat source inlet 24 (the heat source outlet 23 and the heat source The inlet 24 can be reversed) to establish a connection with the heat source system 6, which is used to provide heat exchange heat source for the heat exchanger 2, and the auxiliary electric heater 10 communicates with the salt furnace 1 through the second pipeline 12.
  • the salt melting furnace 1 is used to convert the pulverized solid molten salt into liquid molten salt, and the salt melting furnace 1 is a container for realizing the melting of salt;
  • a part of the medium-temperature molten salt in the chemical salt furnace 1 flows into the heat exchanger 2 and/or the auxiliary electric heater 10, and the medium-temperature molten salt is heated to a high-temperature molten salt by the heat exchanger 2 and/or the auxiliary electric heater 10, and then Transport the high-temperature molten salt to the salt furnace 1 through the circulation pump to realize the circulation of salt;
  • solid salt and 300-440 degree high temperature molten salt are mixed in the salt furnace 1 to form 280-340 degree medium temperature liquid molten salt, and the formed medium temperature liquid molten salt is sent through the delivery pump 5 all the way
  • the molten salt storage tank 3 is stored, and the other part is pumped into the heat exchanger 2 or the auxiliary electric heater 10 through the circulation pump, and the medium-temperature liquid molten salt (280-340°C) is heated through the heat exchanger 2 or the auxiliary electric heater 10 Transform into high-temperature liquid molten salt (300-440°C), and then transport the high-temperature molten salt to the salt furnace 1 to realize the circulation of salt.
  • the amount of delivery ensures that the solid molten salt newly added to the salt furnace 1 can reach A certain temperature, and melt the solid molten salt.
  • auxiliary electric heaters 10 The number of auxiliary electric heaters 10 is multiple, and multiple auxiliary electric heaters 10 are arranged in the whole chemical salt system in parallel or in series;
  • the salt melting system in this embodiment solves the problem that the solid molten salt of conventional photothermal power stations is converted into salt through a special natural gas salt furnace system, while the conventional dedicated natural gas salt furnace realizes the salt conversion process, which is affected by furnace heating capacity, natural gas Due to the limitation of factors such as the amount of consumption, the entire cycle of salt melting is relatively long, and the construction and operation costs of salt melting are relatively high.
  • the system utilizes the photothermal power generation system to carry out the salt melting work, so that both power generation and salt melting are correct, and the salt melting capacity is much greater than that of the traditional dedicated natural gas salt melting furnace system;
  • This system uses photothermal salt during the day when the sun is shining, and uses electric heating to absorb abandoned electricity or low-peak electricity to melt salt when there is no sun at night, which effectively shortens the cycle of salt melting.
  • the first pipeline 11 and the second pipeline 12 are respectively equipped with a valve 8 and a temperature measuring instrument 9 .
  • the valve 8 is used to control the switch of the pipeline, and the temperature measuring instrument 8 is used to measure the temperature of the fluid in the pipeline.
  • the opening and closing of the molten salt in the first pipeline 11 and the second pipeline 12 is monitored in real time by using the information interaction between the valve 8 and the temperature measuring instrument 9, so as to ensure the smooth progress of the salt melting work.
  • the electric energy used in the auxiliary electric heater 10 comes from low-cost electricity such as abandoned wind power, abandoned photovoltaic power, valley power, etc.
  • the cost of this electric energy is lower than the cost of electric energy provided by conventional power stations.
  • the heat exchanger 2 is used to heat and convert medium-temperature liquid molten salt (280-340°C) into high-temperature liquid molten salt (300-440°C).
  • the main principle is that the heat exchanger 2 has a molten salt inlet 21, a molten salt outlet 22, a heat source outlet 23 and a heat source inlet 24.
  • the medium-temperature liquid molten salt enters the heat exchanger 2 from the molten salt inlet 21, and enters with the heat source outlet 23.
  • the heat medium (such as heat conduction oil, hot molten salt) is used for heat exchange, and the medium-temperature liquid molten salt is heated to form high-temperature liquid molten salt, and the high-temperature liquid molten salt is transported to the salt furnace 1 for melting Solid molten salt.
  • the temperature of high-temperature molten salt can fluctuate up and down 370 degrees, with a floating range of 70 degrees (up to 600 degrees), and the temperature of medium-temperature salt can fluctuate up and down 310 degrees, with a floating range of 30 degrees.
  • the heat source system 6 is a heat transfer oil solar heat collection field, and the heat transfer oil solar heat collection field is used to heat the heat exchange in the heat exchanger 2 Heat source
  • the heat exchange heat source is heat conduction oil, that is to say, the heat conduction oil in the heat exchanger 2 is heated by using the heat conduction oil solar heat collection field, and then the heat of the heat conduction oil is transferred by the heat exchanger 2 Switch to liquid molten salt to form high-temperature liquid molten salt, which is used to transport to the salt furnace 1 to realize the circulation of salt.
  • the heat exchanger 2 is a heat-conducting oil heat exchanger. Inside the heat exchanger 2, high-temperature heat-conducting oil is used to exchange heat to the medium-temperature molten salt entering the heat exchanger 2, so that the temperature of the medium-temperature molten salt reaches High temperature molten salt.
  • the heat transfer oil comes from the heat transfer oil solar heat collection field, and the heat transfer oil in the heat exchanger 2 is heated by means of a solar mirror field.
  • the heat transfer oil in the heat exchanger 2 is derived from the solar mirror field, and a trough solar collector is used specifically.
  • the trough solar collector is used to heat the heat transfer oil in the pipeline, and the solar energy is converted into heat energy.
  • Thermal energy is used for salt conversion, which reduces the amount of natural gas used in molten salt projects in large-scale photothermal power plants and reduces the cost of salt conversion. At the same time, solar energy is fully utilized to improve environmental benefits.
  • the salt chemical speed exceeds 210 tons per hour, which is five times faster than the traditional salt chemical process, and can exceed 4,000 tons per day, which is four times the previous single-day salt chemical world record
  • it only takes two and a half weeks to melt 70,000 tons of salt continuously, which is two months faster than the traditional salt melting method, saving tens of millions of fossil fuels for salt melting, and saving 20% in equipment investment compared with the traditional salt melting system.
  • 100MW10 According to the calculation of the hourly energy storage solar thermal power station, the realization of energy storage power generation two months in advance can create 60 million kWh of power generation revenue. The specific comparison is shown in the figure:
  • the current international conventional salt system uses a dedicated natural gas salt furnace, which uses the flue gas after natural gas combustion to provide heat to melt solid molten salt into a liquid state.
  • the conventional way is to purchase a special natural gas salt furnace, and then use the flue gas after natural gas combustion to provide heat to melt the solid molten salt into a liquid state;
  • the original equipment of the solar farm is used for the desalination operation, such as the heat exchanger 2 used in this embodiment, the heat transfer oil solar heat collection field (heat source system 6 ) are all existing equipment in the power plant.
  • the original function of this equipment is for solar power generation.
  • it is composed of a salt system according to the cooperation, connection, and method of various technical features in this embodiment. , the system is used to achieve salt conversion, which saves the cost of purchasing and building natural gas salt conversion furnaces, reduces carbon dioxide emissions in the salt conversion process, and uses existing equipment to achieve salt conversion. Saltification cycle (as shown in Figure 7);
  • the heat storage medium used in the solar-thermal power station project is high-temperature molten salt.
  • the power station is equipped with a high-temperature molten salt heat storage system.
  • the system uses
  • the high-temperature molten salt is a mixture of 40% potassium nitrate and 60% sodium nitrate in mass fraction.
  • the solid molten salt must be melted and injected into the cold salt tank. This step (saltification) plays a vital role in the smooth commissioning and official commissioning of the heat storage system.
  • the heat source system 6 is a natural gas heat transfer oil furnace, and the heat exchange heat source in the heat exchanger 2 is heated by the natural gas heat transfer oil furnace heating method.
  • the heat source for heat exchange is heat conduction oil
  • the heat conduction oil in the heat exchanger 2 is heated by means of natural gas heat conduction oil furnace heating.
  • the heat transfer oil is heated by natural gas heating, and the heat transfer oil enters the heat exchanger 2 (heat transfer oil heat exchanger, oil-salt heat exchanger) to exchange heat with the molten salt, so that the molten salt flowing out of the heat exchanger 2 reaches a high temperature state.
  • the heat transfer oil used for melting the molten salt in the heat exchanger 2 is heat storage heat transfer oil in a solar power generation system, and the heat storage heat transfer oil cannot be used to generate electricity, but Its heat can still provide salt for use.
  • the heat exchanger 2 is a shell-and-tube heat exchanger, a tube-and-tube heat exchanger or a plate heat exchanger.
  • this embodiment provides a chemical salt system of a molten salt thermal energy storage power station, which includes a chemical salt furnace 1, a molten salt solar heat collection field 13, a molten salt storage tank 3 and an auxiliary electric heater 10.
  • the salt furnace 1 is respectively connected to the molten salt solar heat collection field 13 and the auxiliary electric heater 10, the molten salt solar heat collection field 13 is communicated with the salt furnace 1 through the first pipeline 11, and the auxiliary electric heater 10 is connected to the chemical salt furnace through the second pipeline 12.
  • the salt oven 1 is connected.
  • solid salt and 300-440 degree high temperature molten salt are mixed in the salt furnace 1 to form a 280-340 degree medium temperature liquid molten salt, and the formed medium temperature liquid molten salt is Send it to the molten salt storage tank 3 for storage through the delivery pump 5, and the other part is pumped into the molten salt solar heat collection field 13 and/or the auxiliary electric heater 10 through the circulation pump, and pass through the molten salt solar heat collection field 13 or auxiliary electric heating
  • the device 10 heats the medium-temperature liquid molten salt (280-340°C) into a high-temperature liquid molten salt (300-440°C), and then transports the high-temperature molten salt to the salt furnace 1 to realize the circulation of salt. Ensure that the solid molten salt newly added into the salt furnace 1 can reach a certain temperature and melt the solid molten salt.
  • Embodiment 5 The difference from Embodiment 5 is that in this embodiment, the heat exchanger 2 is replaced by a molten salt solar thermal field 13, and the medium-temperature molten salt enters the molten salt solar thermal field 13, and the molten salt solar thermal field 13 Under the action of 13, the temperature of the medium-temperature molten salt is raised to the high-temperature molten salt, and the temperature of the high-temperature molten salt is used to realize the work of salt transformation, which also realizes both power generation and salt transformation, and the salt transformation capacity is much greater than that of the salt furnace system;
  • the molten salt solar heat collection field 13 includes molten salt tank type, tower type heat collectors and the like.
  • the salt conversion system in this embodiment solves the problem that the solid molten salt of conventional photothermal power plants is converted into salt through a dedicated natural gas salt conversion furnace system, while the conventional dedicated natural gas salt conversion furnace realizes the salt conversion process. Restricted by factors such as the amount of natural gas used, the entire salt chemical cycle cannot be guaranteed, and the cost of salt chemical remains high.
  • a circulation pump 14 is installed on the connection pipeline between the salt furnace 1 , the molten salt solar heat collection field 13 and the auxiliary electric heater 10 .
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description. In the absence of a contrary description, these orientation words do not indicate or imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present invention; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种熔融盐热储能电站的化盐***,包括:化盐炉(1)、换热器(2)和熔盐储罐(3);化盐炉(1)通过熔盐管道(4)连通换热器(2)的熔盐入口,化盐炉(1)通过输送泵(5)与熔盐储罐(3)连通,换热器(2)的熔盐出口与化盐炉(1)连通;换热器(2)与热源***(6)建立连接关系,热源***(6)用于给换热器(2)提供换热热源。

Description

一种熔融盐热储能电站的化盐*** 技术领域
本发明涉及一种太阳能光热电站熔盐化盐***,属于化盐***技术领域。
背景技术
近年来,太阳能光热发电作为一种新兴的太阳能发电技术,得到了快速发展。太阳能光热电站储热***通常采用熔盐作为储热介质。
熔盐在投入太阳能光热电站前,主要以固体形式供货,(因为熔盐在常温下为固体)采用固体形式供货方便熔盐的运输及存储。而当熔盐需要投入到太阳能光热电站储热时,需要将大量固态熔盐转化为高温液态熔融盐,其方式是将熔盐进行初熔,熔盐初熔是光热电站熔盐储热***在进入调试运行之前的一道关键程序,熔盐通过此流程由固态变为液态高温熔盐进入***开始循环,并在整个电站的寿命期内保持液态。
针对光热电站的大规模化盐需求,现有的化盐***根据热源不同主要分电加热和天然气加热两种,化盐方式主要是通过皮带输送***将固态熔盐输送至化盐罐,利用化盐罐电加热装置将初期固态熔盐转化为液态熔融盐,通过化盐泵将液态熔融盐输送至专用的天然气化盐炉***升温,利用升温后的高温熔融盐将新添加的固态熔盐转化为液态熔融盐,混合后的熔融盐再次进入专用的天然气化盐炉***升温,同时将部分升温后熔融盐输送至冷盐储罐,保证化盐罐液位。天然气化盐炉***每天需要将大量固态熔盐转化为液态熔融盐,同时专用的天然气化盐炉***升温能力有限,在几万吨的大型光热电站熔盐项目中,所耗费天然气成本及时间成本居高不下。
基于上述情况,开展化盐技术方案研究工作,对缩短化盐周期、降低化盐成本,提高化盐速度和质量,确保光热发电和化盐两不误具有十分重要的意义。
技术问题
本发明为了缩短化盐周期、降低化盐成本。在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。
技术解决方案
一种熔融盐热储能电站的化盐***,包括化盐炉、换热器和熔盐储罐,所述化盐炉通过熔盐管道连通换热器的熔盐入口,化盐炉通过输送泵与熔盐储罐连通,换热器的熔盐出口与化盐炉连通,所述换热器与热源***建立连接关系,热源***用于给换热器提供换热热源。
进一步地:所述换热器的数量为多个,多个换热器采用并联安装方式。
进一步地:所述换热器的数量为多个,多个换热器采用串联安装方式。
进一步地:相邻的两个油盐换热器之间通过二次熔盐管道连通。
进一步地:所述二次熔盐管道上安装有阀门和温度测量仪。
一种熔融盐热储能电站的化盐***,包括化盐炉、换热器、熔盐储罐和辅助电加热器,换热器具有熔盐入口、熔盐出口、热源出口和热源入口,化盐炉分别连接换热器的熔盐入口和辅助电加热器,所述化盐炉通过输送泵与熔盐储罐连通,换热器的熔盐出口通过第一管道与化盐炉连通,所述换热器通过热源出口和热源入口与热源***建立连接,热源***用于给换热器提供换热热源,辅助电加热器通过第二管道与化盐炉连通。
进一步地:所述第一管道和第二管道上分别安装有阀门和温度测量仪。
进一步地:所述辅助电加热器中使用的电能来源于弃风电、弃光电或低谷电。
进一步地:所述热源***为导热油太阳能集热场,采用导热油太阳能集热场实现加热所述换热器内的换热热源。
进一步地:所述热源***为天然气导热油炉,采用天然气导热油炉加热方式实现加热所述换热器内的换热热源。
进一步地:所述热源***为太阳能发电***中的蓄热导热油。
进一步地:所述换热器为管壳式换热器、列管式换热器或板式换热器。
进一步地:包括化盐炉、熔融盐太阳能集热场、熔盐储罐和辅助电加热器,化盐炉分别连接熔融盐太阳能集热场和辅助电加热器,熔融盐太阳能集热场通过第一管道与化盐炉连通,辅助电加热器通过第二管道与化盐炉连通。
进一步地:所述化盐炉与熔融盐太阳能集热场和辅助电加热器的连接管路上安装有循环泵。
有益效果
1.本发明的化盐***,解决了常规光热电站固态熔盐均通过专用的天然气化盐炉***进行化盐,而常规专用的天然气化盐炉实现化盐过程,受炉加热能力、天然气用量等因素限制,化盐效率不高,整个化盐周期得不到保障,且化盐燃料成本高。
2.本发明利用光热发电***进行化盐工作,这样发电和化盐两不误,且化盐能力远大于专用的天然气化盐炉***;
3.本发明统在白天有太阳时,用光热化盐,夜晚没有太阳时,利用电加热吸收弃电或低谷电进行化盐,有效缩短了化盐的周期。
4.本发明与常规的化盐方式相比,通过光热方式实现化盐,其化盐速度显著提高,并且该***简单,***运行简便,安全性高,节能环保。
5.采用本发明的化盐***,其化盐速度超过210吨/小时,比传统化盐速度快五倍,每天可以超过4000吨,是之前单日化盐世界纪录的四倍以上,如果连续融化7万吨盐只需两周半,比传统的化盐方式快两个月,节省化盐的化石燃料千万元,设备投资也较传统化盐***节省20%,按照100MW10小时储能光热电站计算,提前两个月实现储能发电可创造6000万度的发电收益。
附图说明
图1为具体实施方式一中化盐***的构成图;
图2为具体实施方式二中化盐***的构成图;
图3是一种熔融盐热储能电站的化盐***的***示意图;
图4是具体实施方式十三中化盐***的构成图;
图5是具体实施方式九中化盐***的构成图;
图6是具体实施方式十中化盐***的构成图;
图7是传统的化盐方式与本发明化盐方式的化盐量与化盐周期关系示意图;
图中,1-化盐炉,2-换热器,3-熔盐储罐,4-熔盐管道,5-输送泵,6-热源***,7-二次熔盐管道,8-阀门,9-温度测量仪,10-辅助电加热器,11-第一管道,12-第二管道,13-熔融盐太阳能集热场,14-循环泵,21-熔盐入口,22-熔盐出口,23-热源出口,24-热源入口。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
具体实施方式一:
参照图1所示,本实施方式提供包括化盐炉1、换热器2和熔盐储罐3,所述化盐炉1通过熔盐管道4连通换热器2的熔盐入口,化盐炉1通过输送泵5与熔盐储罐3连通,换热器2的熔盐出口与化盐炉1连通,所述换热器2与热源***6建立连接关系,热源***6用于给换热器2提供换热热源。
其中,在化盐炉1中,固体盐与高温熔盐在化盐炉1中混合后,形成中温液体熔融盐,该中温液体熔盐一部分通过输送泵5送入熔盐储罐3中储存,另一部分通过循环泵打入热源***6中,利用热源***6等化盐的热源,将中温液体熔融盐再次加热,并输送到化盐炉1内,实现循环化盐;
换热器2用于将中温熔融盐提高到高温状态液态熔盐;
***运行时,将固体盐与300-440度高温熔盐在化盐炉1中混合后,形成280-340度中温液体熔融盐,形成的中温液体熔融盐一路通过输送泵5送入熔盐储罐3储存,另一部分通过循环泵打入换热器2或电加热器等化盐的热源,再加热到300-440度,形成高温熔融盐,该高温熔融盐输送至化盐炉1内实现循环化盐,输送的量保证新加入到化盐炉1内的固体熔盐能够达到一定温度,并将固体熔盐融化。
具体实施方式二:
参照图2所示,本实施方式提供一种熔融盐热储能电站的化盐***,与具体实施方式一不同的是,换热器2的数量为多个,多个换热器2采用并联安装方式。通过并联设置的多个换热器2可以实现同时加热280-340度的中温液体熔融盐,以达到300-440度高温熔盐,此外,还可以单独控制其中任意一个换热器2的工作/关闭,且不影响其他换热器2工作,在整个***中,采用并联多个换热器2的方式具有灵活、使用方便、单一一个换热器2出现事故时,不影响整个化盐***运行的优点。
具体实施方式三:
参照图2所示,本实施方式提供一种熔融盐热储能电站的化盐***,与具体实施方式一不同的是,所述换热器2的数量为多个,多个换热器2采用串联安装方式。采用串联换热器2,280-340度的中温液体熔融盐可以流经一条通路经过多次换热,以达到300-440度高温熔盐,并且采用串联的方式整个***只有一条通路,方便开关控制整个***。
具体实施方式四:
参照图2所示,在具体实施方式二的基础上,相邻的两个换热器2之间通过二次熔盐管道7连通。并在所述二次熔盐管道7上安装有用于打开/关闭二次熔盐管道7的阀门8和用于测量二次熔盐管道7内流通液态熔盐温度的温度测量仪8。如此设置,化盐炉1流出的280-340度中温液体熔融盐进入到换热器2,在换热器2内,将280-340度中温液体熔融盐提高到300-440度高温熔盐;若换热器2内的中温液体熔融盐不能有效换热到高温熔盐温度值状态时,所述二次熔盐管道7开启,将液态熔盐再次输送到并联的另一换热器2内,进一步对液态熔盐进行换热,直至达到300-440度高温熔盐状态。
具体实施方式五:
参照图3所示,本实施方式提供一种熔融盐热储能电站的化盐***,包括化盐炉1、换热器2、熔盐储罐3和辅助电加热器10,换热器2具有熔盐入口21、熔盐出口22、热源出口23和热源入口24,化盐炉1分别连接换热器2的熔盐入口21和辅助电加热器10,所述化盐炉1通过输送泵5与熔盐储罐3连通,换热器2的熔盐出口22通过第一管道11与化盐炉1连通,所述换热器2通过热源出口23和热源入口24(热源出口23和热源入口24可以对调)与热源***6建立连接,热源***6用于给换热器2提供换热热源,辅助电加热器10通过第二管道12与化盐炉1连通。
在本实施方式中,化盐炉1用于将粉碎后的固体熔盐转化为液态熔,化盐炉1是用于实现化盐的容器;
化盐炉1中的中温熔盐一部分流入到换热器2和/或辅助电加热器10内,利用换热器2和/或辅助电加热器10将中温熔盐加热到高温熔融盐,然后将高温熔融盐通过循环泵输送至化盐炉1内,实现循环化盐工作;
***进行化盐工作时,将固体盐与300-440度高温熔盐在化盐炉1中混合后,形成280-340度中温液体熔融盐,形成的中温液体熔融盐一路通过输送泵5送入熔盐储罐3储存,另一部分通过循环泵打入换热器2或辅助电加热器10内,经过换热器2或辅助电加热器10,将中温液体熔融盐(280-340℃)加热转化为高温液体熔融盐(300-440℃),随后,将该高温熔融盐输送至化盐炉1内实现循环化盐,输送的量保证新加入到化盐炉1内的固体熔盐能够达到一定温度,并将固体熔盐融化。
辅助电加热器10的数量为多个,多个辅助电加热器10采用并联或串联的方式布置在整个化盐***中;
本实施方式中的化盐***,解决了常规光热电站固态熔盐均通过专用的天然气化盐炉***进行化盐,而常规专用的天然气化盐炉实现化盐过程,受炉加热能力、天然气用量等因素限制,整个化盐周期较长,且化盐成本的建设和运营成本较高。
采用本实施方式的化盐***,该***利用光热发电***进行化盐工作,这样发电和化盐两不误,且化盐能力远大于传统专用的天然气化盐炉***;
本***在白天有太阳时,用光热化盐,夜晚没有太阳时,利用电加热吸收弃电或低谷电进行化盐,有效缩短了化盐的周期。
具体实施方式六:
参照图3所示,在具体实施方式五的基础上,所述第一管道11和第二管道12上分别安装有阀门8和温度测量仪9。阀门8用于控制管道的开关,温度测量仪8用于测量管道内流体温度。利用阀门8和温度测量仪9的信息交互,实时监控第一管道11和第二管道12内熔融盐的开启和关闭,确保化盐工作顺利进行。
具体实施方式七:
在具体实施方式五的基础上,所述辅助电加热器10中使用的电能来源于弃风电、弃光电、波谷电等低成本电,该电能的成本低于常规发电站提供的电能的成本。
具体实施方式八:
参照图4、图6所示,在具体实施方式五的基础上,换热器2用于将中温液体熔融盐(280-340℃)加热转化为高温液体熔融盐(300-440℃),其主要原理是,换热器2具有具有熔盐入口21、熔盐出口22、热源出口23和热源入口24,中温液体熔融盐自熔盐入口21进入到换热器2内,与热源出口23进入的热介质(例如导热油、热熔盐)进行换热,将中温液体熔融盐加热,形成高温液体熔融盐,该高温液体熔盐输送至化盐炉1内用于融化化盐炉1内的固体熔盐。
在本实施方式中,高温熔盐温度可以在370度上下浮动,浮动范围70度(最高不超过600度),中温盐310度上下浮动,浮动范围30度。
具体实施方式九:
参照图4、图5所示,在具体实施方式五的基础上,所述热源***6为导热油太阳能集热场,采用导热油太阳能集热场实现加热所述换热器2内的换热热源,在本实施例中,该换热热源为导热油,也就是说采用导热油太阳能集热场实现加热所述换热器2内的导热油,然后利用换热器2将导热油的热量转换给液体熔融盐,形成高温液体熔融盐,该高温液体熔融盐用于输送到化盐炉1内,实现循环化盐。
在本实施方式中,换热器2为导热油换热器,换热器2内部,使用高温导热油将热量换给进入到换热器2内的中温熔融盐,使中温熔融盐的温度达到高温熔融盐。其中导热油来源于导热油太阳能集热场,采用太阳能镜场方式实现加热所述换热器2中的导热油。其中换热器2内的导热油来源于太阳能镜场,具体使用的是槽式太阳能集热器,利用槽式太阳能集热器,加热管道内的导热油,利用太阳能转化为热能,利用转换的热能进行化盐工作,减少了大型光热电站熔盐项目天然气使用量,降低了化盐成本。同时充分利用太阳能,提高了环境效益。
在本实施方式中,采用本实施方式化盐***,其化盐速度超过210吨/小时,比传统化盐速度快五倍,每天可以超过4000吨,是之前单日化盐世界纪录的四倍以上,如果连续融化7万吨盐只需两周半,比传统的化盐方式快两个月,节省化盐的化石燃料千万元,设备投资也较传统化盐***节省20%,按照100MW10小时储能光热电站计算,提前两个月实现储能发电可创造6000万度的发电收益。具体对比如图所示:
表1、光热化盐***与传统化盐***对比
Figure dest_path_image001
需要说明的是,在太阳能发电项目中,目前国际上常规化盐***均采用专用的天然气化盐炉,利用天然气燃烧后的烟气提供热量,使固态熔盐熔化为液态。
当某一太阳能发电项目需要化盐时,常规的方式是购买专用的天然气化盐炉,然后利用天然气燃烧后的烟气提供热量,使固态熔盐熔化为液态;
与常规的化盐方式不同的是,本实施例中,采用太阳能发电场的原有设备进行化盐作业,例如本实施例中使用的换热器2、导热油太阳能集热场(热源***6)均为发电厂现有的设备,该设备原有的作用是用于太阳能发电,在本实施例中,将其按照本实施例中各技术特征的配合、连接、按照方式,组成化盐***,将该***用于实现化盐,这样即节省了采购、建设天然气化盐炉的成本,降低了化盐过程二氧化碳排放,并且利用现有设备实现化盐的方式提高了化盐速度和缩短了化盐周期(如图7所示);
需要说明的是:在光热电站项目所使用的储热介质为高温熔盐,以100 MW级10小时储能的光热发电项目为例,电站配备有高温熔盐储热***,该***使用的高温熔盐为质量分数40%的硝酸钾和60%的硝酸钠的混合物。熔盐储能***投运前须先将固体熔盐熔化并注入冷盐罐中,这一步骤(化盐)对储热***调试的顺利开展以及正式投运都具有至关重要的作用。目前国际上常规化盐***均采用专用的天然气化盐炉,利用天然气燃烧后的烟气提供热量,使固态熔盐熔化为液态。这种常规化盐***不仅化盐速率低下,无法在短期内使储热***正常投运,而且需要消耗大量的化石燃料。而受限于熔盐熔化温度高、化盐***技术难点多等特点,国内外对于高速、低碳新型化盐技术的实践探索几乎为零。
具体实施方式十:
参照图4、图6所示,在具体实施方式五的基础上,所述热源***6为天然气导热油炉,采用天然气导热油炉加热方式实现加热所述换热器2内的换热热源。在本实施例中,该换热热源为导热油,采用天然气导热油炉加热方式实现加热所述换热器2内的导热油。采用天然气加热方式加热导热油,导热油进入到换热器2(导热油换热器、油盐换热器)内与熔盐换热,使流出换热器2的熔盐达到高温状态。
具体实施方式十一:
参照图4,在具体实施方式五的基础上,所述换热器2中用于融化熔盐的导热油为太阳能发电***中的蓄热导热油,该蓄热导热油不能用来发电,但是其热量仍能够提供化盐使用。
具体实施方式十二:
结合具体实施方式五,所述换热器2为管壳式换热器、列管式换热器或板式换热器。
具体实施方式十三:
参照图4所示,本实施方式提供一种熔融盐热储能电站的化盐***,包括化盐炉1、熔融盐太阳能集热场13、熔盐储罐3和辅助电加热器10,化盐炉1分别连接熔融盐太阳能集热场13和辅助电加热器10,熔融盐太阳能集热场13通过第一管道11与化盐炉1连通,辅助电加热器10通过第二管道12与化盐炉1连通。
在本实施方式中,在化盐炉1内,将固体盐与300-440度高温熔盐在化盐炉1中混合后,形成280-340度中温液体熔融盐,形成的中温液体熔融盐一路通过输送泵5送入熔盐储罐3储存,另一部分通过循环泵打入熔融盐太阳能集热场13和/或辅助电加热器10内,经过熔融盐太阳能集热场13、或辅助电加热器10,将中温液体熔融盐(280-340℃)加热转化为高温液体熔融盐(300-440℃),随后,将该高温熔融盐输送至化盐炉1内实现循环化盐,输送的量保证新加入到化盐炉1内的固体熔盐能够达到一定温度,并将固体熔盐融化。
与具体实施方式五不同的是,在本实施方式中,采用熔融盐太阳能集热场13替换换热器2,中温熔融盐进入到熔融盐太阳能集热场13内,在熔融盐太阳能集热场13的作用下,将中温熔融盐的温度提升至高温熔融盐,利用该高温熔融盐的温度实现化盐工作,同样实现发电和化盐两不误,且化盐能力远大于化盐炉***;
在本实施方式中,熔融盐太阳能集热场13包括熔盐槽式、塔式集热器等。
在本实施方式中的化盐***,解决了常规光热电站固态熔盐均通过专用的天然气化盐炉***进行化盐,而常规专用的天然气化盐炉实现化盐过程,受炉加热能力、天然气用量等因素限制,整个化盐周期得不到保障,且化盐成本居高不下。
具体实施方式十四:
结合具体实施方式十三,在本实施方式中,所述化盐炉1与熔融盐太阳能集热场13和辅助电加热器10的连接管路上安装有循环泵14。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
需要说明的是,在以上实施例中,只要不矛盾的技术方案都能够进行排列组合,本领域技术人员能够根据排列组合的数学知识穷尽所有可能,因此本发明不再对排列组合后的技术方案进行一一说明,但应该理解为排列组合后的技术方案已经被本发明所公开。
本实施方式只是对本专利的示例性说明,并不限定它的保护范围,本领域技术人员还可以对其局部进行改变,只要没有超出本专利的精神实质,都在本专利的保护范围内。

Claims (14)

  1. [根据细则26改正19.08.2021] 
    一种熔融盐热储能电站的化盐***,其特征在于:包括化盐炉(1)、换热器(2)和熔盐储罐(3),所述化盐炉(1)通过熔盐管道(4)连通换热器(2)的熔盐入口,化盐炉(1)通过输送泵(5)与熔盐储罐(3)连通,换热器(2)的熔盐出口与化盐炉(1)连通,所述换热器(2)与热源***(6)建立连接关系,热源***(6)用于给换热器(2)提供换热热源。
  2. [根据细则26改正19.08.2021] 
    根据权利要求1所述的一种熔融盐热储能电站的化盐***,其特征在于:所述换热器(2)的数量为多个,多个换热器(2)采用并联安装方式。
  3. [根据细则26改正19.08.2021] 
    根据权利要求1所述的一种熔融盐热储能电站的化盐***,其特征在于:所述换热器(2)的数量为多个,多个换热器(2)采用串联安装方式。
  4. [根据细则26改正19.08.2021] 
    根据权利要求2所述的一种熔融盐热储能电站的化盐***,其特征在于:相邻的两个换热器(2)之间通过二次熔盐管道(7)连通。
  5. 根据权利要求4所述的一种熔融盐热储能电站的化盐***,其特征在于:所述二次熔盐管道(7)上安装有阀门(8)和温度测量仪(9)。
  6. 一种熔融盐热储能电站的化盐***,其特征在于:包括化盐炉(1)、换热器(2)、熔盐储罐(3)和辅助电加热器(10),换热器(2)具有熔盐入口(21)、熔盐出口(22)、热源出口(23)和热源入口(24),化盐炉(1)分别连接换热器(2)的熔盐入口(21)和辅助电加热器(10),所述化盐炉(1)通过输送泵(5)与熔盐储罐(3)连通,换热器(2)的熔盐出口(22)通过第一管道(11)与化盐炉(1)连通,所述换热器(2)通过热源出口(23)和热源入口(24)与热源***(6)建立连接,热源***(6)用于给换热器(2)提供换热热源,辅助电加热器(10)通过第二管道(12)与化盐炉(1)连通。
  7. [根据细则26改正19.08.2021] 
    根据权利要求6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述第一管道(11)和第二管道(12)上分别安装有阀门(8)和温度测量仪(9)。
  8. [根据细则26改正19.08.2021] 
    根据权利要求6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述辅助电加热器(10)中使用的电能来源于弃风电、弃光电或波谷电。
  9. [根据细则26改正19.08.2021] 
    根据权利要求1或6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述热源***(6)为导热油太阳能集热场,采用导热油太阳能集热场实现加热所述换热器(2)内的换热热源。
  10. [根据细则26改正19.08.2021] 
    根据权利要求1或6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述热源***(6)为天然气导热油炉,采用天然气导热油炉加热方式实现加热所述换热器(2)内的换热热源。
  11. [根据细则26改正19.08.2021] 
    根据权利要求1或6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述热源***(6)为太阳能发电***中的蓄热导热油。
  12. [根据细则26改正19.08.2021] 
    根据权利要求1或6所述的一种熔融盐热储能电站的化盐***,其特征在于:所述换热器(2)为管壳式换热器、列管式换热器或板式换热器。
  13. [根据细则26改正19.08.2021] 
    一种熔融盐热储能电站的化盐***,其特征在于:包括化盐炉(1)、熔融盐太阳能集热场(13)、熔盐储罐(3)和辅助电加热器(10),化盐炉(1)分别连接熔融盐太阳能集热场(13)和辅助电加热器(10),熔融盐太阳能集热场(13)通过第一管道(11)与化盐炉(1)连通,辅助电加热器(10)通过第二管道(12)与化盐炉(1)连通。
  14. [根据细则26改正19.08.2021] 
    根据权利要求13所述的一种熔融盐热储能电站的化盐***,其特征在于:所述化盐炉(1)与熔融盐太阳能集热场(13)和辅助电加热器(10)的连接管路上安装有循环泵(14)。
PCT/CN2021/108087 2021-06-23 2021-07-23 一种熔融盐热储能电站的化盐*** WO2022267154A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ES202390245A ES2961013R1 (es) 2021-06-23 2021-07-23 Un sistema de fusión de sal de central de almacenamiento de energía térmica en sal fusionada

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110696817.7 2021-06-23
CN202110696817.7A CN113274949A (zh) 2021-06-23 2021-06-23 一种熔融盐热储能电站的化盐***

Publications (1)

Publication Number Publication Date
WO2022267154A1 true WO2022267154A1 (zh) 2022-12-29

Family

ID=77285325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108087 WO2022267154A1 (zh) 2021-06-23 2021-07-23 一种熔融盐热储能电站的化盐***

Country Status (3)

Country Link
CN (1) CN113274949A (zh)
ES (1) ES2961013R1 (zh)
WO (1) WO2022267154A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117791961A (zh) * 2024-02-26 2024-03-29 浙江西子联合工程有限公司 一种储能装置动能回收装置及汽轮机发电***、供热***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160115945A1 (en) * 2013-05-27 2016-04-28 Stamicarbon B.V. Acting Under The Name Of Mt Innov Ation Center Solar thermal energy storage system
CN206207766U (zh) * 2016-10-24 2017-05-31 中国华能集团清洁能源技术研究院有限公司 一种采用线聚焦太阳能集热的熔盐化盐***
CN207865731U (zh) * 2017-12-29 2018-09-14 中国电力工程顾问集团西北电力设计院有限公司 一种太阳能光热电站熔盐储罐***
CN208042859U (zh) * 2018-03-13 2018-11-02 蓝星(北京)化工机械有限公司 一种熔盐储罐的预热和化盐***
CN110057115A (zh) * 2019-04-25 2019-07-26 上海锅炉厂有限公司 一种光、电互补的槽式光热发电***及其运行方法
CN110068155A (zh) * 2018-04-19 2019-07-30 内蒙古电力勘测设计院有限责任公司 一种熔盐线性菲涅尔集热场防凝***及其方法
CN110715542A (zh) * 2019-10-15 2020-01-21 武汉丰盈能源技术工程有限公司 利用太阳能热来干燥生物质和城市生活垃圾的***
CN111219893A (zh) * 2019-12-30 2020-06-02 赫普能源环境科技股份有限公司 电站锅炉耦合光热熔盐集热加热***和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734929B (zh) * 2012-06-21 2014-10-01 江苏太阳宝新能源有限公司 光热发电熔盐加热和排放***
CN202770006U (zh) * 2012-07-27 2013-03-06 中海阳新能源电力股份有限公司 槽式太阳能储热***用开车前熔盐连续融化输出单元
CN105627799A (zh) * 2014-10-31 2016-06-01 中广核太阳能开发有限公司 一种梯级储热***及梯级储热方法
CN104456987A (zh) * 2014-12-18 2015-03-25 东北大学设计研究院(有限公司) 一种太阳能储放热***
CN105233760A (zh) * 2015-11-03 2016-01-13 百吉瑞(天津)新能源有限公司 一种固态盐初始熔化***及方法
CN205448370U (zh) * 2016-03-17 2016-08-10 常州能源设备总厂有限公司 熔盐融化与升温成套装置
CN206168384U (zh) * 2016-10-09 2017-05-17 深圳市爱能森科技有限公司 一种可移动式化盐***
CN208380763U (zh) * 2017-06-29 2019-01-15 深圳市爱能森科技有限公司 一种改良的布雷顿光热发电***
CN208475685U (zh) * 2018-07-11 2019-02-05 河北道荣新能源科技有限公司 一种基于太阳能集热的熔盐储能供热***
CN209362454U (zh) * 2018-10-22 2019-09-10 青海爱能森新材料科技有限公司 自动化熔盐化盐***
CN111320188A (zh) * 2018-12-14 2020-06-23 新特能源股份有限公司 固碱生产中的熔盐电加热***
CN112325493A (zh) * 2020-11-12 2021-02-05 北京能脉科技有限公司 一种提高光热电站熔盐化盐效率的控制设备及方法
CN215655068U (zh) * 2021-06-23 2022-01-28 北京蓝海翌能新能源集团有限公司 一种熔融盐热储能电站的化盐***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160115945A1 (en) * 2013-05-27 2016-04-28 Stamicarbon B.V. Acting Under The Name Of Mt Innov Ation Center Solar thermal energy storage system
CN206207766U (zh) * 2016-10-24 2017-05-31 中国华能集团清洁能源技术研究院有限公司 一种采用线聚焦太阳能集热的熔盐化盐***
CN207865731U (zh) * 2017-12-29 2018-09-14 中国电力工程顾问集团西北电力设计院有限公司 一种太阳能光热电站熔盐储罐***
CN208042859U (zh) * 2018-03-13 2018-11-02 蓝星(北京)化工机械有限公司 一种熔盐储罐的预热和化盐***
CN110068155A (zh) * 2018-04-19 2019-07-30 内蒙古电力勘测设计院有限责任公司 一种熔盐线性菲涅尔集热场防凝***及其方法
CN110057115A (zh) * 2019-04-25 2019-07-26 上海锅炉厂有限公司 一种光、电互补的槽式光热发电***及其运行方法
CN110715542A (zh) * 2019-10-15 2020-01-21 武汉丰盈能源技术工程有限公司 利用太阳能热来干燥生物质和城市生活垃圾的***
CN111219893A (zh) * 2019-12-30 2020-06-02 赫普能源环境科技股份有限公司 电站锅炉耦合光热熔盐集热加热***和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117791961A (zh) * 2024-02-26 2024-03-29 浙江西子联合工程有限公司 一种储能装置动能回收装置及汽轮机发电***、供热***
CN117791961B (zh) * 2024-02-26 2024-05-17 浙江西子联合工程有限公司 一种储能装置动能回收装置及汽轮机发电***、供热***

Also Published As

Publication number Publication date
ES2961013A2 (es) 2024-03-07
CN113274949A (zh) 2021-08-20
ES2961013R1 (es) 2024-04-11

Similar Documents

Publication Publication Date Title
CN204187873U (zh) 一种采用导热油传热的储能式太阳能过热蒸汽锅炉
CN204187872U (zh) 一种采用熔盐传热储热的储能式太阳能热水锅炉
CN203757824U (zh) 一种能够降低一次网回水温度的供热***
CN205299702U (zh) 多能互补集中供热***
WO2022267154A1 (zh) 一种熔融盐热储能电站的化盐***
CN104089407B (zh) 基于太阳能辅助燃气轮机的分布式多联供装置及方法
CN215655068U (zh) 一种熔融盐热储能电站的化盐***
CN211527119U (zh) 工业炉烟气余热回收蓄热热水供热***
CN203036658U (zh) 锅炉烟气余热多用途利用***
CN219898071U (zh) 一种基于导热油集热场的太阳能光热电站化盐***
CN201751746U (zh) 太阳能、燃气壁挂炉互补供热***
CN202692728U (zh) 一种煅烧炉余热利用***
WO2022267151A1 (zh) 一种基于天然气导热油炉的太阳能光热电站化盐***
CN215295378U (zh) 一种基于天然气导热油炉的太阳能光热电站化盐***
WO2022267155A1 (zh) 一种基于导热油集热场的太阳能光热电站化盐***
CN205208935U (zh) 一种锅炉余热回收蓄能***
CN211424698U (zh) 用于沥青搅拌站的导热油炉烟气余热回收利用装置
CN217450086U (zh) 一种基于熔融盐太阳能集热场的太阳能光热电站化盐***
CN207779193U (zh) 一种储能放热***
CN207729834U (zh) 一种环保工业热水供应装置
CN207196611U (zh) 一种提高热传递效率的热暖蓄水罐的供热装置
WO2022267152A1 (zh) 一种基于熔融盐太阳能集热场的太阳能光热电站化盐***
CN205014451U (zh) 水余热回收供暖***
CN201909384U (zh) 太阳能辅助燃气供热***
CN205191225U (zh) 一种太阳能间接加热输送原油装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P202390245

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE