WO2022267074A1 - 一种用于完全粘结型增强复合管复合的装置及方法 - Google Patents

一种用于完全粘结型增强复合管复合的装置及方法 Download PDF

Info

Publication number
WO2022267074A1
WO2022267074A1 PCT/CN2021/103050 CN2021103050W WO2022267074A1 WO 2022267074 A1 WO2022267074 A1 WO 2022267074A1 CN 2021103050 W CN2021103050 W CN 2021103050W WO 2022267074 A1 WO2022267074 A1 WO 2022267074A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
compounding
plasma generating
composite
generating device
Prior art date
Application number
PCT/CN2021/103050
Other languages
English (en)
French (fr)
Inventor
霍福磊
陈江慧
金崇阳
褚展鹏
刘跃明
Original Assignee
临海伟星新型建材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 临海伟星新型建材有限公司 filed Critical 临海伟星新型建材有限公司
Publication of WO2022267074A1 publication Critical patent/WO2022267074A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • B29C63/105Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles continuously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C59/142Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0065Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0065Heat treatment
    • B29C63/0069Heat treatment of tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/48Preparation of the surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Definitions

  • the invention belongs to the technical field of compound pipe compounding, and in particular relates to a device and method for compounding fully bonded reinforced compound pipes.
  • Fiber-reinforced thermoplastic composite pipes can be divided into two types: non-bonded type and fully bonded type. Because the fully bonded reinforced composite pipe has better overall performance and excellent fatigue resistance, it is widely accepted by the market. The fully bonded reinforced composite pipes currently on the market have poor bonding effects. During use, with the fluctuation of temperature, pressure and other loads, the bonding layer gradually fails. The main reasons are: the existing fully bonded The compounding process is carried out from the three dimensions of compounding temperature, compounding pressure and compounding time.
  • the existing defects are: 1) the surface of the core tube to be composited has an oxide layer, which cannot be processed, and the composite effect is poor; 2) the surface temperature of the composite reinforcement layer is raised to the composite temperature, and the surface oxide layer is still unable to be processed, and the composite effect is poor; 3) The surface to be compounded is heated by hot air, and the compounded surface will be polluted by impurities, moisture, grease, etc.
  • the object of the present invention is to provide a device and method for compounding fully bonded reinforced composite pipes.
  • a device for compounding fully bonded reinforced composite pipes including a plasma generating device and an air heating device, the air heating device is arranged on both sides of the plasma generating device, after the device is installed, the air heating device on both sides
  • the hot air injection nozzles of the plasma generating device are directed towards the pipe to be composited and the reinforcement tape to be composited on the pipe respectively, and the plasma injection nozzle of the plasma generating device is directed between the pipe to be composited and the reinforcement tape to realize plasma treatment after heating the composite surface.
  • the plasma generating device is a jet-type atmospheric low-temperature plasma processor
  • the pipe material is a reinforced thermoplastic pipe.
  • the air heating device is respectively provided on both sides of the plasma generating device through an angle adjustment device.
  • one end of the angle adjusting device is fixedly connected to the plasma generating device, the other end is a telescopic device, fixedly connected to the air heating device, and one end of the air heating device is hinged to the plasma generating device.
  • the outer side of the plasma generating device is a heat insulation layer.
  • the nozzle width of the hot air injection nozzle is 4mm-8mm larger than the width of the reinforcement belt
  • the nozzle width of the plasma injection nozzle is 4mm-8mm larger than the width of the reinforcement belt, so that the hot air and plasma are fully sprayed on the surface to be combined.
  • a method for compounding fully bonded reinforced composite pipes comprising the steps of:
  • the pipe is prepared by single-pipe extrusion, multi-pipe co-extrusion or multi-layer compounding;
  • step 4 After completing the winding and compounding of the first reinforcement layer, carry out composite processing between the reinforcement layer and the reinforcement layer according to the same operation method from step 2) to step 4);
  • step 4 After completing the winding of all reinforcement layers, perform composite processing on the composite surface of the outermost reinforcement layer and the inner surface of the outer layer to be coated according to the same operation method from step 2) to step 4);
  • the particle energy generated by the plasma generating device is greater than the binding energy of the polymers on the surface to be compounded.
  • the tension of the reinforcing belt is 5N-100N.
  • the distance between the plasma generating device and the surface to be combined is in the range of 5 mm to 50 mm.
  • the energy and speed of the plasma can be adjusted by adjusting the setting of the plasma generating device to adapt to the matrix material and compounding speed of the surface to be compounded. .
  • the particle energy in low-temperature plasma is generally about several to tens of electron volts, which is greater than the bonding energy of polymer materials (several to tens of electron volts), and can completely break the chemical bonds of organic macromolecules to form new bonds, but Far lower than the high-energy radioactive rays, it only involves the surface of the material and does not affect the performance of the matrix.
  • electrons In the low-temperature plasma in a state of non-thermodynamic equilibrium, electrons have high energy, which can break the chemical bonds of molecules on the surface of materials and improve the chemical reactivity of particles (greater than thermal plasma), while the temperature of neutral particles is close to room temperature, these Advantages It provides suitable conditions for the surface modification of heat-sensitive polymers.
  • the jet-type atmospheric low-temperature plasma processor is composed of a low-temperature plasma generator, a gas delivery system and a low-temperature plasma spray gun.
  • the high-frequency and high-voltage energy generated by the low-temperature plasma generator generates low-temperature plasma in the spray gun, and the plasma is transported out of the cavity to the surface of the workpiece by means of air flow.
  • the plasma meets the surface of the object to be processed, the above-mentioned chemical action occurs and physical changes, the surface has been modified, cleaned, and hydrocarbon-based contaminants, such as grease and auxiliary additives, have been removed.
  • jet low-temperature plasma processor to treat the composite joint surface process can greatly improve the bonding strength, reduce costs, stable bonding quality, good product consistency, no dust, and a clean environment. The best solution for product quality. Because the low-temperature plasma torch ejected by the jet-type atmospheric low-temperature plasma surface treatment machine is neutral particles and has no charge, it is safe to use.
  • the temperature required for the composite pipe is reduced by about 30°C, which reduces the damage of the pipe and strip.
  • Fig. 1 is the structural sectional view of device of the present invention
  • Fig. 2 is the three-dimensional schematic diagram of device of the present invention
  • Fig. 3 is a usage diagram of the present invention.
  • Plasma generating device 2. Plasma injection nozzle; 3. Air heating device; 4. Hot air injection nozzle; 5. Angle adjustment device; 6. Heat insulation layer; 7. Pipe material;
  • a device for fully bonded reinforced composite pipe composite including a plasma generating device 1, an air heating device 3 and an angle adjustment device 5, one end of the angle adjustment device 5 is fixedly connected by screws On the outer surface of the plasma generating device 1, the other end is a telescopic structure, which is fixedly connected with the side of the air heating device 3 by screws, and one end of the air heating device 3 is hinged with the outer surface of the plasma generating device 1, and a plasma generating device 1
  • An air heating device 3 is respectively hinged on both sides of the plasma generating device 1 , and a heat insulating layer 6 is provided on the outer surface of the plasma generating device 1 .
  • the device when in use, the device is placed between the pipe 7 and the reinforcing belt 8, and the hot air injection nozzles 4 of the air heating devices 3 on both sides are respectively directed towards the pipe 7 to be compounded and the reinforcement to be compounded on the pipe 7.
  • the plasma spray nozzle 2 of the plasma generating device 1 faces between the pipe material 7 to be composited and the reinforcing belt 8, so as to realize plasma treatment after heating the composite surface, and the air heating device 3 heats the surface to be composited.
  • the reinforcing belt 8 is rotated and wound according to a set angle with a certain tension, and then the plasma generating device 1 performs plasma treatment on the outer surface of the heated pipe 7 and the inner surface of the reinforcing belt 8, after the treatment is completed , with the rotation of the reinforcing belt 8, the winding compound is carried out.
  • a method for compounding fully bonded reinforced composite pipes comprising the steps of:
  • the pipe 7 is prepared by single-pipe extrusion, multi-pipe co-extrusion or multi-layer compounding;
  • step 4 After completing the winding and compounding of one layer of reinforcement layer, carry out composite processing between the reinforcement layer and the reinforcement layer according to the same operation method from step 2) to step 4);
  • step 4 After completing the winding of all reinforcing layers, carry out composite processing to the composite surface of the outermost reinforcing layer and the inner surface of the outer layer to be coated according to the same operation method from step 2) to step 4);
  • the composite pipe 7 is put into storage after coiling, cutting, packing and testing.
  • the set temperature of the air heating device 3 can be lowered by more than 20°C compared with that without the plasma treatment process, which avoids the phenomenon that the pipe 7 is softened and collapsed due to too high temperature, and the reinforcement belt 8 is deformed and cannot be recombined.
  • the heating time is also reduced when the temperature is lowered, which effectively reduces the formation of the oxide layer on the composite surface and improves the bonding performance of the composite interface; and the peeling strength required for the peeling of bonded pipes composited by plasma treatment is unseen. 4 times the peel strength of plasma treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种用于完全粘结型增强复合管复合的装置及方法,属于复合管复合技术领域,该装置包括等离子产生装置和空气加热装置,所述空气加热装置设于等离子产生装置的两侧边,该装置安装完成后,两侧空气加热装置的热空气喷射嘴分别朝向需要复合的管材和将复合到管材上的增强带上,等离子产生装置的等离子喷射嘴朝向需要复合的管材和增强带之间,以实现加热后进行等离子处理。本发明通过等离子处理,降低了复合温度,提高了完全粘结型增强管的复合性能和复合效率,节省了加工操作时间。

Description

一种用于完全粘结型增强复合管复合的装置及方法 技术领域
本发明属于复合管复合技术领域,具体涉及一种用于完全粘结型增强复合管复合的装置及方法。
背景技术
纤维增强热塑性塑料复合管从粘结形式来分,可分为非粘结型和完全粘结型两种。由于完全粘结型增强复合管具有较好的整体性能和优异的耐疲劳性能,广为市场接受。目前市场上所看到的完全粘结型增强复合管粘结效果较差,在使用过程中随着温度、压力等载荷的波动,粘结层逐渐失效,其原因主要有:现有完全粘结复合工艺均从复合温度、复合压力、复合时间三个维度出发进行复合。存在的缺陷有:1)待复合芯管表面具有氧化层,无法处理,复合效果差;2)待复合增强层表面温度升高到复合温度,表面氧化层仍无法处理,复合效果差;3)待复合表面采用热风加热,复合面会被空气中的杂质、水分、油脂等污染,复合效果差;采用红外加热,由于热量上升,不同位置复合面温度差异大,复合效果差异大;4)常用热塑性塑料多为非极性材料复合困难;5)复合压力控制不精确且易波动,复合效果不稳定;6)复合时间的要求,限制了生产速度,导致生产效率低,生产成本高。
发明内容
为解决上述问题,本发明的目的在于提供一种用于完全粘结型增强复合管复合的装置及方法。
为达到上述目的,提出以下技术方案:
一种用于完全粘结型增强复合管复合的装置,包括等离子产生装置和空气加热装置,所述空气加热装置设于等离子产生装置的两侧边,该装置安装完成后,两侧空气加热装置的热空气喷射嘴分别朝向需要复合的管材和将复合到管材上的增强带,等离子产生装置的等离子喷射嘴朝向需要复合的管材和增强带之间,以实现对复合面加热后进行等离子处理。
进一步地,所述的等离子产生装置为射流型大气低温等离子处理机,所述的管材为增强热塑性塑料管。
进一步地,所述的空气加热装置分别通过角度调节装置设于等离子产生装置的两侧。
进一步地,所述的角度调节装置一端与等离子产生装置固定连接,另一端为伸缩装置,与空气加热装置固定连接,空气加热装置的一端与等离子产生装置铰接。
进一步地,所述的等离子产生装置的外侧为隔热层。
进一步地,所述的热空气喷射嘴的喷嘴宽度大于增强带宽度4mm~8mm,等离子喷射嘴的喷嘴宽度大于增强带宽度4mm~8mm,使热空气和等离子全面地喷射到待复合面上。
一种用于完全粘结型增强复合管复合的方法,包括如下步骤:
1)采用单管挤出、多管共挤或多层复合的方法制备出管材;
2)将复合装置安装在缠绕机上,并设置在缠绕增强带和待复合管材的待复合处,开启空气加热装置,空气加热装置的热空气喷射嘴分别 朝向通过步骤1)制备得到的管材的外表面和将缠绕在管材外表面的增强带的复合面,进行热空气加热,加热到复合温度;
3)开启等离子产生装置,等离子产生装置对管材和增强带的待复合面进行处理;
4)处理的同时管材由牵引机牵引向前直线移动,设置有增强带的缠绕机按照设计角度缠绕复合,装置随缠绕机旋转,
5)完成第一层增强层的缠绕复合后,按照步骤2)到步骤4)的相同操作方法对增强层与增强层之间进行复合处理;
6)完成所有增强层的缠绕后,对最外层增强层的复合面和待包覆外层的内表面按照步骤2)到步骤4)的相同操作方法进行复合处理;
7)复合完成的管材经盘卷、切割、打包和检测后入库。
进一步地,等离子产生装置产生粒子能量大于待复合面的聚合物的结合健能。
进一步地,所述的增强带的张紧力为5N~100N。
进一步地,所述的等离子产生装置和待复合面之间的距离范围为5mm~50mm。
可通过调节等离子产生装置的设置来调节等离子的能量和速度,以适应待复合面的基体材料和复合速度,其设置以喷射在复合面上的粒子能全部打开待复合面基体的结合键为原则。
等离子产生装置的应用原理:
低温等离子体中的粒子能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大 分子的化学键而形成新键,但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。
射流型大气低温等离子处理机由低温等离子发生器、气体输送***及低温等离子喷枪等部分组成。低温等离子发生器产生的高频高压能量在喷枪内产生低温等离子体,借助空气气流将等离子体输送到腔体外到达工件表面,当等离子体与被处理的物体表面相遇时,产生了上述的化学作用和物理变化,表面得到了改性、清洁,去除了碳化氢类污物,如油脂、辅助添加剂等。
在复合过程中,采用射流低温等离子处理机处理复合结面工艺可以极大的提高粘接强度,降低成本,粘接质量稳定,产品一致性好,不产生粉尘,环境洁净,是增强复合管提高产品品质的最佳解决方案。由于射流型大气低温等离子体表面处理机喷射出的低温等离子体炬为中性粒子,不带电,因此,使用安全。
本发明相对于现有技术的有益效果在于:
1)由于采用了等离子处理复合面,使得其他复合工艺要求降低,增强带张紧力控制要求最大降低20%;
2)由于采用了等离子处理复合面,打开了待复合面基体的结合键,复合面完全粘结时间缩短,进而使得管材复合时间减少40%以上,管材生产速度可提高35%以上;
3)复合界面的粘结强度提高40%,可达本体强度的95%以上,管材试用寿命提高60%以上;
4)复合管材所需的温度降低30℃左右,减少了管材和带材的损伤。
附图说明
图1为本发明的装置的结构剖视图;
图2为本发明的装置的立体示意图
图3为本发明的使用方式图。
图中:1、等离子产生装置;2、等离子喷射嘴;3、空气加热装置;4、热空气喷射嘴;5、角度调节装置;6、隔热层;7、管材;8、增强带。
具体实施方式
下面结合说明书附图对本发明做进一步地说明,但本发明的保护范围并不仅限于此。
如图1和图2所示,一种用于完全粘结型增强复合管复合的装置,包括等离子产生装置1、空气加热装置3和角度调节装置5,角度调节装置5的一端通过螺钉固定连接在等离子产生装置1的外表面上,另一端为可伸缩结构,与空气加热装置3的侧面通过螺钉固定连接,空气加热装置3的一端与等离子产生装置1的外表面铰接,一个等离子产生装置1的两侧边分别铰接一个空气加热装置3,等离子产生装 置1的外表面设有隔热层6。
如图3所示,使用时,该装置置于管材7和增强带8之间,两侧空气加热装置3的热空气喷射嘴4分别朝向需要复合的管材7和将复合到管材7上的增强带8上,等离子产生装置1的等离子喷射嘴2朝向需要复合的管材7和增强带8之间,以实现对复合面加热后进行等离子处理,空气加热装置3对待复合面进行加热,随着管材7的向前被牵引移动,增强带8以一定张紧力按照设定角度旋转缠绕,然后等离子产生装置1对加热后的管材7外表面和增强带8的内表面进行等离子处理,处理完成后,随着增强带8的旋转,进行缠绕复合。
一种用于完全粘结型增强复合管复合的方法,包括如下步骤:
1)采用单管挤出、多管共挤或多层复合的方法制备出管材7;
2)开启空气加热装置3,空气加热装置3的热空气喷射嘴4分别朝向通过步骤1)制备得到的管材7的外表面和将缠绕在管材7外表面的增强带8的复合面,进行热空气加热,加热到复合温度;
3)开启等离子产生装置1,等离子产生装置1对管材7和增强带8的待复合面进行处理;
4)处理的同时管材7向前被牵引移动,增强带8以一定张紧力按照设定角度旋转缠绕进行复合;
5)完成一层增强层的缠绕复合后,按照步骤2)到步骤4)的相同操作方法对增强层与增强层之间进行复合处理;
6)完成所有增强层的缠绕后,对最外层增强层的复合面和待包覆的外层的内表面按照步骤2)到步骤4)的相同操作方法进行复合 处理;
7)复合完成的管材7经盘卷、切割、打包和检测后入库。
以聚乙烯(PE100)为基体树脂,玻璃纤维增强聚乙烯(PE100)带材为增强材料,复合而成的管材7,粘结效果如表1所示。
表1复合管复合效果比较
指标 采用等离子处理 未采用等离子处理
复合温度(℃) 95 125
复合时间(s) 3 5.5
复合张力(N) 20±6 20±4.5
剥离强度(N/mm) 40~47 8~13
粘结强度(MPa) 19.5 10.5
从表1中可知,空气加热装置3设定温度相比于没有等离子处理工艺可以降低20℃以上,避免了因温度太高导致的管材7软化塌陷,增强带8变形等导致无法复合的现象产生,温度降低的同时也降低了加热时间,有效的降低了复合面氧化层的形成,提高了复合界面粘结性能;并且采用等离子处理复合的粘结型管材的发生剥离所需要的剥离强度是未采用等离子处理的剥离强度的4倍。

Claims (10)

  1. 一种用于完全粘结型增强复合管复合的装置,其特征在于,包括等离子产生装置(1)和空气加热装置(3),所述空气加热装置(3)设于等离子产生装置(1)的两侧边,该装置安装完成后,两侧空气加热装置(3)的热空气喷射嘴(4)分别朝向需要复合的管材(7)和将复合到管材(7)上的增强带(8),等离子产生装置(1)的等离子喷射嘴(2)朝向需要复合的管材(7)和增强带(8)之间,以实现对复合面加热后进行等离子处理。
  2. 如权利要求1所述的一种用于完全粘结型增强复合管复合的装置,其特征在于,所述的等离子产生装置(1)为射流型大气低温等离子处理机,所述的管材(7)为增强热塑性塑料管。
  3. 如权利要求1所述的一种用于完全粘结型增强复合管复合的装置,其特征在于,所述的空气加热装置(3)分别通过角度调节装置(5)设于等离子产生装置(1)的两侧。
  4. 如权利要求3所述的一种用于完全粘结型增强复合管复合的装置,其特征在于,所述的角度调节装置(5)一端与等离子产生装置(1)固定连接,另一端为伸缩装置,与空气加热装置(3)固定连接,空气加热装置(3)的一端与等离子产生装置(1)铰接。
  5. 如权利要求1-4任一所述的一种用于完全粘结型增强复合管复合的装置,其特征在于,所述的等离子产生装置(1)的外侧为隔热层(6)。
  6. 如权利要求1所述的一种用于完全粘结型增强复合管复合的装置,其特征在于,所述的热空气喷射嘴(4)的喷嘴宽度大于增强带(8)宽度4mm~8mm,等离子喷射嘴(2)的喷嘴宽度大于增强带(8)宽度4mm~8mm。
  7. 一种如权利要求1所述的用于完全粘结型增强复合管复合的方法,其特征在于,包括如下步骤:
    1)采用单管挤出、多管共挤或多层复合的方法制备出管材(7);
    2)将复合装置安装在缠绕机上,并设置在缠绕增强带(8)和待复合管材(7)的待复合处,开启空气加热装置(3),空气加热装置(3)的热空气喷射嘴(4)分别朝向通过步骤1)制备得到的管材(7)的外表面和将缠绕在管材(7)外表面的增强带(8)的复合面,进行热空气加热,加热到复合温度;
    3)开启等离子产生装置(1),等离子产生装置(1)对管材(7)和增强带(8)的待复合面进行处理;
    4)处理的同时管材(7)由牵引机牵引向前直线移动,设置有增强带(8)的缠绕机按照设计角度缠绕复合,装置随缠绕机旋转;
    5)完成第一层增强层的缠绕复合后,按照步骤2)到步骤4)的相同操作方法对增强层与增 强层之间进行复合处理;
    6)完成所有增强层的缠绕后,对最外层增强层的复合面和待包覆外层的内表面按照步骤2)到步骤4)的相同操作方法进行复合处理;
    7)复合完成的管材(7)经盘卷、切割、打包和检测后入库。
  8. 如权利要求7所述的一种用于完全粘结型增强复合管复合的方法,其特征在于,等离子产生装置(1)产生粒子能量大于待复合面的聚合物的结合健能。
  9. 如权利要求7所述的一种用于完全粘结型增强复合管复合的方法,其特征在于,所述的增强带(8)的张紧力为5N~100N。
  10. 如权利要求7所述的一种用于完全粘结型增强复合管复合的方法,其特征在于,所述的等离子产生装置(1)和待复合面之间的距离范围为5mm~50mm。
PCT/CN2021/103050 2021-06-25 2021-06-29 一种用于完全粘结型增强复合管复合的装置及方法 WO2022267074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110708663.9A CN113414974A (zh) 2021-06-25 2021-06-25 一种用于完全粘结型增强复合管复合的装置及方法
CN202110708663.9 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022267074A1 true WO2022267074A1 (zh) 2022-12-29

Family

ID=77717687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103050 WO2022267074A1 (zh) 2021-06-25 2021-06-29 一种用于完全粘结型增强复合管复合的装置及方法

Country Status (2)

Country Link
CN (1) CN113414974A (zh)
WO (1) WO2022267074A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374184A (zh) * 2001-03-08 2002-10-16 淄博恒泰包装制品有限公司 复合管热封工艺
US20030178082A1 (en) * 2000-08-29 2003-09-25 Koji Yamaguchi Composite high-pressure tube and method of manufacturing the tube
CN101446373A (zh) * 2008-12-12 2009-06-03 煌盛集团有限公司 内衬超高分子量聚乙烯管的复合管材的生产方法
CN102155591A (zh) * 2011-01-06 2011-08-17 刘阜东 高倍热拉伸超高分子量聚乙烯膜片复合管材及其制备方法
JP2014043952A (ja) * 2013-12-06 2014-03-13 Toppan Printing Co Ltd 多層管
CN104827650A (zh) * 2015-04-30 2015-08-12 王庆昭 一种全结合型增强热塑性塑料管的复合带缠绕机及其缠绕方法
CN105105894A (zh) * 2015-07-20 2015-12-02 宁波琳盛高分子材料有限公司 增强复合型鞘管及其制备方法与用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178082A1 (en) * 2000-08-29 2003-09-25 Koji Yamaguchi Composite high-pressure tube and method of manufacturing the tube
CN1374184A (zh) * 2001-03-08 2002-10-16 淄博恒泰包装制品有限公司 复合管热封工艺
CN101446373A (zh) * 2008-12-12 2009-06-03 煌盛集团有限公司 内衬超高分子量聚乙烯管的复合管材的生产方法
CN102155591A (zh) * 2011-01-06 2011-08-17 刘阜东 高倍热拉伸超高分子量聚乙烯膜片复合管材及其制备方法
JP2014043952A (ja) * 2013-12-06 2014-03-13 Toppan Printing Co Ltd 多層管
CN104827650A (zh) * 2015-04-30 2015-08-12 王庆昭 一种全结合型增强热塑性塑料管的复合带缠绕机及其缠绕方法
CN105105894A (zh) * 2015-07-20 2015-12-02 宁波琳盛高分子材料有限公司 增强复合型鞘管及其制备方法与用途

Also Published As

Publication number Publication date
CN113414974A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
US10369594B2 (en) Fiber application head with a specific application roll
CN109210282A (zh) 一种大口径防腐钢管及制作工艺
WO2022267074A1 (zh) 一种用于完全粘结型增强复合管复合的装置及方法
CN114484098B (zh) 一种氢气天然气混合能源传输管道及其制备方法
CN102109070B (zh) 辐射交联聚乙烯热膨胀管及制造方法
CN113059874B (zh) 一种热塑性超混杂复合材料层合板及其制备方法
CN111997781B (zh) 基于rtm工艺半固化表面的复合材料扩散段成型方法
CN114188101A (zh) 一种架空高压电线的绝缘包覆方法
CN111363486B (zh) 埋地钢制弯管防腐用辐射交联聚乙烯复合带及其制备方法
CN111041455A (zh) 一种高透明、抗带电粒子辐照的碳基复合涂层及其制备方法
CN113878940B (zh) 橡胶胶管及其制备方法
CN113858612B (zh) 一种基于fdm与等离子技术的碳纳米管复合材料成型方法
JP2009234216A (ja) 燃料ホースの製法
CN104819350A (zh) 新型防蜡除蜡柔性复合塑料高压输送管及其生产工艺
CN103514985A (zh) 无胶料铝塑复合带及其制备方法
CN210291137U (zh) 一种负压内翻衬复合软管防腐补强管道
CN101497240A (zh) 一种钢塑复合管的在线复合方法
CN209158741U (zh) 一种用于孔泡状高分子聚合物泡沫芯材表面封孔设备
CN219189299U (zh) 复合材料表面处理装置
CN112606380A (zh) 喷管热防护层成型方法
CN116001233B (zh) 一种用于传输高温污水的双层pe波纹管制备方法
WO2023108804A1 (zh) 增强增韧塑料压力复合管及制造该压力复合管的方法
CN116834264A (zh) 一种均匀变厚度扩张段缠绕成型方法
CN215360366U (zh) 一种热复合机用铝箔加热辊
CN203778296U (zh) 一种涂塑复合钢管自动涂塑生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946563

Country of ref document: EP

Kind code of ref document: A1