WO2022266901A1 - 触控控制方法、装置、设备、存储介质及程序产品 - Google Patents

触控控制方法、装置、设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2022266901A1
WO2022266901A1 PCT/CN2021/101895 CN2021101895W WO2022266901A1 WO 2022266901 A1 WO2022266901 A1 WO 2022266901A1 CN 2021101895 W CN2021101895 W CN 2021101895W WO 2022266901 A1 WO2022266901 A1 WO 2022266901A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
electrode layer
layer
target
Prior art date
Application number
PCT/CN2021/101895
Other languages
English (en)
French (fr)
Inventor
陈才
邬营杰
廖健皓
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Priority to PCT/CN2021/101895 priority Critical patent/WO2022266901A1/zh
Priority to CN202180040552.3A priority patent/CN115715387A/zh
Publication of WO2022266901A1 publication Critical patent/WO2022266901A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of touch control, and in particular to a touch control method, device, equipment, storage medium and program product.
  • a touch display device is a device equipped with a touch component and a display screen.
  • touch display device When a user uses a touch display device, he can touch the components or content displayed on the display screen with his fingers to realize the operation of the touch display device and get rid of It breaks the bondage of the keyboard and mouse, making the human-computer interaction more straightforward.
  • touch display devices are mainly used for information inquiry in halls of public places, electronic games, multimedia teaching, air ticket/train ticket pre-sale, etc.
  • the touch component of the touch display device is provided with a tactile feedback device for providing tactile feedback to the user.
  • a tactile feedback device for providing tactile feedback to the user.
  • the tactile feedback device of the touch display device needs to apply a relatively high pulse voltage to provide tactile feedback to the user, resulting in high power consumption and poor safety when the touch display device implements touch feedback.
  • Embodiments of the present application provide a touch control method, device, device, storage medium, and program product, which are used to solve the problems of high power consumption and poor security when implementing touch feedback in existing touch display devices. technical problem.
  • an embodiment of the present application provides a touch device, the touch device includes: a touch component, a main board, and a coating; the main board includes a processing component; the touch component includes a cover plate and a tactile feedback device; The tactile feedback device includes: a drive controller, a first substrate, a first electrode layer, and a second electrode layer.
  • the first electrode layer and the second electrode layer are respectively arranged on the upper and lower sides of the first substrate, the plating layer is arranged on the upper side of the first electrode layer, and the cover plate is arranged on the second electrode layer.
  • the lower side of the two electrode layers constitutes the tactile feedback part of the touch panel of the touch device, the coating is the touch surface of the touch panel;
  • the drive controller is arranged on the main board, and the One end of the drive controller is connected to the processing component, and the other end of the drive controller is respectively connected to the first electrode of the first electrode layer and the second electrode of the second electrode layer;
  • the plating layer includes an insulating layer for providing insulation protection for the touch panel.
  • the drive controller When an object touches the touch surface, the drive controller provides tactile feedback to the object through the electrodes of the first electrode layer and the electrodes of the second electrode layer under the control of the processing component.
  • a conductive connector is provided at the edge of the cover plate; the lead wires of the electrodes of the first electrode layer and the lead wires of the electrodes of the second electrode layer are connected to the conductive connectors One end of the conductive connector is connected to the drive controller through a channel on the main board.
  • the touch component further includes: a touch sensing device, configured to identify whether an object touches the touch surface of the touch panel.
  • the touch sensing device includes: the third electrode layer and the fourth electrode layer are respectively arranged on the upper and lower sides of the second substrate, and are located on the cover plate.
  • the lower side constitutes the touch sensing part of the touch panel;
  • the touch sensor is arranged on the main board, the first end of the touch sensor is connected to the processing component, and the second end of the touch sensor terminal is connected to the third electrode of the third electrode layer, and the third terminal of the touch sensor is connected to the fourth electrode of the fourth electrode layer;
  • the touch sensor is connected to the third electrode of the third electrode layer;
  • the third electrode and the fourth electrode of the fourth electrode layer identify whether an object touches the touch surface.
  • the touch control component further includes: a passivation protection layer, and the passivation protection layer is the back surface of the touch control.
  • the touch control device further includes: a display screen; a touch back surface of the touch panel is disposed on a surface of the display screen.
  • the display screen is a bendable display screen, and each layer of the touch panel is made of a bendable material.
  • both the first electrode of the first electrode layer and the second electrode of the second electrode layer are transparent metal grid electrodes.
  • the first electrode layer is provided with multiple rows of first electrodes
  • the second electrode layer is provided with multiple rows of second electrodes
  • the multiple rows of first electrodes are connected with the multiple rows of second electrodes.
  • the two electrodes are arranged alternately, and any intersecting first electrode and second electrode constitute a touch feedback point on the touch panel.
  • the touch control component further includes: at least one pressure sensor; the pressure sensor is disposed under the cover plate.
  • the coating further includes: an anti-reflection layer and/or an anti-fingerprint layer; the anti-reflection layer and/or the anti-fingerprint layer are disposed on the upper side of the insulating layer.
  • the touch device is an intelligent interactive tablet.
  • an embodiment of the present application provides a method for controlling a touch device, the method including:
  • the first electrode and the second electrode of the touch feedback point at the position touched by the object are driven to output a target voltage, and the target voltage makes the object contact with the first An electrostatic force is generated between the electrodes.
  • the first electrode and the second electrode that drive the touch feedback point at the position touched by the object to output a target voltage include:
  • the first electrode and the second electrode driving the touch feedback point at the position touched by the object output the target voltage.
  • the target pressure is positively correlated with the target voltage.
  • the acquiring the target voltage corresponding to the target pressure according to the target pressure includes:
  • the target voltage corresponding to the target pressure is acquired.
  • the acquiring the target voltage corresponding to the target pressure according to the target pressure includes:
  • the target voltage is determined according to the texture sense of the display object and the target pressure; the texture sense and the target pressure are positively correlated with the target voltage.
  • the first electrode and the second electrode that drive the touch feedback point at the position touched by the object to output a target voltage include:
  • the first electrode and the second electrode driving the touch feedback point at the position touched by the object output the target voltage; the texture feeling is positively correlated with the target voltage.
  • the first electrode and the second electrode that drive the touch feedback point of the position touched by the object to output the target voltage include:
  • the target audio is to touch the display with the object The object matches the audio.
  • the target audio is determined based on the target pressure with which the object touches the touch surface, and the display object.
  • the method before the first electrode and the second electrode driving the touch feedback point at the position touched by the object output a target voltage, the method further includes:
  • the continuous compensation voltage being the friction reference line of the touch surface of the touch panel
  • the first electrode and the second electrode that drive the touch feedback point of the position touched by the object output a target voltage, including:
  • the first electrode and the second electrode driving the touch feedback point of the position touched by the object output the target voltage on the basis of the continuous compensation voltage.
  • the driving of all touch feedback points to output a continuous compensation voltage includes:
  • an embodiment of the present application provides a control device for a touch device, the device comprising:
  • a sensing module configured to sense whether an object touches the touch surface of the touch panel of the touch device
  • the driving module is configured to drive the first electrode and the second electrode of the touch feedback point at the position touched by the object to output a target voltage when sensing that an object touches the touch surface, and the target voltage makes the object An electrostatic force is generated between the first electrode and the first electrode.
  • an embodiment of the present application provides a computer storage medium, where a plurality of instructions are stored in the computer storage medium, and the instructions are adapted to be loaded by a processor and execute any one of the method steps in the second aspect.
  • the embodiment of the present application provides a touch device, which is characterized in that it includes: a touch panel, a processor, and a memory; wherein, the memory stores a computer program, and the computer program is adapted to be used by the processing
  • the device loads and executes the method steps according to any one of the second aspect.
  • an embodiment of the present application provides a computer program product, including a computer program, wherein, when the computer program is executed by a processor, the method described in any one of the second aspect is implemented.
  • the touch control method, device, device, storage medium, and program product provided in the embodiments of the present application adjust the floating electrode Hx to a controllable electrode Hx, so that a smaller pulse voltage signal can be used to realize the tactile feedback, thereby reducing the tactile feedback.
  • the power consumption of the control feedback is improved, the accuracy of the touch feedback is improved, and the safety of the touch device when the touch feedback is realized.
  • Fig. 1 is the schematic diagram of the electrostatic force between finger and electrode Hx;
  • FIG. 2 is a first structural schematic diagram of a touch device provided by an embodiment of the present application.
  • FIG. 3 is a second structural schematic diagram of a touch device provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the arrangement of an electrode Hx and an electrode Vy provided in the embodiment of the present application;
  • Fig. 5 is a schematic diagram of the arrangement of a pressure sensor provided in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a superimposed forward pulse voltage provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a superimposed reverse pulse voltage provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the capacitance between electrodes provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of capacitance changes between electrodes when an object is touched according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a display screen of a touch device with a folding screen provided in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a control device for a touch device provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an intelligent interactive tablet provided by an embodiment of the present application.
  • a display module of an existing touch display device includes a display screen and a touch component.
  • the touch component includes: a cover plate, a tactile feedback device, a touch sensing device, a passivation protection layer and a plating layer.
  • the tactile feedback device includes a first electrode layer, a second electrode layer, a first substrate and a drive controller
  • the touch sensing device includes a third electrode layer, a fourth electrode layer, a second substrate and a touch sensor.
  • the first electrode layer and the second electrode layer are respectively arranged on the upper and lower sides of the first substrate, the plating layer is arranged on the upper side of the first electrode layer, the cover plate is arranged on the lower side of the second electrode layer, the third electrode layer, the fourth electrode layer.
  • the electrode layers are respectively arranged on the upper and lower sides of the second substrate and located on the lower side of the cover plate, and the passivation protection layer is located on the lower side of the fourth electrode layer.
  • the plating layer, the first electrode layer, the first substrate, the second electrode layer, the cover plate, the third electrode layer, the second substrate, the fourth electrode layer, and the passivation protection layer are stacked on the display screen in sequence from top to bottom, These layers stacked on the display screen constitute the touch panel of the touch display device, the coating is the touch surface of the touch panel, and the passivation protection layer is the back of the touch panel.
  • the term from top to bottom, as well as the surface and the back refers to the distance from the object (such as finger, stylus, etc.) used by the user to operate the touch display device when the user actually operates. In other words, the touch surface is close to the object, that is, the upper layer, and the touch back is far away from the object, that is, the lower layer.
  • the drive controller and the touch sensor are arranged on the main board of the touch display device, one end of the drive controller is connected to the processor on the main board, and the other end of the drive controller is connected to the second electrode layer; the first end of the touch sensor One end is connected to the processor, the second end of the touch sensor is connected to the third electrode layer, and the third end of the touch sensor is connected to the fourth electrode layer.
  • the passivation protection layer is used to protect the electrode layer.
  • the first electrode layer is provided with multiple rows of tactile feedback electrodes Hx
  • the second electrode layer is provided with multiple rows of tactile feedback electrodes Vy.
  • the vertical projections of the multiple rows of tactile feedback electrodes Hx and the multiple rows of tactile feedback electrodes Vy on the first substrate are interlaced, and each intersection formed is a touch feedback point that can be independently controlled on the touch panel.
  • the touch feedback point is at the position or the edge position
  • the user can be provided with tactile feedback through the electrodes Hx and Vy at the touch feedback point.
  • the x and y mentioned here represent the number of rows of electrodes, both are integers greater than or equal to 1, and the maximum values of x and y may be the same or different, specifically related to the number of rows of electrodes provided on the electrode layer.
  • the third electrode layer is provided with multiple rows of driving electrodes Ta
  • the fourth electrode layer is provided with multiple rows of sensing electrodes Rb
  • the vertical projection of multiple rows of driving electrodes Ta and multiple rows of sensing electrodes Rb alternately arranged on the second substrate Interlaced with each other, each intersection formed is a touch sensing point that can be independently controlled.
  • the a and b mentioned here represent the number of rows of electrodes, both are integers greater than or equal to 1, and the maximum values of a and b may be the same or different, specifically related to the number of rows of electrodes provided on the electrode layer.
  • the electrode Ta is used to provide a driving voltage under the control of the touch sensor
  • the electrode Rb is used to detect the mutual capacitance between the Ta and the Rb.
  • the touch sensor of the touch sensing device can detect the size of the mutual capacitance between the electrode Ta and the electrode Rb, and feed back to the processor when it is greater than the touch threshold set by the system, so that the processor can recognize that there is an object touching The location of the touch sensing point.
  • the method includes:
  • the touch sensor controls the electrode Ta to send an alternating driving voltage signal.
  • the touch sensor receives the driving voltage signal sent by the electrode Ta through the electrode Rb corresponding to the electrode Ta.
  • the touch sensor determines whether an object touches the display screen according to the driving voltage signal received through the electrode Rb. If yes, execute S103; if not, return to execute S101.
  • the touch sensor can determine the mutual capacitance between the electrode Ta and the electrode Rb according to the change between the driving voltage signal received by the electrode Rb and the driving voltage signal sent by the electrode Ta.
  • the received driving voltage signal has little change compared to the sent driving voltage signal, and the mutual capacitance between the electrode Ta and the electrode Rb is very small.
  • the change of the received driving voltage signal compared with the sent driving voltage signal will gradually increase, that is, the mutual capacitance between the electrode Ta and the electrode Rb It will gradually increase until it is greater than the touch threshold set by the system.
  • the touch sensor feeds back information that the mutual capacitance of the touch sensing point is greater than the touch threshold set by the system to the processor of the touch display device.
  • the processor can determine the position of the touch sensing point that is touched by an object based on the information. That is, it is determined that an object touches the display screen.
  • the processor sends a control signal to the drive controller.
  • the drive controller drives the electrode Vy of the touch feedback point within the preset range where the touch sensing point is located to send a pulse signal, so as to increase the distance between the object and the electrode Hx corresponding to the touch feedback point. electrostatic force.
  • FIG. 1 is a schematic diagram of the electrostatic force between the finger and the electrode Hx. As shown in FIG. 1, when the distance between the finger and the electrode Hx is g, a capacitor is formed between the finger and the electrode Hx.
  • the finger and the electrode Hx can be regarded as a parallel plate capacitor. Therefore, in order to facilitate the description of the electrostatic force between the finger and the electrode Hx, the finger and the electrode Hx are parallel plate capacitors as an example for illustration.
  • ⁇ 0 is an absolute dielectric constant (Absolute dielectric constant), also called a vacuum permittivity (Vacuum permittivity), which is a physical constant.
  • the electrostatic force F between the finger and the electrode Hx is shown in the following formula (4):
  • direction of the electrostatic force F is perpendicular to the inside of the medium between the finger and the electrode Hx.
  • the electrostatic force can change the friction force when the finger moves on the surface of the medium, that is, change the friction force when the finger slides on the touch surface, so as to provide the user with tactile feedback that the finger feels like dragging. Therefore, in some embodiments, the electrostatic force mentioned above may also be called a tactile feedback force.
  • the magnitude of the electrostatic force F can be adjusted by the magnitude of the constant voltage V between the object and the electrode Hx. That is, the greater the voltage at which there is a constant voltage V between the object and the electrode Hx, the greater the electrostatic force F and the greater the frictional force when the object moves on the surface of the medium.
  • the drive controller of the tactile feedback device since the drive controller of the tactile feedback device is not connected to the first electrode layer, the electrode Hx of the first electrode layer is in a floating state, that is, the electrode Hx is in a floating potential, which weakens the capacitive effect between the object and the electrode Hx . Therefore, when realizing the above-mentioned tactile feedback, the drive controller needs to drive the electrode Vy to send out a relatively high pulse voltage signal (for example, 100V), so that the electrostatic force F between the object and the electrode Hx can give the user a tactile feedback with a dragging feeling. , resulting in high power consumption and poor security when the touch display device implements touch feedback. In addition, the control precision of the suspension electrode Hx is relatively poor, which makes it difficult for the touch display device to achieve precise control of electrostatic force.
  • a relatively high pulse voltage signal for example, 100V
  • the embodiment of the present application provides a touch device, by adjusting the floating electrode Hx to a controllable electrode Hx, a smaller pulse voltage signal can be used to achieve tactile feedback, thereby reducing the power consumption of touch feedback. Power, improve the accuracy of touch feedback, and the safety of touch devices when implementing touch feedback.
  • touch control device involved in the embodiments of the present application may be any device with touch control, and the touch control device may or may not have a display function.
  • mobile phone mobile phone
  • tablet computer pad
  • computer with wireless transceiver function virtual reality (virtual reality, VR) terminal equipment
  • augmented reality (augmented reality, AR) terminal equipment intelligent interactive tablet, etc.
  • the hardware part of the intelligent interactive panel mentioned here is composed of touch display module, intelligent processing system (including controller), etc.
  • the control display module includes a display screen, a touch component and a backlight component.
  • the backlight component is used to provide a backlight source for the display screen.
  • the display screen generally uses a liquid crystal display device for displaying images. Alternatively, it may be set at the front of the display screen to collect touch operation data of the user, and send the collected touch operation data to an intelligent processing system for processing.
  • the display screen of the intelligent interactive tablet displays picture data.
  • a touch object such as a finger
  • the touch component of the intelligent interactive tablet The touch data is collected, so that the touch component converts the touch data into the coordinate data of the touch point and sends it to the intelligent processing system, or sends it to the intelligent processing system, and the intelligent processing system converts it into the coordinate data of the touch point
  • the intelligent processing system obtains the coordinate data of the touch point, it realizes the corresponding control operation according to the preset program, drives the display content of the display screen to change, and realizes various display and operation effects.
  • the touch component can collect the data of the touch point and send it to the intelligent processing system, and then implement different functional applications with the built-in software of the intelligent processing system, thereby realizing the touch control of the intelligent processing system control.
  • FIG. 2 is a first structural diagram of a touch device provided by an embodiment of the present application
  • FIG. 3 is a second structural diagram of a touch device provided by an embodiment of this application.
  • the touch device includes: a touch component, a main board and a coating; the main board includes a processing component.
  • the processing component mentioned here may be, for example, any component with a processing function such as a processor. In this embodiment, neither the main board nor the components arranged on the main board are shown in the figure.
  • the touch component includes a cover plate and a tactile feedback device;
  • the tactile feedback device includes: a drive controller, a first substrate, a first electrode layer, and a second electrode layer.
  • the first electrode layer and the second electrode layer are respectively arranged on the upper and lower sides of the first substrate, the plating layer is arranged on the upper side of the first electrode layer, and the cover plate is arranged on the lower side of the second electrode layer, constituting the touch device.
  • the coating is the touch surface of the touch panel.
  • the touch panel referred to here refers to a physically visible component on the touch device on which a user can touch the touch device.
  • the touch panel mentioned here may be a touchpad of the notebook computer.
  • the drive controller is arranged on the main board, one end of the drive controller is connected to the processing component, and the other end of the drive controller is respectively connected to the electrode Hx on the first electrode layer and the electrode Vy on the second electrode layer.
  • the above-mentioned plating layer includes an insulating layer, which is used to provide insulating protection for the touch panel.
  • the drive controller provides tactile feedback to the user through the first electrodes of the first electrode layer and the second electrodes of the second electrode layer under the control of the processing component. That is, when the user touches the touch surface through the object, a capacitance is formed between the object and the first electrode Hx through the insulating layer to generate electrostatic force, thereby realizing tactile feedback.
  • the edge of the cover plate is provided with conductive connectors capable of respectively connecting the drive controller, and the leads of the first electrode Hx on the first electrode layer and the leads of the second electrode Vy on the second electrode layer.
  • One end of the conductive connector is connected to the lead wire of the first electrode Hx on the first electrode layer and the lead wire of the second electrode Vy on the second electrode layer, and the other end of the conductive connector is connected to the drive controller through a via on the main board.
  • the conductive connector may be, for example, a flexible printed circuit (Flexible Printed Circuit, FPC).
  • the leads of the first electrode Hx on the first electrode layer and the leads of the second electrode Vy on the second electrode layer pass through one or more groups of anisotropic conductive adhesive films ACF (Anisotropic) at the edge of the cover plate.
  • Conductive Film, ACF is connected to one end of the conductive connector, and the other end of the conductive connector is connected to the drive controller through a channel on the motherboard.
  • the difference between the touch components of the touch device shown in Figure 2 and Figure 3 and the existing touch components is that the drive controller of the tactile feedback device is not only connected with the second electrode of the second electrode layer Vy is connected and also connected to the first electrode Hx of the first electrode layer, so that the first electrode Hx can be controlled by the drive controller and is no longer in a floating state. Therefore, when implementing tactile feedback, the driving controller can drive the second electrode Vy to send out a small pulse voltage signal, that is, the electrostatic force F between the object and the electrode Hx can bring tactile feedback with a dragging feeling.
  • the touch panel can be set independently of the display screen (that is, the touch panel and the display screen are two independent parts. For example, the display screen and the touch pad of a notebook computer), or can be set On a display screen (for example, a display screen of a mobile phone with a touch function), the details may be determined according to the actual design of the touch device. It should be understood that, when the above-mentioned touch panel is arranged on the display screen, the above-mentioned display screen and touch control assembly may also be referred to as a display assembly.
  • FIG. 2 is a schematic diagram of an example where a touch panel is arranged on a display screen.
  • the above touch device further includes: a display screen.
  • the touch back of the touch panel is arranged on the surface of the display screen.
  • the back of the touch panel mentioned here is related to the specific parts of the touch panel.
  • the touch panel when the touch panel only includes the touch feedback part, the back of the touch panel may be a cover, for example.
  • the materials of the cover plate, the first substrate, the first electrode layer, and the second electrode layer are related to whether the display screen adopted by the touch device is bendable or not.
  • the cover plate, the first substrate, the first electrode layer, and the second electrode layer can be made of non-bendable and good light-transmitting materials, or can be made of Bending, and good light transmission material.
  • the cover plate, the first substrate, the first electrode layer, and the second electrode layer also need to be made of materials that are bendable and have good light transmittance.
  • the bendable display screen mentioned here may be, for example, a curved screen or a folding screen.
  • the above-mentioned multiple rows of first electrodes Hx provided in the first electrode layer and multiple rows of second electrodes Vy provided in the second electrode layer can be arranged in a staggered manner, and each intersection is a touch control that can be independently controlled.
  • Feedback point so that the drive controller can control the electrostatic force of the touch feedback point through the input voltage between Vy and Hx (such as the amplitude, frequency and phase of the input voltage, etc.), so as to bring Haptic feedback with a dragging feel.
  • Each touch feedback point above corresponds to a first electrode Hx and a second electrode Vy, referred to as a pair of electrodes.
  • the fringe electric field of the touch feedback point can be increased, thereby increasing the capacitance and capacitive potential energy between the object and the electrode Hx corresponding to the touch feedback point, so that the distance between the object and the electrode Hx can be increased.
  • the electrostatic force is greater, resulting in a more pronounced tactile feedback.
  • FIG. 4 is a schematic diagram of an arrangement of an electrode Hx and an electrode Vy provided in an embodiment of the present application.
  • the multiple rows of first electrodes Hx arranged in the first electrode layer can use Horizontally arranged, multiple rows of second electrodes Vy arranged in the second electrode layer can be arranged vertically, such as the first electrode layer (black) and the second electrode layer (gray) shown in FIG. 4 .
  • the multiple rows of electrodes first Hx arranged in the first electrode layer can be vertically arranged, and the multiple rows of second electrodes Vy arranged in the second electrode layer can be arranged horizontally, or the multiple rows of first electrodes Vy arranged in the first electrode layer can be arranged horizontally.
  • One electrode Hx can be arranged at a 45-degree inclination to the left, and the multiple rows of second electrodes Vy arranged in the second electrode layer can be arranged at a 45-degree inclination to the right.
  • the number of rows of the first electrodes Hx included in the first electrode layer and the number of rows of the second electrodes Vy included in the second electrode layer may be the same or different.
  • the first electrode layer may include M rows of first electrodes Hx
  • the second electrode layer may include N rows of second electrodes Vy
  • M rows of first electrodes Hx and N rows of second electrodes Vy may form M*N touch feedbacks point.
  • the value of N may or may not be equal to M.
  • the distribution of multiple rows of electrodes included in the same electrode layer can be regular or irregular. That is to say, the distance between any two adjacent electrodes may be equal or unequal.
  • the first electrode layer and the second electrode layer mentioned in this embodiment refer to the upper and lower layers physically. Of course, it may also refer to a quasi-double-layer structure composed of an insulating layer and a bridge electrode, etc., which is not limited in the present application.
  • FIG. 2 is only an exemplary description of the components and devices related to the technical problem to be solved in the present application in the touch device, and does not exhaustively list all the components and components included in the touch device.
  • the implementation of the present application The example does not limit other components included in the touch device, which may be determined according to the functions required to be realized by the touch device.
  • the above-mentioned coating of the touch component may also include a coating for realizing other functions, for example, an anti-reflection layer for anti-reflection and anti-glare, and/or an anti-fingerprint layer for anti-fingerprint.
  • a coating for realizing other functions for example, an anti-reflection layer for anti-reflection and anti-glare, and/or an anti-fingerprint layer for anti-fingerprint.
  • the anti-reflective layer When the anti-reflective layer is included, the anti-reflective layer is arranged on the upper side of the insulating layer; when the anti-fingerprint layer is included, the anti-fingerprint layer is arranged on the upper side of the insulating layer; when the anti-fingerprint layer and the anti-reflective layer are included, the The anti-fingerprint layer is arranged on the upper side of the anti-reflection layer, and the anti-reflection layer is arranged on the upper side of the insulating layer.
  • the coatings with different functions included in the above coating may be one layer or multiple layers.
  • the plating layer may include one insulating layer, or may include multiple insulating layers.
  • the above touch component may further include at least one pressure sensor.
  • the at least one pressure sensor may be disposed on the underside of the cover and connected to the processing assembly.
  • the pressure sensor is used to sense the pressure exerted by the object on the touch panel when the object touches the surface of the touch panel, and feeds back to the processing component.
  • the processing component can control the tactile feedback device to feed back the electrostatic force adapted to the pressure value, so that when the user uses an object to apply different pressures to the touch panel, he can feel different tactile feedback, thereby bringing the user
  • the specific implementation method of controlling the tactile feedback device to feedback the electrostatic force that matches the pressure value can be found in the subsequent description.
  • the above-mentioned pressure sensor can be, for example, a strain gauge that induces deformation, or a sensor that can convert pressure into an electromagnetic signal, such as a piezoelectric sensor, a magnetostrictive sensor, an acceleration sensor, and an optical sensor.
  • a piezoelectric sensor such as a piezoelectric sensor, a magnetostrictive sensor, an acceleration sensor, and an optical sensor.
  • the specific arrangement position of the pressure sensor under the cover plate, and the number of the pressure sensor can be determined according to the actual product form of the touch device.
  • the above-mentioned pressure sensor can be located outside the display area of the display screen (for example, at the edge of the cover), or can be located inside the display area.
  • Figure 5 is a schematic diagram of the arrangement of a pressure sensor provided by the embodiment of the present application. Part of the display area is covered by ink (the black rectangular area in Figure 5). Under the cover plate located under the four ink areas, four pressure sensors are arranged to sense the pressure exerted by the object when touching the surface of the touch panel. It should be understood that due to the superposition of forces, the pressure exerted by the object at the touch feedback point can be deduced according to the position of the touch feedback point at the position touched by the object and the pressure values of the four pressure sensors. No longer.
  • the above touch component may further include: a touch sensing device.
  • the touch sensing device is used to identify whether an object touches the touch surface of the touch panel.
  • the touch sensing device involved in the embodiment of the present application can be divided into five basic types based on the technical principle to distinguish the touch sensing device of the touch component; touch sensing device using vector pressure sensing technology, touch sensing device using resistance technology Touch sensing devices, touch sensing devices using capacitive technology, touch sensing devices using infrared technology, touch sensing devices using surface acoustic wave technology. According to the working principle of the touch sensing device and the medium for transmitting information, the touch sensing device can be divided into four types: resistive type, capacitive sensing type, infrared light type and surface acoustic wave type. That is to say, the embodiment of the present application does not limit the touch sensing device used in the touch device.
  • the touch sensing device may include: a touch sensor, a third electrode layer, a second substrate, and a fourth electrode layer.
  • the touch sensor is arranged on the main board, and the third electrode layer and the fourth electrode layer are respectively arranged on the upper and lower sides of the second substrate, and are located on the lower side of the cover plate, constituting the touch sensing part of the touch panel.
  • a first end of the touch sensor is connected to the processing component, a second end is connected to the third electrode Ta of the third electrode layer, and a third end is connected to the fourth electrode Rb of the fourth electrode layer.
  • the touch sensor is used to identify whether there is an object touching the touch surface of the touch panel through the third electrode Ta of the third electrode layer and the fourth electrode Rb of the fourth electrode layer.
  • the specific implementation method can refer to the prior art, here No longer.
  • the electrodes Ta and Rb for touch sensing can be arranged in a similar arrangement as the electrodes Vy and Hx for touch feedback.
  • the arrangement density of the electrodes Ta and Rb may be the same as that of the electrodes Vy and Hx for tactile feedback, or lower than the arrangement density of the electrodes Vy and Hx for tactile feedback.
  • the distance between the touch sensing points formed by the electrodes Ta and Rb is greater than the distance between the touch feedback points formed by the electrodes Vy and Hx.
  • the above-mentioned touch component can also include: a passivation protection layer, which can be used as a touch back surface, that is, located under the fourth electrode layer, for protecting the electrode layer .
  • the passivation protection layer is disposed on the surface of the display screen as a touch back surface.
  • the bottom of the passivation protection layer can be attached to the display screen through a transparent colloid, so that the touch panel is arranged on the display screen to form a touch display module with tactile feedback and touch sensing.
  • the transparent colloid mentioned here can be, for example, Optically Clear Adhesive (OCA), or Transparent Optical Resin (Optical Clear Resin, OCR), etc.
  • the following uses a touch device using a capacitive touch sensing device as an example to illustrate the display module (display screen+touch component) provided by the embodiment of the present application:
  • the material of the cover plate can be thermoplastic polyester (Polyethylene terephthalate, PET), the first base and the second base are both PET films, and are located at the second end of the display area of the display screen.
  • the first electrode Hx of the first electrode layer, the second electrode Vy of the second electrode layer, the third electrode Ta of the third electrode layer, and the fourth electrode Ta of the fourth electrode layer are all made of transparent, bending-resistant metal mesh
  • the material of the grid (silver or copper), the electrodes of each electrode layer located in the non-display area of the display screen can be made of the same material as that of the electrodes located in the display area, or a material with a lower resistance value can be used.
  • non-transparent electrodes such as copper wire or silver paste can be used as non-transparent electrodes with lower square resistance, lower cost, higher bending resistance, and smaller line width and line spacing, so as to reduce costs and The total resistance of the electrode layer can be reduced.
  • the material of the cover plate can be glass, the first electrode Hx of the first electrode layer in the display area of the display screen, the second electrode Vy of the second electrode layer,
  • the third electrode Ta of the third electrode layer and the fourth electrode Ta of the fourth electrode layer are all made of transparent, ITO material, and the electrodes of each electrode layer located in the non-display area of the display screen can adopt the same material as the electrodes located in the display area. , and a material with a lower resistance value can also be used, which will not be repeated here.
  • the plating layer, the first electrode layer, the first substrate, the second electrode layer, the cover plate, the third electrode layer, the second substrate, the fourth electrode layer, and the passivation protection layer are sequentially arranged on the display screen from top to bottom to form a display
  • the surface of the screen that is, the touch panel
  • the touch panel containing tactile feedback and touch sensing is set on the display screen (for example, using transparent glue to attach to the display screen), forming a tactile feedback panel. and touch sensor display modules.
  • the drive controller and the touch sensor are arranged on the main board, one end of the drive controller is connected to the processing component on the main board, and the other end of the drive controller is respectively connected to the first electrode through conductive connectors (such as FPC) at the edge of the cover plate.
  • the first electrode Hx on the layer is connected to the second electrode Vy on the second electrode layer.
  • the first end of the touch sensor is connected to the processing component on the motherboard, the second end of the touch sensor is connected to the electrode Ta on the third electrode layer, and the third end of the touch sensor is connected to the electrode Rb on the fourth electrode layer .
  • the above display module can be assembled into the mechanical structure of the touch device to form a complete touch device.
  • the touch device provided in the embodiment of the present application may also use other Touch sensing devices, such as resistive, infrared, and surface acoustic wave.
  • the tactile sensing device can be installed in the display module based on the working principle of the tactile sensing device and the medium for transmitting information, which will not be repeated in this application.
  • the infrared generator and the infrared receiver of the infrared touch sensing device are arranged at the peripheral edges of the cover plate.
  • the surface wave generator and receiver of the surface acoustic wave touch sensing device are arranged around the cover plate and located on the cover below the board.
  • the following illustrates how the touch device provided by the embodiment of the present application implements the tactile feedback.
  • the following embodiment uses the user's finger as an example for illustration.
  • the touch device can sense whether an object touches the touch surface of the touch panel of the touch device.
  • the first electrode and the second electrode of the touch feedback point at the position touched by the object are driven to output a target voltage, and the target voltage makes the object contact with the first An electrostatic force is generated between the electrodes.
  • the reference line of the friction force is (that is, the friction zero point, which can also be called the tactile feedback zero point or the tactile feedback reference line) the friction force of the touch surface of the touch panel itself.
  • the tactile feedback device When the reference line of the friction force is the friction force of the touch surface of the touch panel itself (that is, the friction zero point), when the touch sensing device feeds back to the processing component that a finger touches the touch surface of the touch panel, the tactile feedback device
  • the tactile feedback may be provided through the first electrode Hx of the first electrode layer and the second electrode Vy of the second electrode layer under the control of the processing component.
  • the first electrode Hx and the second electrode Vy mentioned here may be, for example, the electrodes of the touch feedback point where the user's finger touches.
  • the tactile feedback device provides tactile feedback with a preset friction force.
  • the processing component can send the touch feedback point A to the drive controller.
  • An instruction to output a preset voltage that is, a target voltage
  • the drive controller After the drive controller receives the command, it can drive the electrodes Hx and Vy of the touch feedback point A to output a preset voltage (that is, the target voltage), so that the electrostatic force F between the finger and the electrode Hx brings the user a preset friction Force tactile feedback.
  • the target voltage is a preset voltage.
  • Implementation Mode 2 The intensity of the tactile feedback provided by the tactile feedback device is related to the target pressure used when the user touches the touch surface of the touch panel.
  • the display module is provided with a pressure sensor for identifying the target pressure used when the user touches the touch surface of the touch panel.
  • the description of the pressure sensor can refer to the foregoing embodiments, and will not be repeated here.
  • the processing component receives the feedback from the touch sensing device, and the touch of the user's touch panel recognized by the pressure sensor The target pressure used when surfacing, the processing component can acquire the target voltage corresponding to the target pressure according to the target pressure.
  • the target voltage required to be output by the electrodes Hx and Vy of touch feedback point A can be determined, so as to provide
  • the drive controller sends a control instruction for controlling the electrodes Hx and Vy of the touch feedback point A to output a corresponding target voltage.
  • the drive controller can drive the electrodes Hx and Vy of the touch feedback point A to output the target voltage, so that the tactile feedback brought to the user by the electrostatic force F between the finger and the electrode Hx can follow the user's touch panel.
  • the pressure applied when touching the surface varies.
  • the target pressure used when the object touches the touch surface can be obtained; according to the target pressure, the target voltage corresponding to the target pressure is obtained; and then, the The first electrode and the second electrode of the touch feedback point at the position touched by the object output the target voltage.
  • the strength of the tactile feedback provided by the tactile feedback device to the user is related to the texture of the display object displayed corresponding to the position currently touched by the user's finger on the display screen.
  • the tactile feedback provided to the user is stronger;
  • the smaller the feedback the more realistic tactile feedback to the user. That is, the texture feeling is positively correlated with the target voltage.
  • the tactile feedback provided to the user when the display object displayed at the current touch position of the user's finger is a stone is stronger than the tactile feedback provided to the user when the display object displayed at the current touch position of the user's finger is a feather.
  • the processing component can obtain the display displayed at the current position touched by the user's finger object, so that based on the mapping relationship between the texture sense of the display object and the electrostatic force, or the mapping relationship between the texture sense of the display object and the voltage, determine the target voltage that the electrodes Hx and Vy of the A touch feedback point need to output , so as to send a control instruction for controlling the electrodes Hx and Vy of the touch feedback point A to output a target voltage to the drive controller.
  • the drive controller After the drive controller receives the instruction, it can drive the electrodes Hx and Vy of the touch feedback point A to output the target voltage, so that the tactile feedback brought to the user by the electrostatic force F between the finger and the electrode Hx can follow the current touch of the user's finger. Depending on the texture of the display object displayed in the location display.
  • the texture sense of the display object correspondingly displayed by the touch device at the position touched by the object may be obtained; according to the texture sense of the display object, a target voltage matching the texture sense may be obtained ; driving the first electrode and the second electrode of the touch feedback point at the position touched by the object to output the target voltage.
  • Implementation mode 4 the strength of the tactile feedback provided by the tactile feedback device to the user, and the target pressure used when the user touches the touch surface of the panel, and the texture of the display object displayed at the current position of the user's finger on the display screen feeling related.
  • the processing component receives the feedback from the touch sensing device, and the touch of the user's touch panel recognized by the pressure sensor After the target pressure is used on the surface, the processing component can obtain the texture sense of the display object displayed at the current touch position of the user's finger, so that based on the mapping relationship between the texture sense of the display object, pressure and electrostatic force, or display
  • the mapping relationship between the texture, pressure and voltage of the object determines the target voltage that the electrodes Hx and Vy of the touch feedback point A need to output, and then sends the electrodes Hx and Vy that control the touch feedback point A to the drive controller. Vy outputs a control command of the target voltage.
  • the drive controller After the drive controller receives the instruction, it can drive the electrodes Hx and Vy of the touch feedback point A to output the target voltage, so that the tactile feedback brought to the user by the electrostatic force F between the finger and the electrode Hx can follow the current touch of the user's finger.
  • the texture of the display object of the position display and the pressure applied by the user to touch the touch surface of the panel are different.
  • the target pressure used when the object touches the touch surface is acquired, and the texture of the display object correspondingly displayed by the touch device at the position touched by the object; according to the The texture sense of the display object, and the target pressure determines the target voltage; drives the first electrode and the second electrode of the touch feedback point at the position touched by the object to output the target voltage.
  • the texture sense, the target pressure and the target voltage are positively correlated.
  • the processing component can also control the audio output device (such as a speaker) of the touch device so that it emits a display object corresponding to the position currently touched by the user's finger.
  • Matching target audio such as the sound of water flowing across the water surface, or the sound of gliding across metal surfaces, etc.
  • the display object displayed at the position currently touched by the user's finger is a kitten
  • the processing component may control the speaker of the touch device, for example, to play the audio of the kitten's meowing.
  • the meowing of the kitten may also vary with the force used by the user when touching the touch surface of the touch panel.
  • the change mentioned here may be, for example, a change in the magnitude of the sound, or a change into a different sound, or a change into a different sound with different magnitudes. That is, the target audio to be played may be determined according to the target pressure used when the object touches the touch surface and the display object.
  • the method of combining multiple information to provide users with more realistic tactile feedback can be applied to "realize applications with more realistic and richer tactile feedback", that is, it can be applied to Some applications need to provide users with different touch feedbacks based on the amount of force the user uses when touching the touch surface of the touch panel.
  • the pixels at the position touched by the user's finger can also be adjusted according to the set conditions that affect the tactile feedback.
  • the output voltages of the corresponding electrodes Hx and Vy thereby changing the electrostatic force at the position touched by the user's finger, so as to bring more realistic touch feedback to the user.
  • the drive controller of the tactile feedback device is not only connected to the second electrode Vy of the second electrode layer, but also connected to the first electrode Hx of the first electrode layer, so that the first electrode An electrode Hx can be controlled by the drive controller, and is no longer in a floating state.
  • the drive controller can apply a continuous compensation voltage within the safe range for the human body to all the first electrodes Hx of the first electrode layer and all the second electrodes Vy of the second electrode layer, so that The drive controller outputs a constant compensating electrostatic force through all the first electrodes Hx of the first electrode layer and all the second electrodes Vy of the second electrode layer, so that the user's finger touches the touch surface of the touch panel.
  • the friction force is greater than that generated by the touch surface of the touch panel itself.
  • the continuous compensation voltage mentioned here may be, for example, an alternating voltage.
  • a forward pulse voltage or a reverse pulse voltage can be selected to be superimposed on the continuous compensation voltage.
  • application scenarios of tactile feedback can be enriched.
  • Figure 6 is a schematic diagram of a superimposed positive pulse voltage provided by the embodiment of the present application.
  • a positive pulse voltage that is, the pulse voltage shown by the dotted line in FIG. 6
  • Fig. 7 is a schematic diagram of a superimposed reverse pulse voltage provided by the embodiment of the present application.
  • the continuous compensation voltage that is, shown in the solid line in Fig. 7
  • the reverse pulse voltage that is, the pulse voltage shown by the dotted line in Figure 7
  • the friction force felt by the user's fingers is lower than the "base line" of friction force.
  • a pulse voltage with a ⁇ phase difference can be superimposed on the basis of the continuous compensation voltage, so as to reduce the electrostatic force of the user's finger, thereby reducing the frictional force felt by the user's finger.
  • the tactile feedback device can provide the user with the first electrode Hx of the first electrode layer and the second electrode Vy of the second electrode layer under the control of the processing component.
  • the tactile feedback device can provide the user with the first electrode Hx of the first electrode layer and the second electrode Vy of the second electrode layer under the control of the processing component.
  • Case 3 The display screen of the touch device is a bendable display screen, such as a curved screen or a folding screen. Wherein, the touch panel of the touch device is superimposed on the display screen.
  • each intersection point is a touch feedback point that can be independently controlled on the display screen.
  • Each touch feedback point corresponds to an electrode Hx and an electrode Vy, referred to as a pair of electrodes.
  • FIG. 8 is a schematic diagram of the capacitance between electrodes provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of capacitance changes between electrodes when touched by a finger according to an embodiment of the present application. As shown in Figure 8, a pair of electrodes themselves form an inherent capacitor C0. As shown in FIG. 9 , when a finger touches the surface of the screen and touches the pair of electrode dielectrics, part of the electric field lines will be attracted by the finger, thereby forming a capacitor C between the finger and the electrode Hx.
  • the capacitor is composed of two conductive objects, corresponding to the capacitor C formed between the finger and the electrode, the conductive objects of the capacitor C are the finger and the electrode Hx respectively. There is a dielectric between these two conductive objects, therefore, a voltage V between these two conductive objects creates an electric field between them.
  • the electric field in the middle of two conductive objects that is, the electric field in the area between the plates is relatively uniform, and the electric field lines are almost parallel straight lines, while at the edges of the two plates. Due to the limitation of the shape of the plates, when the electric field lines expand from the area between the plates to the external space, the electric field lines change from parallel lines to open-shaped distribution, and the electric field distribution is concentrated on the edge of the plates. This phenomenon is called the edge effect of the electric field. . Due to the edge effect of the electric field of the capacitor C, the electrostatic force between the finger and the electrode Hx has both vertical and horizontal components.
  • FIG. 10 is a schematic diagram of a display screen of a touch device with a folding screen provided in an embodiment of the present application.
  • the forces at point A and point B are different: the tangent of point A is parallel to the horizontal plane, and when the finger touches point A, the direction of gravity and downward pressure is perpendicular to the tangent ;
  • the tangent of point B has an included angle ⁇ 1 with the horizontal direction, so the direction of gravity and downward pressure and the tangent also have an included angle ⁇ 2.
  • the tangent of point B mentioned here can be referred to the following description: the normal n of B and the gravity G form a plane.
  • two dotted lines are used in the figure to connect the normal n and gravity G to represent the normal n and gravity
  • the plane formed by G It should be understood that the boundary of the plane is not limited to the area in the four side circles.
  • the intersection line between this plane and the surface of the cover plate where point B is located ie the dotted line shown in the figure
  • the direction in which gravity separation is positive may be the tangential direction of point B, and the tangential force at point B is a direction forming an acute angle with the included angle of gravity G.
  • the embodiment of the present application provides a voltage compensation method, which can apply different compensation voltages to the position touched by the user's finger according to the current posture of the display screen, so as to compensate for its zero point of friction, so that the user's finger can
  • the reference line of friction is the same at any position on the touch surface of the panel.
  • the method can be applied to touch devices that need to use the same electrostatic force to provide tactile feedback to users and have bendable screens.
  • the electrostatic force at point B can be reduced (that is, the voltage applied to point B can be reduced), so that Point B has the same frictional force as point A.
  • the embodiment of the present application does not limit the above method of calculating the voltage applied to point B.
  • it can be calculated based on the spatial angle information of point A and the opening and closing angle information of the display screen. Reduce the voltage applied to point B as follows:
  • the processing component After the processing component receives the feedback from the touch sensing device that the user's finger touches the touch surface of the touch panel, the processing component can obtain a motion sensor (such as a micro electromechanical system (Micro Electro Mechanical System, MEMS) capacitive gyroscope) of the touch device.
  • a motion sensor such as a micro electromechanical system (Micro Electro Mechanical System, MEMS) capacitive gyroscope
  • MEMS Micro Electro Mechanical System
  • the spatial angle information of the point A detected by the instrument and the opening and closing angle ⁇ of the display screen detected by the opening and closing angle sensor (such as a magnetic flux sensor) is obtained.
  • the component force between point B and the direction of gravity can be determined through the spatial rotation matrix, as follows:
  • Point B is located in the plane of the opening and closing angle ⁇ , and the normal vector n B of point B is shown in the following formula (7):
  • n B (sin ⁇ 0cos ⁇ ) T (7)
  • the motion sensor can output a 3 ⁇ 3 rotation change matrix R.
  • R 3 ⁇ 3 rotation change matrix
  • the relationship between the new vector v′ after rotation and the original vector v can be shown in the following formula (8):
  • the rotation matrix R can be expressed as the following formula (9):
  • n′ A (0 -sin ⁇ cos ⁇ ) T (10)
  • n′ B (sin ⁇ -cos ⁇ sin ⁇ cos ⁇ cos ⁇ ) (11)
  • k is the coefficient of electrostatic force, which can be measured through experiments.
  • FA is the component of the compensation electrostatic force at point A in the normal direction
  • FB is the component of the compensation electrostatic force at point B in the normal direction.
  • the processing component can control the drive controller to apply a compensation voltage that satisfies the amplitude to the electrodes Hx and Vy corresponding to point B, so that point B and point A have consistent friction force.
  • the compensation voltage mentioned here may be, for example, the aforementioned continuous compensation voltage.
  • the drive controller device can apply a continuous compensation voltage calculated in the aforementioned manner to compensate for the electrostatic force caused by the display itself or its position.
  • the change can also be said to increase the "zero point" friction between the finger and the screen.
  • a forward pulse voltage or a reverse pulse voltage may be selected to be superimposed on the continuous compensation voltage.
  • the application scenarios of the tactile feedback can be enriched. For details, please refer to the description of Case 2, which will not be repeated here.
  • the touch device provided by the embodiment of the present application adjusts the floating electrode Hx to the controllable electrode Hx, so that a smaller pulse voltage signal can be used to achieve tactile feedback, thereby reducing the power consumption of touch feedback and improving touch feedback.
  • FIG. 11 is a schematic structural diagram of a control device for a touch device provided by an embodiment of the present application.
  • the device can be implemented as all or a part of the touch device through software, hardware or a combination of the two.
  • the device includes a sensing module 11 and a driving module 12 .
  • a sensing module 11 configured to sense whether an object touches the touch surface of the touch panel of the touch device
  • the driving module 12 is configured to drive the first electrode and the second electrode of the touch feedback point at the position touched by the object to output a target voltage when sensing that an object touches the touch surface, and the target voltage makes the An electrostatic force is generated between an object and the first electrode.
  • the driving module 12 is specifically configured to acquire the target pressure used when the object touches the touch surface; acquire the target voltage corresponding to the target pressure according to the target pressure; drive the The first electrode and the second electrode of the touch feedback point at the position touched by the object output the target voltage.
  • the target pressure is positively correlated with the target voltage.
  • the driving module 12 is specifically configured to acquire the target voltage corresponding to the target pressure according to the target pressure and the mapping relationship between pressure and voltage.
  • the driving module 12 is specifically configured to obtain the texture sense of the display object displayed by the touch device at the position touched by the object; according to the texture sense of the display object and the target pressure, determine the The target voltage; the texture, the target pressure are positively correlated with the target voltage.
  • the driving module 12 is specifically configured to obtain the texture sense of the display object displayed by the touch device at the position touched by the object; according to the texture sense of the display object, obtain the texture sense matching the texture sense. a target voltage; the first electrode and the second electrode driving the touch feedback point at the position touched by the object output the target voltage; the texture feeling is positively correlated with the target voltage.
  • the driving module 12 is specifically configured to drive the first electrode and the second electrode of the touch feedback point at the position touched by the object to output the target voltage, and control the touch device to output target audio, the The target audio is audio matching the object touching the display object.
  • the driving module 12 is further configured to determine the target audio.
  • the driving module 12 is further configured to drive all the touch feedback points to output a continuous compensation voltage before driving the first electrode and the second electrode of the touch feedback point at the position touched by the object to output the target voltage.
  • the driving module 12, specifically for driving the first electrode and the second electrode of the touch feedback point at the position touched by the object outputs the target voltage on the basis of the continuous compensation voltage.
  • the driving module 12 is specifically configured to use the spatial angle information of the reference point of the touch feedback point on the display screen, and the display screen The opening and closing angle information of the touch feedback point is obtained to obtain the continuous compensation voltage of the touch feedback point; all the touch feedback points are driven to output the continuous compensation voltage.
  • control device of the touch device provided in the above embodiment executes the above control method
  • the division of the above functional modules is used as an example for illustration.
  • the above functions can be assigned by different The functional modules are completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the control device provided by the above-mentioned embodiments belongs to the same idea as the above-mentioned embodiment of the control method for realizing touch feedback, and its implementation process is detailed in the method embodiment, and will not be repeated here.
  • the embodiment of the present application also provides a computer storage medium, the computer storage medium can store a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing the steps of the control method for realizing touch feedback as described above, here No further elaboration.
  • the device where the storage medium is located may be a touch device, and the touch device may be, for example, an intelligent interactive tablet.
  • the embodiment of the present application also provides a touch device, which may include: a touch panel, a processor, and a memory; wherein, the memory stores a computer program, and the computer program is adapted to be controlled by the processor.
  • a touch device which may include: a touch panel, a processor, and a memory; wherein, the memory stores a computer program, and the computer program is adapted to be controlled by the processor.
  • the touch device mentioned here may be, for example, the touch device described in the foregoing embodiments of the present application.
  • the touch device may be, for example, an intelligent interactive tablet.
  • FIG. 12 is a schematic structural diagram of an intelligent interactive tablet provided by an embodiment of the present application.
  • the intelligent interactive tablet 1000 may include: at least one processor 1001 , at least one network interface 1004 , a user interface 1003 , a memory 1005 , and at least one communication bus 1002 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display) and a camera (Camera), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • Display display screen
  • Camera Camera
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the processor 1001 may include one or more processing cores.
  • the processor 1001 uses various interfaces and lines to connect various parts in the entire intelligent interactive panel 1000, and by running or executing instructions, programs, code sets or instruction sets stored in the memory 1005, and calling data stored in the memory 1005, Execute various functions of the intelligent interactive panel 1000 and process data.
  • the processor 1001 may use at least one of Digital Signal Processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA). implemented in the form of hardware.
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 1001 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU), an image processor (Graphics Processing Unit, GPU) and a modem.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the CPU mainly handles the operating system, user interface and application programs, etc.
  • the GPU is used to render and draw the content that needs to be displayed on the display screen
  • the modem is used to handle wireless communication. It can be understood that the above modem may also not be integrated into the processor 1001, but implemented by a single chip.
  • the memory 1005 may include a random access memory (Random Access Memory, RAM), and may also include a read-only memory (Read-Only Memory).
  • the memory 1005 includes a non-transitory computer-readable storage medium (non-transitory computer-readable storage medium). The memory 1005 may be used to store instructions, programs, codes, sets of codes or sets of instructions.
  • the memory 1005 may include a program storage area and a data storage area, wherein the program storage area may store instructions for implementing an operating system, instructions for at least one function (such as a touch function, a sound playback function, an image playback function, etc.), Instructions and the like for implementing the above method embodiments; the storage data area can store the data and the like involved in the above method embodiments.
  • the memory 1005 may also be at least one storage device located away from the aforementioned processor 1001 .
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and an operating application program of an intelligent interactive tablet.
  • the user interface 1003 is mainly used to provide the user with an input interface and obtain the data input by the user; and the processor 1001 can be used to call the operation application of the intelligent interactive panel stored in the memory 1005 program, and specifically execute the aforementioned control method for realizing touch feedback.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash random access memory
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请实施例公开一种触控控制方法、装置、设备、存储介质及程序产品,属于触控技术。触控设备的主板包括处理组件,触控组件包括盖板和触感反馈装置;触感反馈装置的第一电极层、第二电极层分别设置于第一基板的上下两侧,镀层设置于第一电极层的上侧,盖板设置于第二电极层的下侧,构成触控设备的触控面板的触感反馈部分,镀层为触控面板的触控表面;触感反馈装置的驱动控制器设置在主板上,一端与处理组件连接,另一端与第一电极层的电极和第二电极层的电极连接;镀层包括绝缘层,为触控面板提供绝缘防护;当对象触摸触控表面时,驱动控制器在处理组件的控制下,通过第一电极层的电极和第二电极层的电极提供触感反馈,减少触控反馈时的耗电量。

Description

触控控制方法、装置、设备、存储介质及程序产品 技术领域
本申请涉及触控领域,尤其涉及一种触控控制方法、装置、设备、存储介质及程序产品。
背景技术
触控显示设备是一种设置有触控组件和显示屏的设备,用户在使用触控显示设备时,可以通过手指触摸显示屏上显示的组件或内容,实现对触控显示设备的操作,摆脱了键盘和鼠标的束缚,使人机交互更为直截了当。目前,触控显示设备主要应用于公共场所大厅信息查询、电子游戏、多媒体教学、机票/火车票预售等。
触控显示设备的触控组件中设置有触感反馈装置,用于为用户提供触感反馈。目前,触控显示设备的触感反馈装置需要施加较高的脉冲电压,才能给用户提供触感反馈,导致触控显示设备实现触控反馈时的耗电量较高,且安全性较差。
发明内容
本申请实施例提供一种触控控制方法、装置、设备、存储介质及程序产品,用于解决现有的触控显示设备实现触控反馈时的耗电量较高,且安全性较差的技术问题。
第一方面,本申请实施例提供一种触控设备,所述触控设备包括:触控组件、主板和镀层;所述主板包括处理组件;所述触控组件包括盖板和触感反馈装置;所述触感反馈装置包括:驱动控制器、第一基板、第一电极层、第二电极层。
所述第一电极层、所述第二电极层分别设置于所述第一基板的上下两侧,所述镀层设置于所述第一电极层的上侧,所述盖板设置于所述第二电极层的下侧,构成所述触控设备的触控面板的触感反馈部分,所述镀层为所述触控面板的触控表面;所述驱动控制器设置在所述主板上,所述驱动控制器的一端与所述处理组件连接,所述驱动控制器的另一端分别与所述第一电极层的第一电极和所述第二电极层的第二电极连接;所述镀层包括绝缘层,用于为所述触控面板提供绝缘防护。
当对象触摸所述触控面时,所述驱动控制器在所述处理组件的控制下,通过所述第一电极层的电极和所述第二电极层的电极为所述对象提供触感反馈。
在一种可能的实现方式中,所述盖板的边缘处设置有导电连接件;所述第一电极层的电极的引线和所述第二电极层的电极的引线均与所述导电连接件的一端连接,所述导电连接件的另一端通过所述主板上的通路与所述驱动控制器连接。
在一种可能的实现方式中,所述触控组件还包括:触控感应装置,所述触控感应装置用于识别是否有对象触摸触控面板的触控表面。
在一种可能的实现方式中,所述触控感应装置包括:所述第三电极层、所述第四电极 层分别设置于所述第二基板的上下两侧、且位于所述盖板的下侧,构成所述触控面板的触控感应部分;所述触控传感器设置在所述主板上,所述触控传感器的第一端所述处理组件连接,所述触控传感器的第二端与所述第三电极层的第三电极连接,所述触控传感器的第三端与所述第四电极层的第四电极连接;所述触控传感器通过所述第三电极层的第三电极和所述第四电极层的第四电极识别是否有对象触摸所述触控表面。
在一种可能的实现方式中,所述触控组件还包括:钝化保护层,所述钝化保护层为所述触控背面。
在一种可能的实现方式中,所述触控设备还包括:显示屏;所述触控面板的触控背面设置在所述显示屏的表面。
在一种可能的实现方式中,所述显示屏为可弯折的显示屏,所述触控面板的各层均采用可弯折材质。
在一种可能的实现方式中,所述第一电极层的第一电极和所述第二电极层的第二电极均为透明的金属网格电极。
在一种可能的实现方式中,所述第一电极层设置有多排第一电极,所述第二电极层设置有多排第二电极,所述多排第一电极与所述多排第二电极交错排列,任一相交的第一电极与第二电极构成所述触控面板上的一个提供触控反馈点。
在一种可能的实现方式中,所述触控组件还包括:至少一个压力传感器;所述压力传感器设置在所述盖板的下方。
在一种可能的实现方式中,所述镀层还包括:防反光层和/或防指纹层;所述防反光层和/或防指纹层设置在所述绝缘层的上侧。
在一种可能的实现方式中,所述触控设备为智能交互平板。
第二方面,本申请实施例提供一种触控设备的控制方法,所述方法包括:
感应是否有对象触摸所述触控设备的触控面板的触控表面;
当感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
在一种可能的实现方式中,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
获取所述对象触摸所述触控表面时所采用的目标压力;
根据所述目标压力,获取与所述目标压力对应的所述目标电压;
驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。
在一种可能的实现方式中,所述目标压力与所述目标电压正相关。
在一种可能的实现方式中,所述根据所述目标压力,获取与所述目标压力对应的所述目标电压,包括:
根据所述目标压力,以及,压力与电压之间的映射关系,获取与所述目标压力对应的所述目标电压。
在一种可能的实现方式中,所述根据所述目标压力,获取与所述目标压力对应的所述目标电压,包括:
获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;
根据所述显示对象的纹理感,以及,所述目标压力,确定所述目标电压;所述纹理感、 所述目标压力与所述目标电压正相关。
在一种可能的实现方式中,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;
根据所述显示对象的纹理感,获取与所述纹理感匹配的目标电压;
驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压;所述纹理感与所述目标电压正相关。
在一种可能的实现方式中,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压,包括:
驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压,并控制所述触控设备输出目标音频,所述目标音频为与所述对象触摸所述显示对象匹配的音频。
在一种可能的实现方式中,所述控制所述触控设备输出目标音频之前,还包括:
根据所述对象触摸所述触控表面时所采用的目标压力,以及,所述显示对象,确定所述目标音频。
在一种可能的实现方式中,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压之前,所述方法还包括:
驱动所有触控反馈点输出连续补偿电压,所述连续补偿电压为所述触控面板的触摸表面的摩擦力基准线;
所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极在所述连续补偿电压的基础上,输出所述目标电压。
在一种可能的实现方式中,若所述触控设备的显示屏为可弯折的显示屏,所述驱动所有触控反馈点输出连续补偿电压,包括:
根据所述显示屏上所述触控反馈点的基准点的空间角度信息,以及,所述显示屏的开合角信息,获取所述触控反馈点的连续补偿电压;
驱动所有触控反馈点输出连续补偿电压。
第三方面,本申请实施例提供一种触控设备的控制装置,所述装置包括:
感应模块,用于感应是否有对象触摸所述触控设备的触控面板的触控表面;
驱动模块,用于在感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
第四方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行如第二方面任意一项的方法步骤。
第五方面,本申请实施例提供一种触控设备,其特征在于,包括:触控面板、处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行如第二方面任意一项的方法步骤。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序,其特征在于, 所述计算机程序被处理器执行时实现第二方面任一项所述的方法。
本申请实施例提供的触控控制方法、装置、设备、存储介质及程序产品,通过将悬浮电极Hx调整为可控电极Hx,从而可以使用较小的脉冲电压信号实现触感反馈,进而可以降低触控反馈的耗电量,提高触控反馈的精度,以及,触控设备在实现触控反馈时的安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为手指与电极Hx之间的静电力的示意图;
图2为本申请实施例提供的触控设备的结构示意图一;
图3为本申请实施例提供的触控设备的结构示意图二;
图4为本申请实施例提供的一种电极Hx和电极Vy的排布示意图;
图5为本申请实施例提供的一种压力传感器的排布示意图;
图6为本申请实施例提供的一种叠加正向的脉冲电压的示意图;
图7为本申请实施例提供的一种叠加反向的脉冲电压的示意图;
图8为本申请实施例提供的电极之间的电容的示意图;
图9为本申请实施例提供的对象触摸时电极之间的电容变化的示意图;
图10为本申请实施例提供的具有折叠屏的触控设备的显示屏的示意图;
图11为本申请实施例提供的一种触控设备的控制装置的结构示意图;
图12为本申请实施例提供的一种智能交互平板的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”等仅用于区别类似的对象,而不必用于描述特定的顺序或先后次序,也不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以采用电容感应识别用户是否触摸显示屏的触控显示设备为例,现有的触控显示设备的显示模组包括显示屏和触控组件。
触控组件包括:盖板、触感反馈装置、触控感应装置、钝化保护层和镀层。其中,触感反馈装置包括第一电极层、第二电极层、第一基板和驱动控制器,触控感应装置包括第三电极层、第四电极层、第二基板和触控传感器。
第一电极层、第二电极层分别设置于第一基板的上下两侧,镀层设置于第一电极层的上侧,盖板设置于第二电极层的下侧,第三电极层、第四电极层分别设置于第二基板的上下两侧、且位于盖板的下侧,钝化保护层位于第四电极层的下侧。即,镀层、第一电极层、第一基板、第二电极层、盖板、第三电极层、第二基板、第四电极层、钝化保护层从上至下依次堆叠在显示屏上,这些堆叠在显示屏上的层构成触控显示设备的触控面板,镀层为触控面板的触控表面,钝化保护层为触控面板的背面。应理解,此处所说的从上到下,以及,表面和背面,是以用户实际操作时,相对于用户操作触控显示设备时所使用的对象(例如手指、触控笔等)的距离来说的,靠近对象的是触控表面,即上层,远离对象的是触控背面,即下层。
驱动控制器和触控传感器设置在触控显示设备的主板上,驱动控制器的一端与所述主板上的处理器连接,驱动控制器的另一端与第二电极层连接;触控传感器的第一端与所述处理器连接,触控传感器的第二端与第三电极层连接,触控传感器的第三端与第四电极层连接。
镀层,用于提供绝缘防护等。钝化保护层,用于保护电极层。
第一电极层设置有多排触感反馈电极Hx,第二电极层设置有多排触感反馈电极Vy。多排触感反馈电极Hx与多排触感反馈电极Vy在所述第一基板上的垂直投影相互交错,形成的每个交点为触控面板上一个可以独立控制的触控反馈点,当对象触摸该触控反馈点所在位置或边缘位置时,可以通过该触控反馈点处的电极Hx和电极Vy,为用户提供触感反馈。此处所说的x和y表征电极的排数,均为大于或等于1的整数,x和y的最大值可以相同或不同,具体与该电极层设置的电极的排数有关。
相应地,第三电极层设置有多排驱动电极Ta,第四电极层设置有多排感应电极Rb,多排驱动电极Ta与多排感应电极Rb交错排列在所述第二基板上的垂直投影相互交错,形成的每个交点为一个可以独立控制的触控感应点。此处所说的a和b表征电极的排数,均为大于或等于1的整数,a和b的最大值可以相同或不同,具体与该电极层设置的电极的排数有关。
在每一对电极Ta和电极Rb中,电极Ta用于在触控传感器的控制下提供驱动电压,电极Rb用于检测该Ta与该Rb之间的互容。触控感应装置的触控传感器可以检测该电极Ta与该电极Rb之间的互容的大小,并在大于***设定的触摸阈值时反馈至处理器,从而使处理器可以识别到有对象触摸触控感应点所在的位置。
下面对现有的触控显示设备在工作时如何实现触感反馈进行说明,以一个触控感应点对应的一对电极Ta和电极Rb为例,该方法包括:
S101、触控传感器控制该电极Ta发出交变的驱动电压信号,相应地,触控传感器通 过与该电极Ta对应的电极Rb接收电极Ta发出的驱动电压信号。
S102、触控传感器根据通过电极Rb接收到的驱动电压信号,确定是否有对象触摸显示屏。若是,则执行S103,若否,则返回执行S101。
触控传感器可以根据通过该电极Rb接收到的驱动电压信号,以及,该电极Ta发出的驱动电压信号之间的变化,确定该电极Ta与该电极Rb之间的互容。当没有对象触摸到触控感应点所在的位置时,接收到的驱动电压信号相比发出的驱动电压信号的变化很小,此时该电极Ta与该电极Rb之间的互容很小。当对象从接近到触摸到触控感应点所在的位置时,接收到的驱动电压信号相比发出的驱动电压信号的变化会逐渐增大,即,该电极Ta与该电极Rb之间的互容会逐渐增大,直至大于***设定的触摸阈值。
S103、触控传感器向触控显示设备的处理器反馈该触控感应点的互容大于***设定的触摸阈值的的信息。
此时,处理器可以基于该信息,判断有对象触摸触控感应点所在的位置。即,判定有对象触摸显示屏。
S104、处理器向驱动控制器发送控制信号。
S105、驱动控制器基于控制信号,驱动该触控感应点所在的位置预设范围内的触控反馈点的电极Vy发出脉冲信号,以增加对象与该触控反馈点对应的电极Hx之间的静电力。
以对象为用户的手指为例,图1为手指与电极Hx之间的静电力的示意图。如图1所示,当手指与电极Hx之间的距离为g时,手指与电极Hx之间会形成电容器。
当g比较小时,手指与电极Hx可以看做是平行板电容器。因此,为了便于描述手指与电极Hx之间的静电力,下面以手指与电极Hx是平行板电容器为例进行示例说明。
假设手指与电极Hx之间的介质的介电常数为ε r,手指与介质的接触接触面积为A,则手指与电极Hx之间的电容C如下公式(1)所示:
Figure PCTCN2021101895-appb-000001
其中,ε 0为绝对介电常数(Absolute dielectric constant),也称为真空介电常数(Vacuum permittivity),是物理常数。
以手指与电极Hx之间存在恒定电压V,那么手指与电极Hx之间的电容电势能E如下公式(2)所示:
Figure PCTCN2021101895-appb-000002
将公式(1)求解C的等式代入公式(2),即可得到如下公式(3):
Figure PCTCN2021101895-appb-000003
手指与电极Hx之间的静电力F如下公式(4)所示:
Figure PCTCN2021101895-appb-000004
将公式(3)求解E的等式代入公式(4),即可得到如下公式(5):
Figure PCTCN2021101895-appb-000005
应理解,静电力F的方向是垂直指向手指与电极Hx之间的介质内部。
通过该静电力可以改变手指在介质表面移动时的摩擦力,即,改变手指在触控表面滑 动时的摩擦力,从而给用户提供手指有拖拽感的触感反馈。因此,在一些实施例中,上述所说的静电力也可以称为触感反馈力。
通过上述公式(5)可以看出,该静电力F的大小可以通过对象与电极Hx之间存在恒定电压V的大小进行调节。即,对象与电极Hx之间存在恒定电压V的电压越大,静电力F越大,对象在介质表面移动时的摩擦力越大。
目前,由于触感反馈装置的驱动控制器未与第一电极层连接,因此,第一电极层的电极Hx处于悬浮状态,即,电极Hx处于悬浮电位,减弱了对象与电极Hx之间的电容效应。因此,在实现上述触感反馈时,驱动控制器需要驱动电极Vy发出较高的脉冲电压信号(例如100V),才能使对象与电极Hx之间的静电力F带给用户具有拖拽感的触感反馈,导致触控显示设备实现触控反馈时的耗电量较高,且安全性较差。另外,悬浮电极Hx的控制精度较差,致使触控显示设备难以实现静电力的精准控制。
考虑到上述问题,本申请实施例提供了一种触控设备,通过将悬浮电极Hx调整为可控电极Hx,从而可以使用较小的脉冲电压信号实现触感反馈,进而可以降低触控反馈的耗电量,提高触控反馈的精度,以及,触控设备在实现触控反馈时的安全性。
应理解,本申请实施例所涉及的触控设备可以是任一具有触控的设备,该触控设备可以具有显示功能,也可以不具有显示功能。例如,手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能交互平板等。
此处所说的智能交互平板的硬件部分由触控显示模组、智能处理***(包括控制器)等部分所构成,由整体结构件结合到一起,同时也由专用的软件***作为支撑,其中触控显示模组包括显示屏、触控组件和背光灯组件,背光灯组件用于为显示屏提供背光光源,显示屏一般采用液晶显示装置,用于进行画面展示,触控组件设置在显示屏上或者设置在显示屏前端,用于采集用户的触控操作数据,并将采集的触控操作数据发送到智能处理***进行处理。
在实际使用中,智能交互平板的显示屏上显示画面数据,当用户通过手指等触控物体点击显示屏上显示的内容,例如点击显示屏上显示的图形按钮时,智能交互平板的触控组件将采集到触控数据,从而触控组件将该触控数据转换为触控点的坐标数据后发送到智能处理***,或者发送到智能处理***处由智能处理***转换为触控点的坐标数据,智能处理***获得触控点的坐标数据后,根据预先设定的程序实现相应的控制操作,驱动显示屏显示内容发生变化,实现多样化的显示、操作效果。
当用户用手指触摸显示屏时,触摸组件可以采集触控点的数据并发送到智能处理***,然后随着智能处理***内置的软件来实现不同的功能应用,从而实现对智能处理***的触控控制。
下面结合具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的触控设备的结构示意图一,图3为本申请实施例提供的触控设备的结构示意图二。如图2和图3所示,触控设备包括:触控组件、主板和镀层;主板包括处理组件。此处所说的处理组件例如可以是处理器等任一具有处理功能的组件。在本实施例中,图中均未示出主板,以及,设置在主板上的部件。
触控组件包括盖板和触感反馈装置;触感反馈装置包括:驱动控制器、第一基板、第一电极层、第二电极层。第一电极层、第二电极层分别设置于第一基板的上下两侧,镀层设置于第一电极层的上侧,盖板设置于第二电极层的下侧,构成所述触控设备的触控面板的触感反馈部分。所述镀层为所述触控面板的触控表面。
应理解,此处所说的触控面板是指触控设备上物理可见的、且用户能够在其上对触控设备实现触控的部件。以触控设备为笔记本电脑为例,则此处所说的触控面板可以是笔记本电脑的触摸板。
驱动控制器设置在主板上,驱动控制器的一端与处理组件连接,驱动控制器的另一端分别与第一电极层上的电极Hx和第二电极层上的电极Vy连接。
上述所说的镀层包括绝缘层,用于为触控面板提供绝缘防护。当用户通过对象触摸触控表面时,驱动控制器在处理组件的控制下,通过第一电极层的第一电极和第二电极层的第二电极为用户提供触感反馈。即,当用户通过对象触摸触控表面时,通过该绝缘层,使对象与第一电极Hx之间形成电容,产生静电力,从而实现触感反馈。
本实施例不限定上述驱动控制器与第一电极层的第一电极,以及,第二电极层的第二电极的连接方式。例如,盖板的边缘处设置有能够分别连接驱动控制器,以及,第一电极层上的第一电极Hx的引线和第二电极层上的第二电极Vy的引线的导电连接件。导电连接件的一端与第一电极层上的第一电极Hx的引线和第二电极层上的第二电极Vy的引线连接,导电连接件的另一端通过主板上的通路与驱动控制器连接。可选地,该导电连接件例如可以是柔性电路板(Flexible Printed Circuit,FPC)。
示例性的,第一电极层上的第一电极Hx的引线和第二电极层上的第二电极Vy的引线在盖板的边缘处通过一组或多组异方性导电胶膜ACF(Anisotropic Conductive Film,ACF)与导电连接件的一端连接,导电连接件的另一端通过主板上的通路与驱动控制器连接。
通过上述描述可以看出,图2和图3所示的触控设备的触控组件与现有的触控组件的区别在于,触感反馈装置的驱动控制器不仅与第二电极层的第二电极Vy连接,还与第一电极层的第一电极Hx连接,使第一电极Hx可受驱动控制器的控制,不再处于悬浮状态。因此,在实现触感反馈时,驱动控制器可以驱动第二电极Vy发出一较小的脉冲电压信号,即可使对象与电极Hx之间的静电力F带来具有拖拽感的触感反馈。
本实施例并未限定上述触控设备是否包括显示屏。当触控设备包括显示屏时,触控面板可以独立于显示屏之外设置(即触控面板与显示屏是两个独立的部分。例如,笔记本电脑的显示屏和触摸板),也可以设置在显示屏(例如具有触控功能的手机的显示屏)上,具体可以根据触控设备的实际设计确定。应理解,当上述触控面板设置在显示屏上时,上述显示屏和触控组件也可以称为显示组件。图2是以触控面板设置在显示屏上为例的示意图。
作为一种可能的实现方式,上述触控设备还包括:显示屏。触控面板的触控背面设置在所述显示屏的表面。此处所说的触控面板的背面与触控面板具体包括几部分有关,示例性的,当所述触控面板仅包括触控反馈部分时,触控面板的背面例如可以是盖板。
在该可能的实现方式下,盖板、第一基板、第一电极层、第二电极层的材质与该触控设备所采用的显示屏是否可弯折有关。示例性的,当显示屏为不可弯折的显示屏时,盖板、第一基板、第一电极层、第二电极层可以使用不可弯折、且透光性好的材质,也可以使用 可弯折、且透光性好的材质。当显示屏为可弯折的显示屏时,盖板、第一基板、第一电极层、第二电极层相应地也需采用可弯折、且透光性好的材质。应理解,此处所说的可弯折的显示屏例如可以是曲面屏或者折叠屏等。
举例来说,上述所说的第一电极层中设置的多排第一电极Hx和第二电极层中设置的多排第二电极Vy可以交错排列,每一个交点为一个可以独立控制的触控反馈点,从而使得驱动控制器可以通过Vy与Hx间输入电压(例如输入电压的振幅、频率和相位等)控制该触控反馈点的静电力,从而给位于该触控反馈点的对象带来具有拖拽感的触感反馈。上述每一个触控反馈点对应一个第一电极Hx和一个第二电极Vy,简称一对电极。
采用上述交错排列的方式,可以增大触控反馈点的边缘电场,从而可以增大对象与触控反馈点对应的电极Hx之间的电容以及电容电势能,从而使得对象与电极Hx之间的静电力更大,带来更明显的触感反馈。
图4为本申请实施例提供的一种电极Hx和电极Vy的排布示意图。如图4所示,示例性的,以第一电极层、第二电极层使用可弯折、且透光性好的材质为例,第一电极层中设置的多排第一电极Hx可以采用横向设置,第二电极层中设置的多排第二电极Vy可以采用纵向设置,例如图4所示的第一电极层(黑色)和第二电极层(灰色)。或者,第一电极层中设置的多排电极第一Hx可以采用纵向设置,第二电极层中设置的多排第二电极Vy可以采用横向设置,或者,第一电极层中设置的多排第一电极Hx可以采用向左倾斜45度设置,第二电极层中设置的多排第二电极Vy可以采用向右倾斜45度设置等。
需要说明的是,Hx与Vy之间具体采用什么排列方式实现相交,可以根据所需实现的静电力确定。当Hx与Vy之间采用的排列方式越复杂时,Hx与Vy之间的电容越大,从而使得单位电压下的静电力越大,进而可以提供更加明显的触觉反馈。
另外,上述所说的第一电极层所包括的第一电极Hx的排数和第二电极层所包括的第二电极Vy的排数可以相同,也可以不同。例如,第一电极层可以包括M排第一电极Hx,第二电极层可以包括N排第二电极Vy,M排第一电极Hx和N排第二电极Vy可以构成M*N个触控反馈点。N的取值可以与M相等,也可以不相等。
再者,针对每一电极层来说,同一电极层所包括的多排电极的分布可以规律,也可以不规律。也就是说,任一相邻的两个电极之间的间距可以相等,也可以不相等。
本实施例中所说的第一电极层和第二电极层指的是物理上的上下两层。当然,也可以指由绝缘层和桥电极构成的类双层结构等,本申请对此不进行限定。
应理解,上述图2仅是示例性的描述了触控设备中与本申请所要解决的技术问题相关的组件和器件,并未对触控设备包括的所有组件和部件进行穷举,本申请实施例也不限定触控设备所包括的其他部件,具体可以根据触控设备所需实现的功能确定。
例如,上述触控组件的镀层还可以包括用于实现其他功能的涂层,例如,用于防反光、防眩光的防反光层,和/或,用于防指纹的防指纹层。当包括防反光层时,该防反光层设置在绝缘层的上侧;当包括防指纹层时,该防指纹层设置在绝缘层的上侧;当包括防指纹层和防反光层时,该防指纹层设置在防反光层的上侧,防反光层设置在绝缘层的上侧。可选的,上述镀层所包括的具有不同功能的涂层可以是一层,也可以是多层。例如,以绝缘层为例,镀层可以包括一层绝缘层,也可以包括多层绝缘层。
再例如,上述触控组件还可以包括至少一个压力传感器。该至少一个压力传感器可以 设置在盖板的下侧、且与处理组件连接。压力传感器用于感应对象触摸触控面板的表面时,对象向触摸触控面板施加的压力,并反馈给处理组件。这样,处理组件可以控制触感反馈装置反馈与该压力值大小适配的静电力,从而在用户使用对象向触摸触控面板施加不同的压力时,能够感受到不同的触感反馈,从而能够给用户带来更加丰富的触感体验,具体控制触感反馈装置反馈与该压力值大小适配的静电力的实现方法可以参见后续描述。
具体实现时,上述压力传感器例如可以是感应形变的应力片,也可以是压电传感器、磁致伸缩传感器、加速度传感器、光学传感器等能够将压力转化为电磁信号的传感器。压力传感器在盖板下方的具体设置位置,以及,压力传感器的数量可以根据触控设备的实际产品形态确定。
以触控面板设置在显示屏上为例,上述压力传感器可以位于显示屏的显示区域外(例如盖板的边缘处),也可以位于显示区域内部。图5为本申请实施例提供的一种压力传感器的排布示意图,如图5所示,示例性的,虚线框以内为显示屏的显示区域,虚线框以外为显示屏的非显示区域,非显示区域有部分区域被油墨(图5中黑色长方形区域)覆盖。在盖板位于4个油墨区域的下方,布设4个压力传感器,用于感应对象触摸触控面板的表面时所施加的压力。应理解,由于力的可叠加性,因此,可以根据对象所触摸位置的触控反馈点的位置,以及4个压力传感器的压力值,推算出对象在触控反馈点处施加的压力,对此不再赘述。
再例如,上述触控组件还可以包括:触控感应装置。该触控感应装置用于识别是否有对象触摸触控面板的触控表面。
本实施例对触控感应装置实现对象触摸触控面板的触控表面的方式不进行限定。例如,本申请实施例所涉及的触控设备从技术原理来区别触控组件的触控感应装置,可以分为五个基本种类;采用矢量压力传感技术的触控感应装置、采用电阻技术的触控感应装置、采用电容技术的触控感应装置、采用红外线技术的触控感应装置、采用表面声波技术的触控感应装置。按照触控感应装置的工作原理和传输信息的介质,可以把触控感应装置分为四个种类:电阻式、电容感应式、红外光式以及表面声波式。也就是说,本申请实施例对触控设备中所采用的触控感应装置不进行限定。
继续参照图2,以采用电容感应式的触控感应装置为例,该触控感应装置可以包括:触控传感器、第三电极层、第二基底和第四电极层。其中,触控传感器设置在主板上,第三电极层、第四电极层分别设置于第二基板的上下两侧、且位于盖板的下侧,构成触控面板的触控感应部分。触控传感器的第一端与处理组件连接,第二端与第三电极层的第三电极Ta连接,第三端与第四电极层的第四电极Rb连接。触控传感器,用于通过第三电极层的第三电极Ta和第四电极层的第四电极Rb识别是否有对象触摸触控面板的触控表面,具体实现方式可以参见现有技术,在此不再赘述。
实现触控感应的电极Ta与Rb的描述,可以参见前述关于实现触感反馈的电极Vy与Hx的描述,在此不再赘述。需注意的是,实现触控感应的电极Ta与Rb可以采用与实现触感反馈的电极Vy与Hx类似的排列方式。但是电极Ta与Rb的排布密度可以与实现触感反馈的电极Vy与Hx的排布密度相同,或者,低于实现触感反馈的电极Vy与Hx的排布密度。在低于实现触感反馈的电极Vy与Hx的排布密度时,电极Ta与Rb构成的触控感应点之间的间距,大于电极Vy与Hx构成的触控反馈点之间的间距。
当采用电容感应式的触控感应装置时,上述触控组件还可以包括:钝化保护层,该钝化保护层可以作为触控背面,即位于第四电极层之下,用于保护电极层。
当上述触控设备包括显示屏时,该钝化保护层作为触控背面设置在显示屏的表面。具体实现时,钝化保护层的底部可以通过透明的胶体与显示屏贴合,以使触摸面板设置于显示屏之上,构成有触感反馈和触控传感的触控显示模组。此处所说的透明的胶体例如可以是光学胶(Optically Clear Adhesive,OCA)、或者透明光学树脂(Optical Clear Resin,OCR)等。
下面以采用电容感应式的触控感应装置的触控设备为例,对本申请实施例提供的显示模组(显示屏+触控组件)进行示例的说明:
若触控设备的显示屏为可弯折的屏,则盖板材质可以为热塑性聚酯(Polyethylene terephthalate,PET)、第一基底和第二基底均为PET薄膜,位于显示屏的显示区域的第一电极层的第一电极Hx、第二电极层的第二电极Vy、第三电极层的第三电极Ta、第四电极层的第四电极Ta均采用透明的、可耐弯折的金属网格(银或铜)的材质,各电极层位于显示屏的非显示区域的电极可以采用与位于显示区域的电极相同的材质,也可以采用阻值更低的材质。例如,非显示区域的电极可以采用铜线或银浆等方阻更小、成本更低、耐弯折度更高、线宽线距更小的非透明电极,从而在降低成本的同时,也可以降低电极层总的阻值。
若触控设备的显示屏为不可弯折的屏,则盖板的材质可以为玻璃,位于显示屏的显示区域的第一电极层的第一电极Hx、第二电极层的第二电极Vy、第三电极层的第三电极Ta、第四电极层的第四电极Ta均采用透明的、ITO材质,各电极层位于显示屏的非显示区域的电极可以采用与位于显示区域的电极相同的材质,也可以采用阻值更低的材质,对此不再赘述。
镀层、第一电极层、第一基板、第二电极层、盖板、第三电极层、第二基板、第四电极层、钝化保护层从上到下依次设置在显示屏上,构成显示屏的表面(即触控面板),也可以说,含有触感反馈和触控传感的触控面板设置在显示屏上(例如采用透明的胶与显示屏贴合),构成了一个有触感反馈和触控传感的显示模组。
驱动控制器和触控传感器设置在主板上,驱动控制器的一端与主板上的处理组件连接,驱动控制器的另一端通过位于盖板边缘处的导电连接件(例如FPC)分别与第一电极层上的第一电极Hx和第二电极层上的第二电极Vy连接。触控传感器的第一端与主板上的处理组件连接,触控传感器的第二端与第三电极层上的电极Ta连接,触控传感器的第三端与第四电极层上的电极Rb连接。
最后,上述显示模组可以被组装到触控设备的机械结构内,构成完整的触控设备。
应理解,虽然上述实施例是以采用电容感应式的触控感应装置的触控设备为例进行的示例和说明,但是如前述描述所说,本申请实施例提供的触控设备也可以采用其他的触控感应装置,例如,电阻式、红外线式以及表面声波式等。当采用其他的触感感应装置上,可以基于触感感应装置的工作原理和传输信息的介质,将触感感应装置安装在显示模组中,本申请对此不再一一赘述。
例如,以设置有红外线式的触控感应装置的触控设备为例,则在该实现方式下,红外线式的触控感应装置的红外发生器和红外接收器设置在盖板四周的边缘处。以设置有表面 声波式的触控感应装置的触控设备为例,则在该实现方式下,表面声波式的触控感应装置的表面波发生器和接收器设置在盖板四周、且位于盖板的下方。
下面对本申请实施例提供的触控设备如何实现触感反馈进行示例说明,为便于描述,下述实施例以对象为用户的手指为例进行示例说明。
具体地,触控设备可以感应是否有对象触摸所述触控设备的触控面板的触控表面。当感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
情况1、摩擦力的基准线为(即摩擦力零点,也可以称为触感反馈零点或者触感反馈基准线)触控面板的触控表面本身的摩擦力,此时,若不通过触感反馈电极Hx和Vy施加任何脉冲电压信号,用户触摸触控面板的触控表面时,仅能感受到触控面板的触控表面本身来带来的摩擦力。
在摩擦力的基准线为(即摩擦力零点)触控面板的触控表面本身的摩擦力时,当触控感应装置向处理组件反馈有手指触摸触控面板的触控表面时,触感反馈装置可以在处理组件的控制下,通过第一电极层的第一电极Hx和第二电极层的第二电极Vy提供触感反馈。此处所说的第一电极Hx和第二电极Vy例如可以是用户的手指所触摸位置的触控反馈点的电极。
实现方式1:触感反馈装置提供具有预设摩擦力的触感反馈。
假定用户手指所触摸的位置为触控表面的A触控反馈点,则在该实现方式下,处理组件在接收到触控感应装置的反馈后,可以向驱动控制器发送在A触控反馈点输出预设电压(即目标电压)的指令。驱动控制器接收到该指令后,可以驱动A触控反馈点的电极Hx和Vy输出预设电压(即目标电压),从而使手指与电极Hx之间的静电力F带给用户具有预设摩擦力的触感反馈。
即,在该实现方式下,目标电压为预设电压。
实现方式2:触感反馈装置提供的触感反馈的强度,与,用户触摸触控面板的触控表面时所采用的目标压力相关。
在该实现方式下,显示模组设置有压力传感器,用于识别用户触摸触控面板的触控表面时所采用的目标压力,关于压力传感器的描述可以参见前述实施例,在此不再赘述。
例如,用户触控面板的触控表面时所采用的目标压力越大,为用户提供的触感反馈越强;用户触控面板的触控表面时所采用的目标压力越小,为用户提供的触感反馈越小。即,目标压力与所述目标电压正相关。或者,用户触控面板的触控表面时所采用的目标压力越小,为用户提供的触感反馈越强;用户触控面板的触控表面时所采用的目标压力越大,为用户提供的触感反馈越小等。即,目标压力与所述目标电压负相关。
假定用户手指所触摸的位置为触控表面的A触控反馈点,则在该实现方式下,处理组件在接收到触控感应装置的反馈,以及,压力传感器识别的用户触控面板的触控表面时所采用的目标压力,处理组件可以根据所述目标压力,获取与所述目标压力对应的所述目标电压压力。
例如,可以根据目标压力,以及,压力与静电力之间的映射关系,或者,压力与电压之间的映射关系,确定A触控反馈点的电极Hx和Vy所需输出的目标电压,从而向驱动控制器发送控制A触控反馈点的电极Hx和Vy输出对应目标电压的控制指令。驱动控制 器接收到该指令后,可以驱动A触控反馈点的电极Hx和Vy输出目标电压,从而使手指与电极Hx之间的静电力F带给用户的触感反馈可以随用户触控面板的触控表面时所采用的压力的变化而变化。
即,在该实现方式中,可以获取所述对象触摸所述触控表面时所采用的目标压力;根据所述目标压力,获取与所述目标压力对应的所述目标电压;然后,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。
实现方式3:触感反馈装置为用户提供的触感反馈的强度,与,显示屏上在用户手指当前所触摸位置对应显示的显示对象的纹理感相关。
例如,用户手指当前所触摸位置显示的显示对象的纹理感越强时,为用户提供的触感反馈越强;用户手指当前所触摸位置显示的显示对象的纹理感越弱时,为用户提供的触感反馈越小,从而带给用户更加真实的触觉反馈。即,所述纹理感与所述目标电压正相关。示例性的,用户手指当前所触摸位置显示的显示对象为石头时为用户提供的触感反馈,强于,用户手指当前所触摸位置显示的显示对象为羽毛时为用户提供的触感反馈。
假定用户手指所在的位置为触控表面的A触控反馈点,则在该实现方式下,处理组件在接收到触控感应装置的反馈后,处理组件可以获取用户手指当前所触摸位置显示的显示对象,从而基于显示对象的纹理感与静电力之间的映射关系,或者,显示对象的纹理感与电压之间的映射关系,确定A触控反馈点的电极Hx和Vy所需输出的目标电压,从而向驱动控制器发送控制A触控反馈点的电极Hx和Vy输出目标电压的控制指令。驱动控制器接收到该指令后,可以驱动A触控反馈点的电极Hx和Vy输出目标电压,从而使手指与电极Hx之间的静电力F带给用户的触感反馈可以随用户手指当前所触摸位置显示的显示对象的纹理感而不同。
即,在该实现方式中,可以获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;根据所述显示对象的纹理感,获取与所述纹理感匹配的目标电压;驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。
实现方式4:触感反馈装置为用户提供的触感反馈的强度,与,用户触控面板的触控表面时所采用的目标压力,以及,显示屏上用户手指当前所触摸位置显示的显示对象的纹理感相关。
也就是说,在该实现方式下,即便用户手指当前所触摸位置显示的显示对象是同一显示对象,若用户触控面板的触控表面时所采用的压力不同,那么为用户提供的触感反馈也不同。
假定用户手指所触摸的位置为触控表面的A触控反馈点,则在该实现方式下,处理组件在接收到触控感应装置的反馈,以及,压力传感器识别的用户触控面板的触控表面时所采用的目标压力后,处理组件可以获取用户手指当前所触摸位置显示的显示对象的纹理感,从而基于显示对象的纹理感、压力与静电力三者之间的映射关系,或者,显示对象的纹理感、压力与电压三者之间的映射关系,确定A触控反馈点的电极Hx和Vy所需输出的目标电压,从而向驱动控制器发送控制A触控反馈点的电极Hx和Vy输出目标电压的控制指令。驱动控制器接收到该指令后,可以驱动A触控反馈点的电极Hx和Vy输出目标电压,从而使手指与电极Hx之间的静电力F带给用户的触感反馈可以随用户手指当前所触摸位置显示的显示对象的纹理感,以及,用户触控面板的触控表面时所采用的压力而不同。
即,在该实现方式中,获取所述对象触摸所述触控表面时所采用的目标压力,以及,所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;根据所述显示对象的纹理感,以及,所述目标压力,确定所述目标电压;驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。其中,所述纹理感、所述目标压力与所述目标电压正相关。
在上述实现方式3和4中,在为用户提供触感反馈的同时,处理组件也可以控制触控设备的音频输出装置(例如扬声器),使之发出与触摸用户手指当前所触摸位置显示的显示对象相匹配的目标音频,例如划过水面的水流声,或者,划过金属表面的声音等。
示例性的,以用户手指当前所触摸位置显示的显示对象为小猫,处理组件可以控制触控设备的扬声器例如播放小猫叫声的音频等。可选地,小猫的叫声也可以随用户触摸触控面板的触控表面时所采用的力度的不同而变化。此处所说的变化例如可以是声音大小的变化,也可以是变化为不同声音,也可以是变化为不同声音、且声音大小不同等。即,可以根据所述对象触摸所述触控表面时所采用的目标压力,以及,所述显示对象,确定待播放的目标音频。
在上述实现方式2至4中,通过这种结合多种信息为用户提供更真实的触感反馈的方式,可以应用于“实现更为真实、触感反馈更为丰富的应用”,即,可以应用于一些需要基于用户触摸触控面板的触控表面时所采用的力度的大小,为用户提供不同触摸反馈的应用。
应理解,以上示例仅是示例性的给出了一些触感反馈的实现方式,具体实现时,也可以基于实际的需求,根据设定的影响触感反馈的条件,调整用户手指所触摸位置的像素点对应的电极Hx和Vy的输出电压,从而改变用户手指所触摸位置的静电力,以带给用户更加真实的触控反馈。
情况2、摩擦力的基准线为预设摩擦力,并非触控面板的触控表面本身带来的摩擦力。
如前所述,本申请实施例提供的触控设备,触感反馈装置的驱动控制器不仅与第二电极层的第二电极Vy连接,还与第一电极层的第一电极Hx连接,使第一电极Hx可受驱动控制器的控制,不再处于悬浮状态。
因此,在触控设备工作时,驱动控制器可以向第一电极层的所有第一电极Hx和第二电极层的所有第二电极Vy施加一个位于人体使用安全范围内的连续补偿电压,从而使驱动控制器通过第一电极层的所有第一电极Hx和第二电极层的所有第二电极Vy,输出一个恒定的补偿静电力,进而可以使用户的手指触摸触控面板的触控表面时的摩擦力大于触控面板的触控表面本身产生的摩擦力。此处所说的连续补偿电压例如可以是交变电压。
在该实现方式下,可以基于实际需求,选择在该连续补偿电压上叠加正向的脉冲电压或者是反向的脉冲电压。通过该实现方式,可以丰富触感反馈的应用场景。
图6为本申请实施例提供的一种叠加正向的脉冲电压的示意图,如图6所示,例如,在需要增大摩擦力的场景中,可以在连续补偿电压(即图6中实线所示的电压)的基础上,叠加正向的脉冲电压(即图6中虚线所示的脉冲电压),从而给用户带来更强的触感反馈。图7为本申请实施例提供的一种叠加反向的脉冲电压的示意图,如图7所示,在需要减小摩擦力的场景中,可以在连续补偿电压(即图7中实线所示的电压)的基础上,叠加反向的脉冲电压(即图7中虚线所示的脉冲电压),从而给用户带来更光滑的触感反馈。此时, 用户手指感受到的摩擦力,比摩擦力“基准线”更低。示例性的,可以在连续补偿电压的基础上,叠加一个π相位差的脉冲电压,从而减小用户手指的静电力,进而使用户手指感受到的摩擦力减少。
应理解,针对摩擦力的基准线为预设摩擦力的情况,触感反馈装置可以在处理组件的控制下,通过第一电极层的第一电极Hx和第二电极层的第二电极Vy为用户提供触感反馈(即叠加正向的脉冲电压或反向的脉冲电压)的实现方式,可以参见情况1所示的各种实现方式,对此不再赘述。
情况3:触控设备的显示屏为可弯折的显示屏,例如曲面屏或折叠屏等。其中,触控设备的触控面板叠加在所述显示屏上。
如前所述,第一电极层中设置的多排电极Hx和第二电极层中设置的多排电极Vy可以交错排列,每一个交点为显示屏上一个可以独立控制的触控反馈点。每一个触控反馈点对应一个电极Hx和一个电极Vy,简称一对电极。
图8为本申请实施例提供的电极之间的电容的示意图。图9为本申请实施例提供的手指触摸时电极之间的电容变化的示意图。如图8所示,一对电极本身会形成固有电容器C0。如图9所示,手指触摸屏幕的表面,接触到该对电极介质后,部分电场线会被手指吸引走,从而在手指和电极Hx之间形成电容器C。
电容器由两个导电物体组成,对应于手指和电极之间形成电容器C来说,电容器C的导电物体分别为手指和电极Hx。在这两个导电物体之间有电介质,因此,这两个导电物体之间的电压V在二者之间产生电场。
通常而言,两个导电物体(也称为电容器极板)中部的电场,即,极板间的区域的电场比较均匀,电场线几乎是平行直线分布,而在两个极板的边缘处,由于极板形状的限制,电场线从极板间区域扩展到外部空间时,电场线由平行线变为呈开口状分布,电场分布集中在极板的边缘,这种现象称为电场的边缘效应。由于电容器C的电场的边缘效应的存在,致使手指与电极Hx之间的静电力会在垂直方向和水平方向均有分力。
以折叠屏为例,图10为本申请实施例提供的具有折叠屏的触控设备的显示屏的示意图。如图10所示,在该示例下,A点处与B点处的受力情况并不相同:A点的切线平行于水平面,手指触摸A点时,重力与向下压力的方向与切线垂直;相较之下,B点的切线与水平方向有一个夹角θ1,因此重力与向下压力的方向与切线也有一个夹角θ2。
此处所说的B点的切线可以参见如下描述:B的法线n和重力G构成一个平面,为了便于理解,图中利用两个虚线与法线n和重力G相连来表征法线n和重力G构成的平面。应理解,该平面的边界并非以该四个边圈中的区域为限。该平面与B点所在盖板的面的交线(即图中所示的虚线),即为B点的切线。示例性的,重力分离为正的方向可以为B点的切线方向,B点的切向力为与重力G夹角成锐角的方向。
这种空间位置的不同,会造成设置在显示屏上的触控面板的触控表面的不同位置的分力不同,致使不同位置的摩擦力的基准线不同。因此,即便施加相同的脉冲电压,那么A点和B点的静电力也不同,从而给用户带来的触觉反馈也会有所不同。另外,可弯折的显示屏的不同位置存在不同的内应力,该内应力反应在触控表面,会使设置在显示屏上的触控面板的触控表面的摩擦力的基准线不同,从而给用户带来的触觉反馈不同。
综上,本申请实施例提供了一种电压补偿方法,可以根据显示屏当前的姿态,为用户 手指触摸的位置施加不同的补偿电压,以补偿其摩擦力零点,从而使用户的手指在触控面板的触控表面的任一位置时,摩擦力的基准线相同。该方法可以应用于需要使用相同静电力为用户提供触觉反馈、且具有可弯折屏的触控设备。
继续参照图10,下面基于此示例,对为用户手指触摸的位置施加补偿电压的实现方式进行说明:
以用户手指触摸B点为例,假设静电力的主要方向在界面的法向方向,则在该示例中,可以减小B点的静电力(也即减少为B点施加的电压),从而使B点与A点有一致的摩擦力。
本申请实施例不限定上述计算减少为B点施加的电压的方式,示例性的,作为一种可能的实现方式,可以基于A点的空间角度信息,以及,显示屏的开合角信息,计算减少为B点施加的电压,具体如下:
处理组件在接收到触控感应装置针对用户手指触摸触控面板的触控表面的反馈后,处理组件可以获取触控设备的运动传感器(例如微机电***(Micro Electro Mechanical System,MEMS)电容式陀螺仪)检测到的A点的空间角度信息,以及,获取开合角传感器(例如磁通量传感器)检测到的显示屏的开合角θ。
由于A、B两点的空间相对位置已知,因此,可以通过空间旋转矩阵,确定B点与重力方向的分力,具体如下:
假设触控设备的显示屏由两个平面构成,且未进行空间旋转,则此时A点位于折叠轴处,A点的法向量n A如下述公式(6)所示:
n A=(0 0 1) T            (6)
B点位于开合角θ的平面内,B点的法向量n B如下述公式(7)所示:
n B=(sinθ 0cosθ) T           (7)
显示屏经过空间旋转后,运动传感器可以输出一个3×3的旋转变化矩阵R。在空间坐标系中,旋转后新的向量v′与原向量v之间的关系可以如下述公式(8)所示:
v′=R*v         (8)
假设,显示屏的空间旋转仅为绕x轴转动α,则旋转矩阵R可以如下述公式(9)所示:
Figure PCTCN2021101895-appb-000006
因此,显示屏经过空间旋转后,A点的法向量n′ A如下述公式(10)所示:
n′ A=(0 -sinα cosα) T           (10)
显示屏经过空间旋转后,B点的法向量n′ B如下述公式(11)所示:
n′ B=(sinθ -cosθsinα cosθcosα)         (11)
假定A点和B需要具有相同的摩擦力f,触控面板的触控表面的摩擦力系数均为μ,手指的重力均为G,手指的方向向量z如下述公式(12)所示:
z=(0 0 -1) T          (12)
假定手指触摸触控面板的触控表面时施加的压力始终与显示屏垂直(即平行于法向量)且大小为N,则在不施加补偿电压的情况下,A点的摩擦力f A如下述公式(13)所示:
f A=μ[G*(n′ A·z)+N]        (13)
B点的摩擦力f B如下述公式(14)所示:
f B=μ[G*(n B’·z)+N]        (14)
假定静电力F均平行于法向量、朝向显示屏、且静电力与电极Hx和电极Vy之间的电压V的平方成正比,如下述公式(15)所示:
F=kV 2          (15)
其中,k为静电力系数,可以通过实验测得。
应理解,若需要A点和B点的摩擦力一致,则需要保持A点和B点的弹力大小相同,如下述公式(16)所示:
G*(n′ A·z)+F A=G*(n′ B·z)+F B       (16)
其中,FA为A点的补偿静电力在法向上的分量,FB为B点的补偿静电力在法向上的分量。
假设A点无需补偿,即F A=0,则将F A等于0代入公式(16),即可推导出B点所需补偿的电压的振幅。
在得出B点所需补偿的电压的振幅后,处理组件可以控制驱动控制器,对B点对应的电极Hx和Vy施加满足该振幅的补偿电压,从而使B点与A点有一致的摩擦力。应理解,此处所说的补偿电压例如可以是前述所说的连续补偿电压。
即,在触控感应装置识别到有手指触摸B点时,驱动控制器装置可以在B点施加采用前述方式计算得到的一个连续补偿电压,以补偿因显示屏本身或位置不同带来的静电力的改变,也可以说是增加手指与屏幕的“零点”摩擦力。
应理解,在该实现方式下,可以基于实际需求,选择在该连续补偿电压上叠加正向的脉冲电压或者是反向的脉冲电压。通过该实现方式,可以丰富触感反馈的应用场景,具体可以参见情况2的描述,在此不再赘述。
本申请实施例提供的触控设备,通过将悬浮电极Hx调整为可控电极Hx,从而可以使用较小的脉冲电压信号实现触感反馈,进而可以降低触控反馈的耗电量,提高触控反馈的精度,以及,触控设备在实现触控反馈时的安全性。
需要注意的是,由于篇幅所限,本申请说明书没有穷举所有可选的实施方式,本领域技术人员在阅读本申请说明书后,应该能够想到,只要技术特征不互相矛盾,那么技术特征的任意组合均可以构成可选的实施方式。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图11为本申请实施例提供的一种触控设备的控制装置的结构示意图。该装置可以通过软件、硬件或者两者的结合实现成为触控设备的全部或一部分。该装置包括感应模块11、驱动模块12。
感应模块11,用于感应是否有对象触摸所述触控设备的触控面板的触控表面;
驱动模块12,用于在感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
可选的,驱动模块12,具体用于获取所述对象触摸所述触控表面时所采用的目标压力;根据所述目标压力,获取与所述目标压力对应的所述目标电压;驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。示例性的,所述目标压力与所述目标电压正相关。
例如,驱动模块12,具体用于根据所述目标压力,以及,压力与电压之间的映射关系,获取与所述目标压力对应的所述目标电压。
再例如,驱动模块12,具体用于获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;根据所述显示对象的纹理感,以及,所述目标压力,确定所述目标电压;所述纹理感、所述目标压力与所述目标电压正相关。
可选的,驱动模块12,具体用于获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;根据所述显示对象的纹理感,获取与所述纹理感匹配的目标电压;驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压;所述纹理感与所述目标电压正相关。
可选的,驱动模块12,具体用于驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压,并控制所述触控设备输出目标音频,所述目标音频为与所述对象触摸所述显示对象匹配的音频。
可选的,驱动模块12,还用于在控制所述触控设备输出目标音频之前,根据所述对象触摸所述触控表面时所采用的目标压力,以及,所述显示对象,确定所述目标音频。
可选的,驱动模块12,还用于驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压之前,驱动所有触控反馈点输出连续补偿电压。在该实现方式下,驱动模块12,具体用于驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极在所述连续补偿电压的基础上,输出所述目标电压。
若所述触控设备的显示屏为可弯折的显示屏,驱动模块12,具体用于根据所述显示屏上所述触控反馈点的基准点的空间角度信息,以及,所述显示屏的开合角信息,获取所述触控反馈点的连续补偿电压;驱动所有触控反馈点输出连续补偿电压。
需要说明的是,上述实施例提供的触控设备的控制装置在执行前述的控制方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的控制装置与前述实现触控反馈的控制方法实施例属于同一构思,其体现实现过程详见方法实施例,这里不再赘述。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质可以存储有多条指令,所述指令适于由处理器加载并执行如上述实现触控反馈的控制方法的步骤,在此不进行赘述。存储介质所在设备可以是触控设备,该触控设备例如可以是智能交互平板。
本申请实施例还提供了一种触控设备,该触控设备可以包括:触控面板、处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执 行如上述实现触控反馈的控制方法的步骤,在此不进行赘述。
此处所说的触控设备例如可以是前述本申请实施例所描述的触控设备。作为一种可能的实现方式,该触控设备例如可以是智能交互平板。
图12为本申请实施例提供的一种智能交互平板的结构示意图。如图12所示,所述智能交互平板1000可以包括:至少一个处理器1001,至少一个网络接口1004,用户接口1003,存储器1005,至少一个通信总线1002。
其中,通信总线1002用于实现这些组件之间的连接通信。
其中,用户接口1003可以包括显示屏(Display)、摄像头(Camera),可选用户接口1003还可以包括标准的有线接口、无线接口。
其中,网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
其中,处理器1001可以包括一个或者多个处理核心。处理器1001利用各种接口和线路连接整个智能交互平板1000内的各个部分,通过运行或执行存储在存储器1005内的指令、程序、代码集或指令集,以及调用存储在存储器1005内的数据,执行智能交互平板1000的各种功能和处理数据。可选的,处理器1001可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器1001可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作***、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器1001中,单独通过一块芯片进行实现。
其中,存储器1005可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器1005包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器1005可用于存储指令、程序、代码、代码集或指令集。存储器1005可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作***的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器1005可选的还可以是至少一个位于远离前述处理器1001的存储装置。如图12所示,作为一种计算机存储介质的存储器1005中可以包括操作***、网络通信模块、用户接口模块以及智能交互平板的操作应用程序。
在图12所示的智能交互平板1000中,用户接口1003主要用于为用户提供输入的接口,获取用户输入的数据;而处理器1001可以用于调用存储器1005中存储的智能交互平板的操作应用程序,并具体执行前述实现触控反馈的控制方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图 和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (26)

  1. 一种触控设备,其特征在于,所述触控设备包括:触控组件、主板和镀层;所述主板包括处理组件;
    所述触控组件包括盖板和触感反馈装置;所述触感反馈装置包括:驱动控制器、第一基板、第一电极层、第二电极层;
    所述第一电极层、所述第二电极层分别设置于所述第一基板的上下两侧,所述镀层设置于所述第一电极层的上侧,所述盖板设置于所述第二电极层的下侧,构成所述触控设备的触控面板的触感反馈部分,所述镀层为所述触控面板的触控表面;所述驱动控制器设置在所述主板上,所述驱动控制器的一端与所述处理组件连接,所述驱动控制器的另一端分别与所述第一电极层的第一电极和所述第二电极层的第二电极连接;
    所述镀层包括绝缘层,用于为所述触控面板提供绝缘防护;
    当对象触摸所述触控表面时,所述驱动控制器在所述处理组件的控制下,通过所述第一电极层的第一电极和所述第二电极层的第二电极为所述对象提供触感反馈。
  2. 根据权利要求1所述的设备,其特征在于,所述盖板的边缘处设置有导电连接件;
    所述第一电极层的电极的引线和所述第二电极层的电极的引线均与所述导电连接件的一端连接,所述导电连接件的另一端通过所述主板上的通路与所述驱动控制器连接。
  3. 根据权利要求1或2所述的设备,其特征在于,所述触控组件还包括:触控感应装置,所述触控感应装置用于识别是否有对象触摸触控面板的触控表面。
  4. 根据权利要求3所述的设备,其特征在于,所述触控感应装置包括:触控传感器、第二基板、第三电极层、第四电极层;
    所述第三电极层、所述第四电极层分别设置于所述第二基板的上下两侧、且位于所述盖板的下侧,构成所述触控面板的触控感应部分;
    所述触控传感器设置在所述主板上,所述触控传感器的第一端所述处理组件连接,所述触控传感器的第二端与所述第三电极层的第三电极连接,所述触控传感器的第三端与所述第四电极层的第四电极连接;
    所述触控传感器通过所述第三电极层的第三电极和所述第四电极层的第四电极识别是否有对象触摸所述触控表面。
  5. 根据权利要求4所述的设备,其特征在于,所述触控组件还包括:钝化保护层,所述钝化保护层为所述触控背面。
  6. 根据权利要求1-5任一项所述的设备,其特征在于,所述触控设备还包括:显示屏;所述触控面板的触控背面设置在所述显示屏的表面。
  7. 根据权利要求6所述的设备,其特征在于,所述显示屏为可弯折的显示屏,所述触控面板的各层均采用可弯折材质。
  8. 根据权利要求7所述的设备,其特征在于,所述第一电极层的第一电极和所述第二电极层的第二电极均为透明的金属网格电极。
  9. 根据权利要求8所述的设备,其特征在于,所述第一电极层设置有多排第一电极,所述第二电极层设置有多排第二电极,所述多排第一电极与所述多排第二电极交错排列,任一相交的第一电极与第二电极构成所述触控面板的一个触控反馈点。
  10. 根据权利要求1-9任一项所述的设备,其特征在于,所述触控组件还包括:至少一个压力传感器;
    所述压力传感器设置在所述盖板的下方。
  11. 根据权利要求1-10任一项所述的设备,其特征在于,所述镀层还包括:防反光层和/或防指纹层;
    所述防反光层和/或防指纹层设置在所述绝缘层的上侧。
  12. 根据权利要求1-11任一项所述的设备,其特征在于,所述触控设备为智能交互平板。
  13. 一种触控设备的控制方法,其特征在于,所述方法包括:
    感应是否有对象触摸所述触控设备的触控面板的触控表面;
    当感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
  14. 根据权利要求13所述的方法,其特征在于,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
    获取所述对象触摸所述触控表面时所采用的目标压力;
    根据所述目标压力,获取与所述目标压力对应的所述目标电压;
    驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压。
  15. 根据权利要求14所述的方法,其特征在于,所述目标压力与所述目标电压正相关。
  16. 根据权利要求14或15所述的方法,其特征在于,所述根据所述目标压力,获取与所述目标压力对应的所述目标电压,包括:
    根据所述目标压力,以及,压力与电压之间的映射关系,获取与所述目标压力对应的所述目标电压。
  17. 根据权利要求14或15所述的方法,其特征在于,所述根据所述目标压力,获取与所述目标压力对应的所述目标电压,包括:
    获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;
    根据所述显示对象的纹理感,以及,所述目标压力,确定所述目标电压;所述纹理感、所述目标压力与所述目标电压正相关。
  18. 根据权利要求14所述的方法,其特征在于,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
    获取所述触控设备在所述对象所触摸位置对应显示的显示对象的纹理感;
    根据所述显示对象的纹理感,获取与所述纹理感匹配的目标电压;
    驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压;所述纹理感与所述目标电压正相关。
  19. 根据权利要求17或18所述的方法,其特征在于,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压,包括:
    驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出所述目标电压,并控制所述触控设备输出目标音频,所述目标音频为所述显示对象匹配的音频。
  20. 根据权利要求19所述的方法,其特征在于,所述控制所述触控设备输出目标音 频之前,还包括:
    根据所述对象触摸所述触控表面时所采用的目标压力,以及,所述显示对象,确定所述目标音频。
  21. 根据权利要求13-20任一项所述的方法,其特征在于,所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压之前,所述方法还包括:
    驱动所有触控反馈点输出连续补偿电压;
    所述驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,包括:
    驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极在所述连续补偿电压的基础上,输出所述目标电压。
  22. 根据权利要求21所述的方法,其特征在于,若所述触控设备的显示屏为可弯折的显示屏,所述驱动所有触控反馈点输出连续补偿电压,包括:
    根据所述显示屏上所述触控反馈点的基准点的空间角度信息,以及,所述显示屏的开合角信息,获取所述触控反馈点的连续补偿电压;
    驱动所有触控反馈点输出连续补偿电压。
  23. 一种触控设备的控制装置,其特征在于,所述装置包括:
    感应模块,用于感应是否有对象触摸所述触控设备的触控面板的触控表面;
    驱动模块,用于在感应到有对象触摸所述触控表面时,驱动所述对象所触摸位置的触控反馈点的第一电极和第二电极输出目标电压,所述目标电压使所述对象与所述第一电极之间产生静电力。
  24. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行如权利要求13-22任意一项的方法步骤。
  25. 一种触控设备,其特征在于,包括:触控面板、处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行如权利要求13-22任意一项的方法步骤。
  26. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求13-22任一项所述的方法。
PCT/CN2021/101895 2021-06-23 2021-06-23 触控控制方法、装置、设备、存储介质及程序产品 WO2022266901A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/101895 WO2022266901A1 (zh) 2021-06-23 2021-06-23 触控控制方法、装置、设备、存储介质及程序产品
CN202180040552.3A CN115715387A (zh) 2021-06-23 2021-06-23 触控控制方法、装置、设备、存储介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101895 WO2022266901A1 (zh) 2021-06-23 2021-06-23 触控控制方法、装置、设备、存储介质及程序产品

Publications (1)

Publication Number Publication Date
WO2022266901A1 true WO2022266901A1 (zh) 2022-12-29

Family

ID=84545051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101895 WO2022266901A1 (zh) 2021-06-23 2021-06-23 触控控制方法、装置、设备、存储介质及程序产品

Country Status (2)

Country Link
CN (1) CN115715387A (zh)
WO (1) WO2022266901A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120194483A1 (en) * 2011-01-27 2012-08-02 Research In Motion Limited Portable electronic device and method therefor
CN203759662U (zh) * 2013-10-22 2014-08-06 财团法人工业技术研究院 触控面板
CN106997248A (zh) * 2015-12-30 2017-08-01 乐金显示有限公司 显示装置及其驱动方法
CN110244845A (zh) * 2019-06-11 2019-09-17 Oppo广东移动通信有限公司 触觉反馈方法、装置、电子设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120194483A1 (en) * 2011-01-27 2012-08-02 Research In Motion Limited Portable electronic device and method therefor
CN203759662U (zh) * 2013-10-22 2014-08-06 财团法人工业技术研究院 触控面板
CN106997248A (zh) * 2015-12-30 2017-08-01 乐金显示有限公司 显示装置及其驱动方法
CN110244845A (zh) * 2019-06-11 2019-09-17 Oppo广东移动通信有限公司 触觉反馈方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115715387A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN105739754B (zh) 触摸面板和包括触摸面板的显示设备
JP6608903B2 (ja) 容量感知に基づく力判定
US9575562B2 (en) User interface systems and methods for managing multiple regions
EP3106967B1 (en) Multipoint touch screen
KR102256677B1 (ko) 플렉서블 표시장치 및 이의 영상 표시방법
JP4545168B2 (ja) 力イメージング入力のデバイスとシステム
CN104137040B (zh) 触控屏幕传感器、包括该传感器的显示设备及其制造方法
CN105992992B (zh) 低外形指点杆
TW201308154A (zh) 用於曲面或撓性表面之觸控感測器
TW201135689A (en) Display panel
KR20180093972A (ko) 가요성 센서
US10845878B1 (en) Input device with tactile feedback
US10540023B2 (en) User interface devices for virtual reality system
KR102363707B1 (ko) 압력 센서를 포함하는 전자 장치 및 전자 장치 제어 방법
US11169635B2 (en) Input device, electronic device and control method
CN109074162A (zh) 电子设备的触觉用户界面
US20210109615A1 (en) Resistive pressure sensor device system
KR102447206B1 (ko) 터치 패널 및 이를 포함하는 표시 장치
WO2022266901A1 (zh) 触控控制方法、装置、设备、存储介质及程序产品
JP6489064B2 (ja) 指示デバイス、読み取り方法、プログラム及びタッチセンサシステム
CN106557211B (zh) 一种三维触控总成
JP2019179533A (ja) タッチパネルセンサ用基板、インタラクティブスクリーン、及び、インタラクティブスクリーンを備える電子黒板
WO2016122074A1 (ko) 스타일러스 펜의 기울기 정보를 이용하는 디지타이저 장치
CN108369459A (zh) 小型指点杆
CN116560521A (zh) 压力手势

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946401

Country of ref document: EP

Kind code of ref document: A1