WO2022265004A1 - 炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法 - Google Patents

炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法 Download PDF

Info

Publication number
WO2022265004A1
WO2022265004A1 PCT/JP2022/023764 JP2022023764W WO2022265004A1 WO 2022265004 A1 WO2022265004 A1 WO 2022265004A1 JP 2022023764 W JP2022023764 W JP 2022023764W WO 2022265004 A1 WO2022265004 A1 WO 2022265004A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
amount
hours
ztc
axis
Prior art date
Application number
PCT/JP2022/023764
Other languages
English (en)
French (fr)
Inventor
弘行 糸井
直樹 内山
Original Assignee
学校法人 名古屋電気学園
株式会社アツミテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 名古屋電気学園, 株式会社アツミテック filed Critical 学校法人 名古屋電気学園
Priority to JP2023530338A priority Critical patent/JPWO2022265004A1/ja
Priority to EP22824992.6A priority patent/EP4357300A1/en
Publication of WO2022265004A1 publication Critical patent/WO2022265004A1/ja
Priority to US18/533,272 priority patent/US20240124309A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention uses a zeolite templated carbon (hereinafter sometimes abbreviated as "ZTC") material, which is a carbon material having internal vacancies and three-dimensional structural regularity at the molecular level. It relates to a novel method of manufacturing. More specifically, ZTC with a large specific surface area is produced by a practical method from carbon source materials such as sugars such as glucose and crosslinkable hydrocarbons such as divinylbenzene (hereinafter sometimes referred to as "DVB”). It also relates to a pellet containing this ZTC and a method for producing the same.
  • ZTC zeolite templated carbon
  • ZTC produced using zeolite as a template can be used for various purposes due to its high specific surface area.
  • KNOX et al. first synthesized a carbon filler for chromatography by a template method using porous glass or silica gel (see, for example, Patent Document 1).
  • Various studies have been made since then, and attempts have been made to produce porous carbon materials using Y-type zeolite as a template (see, for example, Patent Document 2 and Non-Patent Document 1).
  • Patent Document 2 discloses that a porous carbon material having nano-order three-dimensional long-period structural regularity was synthesized using Na—Y zeolite.
  • dry Na—Y type zeolite powder was impregnated with furfuryl alcohol and heat-treated at 150° C. to polymerize the impregnated furfuryl alcohol in the pores of the zeolite.
  • the obtained zeolite-furfuryl alcohol polymer composite was carbonized, propylene was flowed into the reaction tube using N gas as a carrier gas, and gas phase carbonization was performed at 700° C. for 4 hours to obtain zeolite-furfuryl alcohol.
  • a zeolite-carbon composite was obtained by depositing carbon in the pores of the carbide composite and heat-treating it in an N2 gas stream. Further, the produced zeolite-carbon composite was treated with hydrofluoric acid and hydrochloric acid to dissolve and remove the zeolite, and only the carbon was taken out.
  • Non-Patent Document 1 discloses the following steps. 1) A PFA/zeolite composite is prepared by drying Y-type zeolite, impregnating with furfuryl alcohol, washing with mesitylene, and polymerizing furfuryl alcohol. 2) For the preparation of the carbon/zeolite composite, PFA is carbonized at 700°C, propylene is flowed at 700°C, and heat treated to obtain the carbon/zeolite composite. 3) For the preparation of ZTC, the carbon/zeolite composite is treated with HF (hydrogen fluoride) to dissolve zeolite, filtered, washed, and dried in vacuum to obtain ZTC.
  • HF hydrogen fluoride
  • Zeolite powder is impregnated with furfuryl alcohol and the furfuryl alcohol is polymerized. Considering the economic efficiency of furfuryl alcohol, a more practical material is desired. (2) It is not practical to impregnate zeolite powder with furfuryl alcohol and then wash it with expensive mesitylene, and a more practical method is desired. (3) When the zeolite powder is impregnated with furfuryl alcohol and washed with mesitylene, the mesitylene and the remaining furfuryl alcohol and mesitylene become a waste liquid. This waste liquid treatment requires man-hours and costs.
  • An object of the present invention is to provide a method for producing a zeolite templated carbon (ZTC) material by a practical method, as well as pellets containing this ZTC and a method for producing the same. More specifically, the object of the present invention is to provide a method for easily producing a ZTC material using sugars such as glucose and crosslinkable hydrocarbons such as DVB as carbon source materials, and pellets containing ZTC. and its manufacturing method.
  • ZTC zeolite templated carbon
  • the present inventors have made intensive studies on the optimum conditions for synthesizing porous carbon materials, and as a result, have found the following.
  • (1) Use conventional zeolite as a template.
  • an organic matter such as glucose is introduced into the surface of the zeolite and inside the pores of the zeolite, adsorbed, and then heated to carbonize the organic matter.
  • (3) The carbon/zeolite composite 1 in which the organic matter is carbonized is optionally flowed with propylene and heat-treated to obtain the carbon/zeolite composite 2 .
  • the template zeolite is removed while the structure of the carbonized organic matter is maintained.
  • zeolite templated carbon (ZTC) material that has pores that reflect the shape and does not exhibit the two-dimensional stacking regularity of carbon.
  • a crosslinkable hydrocarbon such as DVB is used as a carbon source instead of sugars, and then the carbon/zeolite composite 2 is obtained.
  • Ability to produce template carbon (ZTC) materials The inventors have found the above and completed the present invention.
  • a method for producing a zeolite-templated carbon material comprising introducing a saccharide into the surface and inside the pores of a zeolite, heating the saccharide to carbonize the saccharide, and then dissolving and removing the zeolite.
  • a method for producing a zeolite-templated carbon material comprising introducing a crosslinkable hydrocarbon into the surface and inside the pores of a zeolite and polymerizing it, and then dissolving and removing the zeolite.
  • [3] The method for producing a zeolite-templated carbon material according to [1], wherein the saccharides are monosaccharides, disaccharides or polysaccharides.
  • [4] The method for producing a zeolite-templated carbon material according to [1], wherein the saccharide is glucose, xylose, fructose, sucrose, cellulose or starch.
  • [5] The method for producing a zeolite-templated carbon material according to [1], wherein the zeolite is Y-type zeolite or X-type zeolite.
  • [6] The method for producing a zeolite-templated carbon material according to [1], wherein the zeolite is dissolved with an acid.
  • Pellets containing mold carbon material [15] A pellet containing a zeolite template carbon material, which is obtained by introducing a crosslinkable hydrocarbon into the surface and inside the pores of the zeolite and polymerizing it, removing the zeolite by dissolution, drying it, and then pelletizing it by applying pressure. .
  • a saccharide is introduced into the surface and pores of the zeolite, and after the saccharide is carbonized by heating, the zeolite is dissolved and removed, dried, and then pelletized by applying pressure. ].
  • the production method of the present invention relates to a method for producing a zeolite-templated carbon material, in which sugars are introduced into the surface and pores of zeolite, the sugars are carbonized by heating, and then the zeolite is dissolved and removed.
  • the production method of the present invention relates to the production method of the above zeolite template carbon material, wherein the saccharide is a monosaccharide, disaccharide or polysaccharide.
  • the saccharides used in the production method of the present invention include monosaccharides, disaccharides, trisaccharides or higher oligosaccharides, and polysaccharides.
  • oligosaccharides and polysaccharides may be collectively referred to as polysaccharides.
  • the number of carbons that make up sugar includes triose, tetraose, pentose, hexose, and heptose. , a hexose (hexose) is preferably used.
  • the production method of the present invention relates to the production method of the zeolite-templated carbon material described above, wherein the saccharides introduced into the surface and pores of the zeolite are monosaccharides.
  • the saccharides used in the production method of the present invention there are various types of monosaccharides as shown in the structures below, and these can be used.
  • hexoses include psicose (allulose), fructose, sorbose, tagatose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, xylose, and N-acetylglucosamine. , glucosamine, glucosamine hydrochloride and the like.
  • fructose, glucose and xylose are preferably used. Taking glucose as an example, these monosaccharides can be used even if they have structural differences such as ⁇ -D-glucose and ⁇ -D-glucose.
  • the production method of the present invention relates to the production method of the zeolite-templated carbon material described above, wherein the saccharide introduced into the surface and pores of the zeolite is a disaccharide.
  • the saccharides used in the production method of the present invention there are various types of disaccharides as shown in the structures below, and these can be used.
  • sucrose lactose, maltose, trehalose, turanose, and cellobiose.
  • sucrose is preferably used.
  • the production method of the present invention relates to the production method of the above zeolite-templated carbon material, wherein the polysaccharide is starch or cellulose.
  • the saccharides used in the production method of the present invention there are various types of polysaccharides as shown in the structures below, and these can be used.
  • trisaccharides include raffinose, melezitose, and maltotriose.
  • tetrasaccharides include acarbose and stachyose.
  • oligosaccharides include fructooligosaccharide (FOS), galacto-oligosaccharide (GOS), mannan-oligosaccharide (MOS), and lactose-fructose oligosaccharide (Lactosucrose).
  • polysaccharides include glycogen derived from glucose, starch (amylose - amylopectin), cellulose, dextrin, glucan ( ⁇ 1,3-glucan), fructan derived from fructose (inulin - levan ⁇ 2 ⁇ 6), N- Examples include chitin and chitosan derived from acetylglucosamine. Among these, starch and cellulose are preferably used.
  • the present invention also relates to a method for producing a zeolite-templated carbon material, in which a crosslinkable hydrocarbon is introduced into the surface and inside the pores of a zeolite and polymerized, and then the zeolite is dissolved and removed.
  • the production method of the present invention relates to the production method of the above zeolite-templated carbon material, wherein the zeolite is Y-type zeolite or X-type zeolite.
  • the zeolite used in the production method of the present invention both synthetic zeolite and natural zeolite can be used, and among them, zeolite with a large pore size is preferably used.
  • Specific examples of synthetic zeolites include Y-type zeolite, X-type zeolite, A-type zeolite, ⁇ (beta)-type zeolite, ZSM-5, ferrierite, mordenite, and L-type zeolite, among which the pore size is large.
  • Y-type zeolite and X-type zeolite are preferably used.
  • cations include K (potassium), Na (sodium), Ca (calcium), Li (lithium), hydrogen and ammonium.
  • Na (sodium) is preferably used as a cation (exchange cation).
  • Natural zeolites can also be used without any particular limitations, but zeolites with large pore diameters are preferably used, like synthetic zeolites.
  • the production method of the present invention relates to the production method of the zeolite-templated carbon material, wherein the zeolite is dissolved with acid or alkali.
  • acid or alkali can be used as the agent for dissolving the zeolite used in the production method of the present invention, and there is no limitation.
  • acids are preferably used, and hydrochloric acid and hydrogen fluoride are more preferably used, and hydrogen fluoride is particularly preferably used.
  • a saccharide is introduced into the surface and pores of a zeolite as a template, and after the saccharide is carbonized by heating, a polymerizable hydrocarbon is further introduced and gas phase carbonized. and dissolving and removing the zeolite.
  • a carbon material such as sugars (hereinafter sometimes referred to as "sugars, etc.") is introduced into the zeolite pores, and is heated at, for example, 80°C to 200°C, preferably 100°C. By heating at a temperature of up to 150° C., the introduced saccharides are polymerized or decomposed and carbonized. After that, an acid or the like is added to the zeolite containing carbonized sugars to dissolve the zeolite, and ZTC is obtained from the remaining carbonized matter.
  • sugars hereinafter sometimes referred to as "sugars, etc.
  • gaseous polymerizable hydrocarbons are introduced and heated to, for example, 600° C. to 900° C., preferably 650° C. to 800° C. Then, an acid or the like is added to dissolve the zeolite, and ZTC is obtained from the remaining carbide.
  • the production method of the present invention comprises placing zeolite in a container, drying it, adding sugars and the like to the container, and introducing the sugars and the like to the surface and pores of the zeolite after drying. It relates to the manufacturing method.
  • zeolite was dried in a container, sugars such as glucose were added to the container containing the dried zeolite, and carbonization was performed by heating at a predetermined temperature.
  • the reason for drying the zeolite is that untreated zeolite has a lot of adsorbed water, especially in the pores, which may affect the production method of the present invention. Or to eliminate it as much as possible.
  • the drying method is not particularly limited, but after introducing the zeolite into a sealable container, heating as necessary, for example, at a temperature of 80 ° C. to 200 ° C., preferably 100 ° C. to 150 ° C., reduced pressure, Drying is preferably carried out by reducing the pressure to near vacuum.
  • the container containing the zeolite be a sealable container.
  • the container is not dissolved or broken in a series of steps from the preparation of materials, drying, heating, decomposition or polymerization of sugars, carbonization, dissolution with acid, and washing. . It is preferable to use a container suitable for each step, or at the time of the required step, if necessary. Examples include glass containers and glass-lined containers.
  • the amount of saccharides and the like used cannot be generalized depending on the amount of ZTC to be finally produced, but the amount of zeolite used is 0.5 to 100 times by weight, and further 1 weight It may be doubled (equivalent) to 20 times the weight, particularly 1.5 times to 10 times the weight.
  • the production method of the present invention relates to the production method of the zeolite-templated carbon material, wherein the saccharides and the like are carbonized by heating at a temperature of 80°C to 200°C.
  • sugars are introduced into the pores of the zeolite and heated at a temperature of, for example, 80° C. to 200° C., preferably 100° C. to 150° C.
  • the introduced sugars are polymerized or decomposed and carbonized. do.
  • the time for saccharides to be polymerized or decomposed and carbonized varies depending on the heating temperature and cannot be unconditionally determined. should be treated for 20 hours to 2 days.
  • the production method of the present invention relates to the above-described method for producing a zeolite template carbon material, wherein a polymerizable hydrocarbon is introduced into the zeolite having carbonized sugars and the like, and gas phase carbonization is performed at a temperature of 600 ° C. to 900 ° C. .
  • a gaseous polymerizable hydrocarbon is introduced and heated to, for example, 600° C. to 900° C., preferably 650° C. to 800° C.
  • Vapor-phase carbonization is performed, acid or the like is added to dissolve the zeolite, and ZTC is obtained from the remaining carbide.
  • the vapor-phase carbonization time is 30 minutes to 1 day, preferably 1 hour to 10 hours, more preferably 2 hours to 5 hours.
  • the production method of the present invention relates to the production method of the above-mentioned zeolite template carbon material, wherein an acid or an alkali is added to carbonized saccharides or the like and zeolite as a template, and the zeolite is dissolved and removed.
  • the desired ZTC can be obtained by removing only the zeolite from the carbonized sugars and the like and the zeolite as a template.
  • An acid or alkali capable of dissolving zeolite preferably an acid such as hydrochloric acid or hydrogen fluoride, is added to a container containing carbonized saccharides and zeolite as a template to dissolve zeolite, followed by solid-liquid separation such as filtration and centrifugation. By separating, solid carbonized saccharides, ie, ZTC, can be obtained. If necessary, the obtained ZTC can be washed and dried by a generally known method.
  • a polymerizable hydrocarbon is introduced into the zeolite having carbonized sugars or the like, an acid is added to the gas-phase carbonized carbonized material and the zeolite as a template, and the zeolite is dissolved and removed.
  • the present invention relates to a method for producing the above zeolite template carbon material.
  • a polymerizable hydrocarbon is introduced into the zeolite having carbonized sugars and the like, and only the zeolite is removed from the vapor-phase carbonized carbonized material and the zeolite as a template to obtain the desired ZTC. Obtainable.
  • a polymerizable hydrocarbon is introduced into the zeolite having carbonized sugars and the like, and an acid or alkali, preferably hydrochloric acid or fluoride, capable of dissolving the zeolite is placed in a container containing the gas-phase carbonized carbonized material and the zeolite as a template.
  • an acid such as hydrogen
  • dissolving the zeolite, and performing solid-liquid separation such as filtration and centrifugation
  • ZTC solid carbonized saccharide or the like, that is, ZTC can be obtained. If necessary, the obtained ZTC can be washed and dried by a generally known method.
  • the present invention relates to a zeolite-templated carbon material obtained by introducing sugars into the surface and pores of zeolite, carbonizing the sugars by heating, and then dissolving and removing the zeolite.
  • the present invention relates to a method for producing a zeolite template carbon (ZTC) material by a novel and practical method.
  • a carbon material is obtained by adsorbing and heating zeolite based on raw materials that have not existed in the past.
  • the obtained carbon material exhibits the same characteristics as the conventional one, such as the results of measurement by X-ray diffraction (XRD), but it has a structure in which many carbons are linked.
  • XRD X-ray diffraction
  • the present invention also relates to a zeolite-templated carbon material obtained by introducing a crosslinkable hydrocarbon into the surface and inside the pores of a zeolite and polymerizing it, and then dissolving and removing the zeolite.
  • the present invention relates to a method for producing a zeolite templated carbon (ZTC) material using a crosslinkable hydrocarbon such as divinylbenzene in addition to the above sugars.
  • the resulting carbon material is substantially the same as the carbon material obtained using zeolite as a template, similar to the carbon material obtained using the sugars described above.
  • ZTC zeolite templated carbon
  • sugars or the like are introduced into the surface and pores of zeolite, and after the sugars or the like are carbonized by heating, the zeolite is dissolved and removed, dried, and then pressurized to pelletize. , to pellets comprising a zeolite templated carbon material.
  • the present invention is based on a zeolite templated carbon (ZTC) material by a novel and practical method, and is pelletized under pressure to achieve applications other than powders, such as hydrogen storage carriers, battery materials and catalysts. etc. can be expected.
  • ZTC zeolite templated carbon
  • the present invention is a pellet containing a zeolite template carbon material, which is obtained by introducing a crosslinkable hydrocarbon into the surface and inside the pores of a zeolite and polymerizing it, dissolving and removing the zeolite, drying it, and then pelletizing it by applying pressure. related to.
  • the present invention uses a crosslinkable hydrocarbon such as divinylbenzene to produce a zeolite templated carbon (ZTC) material, and pressurizes in the same manner as the one obtained using the above sugars as a raw material.
  • a crosslinkable hydrocarbon such as divinylbenzene
  • ZTC zeolite templated carbon
  • Pelletization is expected to be used in applications other than powder, such as hydrogen storage carriers, battery materials, and catalysts.
  • a saccharide or the like is introduced into the surface and pores of a zeolite, and after the saccharide is carbonized by heating, the zeolite is dissolved and removed, dried, and then pressurized to pelletize.
  • the present invention relates to a method for producing pellets containing zeolite templated carbon material.
  • the present invention is a pellet containing a zeolite template carbon material, which is obtained by introducing a crosslinkable hydrocarbon into the surface and inside the pores of a zeolite and polymerizing it, dissolving and removing the zeolite, drying it, and then pelletizing it by applying pressure. related to the manufacturing method of
  • the present invention provides a novel and practical method for pelletizing zeolite templated carbon (ZTC) materials under pressure.
  • the method of pelletizing include a method of pelletizing by applying a pressure of 50 kN (Newton, 377 MPa) to 100 kN (Newton, 753 MPa), preferably 50 kN to 70 kN, using a tableting machine described in Examples below. .
  • a method of adding a binder and granulation aid to the powder as necessary, kneading it sufficiently and then molding it using a granulator, etc., that is, rolling granulation, extrusion granulation, spray granulation, fluidized granulation Methods such as granulation and compression granulation are also included.
  • the size and shape of the pellets may be appropriately selected according to the purpose.
  • the thickness may be about 0.1 mm to 10 mm, further 0.2 mm to 5 mm.
  • the particle size is preferably 0.1 mm to 5 mm, more preferably 0.5 mm to 2 mm.
  • a novel three-dimensional structure having nano-level structural regularity reflecting the shape of the pores of the ZTC material used as a template and pores reflecting the shape of the porous material A ZTC material is obtained.
  • Carbon materials with both nano-level structural regularity and porosity are typically used as electrode materials for capacitors and lithium-ion batteries, which are devices that convert and store electrical energy into chemical energy, as well as hydrogen and methane. It is expected to be applied to high-value-added gas storage materials, as well as new composite matrices, electrically conductive materials, and carbon membranes.
  • the ability to simply synthesize such ZTC materials using saccharides or the like as raw materials is beneficial in that it has the potential to expand the range of material selection in various industries and dramatically improve the performance of products.
  • FIG. 1 is a diagram showing an example of an apparatus for polymerizing Na—Y type zeolite in which monomers are polymerized by heat treatment of propylene CVD.
  • An example of a temperature control program in HF processing is shown.
  • the results of measurement by an XRD (X-ray diffraction) device for ZTC samples obtained by changing the polymerization time of divinylbenzene (DVB) are shown, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° ( degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • XRD X-ray diffraction
  • X axis is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree))
  • the vertical axis (Y axis ) is the intensity (in arbitrary units).
  • Enlarged measurement data is shown above each measurement data, and measurement data at the bottom shows measurement data using Na—Y type zeolite as a control.
  • the horizontal axis (X axis) is P / P0
  • the vertical axis (Y axis) is the adsorption capacity (Volume adsorbed) ( The unit is cm3 (STP)/g).
  • the measurement results of the pore size distribution by the DFT method for ZTC samples obtained by changing the polymerization temperature are shown, the horizontal axis (X-axis) is the pore diameter (unit: nm), and the vertical axis (Y-axis) is Incremental pore volume (unit: cm3/g).
  • the results of measurement by an XRD apparatus for ZTC samples obtained by changing the amount of ⁇ -D-glucose used (higher amount) are shown.
  • the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the results of measurement by an XRD apparatus for ZTC samples obtained by changing the amount of ⁇ -D-glucose used (higher amount) are shown.
  • the measurement data on the upper side shows the enlarged measurement data.
  • No. 7 (Use 1.00 times the amount of ⁇ -D-glucose mixed for 1 minute with Awatori Mixer (registered trademark) and heat-treated at 100 ° C., propylene CVD was performed at 700 ° C. for 2 hours, and heat treatment was performed at 900 ° C. , a sample obtained after 3 hours), SEM (Scanning Electron Microscope) photographs are shown. No.
  • ⁇ -D-Glc, cellulose, sucrose and fructose ZTC samples obtained in 1.0 times the amount used are shown the results measured by the XRD apparatus, the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • ⁇ -D-Glc, cellulose, sucrose and fructose ZTC samples obtained in 1.0 times the amount used are shown the results measured by the XRD apparatus, the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • ⁇ -D-Glc, cellulose, sucrose and fructose ZTC samples obtained in 1.0 times the amount used are shown the results measured by the XRD apparatus, the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 and 1.5 times the amount of ⁇ -D-Glc used are shown, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 and 1.5 times the amount of ⁇ -D-Glc used are shown, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 and 1.5 times the amount of ⁇ -D-Glc used are shown, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays ( The unit is ° (degree), and the vertical axis (Y-axis) is intensity (the unit is arbitrary).
  • the results of measurement by an XRD device are shown for ZTC samples obtained at 1.0 and 1.5 times the amount of cellulose used, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the results of measurement by an XRD device are shown for ZTC samples obtained at 1.0 and 1.5 times the amount of cellulose used, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the results of measurement by an XRD device are shown for ZTC samples obtained at 1.0 and 1.5 times the amount of cellulose used, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • D-(+)- ZTC samples obtained with 1.0 times and 1.5 times the amount of D-(+)-sucrose are shown, and the horizontal axis (X axis) is the diffraction angle of CuK ⁇ rays. 2 ⁇ (unit is degrees), and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • D-(+)- ZTC samples obtained with 1.0 times and 1.5 times the amount of D-(+)-sucrose are shown, and the horizontal axis (X axis) is the diffraction angle of CuK ⁇ rays. 2 ⁇ (unit is degrees), and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • D-(+)- ZTC samples obtained with 1.0 times and 1.5 times the amount of D-(+)-sucrose are shown, and the horizontal axis (X axis) is the diffraction angle of CuK ⁇ rays. 2 ⁇ (unit is degrees), and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 times and 1.5 times the amount of fructose used are shown, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 times and 1.5 times the amount of fructose used are shown, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0 times and 1.5 times the amount of fructose used are shown, and the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • FIG. 1 shows the conditions (program) for vacuum heat drying of Na—Y zeolite in the synthesis of ZTC using starch.
  • the results of measurement by an XRD device for ZTC samples obtained with 1.0, 1.5, and 2.0 times the amount of starch used are shown, and the horizontal axis (X axis) is the diffraction angle of CuK ⁇ rays. 2 ⁇ (unit is degrees), and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • An example of a tableting machine for preparing pellets is shown. The transition of the water content in each step of preparing pellets is shown, the horizontal axis (X-axis) is each step, and the vertical axis (Y-axis) is the water content (unit: mg).
  • the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree))
  • the vertical axis (Y axis) is the intensity (in arbitrary units).
  • the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree))
  • the vertical axis (Y axis) is the intensity (in arbitrary units).
  • the horizontal axis (X axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree))
  • the vertical axis (Y axis) is the intensity (in arbitrary units).
  • ZTC samples obtained by changing the amount (double amount) of ⁇ -D-glucose used for Na-Y type zeolite are shown as measured by an XRD device, and the horizontal axis (X-axis) is the diffraction angle of CuK ⁇ rays. 2 ⁇ (unit is degrees), and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • FIG. 44 is enlarged so that the measurement results when the diffraction angle 2 ⁇ is around 6.4° can be seen.
  • the results of nitrogen adsorption and desorption isotherms measured for the ZTC sample are shown, the horizontal axis (X axis) is P / P0, and the vertical axis (Y axis) is the adsorption capacity (Volume adsorbed) (unit: cm3 (STP) / g).
  • the measurement results of the pore size distribution by the DFT method for the ZTC sample are shown, the horizontal axis (X axis) is the pore diameter (unit: nm), and the vertical axis (Y axis) is the incremental pore volume (Incremental pore volume) (unit is cm3/g).
  • Nitrogen adsorption and desorption measurement results (BET specific surface area) of the ZTC sample and TG measurement results of the zeolite / carbon composite the horizontal axis (X axis) is the amount of ⁇ -D-glucose, and the vertical axis (Y axis) is on the left side. is the Carbon fraction (unit: g/gNAY), and the right side of the vertical axis (Y-axis) is the BET surface area (unit: m2/g).
  • a TEM (transmission electron microscope) photograph is shown for a ZTC sample denoted by ⁇ -Glu(1.0)-P (using 1.0 times the amount of ⁇ -D-glucose).
  • FIG. 2 is a diagram showing the inferred ZTC formation mechanism.
  • the left side of the figure shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of ⁇ -D-glucose used for Na-Y type zeolite, and the horizontal axis (X-axis) is The diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray is shown, and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results of measurement by an XRD device for ZTC samples obtained by changing the amount (double amount) of D-xylose used for Na—Y type zeolite, and the horizontal axis (X axis) is the CuK ⁇ line. is the diffraction angle 2 ⁇ (unit: degree), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-fructose obtained by pulverizing Na-Y type zeolite, and the horizontal axis
  • the (X-axis) is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray
  • the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results of measurement by an XRD device for ZTC samples obtained by changing the amount (double amount) of D-sucrose obtained by pulverizing Na-Y type zeolite, and the horizontal axis
  • the (X-axis) is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray
  • the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the figure shows the results of nitrogen adsorption/desorption isotherms measured for ZTC samples obtained using various sugars shown in the figure, where the horizontal axis (X axis) is P/P0 and the vertical axis (Y axis) is the adsorption capacity. (Volume adsorbed) (unit: cm3 (STP)/g).
  • the results of measuring the pore size distribution by the DFT method for ZTC samples obtained using various sugars shown in the figure are shown, the horizontal axis (X axis) is the pore diameter (unit: nm), and the vertical axis is (Y-axis) is the Incremental pore volume in cm3/g.
  • SEM (Scanning Electron Microscope) pictures are shown for samples denoted with ⁇ -D-glucose.
  • SEM (Scanning Electron Microscope) pictures are shown for samples denoted with ⁇ -D-glucose.
  • SEM (Scanning Electron Microscopy) pictures are shown for samples denoted with D-xylose.
  • SEM (Scanning Electron Microscopy) pictures are shown for samples denoted with D-fructose.
  • SEM (Scanning Electron Microscope) pictures are shown for the samples indicated with ground D-fructose.
  • SEM (Scanning Electron Microscope) pictures are shown for the samples denoted with D-sucrose.
  • a ZTC sample synthesized using ⁇ -D-glucose shows the results of analysis by Raman spectroscopy, the horizontal axis (X-axis) is Raman shift (unit: cm-1), and the vertical axis (Y-axis). is the intensity (in arbitrary units).
  • the results of Raman spectroscopic analysis of a ZTC sample synthesized using 1.0 times the amount of the sugar shown in the figure are shown.
  • the axis (Y-axis) is intensity (arbitrary units).
  • the left side of the figure shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-fructose used before pulverization for Na—Y type zeolite, and the horizontal axis (X axis). is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray, and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results of measurement by an XRD device for a ZTC sample obtained using pre-pulverized D-fructose, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° ( degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-sucrose used before pulverization for Na-Y type zeolite, the horizontal axis (X axis) is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray, and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • the left side of the figure shows the results of measurement by an XRD apparatus for a ZTC sample obtained by using pre-pulverized D-sucrose, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° ( degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of the figure is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. Nitrogen adsorption and desorption isotherms were measured for ZTC samples obtained using crushed fructose (denoted as post-grinding) and unground fructose (denoted as unground) for Na—Y zeolite.
  • the horizontal axis (X-axis) is P/P0
  • the vertical axis (Y-axis) is Volume adsorbed (unit: cm3 (STP)/g).
  • the horizontal axis (X-axis) is the pore diameter (unit: nm)
  • the vertical axis (Y-axis) is the incremental pore volume (unit: cm3/g).
  • a Gaussian function was used assuming an exothermic peak when -D-glucose was adsorbed on NaY zeolite.
  • FIG. 68 the NaY-type zeolite and ⁇ -D-glucose on the left side of the vertical axis, the peak intensity of the Gaussian function (left vertical axis) and the horizontal axis (position) are changed and added (Fit), the experimental result (displayed as Data ) to match (fitting and displaying).
  • thermogravimetry and differential thermal measurement TG-DTA
  • the horizontal axis (X axis) is temperature (unit: ° C.)
  • the vertical axis (Y axis ) Left side is DTA (in mV/g)
  • right side is weight (in %).
  • Simultaneous thermogravimetry and differential thermal measurement TG -DTA
  • the horizontal axis (X-axis) is temperature (unit: ° C.)
  • the left side of the vertical axis (Y-axis) is DTA (unit: mV/g)
  • the right side is weight (unit: is %).
  • the horizontal axis (X-axis) is temperature (in °C)
  • the left side of the vertical axis (Y-axis) is DTA (in mV/g)
  • the right side is weight (in %).
  • a Gaussian function was added, which is assumed to be the exothermic peak when D-xylose is adsorbed on NaY zeolite.
  • NaY-type zeolite and D-xylose, the peak intensity (left vertical axis) and the position (horizontal axis) of the Gaussian function were changed, added (denoted as Fit), and fitted to match the experimental result (denoted as Data). .
  • NaY-type zeolite and D-sucrose changing the peak intensity (left vertical axis) and position (horizontal axis) of the Gaussian function, summed (denoted as Fit), and fitted to match the experimental result (denoted as Data) .
  • TG-DTA the horizontal axis (X axis) is temperature (unit: ° C.), the left side of the vertical axis (Y axis) is DTA (unit: mV / g), and the right side is weight. (unit is %).
  • a Gaussian function was added, assuming an exothermic peak when D-sucrose was adsorbed on NaY zeolite. NaY-type zeolite and D-sucrose, changing the peak intensity (left vertical axis) and position (horizontal axis) of the Gaussian function, summed (denoted as Fit), and fitted to match the experimental result (denoted as Data) .
  • the vertical axis (Y-axis) is the adsorption capacity (Volume adsorbed) (unit: cm3 (STP)/g).
  • SEM (Scanning Electron Microscope) pictures are shown for starch samples.
  • SEM (Scanning Electron Microscope) pictures are shown for starch samples.
  • SEM (Scanning Electron Microscope) pictures are shown for samples of cellulose.
  • SEM (Scanning Electron Microscope) pictures are shown for samples of cellulose.
  • ZTC samples obtained by changing the amount (double amount) of S (sugar: starch) used for Na—Y type zeolite are shown, and the results measured by an XRD device are shown.
  • FIG. 79 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • FIG. 78 is enlarged so that the measurement results when the diffraction angle 2 ⁇ is around 6.4° can be seen. It shows the results of nitrogen adsorption and desorption isotherms measured for ZTC samples obtained by changing the amount (double amount) of S (sugar: starch) used, the horizontal axis (X axis) is P / P0, and the vertical axis ( Y-axis) is Volume adsorbed (unit: cm3 (STP)/g).
  • the measurement results of the pore size distribution by the DFT method are shown for ZTC samples obtained by changing the amount (double amount) of S (sugar: starch), and the horizontal axis (X axis) is the pore diameter (unit: nm). ) and the vertical axis (Y-axis) is the incremental pore volume (in cm3/g).
  • 82 is enlarged so that the measurement results when the diffraction angle 2 ⁇ is around 6.4° can be seen. It shows the results of nitrogen adsorption and desorption isotherms measured for ZTC samples obtained by changing the amount (double amount) of C (cellulose) used, the horizontal axis (X axis) is P / P0, and the vertical axis (Y axis ) is the volume adsorbed (unit: cm3(STP)/g). The results of measuring the pore size distribution by the DFT method for ZTC samples obtained by changing the amount (double amount) of C (cellulose) are shown, and the horizontal axis (X axis) is the pore diameter (unit: nm).
  • FIG. 4 is a diagram showing the results of nitrogen adsorption and desorption measurements (BET specific surface area) of each ZTC sample and the results of TG measurements (Carbon fraction (g/g)) of a zeolite/carbon composite for a starch system, with horizontal axis (X-axis). is the amount of sugar (starch), the left side of the vertical axis (Y-axis) is Carbon fraction (unit is g/g NAY), and the right side is BET surface area (unit is m2/g).
  • BET specific surface area nitrogen adsorption and desorption measurements
  • FIG. 2 is a diagram showing the nitrogen adsorption and desorption measurement results (BET specific surface area) of each ZTC sample and the TG measurement results (Carbon fraction (g/g)) of a zeolite/carbon composite for a cellulosic system, with the horizontal axis (X-axis); is the amount of sugar (cellulose), the left side of the vertical axis (Y-axis) is Carbon fraction (unit: g/gNAY), and the right side is BET surface area (unit: m2/g).
  • a TEM (transmission electron microscope) photograph is shown for a ZTC sample denoted by cellulose (1.0)-P (using 1.0 times the amount of cellulose).
  • a TEM (Transmission Electron Microscope) photograph is shown for a ZTC sample denoted by Cellulose (1.8)-P (using 1.8 times the amount of cellulose).
  • NaY-type zeolite, starch and cellulose are the results of analysis by simultaneous thermogravimetry and differential thermal measurement (TG-DTA), the horizontal axis (X axis) is temperature (unit: ° C.), and the vertical axis (Y axis).
  • the left side is DTA (unit is mV/g) and the right side is weight (unit is %).
  • NaY-type zeolite and starch the peak intensity (left vertical axis) and position (horizontal axis) of the Gaussian function were changed, added (denoted as Fit), and fitted so as to match the experimental result (denoted as Data).
  • Samples of NaY-type zeolite, cellulose, and a mixture of NaY-type zeolite and cellulose are the results of analysis by simultaneous thermogravimetry and differential thermal measurement (TG-DTA).
  • X-axis) is temperature (unit: °C)
  • the left side of the vertical axis (Y-axis) is DTA (unit: mV/g)
  • the right side is weight (unit: %).
  • the horizontal axis (X-axis) is P /P0
  • the vertical axis (Y-axis) is the volume adsorbed (unit: cm3 (STP)/g).
  • STP volume adsorbed
  • the results for NaY-type zeolite are also shown.
  • the results of measurement by an XRD apparatus for ZTC samples obtained by changing the S (starch) drying treatment recipe for NaY-type zeolite are shown, and the horizontal axis (X-axis) is the diffraction angle 2 ⁇ of CuK ⁇ rays (unit: ° (degree)), and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the bottom (denoted as S (1.0)-P (NaY 500 mg)) is synthesized by using 500 mg of undried NaY-type zeolite in a normal operation, combining 1.0 times the amount of starch and propylene CVD. It is a ZTC that The second from the bottom (denoted as S(1.0)-P (NaY is undried)) is ZTC synthesized by combining propylene CVD with 1.0 times the amount of starch using 15 g of undried NaY zeolite. .
  • the third from the bottom uses 15 g of undried NaY zeolite after drying, and combines 1.0 times the amount of starch and propylene CVD. Synthesized ZTC.
  • the top (denoted as S(1.0)-P (pre-dried NaY and starch)) is used after drying 15 g of undried NaY-type zeolite and 1.0 times the amount of starch, and combined with propylene CVD. It is ZTC synthesized by FIG. 93 is enlarged so that the measurement results when the diffraction angle 2 ⁇ is around 6.4° can be seen.
  • NaY-type zeolite, starch and cellulose are the results of analysis by simultaneous thermogravimetry and differential thermal measurement (TG-DTA), the horizontal axis (X axis) is temperature (unit: ° C.), and the vertical axis (Y axis).
  • TG-DTA thermogravimetry and differential thermal measurement
  • X axis horizontal axis
  • Y axis vertical axis
  • the left side is DTA (unit is mV/g) and the right side is weight (unit is %).
  • the horizontal axis (X-axis) is P /P0
  • the vertical axis (Y-axis) is the volume adsorbed (unit: cm3 (STP)/g).
  • STP volume adsorbed
  • Example 1 Synthesis of ZTC using divinylbenzene>
  • formulations of ZTC obtained by polymerizing divinylbenzene and further polymerizing propylene using Na—Y type zeolite as a template are shown. This formulation was also appropriately applied to the method for producing ZTC using the saccharides of the present invention.
  • the total weight of the Na—Y zeolite vacuum heat-dried rubber stopper and a 10 ml vial with the rubber stopper was measured. - About 500 mg of Na-Y type zeolite was weighed before drying, placed in the previously weighed vial, and sealed with a rubber stopper. - The total weight was measured with an electronic balance. ⁇ Vacuum heat drying was performed. ⁇ The total weight after vacuum heating and drying was weighed with an electronic balance to calculate the dry weight of Na—Y type zeolite.
  • Vacuum heat drying of Na—Y type zeolite by oil bath heating A glass container with a three-way cock was connected to a gas line, and evacuation and N2 (nitrogen gas) introduction were performed three times each using the gas line. - With N2 flowing, the glass stopper was opened, and the vial containing the Na-Y type zeolite was placed in the glass container. - Using tweezers, remove the rubber stopper attached to the vial bottle. - A glass container with a three-way cock containing a vial was evacuated, and vacuum heat drying using an oil bath was performed according to the following program.
  • Vacuum heat drying of Na—Y type zeolite by heating in a vacuum drying chamber ⁇ The lid of the vial container containing the Na—Y type zeolite was removed and set in the drying chamber. ⁇ A trap was attached to prevent moisture from entering the oil pump, and it was inserted into the Dewar flask. ⁇ The inside of the vacuum drying chamber was evacuated, and vacuum heat drying using an oil bath was performed according to the following program.
  • Weight (g) of 1 times the amount of monomer for 1 g of Na—Y type zeolite 0.3642 cm3 ⁇ density of monomer (g/cm3)
  • Weight (g) of 1 times the amount of monomer with respect to the amount X g of Na-Y type zeolite Weight (g) of Na-Y type zeolite ⁇ 0.3642 cm3 ⁇ density of monomer (g/cm3)
  • Adsorption and Polymerization of Monomers on Na—Y Zeolite A vial containing the monomers was placed in a constant temperature bath at 40° C. and held for a predetermined period of time to allow the monomers to be adsorbed on the Na—Y zeolite. - After that, the vial was transferred to a constant temperature bath at a predetermined temperature and held there for a predetermined period of time to polymerize the monomer in the pores of the Na—Y type zeolite.
  • Na—Y type zeolite (indicated as “NaY” in the drawing) obtained by polymerizing heat treatment and monomers by propylene CVD was placed on the quartz board shown in FIG. ⁇ The quartz board on which the sample was placed was set in the center of the gold horizontal furnace. ⁇ All gas valves were opened to evacuate the system. Then purged with N2. - In FIG. 1, for example, the flow rate of N2 is 912 cc/mm, the flow rate of propylene (C3H6) is 38 cc/mm, and the conditions are such that propylene CVD is performed for 2 hours at 700.degree. ⁇ Continued, nitrogen was flowed to expel the air in the furnace.
  • Example 2 Results of ZTC synthesis using divinylbenzene>
  • the carbon yield after HF treatment is shown in Table 1 below.
  • Table 1 the weight percent (wt%) of ZTC was measured for each sample in which the polymerization time of DVB (divinylbenzene) was varied.
  • the weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • the processing conditions for each sample No. are as follows. No. 343; After polymerization using DVB (divinylbenzene) for 1 hour, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 344; After polymerization using DVB (divinylbenzene) for 3 hours, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 345; After polymerization using DVB (divinylbenzene) for 6 hours, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 346; After polymerization using DVB (divinylbenzene) for 24 hours, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours.
  • the processing conditions for each sample for which XRD data are shown are as follows. 1; 1 ZTC, and after polymerization using DVB (divinylbenzene) for 24 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 2; 4 ZTC, and after polymerization using DVB (divinylbenzene) for 6 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 3; 3 ZTC, and after polymerization using DVB (divinylbenzene) for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C.
  • the structure of Na—Y type zeolite was transferred to all the samples, that is, the polymerization times of 1, 3, 6, and 24 hours, when the XRD 2 ⁇ value (by CuK ⁇ rays) was around 6°.
  • a sharp peak (the peak intensity is an arbitrary unit) derived from this was observed.
  • the chart indicated as NaY is for Na—Y zeolite, and the portion near 6° is added to refer to this characteristic peak.
  • Example 3 Results of examination of DVB adsorption conditions> The carbon yield after HF treatment is shown in Table 2 below.
  • Table 2 the weight percent (wt%) of ZTC was measured for each sample with different DVB (divinylbenzene) adsorption times. The weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • DVB divinylbenzene
  • propylene CVD was performed at 700°C for 2 hours
  • heat treatment was performed at 900°C for 3 hours.
  • the ZTC weight percent was high at any of the DVB (divinylbenzene) adsorption times of 1, 3, and 6 hours, that is, a high yield was obtained.
  • the processing conditions for each sample for which XRD data are shown are as follows.
  • No. 13 DVB (divinylbenzene) was used to adsorb to Na-Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours.
  • No. 14 DVB (divinylbenzene) was used to adsorb Na—Y type zeolite for 3 hours, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • No. 13 DVB (divinylbenzene) was used to adsorb to Na-Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • DVB divinylbenzene
  • adsorb Na-Y type zeolite for 6 hours
  • propylene CVD was performed at 700°C for 2 hours
  • heat treatment was performed at 900°C for 3 hours.
  • No. 66-1 ZTC adsorbed at 150° C. using DVB (divinylbenzene), polymerized for 24 hours, subjected to propylene CVD at 700° C. for 2 hours, and heat treated at 900° C. for 3 hours.
  • a sharp peak derived from Na—Y zeolite was obtained at around 6° for all adsorption times. Also, No. 13, a peak derived from Na—Y type zeolite was also observed near 10°. Furthermore, since sharp peaks were obtained at all adsorption times, 1 hour of adsorption time is sufficient.
  • Example 4 Investigation of low dose of DVB>
  • the carbon yield after HF treatment is shown in Table 3 below.
  • Table 3 the weight percent (wt%) of ZTC was measured for each sample with different amounts of DVB (divinylbenzene) used.
  • the weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • the processing conditions for each sample No. are as follows. No. 13: Using 1.00 times the amount of DVB (divinylbenzene), adsorbed on Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field. No. 19; 0.82 times the amount of DVB (divinylbenzene) was used to adsorb to Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field. No.
  • the processing conditions for each sample for which XRD data are shown are as follows. 1; 13: Using 1.00 times the amount of DVB (divinylbenzene), adsorbed on Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field. 2; 19; 0.82 times the amount of DVB (divinylbenzene) was used to adsorb to Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field.
  • DVB divinylbenzene
  • Example 5 ⁇ Examination of high dose of DVB> The carbon yield after HF treatment is shown in Table 4 below.
  • Table 4 the weight percent (wt%) of ZTC was measured for each sample with different amounts of DVB (divinylbenzene) used. The weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • the treatment conditions for each sample No. are as follows. No. 13: Using 1.00 times the amount of DVB (divinylbenzene), adsorbed on Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field. No. 37; 1.22 times the amount of DVB (divinylbenzene) was used to adsorb to Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field. No.
  • DVB divinylbenzene
  • the processing conditions for each sample whose XRD data are shown are as follows. 1; 66-1; 1.05 times the amount of DVB (divinylbenzene) was adsorbed on Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. did the time. 2; 13: Using 1.00 times the amount of DVB (divinylbenzene), adsorbed on Na—Y type zeolite for 1 hour, polymerized for 3 hours, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. rice field.
  • the amount of ⁇ -D-glucose was determined by adsorption of ⁇ -D-glucose and subtraction of the weight before and after placing ⁇ -D-glucose in a container (vial).
  • the density of ⁇ -D-glucose was 1.54 g/cm3.
  • the vial containing the dried Na-Y type zeolite was placed in an evacuated glass container with a three-way cock, and the lid was removed.
  • the minimum necessary amount of ⁇ -D-glucose was put into the vial vial using a medicine wrapping paper under a nitrogen stream.
  • the cap was removed from the glass bottle and placed in a constant temperature bath at 100°C or 150°C for 24 hours to prepare a sample.
  • Na—Y type zeolite (indicated as “NaY” in the drawing) obtained by polymerizing heat treatment and monomers by propylene CVD was placed on the quartz board shown in FIG. ⁇ The quartz board on which the sample was placed was set in the center of the gold horizontal furnace. ⁇ All gas valves were opened to evacuate the system. Then purged with N2. - In FIG. 1, for example, the flow rate of N2 is 912 cc/mm, the flow rate of propylene (C3H6) is 38 cc/mm, and the conditions are such that propylene CVD is performed for 2 hours at 700.degree. ⁇ Continued, nitrogen was flowed to expel the air in the furnace. Then, CVD and heat treatment were performed under the program conditions shown in FIG.
  • Example 7 Results of ZTC synthesis using ⁇ -D-glucose>
  • the carbon yield after HF treatment is shown in Table 5 below.
  • Table 5 the weight percent (wt%) of ZTC was measured for each sample in which the polymerization time of DVB (divinylbenzene) and the heat treatment temperature were changed. The weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • the treatment conditions for each sample No. are as follows.
  • No. 3 Heat treatment at 100° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours.
  • No. 4 Heat treatment at 150° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours.
  • ZTC was formed by subsequent propylene CVD, indicating that ⁇ -D-glucose was heat-treated to cause polymerization or decomposition. I think that the.
  • the weight percentage of the obtained ZTC is too high, it is thought to mean that the graphene is laminated, and the surface area is rather reduced. From this point of view, the weight percent is based on the results in Table 5, especially No. As seen in the results of No. 4, it is desirable to be about 23 wt%. In this example, the melting point of ⁇ -D-glucose was 146° C., but when the heat treatment temperature of ⁇ -D-glucose was 100° C. and 150° C., the weight percent values of ZTC were similar to each other.
  • the processing conditions for each sample for which XRD data are shown are as follows. 1; 4; Heat treatment at 150° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours. 1' is an enlarged view. 2; 3: Heat treatment at 100° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours. 2' is an enlarged view. 3; 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C.
  • Nitrogen adsorption and desorption isotherms Nitrogen adsorption and desorption isotherms were measured for the ZTC samples obtained by varying the polymerization temperature as described above, and are shown in FIG.
  • FIG. 9 the treatment conditions for each sample whose nitrogen adsorption/desorption isotherms are shown are as follows. 1; 3: Heat treatment at 100° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours. 2' is an enlarged view. 2; 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. From FIG. 9, it can be seen that the structural transcription of the Na—Y zeolite was carried out successfully, since almost no mesopore-derived hysteresis appeared.
  • Pore size distribution (DFT method) The pore size distribution of the ZTC samples obtained by changing the polymerization temperature as described above was measured by the DFT method, and the results are shown in FIG.
  • the processing conditions for each sample whose pore size distribution is shown are as follows. 1; 3: Heat treatment at 100° C. using ⁇ -D-glucose, propylene CVD at 700° C. for 2 hours, and heat treatment at 900° C. for 3 hours. 2' is an enlarged view. 2; 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. From FIG. 10, many pores of 1.2 nm derived from Na—Y type zeolite are distributed, so the structure of Na—Y type zeolite is successfully transferred.
  • Example 8 ⁇ Study of synthesis of ZTC using ⁇ -D-glucose (without polymerization operation)> Carbon Yield After HF Treatment
  • the carbon yield of ZTC after HF treatment is shown in Table 7 below.
  • the % by weight of ZTC obtained was determined by the mixing method of ⁇ -D-glucose used, a low-fold amount or a high-fold amount of ⁇ -D-glucose relative to the reference (No. 3).
  • the weight percent of ZTC was calculated from the weight change before and after the HF treatment.
  • No. 3 is a reference condition, in which ⁇ -D-glucose was heat-treated (polymerization operation) at 100°C. No. 6 and and no. 7 considered the mixing operation.
  • No. 11-14, No. Samples 16 to 19 were all mixed for 1 minute with an Awatori Mixer (registered trademark) ARE-310.
  • the processing conditions for each sample number are as follows. No. 3: Using 1.00 times the amount of ⁇ -D-glucose, heat treatment was performed at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 6; A 1.00-fold amount of ⁇ -D-glucose mixed in a mortar for 30 minutes was heat treated at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 7: Heat treatment at 100 ° C.
  • the processing conditions for each sample for which XRD data are shown are as follows. 1; 7: Heat treatment at 100 ° C. using 1.00 times the amount of ⁇ -D-glucose mixed for 1 minute with Awatori Mixer (registered trademark), propylene CVD at 700 ° C. for 2 hours, heat treatment at 900 ° C. , performed for 3 hours. 1' is an enlarged view. 2; 6; A 1.00-fold amount of ⁇ -D-glucose mixed in a mortar for 30 minutes was heat treated at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 2' is an enlarged view.
  • FIG. 12 the processing conditions for each sample for which XRD data are shown are as follows.
  • the upper right figure in FIG. 12 is an enlarged view.
  • No. 7 Heat treatment at 100 ° C. using 1.00 times the amount of ⁇ -D-glucose mixed for 1 minute with Awatori Mixer (registered trademark), propylene CVD at 700 ° C. for 2 hours, heat treatment at 900 ° C. , performed for 3 hours.
  • No. 6 A 1.00-fold amount of ⁇ -D-glucose mixed in a mortar for 30 minutes was heat treated at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • No. 7 Heat treatment at 100 ° C. using 1.00 times the amount of ⁇ -D-glucose mixed for 1 minute with Awatori Mixer (registered trademark), propylene CVD at 700 ° C. for 2 hours, heat treatment at 900 ° C. , performed
  • the processing conditions for each sample for which XRD data are shown are as follows. 1; 11: Using 0.79 times the amount of ⁇ -D-glucose, heat treatment was performed at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 2; 7: Using 1.00 times the amount of ⁇ -D-glucose, heat treatment was performed at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 3; 12: Using 0.60 times the amount of ⁇ -D-glucose, heat treatment was performed at 100° C., propylene CVD was performed at 700° C.
  • the processing conditions for each sample No. are as follows. 1; 7: Heat treatment at 100 ° C. using 1.00 times the amount of ⁇ -D-glucose mixed for 1 minute with Awatori Mixer (registered trademark), propylene CVD at 700 ° C. for 2 hours, heat treatment at 900 ° C. , performed for 3 hours. 2; 16: Using 1.20 times the amount of ⁇ -D-glucose, heat treatment was performed at 100° C., propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. 3; 17: Heat treatment was performed at 100° C.
  • the processing conditions for each sample No. are as follows.
  • the right side diagram and the left side diagram show the same results, and the right side diagram has a wide range of 2 ⁇ values on the horizontal axis.
  • Example 9 ⁇ Adsorption mechanism of glucose into zeolite pores> As mentioned above, No. The surface area and pore size volume were measured for 30 samples and are shown in Table 8.
  • the processing conditions for the samples are as follows. No. 30; 1.00 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite at room temperature.
  • the BET surface area of Na—Y zeolite alone is calculated from the BET surface area of Na—Y zeolite/ ⁇ -D-Glc. Assuming that adsorption occurs simply by mixing Na—Y zeolite and ⁇ -D-Glc, the BET surface area approaches zero. BET surface area of Na-Y type zeolite/ ⁇ -D-Glc ⁇ Na-Y type zeolite weight/Total weight of Na-Y type zeolite + ⁇ -D-Glc, 460 ⁇ 0.1750/02738 ⁇ 630 m / g became.
  • Example 10 ⁇ Adsorption mechanism of glucose into zeolite pores (TG)> As mentioned above, No. The TG of the mixed powder was measured for 30 samples and shown in FIG.
  • the sample processing conditions are as follows. No. 30; 1.00 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite at room temperature. Reference numerals shown in FIG. 18 are as follows. 1 Shows the profile of temperature (displayed as Temperature, unit is °C). 2 shows the TGA (Thermo Gravimetry Apparatus) profile. 3 shows the DTA (differential thermal analysis) profile.
  • the adsorption reaction is an exothermic reaction, and No. Thirty samples were stirred for 1 minute with a mixer and subjected to TG measurement. From the results, no upward peak of DTA, which should be confirmed by an exothermic reaction, was observed.
  • the treatment conditions for the samples are as follows. No. 41: Using 1.0 times the amount of ⁇ -D-glucose, mix it with Na-Y type zeolite for 1 minute with a Mixer, then raise the temperature at 10 ° C./min and reach 400 ° C. The heating was stopped and the mixture was allowed to cool. No. 40: Using 1.0 times the amount of ⁇ -D-glucose, mix it with Na-Y type zeolite for 1 minute with a Mixer, then raise the temperature at 10 ° C./min and reach 300 ° C. The heating was stopped and the mixture was allowed to cool. No.
  • Example 11 ⁇ Study of ZTC synthesis using ⁇ -D-glucose, cellulose, sucrose, fructose> ZTC was synthesized using the following carbon precursors. ⁇ D- (+) - sucrose > 99.0% (manufactured by Tokyo Kasei)
  • the treatment conditions for the samples are as follows. No. 41; ⁇ -D-glucose in an amount of 1.0 times was mixed with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 45; 1.5 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 42; After mixing 1.0 times the amount of cellulose with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • the sample processing conditions are as follows. No. 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 41; 1.0 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 42; After mixing 1.0 times the amount of cellulose with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C.
  • XRD measurement ( ⁇ -D-Glc 1.0 and 1.5 times the amount)
  • the ZTC samples obtained at 1.0 and 1.5 times the amount of ⁇ -D-Glc used were measured with an XRD (X-ray diffraction) device and shown in FIGS. 22-24.
  • all the samples were used after being stirred for 1 minute with an Awatori Mixer (registered trademark). 22 to 24 are all from the same sample, and only the scale of the XRD measurement results is changed.
  • the sample processing conditions are as follows. No. 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 41; 1.0 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 45; 1.5 times the amount of ⁇ -D-glucose was mixed with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • XRD measurement (1.0 times and 1.5 times the amount of cellulose)
  • ZTC samples obtained at 1.0 and 1.5 times the amount of cellulose used were measured with an XRD (X-ray diffraction) device, and shown in FIGS. 25-27.
  • all the samples were used after being stirred for 1 minute with an Awatori Mixer (registered trademark). 25 to 27 are all from the same sample, and only the scale of the XRD measurement results is changed.
  • the sample processing conditions are as follows. No. 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 42; After mixing 1.0 times the amount of cellulose with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 46; After mixing 1.5 times the amount of cellulose with Na—Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • XRD measurement (D-(+)-sucrose 1.0 times and 1.5 times the amount)
  • the ZTC samples obtained at 1.0 and 1.5 times the amount of D-(+)-sucrose were measured with an XRD (X-ray diffraction) device, and shown in FIGS. rice field.
  • all the samples were used after being stirred for 1 minute with an Awatori Mixer (registered trademark). 28 to 30 are all from the same sample, and only the scale of the XRD measurement results is changed.
  • the sample processing conditions are as follows. No. 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 43; 1.0 times the amount of D-(+)-sucrose was mixed with Na—Y type zeolite, then propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 47; 1.5 times the amount of D-(+)-sucrose was mixed with Na—Y type zeolite, then propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours.
  • FIGS. 28 to 30 a sharp peak derived from Na—Y type zeolite was observed at around 6° in any double amount of D-(+)-sucrose used, indicating that the structure was successfully transcribed. .
  • a broad carbon-derived peak was observed near 25° in both 1.0 and 1.5 times the amount of D-(+)-sucrose used.
  • XRD measurement (1.0 times and 1.5 times the amount of fructose)
  • the ZTC samples obtained at 1.0 and 1.5 times the amount of fructose used were measured with an XRD (X-ray diffraction) device and shown in FIGS.
  • all the samples were used after being stirred for 1 minute with an Awatori Mixer (registered trademark). 31 to 33 are all from the same sample, and only the scale of the XRD measurement results is changed.
  • the sample processing conditions are as follows. No. 66-1 ZTC, and after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 44; 1.0 times the amount of D-(-)-fructose was mixed with Na--Y type zeolite, propylene CVD was performed at 700° C. for 2 hours, and heat treatment was performed at 900° C. for 3 hours. No. 48; 1.5 times the amount of D-(-)-fructose was mixed with Na-Y type zeolite, propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours.
  • Example 12 ⁇ Study of synthesis of ZTC using starch> A. Vacuum heat drying of Na—Y type zeolite ⁇ The weight of the “rubber stopper” and “rubber stopper + bottle” of each 10 ml vial was weighed. - 500 mg of Na-Y type zeolite was weighed and transferred to a vial, and "rubber stopper + bottle + Na-Y type zeolite” was weighed. The weight of Na-Y type zeolite was calculated from the difference in weight from "rubber plug + bottle”. - Removed the rubber plug from the vial bottle, and vacuum-heat-dried using a vacuum drying chamber under the conditions (program) shown in Fig. 34 .
  • the processing conditions for the samples are as follows. No. 34; Starch was used in an amount of 1.0 times and mixed with Na—Y type zeolite by stirring for 1 minute in a rotation/revolution mixer, followed by propylene CVD at 700° C. for 2 hours and heat treatment at 900° C. for 3 hours. rice field. No. 35; Starch was used in an amount of 1.5 times and mixed with Na—Y type zeolite by stirring for 1 minute in a rotation/revolution mixer, followed by propylene CVD at 700° C. for 2 hours and heat treatment at 900° C. for 3 hours. rice field. No.
  • Starch was used in an amount of 2.0 times and mixed with Na—Y type zeolite by stirring for 1 minute in a rotation/revolution mixer, followed by propylene CVD at 700° C. for 2 hours and heat treatment at 900° C. for 3 hours. rice field.
  • the sample processing conditions are as follows. No. 13: After polymerization for 3 hours using twice the amount of DVB (divinylbenzene), propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 34; Starch was used in an amount of 1.0 times and mixed with Na—Y type zeolite by stirring for 1 minute in a rotation/revolution mixer, followed by propylene CVD at 700° C. for 2 hours and heat treatment at 900° C. for 3 hours. rice field. No. 35; Starch was used in an amount of 1.5 times and mixed with Na—Y type zeolite by stirring for 1 minute in a rotation/revolution mixer, followed by propylene CVD at 700° C.
  • Example 13 ⁇ Preparation of Pellets and CVD> Weighed undried zeolite equivalent to 5 g of Na—Y zeolite after drying (the water content of the zeolite is approximately 20 wt %). Double the amount of starch (approximately 5.61 g) to fill the pore volume was added to the mortar and mixed with a pestle for 30 minutes. Here, the density of starch was 1.54 g/cm3, the same as that of ⁇ -D-glucose. • 0.2371 g of a mixture of Na-Y type zeolite and starch was weighed without drying. The dry weight of the Na—Y type zeolite contained was 0.1 g.
  • HF-treated sample no. 67 to No. 71 - Put a stirrer in a Teflon (registered trademark) container, add an appropriate amount (10 g) of HF per pellet, seal with a plastic film and a rubber band, and leave for 48 hours. - The pellet was transferred to water and left for 24 hours. - Thickness and weight were measured. ⁇ After observing the weight change of pellets by heating with a hot plate and vacuum heating drying with a mantle heater, XRD measurement was performed. Sample no. 73 to No. 77 - Pulverize the pellets, add an appropriate amount (10 g) of HF, seal with a plastic film and a rubber band, and stir with a stirrer for 5 hours. - After the HF treatment, vacuum filtration was performed using a plastic filtration device. ⁇ After filtration, the sample was transferred to a petri dish and vacuum-heated and dried in a vacuum drying cabinet. ⁇ XRD measurement was performed.
  • Example 14 Preparation of Pellets and CVD> Pellets were prepared and CVD treated as described above. Table 12 below shows the changes in pellets before and after CVD treatment.
  • Example 15 ⁇ Study of drying conditions for pellets> Pellets were prepared and dried as described above. Table 13 below shows the weight of the pellets when heated and the water content per 1 g of the pellets.
  • each step is as follows.
  • Step 0 Weight after HF treatment
  • Step 1 Heat up to 50°C over 2 hours using a hot plate
  • Step 2 Hold 50°C for 2 hours
  • Step 3 Heat up from 50°C to 70°C at 1°C/min 4
  • Step 5 Hold the temperature at 70°C for 3 hours
  • Step 5 Heat up to 100°C at 1°C/min
  • Step 6 Hold the temperature at 100°C for 2 hours
  • Step 7 Vacuum heat dry using a mantle heater Heat up to 100°C at 1°C/min
  • moisture (mg) per 1 g of pellet based on step 7 held for 6 hours (weight of each step (g) - weight of step 7 (g)) x 1000 / weight of step 7 (g)
  • Example 16 ⁇ Study of drying conditions for pellets> The drying conditions for the pellets obtained above were investigated, and the results are shown in FIG.
  • Example 17 ⁇ Study of drying conditions for pellets> Pellets were prepared and dried as described above. Table 15 below shows the thickness, weight, volume and density of the pellets before and after CVD, after HF treatment, and after vacuum heat drying.
  • the carbon yield of ZTC after HF treatment is shown in Table 16 below.
  • the weight % of ZTC is No. No. 67 to 71 are calculated from weight change before HF treatment and after vacuum heating drying. 73 to 77 were calculated from weight changes before and after HF.
  • the pellet samples prepared above were subjected to the following treatment conditions. No. 66; ZTC, after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 67 to No. 69; The same sample as in Table 15 above was used for each sample.
  • the pellet samples prepared above were subjected to the following treatment conditions.
  • No. 73 to No. All 77 samples were subjected to XRD measurement after crushing pellets and then HF treatment.
  • No. 73 to No. 77 The same sample as in Table 15 above was used for each sample.
  • the pellet samples prepared above were subjected to the following treatment conditions. No. 66; ZTC, after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 67 to No. 69; The same sample as in Table 15 above was used for each sample.
  • the pellet samples prepared above were subjected to the following treatment conditions.
  • No. 73 to No. All 77 samples were subjected to XRD measurement after crushing pellets and then HF treatment.
  • No. 73 to No. 77 The same sample as in Table 15 above was used for each sample.
  • the pellet samples prepared above were subjected to the following treatment conditions. No. 66; ZTC, after polymerization using 1.05 times the amount of DVB (divinylbenzene), propylene CVD was performed at 700°C for 2 hours, and heat treatment was performed at 900°C for 3 hours. No. 67 to No. 69; The same sample as in Table 15 above was used for each sample.
  • the pellet samples prepared above were subjected to the following treatment conditions.
  • No. 73 to No. All 77 samples were subjected to XRD measurement after crushing pellets and then HF treatment.
  • No. 73 to No. 77 The same sample as in Table 15 above was used for each sample.
  • No. 67 to No. No. 69 has a broad peak in the vicinity of 10° to 20° and sharp peaks in the vicinity of 39° and 45°. 73 to No. Not found in 77. Therefore, these peaks are considered to originate from the surface of the pellet. A faint white substance was visually confirmed on the surface of the pellet after the HF treatment. No. 73 to No. No. 77 has a sharp peak at 18°. 67 to No. Not found in 69. Therefore, it can be seen that this peak is different from impurities on the pellet surface.
  • the broad peaks around 25° and 43° are derived from carbon (002) and (10), and are due to carbon formed between zeolite particles.
  • the synthesis of ZTC was carried out as follows. 1. About 500 mg of NaY-type zeolite was previously dried by heating under reduced pressure at 150° C., and the dry weight of the NaY-type zeolite was measured. 2. Sugar was weighed and mixed with NaY zeolite at 2000 rpm for 1 minute. 3. A mixed powder of sugar and NaY zeolite was placed in an electric furnace, heated to 700°C at a rate of 10°C/min, and then subjected to propylene CVD (Chemical Vapor Deposition) for 2 hours, followed by 5°C/min. The temperature was raised to 900° C. in minutes and the heat treatment was performed for 3 hours. 4. The NaY-type zeolite and the carbon composite were stirred in 20 g of hydrofluoric acid for 5 hours, filtered, and dried by heating under reduced pressure at 150° C. for 6 hours.
  • propylene CVD Chemical Vapor Deposition
  • the obtained ZTC composite was subjected to X-ray diffraction (XRD) measurement, nitrogen adsorption/desorption measurement, simultaneous thermogravimetry and differential thermal measurement (TG-DTA), transmission electron microscope (TEM) observation and Raman spectroscopy, as described later. Analyzed by analysis.
  • XRD X-ray diffraction
  • TG-DTA simultaneous thermogravimetry and differential thermal measurement
  • TEM transmission electron microscope
  • Raman spectroscopy Raman spectroscopy
  • Example 18 ⁇ Results of NaY/ ⁇ -D-glucose-P7(2)-H9(3) system> The following are the analysis results of the synthesized samples.
  • “NaY/ ⁇ -D-glucose-P7(2)-H9(3)” uses Na-Y type zeolite and ⁇ -D-glucose, and propylene CVD was obtained by performing heat treatment at 700° C. for 2 hours and heat treatment at 900° C. for 3 hours.
  • the sample description is described as " ⁇ -Glu-(X)-P" (here, X in the description on the left indicates the amount of sugar).
  • the notation of the sample may be expressed by an abbreviated notation as a notation indicating the sugar content.
  • FIG. 44 shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of ⁇ -D-glucose used for Na—Y type zeolite, and the horizontal axis (X axis) is The diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray is shown, and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • FIG. 45 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. From this result, the (002) peak could not be confirmed.
  • FIG. 46 shows the results of measuring the nitrogen adsorption-desorption isotherm of the obtained ZTC sample, the horizontal axis (X-axis) is P / P0, and the vertical axis (Y-axis) is the adsorption capacity (Volume adsorbed). (The unit is cm3 (STP)/g).
  • the sample denoted by P was synthesized only by propylene CVD without using ⁇ -D-glucose at all.
  • FIG. 47 shows the measurement results of the pore size distribution by the DFT method for the obtained ZTC sample, the horizontal axis (X axis) is the pore diameter (unit: nm), and the vertical axis (Y axis) is the incremental pore volume in cm3/g.
  • FIG. 48 shows the nitrogen adsorption and desorption measurement results (BET specific surface area) of the obtained ZTC sample and the TG measurement results of the zeolite / carbon composite, and the horizontal axis (X axis) is the amount of ⁇ -D-glucose.
  • Carbon fraction unit: g/gNAY
  • BET surface area unit: m2/g
  • Figures 49-1 and 49-2 show ⁇ -Glu(1.0)-P (using 1.0 times the amount of ⁇ -D-glucose) and ⁇ -Glu(1.4)-P ( ⁇ - A TEM (Transmission Electron Microscope) photograph is shown for the ZTC sample shown in (using 1.4 times the amount of D-glucose).
  • a white bar in the figure indicates a length of 20 nm.
  • “-P" in the sample display it was obtained by performing propylene CVD. No carbon is confirmed on the outer surface in FIG. 49-2.
  • samples of ⁇ -Glu(0.6)-P to ⁇ -Glu(1.4)-P have a sufficient BET specific surface area of 3670 m2/g to 3950 m2/g, and the pore volume of micropores is also high. I know you got it.
  • the samples of ⁇ -Glu(0.8)-P to ⁇ -Glu(1.4)-P had a high BET specific surface area of 3730 m2/g or more.
  • Example 19 Results of XRD measurement of NaY/sugar-P7(2)-H9(3) system>
  • the left side of FIG. 51 shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of ⁇ -D-glucose used for Na—Y type zeolite, the horizontal axis (X axis) is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray, and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • the right side of FIG. 51 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 52 shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-xylose used for Na—Y type zeolite, and the horizontal axis (X axis) is CuK ⁇
  • the diffraction angle 2 ⁇ (unit: degree) of the line is the intensity (the unit is arbitrary) on the vertical axis (Y-axis).
  • the right side of FIG. 52 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 53 shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-fructose obtained by pulverizing Na—Y type zeolite, and horizontal
  • the axis (X-axis) is the diffraction angle 2 ⁇ (unit: degree) of CuK ⁇ rays
  • the vertical axis (Y-axis) is intensity (unit: arbitrary).
  • the right side of FIG. 53 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 54 shows the results measured by the XRD device for ZTC samples obtained by changing the amount (double amount) of D-sucrose obtained by pulverizing Na—Y type zeolite.
  • the axis (X-axis) is the diffraction angle 2 ⁇ (unit: degree) of CuK ⁇ rays, and the vertical axis (Y-axis) is intensity (unit: arbitrary).
  • the right side of FIG. 54 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 55 shows the results of nitrogen adsorption/desorption isotherms measured for ZTC samples obtained using various sugars shown in the figure, where the horizontal axis (X axis) is P/P0 and the vertical axis (Y axis) is Volume adsorbed (unit: cm3(STP)/g). Also, as indicated by "-P” in the sample display, it was obtained by performing propylene CVD.
  • FIG. 56 shows the measurement results of the pore diameter distribution by the DFT method for ZTC samples obtained using various sugars shown in the figure, and the horizontal axis (X-axis) is the pore diameter (unit: nm). and the vertical axis (Y-axis) is the incremental pore volume (in cm3/g).
  • Table 18 shows that the use of 1.0 times the sugar yields high surface area ZTC. It was also found that fructose has a slightly inferior ZTC surface area compared to other sugars. The reason for this is presumed to be that the melting point of fructose is low.
  • Figures 57-1 to 57-7 show ⁇ -D-glucose, ⁇ -D-glucose, D-xylose, D-fructose, ground D-fructose, D-sucrose, and ground D-sucrose.
  • SEM Sccanning Electron Microscope
  • FIG. 58 shows the results of Raman spectroscopic analysis of a ZTC sample synthesized using ⁇ -D-glucose.
  • FIG. 59 shows the results of Raman spectroscopic analysis of a ZTC sample synthesized using 1.0 times the sugar shown in the figure.
  • Example 20 ⁇ Comparison of sugar before and after pulverization (XRD measurement results)>
  • the left side of FIG. 60-1 shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of D-fructose used before pulverization for Na—Y type zeolite, and the horizontal axis ( The X-axis) is the diffraction angle 2 ⁇ (unit: degree) of CuK ⁇ rays, and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • the right side of FIG. 60-1 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 60-2 the results of measurement by an XRD device for a ZTC sample obtained using pre-pulverized D-fructose are shown. Same as -1.
  • the right side of FIG. 60-2 is similar to the right side of FIG. 60-1.
  • the results of a sample treated with 1.0 times the amount of ⁇ -D-glucose are also shown.
  • FIG. 61-1 shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of D-sucrose used before pulverization for Na—Y type zeolite, and the horizontal axis ( The X-axis) is the diffraction angle 2 ⁇ (unit: degree) of CuK ⁇ rays, and the vertical axis (Y-axis) is intensity (arbitrary unit).
  • the right side of FIG. 60-1 is an enlarged view showing the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 60-1 shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of D-sucrose used before pulverization for Na—Y type zeolite, and the horizontal axis ( The X-axis) is the diffraction angle 2 ⁇ (unit: degree) of CuK ⁇ rays, and the vertical
  • FIG. 60-2 the results of measurement by an XRD device for a ZTC sample obtained using pre-ground D-sucrose are shown. Same as -1.
  • the right side of FIG. 60-2 is similar to the right side of FIG. 60-1.
  • the results of a sample treated with 1.0 times the amount of ⁇ -D-glucose are also shown.
  • FIG. 62 shows the nitrogen adsorption and desorption isothermal values of ZTC samples obtained by using crushed fructose (shown as “after crushing") and fructose without crushing treatment (shown as “uncrushed”) for Na-Y zeolite.
  • the lines indicate the measured results, the horizontal axis (X-axis) is P/P0, and the vertical axis (Y-axis) is Volume adsorbed (unit: cm3(STP)/g).
  • X-axis is P/P0
  • Y-axis volume adsorbed (unit: cm3(STP)/g).
  • 63 shows the results of ZTC samples obtained by using crushed fructose (shown as “after crushing”) and fructose without crushing (shown as “uncrushed”) for Na-Y zeolite.
  • the measurement results of the pore size distribution are shown, the horizontal axis (X-axis) is the pore diameter (unit: nm), and the vertical axis (Y-axis) is the incremental pore volume (unit: cm / g).
  • X-axis is the pore diameter (unit: nm)
  • Y-axis is the incremental pore volume (unit: cm / g).
  • Na-Y type zeolite was used in which the amount of pulverized D-sucrose (indicated as "after pulverization") and D-sucrose that was not pulverized (indicated as “unpulverized”) was changed.
  • the results of nitrogen adsorption and desorption isotherms measured for the ZTC sample obtained by the above are shown, the horizontal axis (X axis) is P/P0, and the vertical axis (Y axis) is the adsorption capacity (Volume adsorbed) (unit: cm STP)/g).
  • the results of a sample treated with 1.0 times the amount of ⁇ -D-glucose are also shown.
  • Example 21 ⁇ TG measurement result of mixed powder of 1.0 times the amount of NaY/sugar> ⁇ Results of the ⁇ -D-glucose system (temperature rise at 10 ° C./min under nitrogen atmosphere) 66 to 68 are analyzed by thermogravimetric/differential thermal simultaneous measurement (TG-DTA).
  • TG-DTA thermogravimetric/differential thermal simultaneous measurement
  • NaY zeolite and ⁇ -D-glucose were used in FIG. 66, a mixture of NaY zeolite and ⁇ -D-glucose in FIG. 67, and a NaY zeolite and ⁇ -D-glucose sample in FIG. From the results of FIG.
  • thermogravimetry and differential thermometry are as follows, and the same applies hereinafter.
  • Measuring device DTG-60H (Shimadzu Corporation) The nitrogen flow rate was 100 mL/min.
  • Temperature program After holding at room temperature for 30 minutes, the temperature is raised to 500°C at 10°C/min. When the temperature reaches 500°C, it is held for 1 hour and then allowed to cool to room temperature.
  • sugar and NaY-type zeolite were measured respectively, in addition to these, an exothermic peak based on sugar adsorption was created with a Gaussian function, and fitting was performed with sugar, NaY-type zeolite, and the Gaussian function. A method of matching to the DTA pattern was taken.
  • FIG. 69 shows the results of measurement of nitrogen adsorption and desorption isotherms for samples treated with a mixture of NaY-type zeolite and ⁇ -D-glucose at 200° C., 300° C., and 400° C.
  • the horizontal axis (X-axis) is It is P/P0
  • the vertical axis (Y-axis) is the adsorption capacity (Volume adsorbed) (unit: cm3 (STP)/g).
  • STP cm3
  • Figures 70 to 74-2 were analyzed by simultaneous thermogravimetric and differential thermal measurement (TG-DTA).
  • TG-DTA thermogravimetric and differential thermal measurement
  • FIG. 70 sugar only
  • FIG. 71 NaY-type zeolite, ⁇ -D-glucose, and a mixture of NaY-type zeolite and ⁇ -D-glucose (the amount of ⁇ -D-glucose used is 1.0 times).
  • FIGS. 70 to 74-2 reveal the following. ⁇ Adsorption to NaY-type zeolite begins immediately after the sugar melts. ⁇ Sucrose before pulverization is difficult to adsorb to NaY zeolite. ⁇ Since fructose has a low melting point, it can be seen that melting occurs before adsorption. Therefore, even if ZTC is synthesized using crushed fructose, the effect is small. ⁇ In any case, it is presumed that the adsorption of sugar to NaY-type zeolite is completed at 300°C or lower.
  • the mixed powder calculated from the dry weight of Na—Y type zeolite, the weight of the mixed powder after heating, and the surface area of Na—Y type zeolite (700 m / g)
  • the theoretical surface area of is 533-564 m2/g. Since the actual surface area is 50 m 2 /g or less, it can be seen that sugar is adsorbed on Na—Y zeolite at 300° C. or less.
  • ZTC samples were synthesized as follows.
  • the sugars used were starch and cellulose polysaccharides.
  • the same weight as 1.0 times the amount of ⁇ -D-glucose was defined as 1.0 times the amount.
  • the synthetic formulation of the ZTC sample is the following procedure. 1. About 500 mg of NaY-type zeolite was previously dried by heating under reduced pressure at 150° C., and the dry weight of the NaY-type zeolite was measured. 2. The sugar to be used was weighed and mixed with the NaY zeolite. Mixing was performed at 2000 rpm for 1 min. 3. A mixed powder of sugar and NaY zeolite is placed in an electric furnace, the temperature is raised to 700°C at 10°C/min, propylene CVD is performed for 2 hours, and then the temperature is raised to 900°C at 5°C/min and heat treated for 3 hours. did. 4. The NaY-type zeolite/carbon composite was stirred in 20 g of hydrofluoric acid for 5 hours, filtered, and dried by heating at 150° C. for 6 hours under reduced pressure.
  • the obtained sample was analyzed by X-ray diffraction (XRD) measurement, nitrogen adsorption/desorption measurement, simultaneous thermogravimetry and differential thermal measurement (TG-DTA), and scanning electron microscope (SEM) observation, as described later.
  • XRD X-ray diffraction
  • TG-DTA simultaneous thermogravimetry and differential thermal measurement
  • SEM scanning electron microscope
  • FIGS. 76-1 and 76-2 show SEM (scanning electron microscope) photographs of starch samples
  • FIGS. 77-1 and 77-2 show cellulose samples.
  • the scale bar (white bar) in the figure indicates the length shown in the photograph. From FIGS. 76-1 and 76-2, it can be seen that starch is fine particles of about 10 ⁇ m. Also, from FIGS. 77-1 and 77-2, it can be seen that the cellulose has an elongated shape of about 10 ⁇ 200 ⁇ m.
  • Figures 78 to 85 shown below also show the results of ZTC synthesized using 1-fold amount of glucose + propylene CVD as a comparative sample.
  • FIG. 78 shows the results measured by an XRD device for ZTC samples obtained by changing the amount (double amount) of S (sugar: starch) used for Na—Y type zeolite, the horizontal axis (X axis) is the diffraction angle 2 ⁇ (unit: degree) of the CuK ⁇ ray, and the vertical axis (Y-axis) is the intensity (arbitrary unit).
  • FIG. 79 is an enlarged view of FIG. 78 so as to show the measurement results when the diffraction angle 2 ⁇ is around 6.4°. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown. From this result, the (002) peak could not be confirmed.
  • FIG. 80 shows the results of measuring the nitrogen adsorption/desorption isotherm of the ZTC sample obtained using S (sugar: starch), where the horizontal axis (X axis) is P/P0 and the vertical axis (Y axis) is Volume adsorbed (unit: cm3(STP)/g). As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 81 shows the measurement results of the pore size distribution by the DFT method for the ZTC sample obtained using S (sugar: starch), and the horizontal axis (X axis) is the pore diameter (unit: nm). and the vertical axis (Y-axis) is the incremental pore volume (in cm3/g). As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 82 shows the results of measurement by an XRD device for ZTC samples obtained by changing the amount (double amount) of C (cellulose) used for Na—Y type zeolite, and the horizontal axis (X axis) is CuK ⁇
  • the diffraction angle 2 ⁇ (unit: degree) of the line is the intensity (the unit is arbitrary) on the vertical axis (Y-axis).
  • FIG. 83 is an enlarged view of FIG. 82 so as to show the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • 1.0 times the amount of ⁇ -D-glucose is also shown. From this result, the (002) peak could not be confirmed. Moreover, the peak intensity peaked out at 1.4 times the amount or more.
  • FIG. 84 shows the results of measuring the nitrogen adsorption/desorption isotherm for the ZTC sample obtained using C (cellulose), the horizontal axis (X axis) being P/P0, and the vertical axis (Y axis). is the volume adsorbed (unit: cm3(STP)/g). As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown.
  • FIG. 85 shows the measurement results of the pore diameter distribution by the DFT method for the ZTC sample obtained using C (cellulose), and the horizontal axis (X axis) is the pore diameter (unit: nm). , the vertical axis (Y-axis) is the incremental pore volume in cm3/g. As a reference, 1.0 times the amount of ⁇ -D-glucose is also shown. At 1.4 times the amount or more, the peak intensity peaked out.
  • the nitrogen adsorption and desorption measurement results (BET specific surface area) of each ZTC sample obtained above and the TG measurement results (Carbon fraction (g/g)) of the zeolite/carbon composite are shown in FIG. , for cellulosics are shown in FIG.
  • the horizontal axis (X-axis) is the amount of starch or cellulose
  • the left side of the vertical axis (Y-axis) is the Carbon fraction (unit: g/gNAY)
  • the right side is the BET surface area (unit: m2/g). is the incremental pore volume in cm3/g.
  • the conditions for synthesizing samples were as follows: Na—Y type zeolite was treated with propylene CVD at 700° C. for 2 hours while varying the amount of starch or cellulose, followed by heat treatment at 900° C. for 3 hours.
  • Example 24 ⁇ TG measurement result of mixed powder of 1.0 times the amount of NaY/sugar> 89 to 91 are analyzed by thermogravimetric/differential thermal simultaneous measurement (TG-DTA).
  • TG-DTA thermogravimetric/differential thermal simultaneous measurement
  • FIG. 89 NaY zeolite, starch and cellulose
  • FIG. 90 NaY zeolite, starch, a mixture of NaY zeolite and starch (the amount of starch used is 1.0 times)
  • Samples of zeolite, cellulose, and a mixture of NaY-type zeolite and cellulose were used. From the results of FIG.
  • the experimental results and the summed results agree well up to about 350° C., supporting the correct assumption that starch is decomposed and adsorbed to zeolite at 350° C. or lower. Also, from the results of FIG. 91, the experimental results and the fitting do not match well, indicating that unlike starch, cellulose is difficult to decompose into sugar.
  • FIG. 92 shows the results of measurement of nitrogen adsorption and desorption isotherms for samples treated with a mixture of NaY zeolite and 1.0 times the amount of S (starch) at 300° C., 350° C., and 400° C.
  • the horizontal axis ( The X-axis) is P/P0
  • the vertical axis (Y-axis) is the volume adsorbed (unit: cm3 (STP)/g).
  • STP cm3
  • the cellulose is as follows. In the synthesis of ZTC using cellulose, it is speculated that cellulose decomposes (probably to glucose) at 400° C. and adsorbs within the zeolite pores. - When cellulose is used, it is thought that the necessary amount of carbon source is filled inside the zeolite pores by using 1.4 times the amount. However, it can be seen that the use of more than 1.0 times the amount of cellulose can deposit surface area since cellulose-derived degradation products are deposited on the ZTC particle surface.
  • sugars used were ⁇ -D-glucose, ⁇ -D-glucose, D-xylose, D-sucrose and D-fructose.
  • a volume of sugar equivalent to the total pore volume (0.32 mL) of the zeolite used was defined as 1.0 times the volume.
  • the same weight as 1.0 times the amount of ⁇ -D-glucose of starch and cellulose was defined as 1.0 times the amount.
  • the synthesis of ZTC was carried out as follows. 1. The synthesis was performed by scaling up the amount of NaY-type zeolite used from about 500 mg to about 15 g. For NaY-type zeolite, a comparison was made between dried and undried conditions. When the zeolite was not dried, the dry weight of the zeolite was calculated using the moisture content when the zeolite was dried.
  • FIG. 93 shows the results measured by an XRD device for ZTC samples obtained by changing the drying treatment method of S (starch) for Na-Y type zeolite, and the horizontal axis (X axis) is the rotation of CuK ⁇ rays.
  • the angle 2 ⁇ (unit: degree) is used, and the vertical axis (Y-axis) is intensity (unit: arbitrary).
  • FIG. 94 is an enlarged view of FIG. 93 so as to show the measurement results when the diffraction angle 2 ⁇ is around 6.4°.
  • Example 26 ⁇ TG measurement result of mixed powder of 1.0 times the amount of NaY/sugar> 95 to 97 are analyzed by thermogravimetric/differential thermal simultaneous measurement (TG-DTA). 89 to 91 are analyzed by thermogravimetric/differential thermal simultaneous measurement (TG-DTA).
  • TG-DTA thermogravimetric/differential thermal simultaneous measurement
  • FIG. 95 NaY-type zeolite, starch and cellulose
  • FIG. 96 a sample of NaY-type zeolite, starch, a mixture of NaY-type zeolite and starch (the amount of starch used is 1.0 times)
  • FIG. 95 NaY-type zeolite, starch, a mixture of NaY-type zeolite and starch (the amount of starch used is 1.0 times)
  • FIG. 98 shows the results of measurement of nitrogen adsorption and desorption isotherms for samples treated with a mixture of NaY zeolite and 1.0 times the amount of S (starch) at 300° C., 350° C., and 400° C.
  • the horizontal axis ( The X-axis) is P/P0
  • the vertical axis (Y-axis) is the volume adsorbed (unit: cm3 (STP)/g).
  • STP cm3
  • FIG. 99 shows the results of measurement of nitrogen adsorption and desorption isotherms for samples treated with a mixture of NaY-type zeolite and 1.0 times the amount of C (cellulose) at 350° C., 400° C., and 450° C.
  • the horizontal axis ( The X axis) is P/P0
  • the vertical axis (Y axis) is the volume adsorbed (unit: cm3(STP)/g).
  • the results obtained with Na—Y type zeolite are also shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

従来の炭素材料の原料をグルコースなどの糖類、DVBなどの架橋性炭化水素を炭素源材料とし、かつ、ZTC材料を簡便に製造する方法、ZTCを含むペレットとその製造方法を提供する。 ゼオライトの表面および空孔内部に糖類等を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法を用いる。

Description

炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法
 本発明は、内部に空孔を有し、分子レベルの3次元構造規則性を持った炭素材料であるゼオライト鋳型炭素(Zeolite Templated Carbon、以下、略称として「ZTC」ということがある。)材料を製造する新規な方法に関するものである。さらに詳しくは、グルコースなどの糖類、ジビニルベンゼン(以下、「DVB」ということがある。)などの架橋性炭化水素等の炭素源となる材料より、実用的な方法により比表面積が大きいZTCを製造する方法、さらにこのZTCを含むペレットとその製造方法に関する。
 ゼオライトを鋳型として製造されるZTCは、その比表面積の高さから種々の用途に使える。この中で、まずKNOXらが多孔質ガラスやシリカゲルによる鋳型法によりクロマトグラフ用の炭素充填剤を合成した(例えば特許文献1参照)。
 その後も種々の検討がされており、Y型ゼオライトを鋳型として多孔質炭素材料を製造する試みがなされている(例えば特許文献2、非特許文献1参照)。
 特許文献2では、Na-Y型ゼオライトを用いて、ナノオーダーの3次元長周期構造規則性を有する多孔質炭素材料を合成したことが開示されている。
 その合成法としては、乾燥Na-Y型ゼオライト粉末にフルフリルアルコールを含浸させ、150℃で熱処理してゼオライトの空孔中に含浸させたフルフリルアルコールを重合させた。得られたゼオライト-フルフリルアルコール重合体の複合体を炭化させ、キャリアガスにN2ガスを使用してプロピレンを反応管に流し、700℃で4時間気相炭化を行なって、ゼオライト-フルフリルアルコール炭化物の複合体の空孔内に炭素を堆積させ、N2ガス気流中で熱処理を行ない、ゼオライト-炭素複合体を得た。さらに生成したゼオライト-炭素複合体をフッ化水素酸および塩酸で処理してゼオライトを溶解除去し、炭素のみ取出すというものであった。
 この方法では、粉末X線回折装置による測定では炭素に特有の2θが25°(CuKα)付近の002面からの回折は認められず、代わりに6°付近に鋭いピークが観察され、13C-固体-NMRにて鎖状炭素化合物の存在を示す10から50ppm付近のピークは認められず、2次元の構造規則性を持たない炭素材料であることが分かっている。得られた炭素材料の空孔を調べると、BET比表面積3600m2/g、ミクロ孔の占める体積が1.52cm3/gでメソ孔の占める体積が0.05cm3/gというものであった。
 また非特許文献1では以下の工程が開示されている。
1)PFA/ゼオライト複合体の調製として、Y型ゼオライトを乾燥し、フルフリルアルコールを含浸させ、メシチレンで洗浄後、フルフリルアルコールを重合して得る。
2)炭素/ゼオライト複合体の調製として、PFAを700℃で炭素化し、プロピレンを700℃で流し、熱処理してて炭素/ゼオライト複合体を得る。
3)ZTCの調製として、炭素/ゼオライト複合体をHF(フッ化水素)でゼオライトを溶解処理し、ろ過洗浄、真空乾燥してZTCを得る。
 これらの方法はZTC合成法として標準的な方法と考えられるが、改善すべき点として以下の点が挙げられる。
(1)ゼオライト粉末にフルフリルアルコールを含浸させ、フルフリルアルコールを重合させているが、フルフリルアルコールの経済性を鑑みると、さらに実用的な材料が望まれる。
(2)ゼオライト粉末にフルフリルアルコールを含浸させた後、高価なメシチレンで洗浄するのは実用的とは言えず、さらに実用的な方法が望まれる。
(3)ゼオライト粉末にフルフリルアルコールを含浸させ、またメシチレン洗浄した場合にはメシチレンも、残余のフルフリルアルコールやメシチレンは廃液となる。この廃液処理に工数及びコストがかかることになる。
(4)PFA/ゼオライト複合体の炭素化後、プロピレン等の重合性モノマーを流し加熱して炭素/ゼオライト複合体を得るため、少なくとも2度の重合反応が必要である。さらに炭素/ゼオライト複合体をHFでゼオライトを溶解処理する必要があるため、以上の各々の工程の制御負担が必要となる。
 そこで、上記を例とする従来の方法では用いる材料コストや、廃液処理等を要する処理コストの低減が求められており、ZTCの合成の工程や、用いる原材料を実用的なものとする要望が高まっていた。
米国特許第4263268号明細書 特開2003-206112号公報
京谷隆ら、鋳型法によるナノカーボンの合成法、炭素(TANSO)、2008、No.2351,307-315
 本発明の目的は、実用的な方法によりゼオライト鋳型炭素(ZTC)材料を製造する方法、さらにこのZTCを含むペレットとその製造方法を提供することにある。さらに詳しくは、本発明の目的は、従来の炭素材料の原料をグルコースなどの糖類、DVBなどの架橋性炭化水素を炭素源材料とし、かつ、ZTC材料を簡便に製造する方法、ZTCを含むペレットとその製造方法を提供することにある。
 本発明者らは上記状況を鑑み、細孔炭素材料の最適な合成条件について鋭意検討を行った結果、次のことを見出した。
(1)従来より用いられているゼオライトを鋳型に使用すること。
(2)最初の処理としてゼオライトの表面およびゼオライトの細孔の空孔内部にグルコース等の有機物(糖類)を導入、吸着させ、これを加熱することによって該有機物を炭化すること。
(3)有機物が炭化された炭素/ゼオライト複合体1に、必要に応じて、プロピレンを流し、熱処理して炭素/ゼオライト複合体2を得る。
(4)その後、次の処理として炭化された有機物の構造を維持したまま鋳型であるゼオライトを除去することで、鋳型に用いるゼオライトの空孔の形状を反映したナノレベルの構造規則性とゼオライトの形状を反映した空孔を持ち、かつ、炭素の二次元積層規則性を示さないゼオライト鋳型炭素(ZTC)材料を製造できること。
(5)また、上記炭素/ゼオライト複合体1を得る際に、糖類に代えてDVBなどの架橋性炭化水素を炭素源とし、その後に炭素/ゼオライト複合体2を得ることで、最終的にゼオライト鋳型炭素(ZTC)材料を製造できること。
以上を見出し、本発明を完成するに至った。
 すなわち本発明は以下の発明に係る。
[1]ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法。
[2]ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法。
[3]糖類が、単糖類、二糖類又は多糖類である、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[4]糖類が、グルコース、キシロース、フルクトース、スクロース、セルロース又は澱粉である、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[5]ゼオライトが、Y型ゼオライトまたはX型ゼオライトである、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[6]酸によりゼオライトを溶解する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[7]鋳型としてのゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、さらに不飽和炭化水素を導入してこれを気相炭化させ、前記ゼオライトを溶解除去する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[8]鋳型としてのゼオライトの表面および空孔内部に架橋性炭化水素を導入し、これに不飽和炭化水素を導入し重合させた後、前記ゼオライトを溶解除去する、[2]に記載のゼオライト鋳型炭素材料の製造方法。
[9]容器にゼオライトを入れた後に乾燥し、前記容器に糖類を加えて、乾燥後のゼオライトの表面および空孔内部に糖類を導入する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[10]80℃~200℃の温度で加熱することによって前記糖類を炭化する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[11]炭化された糖類を有する前記ゼオライトに、重合性炭化水素を導入し、600℃~900℃の温度で気相炭化する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[12]炭化された糖類と鋳型としてのゼオライトに酸を加え、前記ゼオライトを溶解除去する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[13]炭化された糖類を有する前記ゼオライトに、重合性炭化水素を導入し、気相炭化された炭化物と鋳型としてのゼオライトに、酸を加え、前記ゼオライトを溶解除去する、[1]に記載のゼオライト鋳型炭素材料の製造方法。
[14]ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化される、ゼオライト鋳型炭素材料を含むペレット。
[15]ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化される、ゼオライト鋳型炭素材料を含むペレット。
[16]ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、[14]に記載のゼオライト鋳型炭素材料を含むペレットの製造方法。
[17]ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、ゼオライト鋳型炭素材料を含むペレットの製造方法。
 以下、本発明をさらに詳しく説明する。
<ゼオライト鋳型炭素材料の製造方法>
 本発明の製造方法は、ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法に係る。
 さらに本発明の製造方法は、糖類が、単糖類、二糖類又は多糖類である、上記のゼオライト鋳型炭素材料の製造方法に係る。
 ここで、本発明の製造方法に用いられる糖類としては、単糖類、二糖類や、三糖以上のオリゴ糖や多糖類が挙げられる。なお以降は、オリゴ糖や多糖類を併せて多糖類ということがある。
 糖を構成する炭素の数としては、三炭糖(トリオース)、四炭糖(テトラオース)、五炭糖(ペントース)、六炭糖(ヘキソース)、七炭糖(ヘプトース)などがあり、この中でも、六炭糖(ヘキソース)が好ましく用いられる。
 本発明の製造方法は、ゼオライトの表面および空孔内部に導入される糖類が単糖類である、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられる糖類の内、単糖類としては下記の構造に示す通り種々あり、これらを用いることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 例えば六炭糖(ヘキソース)を具体的に例示すれば、プシコース(アルロース)、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロースや、キシロース、N-アセチルグルコサミン、グルコサミン、グルコサミン塩酸塩などが挙げられる。この中でも、フルクトース、グルコース、キシロースが好ましく用いられる。これら単糖類は、例えばグルコースを例とした場合に、α-D-グルコース、β-D-グルコースなど、構造上の相違があっても使用することができる。
 本発明の製造方法は、ゼオライトの表面および空孔内部に導入される糖類が二糖類である、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられる糖類の内、二糖類としては下記の構造に示す通り種々あり、これらを用いることができる。
Figure JPOXMLDOC01-appb-C000004
 例えばスクロース、ラクトース、マルトース、トレハロース、ツラノース、セロビオースなどが挙げられる。この中でも、スクロースが好ましく用いられる。
 本発明の製造方法は、多糖類が澱粉(デンプン)またはセルロースである、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられる糖類の内、多糖類としては下記の構造に示す通り種々あり、これらを用いることができる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 例えば三糖類を具体的に例示すれば、ラフィノース、メレジトース、マルトトリオースが挙げられる。四糖類を具体的に例示すれば、アカルボース、スタキオースが挙げられる。その他のオリゴ糖を具体的に例示すれば、フラクトオリゴ糖 (FOS)、ガラクトオリゴ糖 (GOS)、マンナンオリゴ糖 (MOS)、乳糖果糖オリゴ糖 (Lactosucrose) が挙げられる。多糖類を具体的に例示すれば、グルコース由来のグリコーゲン、澱粉(アミロース - アミロペクチン)、セルロース、デキストリン、グルカン(β1,3-グルカン)、フルクトース由来のフルクタン(イヌリン - レバンβ2→6)、N-アセチルグルコサミン由来のキチン、キトサンが挙げられる。この中でも、澱粉、セルロースが好ましく用いられる。
 また本発明は、ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法に係る。
 ここで架橋性炭化水素としては、炭素-炭素二重結合(C=C)などのような重合性基を複数有する化合物であって、例えばジビニルベンゼン(DVB)のような芳香族系の炭化水素や、1,3-ブタジエン(C=C-C=C)のような炭素数4~20の非環式炭化水素などが挙げられる。
 本発明の製造方法は、ゼオライトが、Y型ゼオライトまたはX型ゼオライトである、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられるゼオライトとしては、合成ゼオライト、天然ゼオライトのいずれも使用でき、その中でも細孔径の大きなゼオライトが好ましく用いられる。
 合成ゼオライトとして具体的に例えば、Y型ゼオライト、X型ゼオライト、A型ゼオライト、β(ベータ)型ゼオライト、ZSM-5、フェリエライト、モルデナイト、L型ゼオライトなどが挙げられ、この中でも細孔径が大きいY型ゼオライト、X型ゼオライトが好ましく用いられる。
 またこれらのゼオライトにおいて、陽イオンとしてK(カリウム),Na(ナトリウム)、Ca(カルシウム),Li(リチウム)、水素、アンモニウムが挙げられる。この中でも、陽イオン(交換カチオン)としてNa(ナトリウム)が好ましく用いられる。
 天然ゼオライトも特に制限なく用いることができるが、合成ゼオライトと同様に、細孔径の大きなゼオライトが好ましく用いられる。
 本発明の製造方法は、酸やアルカリによりゼオライトを溶解する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられるゼオライトを溶解するための剤としては酸、アルカリのいずれも使用でき、制限はない。この中でも酸が好ましく用いられ、さらに塩酸、フッ化水素が好ましく用いられ、特にフッ化水素が好ましく用いられる。
 本発明の製造方法は、鋳型としてのゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、さらに重合性炭化水素を導入してこれを気相炭化させ、前記ゼオライトを溶解除去する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法に用いられる不飽和炭化水素としては、エチレン、プロピレン、アセチレン、ジビニルベンゼン等の炭素間に二重結合(C=C)を1又は2以上有し、気相重合できる化合物であれば特に制限はない。その中でもプロピレンが好ましく用いられる。
 本発明の製造方法において、最初の処理としてゼオライト空孔内部に糖類等の炭素材料(以下「糖類等」ということがある。)を導入し、これを例えば80℃~200℃、好ましくは100℃~150℃の温度にて加熱することによって導入された糖類等を重合あるいは分解して炭化する。その後に炭化された糖類を含むゼオライトに、酸等を加えてゼオライトを溶解し、残余の炭化物によるZTCが得られる。
 必要に応じて、糖類等を重合あるいは分解して炭化した後に、次の処理としてガス状の重合性炭化水素を導入してこれを例えば600℃~900℃、好ましくは650℃~800℃に加熱して気相炭化させ、酸等を加えてゼオライトを溶解し、残余の炭化物によるZTCが得られる。
 本発明の製造方法は、容器にゼオライトを入れた後に乾燥し、前記容器に糖類等を加えて、乾燥後のゼオライトの表面および空孔内部に糖類等を導入する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法において、まず容器にゼオライトを乾燥し、乾燥後のゼオライトが入った容器にグルコース等の糖類等を加え、所定温度で加熱して炭化処理を行なった。
 ここで、ゼオライトを乾燥するのは、未処理のゼオライトには特に細孔内に多くの吸着水が存在し、本発明の製法に影響を与える可能性があるため、乾燥して水分をなくす、あるいは極力なくすためである。乾燥方法については特に制限されるものではないが、密閉可能の容器にゼオライトを導入後、必要に応じて加熱、例えば80℃~200℃、好ましくは100℃~150℃の温度にて、減圧、好ましくは真空近くまで減圧して乾燥するとよい。
 真空乾燥あるいは減圧乾燥する場合、ゼオライトを入れる容器は密閉可能な容器とすることが好ましい。またZTCを製造するにあたり、材料の仕込みから、乾燥、加熱、糖類の分解あるいは重合、炭化、酸による溶解、洗浄といった一連の工程において、容器が溶解、破壊等が生じないものとするのがよい。必要に応じて工程ごと、あるいは必要となる工程時に、当該工程に応じた容器を用いるとよい。例えばガラス容器や、ガラスライニングされた容器などを例示することができる。
 本発明の製造方法において、用いる糖類等の量としては最終的に製造するZTCの量により一概には言えないが、用いるゼオライトの量に対し、0.5重量倍~100重量倍、さらに1重量倍(等量)~20重量倍、特に1.5重量倍~10重量倍とすることでよい。
 本発明の製造方法は、80℃~200℃の温度で加熱することによって前記糖類等を炭化する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 最初の処理としてゼオライト空孔内部に糖類を導入し、これを例えば80℃~200℃、好ましくは100℃~150℃の温度にて加熱することによって導入された糖類等を重合あるいは分解して炭化する。
 本発明の製造方法において、糖類を重合あるいは分解して炭化する時間は加熱温度に応じて異なるため一概には決められないが、例えば1時間~10日、好ましくは10時間~5日、さらに好ましくは20時間~2日の時間処理するとよい。
 本発明の製造方法は、炭化された糖類等を有する前記ゼオライトに、重合性炭化水素を導入し、600℃~900℃の温度で気相炭化する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法において、糖類等を重合あるいは分解して炭化した後に、ガス状の重合性炭化水素を導入してこれを例えば600℃~900℃、好ましくは650℃~800℃に加熱して気相炭化させ、酸等を加えてゼオライトを溶解し、残余の炭化物によるZTCが得られる。
 気相炭化させる時間としては30分~1日の時間、好ましくは1時間~10時間、さらに好ましくは2時間~5時間、行なうとよい。
 本発明の製造方法は、炭化された糖類等と鋳型としてのゼオライトに酸やアルカリを加え、前記ゼオライトを溶解除去する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法において、炭化された糖類等と鋳型としてのゼオライトに、ゼオライトのみ除去することで、目的のZTCを得ることができる。
 炭化された糖類等と鋳型としてのゼオライトの入った容器に、ゼオライトを溶解できる酸又はアルカリ、好ましくは塩酸やフッ化水素等の酸を加え、ゼオライトを溶解し、ろ過、遠心分離等の固液分離することで、固体状の炭化された糖類、すなわちZTCを得ることができる。必要に応じて、得られたZTCを一般に公知の方法により、洗浄、乾燥することができる。
 本発明の製造方法は、炭化された糖類等を有する前記ゼオライトに、重合性炭化水素を導入し、気相炭化された炭化物と鋳型としてのゼオライトに、酸を加え、前記ゼオライトを溶解除去する、上記のゼオライト鋳型炭素材料の製造方法に係る。
 本発明の製造方法は、炭化された糖類等を有する前記ゼオライトに、重合性炭化水素を導入し、気相炭化された炭化物と鋳型としてのゼオライトに、ゼオライトのみ除去することで、目的のZTCを得ることができる。
 炭化された糖類等を有する前記ゼオライトに、重合性炭化水素を導入し、気相炭化された炭化物と鋳型としてのゼオライトの入った容器に、ゼオライトを溶解できる酸又はアルカリ、好ましくは塩酸やフッ化水素等の酸を加え、ゼオライトを溶解し、ろ過、遠心分離等の固液分離することで、固体状の炭化された糖類等、すなわちZTCを得ることができる。必要に応じて、得られたZTCを一般に公知の方法により、洗浄、乾燥することができる。
 本発明は、ゼオライトの表面および空孔内部に糖類等を導入し、これを加熱することによって前記糖類等を炭化した後、前記ゼオライトを溶解除去してなる、ゼオライト鋳型炭素材料に係る。
 本発明は、新規でかつ実用的な方法によりゼオライト鋳型炭素(ZTC)材料を製造する方法に係る発明であるところ、用いられていた重合性化合物(モノマー)を重合するプロセスではなく、糖類等という従来にはない原材料を基に、ゼオライトへ吸着、加熱することで炭素材料を得るものである。
 ここで、原材料が従来とは全く異なる材料を用いることで、得られる炭素材料は従来と同様の特性、例えばX線回折法(XRD)による測定結果などを示すが、炭素が多く連なった構造であり、微細な環境までは実質的に把握することは容易ではない。
 このため上記の通り、原材料及び製造工程を規定することで、得られる炭素材料を規定することが実際的である。
 また本発明は、ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去してなる、ゼオライト鋳型炭素材料に係る。
 本発明は、上記の糖類以外にも、ジビニルベンゼン等の架橋性炭化水素を用いてゼオライト鋳型炭素(ZTC)材料を製造する方法に係る発明である。得られる炭素材料としては、上記の糖類を用いて得られるものと同様に、ゼオライトを鋳型として得られる炭素材料という点では実質的に同じ材料となる。その解析、分析等は上記と同様に従来公知の方法を適用することができる。
 本発明は、ゼオライトの表面および空孔内部に糖類等を導入し、これを加熱することによって前記糖類等を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、ゼオライト鋳型炭素材料を含むペレットに係る。
 本発明は、新規でかつ実用的な方法によりゼオライト鋳型炭素(ZTC)材料を基に、これに圧力をかけてペレット化することで、粉末とは異なる用途、例えば水素吸蔵担体、電池材料や触媒などが期待できる。
 本発明は、ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、ゼオライト鋳型炭素材料を含むペレットに係る。
 本発明は、上記の糖類以外にも、ジビニルベンゼン等の架橋性炭化水素を用いてゼオライト鋳型炭素(ZTC)材料を製造し、上記の糖類を原料として得られるものと同様に、圧力をかけてペレット化することで、粉末とは異なる用途、例えば水素吸蔵担体、電池材料や触媒などが期待できる。
 本発明は、ゼオライトの表面および空孔内部に糖類等を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、ゼオライト鋳型炭素材料を含むペレットの製造方法に係る。
 本発明は、ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、ゼオライト鋳型炭素材料を含むペレットの製造方法に係る。
 このように、本発明は新規でかつ実用的な方法によりゼオライト鋳型炭素(ZTC)材料を基に、これに圧力をかけてペレット化する方法を提供するものである。
 ペレット化する方法としては、後述の実施例に記載する錠剤成型機により、50kN(ニュートン、377MPa)~100kN(ニュートン、753MPa)の圧力、好ましくは50kN~70kNをかけてペレット化する方法が挙げられる。また、粉体に必要に応じてバインダー、造粒助剤を添加し、充分混練した後に造粒機等を用いて成形する方法、つまり転動造粒、押出造粒、噴霧造粒、流動造粒、圧縮造粒等の方法も挙げられる。
 ペレットの大きさ、形状としては、目的に応じて適宜選択すればよく、例えば錠剤成型機によりペレット化する場合、体積0.05cm3~10cm3、さらには0.1cm3~1cm3の体積程度でよく、厚さとしては0.1mm~10mm、さらには0.2mm~5mmの程度でよい。造粒する場合には、例えば0.1mm~5mmの粒子径が好ましく、さらに0.5mm~2mmの粒子径程度でよい。
 本発明のZTC材料の製造方法によれば、鋳型に用いるZTC材料の空孔の形状を反映したナノレベルの構造規則性と多孔質材料の形状を反映した空孔を持った、新規な3次元ZTC材料が得られる。
 ナノレベルの構造規則性と多孔性を兼ね備えた炭素材料は、電気エネルギーを化学エネルギーに変換して貯蔵するデバイスであるキャパシタやリチウムイオン電池の電極材料への適用、水素やメタンなどに代表される付加価値の高いガスを貯蔵する材料への適用、さらには新規複合材料のマトリックス、電気伝導性材料および炭素膜などへの適用が期待される。
 このようなZTC材料を、糖類等を原料として簡素に合成できることは、各種産業上の材料選択の幅を広げたり、製品の性能を飛躍的に向上させる可能性を有する点で有益である。
モノマーを重合させたNa-Y型ゼオライトにプロピレンCVDの熱処理により重合させるための装置の例を示す図である。 HF処理における温度管理プログラムの一例を示す。 ジビニルベンゼン(DVB)の重合時間を変えて得たZTC試料についてXRD(X線回折)装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 Na-Y型ゼオライトへのDVBの吸着時間を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 用いるDVBを低倍量として得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 用いるDVBを高倍量として得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 Na-Y型ゼオライトをオイルバスに入れて真空加熱乾燥するための装置の一例を示す。 重合温度を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。各測定データの上側には拡大された測定データを示し、最下部の測定データは対照としてのNa-Y型ゼオライトによる測定データを示す。 重合温度を変えて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 重合温度を変えて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 α-D-グルコースの混合条件、加熱処理(重合)温度を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。各測定データの上側には拡大された測定データを示し、最下部の測定データは対照としてのNa-Y型ゼオライトによる測定データを示す。 α-D-グルコースの混合条件、加熱処理(重合)温度を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。上側の測定データは拡大された測定データを示す。 α-D-グルコースの用いる量(低倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 α-D-グルコースの用いる量(高倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 α-D-グルコースの用いる量(高倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。上側の測定データは拡大された測定データを示す。 No.7(あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なって得た試料)について、SEM(走査電子顕微鏡)写真を示す。 No.7(あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なって得た試料)について、TEM(透過電子顕微鏡)写真を示す。 No.30試料について、混合粉末のTGを測定した結果を示し、横軸(X軸)は時間(単位は、分(min))であり、縦軸(Y軸)左側は温度(単位は℃)、縦軸(Y軸)右側は重量(単位はwt%)である。 β-D-Glc、セルロース、スクロースおよびフルクトースの用いる量1.0倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 β-D-Glc、セルロース、スクロースおよびフルクトースの用いる量1.0倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 β-D-Glc、セルロース、スクロースおよびフルクトースの用いる量1.0倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 β-D-Glcの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 β-D-Glcの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 β-D-Glcの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 セルロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 セルロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 セルロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 D-(+)-スクロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 D-(+)-スクロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 D-(+)-スクロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 フルクトースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 フルクトースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 フルクトースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 澱粉を使用したZTCの合成において、Na-Y型ゼオライトの真空加熱乾燥の条件(プログラム)を示す。 澱粉の用いる量1.0倍量、1.5倍量及び2.0倍量にて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットを調製するための錠剤成型機の一例を示す。 ペレットを調製する各工程における水分量の推移を示し、横軸(X軸)は各工程であり、縦軸(Y軸)は水分量(単位はmg)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 ペレットのままHF処理した各種試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 Na-Y型ゼオライトに対し、α-D-グルコースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 図44について、回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 ZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 ZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 ZTC試料の窒素吸脱着測定結果(BET比表面積)とゼオライト/炭素複合体のTG測定結果であり、横軸(X軸)はα-D-グルコースの量であり、縦軸(Y軸)左側はCarbon fraction(単位はg/gNAY)、縦軸(Y軸)右側はBET表面積(単位はm2/g)である。 α-Glu(1.0)-P(α-D-グルコースを1.0倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。 α-Glu(1.4)-P(α-D-グルコースを1.4倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。 推察されたZTCの形成メカニズムを示す図である。 図左側には、Na-Y型ゼオライトに対し、β-D-グルコースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、Na-Y型ゼオライトに対し、D-キシロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、Na-Y型ゼオライトに対し、粉砕処理を行って得たD-フルクトースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、Na-Y型ゼオライトに対し、粉砕処理を行って得たD-スクロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図に示す各種の糖を用いて得られたZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 図に示す各種の糖を用いて得られたZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 α-D-グルコースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 β-D-グルコースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 D-キシロースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 D-フルクトースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 粉砕したD-フルクトースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 D-スクロースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 粉砕したD-スクロースで示される試料について、SEM(走査電子顕微鏡)写真を示す。 α-D-グルコースを用いて合成されたZTC試料を、ラマン分光分析により分析した結果を示し、横軸(X軸)はRaman shift(単位はcm-1)であり、縦軸(Y軸)は強度(単位は任意)である。 図に示される糖を1.0倍量用いて合成されたZTC試料を、ラマン分光分析により分析した結果を示し、横軸(X軸)はRaman shift(単位はcm-1)であり、縦軸(Y軸)は強度(単位は任意)である。 図左側には、Na-Y型ゼオライトに対し、粉砕前のD-フルクトースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、D-フルクトースを予め粉砕したものを用いて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、Na-Y型ゼオライトに対し、粉砕前のD-スクロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図左側には、D-スクロースを予め粉砕したものを用いて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 Na-Y型ゼオライトに対し、粉砕処理をしたフルクトース(粉砕後と表示)と粉砕処理をしなかったフルクトース(未粉砕と表示)を用いて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 Na-Y型ゼオライトに対し、粉砕処理をしたフルクトース(粉砕後と表示)と粉砕処理をしなかったフルクトース(未粉砕と表示)を用いて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 Na-Y型ゼオライトに対し、粉砕処理をしたD-スクロース(粉砕後と表示)と粉砕処理をしなかったD-スクロース(未粉砕と表示)の量を変えたものを用いて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 Na-Y型ゼオライトに対し、粉砕処理をしたD-スクロース(粉砕後と表示)と粉砕処理をしなかったD-スクロース(未粉砕と表示)の量を変えたものを用いて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 NaYゼオライト、α-D-グルコースを、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。 NaYゼオライトとα-D-グルコースの混合物を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。 試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。図66のNaYゼオライトとα-D-グルコース、図67のNaYゼオライトとα-D-グルコースの混合物の測定結果(混合物におけるα-D-グルコースの使用量は1.0倍量)であり、α-D-グルコースがNaYゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を用いた。図68中、縦軸左側のNaY型ゼオライトとα-D-グルコース、ガウシアン関数のピーク強度(左縦軸)と横軸(位置)を変化させて足し合わせ(Fit)、実験結果(Dataと表示)と一致するようにフィッティングしている(フィッティングと表示)。 NaY型ゼオライトとα-D-グルコースの混合物を200℃、300℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 図に示す各種糖のみの試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。 NaY型ゼオライト、β-D-グルコース、NaY型ゼオライトとβ-D-グルコースの混合物(β-D-グルコースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、β-D-グルコースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとβ-D-グルコース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、D-キシロース、NaY型ゼオライトとD-キシロースの混合物(D-キシロースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、D-キシロースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとD-キシロース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、D-スクロース(未粉砕)、NaY型ゼオライトとD-スクロース(未粉砕)の混合物(D-スクロースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、D-スクロースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとD-スクロース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、D-スクロース(粉砕後)、NaY型ゼオライトとD-スクロース(粉砕後)の混合物(D-スクロースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、D-スクロースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとD-スクロース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、D-フルクトース(粉砕前)、NaY型ゼオライトとD-フルクトース(粉砕前)の混合物(D-フルクトースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、D-フルクトースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとD-フルクトース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、D-フルクトース(粉砕後)、NaY型ゼオライトとD-フルクトース(粉砕後)の混合物(D-フルクトースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、D-フルクトースがNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトとD-フルクトース、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライトと図に示す各種の糖を用いて300℃で加熱処理して得られた試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 澱粉の試料について、SEM(走査電子顕微鏡)写真を示す。 澱粉の試料について、SEM(走査電子顕微鏡)写真を示す。 セルロースの試料について、SEM(走査電子顕微鏡)写真を示す。 セルロースの試料について、SEM(走査電子顕微鏡)写真を示す。 Na-Y型ゼオライトに対し、S(糖:澱粉)の用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図79は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 図78について、回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 S(糖:澱粉)の用いる量(倍量)を変えて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 S(糖:澱粉)の用いる量(倍量)を変えて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 Na-Y型ゼオライトに対し、C(セルロース)の用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 図82について、回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 C(セルロース)の用いる量(倍量)を変えて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。 C(セルロース)の用いる量(倍量)を変えて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。 ZTC各試料の窒素吸脱着測定結果(BET比表面積)とゼオライト/炭素複合体のTG測定結果(Carbon fraction(g/g))を、澱粉系について示した図であり、横軸(X軸)は糖(澱粉)の量であり、縦軸(Y軸)左側はCarbon fraction(単位はg/gNAY)であり、右側はBET表面積(単位はm2/g)である。 ZTC各試料の窒素吸脱着測定結果(BET比表面積)とゼオライト/炭素複合体のTG測定結果(Carbon fraction(g/g))を、セルロース系について示した図であり、横軸(X軸)は糖(セルロース)の量であり、縦軸(Y軸)左側はCarbon fraction(単位はg/gNAY)であり、右側はBET表面積(単位はm2/g)である。 セルロース(1.0)-P(セルロースを1.0倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。 セルロース(1.8)-P(セルロースを1.8倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。 NaY型ゼオライト、澱粉及びセルロースを、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。 NaY型ゼオライト、澱粉、NaY型ゼオライトと澱粉の混合物(澱粉の使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、澱粉が分解して生成した糖がNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトと澱粉、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、セルロース、NaY型ゼオライトとセルロースの混合物(セルロースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、セルロースが分解して生成した糖がNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトと澱粉、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライトとS(澱粉)1.0倍量の混合物を300℃、350℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。比較試料として、NaY型ゼオライトの結果も示した。 NaY型ゼオライトに対し、S(澱粉)の乾燥処理処方を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。 図中、一番下(S(1.0)-P(NaY 500mg)と表記)は、通常の操作で未乾燥のNaY型ゼオライト500mgを使用し、澱粉1.0倍量とプロピレンCVDを組み合わせて合成したZTCである。下から2番目(S(1.0)-P(NaYは未乾燥)と表記)は、未乾燥のNaY型ゼオライト15gを使用し、澱粉1.0倍量でプロピレンCVDを組み合わせて合成したZTCである。下から3番目(S(1.0)-P(NaYを事前に乾燥)と表記)は、未乾燥のNaY型ゼオライト15gを乾燥してから使用し、澱粉1.0倍量とプロピレンCVDを組み合わせて合成したZTCである。一番上(S(1.0)-P(NaYと澱粉を事前に乾燥)と表記)は、未乾燥のNaY型ゼオライト15gと澱粉1.0倍量を乾燥してから使用し、プロピレンCVDを組み合わせて合成したZTCである。 図93について、回折角2θが6.4°付近の測定結果が分かるように拡大したものである。 NaY型ゼオライト、澱粉及びセルロースを、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。 NaY型ゼオライト、澱粉、NaY型ゼオライトと澱粉の混合物(澱粉の使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、澱粉が分解して生成した糖がNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトと澱粉、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライト、セルロース、NaY型ゼオライトとセルロースの混合物(セルロースの使用量は1.0倍量)の試料を、熱重量・示差熱同時測定(TG-DTA)により分析した結果であり、横軸(X軸)は温度(単位は℃)であり、縦軸(Y軸)左側はDTA(単位はmV/g)であり、右側は重量(単位は%)である。この結果に加え、セルロースが分解して生成した糖がNaY型ゼオライトに吸着したときの発熱ピークに見立てたガウシアン関数を加えた。NaY型ゼオライトと澱粉、ガウシアン関数のピーク強度(左縦軸)と位置(横軸)を変化させて足し合わせ(Fitと表記)、実験結果(Dataと表記)と一致するようにフィッティングした。 NaY型ゼオライトとS(澱粉)1.0倍量の混合物を300℃、350℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。比較試料として、NaY型ゼオライトの結果も示した。 NaY型ゼオライトとC(セルロース)1.0倍量の混合物を350℃、400℃、450℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。比較試料として、NaY型ゼオライトの結果も示した。 本明細書および図面において、試料表記について「糖-(X)-P」(左記表示におけるXは糖の量を示す)などと記載している。ここで「-P」についてはプロピレンCVDを行ったことを示しており、各実施例、図面においてその旨の説明がなくとも、同様の意味である。 また、本発明において、ZTCが高い構造規則性と表面積を得るには、NaY型ゼオライトと糖、プロピレンが必要となる。糖とプロピレンは炭素源であり、プロピレンはCVDの際に電気炉に流通させる。
 以下に、本発明の具体例として実施例を示すが、本発明は実施例により制限されるものではない。
 本実施例において、以下の機器、方法により実施した。
 実施例1 <ジビニルベンゼンを用いたZTCの合成>
 以下には実施例として、Na-Y型ゼオライトを鋳型とし、ジビニルベンゼンを重合させ、さらにプロピレンを重合させて得られるZTCの処方として示す。
 この処方は、本発明の糖類を用いたZTCの製造方法においても、適宜適用した。
A.Na-Y型ゼオライトの真空加熱乾燥
・ゴム栓とゴム栓をつけた10mlバイアル瓶の合計重量を測定した。
・Na-Y型ゼオライトを乾燥前重量として約500mg量り取り、先に重量測定を行ったバイアル瓶に入れてゴム栓をした。
・全体重量を電子天秤で量り取った。
・真空加熱乾燥を行った。
・真空加熱乾燥後の全体重量を電子天秤で量り取り、Na-Y型ゼオライトの乾燥重量を算出した。
 バイアル瓶の本数に応じて、以下の乾燥法を使い分けた。つまり、鋳型として用いるゼオライトを一度に多く乾燥させるときは真空加熱乾燥庫を用いた。なお、これらの乾燥法において、昇温速度と保持時間は同じ条件とした。
・オイルバスを用いた真空加熱乾燥
・真空乾燥庫を用いた真空加熱乾燥
 オイルバス加熱によるNa-Y型ゼオライトの真空加熱乾燥
・三方コック付きガラス容器をガスラインに接続し、ガスラインを用いて真空引きとN2(窒素ガス)導入を各々3回ずつ行った。
・N2を流した状態でガラス栓を開け、Na-Y型ゼオライトが入ったバイアル瓶をガラス容器内に入れた。
・ピンセットを使い、バイアル瓶についたゴム栓を外した。
・バイアル瓶が入った三方コック付きガラス容器を真空引きし、以下のプログラムでオイルバスを用いた真空加熱乾燥を行った。
 真空乾燥庫加熱によるNa-Y型ゼオライトの真空加熱乾燥
・Na-Y型ゼオライトが入ったバイアル瓶のふたを外して、乾燥庫にセットした。
・オイルポンプに水分が入らないようにトラップを取り付け、デュワーフラスコに差し込んだ。
・真空乾燥庫内を真空引きし、以下のプログラムでオイルバスを用いた真空加熱乾燥を行った。
B.Na-Y型ゼオライトへのモノマーの吸着・重合
・N2を流しながら、乾燥させたNa-Y型ゼオライトが入ったバイアル瓶を三方コック付きガラス容器内に移し、ゴム栓を外した。
・その後、モノマーを適量量り取り、窒素を流しながら乾燥させたNaY入りのバイアル瓶に移した。
・引き続き、窒素を流しながら三方コック付きガラス容器内でゴム栓をバイアル瓶に取り付けて、ガラス容器から取り出した。
・自転公転ミキサーを用いて、以下の条件で1min(1分)撹拌した。設定条件はSTDモードで、撹拌モードとして公転速度2000rpmにて行った。
 バイアル瓶に入れるモノマー重量の算出
・モノマーの適量とは、Na-Y型ゼオライトの細孔容積をちょうど満たす量のことをいうとする。
Na-Y型ゼオライト1gに対するモノマー1倍量の重量(g)=0.3642cm3×モノマーの密度(g/cm3)
Na-Y型ゼオライトの量をXgとすると、以下により算出できる。
Na-Y型ゼオライトの量Xgに対するモノマー1倍量の重量(g)=Na-Y型ゼオライトの重量(g)×0.3642cm3×モノマーの密度(g/cm3 )
 Na-Y型ゼオライトへのモノマーの吸着・重合
・モノマーを入れたバイアル瓶を40℃の恒温槽に入れて所定時間保持し、Na-Y型ゼオライトにモノマーを吸着させた。
・その後、バイアル瓶を所定温度の恒温槽に移して所定時間保持し、Na-Y型ゼオライトの細孔内でモノマーを重合させた。
C.プロピレンCVDによる熱処理
・モノマーを重合させたNa-Y型ゼオライト(図中では「NaY」と表示)を、図1に示す石英ボードに乗せた。
・試料を乗せた石英ボードをゴールド横型ファーネスの中心となるようにセットした。
・すべてのガスのバルブを開け、系内の真空引きを行った。その後、N2をパージした。
・図1では、例えばN2の流量912cc/mm、プロピレン(C3H6)の流量38cc/mm、700℃で、プロピレンCVDを2時間実施する条件を例示できる。
・引き続き、ファーネス内の空気を追い出すために窒素を流した。そして、図2に示すプログラム条件の一例によりCVDおよび熱処理を行った。
・さらに詳しくは、N2を1時間流し、その後10分で700℃へ昇温し2時間維持しつつプロピレンを流した後、1時間程度で900℃へ昇温して3時間維持する熱処理をし、熱処理後は加熱を停止する条件を例示できる。
D.HF処理
・PTFE(ポリテトラフルオロエチレン(polytetrafluoroethylene))製のビーカーに撹拌子とHFを入れた。その後、Na-Y型ゼオライト/ZTC複合体を少しずつ加え、5h撹拌した。
・プラスチック製ろ過装置を用いて、減圧ろ過を行った。
・ろ過後の試料をシャーレに移し、真空乾燥庫を用いて真空加熱乾燥を行った。
・以上の工程について、その温度管理として図2のプログラムを例示できる。
 実施例2 <ジビニルベンゼンを用いたZTC合成の結果>
 HF処理後の炭素収率を以下の表1で示す。表1では、DVB(ジビニルベンゼン)の重合時間を変えた各試料について、ZTCの重量%(wt%)を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000007
 表1において、各試料Noの処理条件は以下の通り。
No.343;DVB(ジビニルベンゼン)を用いて1時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.344;DVB(ジビニルベンゼン)を用いて3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.345;DVB(ジビニルベンゼン)を用いて6時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.346;DVB(ジビニルベンゼン)を用いて24時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表1から分かるように、DVB(ジビニルベンゼン)の重合時間が長くなるとZTC重量パーセントが高くなる傾向が見られた。また、重合時間を1時間と比較すると、6時間と24時間ではあまり変化はなく、重合反応は概ね飽和していると推察された。
 XRD測定
 上記の通りにDVB(ジビニルベンゼン)の重合時間を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図3に示した。
 図3において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.1 ZTCであり、DVB(ジビニルベンゼン)用いて24時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.4 ZTCであり、DVB(ジビニルベンゼン)用いて6時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
3;No.3 ZTCであり、DVB(ジビニルベンゼン)用いて3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
4;No.2 ZTCであり、DVB(ジビニルベンゼン)用いて1時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
5;No.66-1 ZTCであり、DVB(ジビニルベンゼン)用いて24時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図3に示すように、XRDの2θ(CuKα線による)値が6°付近に、全ての試料、すなわち重合時間1,3,6,24時間のいずれでもNa-Y型ゼオライトの構造が転写されたことに由来するシャープなピーク(ピーク強度は任意単位)が見られた。なお、図中、NaYと表示するチャートはNa-Y型ゼオライトによるものであり、6°付近の箇所は、この特徴的なピークを参照するために付した。
 実施例3 <DVBの吸着条件の検討結果>
 HF処理後の炭素収率を以下の表2で示す。表2では、DVB(ジビニルベンゼン)の吸着時間を変えた各試料について、ZTCの重量%(wt%)を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000008
 表2において、各試料Noの処理条件は以下の通り。
No.13;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.14;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ3時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.15;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ6時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表2から分かるように、DVB(ジビニルベンゼン)の吸着時間1,3,6時間と、いずれの時間であってもZTC重量パーセントは高く、すなわち高い収率が得られた。
 XRD測定 Na-Y型ゼオライトへのDVB(ジビニルベンゼン)の吸着時間の検討
 上記の通りにNa-Y型ゼオライトへのDVB(ジビニルベンゼン)の吸着時間を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図4に示した。
 図4において、XRDデータが示されている各試料の処理条件は以下の通り。
No.13;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.14;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ3時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.15;DVB(ジビニルベンゼン)用いてNa-Y型ゼオライトへ6時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.66-1 ZTCであり、DVB(ジビニルベンゼン)用いて150℃で吸着し、24時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 全ての吸着時間で6°付近にNa-Y型ゼオライト由来のシャープなピークが得られた。また、No.13において、10°付近にもNa-Y型ゼオライト由来のピークが見られた。
 さらに、全ての吸着時間でシャープなピークが得られたことから、吸着時間は1時間で十分である。
 実施例4 <DVBの低倍量の検討>
 HF処理後の炭素収率を以下の表3で示す。表3では、DVB(ジビニルベンゼン)の使用量を変えた各試料について、ZTCの重量%(wt%)を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000009
 表3において、各試料Noの処理条件は以下の通り。
No.13;DVB(ジビニルベンゼン)を1.00倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.19;DVB(ジビニルベンゼン)を0.82倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.24;DVB(ジビニルベンゼン)を0.63倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.25;DVB(ジビニルベンゼン)を0.43倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.26;DVB(ジビニルベンゼン)を0.24倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表3から、低倍量のジビニルベンゼンを用いて得られるZTCの量について、ジビニルベンゼンの使用量を減ずることでZTC量も減少するが、0.8倍量程度までは1.0倍量と余り変わらない程度の量であった。
 XRD測定 用いるDVB(ジビニルベンゼン)の低倍量の検討
 上記の通り、用いるDVB(ジビニルベンゼン)を低倍量として得たZTC試料についてXRD(X線回折)装置により測定し、図5に示した。
 図5において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.13;DVB(ジビニルベンゼン)を1.00倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.19;DVB(ジビニルベンゼン)を0.82倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
3;No.24;DVB(ジビニルベンゼン)を0.63倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
4;No.25;DVB(ジビニルベンゼン)を0.43倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
5;No.26;DVB(ジビニルベンゼン)を0.24倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図5から分かるように、Na-Y型ゼオライト由来のピークについて、DVB(ジビニルベンゼン)を1.0倍量とした場合に対し、0.8倍量、0.6倍量とした場合は、1.0倍量とした場合よりもピーク強度は小さいもののNa-Y型ゼオライト由来のシャープなピークが見られた。一方、0.4倍量とした場合、ピークはほとんど見られず、0.2倍量とした場合にはピークが見られなかった。
 このことから、DVB(ジビニルベンゼン)の量は1倍量程度あればよいことが分かる。
 実施例5 <DVBの高倍量の検討>
 HF処理後の炭素収率を以下の表4で示す。表4では、DVB(ジビニルベンゼン)の使用量を変えた各試料について、ZTCの重量%(wt%)を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000010
 表4において、各試料Noの処理条件は以下の通り。
No.13;DVB(ジビニルベンゼン)を1.00倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.37;DVB(ジビニルベンゼン)を1.22倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.38;DVB(ジビニルベンゼン)を1.41倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.39;DVB(ジビニルベンゼン)を1.62倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.40;DVB(ジビニルベンゼン)を1.84倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表4から、高倍量のジビニルベンゼンを用いて得られるZTCの量について、ジビニルベンゼンの使用量を高めることでZTC量も高まることが分かる。また、No.13の1.00倍量の場合と比べ、No.39の1.62倍量とNo.40の1.84倍量において、ZTCの重量%が23重量%を超えたことから炭素が積層していると考えられる。
 XRD測定 用いるDVB(ジビニルベンゼン)の高倍量の検討
 上記の通り、用いるDVB(ジビニルベンゼン)を高倍量として得たZTC試料についてXRD(X線回折)装置により測定し、図6に示した。
 図6において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.66-1;DVB(ジビニルベンゼン)を1.05倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.13;DVB(ジビニルベンゼン)を1.00倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
3;No.37;DVB(ジビニルベンゼン)を1.22倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
4;No.38;DVB(ジビニルベンゼン)を1.41倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
5;No.39;DVB(ジビニルベンゼン)を1.62倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
6;No.40;DVB(ジビニルベンゼン)を1.84倍量用いてNa-Y型ゼオライトへ1時間吸着し、3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図6から分かるように、全てのZTC試料において6°付近でNa-Y型ゼオライト由来のシャープなピークが見られたが、10°付近ではピークは見られなかった。また、No.39の1.62倍量、No.40の1.84倍量において25°付近に炭素由来のピークは見られなかった。
 No.13の1.00倍量の場合と比べ、No.37の1.22倍量では、構造転写が上手くできると考えられる。また、No.38の1.41倍、No.39の1.62倍量、No.40の1.84倍量の場合は同程度のピークが得られた。
 実施例6 <本発明に係るα-D-グルコースを使用したZTCの合成の検討(反応(重合)温度の検討)>
A.Na-Y型ゼオライトの乾燥
・交換カチオンがNa+であるNa-Y型ゼオライト(NaY)は、細孔内に多くの吸着水が存在するため乾燥作業を行う。
・ふたと瓶の重量を測定した10mlバイアル瓶にNa-Y型ゼオライトを約500mg測り取った。
1)バイアル瓶をオイルバスに入れ、真空加熱乾燥を行った。この設備は図7に示す。
2)バイアル瓶を乾燥庫に入れ、真空加熱乾燥を行った。
・真空加熱乾燥プログラムは共通であり、例えば90分で100℃に昇温し、1時間維持した後、放冷する温度管理を例示できる。
B.α-D-グルコースの吸着
・α-D-グルコースを容器(バイアル瓶)に入れる前と後の重量の差し引きにより、入れたα-D-グルコースの量を求めた。なお、α-D-グルコースの密度は1.54g/cm3とした。
・真空引きをした三方コック付きガラス容器に、乾燥後のNa-Y型ゼオライトが入ったバイアル瓶を入れ、ふたを外した。
・窒素を流しながら薬包紙を用いて、α-D-グルコースを必要最低量バイアル瓶に入れた。
・ふたをしてガラス瓶から取り出し、100℃又は150℃の恒温槽に24h入れ、試料を作成した。
 この後の操作は前記したジビニルベンゼン(DVB)の場合と同様に、C.プロピレンCVD、D.HF処理を行なった。
C.プロピレンCVDによる熱処理
・モノマーを重合させたNa-Y型ゼオライト(図中では「NaY」と表示)を、図1に示す石英ボードに乗せた。
・試料を乗せた石英ボードをゴールド横型ファーネスの中心となるようにセットした。
・すべてのガスのバルブを開け、系内の真空引きを行った。その後、N2をパージした。
・図1では、例えばN2の流量912cc/mm、プロピレン(C3H6)の流量38cc/mm、700℃で、プロピレンCVDを2時間実施する条件を例示できる。
・引き続き、ファーネス内の空気を追い出すために窒素を流した。そして、図2に示すプログラム条件によりCVDおよび熱処理を行った。
D.HF処理
・PTFE(ポリテトラフルオロエチレン(polytetrafluoroethylene))製のビーカーに撹拌子とHFを入れた。その後、Na-Y型ゼオライト/ZTC複合体を少しずつ加え、5h撹拌した。
・プラスチック製ろ過装置を用いて、減圧ろ過を行った。
・ろ過後の試料をシャーレに移し、真空乾燥庫を用いて真空加熱乾燥を行った。
 実施例7 <α-D-グルコースを用いたZTC合成の結果>
 HF処理後の炭素収率を以下の表5で示す。表5では、DVB(ジビニルベンゼン)の重合時間と加熱処理温度を変えた各試料について、ZTCの重量%(wt%)を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000011
 表5において、各試料Noの処理条件は以下の通り。
No.3;α-D-グルコースを用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.4;α-D-グルコースを用いて150℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 α-D-グルコースを用いて100℃又は150℃で加熱処理した場合、その後のプロピレンCVDにより、ZTCが形成できていることから、α-D-グルコースの加熱処理では重合あるいは分解が生じていると思われる。
 得られたZTCの重量パーセントが高すぎると、グラフェンが積層していることを意味すると思われ、かえって表面積が低下してしまうことが考えられる。この観点から重量パーセントは表5の結果、特にNo.4の結果に見られるように、約23wt%程度であるのが望ましい。本実施例ではα-D-グルコースの融点は146℃であるが、α-D-グルコースの加熱処理温度として100℃、150℃では、共に近似するZTCの重量パーセントの値となった。
 XRD測定
 上記の通りに重合温度を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図8に示した。
 図8において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.4;α-D-グルコースを用いて150℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。1’は拡大図である。
2;No.3;α-D-グルコースを用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。2’は拡大図である。
3;No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図8に示すように、拡大図も参照すると、XRDの2θ(CuKα線による)値が6°付近であるNa-Y型ゼオライト由来のシャープなピークが、No.3の100℃、No.4の150℃どちらの加熱温度の場合にも、明確に確認された。また、好適なZTCが合成された際に確認される10°付近のピークも、No.3、No.4のどちらにも確認された。なお、図中、NaYと表示するチャートはNa-Y型ゼオライトによるものであり、6°付近の箇所は、この特徴的なピークを参照するために付した。
 窒素吸脱着等温線
 上記の通りに重合温度を変えて得たZTC試料について窒素吸脱着等温線を測定し、図9に示した。
 図9において、窒素吸脱着等温線が示されている各試料の処理条件は以下の通り。
1;No.3;α-D-グルコースを用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。2’は拡大図である。
2;No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図9から、メソ孔に由来するヒステリシスがほとんど現れていないため、Na-Y型ゼオライトの構造転写はうまく行われていることが分かる。
 細孔径分布(DFT法)
 上記の通りに重合温度を変えて得たZTC試料についてDFT法により細孔径分布を測定し、図10に示した。
 図10において、細孔径分布が示されている各試料の処理条件は以下の通り。
1;No.3;α-D-グルコースを用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。2’は拡大図である。
2;No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図10から、Na-Y型ゼオライト由来の1.2nmの細孔が多く分布していることからNa-Y型ゼオライトの構造がうまく転写されている。
 表面積および細孔容積
 上記で得たZTCの表面積および細孔容積を測定し、以下の表6で示す。
Figure JPOXMLDOC01-appb-T000012
 表6において、各試料Noの処理条件は以下の通り。
No.66-1;ジビニルベンゼン(DVB)を用いてNa-Y型ゼオライトに24時間吸着、24時間重合させ、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.3;α-D-グルコースを用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表6から、No.3の試料、BET比表面積も3740m2/gと十分にあり、ミクロ孔の細孔容積も高い数値が得られたことが分かる。
 実施例8 <α-D-グルコースを使用したZTCの合成の検討(重合操作なし)>
 HF処理後の炭素収率
 HF処理後のZTCの炭素収率を以下の表7で示す。表7では、用いたα-D-グルコースの混合方法、基準(No.3)に対する低倍量又は高倍量のα-D-グルコースにより、得られたZTCの重量%を測定した。ZTCの重量%はHF処理前後の重量変化から算出した。
 表7中、No.3では参照とする条件であり、100℃でα-D-グルコースの加熱処理(重合操作)を行なった。No.6およびとNo.7では混合操作を検討した。No.11~14、No.16~19はいずれもあわとり練太郎(登録商標)ARE-310で1分の混合を行った試料である。
Figure JPOXMLDOC01-appb-T000013
 表7において、各試料Noの処理条件は以下の通り。
No.3;α-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.6;乳鉢で30分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.7;あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.11;α-D-グルコースを0.79倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.12;α-D-グルコースを0.60倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.13;α-D-グルコースを0.41倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.14;α-D-グルコースを0.22倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.16;α-D-グルコースを1.20倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.17;α-D-グルコースを1.40倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.18;α-D-グルコースを1.60倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.19;α-D-グルコースを1.80倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表7のNo.3,6,7から、HF処理後のZTCの炭素収率について、混合の有無及びその方法についてはZTCの収率に大差はなく、ZTCは十分にできていることが分かる。
 No.11~No.14から、用いるα-D-グルコースの倍量を少なくすると、ZTCの収率も下がることが分かる。
 一方、No.16~No.19から、用いるα-D-グルコースの倍量を高くすると、ZTCの収率は23%を超え、グラフェンが積層していることが伺える。
 XRD測定
 上記の通り、α-D-グルコースの混合条件、加熱処理(重合)温度を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図11に示した。
 図11において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.7;あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。1’は拡大図である。
2;No.6;乳鉢で30分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。2’は拡大図である。
3;No.4;α-D-グルコースを1.00倍量用いて150℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。3’は拡大図である。
4;No.3;α-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。4’は拡大図である。
5;No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。5’は拡大図である。
 図11に示すように、拡大図も参照すると、XRDの2θ(CuKα線による)値が6°付近であるNa-Y型ゼオライト由来のシャープなピークが確認された。
 またα-D-グルコースを100℃で加熱処理温度100℃のものと同様に、好適なZTCが合成された際に確認される10°付近のピークも、4;No.3および2;No.6のどちらにも確認された。なお、図中、NaYと表示するチャートはNa-Y型ゼオライトによるものであり、6°付近の箇所は、この特徴的なピークを参照するために付した。
 XRD測定(簡略化の検討)
 上記の通り、α-D-グルコースの混合条件、加熱処理(重合)温度を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図12に示した。
 図12において、XRDデータが示されている各試料の処理条件は以下の通り。なお、図12中、右上の図は拡大図である。
No.7;あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.6;乳鉢で30分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.3;α-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図12に示すように、拡大図も参照すると、どのXRDの測定結果も重なっていることから、No.7およびNo.6の、撹拌しただけの試料でも高い表面積と細孔容積を有していると考えられる。
 XRD測定(低倍量検討)
 上記の通り、α-D-グルコースの用いる量(低倍量)を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図13に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。
 図13において、XRDデータが示されている各試料の処理条件は以下の通り。
1;No.11;α-D-グルコースを0.79倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.7;α-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
3;No.12;α-D-グルコースを0.60倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
4;No.13;α-D-グルコースを0.41倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
5;No.14;α-D-グルコースを0.22倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
6;No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 1;No.11のα-D-グルコースを0.79倍量用いた場合、シャープなピークを持っていた。他の試料、特に低倍量になるとピークの強度(シャープさ)はだんだんと下がった。
 XRD測定(高倍量検討)
 上記の通り、α-D-グルコースの用いる量(高倍量)を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図14に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。
 図14において、各試料Noの処理条件は以下の通り。
1;No.7;あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.16;α-D-グルコースを1.20倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
3;No.17;α-D-グルコースを1.40倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
4;No.18;α-D-グルコースを1.60倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
5;No.19;α-D-グルコースを1.80倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図14に示すように、3;No.16のα-D-グルコースを1.20倍量用いた場合は、1;No.7のα-D-グルコースを1.00倍量用いた場合に近いシャープなピークが確認されたが、他の倍量のα-D-グルコースを用いた場合はこれらよりも高いピーク強度とはならなかった。
 また0.8倍と1.2倍では十分シャープなピークが確認され、1.0倍と比べても大差はなかった。この結果から大量合成は1.0倍で検討し、多少の量の誤差は考える必要はないとする。
 XRD測定(高倍量検討)
 上記の通り、α-D-グルコースの用いる量(高倍量)を変えて得たZTC試料についてXRD(X線回折)装置により測定し、図15に示した。
 図15において、各試料Noの処理条件は以下の通り。なお図17中、右側の図と左側の図は同じ結果であり、右側の図では横軸の2θ値の範囲を広範囲にとっている。
1;No.7;あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
2;No.16;α-D-グルコースを1.20倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図15において、2;No.19ではZTCの収量が25.7%あったため(表7参照)、グラフェンの積層が起きていると考えられる。このため、炭素の26°付近のピークの確認のためにXRD測定行ったが、ピークは現れなかった。
 No.7試料のSEMとTEM
 上記の通り、No.7(あわとり練太郎(登録商標)で1分混合したα-D-グルコースを1.00倍量用いて100℃で加熱処理し、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なって得た試料)について、以下の図16のSEM(走査電子顕微鏡)写真及び図17のTEM(透過電子顕微鏡)写真を得た。
 図16のSEM写真から分かるように、ZTCが生成されていたときに見られる粒状の構造が確認された。
 図17のTEM写真から分かるように、ZTCが生成されていたときに見られる格子状の構造が確認でき結晶性が高いため、輪郭もはっきりとしていた。
 実施例9 <ゼオライト細孔内へのグルコースの吸着メカニズム>
 上記の通り、No.30試料についてその表面積と細孔径容積を測定し、表8に示す。
Figure JPOXMLDOC01-appb-T000014
 表8において、試料の処理条件は以下の通り。
No.30;α-D-グルコースを1.00倍量用いて、Na-Y型ゼオライトと室温下で混合した。
 Na-Y型ゼオライト/α-D-GlcのBET表面積からNa-Y型ゼオライトのみのBET表面積を算出する。
 Na-Y型ゼオライトとα-D-Glcとを混ぜただけで吸着が起きていると仮定すると、BET表面積は0に近づくことになる。
 Na-Y型ゼオライト/α-D-GlcのBET表面積÷Na-Y型ゼオライト重量/Na-Y型ゼオライト+ α-D-Glcの合計重量より、460÷0.1750/02738≒630m2/gとなった。
 この結果は、使用したNa-Y型ゼオライト(富士フイルム和光純薬製)で得られるBET表面積700m2/gに近似する値となった。このことから吸着はほとんど起きていないと考えられる。
 実施例10 <ゼオライト細孔内へのグルコースの吸着メカニズム(TG)>
 上記の通り、No.30試料について、混合粉末のTGを測定し、図18に示す。
 図18において、試料の処理条件は以下の通り。
No.30;α-D-グルコースを1.00倍量用いて、Na-Y型ゼオライトと室温下で混合した。
 また、図18中に示す符号について以下の通りである。
1 温度(Temperatureと表示、単位は℃)のプロファイルを示す。
2 TGA(熱重量測定装置)のプロファイルを示す。
3 DTA(示差熱分析)のプロファイルを示す。
 図18に示されるように、吸着反応は発熱反応であるところ、No.30試料は練太郎で1min撹拌したものであり、これをTG測定にかけた。その結果から、発熱反応によって確認されるべきDTAの上向きのピークは確認されなかった。
<ゼオライト細孔内へのグルコースの吸着メカニズム(ASAP)>
 α-D-グルコースとゼオライトを混合して得た各種試料について、その表面積と細孔径容積を測定し、表9に示す。
Figure JPOXMLDOC01-appb-T000015
 表9において、試料の処理条件は以下の通り。
No.41;α-D-グルコースを1.0倍量用いて、あわとり練太郎で1分、Na-Y型ゼオライトと混合した後、10℃/minで昇温し、400℃に到達した時点で加熱を止め放冷した。
No.40;α-D-グルコースを1.0倍量用いて、あわとり練太郎で1分、Na-Y型ゼオライトと混合した後、10℃/minで昇温し、300℃に到達した時点で加熱を止め放冷した。
No.39;α-D-グルコースを1.0倍量用いて、あわとり練太郎で1分、Na-Y型ゼオライトと混合した後、10℃/minで昇温し、200℃に到達した時点で加熱を止め放冷した。
No.54;Na-Y型ゼオライトを、10℃/minで昇温し、150℃に到達した時点で6時間温度を維持した後、真空加熱乾燥した。
No.66;α-D-グルコースを1.0倍量用いて、あわとり練太郎で1分、Na-Y型ゼオライトと混合した後、10℃/minで昇温し、100℃に到達した時点で6時間温度を維持した後、恒温槽に入れて乾燥した。
 表9において、電気炉を用いて昇温しただけにも関わらず、細孔内に200℃でも吸着が起きていることが分かった。
 また100℃で恒温槽に6h保持してもBET表面積は比較的大きく、Na-Y型ゼオライト1g当たりに換算すると、Na-Y型ゼオライト/α-D-GlcのBET表面積÷Na-Y型ゼオライト重量/Na-Y型ゼオライト+α-D-Glcの合計重量より、380×0.3920+0.2194/0.3920≒590m2/gとなる。
 このことから、吸着は100℃でもわずかに起きているが、100℃~200℃の間でNa-Y型ゼオライトの細孔を埋めるほどの吸着が起きていると分かった。
 以上の結果から、グルコース(α-D-Glc)とゼオライト(例えばNa-Y型ゼオライト)を混合して昇温すると、200℃に達する前にグルコースはほぼ全てゼオライトに吸着していることが分かる。
 実施例11 <β-D-グルコース、セルロース、スクロース、フルクトース用いたZTC合成の検討>
 次の炭素前駆体を用いてZTCを合成した。
・D-(+)-スクロース>99.0%(東京化成品製)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 上記の材料を用いて、ZTCを合成した。
 これらの材料の使用量は、1.0倍量および1.5倍量について行なった。
 用いる材料の重量は以下の通り行なった。
・バイアル瓶に入れるモノマー重量の算出
Na-Y型ゼオライト1g
・理論的なNa-Y型ゼオライトの細孔容積(cm3)=Na-Y型ゼオライトの重量(g)×0.3642(cm3/g)
・Na-Y型ゼオライト1gあたりの細孔容積(0.3642cm3/g)
・加えるモノマー1倍量の重量(g)=NaYの重量(g)× Na-Y型ゼオライト1g当たりの細孔容積(cm3/g)×モノマーの密度(g/cm3)
・加えるモノマー1倍量の体積0.3642cm3
・加えるモノマー1倍量の重量(g)=Na-Y型ゼオライトの重量(g)×0.3642(cm3/g)×各試料の密度(g/cm3)
・ジビニルベンゼンの密度は0.9325(g/cm3)
澱粉の密度はα-D-グルコースと同じ1.54(g/cm3)とした
β-D-Glcの密度は1.54(g/cm3)
セルロースの密度は1.5(g/cm3)
スクロースの密度は1.59(g/cm3)
フルクトースの密度は1.69(g/cm3)
 HF処理後の炭素収率
 HF処理後のZTCの炭素収率を以下の表10で示す。表10では、ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000019
 表10において、試料の処理条件は以下の通り。
No.41;α-D-グルコースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.45;α-D-グルコースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.42;セルロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.46;セルロースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.43;D-(+)-スクロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.47;D-(+)-スクロースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.44;D-(-)-フルクトースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.48;D-(-)-フルクトースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 表10中、No.45では試料の一部をこぼしたため本来よりも低いZTC量となった。
 表10において、1.0倍量、1.5倍量のいずれでも高い収率でZTCが得られた。これらの内、No.42,No.46のセルロース、No.47のD-(+)-スクロース、No.48のD-(-)-フルクトースを用いた場合は、ZTC重量パーセントが23wt%を超えたことから炭素が積層している可能性がある。
 XRD測定(β-D-Glc、セルロース、スクロース、フルクトース1.0倍量)
 上記の通り、β-D-Glc、セルロース、スクロースおよびフルクトースの用いる量1.0倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図19~図21に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。また図19~図21はいずれも同じ試料によるもので、XRD測定結果の縮尺を変えただけである。
 図19~図21において、試料の処理条件は以下の通り。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.41;α-D-グルコースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.42;セルロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.43;D-(+)-スクロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.44;D-(-)-フルクトースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図19~図21において、用いたいずれの糖でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできている。また、No.43のD-(+)-スクロースを用いた場合において25°付近に炭素由来のブロードなピークが見られた。よって、No.42のセルロースのほうがNo.43のD-(+)-スクロースより優れていると考えられる。
 XRD測定(β-D-Glc1.0倍量および1.5倍量)
 上記の通り、β-D-Glcの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図22~図24に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。また図22~図24はいずれも同じ試料によるもので、XRD測定結果の縮尺を変えただけである。
 図22~図24において、試料の処理条件は以下の通り。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.41;α-D-グルコースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.45;α-D-グルコースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図22~図24において、用いたα-D-グルコースの倍量でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできていることが分かる。また、用いたα-D-グルコースが1.5倍量において、25°付近に炭素由来のブロードなピークが見られた。よって、1.5倍量は過剰量であると考えられる。
 XRD測定(セルロース1.0倍量および1.5倍量)
 上記の通り、セルロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図25~図27に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。また図25~図27はいずれも同じ試料によるもので、XRD測定結果の縮尺を変えただけである。
 図25~図27において、試料の処理条件は以下の通り。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.42;セルロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.46;セルロースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図25~図27において、用いたセルロースの倍量でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできていることが分かる。また、用いたセルロースが1.5倍量において、25°付近に炭素由来のブロードなピークが少し見られた。上記表10に示すように、No.42とNo.46とはZTC重量パーセントは24.0と同じだったが、No.42のセルロース1.0倍量の方が優れていると考えられる。
 XRD測定(D-(+)-スクロース1.0倍量および1.5倍量)
 上記の通り、D-(+)-スクロースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図28~図30に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。また図28~図30はいずれも同じ試料によるもので、XRD測定結果の縮尺を変えただけである。
 図28~図30において、試料の処理条件は以下の通り。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.43;D-(+)-スクロースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.47;D-(+)-スクロースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図28~図30において、用いたD-(+)-スクロースのいずれの倍量でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできていることが分かる。また、用いたD-(+)-スクロースが1.0倍量および1.5倍量の両方において、25°付近に炭素由来のブロードなピークが見られた。
 XRD測定(フルクトース1.0倍量および1.5倍量)
 上記の通り、フルクトースの用いる量1.0倍量および1.5倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図31~図33に示した。なお、試料は全てあわとり練太郎(登録商標)にて1min撹拌したものを用いた。また図31~図33はいずれも同じ試料によるもので、XRD測定結果の縮尺を変えただけである。
 図31~図33において、試料の処理条件は以下の通り。
No.66-1 ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.44;D-(-)-フルクトースを1.0倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.48;D-(-)-フルクトースを1.5倍量用いて、Na-Y型ゼオライトと混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図31~図33において、用いたD-(-)-フルクトースのいずれの倍量でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできていることが分かる。また、No.48の用いたD-(+)-スクロースが1.5倍量において18°付近にHF処理しきらなかった不純物と考えられるピークが見られた。さらに、25°付近に炭素由来のブロードなピークが見られた。
 実施例12 <澱粉を使用したZTCの合成の検討>
A.Na-Y型ゼオライトの真空加熱乾燥
・各10mlバイアル瓶の「ゴム栓」、「ゴム栓+瓶」の重量を量った。
・Na-Y型ゼオライトを500mg量りバイアル瓶に移し、「ゴム栓+瓶+Na-Y型ゼオライト」の重量を量った。「ゴム栓+瓶」との重量の差からNa-Y型ゼオライトの重量を算出した。
・バイアル瓶のゴム栓を外し、真空乾燥庫を用いて、図34の条件(プログラム)で真空加熱乾燥した。
 Na-Y型ゼオライトと澱粉の混合(1)
・真空乾燥後のNa-Y型ゼオライトの量から理論的なNa-Y型ゼオライトの細孔容積を求めた。
・下記に示すように、求めた細孔容積から加える澱粉の重量を求めた。
・真空ラインを用いて三方コック付きガラス容器を真空引きし窒素パージした。この操作を3回繰り返した。
 用いる材料の重量は以下の通り行なった。
・バイアル瓶に入れるモノマー重量の算出
Na-Y型ゼオライト1g
・理論的なNa-Y型ゼオライトの細孔容積(cm3)=Na-Y型ゼオライトの重量(g)×0.3642(cm3/g)
・Na-Y型ゼオライト1gあたりの細孔容積(0.3642cm3/g)
・加えるモノマー1倍量の重量(g)=NaYの重量(g)× Na-Y型ゼオライト1g当たりの細孔容積(cm3/g)×モノマーの密度(g/cm3)
・加えるモノマー1倍量の体積0.3642cm3
・加えるモノマー1倍量の重量(g)=Na-Y型ゼオライトの重量(g)×0.3642(cm3/g)×各試料の密度(g/cm3)
・澱粉の密度はα-D-グルコースと同じ1.54(g/cm3)として計算し、全細孔容積をちょうど満たす量を1倍量とした。
・乾燥したNa-Y型ゼオライト入りバイアル瓶をセットしゴム栓を外した。
 Na-Y型ゼオライトと澱粉の混合(2)
・試料が液体の場合、シリンジを湿らせた後、求めた試料を量り取り、セットしたバイアル瓶に加えた。澱粉の場合、試料を薬包紙に小さく畳んで量り取った。
・ゴム栓をし、バイアル瓶を取り出した。
・取り出したバイアル瓶にアルミ蓋をし、テフロン(登録商標)容器に入れ、自転公転ミキサーを用いて以下の条件で1分間撹拌した。
設定条件
 MIX 2000rpm
 DEFOAM 0rpm
 以上の混合操作後、CVDおよびHF処理操作は、前記したジビニルベンゼンの場合と同じ操作とした。
 HF処理後の炭素収率
 HF処理後のZTCの炭素収率を以下の表11で示す。表11では、ZTCの重量%はHF処理前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000020
 表11において、試料の処理条件は以下の通り。
No.34;澱粉を1.0倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.35;澱粉を1.5倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.36;澱粉を2.0倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 XRD測定(澱粉量の検討)
 上記の通り、澱粉の用いる量1.0倍量、1.5倍量及び2.0倍量にて得たZTC試料についてXRD(X線回折)装置により測定し、図35に示した。
 図35において、試料の処理条件は以下の通り。
No.13:   倍量のDVB(ジビニルベンゼン)用いて3時間重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.34;澱粉を1.0倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.35;澱粉を1.5倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.36;澱粉を2.0倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
 図35に示すように、用いた澱粉のいずれの倍量でも6°付近においてNa-Y型ゼオライト由来のシャープなピークは見られたため構造転写が上手くできていることが分かる。また、No.36の澱粉を2.0倍量において、上記表11に示すように、収率が24.8重量%と高すぎたため25°付近に炭素由来のピークが見られなかった。澱粉を1.0倍量(No.34)と1.5倍量(No.35)用いた場合ではほとんどピーク強度に差が見られなかった。よって、澱粉を用いてZTCを大量に合成する際には、1.0倍量~1.5倍量の範囲であれば好適である。
 実施例13 <ペレットの作製およびCVD>
・乾燥後のNa-Y型ゼオライト5gに相当する未乾燥のゼオライトを量り取った(ゼオライトの水分量はほぼ20wt%)。その細孔容積を満たす2倍量の澱粉(約5.61g)を乳鉢に入れ、乳棒で30分混ぜた。ここで、澱粉の密度はα-D-グルコースと同じ1.54g/cm3とした。
・Na-Y型ゼオライトと澱粉の混合物を乾燥しないまま0.2371g量り取った。含まれるNa-Y型ゼオライトの乾燥重量は0.1gであった。
・図36に示す錠剤成型機(島津製作所製)のようにSUS製のブロックとリングを組み立てたところに試料を入れ、50kN(ニュートン、377MPa)、60、70、80、90、100kN(ニュートン、753MPa)の圧力をかけて、各3個のペレット(直径13mm)を作製した。
・作製したペレットの厚さを測定した。
・ペレットを、DVBを使用したときと同じ条件でCVD処理した。
・作製したペレットの厚さを測定した。
 試料の重量は以下の通り算出した。
・乾燥後のNa-Y型ゼオライト5.00gを満たす2倍量の澱粉=2×Na-Y型ゼオライトの重量×Na-Y型ゼオライトの細孔容積×グルコースの密度
5.61(g)=2×5.00(g)×0.3642(cm3/g)×1.54(g/cm3)
・乾燥後のNa-Y型ゼオライト0.1gベースでペレットを作る際に用いる混合物の量=0.1÷(0.8×試料を作製した際のNa-Y型ゼオライトの量)/(試料全体の重さ)
0.2371=0.1(g)÷(0.8×6.2581(g))/(11.8728)
 ペレットのHF処理
試料No.67~No.71
・テフロン(登録商標)容器に撹拌子を入れ、ペレット1個につきHFを適量(10g)加え、プラスチック製フィルムと輪ゴムで封をし、48時間放置した。
・ペレットを水に移し替えて24時間放置した。
・厚さと重量を測定した。
・ホットプレートでの加熱とマントルヒーターを用いた真空加熱乾燥によってペレットの重量変化を観測した後、XRD測定を行った。
試料No.73~No.77
・ペレットを粉砕して、HFを適量(10g)加え、プラスチック製フィルムと輪ゴムで封をし、スターラーで5時間撹拌した。
・HF処理後、プラスチック製ろ過装置を用いて減圧ろ過を行った。
・ろ過後、試料をシャーレに移し、真空乾燥庫で真空加熱乾燥を行った。
・XRD測定を行った。
 実施例14 <ペレットの作製およびCVD>
 上記の通り、ペレットを作製し、CVD処理した。
 以下の表12にはペレットのCVD処理の前後の変化を示した。
Figure JPOXMLDOC01-appb-T000021
 表12において、上記により調製された試料を、以下の処理条件を施した。
No.52;澱粉を2.0倍量用い、Na-Y型ゼオライトと、自転公転ミキサーにて1min撹拌して混合した後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。これを図36で示す錠剤成型機(島津製作所製)により50kN(ニュートン、377MPa)の圧力をかけて、各3個のペレット(直径13mm)を作製した。
No.53~No.57;No.52と同様にして得たものを、図38で示す錠剤成型機(島津製作所製)により60kNの圧力をかけて、各3個のペレット(直径13mm)を作製した。
 表12から、ペレットの厚さはCVD前において、50kN~70kN(No.52~No.54)と80kN~100kN(No.55~No.57)のグループで見たとき、差が大きい、すなわちCVD後において、全体的に薄くなることが分かった。90kN~100kNの一部は、表面が欠けたことにより厚くなった。
 重さはCVD前後で減少しているが、その理由として、澱粉の一部分がNa-Y型ゼオライトに吸着せずに分解されたためだと考えられる。また、90kN以上ではペレットがCVD後に破損するため80kN以下でCVDすることが適当と考えられた。
 実施例15 <ペレットの乾燥条件の検討>
 上記の通り、ペレットを作製し、乾燥処理した。
 以下の表13には、ペレットを加熱した際の重量とペレット1gあたりの水分量を示した。
Figure JPOXMLDOC01-appb-T000022
 上記表13において、各工程は次の通りである。
工程0 HF処理後の重量
工程1 ホットプレートを用いて2 hかけて50 ℃まで昇温した
工程2 50℃を2時間保持した
工程3 50℃から1℃/minで70℃まで昇温した
工程4 70℃を3時間保持した
工程5 1℃/minで100℃まで昇温した
工程6 100℃を2時間保持した
工程7 マントルヒーターを用いて真空加熱乾燥1℃/minで100℃まで昇温し、6時間保持した
工程7を基準にしたペレット1gあたりの水分(mg)=(各工程の重量(g)-工程7の重量(g))×1000/工程7の重量(g)
Figure JPOXMLDOC01-appb-T000023
 実施例16 <ペレットの乾燥条件の検討>
 上記で得たペレットについて、その乾燥条件を検討し、その結果を図37に示した。
 各試料は上記表14と同じ試料を用いた。
 工程7の重量を基準としてみると、工程0から工程1でほとんどすべての水分が抜けていることが分かる。また、工程3から工程4で工程7と近似する水分量の値になっていることが分かる。よって、ペレットの乾燥には昇温に時間をかければよく、高温かつ長時間の加熱までは必要としないと考えられる。
工程7を基準にしたペレット1gあたりの水分(mg)=(各工程の重量(g)-工程7の重量(g))×1000/工程7の重量(g)
 実施例17 <ペレットの乾燥条件の検討>
 上記の通り、ペレットを作製し、乾燥処理した。
 以下の表15には、CVD前後、HF処理後、真空加熱乾燥後のペレットの厚さ、重量、体積および密度を示した。
Figure JPOXMLDOC01-appb-T000024
 各試料は上記表13と同じ試料を用いた。
 HF処理後の炭素収率
 HF処理後のZTCの炭素収率を以下の表16で示す。表16中、ZTCの重量%はNo.67~71はHF処理前と真空加熱乾燥後の重量変化から算出、No.73~77はHF前後の重量変化から算出した。
Figure JPOXMLDOC01-appb-T000025
 表16から、ペレットのままHF処理したNo.67~No.71はNo.73~No.77よりも収率が高くなった。その理由として、ペレットを形作る粒子同士の結合にも炭素が含まれているためだと考えられる。
 XRD測定
 上記の通り、ペレットのままHF処理した各種試料についてXRD(X線回折)装置により測定し、図38及び図39に示した。
 試料中、No.67~No.69はペレットのまま測定し、No.73~No.77はペレットを砕いてから測定した。また新井No.66はDVBを使用して初期の合成操作によって得られた粉末状のZTCであり、DVBの吸着時間と重合時間はともに24時間とした。
 図38において、上記により調製されたペレット試料を、以下の処理条件を施した。
No.66;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.67~No.69;各試料は上記表15と同じ試料を用いた。
 図39において、上記により調製されたペレット試料を、以下の処理条件を施した。なお、No.73~No.77の試料はいずれも、ペレットを砕いてからHF処理したものをXRD測定した。
No.66-1;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.73~No.77;各試料は上記表15と同じ試料を用いた。
 XRD測定
 上記の通り、ペレットのままHF処理した各種試料についてXRD(X線回折)装置により測定し、図40及び図41に示した。
 試料中、No.67~No.69はペレットのまま測定し、No.73~No.77はペレットを砕いてから測定した。また新井No.66はDVBを使用して初期の合成操作によって得られた粉末状のZTCであり、DVBの吸着時間と重合時間はともに24時間とした。
 図40において、上記により調製されたペレット試料を、以下の処理条件を施した。
No.66;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.67~No.69;各試料は上記表15と同じ試料を用いた。
 図41において、上記により調製されたペレット試料を、以下の処理条件を施した。なお、No.73~No.77の試料はいずれも、ペレットを砕いてからHF処理したものをXRD測定した。
No.66-1;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.73~No.77;各試料は上記表15と同じ試料を用いた。
 図40及び図41から、2θが6°においてNa-Y型ゼオライト由来のシャープなピークがみられることから構造転写ができていることが分かる。
 試料ペレット調製時にかけた圧力が高いほどピーク強度が弱くなっている。これは、圧力が高いと粒子が密になりすぎ、CVD中に炭素が十分に蒸着しないためだと考えられる。
 XRD測定
 上記の通り、ペレットのままHF処理した各種試料についてXRD(X線回折)装置により測定し、図42及び図43に示した。
 試料中、No.67~No.69はペレットのまま測定し、No.73~No.77はペレットを砕いてから測定した。また新井No.66はDVBを使用して初期の合成操作によって得られた粉末状のZTCであり、DVBの吸着時間と重合時間はともに24時間とした。
 図42において、上記により調製されたペレット試料を、以下の処理条件を施した。
No.66;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.67~No.69;各試料は上記表15と同じ試料を用いた。
 図43において、上記により調製されたペレット試料を、以下の処理条件を施した。なお、No.73~No.77の試料はいずれも、ペレットを砕いてからHF処理したものをXRD測定した。
No.66-1;ZTCであり、1.05倍量のDVB(ジビニルベンゼン)用いて重合後、プロピレンCVDを700℃、2時間実施し、熱処理を900℃、3時間行なった。
No.73~No.77;各試料は上記表15と同じ試料を用いた。
 図42及び図43において、No.67~No.69は10°~20°付近にブロードなピークと39°、45°付近にシャープなピークがみられるが、No.73~No.77には見られない。よって、これらのピークはペレットの表面に由来すると考えられる。
 HF処理後のペレットの表面にはうっすらと白いものが目視で確認できた。
 No.73~No.77は18°にシャープなピークが見られるが、No.67~No.69には見られない。よって、このピークはペレット表面の不純物と異なるものであることが分かる。
 25°と43°付近のブロードなピークは炭素の(002)と(10)に由来するもので、ゼオライト粒子間に形成した炭素によるものである。
<糖を用いたZTC合成の検討結果とZTCの形成メカニズムの解明>
 実施例18~21
 試料の合成
 使用した糖は、α-D-グルコース、β-D-グルコース、D-キシロース、D-スクロースおよびD-フルクトースとした。
 用いたゼオライトの全細孔容積(0.32mL)と同等の体積の糖を1.0倍量と定義した。
 ZTCの合成を次の通り行なった。
1.NaY型ゼオライト約500mgを事前に150℃で減圧加熱乾燥し、NaY型ゼオライトの乾燥重量を測定した。
2.糖を量り取ってNaY型ゼオライトと2000 rpmで1分混合した。
3.糖とNaY型ゼオライトの混合粉末を電気炉に入れ、10℃/分で700℃に昇温してからプロピレンCVD(化学気相成長法(Chemical Vapor Deposition))を2時間行い、その後5℃/分で900℃に昇温して3時間熱処理した。
4.NaY型ゼオライトと炭素複合体を20gのフッ酸中で5時間撹拌してからろ過し、150℃で6時間、減圧加熱乾燥した。
 得られたZTC合成物を、後記するように、X線回折(XRD)測定、窒素吸脱着測定、熱重量・示差熱同時測定(TG-DTA)、透過型電子顕微鏡(TEM)観察およびラマン分光分析により分析した。
 実施例18
<NaY/α-D-グルコース-P7(2)-H9(3)系の結果>
 以下では、合成した試料の分析結果である。結果の中で示す試料の合成履歴として、例えば「NaY/α-D-グルコース-P7(2)-H9(3)」は、Na-Y型ゼオライトとα-D-グルコースとを用い、プロピレンCVDを700℃で2時間、熱処理を900℃で3時間行って得たことを示す。以下においても同様である。
 本明細書において、試料表記について「α-Glu-(X)-P」(ここで、左記表示におけるXは糖の量を示す)などと記載している。本明細書においては試料表記について糖含量を示す表記として短縮した表記方法により表記することがある。
 図44には、Na-Y型ゼオライトに対し、α-D-グルコースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図45は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。
 この結果から、(002)のピークは確認できていない。
 図46には、得られたZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。図46中、Pと表示される試料はα-D-グルコースを全く使用せず、プロピレンCVDのみで合成したものである。
 図47には、得られたZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。
 図48には、得られたZTC試料の窒素吸脱着測定結果(BET比表面積)とゼオライト/炭素複合体のTG測定結果結果を示し、横軸(X軸)はα-D-グルコースの量であり、縦軸(Y軸)左側はCarbon fraction(単位はg/gNAY)、縦軸(Y軸)右側はBET表面積(単位はm2/g)である。
 図49-1および図49-2には、α-Glu(1.0)-P(α-D-グルコースを1.0倍量使用)およびα-Glu(1.4)-P(α-D-グルコースを1.4倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。図中の白色バーは20nmの長さを示す。なお試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図49-2では、外表面に炭素は確認されていない。
 表面積および細孔容積
 上記で得たZTC各試料の窒素吸脱着測定結果とゼオライト/炭素複合体のTG測定結果を、以下の表17で示す。
Figure JPOXMLDOC01-appb-T000026
 表17、α-Glu(0.6)-P~α-Glu(1.4)-Pの試料では、BET比表面積も3670m2/g~3950m2/gと十分にあり、ミクロ孔の細孔容積も高い数値が得られたことが分かる。特にα-Glu(0.8)-P~α-Glu(1.4)-Pの試料では、BET比表面積も3730m2/g以上と高BET比表面積の結果だった。
 以上の結果から、ZTCの形成メカニズムは図50に示すように推察した。なおこの推察は本発明の一部の例であって、この推察によって本発明が制限されることはない。
 実施例19
<NaY/糖-P7(2)-H9(3)系のXRD測定結果>
 図51左側には、Na-Y型ゼオライトに対し、β-D-グルコースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図51右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。また試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図52左側には、Na-Y型ゼオライトに対し、D-キシロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図52右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。また試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図53左側には、Na-Y型ゼオライトに対し、粉砕処理を行って得たD-フルクトースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図53右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。また試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図54左側には、Na-Y型ゼオライトに対し、粉砕処理を行って得たD-スクロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図54右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。また試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図55には、図に示す各種の糖を用いて得られたZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。また試料表示に「-P」と示す通り、プロピレンCVDを行って得たものである。
 図56には、図に示す各種の糖を用いて得られたZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。
 以上の結果から、いずれの糖を用いて合成したZTCも、糖を1.0倍量用いた場合に6.4度(°)のピーク強度が最大値を示すことが分かった。また、1.0倍量を超える糖を用いても、6.4度(°)のピーク強度はほとんど変化しないことが分かった。
 以上の全ての試料において、(002)のピークは確認できなかった。
Figure JPOXMLDOC01-appb-T000027
 表18によれば、1.0倍量の糖の使用により、高表面積のZTCが得られることが分かった。
 また、フルクトースは他の糖と比較してZTCの表面積がやや劣っていることが伺えた。この理由は、フルクトースの融点が低いことによるものと推察する。
<糖のSEM写真>
 図57-1~図57-7には、α-D-グルコース、β-D-グルコース、D-キシロース、D-フルクトース、粉砕したD-フルクトース、D-スクロース、および粉砕したD-スクロースで示される試料について、SEM(走査電子顕微鏡)写真を示す。図中のスケールバー(白色バー)はいずれも200nmの長さを示す。
 上記の各糖のSEM写真及び、各糖を用いて得たZTCの表面積測定の結果から鑑みると、3800m2/gを超える高表面積のZTCを得るための条件として次のことが推察される。
・ZTC合成に用いられる糖は200 μm以下に粉砕しないと、NaY型ゼオライトに吸着し終える前に炭化してしまう可能性があると考えられる。
・ZTC合成に用いた糖の中でも、融点が低いフルクトースは、十分に粉砕しても吸着前に癒着するため、粉砕してもその効果はないかほとんど認められない程度であると考えられる。
<NaY/糖-P7(2)-H9(3)系のラマン分光分析結果>
 図58には、α-D-グルコースを用いて合成されたZTC試料を、ラマン分光分析により分析した結果を示す。
 図59には、図に示される糖を1.0倍量用いて合成されたZTC試料を、ラマン分光分析により分析した結果を示す。
 図58及び図59に示される結果から、α-D-グルコース系は、糖の量やCVDが無くとも同じG/D比を示すことが分かる。従ってCVD処理が無くとも、ゼオライト細孔内部でα-D-グルコースからナノグラフェンが生成していることが確認できる。
 また、α-D-グルコース以外のその他の糖を1.0倍量用いて合成したZTCについても、α―Glu(1.0)と同じG/D比を示すことが分かった。
 実施例20
<粉砕前後の糖の比較(XRD測定結果)>
 図60-1左側には、Na-Y型ゼオライトに対し、粉砕前のD-フルクトースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図60-1右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。
 また図60-2左側には、D-フルクトースを予め粉砕したものを用いて得たZTC試料についてXRD装置により測定された結果で、横軸(X軸)および縦軸(Y軸)は図60-1と同じである。図60-2右側も図60-1右側と同様である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図61-1左側には、Na-Y型ゼオライトに対し、粉砕前のD-スクロースの用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図60-1右側は回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。
 また図61-2左側には、D-スクロースを予め粉砕したものを用いて得たZTC試料についてXRD装置により測定された結果で、横軸(X軸)および縦軸(Y軸)は図60-1と同じである。図60-2右側も図60-1右側と同様である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図60-1、60-2、及び、図61-1、61-2に示される結果から、スクロースは200μm以下に粉砕することで、ZTCの構造規則性が増加することが分かる。
 また、6.4度(°)のピーク強度による表面積の予想には、他の分析データ、例えばフルクトースの場合の溶解温度などのデータと組み合わせることでできる可能性があると推測する。
<粉砕前後の糖の比較(窒素吸脱着測定結果)>
 図62には、Na-Y型ゼオライトに対し、粉砕処理をしたフルクトース(粉砕後と表示)と粉砕処理をしなかったフルクトース(未粉砕と表示)を用いて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図63には、Na-Y型ゼオライトに対し、粉砕処理をしたフルクトース(粉砕後と表示)と粉砕処理をしなかったフルクトース(未粉砕と表示)を用いて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図64には、Na-Y型ゼオライトに対し、粉砕処理をしたD-スクロース(粉砕後と表示)と粉砕処理をしなかったD-スクロース(未粉砕と表示)の量を変えたものを用いて得たZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図65には、Na-Y型ゼオライトに対し、粉砕処理をしたD-スクロース(粉砕後と表示)と粉砕処理をしなかったD-スクロース(未粉砕と表示)の量を変えたものを用いて得たZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。なお、参照としてα-D-グルコースの1.0倍量で処理した試料の結果も示した。
 図62~図65に示される結果から、粉砕による効果はフルクトースでは小さいが、スクロースでは明らかに大きいことが分かる。
 実施例21
<NaY/糖1.0倍量の混合粉末のTG測定結果>
・α-D-グルコース系の結果(窒素雰囲気下、10℃/minで昇温)
 図66~図68には、熱重量・示差熱同時測定(TG-DTA)により分析した。ここで、図66ではNaYゼオライト及びα-D-グルコース、図67ではNaYゼオライトとα-D-グルコースの混合物の試料、図68ではNaYゼオライト、α-D-グルコースの試料を用いた。
 図68の結果から、実験結果と足し合わせた結果が250℃付近までほぼ一致しており、250℃以下でα-D-グルコースがNaYゼオライトに吸着していると考えられる。
 なお試料の調製は事前に乾燥させたNaY型ゼオライトに1.0倍量の糖(α-D-グルコース)を加えて2000rpmで1分撹拌したものを用いた。以下でも同様に調整した。
 さらに熱重量・示差熱同時測定(TG-DTA)の測定条件は次の通りであり、以下でも同様である。
測定装置:DTG-60H(島津製作所)
窒素流量は100mL/minとした。
温度プログラム:室温で30分保持した後、10℃/minで500℃まで昇温する。500℃に達したら1時間保持し、その後室温まで放冷する。
解析には、糖とNaY型ゼオライトをそれぞれ測定し、これらに加えて糖の吸着に基づく発熱ピークをガウシアン関数で作成し、糖とNaY型ゼオライト、ガウシアン関数でフィッティングを行い、実測定の結果のDTAパターンに一致させる手法をとった。
 図69には、NaY型ゼオライトとα-D-グルコースの混合物を200℃、300℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてNa-Y型ゼオライト試料の結果も示した。
<糖単独とNaY/糖1.0倍量の混合粉末のTG測定結果>
 糖の融点は以下の通りである。
Α-D-グルコース:153-156℃
Β-D-グルコース:155℃
D-キシロース:151℃
D-スクロース:187℃
D-フルクトース:104℃
 図70~図74-2には、熱重量・示差熱同時測定(TG-DTA)により分析した。ここで、図70では糖のみ、図71ではNaY型ゼオライト、β-D-グルコース、NaY型ゼオライトとβ-D-グルコースの混合物(β-D-グルコースの使用量は1.0倍量)の試料、図72ではNaY型ゼオライト、D-キシロース、NaY型ゼオライトとD-キシロースの混合物(D-キシロースの使用量は1.0倍量)の試料、図73-1ではNaY型ゼオライト、D-スクロース(未粉砕)、NaY型ゼオライトとD-スクロース(未粉砕)の混合物(D-スクロースの使用量は1.0倍量)の試料、図73-2ではNaY型ゼオライト、D-スクロース(粉砕後)、NaY型ゼオライトとD-スクロース(粉砕後)の混合物(D-スクロースの使用量は1.0倍量)の試料、図74-1ではNaY型ゼオライト、D-フルクトース(粉砕前)、NaY型ゼオライトとD-フルクトース(粉砕前)の混合物(D-フルクトースの使用量は1.0倍量)の試料、図74-2ではNaY型ゼオライト、D-フルクトース(粉砕後)、NaY型ゼオライトとD-フルクトース(粉砕後)の混合物(D-フルクトースの使用量は1.0倍量)の試料を用いた。
 図71の結果から、実験結果と足し合わせた結果が250℃付近までほぼ一致しており、250℃以下でβ-D-グルコースがNaY型ゼオライトに吸着していると考えられる。
 図72の結果から、実験結果と足し合わせた結果が250℃付近まで極めて良く一致しており、250℃以下でD-キシロースがNaY型ゼオライトに吸着していると考えられる。
 図73-1の結果から、実験結果と足し合わせた結果があまり良く一致していない。ガウシアン関数のピーク強度が小さいため、粉砕前のD-スクロースは粒径が大きく、ゼオライトにあまり吸着してないと考えられる。図73-2の結果から、実験結果と足し合わせた結果がほぼ一致しており、ガウシアン関数はシャープなピークを示した。したがって粉砕後のD-スクロースは粒径が小さくなり、α-D-グルコースやβ-D-グルコース、D-キシロースのようにゼオライトに吸着できたと考えられる。
 図74-1の結果から、実験結果と足し合わせた結果ががあまり一致せず、ガウシアン関数のピークが小さく、スクロースのようにD-フルクトースの粒径が大きい、あるいはD-フルクトースの融点が低いためにNaY型ゼオライトへの吸着がされにくいと考えられる。図74-2の結果から、D-フルクトースを粉砕して粒径を小さくしたが、あまり大きな変化は認められなかった。D-フルクトースがNaY型ゼオライトに吸着される前に融解して粒径が大きくなり、D-フルクトース(粉砕前)による図74-1の結果と大きな違いが出なかったと考えられる。
 図70~図74-2の結果から、次のことが分かる。
・糖の融解直後にNaY型ゼオライトへの吸着が始まる。
・粉砕前のスクロースはNaY型ゼオライトに吸着しにくい。
・フルクトースは融点が低いため、吸着前に融解が起こることが分かる。従ってフルクトースを粉砕したものを用いてZTCを合成しても、その効果が小さい。
・いずれの場合においても、NaY型ゼオライトへの糖の吸着は300℃以下で完了していると推察される。
<NaY/糖1.0倍量の混合粉末を300℃で加熱した試料の窒素吸脱着測定結果>
 試料の調製は、糖1.0倍量とNaY型ゼオライトを混合して10℃/minで300℃まで昇温後に放冷して得た。
 図75には、Na-Y型ゼオライトに対し、
フルクトース(NaY/Fru(1.0)(300℃))
キシロース(NaY/Xyl(1.0)(300℃))
α-D-グルコース(NaY/α-D-Glc(1.0)(300℃))
β-D-グルコース(NaY/β-D-Glc(1.0)(300℃))
スクロース(NaY/Suc(1.0)(300℃))
のいずれかを用いて得た試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。糖は全て粉砕したものを使用した。
 なお、参照としてNa-Y型ゼオライト150℃、90分で昇温し6時間保温したものによる結果(NaY)も示した。
Figure JPOXMLDOC01-appb-T000028
 以上の結果から、糖が全く吸着していないと仮定すると、Na-Y型ゼオライトの乾燥重量と加熱後の混合粉末の重量、Na-Y型ゼオライトの表面積(700m2/g)から計算した混合粉末の理論表面積は、533~564m2/gである。実際は表面積は50m2/g以下であることから、糖は300℃以下でNa-Y型ゼオライトに吸着することが分かる。
<糖を用いたZTC合成の検討結果とZTCの形成メカニズムの解明>
 以上の実施例18~21の結果から、次のことが分かる。
・用いた全ての糖において、ゼオライトの細孔を満たす1.0倍量の使用により、表面積が3700m2/gを超えるZTCが得られることが分かる。
・α-D-グルコース、β-D-グルコース、D-キシロース、D-スクロースを用いる場合、糖の融解と共に吸着が起こり、300℃以下で糖の吸着が完了することが分かる。
・D-スクロースでは、粒径を200μm以下に粉砕しなければ、糖が吸着する前にゼオライト粒子表面でスクロースの炭化が起こると考えられる。
・融点が104℃と最も低いフルクトースでは、ゼオライトへの吸着前に糖が融解するため、粉砕の影響が小さいと考えられる。しかし粉砕の有無にかかわらず、3700m2/gを超えるZTCが得られた。糖の融点は150℃以上が好ましい。
・糖を用いたZTCの合成では、ゼオライト細孔内部で糖からナノグラフェンが生成し、CVDによってナノグラフェンの延長と連結によってZTCの形成が完了すると考えられる。
 実施例22~25
<澱粉・セルロースを用いたZTC合成の検討結果とZTCの形成メカニズムの解明>
 ZTC試料は次のように合成した。
 使用した糖は、澱粉とセルロースの多糖類とした。
 使用した糖について、1.0倍量のα-D-グルコースと同じ重量を1.0倍量と定義した。
 ZTC試料の合成処方は以下の手順である。
1.NaY型ゼオライト約500 mgを事前に150℃で減圧加熱乾燥し、NaY型ゼオライトの乾燥重量を測定した。
2.用いる糖を量り取ってNaY型ゼオライトと混合した。混合は2000rpmで1 minの条件で行った。
3.糖とNaY型ゼオライトの混合粉末を電気炉に入れ、10℃/minで700℃に昇温してからプロピレンCVDを2時間行い、その後5℃/minで900℃に昇温して3時間熱処理した。
4.NaY型ゼオライト/炭素複合体を20gのフッ酸中で5時間撹拌してからろ過し、150℃で6時間の減圧下で加熱乾燥した。
 得られた試料を、後記するように、X線回折(XRD)測定、窒素吸脱着測定、熱重量・示差熱同時測定(TG-DTA)および走査電子顕微鏡(SEM)観察により分析した。
<澱粉とセルロースのSEM観察結果>
 図76-1~図76-2には澱粉の、図77-1~図77-2にはセルロースの試料について、SEM(走査電子顕微鏡)写真を示す。図中のスケールバー(白色バー)は写真に記載の長さを示す。
 図76-1~図76-2より、澱粉は10μm程度の微細な粒子であることが分かる。また図77-1~図77-2より、セルロースは10×200μm程度の細長い形状であることが分かる。
 以下で示す図78~図85には、比較試料としてグルコース1倍量+プロピレンCVDを用いて合成したZTCの結果を一緒に示した。
 実施例22
<NaY/澱粉-P7(2)-H9(3)系の結果>
 図78には、Na-Y型ゼオライトに対し、S(糖:澱粉)の用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図79は、図78について回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。
 この結果から、(002)のピークは確認できていない。
 図80には、S(糖:澱粉)を用いて得られたZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてα-D-グルコースの1.0倍量も示した。
 図81には、S(糖:澱粉)を用いて得られたZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。なお、参照としてα-D-グルコースの1.0倍量も示した。
 実施例23
<NaY/セルロース-P7(2)-H9(3)系の結果>
 図82には、Na-Y型ゼオライトに対し、C(セルロース)の用いる量(倍量)を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図83は、図82について回折角2θが6.4°付近の測定結果が分かるように拡大したものである。なお、参照としてα-D-グルコースの1.0倍量も示した。
 この結果から、(002)のピークは確認できていない。また1.4倍量以上ではピーク強度が頭打ちになっていた。
 図84には、C(セルロース)を用いて得られたZTC試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてα-D-グルコースの1.0倍量も示した。
 図85には、C(セルロース)を用いて得られたZTC試料についてDFT法による細孔径分布の測定結果を示し、横軸(X軸)は細孔径(Pore diameter)(単位はnm)であり、縦軸(Y軸)は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。なお、参照としてα-D-グルコースの1.0倍量も示した。
 1.4倍量以上ではピーク強度が頭打ちになっていた。
 表面積および細孔容積
 上記で得たZTC各試料の窒素吸脱着測定結果(BET比表面積)とゼオライト/炭素複合体のTG測定結果(Carbon fraction(g/g))を、澱粉系について図86に、セルロース系について図87に示した。横軸(X軸)は澱粉またはセルロースの量であり、縦軸(Y軸)左側はCarbon fraction(単位はg/gNAY)であり、右側はBET表面積(単位はm2/g)である。
は増分細孔容積(Incremental pore volume)(単位はcm3/g)である。
 試料の合成条件としては、Na-Y型ゼオライトに対し、澱粉またはセルロースの量を変え、プロピレンCVDを700℃で2時間処理し、熱処理900℃で3時間処理して得た。
<窒素吸脱着測定結果>
 表面積および細孔容積
 上記で得たZTC各試料の窒素吸脱着測定結果とゼオライト/炭素複合体のTG測定結果を、以下の表20で示す。
Figure JPOXMLDOC01-appb-T000029
<セルロースを用いて合成したZTCのTEM観察結果>
 図88-1および図88-2には、セルロース(1.0)-P(セルロースを1.0倍量使用)およびセルロース(1.8)-P(セルロースを1.8倍量使用)で示されるZTC試料について、TEM(透過電子顕微鏡)写真を示す。図中の白色バーは20nmの長さ(図88-1)又は100nmの長さ(図88-2)を示す。
 以上の結果より次のことが分かる。
 TG測定結果では1.8倍量まで炭素量は増加するが、XRDパターンには(002)のピークが確認できなかった。そこで1.0倍量と1.8倍量のTEM観察を行ったが、1.8倍量の試料にはZTCの粒子外表面に炭素の積層は確認できなかった。TEM観察を慎重に行ったところ、1.8倍量の試料には若干のアモルファスの不純物が確認された。従ってセルロース系で高表面積が得られないのは、セルロース由来の不純物によるものの可能性もある。
 ただし、1.4倍量以上では構造規則性が高いことから、高密度のZTCを合成する観点では、過剰量使用すれば澱粉と同様に用いることができる。
 実施例24
<NaY/糖1.0倍量の混合粉末のTG測定結果>
 図89~図91には、熱重量・示差熱同時測定(TG-DTA)により分析した。ここで、図89ではNaY型ゼオライト、澱粉及びセルロース、図90ではNaY型ゼオライト、澱粉、NaY型ゼオライトと澱粉の混合物(澱粉の使用量は1.0倍量)の試料、図91ではNaY型ゼオライト、セルロース、NaY型ゼオライトとセルロースの混合物(セルロースの使用量は1.0倍量)の試料を用いた。
 図90の結果から、実験結果と足し合わせた結果が350℃あたりまでは良く一致しており、350℃以下で澱粉が分解してゼオライトに吸着しているという仮定が正しいことを裏付けている。
 また図91の結果から、実験結果とフィッティングが良く一致してないことから、セルロースはデンプンと違って分解して糖になりにくいことを示している。
 図92には、NaY型ゼオライトとS(澱粉)1.0倍量の混合物を300℃、350℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてNa-Y型ゼオライト試料の結果も示した。
 以上の結果から、糖(澱粉)が全く吸着していないと仮定すると、NaY型ゼオライトの乾燥重量と加熱後の混合粉末の重量、NaY型ゼオライトの表面積(703m2/g)から計算した混合粉末の理論表面積は、491~598m2/gである。実際は表面積は50m2/g以下であることから、澱粉は350℃以下で分解してNaY型ゼオライトに吸着することが分かる(セルロース系は図99に示した)。
<澱粉・セルロースを用いたZTC合成の検討結果とZTCの形成メカニズムの解明>
 以上の結果から、澱粉については以下の通りである。
・澱粉を用いるZTCの合成では、350℃以下で澱粉が(恐らくグルコースに)分解し、ゼオライト細孔内に吸着することが分かる。
・用いる澱粉の最適量は、α-D-グルコースと同じもしくは実質的に同程度であることが分かる。
・澱粉を用いる場合、1.0倍量の使用で最も表面積の高いZTCが得られることが分かる。
 以上の結果から、セルロースについては以下の通りである。
 セルロースを用いるZTCの合成では、400℃下でセルロースが(恐らくグルコースに)分解し、ゼオライト細孔内に吸着すると推察される。
・セルロースを用いる場合、1.4倍量の使用でゼオライト細孔内部に必要なカーボンソースが充填されると考えられる。しかしセルロース由来の分解物がZTC粒子表面に堆積するため、1.0倍量を超えるセルロースの使用は表面積を堆積させることがあることが分かる。
 実施例25
<糖を用いたZTC合成のスケールアップ合成>
 試料の合成
 使用した糖は、α-D-グルコース、β-D-グルコース、D-キシロースおよびD-スクロース、D-フルクトースとした。
 用いたゼオライトの全細孔容積(0.32mL)と同等の体積の糖を1.0倍量と定義した。
 澱粉、セルロースの1.0倍量のα-D-グルコースと同じ重量を1.0倍量と定義した。
 ZTCの合成を次の通り行なった。
1.NaY型ゼオライトの使用量を約500mgから約15gにスケールアップして合成した。NaY型ゼオライトについては、乾燥した場合と未乾燥の場合で比較を行った。ゼオライトを乾燥しない場合は、ゼオライトを乾燥したときの水分量を用いてゼオライトの乾燥重量を算出して合成した。
 表面積および細孔容積
 上記で得たZTC各試料の窒素吸脱着測定結果を、以下の表21で示す。
Figure JPOXMLDOC01-appb-T000030
 図93には、Na-Y型ゼオライトに対し、S(澱粉)の乾燥処理方法を変えて得たZTC試料についてXRD装置により測定された結果を示し、横軸(X軸)はCuKα線の回折角2θ(単位は、°(degree))であり、縦軸(Y軸)は強度(単位は任意)である。図94は、図93について回折角2θが6.4°付近の測定結果が分かるように拡大したものである。
 以上の結果から、次のことが分かる。
・澱粉の場合、スケールアップすると多少の構造規則性と表面積の低下を招くことが分かる。
・NaY型ゼオライトと澱粉のいずれか1つ、あるいは両方を事前に乾燥させても、大きな変化は無いことが分かる。
・澱粉に水分が含まれなくても大きな変化が無いため、澱粉は加水分解されてからゼオライトに吸着されるわけではないことが分かる。
<セルロースを用いたZTCの合成メカニズムの解明>
 実施例26
<NaY/糖1.0倍量の混合粉末のTG測定結果>
 図95~図97には、熱重量・示差熱同時測定(TG-DTA)により分析した。

 図89~図91には、熱重量・示差熱同時測定(TG-DTA)により分析した。ここで、図95ではNaY型ゼオライト、澱粉及びセルロース、図96ではNaY型ゼオライト、澱粉、NaY型ゼオライトと澱粉の混合物(澱粉の使用量は1.0倍量)の試料、図97ではNaY型ゼオライト、セルロース、NaY型ゼオライトとセルロースの混合物(セルロースの使用量は1.0倍量)の試料をを用いた。
 図96の結果から、実験結果と足し合わせた結果が350℃あたりまでは良く一致しており、350℃以下で澱粉が分解してゼオライトに吸着しているという仮定が正しいことを裏付けている。
 また図97の結果から、実験結果とフィッティングが良く一致してないことから、セルロースはデンプンと違って分解して糖になりにくいことを示している。
 図98には、NaY型ゼオライトとS(澱粉)1.0倍量の混合物を300℃、350℃、400℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてNa-Y型ゼオライトによる結果も示した。
 上記の結果から、糖が全く吸着していないと仮定すると、NaY型ゼオライトの乾燥重量と加熱後の混合粉末の重量、NaY型ゼオライトの表面積(703m2/g)から計算した混合粉末の理論表面積は、491~598m2/gである。実際は表面積は50m2/g以下であることから、澱粉は350℃以下で分解してNaY型ゼオライトに吸着することが分かる。
<NaY/セルロース(1.0倍量)のNaY型ゼオライトへの吸着検討>
 図99には、NaY型ゼオライトとC(セルロース)1.0倍量の混合物を350℃、400℃、450℃で処理した試料について窒素吸脱着等温線が測定された結果を示し、横軸(X軸)はP/P0であり、縦軸(Y軸)は吸着容量(Volume adsorbed)(単位はcm3(STP)/g)である。なお、参照としてNa-Y型ゼオライトによる結果も示した。
 TG測定の結果から、セルロースの分解と生成した糖のNaY型ゼオライトへの吸着は、300℃より高い温度で起こると予想された。そこで1.0倍量のセルロースとNaY型ゼオライトの混合物を350~450℃で加熱して窒素吸脱着測定を行ったところ、400℃で処理した試料が最も表面積が低い値を示した。したがって400℃よりも高い温度では、吸着した糖の熱分解が起きていると考えられる。熱処理した粉末の表面積と細孔容積の最小値が澱粉の場合よりも高い値を示していることから、セルロースは澱粉と比較して分解しにくいことが分かる。
 その結果、全てのセルロースが糖に分解してNaY型ゼオライトに吸着させる前に、セルロースの熱分解が起きてゼオライト細孔内が十分に糖で満たされないこともあると考えられる。

Claims (15)

  1.  ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法。
  2.  ゼオライトの表面および空孔内部に架橋性炭化水素を導入し重合させた後、前記ゼオライトを溶解除去する、ゼオライト鋳型炭素材料の製造方法。
  3.  糖類が、単糖類、二糖類又は多糖類である、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  4.  糖類が、グルコース、キシロース、フルクトース、スクロース、セルロース又は澱粉である、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  5.  ゼオライトが、Y型ゼオライトまたはX型ゼオライトである、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  6.  酸によりゼオライトを溶解する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  7.  鋳型としてのゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、さらに重合性炭化水素を導入してこれを気相炭化させ、前記ゼオライトを溶解除去する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  8.  鋳型としてのゼオライトの表面および空孔内部に架橋性炭化水素を導入し、これに不飽和炭化水素を導入し重合させた後、前記ゼオライトを溶解除去する、請求項2に記載のゼオライト鋳型炭素材料の製造方法。
  9.  容器にゼオライトを入れた後に乾燥し、前記容器に糖類を加えて、乾燥後のゼオライトの表面および空孔内部に糖類を導入する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  10.  80℃~200℃の温度で加熱することによって前記糖類を炭化する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  11.  炭化された糖類を有する前記ゼオライトに、重合性炭化水素を導入し、600℃~900℃の温度で気相炭化する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  12.  炭化された糖類と鋳型としてのゼオライトに酸を加え、前記ゼオライトを溶解除去する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  13.  炭化された糖類を有する前記ゼオライトに、重合性炭化水素を導入し、気相炭化された炭化物と鋳型としてのゼオライトに、酸を加え、前記ゼオライトを溶解除去する、請求項1に記載のゼオライト鋳型炭素材料の製造方法。
  14.  ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化される、ゼオライト鋳型炭素材料を含むペレット。
  15.  ゼオライトの表面および空孔内部に糖類を導入し、これを加熱することによって前記糖類を炭化した後、前記ゼオライトを溶解除去し、さらに乾燥した後に圧力を加えてペレット化する、請求項14に記載のゼオライト鋳型炭素材料を含むペレットの製造方法。
PCT/JP2022/023764 2021-06-14 2022-06-14 炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法 WO2022265004A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023530338A JPWO2022265004A1 (ja) 2021-06-14 2022-06-14
EP22824992.6A EP4357300A1 (en) 2021-06-14 2022-06-14 Method for producing zeolite-templated carbon material using carbon precursor, pellet comprising same, and method for producing same
US18/533,272 US20240124309A1 (en) 2021-06-14 2023-12-08 Method for producing zeolite-templated carbon material using carbon precursor, pellet containing zeolite-templated carbon material, and method for producing pellet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098383 2021-06-14
JP2021-098383 2021-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/533,272 Continuation US20240124309A1 (en) 2021-06-14 2023-12-08 Method for producing zeolite-templated carbon material using carbon precursor, pellet containing zeolite-templated carbon material, and method for producing pellet

Publications (1)

Publication Number Publication Date
WO2022265004A1 true WO2022265004A1 (ja) 2022-12-22

Family

ID=84526498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023764 WO2022265004A1 (ja) 2021-06-14 2022-06-14 炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法

Country Status (4)

Country Link
US (1) US20240124309A1 (ja)
EP (1) EP4357300A1 (ja)
JP (1) JPWO2022265004A1 (ja)
WO (1) WO2022265004A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263268A (en) 1978-11-21 1981-04-21 Shandon Southern Products Limited Preparation of porous carbon
JP2003206112A (ja) 2002-01-10 2003-07-22 Nippon Steel Chem Co Ltd 多孔質炭素材料およびその製造方法
JP2009126766A (ja) * 2007-11-27 2009-06-11 Toyota Central R&D Labs Inc 糖類由来カーボン及びその製造方法、並びに、エネルギー燃料貯蔵方法
JP2010115636A (ja) * 2008-02-26 2010-05-27 Nissan Motor Co Ltd ミクロポーラス炭素系材料、ミクロポーラス炭素系材料の製造方法及びミクロポーラス系炭素材料を用いた水素吸蔵方法
JP2013173623A (ja) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd 金属担持炭素材料およびその製造方法
JP2014055110A (ja) * 2008-02-26 2014-03-27 Nissan Motor Co Ltd ミクロポーラス炭素系材料の製造方法
JP2015182939A (ja) * 2014-03-25 2015-10-22 日産自動車株式会社 金属担持炭素材料およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263268A (en) 1978-11-21 1981-04-21 Shandon Southern Products Limited Preparation of porous carbon
JP2003206112A (ja) 2002-01-10 2003-07-22 Nippon Steel Chem Co Ltd 多孔質炭素材料およびその製造方法
JP2009126766A (ja) * 2007-11-27 2009-06-11 Toyota Central R&D Labs Inc 糖類由来カーボン及びその製造方法、並びに、エネルギー燃料貯蔵方法
JP2010115636A (ja) * 2008-02-26 2010-05-27 Nissan Motor Co Ltd ミクロポーラス炭素系材料、ミクロポーラス炭素系材料の製造方法及びミクロポーラス系炭素材料を用いた水素吸蔵方法
JP2014055110A (ja) * 2008-02-26 2014-03-27 Nissan Motor Co Ltd ミクロポーラス炭素系材料の製造方法
JP2013173623A (ja) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd 金属担持炭素材料およびその製造方法
JP2015182939A (ja) * 2014-03-25 2015-10-22 日産自動車株式会社 金属担持炭素材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI KYOTANI ET AL.: "Synthesis of Nano-Carbons by Using the Template Method", TANSO, no. 2351, 2008, pages 307 - 315

Also Published As

Publication number Publication date
JPWO2022265004A1 (ja) 2022-12-22
US20240124309A1 (en) 2024-04-18
EP4357300A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
Yang et al. From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution
US10335763B2 (en) Microporous carbon monoliths from natural carbohydrates
Zhou et al. like composites of cellulose acetate–organo-montmorillonite for removal of hazardous anionic dye in water
Somasundaram et al. Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture
Xiang et al. Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor
Okuyama et al. Structural study of anhydrous tendon chitosan obtained via chitosan/acetic acid complex
CN1899959A (zh) 一种有序介孔炭的制备方法
Zhao et al. A green, rapid, scalable and versatile hydrothermal strategy to fabricate monodisperse carbon spheres with tunable micrometer size and hierarchical porosity
CN101362598A (zh) 一种有序介孔炭材料的合成工艺
CN105000573B (zh) 一种由纳米晶粒组成的大块状多孔沸石及其制备方法
Wu et al. Effect of reaction time on structure of ordered mesoporous carbon microspheres prepared from carboxymethyl cellulose by soft-template method
US20170240473A1 (en) Mesoporous materials from nanoparticle enhanced polysaccharides
CN108697997A (zh) 沸石分离膜及其制造方法
Daab et al. Two-step delamination of highly charged, vermiculite-like layered silicates via ordered heterostructures
KR20190042489A (ko) 마그네슘 아다만탄 카복실산염 및 산화물 나노복합체의 합성
CN103274427A (zh) 一种p型分子筛的制备方法
Colmenares et al. Batch and continuous synthesis upscaling of powder and monolithic ordered mesoporous silica COK-12
Hoang et al. Study on using cellulose derivatives as pore directing agent for preparation of hierarchical ZSM-5 zeolite catalyst
WO2022265004A1 (ja) 炭素前駆体を用いたゼオライト鋳型炭素材料の製造方法、これを含むペレットとその製造方法
JP2019119632A (ja) 多孔質炭素及びその製造方法
CN106268928B (zh) 一种有序大孔-介孔-微孔多级孔催化剂的合成方法
CN106311137A (zh) 一种多级孔糖基碳材料及其制备方法和应用
EP3872030A1 (en) Process for preparing mesoporous carbon material
Fan et al. Effective melanoidin adsorption of polyethyleneimine-functionalised molasses-based porous carbon: Adsorption behaviours and microscopic mechanisms
Hellrup et al. Structure and mobility of lactose in lactose/sodium montmorillonite nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022824992

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022824992

Country of ref document: EP

Effective date: 20240115