WO2022264767A1 - Aluminum alloy, hot-worked aluminum alloy material and method for producing same - Google Patents

Aluminum alloy, hot-worked aluminum alloy material and method for producing same Download PDF

Info

Publication number
WO2022264767A1
WO2022264767A1 PCT/JP2022/021487 JP2022021487W WO2022264767A1 WO 2022264767 A1 WO2022264767 A1 WO 2022264767A1 JP 2022021487 W JP2022021487 W JP 2022021487W WO 2022264767 A1 WO2022264767 A1 WO 2022264767A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
less
hot
worked material
Prior art date
Application number
PCT/JP2022/021487
Other languages
French (fr)
Japanese (ja)
Inventor
優輝 愛須
正 箕田
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to DE112022001222.6T priority Critical patent/DE112022001222T5/en
Priority to CN202280032848.5A priority patent/CN117242198A/en
Publication of WO2022264767A1 publication Critical patent/WO2022264767A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy, an aluminum alloy hot-worked material, and a method for producing the same.
  • Aluminum materials (including pure aluminum and aluminum alloys) have high specific strength and excellent workability. It is used in various fields. Among these applications, for example, in materials for vehicles, etc., high strength is required for weight reduction of vehicles. Further, in some cases, vehicle materials and the like are subjected to a molding process into a cross-sectional shape having a complicated cross-sectional shape or fine structure. In order to meet these demands, aluminum materials used for vehicles are required to have both a 0.2% proof stress of 140 MPa or more and excellent hot workability.
  • Aluminum alloys satisfying such requirements include 6000 series alloys containing Al (aluminum), Mg (magnesium) and Si (silicon) and 7000 series alloys containing Al, Mg and Zn (zinc).
  • Patent Document 1 1000 series aluminum and 5000 series alloys containing Al (aluminum) and Mg (magnesium) (for example, Patent Document 1) are known as aluminum materials having excellent weld joint efficiency and corrosion resistance.
  • 1000 series aluminum has a low strength due to its low content of alloying elements.
  • simply increasing the content of Mg is conceivable.
  • the Mg content increases, the deformation resistance increases during hot working such as hot rolling and hot extrusion, which may make it difficult to form the 5000 series alloy into a desired shape.
  • the present invention has been made in view of such a background.
  • the object of the present invention is to provide an aluminum alloy that can be formed, an aluminum alloy hot-worked material made of this aluminum alloy, and a method for producing the same.
  • One aspect of the present invention includes Sc (scandium): 0.01% by mass or more and 0.40% by mass or less, Mg (magnesium): 0% by mass or more and 2.5% by mass or less, and Zr (zirconium): 0% by mass or more. It contains 0.4% by mass or less, and has a chemical composition with the balance being Al (aluminum) and unavoidable impurities,
  • the aluminum alloy has a compressive deformation resistance of 62 MPa or less calculated based on the true stress when deformed by compression at a strain rate of 1 s ⁇ 1 at a temperature of 450° C.
  • Another aspect of the present invention contains Sc: 0.01% by mass or more and 0.40% by mass or less, Mg: 0% by mass or more and 2.5% by mass or less, and Zr: 0% by mass or more and 0.4% by mass or less. and the balance has a chemical composition consisting of Al and unavoidable impurities, An aluminum alloy hot-worked material having Al—Sc-based second phase particles dispersed in an Al matrix, and having a number density of the Al—Sc-based second phase particles of 3000/ ⁇ m 3 or more be.
  • Still another aspect of the present invention is a hot working step of hot working the aluminum alloy of the above aspect at a temperature in the range of 350° C. or higher and 550° C. or lower; a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step.
  • a method for manufacturing a hot-worked material is a hot working step of hot working the aluminum alloy of the above aspect at a temperature in the range of 350° C. or higher and 550° C. or lower; a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step.
  • the aluminum alloy contains Sc as an essential component and Mg and Zr as optional components. Sc in the aluminum alloy exists as a solid-solution element dissolved in the Al matrix or as Al--Sc-based second phase particles dispersed in the Al matrix. Sc has little effect on deformation resistance during hot working in any of these states. Therefore, even if the aluminum alloy does not contain Mg or contains Mg in the specific range, it is possible to suppress an increase in deformation resistance and avoid deterioration of hot workability.
  • Sc as a solid solution element is precipitated in the Al matrix as Al-Sc-based second phase particles by performing the specific heat treatment process.
  • the strength of the aluminum alloy can be improved by the precipitation strengthening of the Al—Sc-based second phase particles.
  • the aluminum alloy can achieve both excellent hot workability and high strength both when it does not contain Mg and when it contains a relatively small amount of Mg.
  • the aluminum alloy hot-worked material has the specific chemical composition, and the number density of the Al-Sc-based second phase particles dispersed in the Al matrix is within the specific range.
  • the aluminum alloy hot-worked material can easily achieve high strength by setting the number density of the Al—Sc-based second phase particles within the specific range.
  • the method for producing the aluminum alloy hot-worked material includes a hot-working step of hot-working the aluminum alloy of the above aspect, and a heat treatment step of heating the aluminum alloy under the specific conditions. ing.
  • the heat treatment step by heating the aluminum alloy under the specific conditions, Sc dissolved in the aluminum alloy can be precipitated as Al—Sc-based second phase particles. As a result, the strength of the aluminum alloy hot-worked material finally obtained can be easily improved.
  • the aluminum alloy contains 0.01% by mass or more and 0.40% by mass or less of Sc as an essential component.
  • Sc in the aluminum alloy exists in the form of solid-solution elements in the Al matrix phase, Al--Sc-based second-phase particles, and the like.
  • Sc dissolved in the Al matrix precipitates as Al—Sc-based second phase particles in the Al matrix.
  • the Al—Sc-based second phase particles dispersed in the Al matrix have the effect of improving the strength of the aluminum alloy by precipitation strengthening.
  • the aluminum alloy is configured so that the number density of Al—Sc-based second phase particles present in the Al matrix can be within the specific range by setting the Sc content within the specific range. there is Therefore, the strength of the aluminum alloy can be easily improved.
  • both Sc and Al—Sc-based second phase particles dissolved in the Al matrix have little effect on hot workability. Therefore, the aluminum alloy can suppress an increase in deformation resistance during hot working even when Al—Sc-based second phase particles are present.
  • the Sc content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.07% by mass or more.
  • the Sc content is set to 0.40% by mass or less.
  • the Sc content is preferably 0.35% by mass or less, more preferably 0.30% by mass or less, further preferably 0.25% by mass or less, and 0 0.15% by mass or less is particularly preferred.
  • the aluminum alloy may contain 2.5% by mass or less of Mg as an optional component.
  • Mg in the aluminum alloy exists as a solid-solution element dissolved in the Al matrix, and has the effect of improving the strength of the aluminum alloy. By setting the content of Mg in the aluminum alloy within the specific range, it is possible to obtain the effect of improving strength by Mg while suppressing an increase in deformation resistance during hot working.
  • the Mg content is preferably 0.2% by mass or more, more preferably 0.4% by mass or more, and 0.8% by mass or more. more preferably, 1.0% by mass or more is particularly preferable, and 1.2% by mass or more is most particularly preferable.
  • the Mg content is preferably 2.2% by mass or less, more preferably 2.0% by mass or less, and 1.8% by mass or less. is more preferable.
  • the aluminum alloy may contain 0.40% by mass or less of Zr as an optional component.
  • Zr in the aluminum alloy is present in the form of a solid-solution element in the Al matrix phase, a Zr-based precipitate, or the like.
  • Zr dissolved in the Al matrix precipitates so as to surround the Al—Sc-based second phase particles.
  • the Zr-based precipitates deposited in this way have the effect of suppressing the coarsening of the Al—Sc-based second phase particles.
  • the Zr-based precipitates suppress the coarsening of the Al--Sc-based second phase particles, a large number of finer Al--Sc-based second-phase particles can be precipitated in the Al matrix. As a result, the effect of improving the strength by the Al—Sc-based second phase particles can be further enhanced.
  • the content of Zr is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and 0.06% by mass or more. More preferably, it is more preferably 0.09% by mass or more.
  • the Zr content is set to 0.40% by mass or less. From the same point of view, the Zr content is preferably 0.35% by mass or less, more preferably 0.30% by mass or less, and even more preferably 0.25% by mass or less.
  • the aluminum alloy may contain more than 0% by mass and 1.0% by mass or less of Cu as an optional component.
  • the strength of the aluminum alloy can be further enhanced.
  • the Cu content is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and 0.30% by mass or more. is more preferable.
  • the Cu content is preferably 0.90% by mass or less, more preferably 0.80% by mass or less, It is more preferably 0.70% by mass or less.
  • the aluminum alloy is more than 0% by mass and 1.0% by mass as an optional component It may contain one or two elements selected from the following Mn and more than 0% by mass and up to 0.30% by mass of Cr. By setting the contents of these elements within the specific ranges, it is possible to more effectively suppress the coarsening of the grain structure during the manufacturing process of the aluminum alloy.
  • the aluminum alloy is more than 0% by mass and 0.10% by mass as an optional component It may contain one or two elements selected from the following Ti and more than 0% by mass and up to 0.10% by mass of B. These elements have the effect of refining crystal grains when the molten metal is solidified in the manufacturing process of the aluminum alloy. By setting the contents of Ti and B within the specific ranges, the crystal grains of the aluminum alloy can be sufficiently refined, and the strength of the aluminum alloy hot-worked material finally obtained can be further improved.
  • the inevitable impurities contained in the aluminum alloy include elements such as Fe (iron) and Si (silicon).
  • the content of Fe as unavoidable impurities is 0.50% by mass or less, and the content of Si is 0.50% by mass or less.
  • the amount of unavoidable impurities other than Fe and Si is 0.05% by mass or less for each element. If the content of the element as an unavoidable impurity is within the range described above, it is possible to easily avoid impairing the effects described above due to the unavoidable impurity.
  • Compressive deformation resistance 62 MPa or less
  • the aluminum alloy having the chemical composition within the specific range has a compressive deformation resistance of 62 MPa or less.
  • the compressive deformation resistance in this specification is the compressive deformation resistance calculated based on the true stress when compressing and deforming at a temperature of 450° C. at a strain rate of 1 s ⁇ 1 .
  • the hot workability of the aluminum alloy can be improved.
  • aluminum alloys with a compression deformation resistance within the specific range can be used particularly at high temperatures, for example, by porthole extrusion, that is, a molding method in which an aluminum alloy is extruded through a die consisting of a combination of male and female dies. It can also be applied to molding methods that require inter-workability.
  • An aluminum alloy hot-worked material (hereinafter referred to as "hot-worked material") can be obtained by subjecting the aluminum alloy to hot working such as hot rolling or hot extrusion.
  • the chemical composition of the hot-worked material is the same as the chemical composition of the aluminum alloy used as the raw material.
  • Al—Sc-based second-phase particles that is, second-phase particles containing Al and Sc are dispersed.
  • the Al--Sc-based second phase particles are specifically composed of intermetallic compounds having compositions such as Al 3 Sc and Al 3 (Sc x Zr 1-x ).
  • the value of x in Al 3 (Sc x Zr 1-x ) is 0 ⁇ x ⁇ 1.
  • the value of x in Al 3 (Sc x Zr 1-x ) varies depending on the content of Zr in the aluminum alloy and the heating conditions in the heat treatment process.
  • the number density of the Al—Sc-based second-phase particles in the hot-worked material is preferably 3000 particles/ ⁇ m 3 or more.
  • the Al—Sc-based second phase particles have the effect of improving the strength of the hot-worked material by precipitation strengthening.
  • the strength of the hot-worked material can be increased.
  • 2.8/ ⁇ (ln ⁇ +5.4)+ ⁇ 0 (1)
  • is the 0.2% yield strength [MPa] of the aluminum alloy precipitation-strengthened by the second-phase particles
  • is the average inter-particle distance [ ⁇ m] of the second-phase particles
  • ⁇ 0 is It is the 0.2% yield strength [MPa] of an aluminum alloy containing no second phase particles.
  • the 0.2% proof stress ⁇ is approximately 145 MPa. Therefore, by setting the number density of the Al--Sc-based second-phase particles within the specific range, it can be expected that the 0.2% yield strength of the aluminum alloy will be 140 MPa or more even if it does not contain Mg.
  • the number density of the Al—Sc-based second phase particles is more preferably 5000/ ⁇ m 3 or more, and more preferably 7000/ ⁇ m 3 or more. preferable.
  • the upper limit of the number density of the Al--Sc-based second phase particles is naturally determined according to the amount of Sc contained in the aluminum alloy hot-worked material.
  • the number density of Al—Sc-based second phase particles in the hot-worked material can be calculated based on the results of microstructural observation using a transmission electron microscope (TEM). More specifically, first, a measurement sample is taken from the hot-worked material, and the thickness of the measurement sample is reduced to 0.1 ⁇ m by electropolishing. This measurement sample is observed using a TEM, and the number of Al—Sc based second phase particles having an equivalent circle diameter of 0.5 nm or more and less than 10 nm present in the field of view is counted. The value obtained by converting the number of Al--Sc-based second phase particles present in the field of view to the number per 1 ⁇ m 3 of volume is defined as the number density of the Al--Sc-based second-phase particles.
  • TEM transmission electron microscope
  • the shape of the aluminum alloy hot-worked material is not particularly limited, and can take various shapes such as plate material, bar material, tube material, strip material, and extruded shape material.
  • the aluminum alloy hot-worked material is preferably produced by porthole extrusion.
  • a hot extruded material produced by porthole extrusion has at least one hollow portion surrounded by a wall portion made of an aluminum alloy. Further, the wall portion of the hot extruded material produced by porthole extrusion may be formed with at least one welding surface formed by welding the aluminum alloys to each other.
  • the aluminum alloy has hot workability to the extent that porthole extrusion is possible. Therefore, by using the aluminum alloy, it is possible to easily produce a hot extruded material having a cross-sectional shape having a complicated cross-sectional shape and fine structure, which can be realized by porthole extrusion.
  • the method for producing the aluminum alloy hot-worked material includes a hot working step of hot-working the aluminum alloy at a temperature in the range of 350° C. or higher and 550° C. or lower; and a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step is completed. ing.
  • the aluminum alloy to be subjected to the hot working process one prepared by a conventional method can be used.
  • the aluminum alloy may be an ingot obtained by casting a molten metal having the specific chemical composition by a method such as DC casting or CC casting, or may be a billet.
  • Various processing methods such as hot rolling, hot extrusion, and hot forging can be used as hot working in the hot working process.
  • an aluminum alloy having the specific chemical composition and excellent hot workability is used. Therefore, the manufacturing method can employ porthole extrusion as hot working in the hot working process. By performing porthole extrusion, it is possible to easily obtain a hot extruded material having a complicated cross-sectional shape or a cross-sectional shape with a fine structure.
  • the starting temperature of hot working in the hot working process should be 350°C or higher and 550°C or lower. If the starting temperature is less than 350° C., the deformation resistance of the aluminum alloy becomes excessively high, making hot working difficult. On the other hand, if the starting temperature exceeds 550° C., the aluminum alloy may tend to partially melt due to heat generated during hot working.
  • a heat treatment step of heating the aluminum alloy is performed.
  • the holding temperature in the heat treatment step is 250° C. or higher and 550° C. or lower.
  • the holding time in the heat treatment step is set to 30 minutes or more in total.
  • the holding temperature in the heat treatment step is less than 250°C, or when the total holding time is less than 30 minutes, the precipitation amount of Al—Sc-based second phase particles becomes insufficient, and the strength of the hot-worked material is reduced. It may lead to a decline. If the holding temperature in the heat treatment step exceeds 550°C, the aluminum alloy may be partially melted.
  • the heat treatment process may be performed before performing the hot working process, or may be performed after the hot working process is completed. Also, the heat treatment step may be performed both before performing the hot working step and after the hot working step is completed.
  • the Al--Sc-based second phase particles have little effect on hot workability. Therefore, even if the heat treatment step is performed before the hot working step and the aluminum alloy in which the Al—Sc-based second phase particles are precipitated is subjected to hot working, the hot working can be easily performed. It can be carried out.
  • Examples of the aluminum alloy, the aluminum alloy hot-worked material, and the manufacturing method thereof will be described below.
  • specific aspects of the aluminum alloy, aluminum alloy hot-worked material, and method for producing the same according to the present invention are not limited to the aspects described in the examples, and are within the scope that does not impair the gist of the present invention.
  • the configuration can be changed as appropriate.
  • molten aluminum alloy having the chemical composition shown in Table 1 is cast by a conventional method to produce a cylindrical billet with a diameter of 90 mm and a length of 200 mm.
  • the symbol "Bal.” in Table 1 is a symbol indicating the balance. This billet is held at a holding temperature of 300° C. for 10 hours and then held at a holding temperature of 400° C. for 10 hours (heat treatment step).
  • test materials A to F can be obtained.
  • Test materials A to F are strips having a width of 35 mm and a thickness of 2 mm.
  • test material G can be obtained by heating the billet to 500°C and performing hot extrusion under conditions of a container temperature of 500°C, a die temperature of 500°C, and an extrusion speed of 1.4 m/min.
  • the test material G is a strip material having a width of 35 mm and a thickness of 2.6 mm.
  • test material H and test material I shown in Table 1 are test materials for comparison with test materials A to G.
  • the manufacturing method of test material H and test material I is the same as the manufacturing method of test materials A to F except that the chemical composition of the aluminum alloy is different.
  • test material The physical properties of each test material and the aluminum alloy used to produce the test material can be evaluated by the following methods.
  • a test piece for compression test having a cylindrical shape with a diameter of 8 mm and a length of 12 mm is taken from the billet before hot working.
  • a compression test is performed at a temperature of 450° C. and a strain rate of 1 s ⁇ 1 to obtain a load-displacement curve. Based on this load-displacement curve, assuming uniform deformation of the test piece during the compression test, true strain and true stress are calculated. Then, the arithmetic mean of the true stress in the true strain range of 0.3 or more and less than 0.6 is taken as the compressive deformation resistance.
  • Table 2 shows the compressive deformation resistance of each test material.
  • ⁇ Number density of Al—Sc-based second phase particles present in test material After cutting the test material into a suitable size, a test piece having a thickness of 0.1 ⁇ m is prepared by electropolishing. Using a TEM, the test piece is observed at three randomly selected locations to obtain a dark field image of a field of view of 2 ⁇ m ⁇ 2 ⁇ m. Then, by converting the number of Al-Sc-based second phase particles having an equivalent circle diameter of 0.5 nm or more and less than 10 nm in the dark field images at these three locations to the number per 1 ⁇ m 3 of volume, Al-Sc Calculate the number density of the system second phase particles.
  • the number density of the Al—Sc-based second phase particles present in the test material A is 10,000/ ⁇ m 3 .
  • the number density of the Al—Sc-based second phase particles present in the test materials B to G is approximately the same as that of the test material A.
  • test material A No. 5 test piece specified in JIS Z2241:2011 is taken from the test material. A tensile test is performed using this test piece to calculate the tensile strength and 0.2% yield strength. Table 2 shows the tensile strength and 0.2% proof stress of each test material.
  • the billet after the heat treatment process is completed is heated to 520°C.
  • the billet is subjected to porthole extrusion using a die configured to form a square tube having a square cross-sectional shape of 31 mm on a side and a wall portion surrounding the hollow portion having a thickness of 2.5 mm.
  • the container temperature is 450°C
  • the die temperature is 450°C
  • the extrusion speed is 1.0 m/min.
  • the aluminum alloys used for the test materials A to G have the above-mentioned specific chemical components, and the compressive deformation resistance of the billet is 62 MPa or less. Therefore, these test materials have excellent hot workability and can be subjected to porthole extrusion.
  • the test materials A to G have the above-mentioned specific chemical components, the number density of the Al—Sc-based second phase particles can be increased to 3000/ ⁇ m 3 or more by heat treatment. .
  • the 0.2% yield strength of test materials A to G after heat treatment can be 140 MPa or more.
  • test material H is composed of an aluminum alloy that does not contain Sc, Al-Sc-based second phase particles are not formed in the billet after the heat treatment. Therefore, the 0.2% yield strength of test material H is lower than that of test material A.
  • the aluminum alloy that constitutes the test material I contains a larger amount of Mg than the test material H in order to make the strength higher than that of the test material H.
  • the increased Mg content increases the compressive deformation resistance of the aluminum alloy and deteriorates the hot extrudability. Therefore, test material I is difficult to perform porthole extrusion.
  • the 0.2% yield strength of test material I is higher than that of test material H, it is lower than that of test materials A to G.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

An aluminum alloy according to the present invention has a chemical composition that contains 0.01% by mass to 0.40% by mass of Sc, 0% by mass to 2.5% by mass of Mg and 0% by mass to 0.4% by mass of Zr, with the balance being made up of Al and unavoidable impurities. The compressive deformation resistance as calculated on the basis of the true stress at the time when the aluminum alloy is compressively deformed at the temperature of 450°C at the strain rate of 1 s-1 is 62 MPa or less.

Description

アルミニウム合金、アルミニウム合金熱間加工材及びその製造方法ALUMINUM ALLOY, ALUMINUM ALLOY HOT WORKED MATERIAL AND METHOD FOR MANUFACTURING SAME
 本発明は、アルミニウム合金、アルミニウム合金熱間加工材及びその製造方法に関する。 The present invention relates to an aluminum alloy, an aluminum alloy hot-worked material, and a method for producing the same.
 アルミニウム材(純アルミニウム及びアルミニウム合金を含む。)は、比強度が高く、加工性に優れているという特性を活かし、車両や航空機、船舶等の輸送機用材料、建築材料、一般機械部品などの種々の分野で用いられている。これらの用途の中でも、例えば車両用材料等においては、車両の軽量化のため、高い強度が求められている。また、車両用材料等には、複雑な断面形状や微細構造を有する断面形状への成形加工が施されることがある。これらの要求を満たすため、車両に用いられるアルミニウム材には、140MPa以上の0.2%耐力と、優れた熱間加工性とを兼ね備えていることが要求されている。かかる要求を満足するアルミニウム合金としては、Al(アルミニウム)、Mg(マグネシウム)及びSi(ケイ素)を含む6000系合金や、Al、Mg及びZn(亜鉛)を含む7000系合金がある。 Aluminum materials (including pure aluminum and aluminum alloys) have high specific strength and excellent workability. It is used in various fields. Among these applications, for example, in materials for vehicles, etc., high strength is required for weight reduction of vehicles. Further, in some cases, vehicle materials and the like are subjected to a molding process into a cross-sectional shape having a complicated cross-sectional shape or fine structure. In order to meet these demands, aluminum materials used for vehicles are required to have both a 0.2% proof stress of 140 MPa or more and excellent hot workability. Aluminum alloys satisfying such requirements include 6000 series alloys containing Al (aluminum), Mg (magnesium) and Si (silicon) and 7000 series alloys containing Al, Mg and Zn (zinc).
 しかし、6000系合金は、溶接継手効率が低いため溶接が必要となる用途には適さない。また、7000系合金は耐食性が低いという問題がある。 However, 6000 series alloys are not suitable for applications that require welding due to their low weld joint efficiency. In addition, 7000 series alloys have a problem of low corrosion resistance.
 一方、溶接継手効率及び耐食性に優れたアルミニウム材としては、1000系アルミニウムや、Al(アルミニウム)とMg(マグネシウム)とを含む5000系合金(例えば、特許文献1)が知られている。 On the other hand, 1000 series aluminum and 5000 series alloys containing Al (aluminum) and Mg (magnesium) (for example, Patent Document 1) are known as aluminum materials having excellent weld joint efficiency and corrosion resistance.
特許第6446124号Patent No. 6446124
 しかし、1000系アルミニウムは、合金元素の含有量が少ないため、強度が低いという問題がある。また、5000系合金において強度を高めるためには、単純にはMgの含有量を多くする方法が考えられる。しかし、Mgの含有量が多くなると、例えば熱間圧延や熱間押出などの熱間加工の際に変形抵抗が大きくなり、5000系合金を所望の形状に成形することが難しくなるおそれがある。 However, 1000 series aluminum has a low strength due to its low content of alloying elements. In addition, in order to increase the strength of the 5000 series alloy, simply increasing the content of Mg is conceivable. However, when the Mg content increases, the deformation resistance increases during hot working such as hot rolling and hot extrusion, which may make it difficult to form the 5000 series alloy into a desired shape.
 本発明は、かかる背景に鑑みてなされたものであり、Mgを含まない場合や、Mgの含有量が比較的少量の場合であっても優れた熱間加工性と高い強度とを両立させることができるアルミニウム合金、このアルミニウム合金からなるアルミニウム合金熱間加工材及びその製造方法を提供しようとするものである。 The present invention has been made in view of such a background. The object of the present invention is to provide an aluminum alloy that can be formed, an aluminum alloy hot-worked material made of this aluminum alloy, and a method for producing the same.
 本発明の一態様は、Sc(スカンジウム):0.01質量%以上0.40質量%以下、Mg(マグネシウム):0質量%以上2.5質量%以下、Zr(ジルコニウム):0質量%以上0.4質量%以下を含有し、残部がAl(アルミニウム)及び不可避的不純物からなる化学成分を有し、
 450℃の温度において1s-1のひずみ速度で圧縮して変形させた際の真応力に基づいて算出される圧縮変形抵抗が62MPa以下である、アルミニウム合金にある。
One aspect of the present invention includes Sc (scandium): 0.01% by mass or more and 0.40% by mass or less, Mg (magnesium): 0% by mass or more and 2.5% by mass or less, and Zr (zirconium): 0% by mass or more. It contains 0.4% by mass or less, and has a chemical composition with the balance being Al (aluminum) and unavoidable impurities,
The aluminum alloy has a compressive deformation resistance of 62 MPa or less calculated based on the true stress when deformed by compression at a strain rate of 1 s −1 at a temperature of 450° C.
 本発明の他の態様は、Sc:0.01質量%以上0.40質量%以下、Mg:0質量%以上2.5質量%以下、Zr:0質量%以上0.4質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
 Al母相中に分散したAl-Sc系第二相粒子を有し、かつ、前記Al-Sc系第二相粒子の数密度が3000個/μm3以上である、アルミニウム合金熱間加工材にある。
Another aspect of the present invention contains Sc: 0.01% by mass or more and 0.40% by mass or less, Mg: 0% by mass or more and 2.5% by mass or less, and Zr: 0% by mass or more and 0.4% by mass or less. and the balance has a chemical composition consisting of Al and unavoidable impurities,
An aluminum alloy hot-worked material having Al—Sc-based second phase particles dispersed in an Al matrix, and having a number density of the Al—Sc-based second phase particles of 3000/μm 3 or more be.
 本発明のさらに他の態様は、前記の態様のアルミニウム合金に温度が350℃以上550℃以下の範囲内である状態で熱間加工を施す熱間加工工程と、
 前記熱間加工工程の前及び前記熱間加工工程の後のうち少なくとも一方において、前記アルミニウム合金を250℃以上550℃以下の保持温度に合計30分以上保持する熱処理工程と、を有する、アルミニウム合金熱間加工材の製造方法にある。
Still another aspect of the present invention is a hot working step of hot working the aluminum alloy of the above aspect at a temperature in the range of 350° C. or higher and 550° C. or lower;
a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step. A method for manufacturing a hot-worked material.
 前記アルミニウム合金は、必須成分としてのScと、任意成分としてのMg及びZrとを含有している。前記アルミニウム合金中のScは、Al母相中に固溶した固溶元素やAl母相中に分散したAl-Sc系第二相粒子として存在している。Scは、これらのいずれの状態であっても熱間加工時の変形抵抗に及ぼす影響が小さい。それ故、前記アルミニウム合金は、Mgを含まない場合や前記特定の範囲のMgを含む場合であっても変形抵抗の上昇を抑制し、熱間加工性の悪化を回避することができる。 The aluminum alloy contains Sc as an essential component and Mg and Zr as optional components. Sc in the aluminum alloy exists as a solid-solution element dissolved in the Al matrix or as Al--Sc-based second phase particles dispersed in the Al matrix. Sc has little effect on deformation resistance during hot working in any of these states. Therefore, even if the aluminum alloy does not contain Mg or contains Mg in the specific range, it is possible to suppress an increase in deformation resistance and avoid deterioration of hot workability.
 また、固溶元素としてのScは、前記特定の熱処理工程を施すことにより、Al-Sc系第二相粒子としてAl母相中に析出する。このAl-Sc系第二相粒子の析出強化により、前記アルミニウム合金の強度を向上させることができる。 In addition, Sc as a solid solution element is precipitated in the Al matrix as Al-Sc-based second phase particles by performing the specific heat treatment process. The strength of the aluminum alloy can be improved by the precipitation strengthening of the Al—Sc-based second phase particles.
 以上のように、前記アルミニウム合金は、Mgを含まない場合、及び、Mgの含有量が比較的少量である場合のいずれにおいても優れた熱間加工性と高い強度とを両立させることができる。 As described above, the aluminum alloy can achieve both excellent hot workability and high strength both when it does not contain Mg and when it contains a relatively small amount of Mg.
 また、前記アルミニウム合金熱間加工材は、前記特定の化学成分を有するとともに、Al母相中に分散したAl-Sc系第二相粒子の数密度が前記特定の範囲内である。前記アルミニウム合金熱間加工材は、Al-Sc系第二相粒子の数密度を前記特定の範囲とすることにより、高い強度を容易に実現することができる。 In addition, the aluminum alloy hot-worked material has the specific chemical composition, and the number density of the Al-Sc-based second phase particles dispersed in the Al matrix is within the specific range. The aluminum alloy hot-worked material can easily achieve high strength by setting the number density of the Al—Sc-based second phase particles within the specific range.
 また、前記アルミニウム合金熱間加工材の製造方法は、前記の態様のアルミニウム合金に熱間加工を施す熱間加工工程と、前記アルミニウム合金を前記特定の条件で加熱する熱処理工程と、を有している。前記熱処理工程においては、前記アルミニウム合金を前記特定の条件で加熱することにより、アルミニウム合金中に固溶したScをAl-Sc系第二相粒子として析出させることができる。これにより、最終的に得られるアルミニウム合金熱間加工材の強度を容易に向上させることができる。 Further, the method for producing the aluminum alloy hot-worked material includes a hot-working step of hot-working the aluminum alloy of the above aspect, and a heat treatment step of heating the aluminum alloy under the specific conditions. ing. In the heat treatment step, by heating the aluminum alloy under the specific conditions, Sc dissolved in the aluminum alloy can be precipitated as Al—Sc-based second phase particles. As a result, the strength of the aluminum alloy hot-worked material finally obtained can be easily improved.
(アルミニウム合金)
 前記アルミニウム合金の化学成分及びその限定理由を説明する。
(aluminum alloy)
The chemical composition of the aluminum alloy and the reason for its limitation will be explained.
・Sc:0.01質量%以上0.40質量%以下
 前記アルミニウム合金は、必須成分として、0.01質量%以上0.40質量%以下のScを含有している。前述したように、前記アルミニウム合金中のScは、Al母相中に固溶した固溶元素やAl-Sc系第二相粒子などの状態で存在している。Al母相中に固溶しているScは、前記アルミニウム合金を250℃以上550℃以下の保持温度に保持した際に、Al-Sc系第二相粒子としてAl母相中に析出する。そして、Al母相中に分散したAl-Sc系第二相粒子は、析出強化により、前記アルミニウム合金の強度を向上させる作用を有している。
- Sc: 0.01% by mass or more and 0.40% by mass or less The aluminum alloy contains 0.01% by mass or more and 0.40% by mass or less of Sc as an essential component. As described above, Sc in the aluminum alloy exists in the form of solid-solution elements in the Al matrix phase, Al--Sc-based second-phase particles, and the like. When the aluminum alloy is held at a holding temperature of 250° C. or higher and 550° C. or lower, Sc dissolved in the Al matrix precipitates as Al—Sc-based second phase particles in the Al matrix. The Al—Sc-based second phase particles dispersed in the Al matrix have the effect of improving the strength of the aluminum alloy by precipitation strengthening.
 前記アルミニウム合金は、Scの含有量を前記特定の範囲とすることにより、Al母相中に存在するAl-Sc系第二相粒子の数密度を前記特定の範囲内にできるように構成されている。それ故、前記アルミニウム合金は、容易に強度を向上させることができる。また、前述したように、Al母相中に固溶しているSc及びAl-Sc系第二相粒子は、いずれも熱間加工性に及ぼす影響が小さい。それ故、前記アルミニウム合金は、Al-Sc系第二相粒子が存在している場合であっても、熱間加工時の変形抵抗の上昇を抑制することができる。 The aluminum alloy is configured so that the number density of Al—Sc-based second phase particles present in the Al matrix can be within the specific range by setting the Sc content within the specific range. there is Therefore, the strength of the aluminum alloy can be easily improved. In addition, as described above, both Sc and Al—Sc-based second phase particles dissolved in the Al matrix have little effect on hot workability. Therefore, the aluminum alloy can suppress an increase in deformation resistance during hot working even when Al—Sc-based second phase particles are present.
 Scの含有量は、0.03質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.07質量%以上であることがさらに好ましい。前記アルミニウム合金中のScの含有量を多くすることにより、熱処理後におけるAl-Sc系第二相粒子の数密度をより高くすることができる。その結果、前記アルミニウム合金の強度をより向上させることができる。Scの含有量が0.01質量%未満の場合には、Al-Sc系第二相粒子の数密度を高くすることが難しくなり、強度を高くすることが難しくなるおそれがある。 The Sc content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.07% by mass or more. By increasing the Sc content in the aluminum alloy, the number density of the Al—Sc system second phase particles after the heat treatment can be further increased. As a result, the strength of the aluminum alloy can be further improved. If the Sc content is less than 0.01% by mass, it may be difficult to increase the number density of the Al—Sc-based second phase particles, and it may be difficult to increase the strength.
 一方、Scの含有量が過度に多くなると、Scの含有量が固溶限を超え、前記アルミニウム合金中にScを固溶させることが難しくなる。その結果、Al-Sc系第二相粒子による強度向上の効果が得られなくなるおそれがある。かかる問題を回避する観点から、Scの含有量は0.40質量%以下とする。同様の観点から、Scの含有量は、0.35質量%以下であることが好ましく、0.30質量%以下であることがより好ましく、0.25質量%以下であることがさらに好ましく、0.15質量%以下であることが特に好ましい。 On the other hand, if the Sc content is excessively high, the Sc content exceeds the solid solubility limit, making it difficult to dissolve Sc in the aluminum alloy. As a result, there is a possibility that the effect of improving the strength by the Al—Sc-based second phase particles cannot be obtained. From the viewpoint of avoiding such problems, the Sc content is set to 0.40% by mass or less. From the same viewpoint, the Sc content is preferably 0.35% by mass or less, more preferably 0.30% by mass or less, further preferably 0.25% by mass or less, and 0 0.15% by mass or less is particularly preferred.
・Mg:0質量%以上2.5質量%以下
 前記アルミニウム合金は、任意成分として、2.5質量%以下のMgを含んでいてもよい。前記アルミニウム合金中のMgは、Al母相中に固溶した固溶元素として存在しており、前記アルミニウム合金の強度を向上させる作用を有している。前記アルミニウム合金中のMgの含有量を前記特定の範囲とすることにより、熱間加工時の変形抵抗の上昇を抑制しつつMgによる強度向上の効果を得ることができる。
- Mg: 0% by mass or more and 2.5% by mass or less The aluminum alloy may contain 2.5% by mass or less of Mg as an optional component. Mg in the aluminum alloy exists as a solid-solution element dissolved in the Al matrix, and has the effect of improving the strength of the aluminum alloy. By setting the content of Mg in the aluminum alloy within the specific range, it is possible to obtain the effect of improving strength by Mg while suppressing an increase in deformation resistance during hot working.
 Mgによる強度向上の効果をより高める観点からは、Mgの含有量は、0.2質量%以上であることが好ましく、0.4質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましく、1.0質量%以上であることが特に好ましく、1.2質量%以上であることが最も特に好ましい。一方、熱間加工性をより高める観点からは、Mgの含有量は、2.2質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.8質量%以下であることがさらに好ましい。 From the viewpoint of further enhancing the strength improvement effect of Mg, the Mg content is preferably 0.2% by mass or more, more preferably 0.4% by mass or more, and 0.8% by mass or more. more preferably, 1.0% by mass or more is particularly preferable, and 1.2% by mass or more is most particularly preferable. On the other hand, from the viewpoint of further improving hot workability, the Mg content is preferably 2.2% by mass or less, more preferably 2.0% by mass or less, and 1.8% by mass or less. is more preferable.
・Zr:0質量%以上0.40質量%以下
 前記アルミニウム合金は、任意成分として、0.40質量%以下のZrを含んでいてもよい。前記アルミニウム合金中のZrは、Al母相中に固溶した固溶元素やZr系析出物などの状態で存在している。Al母相中に固溶しているZrは、前記アルミニウム合金を250℃以上550℃以下の保持温度に保持した際に、Al-Sc系第二相粒子を取り囲むようにして析出する。このようにして析出したZr系析出物は、Al-Sc系第二相粒子の粗大化を抑制する作用を有している。そして、Zr系析出物によってAl-Sc系第二相粒子の粗大化が抑制されることにより、より微細なAl-Sc系第二相粒子をAl母相中に多数析出させることができる。以上の結果、Al-Sc系第二相粒子による強度向上の効果をより高めることができる。
- Zr: 0% by mass or more and 0.40% by mass or less The aluminum alloy may contain 0.40% by mass or less of Zr as an optional component. Zr in the aluminum alloy is present in the form of a solid-solution element in the Al matrix phase, a Zr-based precipitate, or the like. When the aluminum alloy is held at a holding temperature of 250° C. or higher and 550° C. or lower, Zr dissolved in the Al matrix precipitates so as to surround the Al—Sc-based second phase particles. The Zr-based precipitates deposited in this way have the effect of suppressing the coarsening of the Al—Sc-based second phase particles. Since the Zr-based precipitates suppress the coarsening of the Al--Sc-based second phase particles, a large number of finer Al--Sc-based second-phase particles can be precipitated in the Al matrix. As a result, the effect of improving the strength by the Al—Sc-based second phase particles can be further enhanced.
 Zrによる前述した作用効果をより高める観点からは、Zrの含有量は、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.06質量%以上であることがさらに好ましく、0.09質量%以上であることが特に好ましい。 From the viewpoint of further enhancing the above-described effects of Zr, the content of Zr is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and 0.06% by mass or more. More preferably, it is more preferably 0.09% by mass or more.
 一方、Zrの含有量が過度に多くなると、Zrの含有量が固溶限を超え、前記アルミニウム合金中にZrを固溶させることが難しくなる。その結果、Zr系析出物による前述した作用効果が得られなくなるおそれがある。かかる問題を回避する観点から、Zrの含有量は0.40質量%以下とする。同様の観点から、Zrの含有量は、0.35質量%以下であることが好ましく、0.30質量%以下であることがより好ましく、0.25質量%以下であることがさらに好ましい。 On the other hand, if the Zr content is excessively high, the Zr content exceeds the solid solubility limit, making it difficult to dissolve Zr in the aluminum alloy. As a result, there is a possibility that the above-described effects of the Zr-based precipitates cannot be obtained. From the viewpoint of avoiding such problems, the Zr content is set to 0.40% by mass or less. From the same point of view, the Zr content is preferably 0.35% by mass or less, more preferably 0.30% by mass or less, and even more preferably 0.25% by mass or less.
・Cu(銅):0質量%超え1.0質量%以下
 前記アルミニウム合金は、任意成分として、0質量%超え1.0質量%以下のCuを含んでいてもよい。この場合には、前記アルミニウム合金の強度をより高めることができる。Cuによる強度向上の効果をより高める観点からは、Cuの含有量は、0.10質量%以上であることが好ましく、0.20質量%以上であることがより好ましく、0.30質量%以上であることがさらに好ましい。
· Cu (copper): more than 0% by mass and 1.0% by mass or less The aluminum alloy may contain more than 0% by mass and 1.0% by mass or less of Cu as an optional component. In this case, the strength of the aluminum alloy can be further enhanced. From the viewpoint of further enhancing the strength improvement effect of Cu, the Cu content is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and 0.30% by mass or more. is more preferable.
 一方、Cuの含有量が過度に多くなると、耐食性の低下を招くおそれがある。耐食性の低下を回避しつつCuによる強度向上の効果を得る観点からは、Cuの含有量は、0.90質量%以下であることが好ましく、0.80質量%以下であることがより好ましく、0.70質量%以下であることがさらに好ましい。 On the other hand, if the Cu content is excessively high, there is a risk of deterioration in corrosion resistance. From the viewpoint of obtaining the strength improvement effect of Cu while avoiding a decrease in corrosion resistance, the Cu content is preferably 0.90% by mass or less, more preferably 0.80% by mass or less, It is more preferably 0.70% by mass or less.
・Mn(マンガン):0質量%超え1.0質量%以下、Cr(クロム):0質量%超え0.30質量%以下
 前記アルミニウム合金は、任意成分として、0質量%超え1.0質量%以下のMn及び0質量%超え0.30質量%以下のCrのうち1種または2種の元素を含んでいてもよい。これらの元素の含有量を前記特定の範囲とすることにより、前記アルミニウム合金の製造過程における結晶粒組織の粗大化をより効果的に抑制することができる。
・Mn (manganese): more than 0% by mass and 1.0% by mass or less, Cr (chromium): more than 0% by mass and 0.30% by mass or less The aluminum alloy is more than 0% by mass and 1.0% by mass as an optional component It may contain one or two elements selected from the following Mn and more than 0% by mass and up to 0.30% by mass of Cr. By setting the contents of these elements within the specific ranges, it is possible to more effectively suppress the coarsening of the grain structure during the manufacturing process of the aluminum alloy.
・Ti(チタン):0質量%超え0.10質量%以下、B(ホウ素):0質量%超え0.10質量%以下
 前記アルミニウム合金は、任意成分として、0質量%超え0.10質量%以下のTi及び0質量%超え0.10質量%以下のBのうち1種または2種の元素を含んでいてもよい。これらの元素は、前記アルミニウム合金の製造過程において、溶湯を凝固させた際の結晶粒を微細化する作用を有している。Ti及びBの含有量を前記特定の範囲とすることにより、前記アルミニウム合金の結晶粒を十分に微細化し、最終的に得られるアルミニウム合金熱間加工材の強度をより向上させることができる。
- Ti (titanium): more than 0% by mass and 0.10% by mass or less, B (boron): more than 0% by mass and 0.10% by mass or less The aluminum alloy is more than 0% by mass and 0.10% by mass as an optional component It may contain one or two elements selected from the following Ti and more than 0% by mass and up to 0.10% by mass of B. These elements have the effect of refining crystal grains when the molten metal is solidified in the manufacturing process of the aluminum alloy. By setting the contents of Ti and B within the specific ranges, the crystal grains of the aluminum alloy can be sufficiently refined, and the strength of the aluminum alloy hot-worked material finally obtained can be further improved.
・不可避的不純物
 前記アルミニウム合金に含まれる不可避的不純物としては、例えば、Fe(鉄)、Si(ケイ素)等の元素が挙げられる。不可避的不純物としてのFeの含有量は0.50質量%以下であり、Siの含有量は0.50質量%以下である。また、Fe及びSi以外の不可避的不純物は、各元素について0.05質量%以下である。不可避的不純物としての元素の含有量が前述した範囲であれば、不可避的不純物によって前述した作用効果が損なわれることを容易に回避できる。
-Inevitable Impurities Examples of the inevitable impurities contained in the aluminum alloy include elements such as Fe (iron) and Si (silicon). The content of Fe as unavoidable impurities is 0.50% by mass or less, and the content of Si is 0.50% by mass or less. In addition, the amount of unavoidable impurities other than Fe and Si is 0.05% by mass or less for each element. If the content of the element as an unavoidable impurity is within the range described above, it is possible to easily avoid impairing the effects described above due to the unavoidable impurity.
・圧縮変形抵抗:62MPa以下
 前記特定の範囲の化学成分を有するアルミニウム合金は、62MPa以下の圧縮変形抵抗を有している。なお、本明細書における圧縮変形抵抗とは、450℃の温度において1s-1のひずみ速度で圧縮して変形させた際の真応力に基づいて算出される圧縮変形抵抗である。
Compressive deformation resistance: 62 MPa or less The aluminum alloy having the chemical composition within the specific range has a compressive deformation resistance of 62 MPa or less. The compressive deformation resistance in this specification is the compressive deformation resistance calculated based on the true stress when compressing and deforming at a temperature of 450° C. at a strain rate of 1 s −1 .
 前記アルミニウム合金の圧縮変形抵抗を前記特定の範囲とすることにより、アルミニウム合金の熱間加工性を向上させることができる。また、前記特定の範囲の圧縮変形抵抗を備えたアルミニウム合金は、例えば、ポートホール押出、すなわち、オス型とメス型とを組み合わせてなるダイスからアルミニウム合金を押し出す成形法のような、特に高い熱間加工性が要求される成形法にも適用することができる。 By setting the compressive deformation resistance of the aluminum alloy within the specific range, the hot workability of the aluminum alloy can be improved. In addition, aluminum alloys with a compression deformation resistance within the specific range can be used particularly at high temperatures, for example, by porthole extrusion, that is, a molding method in which an aluminum alloy is extruded through a die consisting of a combination of male and female dies. It can also be applied to molding methods that require inter-workability.
(アルミニウム合金熱間加工材)
 前記アルミニウム合金に熱間圧延、熱間押出などの熱間加工を施すことにより、アルミニウム合金熱間加工材(以下、「熱間加工材」という。)を得ることができる。前記熱間加工材の化学成分は、素材として用いたアルミニウム合金の化学成分と同一である。
(Aluminum alloy hot worked material)
An aluminum alloy hot-worked material (hereinafter referred to as "hot-worked material") can be obtained by subjecting the aluminum alloy to hot working such as hot rolling or hot extrusion. The chemical composition of the hot-worked material is the same as the chemical composition of the aluminum alloy used as the raw material.
 前記熱間加工材におけるAl母相中には、Al-Sc系第二相粒子、つまり、AlとScとを含む第二相粒子が分散している。Al-Sc系第二相粒子は、具体的には、Al3Sc、Al3(ScxZr1-x)などの組成を有する金属間化合物から構成されている。なお、Al3(ScxZr1-x)におけるxの値は0<x<1である。Al3(ScxZr1-x)におけるxの値は、アルミニウム合金中のZrの含有量および熱処理工程における加熱条件に応じて種々変化する。 In the Al matrix phase of the hot-worked material, Al—Sc-based second-phase particles, that is, second-phase particles containing Al and Sc are dispersed. The Al--Sc-based second phase particles are specifically composed of intermetallic compounds having compositions such as Al 3 Sc and Al 3 (Sc x Zr 1-x ). The value of x in Al 3 (Sc x Zr 1-x ) is 0<x<1. The value of x in Al 3 (Sc x Zr 1-x ) varies depending on the content of Zr in the aluminum alloy and the heating conditions in the heat treatment process.
 前記熱間加工材におけるAl-Sc系第二相粒子の数密度は、3000個/μm3以上であることが好ましい。Al-Sc系第二相粒子は、析出強化によって熱間加工材の強度を向上させる作用を有している。熱間加工材におけるAl-Sc系第二相粒子の数密度を前記特定の範囲とすることにより、熱間加工材の強度を高めることができる。 The number density of the Al—Sc-based second-phase particles in the hot-worked material is preferably 3000 particles/μm 3 or more. The Al—Sc-based second phase particles have the effect of improving the strength of the hot-worked material by precipitation strengthening. By setting the number density of the Al—Sc-based second phase particles in the hot-worked material within the specific range, the strength of the hot-worked material can be increased.
 第二相粒子による析出強化の効果については、C. B. Fuller et al., Acta Materialia 51(2003)4803-4814に記載された以下の式(1)に基づいてある程度予測することができる。
   σ=2.8/λ(lnλ+5.4)+σ0   ・・・(1)
 なお、上記式におけるσは第二相粒子によって析出強化されたアルミニウム合金の0.2%耐力[MPa]であり、λは第二相粒子の平均粒子間距離[μm]であり、σ0は第二相粒子を含まないアルミニウム合金の0.2%耐力[MPa]である。
Regarding the effect of precipitation strengthening by second phase particles, see C.I. B. Fuller et al. , Acta Materialia 51 (2003) 4803-4814.
σ = 2.8/λ(lnλ+5.4)+σ0 (1)
In the above formula, σ is the 0.2% yield strength [MPa] of the aluminum alloy precipitation-strengthened by the second-phase particles, λ is the average inter-particle distance [μm] of the second-phase particles, and σ 0 is It is the 0.2% yield strength [MPa] of an aluminum alloy containing no second phase particles.
 前記式(1)における第二相粒子の平均粒子間距離λは、第二相粒子の単位体積当たりの数密度N[個/μm3]を用いて下記式(2)のように表すことができる。
  λ=N-1/3   ・・・(2)
The average inter-particle distance λ of the second phase particles in the above formula (1) can be represented by the following formula (2) using the number density N [number/μm 3 ] of the second phase particles per unit volume. can.
λ=N-1/ 3 (2)
 σ0として、JIS A1100アルミニウムの典型的な0.2%耐力である35MPaを使用すると、前記式(1)は、下記式(3)のように書き表すことができる。
   σ=2.8N1/3(lnN-1/3+5.4)+35   ・・・(3)
If 35 MPa, which is a typical 0.2% proof stress of JIS A1100 aluminum, is used as σ 0 , the above formula (1) can be written as the following formula (3).
σ=2.8N 1/3 (lnN −1/3 +5.4)+35 (3)
 そして、前記式(3)におけるNを3000個/μm3とすると、0.2%耐力σは145MPa程度となる。従って、Al-Sc系第二相粒子の数密度を前記特定の範囲とすることにより、Mgを含まない場合においてもアルミニウム合金の0.2%耐力が140MPa以上となることを期待できる。 When N in the above formula (3) is 3000 pieces/μm 3 , the 0.2% proof stress σ is approximately 145 MPa. Therefore, by setting the number density of the Al--Sc-based second-phase particles within the specific range, it can be expected that the 0.2% yield strength of the aluminum alloy will be 140 MPa or more even if it does not contain Mg.
 熱間加工材の強度をより高める観点からは、Al-Sc系第二相粒子の数密度は、5000個/μm3以上であることがより好ましく、7000個/μm3以上であることがさらに好ましい。なお、Al-Sc系第二相粒子の数密度の上限は、前記アルミニウム合金熱間加工材中に含まれるScの量に応じて自ずと決定される。 From the viewpoint of further increasing the strength of the hot-worked material, the number density of the Al—Sc-based second phase particles is more preferably 5000/μm 3 or more, and more preferably 7000/μm 3 or more. preferable. The upper limit of the number density of the Al--Sc-based second phase particles is naturally determined according to the amount of Sc contained in the aluminum alloy hot-worked material.
 前記熱間加工材におけるAl-Sc系第二相粒子の数密度は、透過型電子顕微鏡(TEM)を用いた微細組織観察の結果に基づいて算出することができる。より具体的には、まず、前記熱間加工材から測定試料を採取したのち、電解研磨によって測定試料の厚みを0.1μmにする。TEMを用いてこの測定試料を観察し、視野内に存在する円相当径0.5nm以上10nm未満のAl-Sc系第二相粒子の数を数える。そして、視野内に存在するAl-Sc系第二相粒子の数を体積1μm3当たりの数に換算した値を、Al-Sc系第二相粒子の数密度とする。 The number density of Al—Sc-based second phase particles in the hot-worked material can be calculated based on the results of microstructural observation using a transmission electron microscope (TEM). More specifically, first, a measurement sample is taken from the hot-worked material, and the thickness of the measurement sample is reduced to 0.1 μm by electropolishing. This measurement sample is observed using a TEM, and the number of Al—Sc based second phase particles having an equivalent circle diameter of 0.5 nm or more and less than 10 nm present in the field of view is counted. The value obtained by converting the number of Al--Sc-based second phase particles present in the field of view to the number per 1 μm 3 of volume is defined as the number density of the Al--Sc-based second-phase particles.
 前記アルミニウム合金熱間加工材の形状は特に限定されることはなく、例えば、板材、棒材、管材、条材、押出形材などの種々の形状を取りうる。前記アルミニウム合金熱間加工材は、ポートホール押出によって作製されていることが好ましい。ポートホール押出によって作製された熱間押出材は、アルミニウム合金からなる壁部によって囲まれた少なくとも1か所の中空部を有している。また、ポートホール押出によって作製された熱間押出材における前記壁部には、前記アルミニウム合金同士が溶着してなる少なくとも1か所の溶着面が形成されていてもよい。 The shape of the aluminum alloy hot-worked material is not particularly limited, and can take various shapes such as plate material, bar material, tube material, strip material, and extruded shape material. The aluminum alloy hot-worked material is preferably produced by porthole extrusion. A hot extruded material produced by porthole extrusion has at least one hollow portion surrounded by a wall portion made of an aluminum alloy. Further, the wall portion of the hot extruded material produced by porthole extrusion may be formed with at least one welding surface formed by welding the aluminum alloys to each other.
 前述したように、前記アルミニウム合金は、ポートホール押出が可能な程度の熱間加工性を有している。したがって、前記アルミニウム合金を用いることにより、ポートホール押出によって実現可能な、複雑な断面形状や微細構造を有する断面形状の熱間押出材を容易に作製することができる。 As described above, the aluminum alloy has hot workability to the extent that porthole extrusion is possible. Therefore, by using the aluminum alloy, it is possible to easily produce a hot extruded material having a cross-sectional shape having a complicated cross-sectional shape and fine structure, which can be realized by porthole extrusion.
(アルミニウム合金熱間加工材の製造方法)
 前記アルミニウム合金熱間加工材の製造方法は、前記アルミニウム合金に温度が350℃以上550℃以下の範囲内である状態で熱間加工を施す熱間加工工程と、
 前記熱間加工工程の前及び前記熱間加工工程が完了した後のうち少なくとも一方において、前記アルミニウム合金を250℃以上550℃以下の保持温度に合計30分以上保持する熱処理工程と、を有している。
(Manufacturing method for aluminum alloy hot-worked material)
The method for producing the aluminum alloy hot-worked material includes a hot working step of hot-working the aluminum alloy at a temperature in the range of 350° C. or higher and 550° C. or lower;
and a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step is completed. ing.
・熱間加工工程
 熱間加工工程に供するアルミニウム合金としては、常法により準備されたものを使用することができる。例えば、アルミニウム合金は、前記特定の化学成分を備えた溶湯をDC鋳造やCC鋳造などの方法によって鋳造した鋳塊であってもよく、ビレットであってもよい。
- Hot Working Process As the aluminum alloy to be subjected to the hot working process, one prepared by a conventional method can be used. For example, the aluminum alloy may be an ingot obtained by casting a molten metal having the specific chemical composition by a method such as DC casting or CC casting, or may be a billet.
 熱間加工工程における熱間加工としては、熱間圧延や熱間押出、熱間鍛造などの種々の加工法を採用することができる。前記製造方法では、前記特定の化学成分を有し、熱間加工性に優れたアルミニウム合金が使用される。それ故、前記製造方法は、熱間加工工程における熱間加工としてポートホール押出を採用することができる。そして、ポートホール押出を行うことにより、複雑な断面形状や微細な構造を備えた断面形状を有する熱間押出材を容易に得ることができる。 Various processing methods such as hot rolling, hot extrusion, and hot forging can be used as hot working in the hot working process. In the manufacturing method, an aluminum alloy having the specific chemical composition and excellent hot workability is used. Therefore, the manufacturing method can employ porthole extrusion as hot working in the hot working process. By performing porthole extrusion, it is possible to easily obtain a hot extruded material having a complicated cross-sectional shape or a cross-sectional shape with a fine structure.
 熱間加工工程における熱間加工の開始温度は、350℃以上550℃以下とする。開始温度が350℃未満の場合には、前記アルミニウム合金の変形抵抗が過度に高くなり、熱間加工を行うことが難しい。一方、開始温度が550℃を超える場合には、熱間加工中に、アルミニウム合金が加工発熱によって部分的に溶融しやすくなるおそれがある。 The starting temperature of hot working in the hot working process should be 350°C or higher and 550°C or lower. If the starting temperature is less than 350° C., the deformation resistance of the aluminum alloy becomes excessively high, making hot working difficult. On the other hand, if the starting temperature exceeds 550° C., the aluminum alloy may tend to partially melt due to heat generated during hot working.
・熱処理工程
 前記製造方法においては、アルミニウム合金を加熱する熱処理工程を行う。熱処理工程における保持温度は、250℃以上550℃以下とする。また、熱処理工程における保持時間は、合計30分以上とする。熱処理工程における保持温度及び保持時間を前記特定の範囲とすることにより、Al母相中に微細かつ多数のAl-Sc系第二相粒子を析出させ、熱間加工材の強度を向上させることができる。
- Heat treatment step In the manufacturing method, a heat treatment step of heating the aluminum alloy is performed. The holding temperature in the heat treatment step is 250° C. or higher and 550° C. or lower. Moreover, the holding time in the heat treatment step is set to 30 minutes or more in total. By setting the holding temperature and holding time in the heat treatment step to the specific ranges described above, a large number of fine Al—Sc-based second phase particles are precipitated in the Al matrix, and the strength of the hot-worked material can be improved. can.
 熱処理工程における保持温度が250℃未満の場合、または、保持時間の合計が30分未満の場合には、Al-Sc系第二相粒子の析出量が不十分となり、熱間加工材の強度の低下を招くおそれがある。熱処理工程における保持温度が550℃を超える場合には、アルミニウム合金の部分溶融を招くおそれがある。 When the holding temperature in the heat treatment step is less than 250°C, or when the total holding time is less than 30 minutes, the precipitation amount of Al—Sc-based second phase particles becomes insufficient, and the strength of the hot-worked material is reduced. It may lead to a decline. If the holding temperature in the heat treatment step exceeds 550°C, the aluminum alloy may be partially melted.
 熱処理工程は、熱間加工工程を行う前に実施してもよいし、熱間加工工程が完了した後に実施してもよい。また、熱間加工工程を行う前及び熱間加工工程が完了した後の両方において熱処理工程を実施してもよい。Al-Sc系第二相粒子は、前述したように、熱間加工性に及ぼす影響が小さい。それ故、熱間加工工程を行う前に熱処理工程を実施し、Al-Sc系第二相粒子が析出しているアルミニウム合金に熱間加工を行う場合であっても、容易に熱間加工を行うことができる。 The heat treatment process may be performed before performing the hot working process, or may be performed after the hot working process is completed. Also, the heat treatment step may be performed both before performing the hot working step and after the hot working step is completed. As described above, the Al--Sc-based second phase particles have little effect on hot workability. Therefore, even if the heat treatment step is performed before the hot working step and the aluminum alloy in which the Al—Sc-based second phase particles are precipitated is subjected to hot working, the hot working can be easily performed. It can be carried out.
 前記アルミニウム合金、前記アルミニウム合金熱間加工材及びその製造方法の実施例を以下に説明する。なお、本発明に係るアルミニウム合金、アルミニウム合金熱間加工材及びその製造方法の具体的な態様は、実施例に記載された態様に限定されるものではなく、本発明の趣旨を損なわない範囲において適宜構成を変更することができる。 Examples of the aluminum alloy, the aluminum alloy hot-worked material, and the manufacturing method thereof will be described below. In addition, specific aspects of the aluminum alloy, aluminum alloy hot-worked material, and method for producing the same according to the present invention are not limited to the aspects described in the examples, and are within the scope that does not impair the gist of the present invention. The configuration can be changed as appropriate.
 本例では、まず、表1に示す化学成分を有するアルミニウム合金の溶湯を常法により鋳造し、直径90mm、長さ200mmの円柱状を呈するビレットを作製する。なお、表1における記号「Bal.」は、残部であることを示す記号である。このビレットを、300℃の保持温度に10時間保持し、次いで400℃の保持温度に10時間保持する(熱処理工程)。 In this example, first, molten aluminum alloy having the chemical composition shown in Table 1 is cast by a conventional method to produce a cylindrical billet with a diameter of 90 mm and a length of 200 mm. Note that the symbol "Bal." in Table 1 is a symbol indicating the balance. This billet is held at a holding temperature of 300° C. for 10 hours and then held at a holding temperature of 400° C. for 10 hours (heat treatment step).
 熱処理工程が完了した後、ビレットを450℃まで加熱して熱間押出を行う(熱間加工工程)。熱間押出におけるコンテナ温度は450℃、ダイス温度は450℃、押出速度は1.0m/分とする。以上により、試験材A~Fを得ることができる。なお、試験材A~Fは、幅35mm、厚み2mmの条材である。 After the heat treatment process is completed, the billet is heated to 450°C and hot extruded (hot working process). In hot extrusion, the container temperature is 450° C., the die temperature is 450° C., and the extrusion speed is 1.0 m/min. As described above, test materials A to F can be obtained. Test materials A to F are strips having a width of 35 mm and a thickness of 2 mm.
 また、ビレットを500℃まで加熱し、コンテナ温度500℃、ダイス温度500℃、押出速度1.4m/分の条件で熱間押出を行うことにより、試験材Gを得ることができる。なお、試験材Gは、幅35mm、厚み2.6mmの条材である。 Also, the test material G can be obtained by heating the billet to 500°C and performing hot extrusion under conditions of a container temperature of 500°C, a die temperature of 500°C, and an extrusion speed of 1.4 m/min. The test material G is a strip material having a width of 35 mm and a thickness of 2.6 mm.
 また、表1に示す試験材H及び試験材Iは、試験材A~Gとの比較のための試験材である。試験材H及び試験材Iの製造方法は、アルミニウム合金の化学成分が異なる以外は試験材A~Fの製造方法と同様である。 In addition, test material H and test material I shown in Table 1 are test materials for comparison with test materials A to G. The manufacturing method of test material H and test material I is the same as the manufacturing method of test materials A to F except that the chemical composition of the aluminum alloy is different.
 各試験材及び試験材の作製に用いたアルミニウム合金の物性は、以下の方法により評価することができる。 The physical properties of each test material and the aluminum alloy used to produce the test material can be evaluated by the following methods.
・アルミニウム合金の圧縮変形抵抗
 熱処理工程を行った後、熱間加工を行う前のビレットから、直径8mm、長さ12mmの円柱状を呈する圧縮試験用試験片を採取する。この試験片を用いて、温度450℃、ひずみ速度1s-1の条件で圧縮試験を行い、荷重-変位曲線を取得する。この荷重-変位曲線に基づき、圧縮試験中における試験片の変形が均一であると仮定し、真ひずみ及び真応力を算出する。そして、真ひずみが0.3以上0.6未満の範囲における真応力を算術平均し、この値を圧縮変形抵抗とする。各試験材の圧縮変形抵抗を表2に示す。
Compressive Deformation Resistance of Aluminum Alloy After performing the heat treatment step, a test piece for compression test having a cylindrical shape with a diameter of 8 mm and a length of 12 mm is taken from the billet before hot working. Using this test piece, a compression test is performed at a temperature of 450° C. and a strain rate of 1 s −1 to obtain a load-displacement curve. Based on this load-displacement curve, assuming uniform deformation of the test piece during the compression test, true strain and true stress are calculated. Then, the arithmetic mean of the true stress in the true strain range of 0.3 or more and less than 0.6 is taken as the compressive deformation resistance. Table 2 shows the compressive deformation resistance of each test material.
・試験材中に存在するAl-Sc系第二相粒子の数密度
 試験材を適当な大きさに切断した後、電解研磨を行うことにより厚み0.1μmの試験片を作製する。TEMを用いてこの試験片から無作為に選択した3か所を観察し、2μm×2μmの視野の暗視野像を取得する。そして、これら3か所の暗視野像中に存在する円相当径0.5nm以上10nm未満のAl-Sc系第二相粒子の数を体積1μm3当たりの数に換算することにより、Al-Sc系第二相粒子の数密度を算出する。
·Number density of Al—Sc-based second phase particles present in test material After cutting the test material into a suitable size, a test piece having a thickness of 0.1 μm is prepared by electropolishing. Using a TEM, the test piece is observed at three randomly selected locations to obtain a dark field image of a field of view of 2 μm×2 μm. Then, by converting the number of Al-Sc-based second phase particles having an equivalent circle diameter of 0.5 nm or more and less than 10 nm in the dark field images at these three locations to the number per 1 μm 3 of volume, Al-Sc Calculate the number density of the system second phase particles.
 試験材A中に存在するAl-Sc系第二相粒子の数密度は、10000個/μmである。また、試験材B~G中に存在するAl-Sc系第二相粒子の数密度も、試験材Aと同程度になると推定される。 The number density of the Al—Sc-based second phase particles present in the test material A is 10,000/μm 3 . In addition, it is estimated that the number density of the Al—Sc-based second phase particles present in the test materials B to G is approximately the same as that of the test material A.
・試験材の機械的特性
 試験材からJIS Z2241:2011に規定された5号試験片を採取する。この試験片を用いて引張試験を行い、引張強さ及び0.2%耐力を算出する。各試験材の引張強さ及び0.2%耐力を表2に示す。
- Mechanical properties of test material A No. 5 test piece specified in JIS Z2241:2011 is taken from the test material. A tensile test is performed using this test piece to calculate the tensile strength and 0.2% yield strength. Table 2 shows the tensile strength and 0.2% proof stress of each test material.
・押出性
 押出性の評価は、以下の方法により行う。まず、熱処理工程が完了した後のビレットを520℃まで加熱する。そして、断面形状が一辺31mmの正方形状であり、中空部を取り囲む壁部の厚みが2.5mmである角管を形成可能に構成されたダイスを用いてビレットにポートホール押出を行う。ポートホール押出におけるコンテナ温度は450℃、ダイス温度は450℃、押出速度は1.0m/分とする。
-Extrudability Evaluation of extrudability is performed by the following method. First, the billet after the heat treatment process is completed is heated to 520°C. Then, the billet is subjected to porthole extrusion using a die configured to form a square tube having a square cross-sectional shape of 31 mm on a side and a wall portion surrounding the hollow portion having a thickness of 2.5 mm. In the porthole extrusion, the container temperature is 450°C, the die temperature is 450°C, and the extrusion speed is 1.0 m/min.
 表2の「押出性」欄に記載した記号「A」は、前述の条件でポートホール押出を行った際に、角管を作製できることを示し、記号「B」は、角管を作製できないことを示す。 The symbol "A" described in the "Extrudability" column of Table 2 indicates that a square tube can be produced when porthole extrusion is performed under the conditions described above, and the symbol "B" indicates that a square tube cannot be produced. indicates
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示したように、試験材A~Gに用いたアルミニウム合金は、前記特定の化学成分を有しており、ビレットの圧縮変形抵抗が62MPa以下である。そのため、これらの試験材は優れた熱間加工性を有しており、ポートホール押出を行うことが可能である。また、試験材A~Gは、前記特定の化学成分を有しているため、熱処理を施すことにより、Al-Sc系第二相粒子の数密度を3000個/μm3以上とすることができる。その結果、熱処理後の試験材A~Gの0.2%耐力を140MPa以上とすることができる。 As shown in Tables 1 and 2, the aluminum alloys used for the test materials A to G have the above-mentioned specific chemical components, and the compressive deformation resistance of the billet is 62 MPa or less. Therefore, these test materials have excellent hot workability and can be subjected to porthole extrusion. In addition, since the test materials A to G have the above-mentioned specific chemical components, the number density of the Al—Sc-based second phase particles can be increased to 3000/μm 3 or more by heat treatment. . As a result, the 0.2% yield strength of test materials A to G after heat treatment can be 140 MPa or more.
 一方、試験材Hは、Scを含まないアルミニウム合金から構成されているため、熱処理後のビレット中にAl-Sc系第二相粒子が形成されない。それ故、試験材Hの0.2%耐力は試験材Aよりも低くなる。 On the other hand, since the test material H is composed of an aluminum alloy that does not contain Sc, Al-Sc-based second phase particles are not formed in the billet after the heat treatment. Therefore, the 0.2% yield strength of test material H is lower than that of test material A.
 試験材Iを構成するアルミニウム合金には、試験材Hよりも強度を高くするために、試験材Hに比べて多量のMgが含まれている。しかし、Mgの含有量が多くなったことにより、アルミニウム合金の圧縮変形抵抗が上昇し、熱間押出性が悪化する。それ故、試験材Iは、ポートホール押出を行うことが難しい。また、試験材Iの0.2%耐力は、試験材Hに比べて高いものの、試験材A~Gに比べて低くなる。 The aluminum alloy that constitutes the test material I contains a larger amount of Mg than the test material H in order to make the strength higher than that of the test material H. However, the increased Mg content increases the compressive deformation resistance of the aluminum alloy and deteriorates the hot extrudability. Therefore, test material I is difficult to perform porthole extrusion. Also, although the 0.2% yield strength of test material I is higher than that of test material H, it is lower than that of test materials A to G.

Claims (11)

  1.  Sc:0.01質量%以上0.40質量%以下、Mg:0質量%以上2.5質量%以下、Zr:0質量%以上0.4質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
     450℃の温度において1s-1のひずみ速度で圧縮して変形させた際の真応力に基づいて算出される圧縮変形抵抗が62MPa以下である、アルミニウム合金。
    Sc: 0.01% by mass or more and 0.40% by mass or less, Mg: 0% by mass or more and 2.5% by mass or less, Zr: 0% by mass or more and 0.4% by mass or less, the balance being Al and unavoidable having a chemical composition consisting of impurities,
    An aluminum alloy having a compressive deformation resistance of 62 MPa or less calculated based on the true stress when deformed by compressing at a strain rate of 1 s -1 at a temperature of 450°C.
  2.  Mgの含有量が0.2質量%以上2.5質量%以下である、請求項1に記載のアルミニウム合金。 The aluminum alloy according to claim 1, wherein the content of Mg is 0.2% by mass or more and 2.5% by mass or less.
  3.  Zrの含有量が0.01質量%以上0.4質量%以下である、請求項1または2に記載のアルミニウム合金。 The aluminum alloy according to claim 1 or 2, wherein the Zr content is 0.01% by mass or more and 0.4% by mass or less.
  4.  前記アルミニウム合金は、さらに、Cu:0質量%超え1.0質量%以下、Mn:0質量%超え1.0質量%以下、Cr:0質量%超え0.30質量%以下、Ti:0質量%超え0.10質量%以下、B:0質量%超え0.10質量%以下からなる群より選択される1種または2種以上の元素を含有している、請求項1~3のいずれか1項に記載のアルミニウム合金。 The aluminum alloy further includes Cu: more than 0% by mass and 1.0% by mass or less, Mn: more than 0% by mass and 1.0% by mass or less, Cr: more than 0% by mass and 0.30% by mass or less, Ti: 0% by mass % and 0.10% by mass or less, and B: more than 0% by mass and 0.10% by mass or less, containing one or more elements selected from the group consisting of 0.10% by mass or less. The aluminum alloy according to item 1.
  5.  Sc:0.01質量%以上0.40質量%以下、Mg:0質量%以上2.5質量%以下、Zr:0質量%以上0.4質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有し、
     Al母相中に分散したAl-Sc系第二相粒子を有し、かつ、前記Al-Sc系第二相粒子の数密度が3000個/μm3以上である、アルミニウム合金熱間加工材。
    Sc: 0.01% by mass or more and 0.40% by mass or less, Mg: 0% by mass or more and 2.5% by mass or less, Zr: 0% by mass or more and 0.4% by mass or less, the balance being Al and unavoidable having a chemical composition consisting of impurities,
    An aluminum alloy hot-worked material having Al--Sc-based second-phase particles dispersed in an Al matrix, and having a number density of the Al--Sc-based second-phase particles of 3000 particles/μm 3 or more.
  6.  Mgの含有量が0.2質量%以上2.5質量%以下である、請求項5に記載のアルミニウム合金熱間加工材。 The aluminum alloy hot-worked material according to claim 5, wherein the content of Mg is 0.2% by mass or more and 2.5% by mass or less.
  7.  Zrの含有量が0.01質量%以上0.4質量%以下である、請求項5または6に記載のアルミニウム合金熱間加工材。 The aluminum alloy hot-worked material according to claim 5 or 6, wherein the Zr content is 0.01% by mass or more and 0.4% by mass or less.
  8.  前記アルミニウム合金熱間加工材は、さらに、Cu:0質量%超え1.0質量%以下、Mn:0質量%超え1.0質量%以下、Cr:0質量%超え0.30質量%以下、Ti:0質量%超え0.10質量%以下、B:0質量%超え0.10質量%以下からなる群より選択される1種または2種以上の元素を含有している、請求項5~7のいずれか1項に記載のアルミニウム合金熱間加工材。 The aluminum alloy hot-worked material further comprises Cu: more than 0% by mass and 1.0% by mass or less, Mn: more than 0% by mass and 1.0% by mass or less, Cr: more than 0% by mass and 0.30% by mass or less, Ti: more than 0% by mass and 0.10% by mass or less, B: more than 0% by mass and 0.10% by mass or less containing one or more elements selected from the group consisting of, claims 5- 8. The aluminum alloy hot-worked material according to any one of 7.
  9.  前記アルミニウム合金熱間加工材は、アルミニウム合金からなる壁部によって囲まれた少なくとも1か所の中空部を有しており、前記壁部には、前記アルミニウム合金同士が溶着してなる少なくとも1か所の溶着面が形成されている、請求項5~8のいずれか1項に記載のアルミニウム合金熱間加工材。 The aluminum alloy hot worked material has at least one hollow portion surrounded by a wall portion made of an aluminum alloy, and the wall portion has at least one hollow portion formed by welding the aluminum alloys together. The aluminum alloy hot-worked material according to any one of claims 5 to 8, wherein a welded surface is formed at a point.
  10.  請求項1~4のいずれか1項に記載のアルミニウム合金に温度が350℃以上550℃以下の範囲内である状態で熱間加工を施す熱間加工工程と、
     前記熱間加工工程の前及び前記熱間加工工程の後のうち少なくとも一方において、前記アルミニウム合金を250℃以上550℃以下の保持温度に合計30分以上保持する熱処理工程と、を有する、アルミニウム合金熱間加工材の製造方法。
    A hot working step of hot working the aluminum alloy according to any one of claims 1 to 4 at a temperature in the range of 350 ° C. or higher and 550 ° C. or lower;
    a heat treatment step of holding the aluminum alloy at a holding temperature of 250° C. or higher and 550° C. or lower for a total of 30 minutes or more at least one of before the hot working step and after the hot working step. A method for producing a hot worked material.
  11.  前記熱間加工工程において、前記アルミニウム合金に前記熱間加工としてのポートホール押出を施す、請求項10に記載のアルミニウム合金熱間加工材の製造方法。 The method for manufacturing an aluminum alloy hot-worked material according to claim 10, wherein in the hot working step, the aluminum alloy is subjected to porthole extrusion as the hot working.
PCT/JP2022/021487 2021-06-16 2022-05-26 Aluminum alloy, hot-worked aluminum alloy material and method for producing same WO2022264767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022001222.6T DE112022001222T5 (en) 2021-06-16 2022-05-26 ALUMINUM ALLOY, HOT WORKED ALUMINUM ALLOY MATERIAL AND PRODUCTION METHOD THEREOF
CN202280032848.5A CN117242198A (en) 2021-06-16 2022-05-26 Aluminum alloy, aluminum alloy hot working material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021100377A JP2022191887A (en) 2021-06-16 2021-06-16 Aluminum alloy, aluminum alloy hot worked material and method for manufacturing the same
JP2021-100377 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022264767A1 true WO2022264767A1 (en) 2022-12-22

Family

ID=84526198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021487 WO2022264767A1 (en) 2021-06-16 2022-05-26 Aluminum alloy, hot-worked aluminum alloy material and method for producing same

Country Status (4)

Country Link
JP (1) JP2022191887A (en)
CN (1) CN117242198A (en)
DE (1) DE112022001222T5 (en)
WO (1) WO2022264767A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279280A (en) * 1996-04-12 1997-10-28 Furukawa Electric Co Ltd:The Aluminum-magnesium-silicon alloy excellent in weldability
JP2003165279A (en) * 2001-11-30 2003-06-10 Mitsubishi Alum Co Ltd Aluminum alloy material for lithographic printing plate
JP2006348358A (en) * 2005-06-17 2006-12-28 Mitsubishi Alum Co Ltd Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
JP2015511665A (en) * 2012-02-29 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Aluminum alloy with scandium, zirconium and erbium added
CN110093537A (en) * 2019-04-30 2019-08-06 上海交通大学 A kind of high-fracture toughness Al-Mg-Sc alloy bar and preparation method thereof
CN110669964A (en) * 2019-10-31 2020-01-10 辽宁忠旺集团有限公司 High-performance rare earth Al-Mg-Si aluminum alloy extrusion material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279280A (en) * 1996-04-12 1997-10-28 Furukawa Electric Co Ltd:The Aluminum-magnesium-silicon alloy excellent in weldability
JP2003165279A (en) * 2001-11-30 2003-06-10 Mitsubishi Alum Co Ltd Aluminum alloy material for lithographic printing plate
JP2006348358A (en) * 2005-06-17 2006-12-28 Mitsubishi Alum Co Ltd Aluminum-alloy extruded material for heat-exchanger, and flat tube with multi-holes for heat-exchanger and header for heat-exchanger using the same
JP2015511665A (en) * 2012-02-29 2015-04-20 ザ・ボーイング・カンパニーTheBoeing Company Aluminum alloy with scandium, zirconium and erbium added
CN110093537A (en) * 2019-04-30 2019-08-06 上海交通大学 A kind of high-fracture toughness Al-Mg-Sc alloy bar and preparation method thereof
CN110669964A (en) * 2019-10-31 2020-01-10 辽宁忠旺集团有限公司 High-performance rare earth Al-Mg-Si aluminum alloy extrusion material and preparation method thereof

Also Published As

Publication number Publication date
DE112022001222T5 (en) 2023-12-21
JP2022191887A (en) 2022-12-28
CN117242198A (en) 2023-12-15

Similar Documents

Publication Publication Date Title
JP4189687B2 (en) Magnesium alloy material
EP1848835A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US11591674B2 (en) Aluminum-alloy sheet
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
JP4322733B2 (en) Magnesium sheet for extending excellent in formability and manufacturing method thereof
EP4189130A1 (en) New 6xxx aluminum alloys and methods for producing the same
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP4064720B2 (en) Magnesium sheet for extending excellent in formability and manufacturing method thereof
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP2003328065A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP5931554B2 (en) Aluminum alloy material
WO2022264767A1 (en) Aluminum alloy, hot-worked aluminum alloy material and method for producing same
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP2003328064A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP2005139494A (en) Aluminum alloy sheet for forming, and its production method
JP4726524B2 (en) Aluminum alloy tube and aluminum alloy automobile structural member using the same
JP4825445B2 (en) Aluminum alloy extruded material for high temperature forming
JP6649665B2 (en) Magnesium alloy manufacturing method, rolled magnesium alloy material, and magnesium alloy compact
RU2497971C1 (en) MODIFYING ALLOYING BAR Al-Sc-Zr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001222

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280032848.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18561402

Country of ref document: US