WO2022264758A1 - β-TYPE ZEOLITE AND EXHAUST GAS-PURIFYING COMPOSITION - Google Patents

β-TYPE ZEOLITE AND EXHAUST GAS-PURIFYING COMPOSITION Download PDF

Info

Publication number
WO2022264758A1
WO2022264758A1 PCT/JP2022/021231 JP2022021231W WO2022264758A1 WO 2022264758 A1 WO2022264758 A1 WO 2022264758A1 JP 2022021231 W JP2022021231 W JP 2022021231W WO 2022264758 A1 WO2022264758 A1 WO 2022264758A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
value
ppm
beta
zeolite
Prior art date
Application number
PCT/JP2022/021231
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 林
竜太郎 大橋
秀和 後藤
正剛 小笠原
純雄 加藤
寛治 斎藤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023529714A priority Critical patent/JPWO2022264758A1/ja
Publication of WO2022264758A1 publication Critical patent/WO2022264758A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition

Definitions

  • the present invention relates to a beta zeolite and a composition for purifying exhaust gas.
  • Synthetic zeolite is a crystalline aluminosilicate and has uniform pores due to its crystal structure. Taking advantage of this feature, synthetic zeolites are industrially used as molecular sieve adsorbents that adsorb only molecules with a specific size, adsorption separation agents that adsorb molecules with strong affinity, or as catalyst bases. Beta zeolite, which is one of such zeolites, is used as a catalyst in the petrochemical industry and in exhaust gas purifying compositions because of its excellent ability to adsorb hydrocarbons. Zeolites used in exhaust gas purifying compositions are required to have high crystallinity and catalytic activity that can withstand severe thermal environments of 850° C. or higher.
  • Beta zeolite has been synthesized using an organic structure-directing agent (hereinafter also referred to as "OSDA"). ) has been proposed. Further, Patent Document 2 discloses an exhaust gas purifying composition containing beta zeolite synthesized using OSDA, which contains phosphorus capable of maintaining the structure of beta zeolite.
  • OSDA organic structure-directing agent
  • the zeolite described in Patent Document 1 mentioned above does not contain phosphorus and has a low Si/Al molar ratio, so it is difficult to maintain the crystal structure in a severe thermal environment of, for example, 850°C or higher.
  • the zeolite described in Patent Document 2 contains phosphorus, it has low crystallinity. Therefore, it is difficult to say that the zeolite has the degree of heat resistance required for exhaust gas purification and the like.
  • an object of the present invention is to provide a beta-type zeolite and a composition for purifying exhaust gas that maintain high crystallinity even in a severe thermal environment and further improve heat resistance.
  • the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50 .0 ppm or less, peak 4: -15.0 ppm or more -5.0 ppm or less, having a peak separated into four peaks, and the peak area A2 value of peak 1 with respect to the total A1 value of the peak areas of the four peaks A phosphorus-containing beta-type zeolite having an A value of 0.05 or more when the peak area ratio is defined as A (A2/A1) value is proposed.
  • the present invention proposes an exhaust gas purifying composition containing the beta-type zeolite containing phosphorus.
  • beta-type zeolite and a composition for exhaust gas purification that maintain high crystallinity and further improve heat resistance even under the severe thermal environment proposed by the present invention.
  • FIG. 1A shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 1.
  • FIG. 1B shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 2.
  • FIG. 1C shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 3.
  • FIG. 1D shows the 27 Al MAS NMR spectrum of beta zeolite according to Comparative Example 1.
  • FIG. 2A shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 1.
  • FIG. 2B shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 2.
  • FIG. 2C shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 3.
  • FIG. 2D shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Comparative Example 1.
  • FIG. 1A shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 1.
  • FIG. 2B shows the 29 Si DDMAS NMR spectrum of beta zeolite
  • FIG. 3A shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 1.
  • FIG. 3B shows the 1 H side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 2.
  • FIG. 3C shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 3.
  • FIG. 3D shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of beta zeolite according to Comparative Example 1.
  • FIG. 3A shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 1.
  • FIG. 3B shows the 1 H side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 2.
  • FIG. 3C shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the
  • Beta-type zeolite containing phosphorus (P) is a 27 Al MAS NMR spectrum in which the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm. 0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50.0 ppm or less, peak 4: -15.0 ppm or more and -5.0 ppm or less.
  • Beta zeolite containing phosphorus (P) wherein the A value is 0.05 or more when the peak area ratio of the peak area A2 value of peak 1 to the total A1 value of the peak areas is defined as A (A2/A1) value. I will provide a.
  • a (A2/A1) Value The 27 Al MAS NMR spectrum of beta zeolite for calculating the A value can be measured under the following conditions. Magnetic field: 14.1 T ( 1 H 600MHz) Spectroscope: Bruker AVANCE NEO600 Measurement and data processing software: Bruker TopSpin NMR probe: 3.2 mm MAS probe Sample rotation speed: 20 kHz Standard sample for chemical shift value and radio wave intensity: Potassium alum Standard for chemical shift value: -0.21 ppm for the central peak of potassium alum.
  • Radio wave pulse intensity A value that maximizes the peak of potassium alum when the spectrum center is 51.675 ppm and gives a pulse width of 4.5 ⁇ s.
  • Radio wave pulse width 2.5 ⁇ s
  • Number of spectrum points SI on the above software: 4096 points
  • a 27 Al MAS NMR spectrum is obtained by performing baseline correction on the spectrum obtained as described above using calculation software.
  • the baseline is the point Q1 that is the arithmetic average of the chemical shift values, signal intensities, respectively, of all points from the point closest to 90 ppm to the point closest to 100 ppm and the point Q1 from the point closest to ⁇ 50 ppm to the point closest to ⁇ 40 ppm. It is created by connecting point Q2 obtained by arithmetically averaging chemical shift values and signal intensities of all points up to the point.
  • the spectrum obtained as described above is referred to as "Al measured spectrum".
  • the peaks 1 to 4 of the present invention are obtained by separating peaks from the measured Al spectrum.
  • a calculated spectrum created by summing four pseudo Voigt functions in the measured Al spectrum was divided into a range from the point closest to the 27 Al chemical shift value of -40 ppm to the point closest to 90 ppm (hereinafter, for convenience, "-40 ppm It is described as "the range of 90 ppm or less”.).
  • the pseudo Voigt function is the sum of the same full width half maximum Lorentzian and Gaussian functions.
  • the pseudo Voigt function f(x) used in peak separation is shown in Equation (1) below.
  • the peak area of each peak is obtained from the sum of the signal intensities of the peaks calculated by the pseudo Voigt function at points in the range of -40 ppm to 90 ppm in the measured Al spectrum.
  • the "pseudo Voigt function” is based on “6. Profile function and pattern decomposition method" in Journal of the Crystallographic Society of Japan, 34, 86 (1992), “Special Issue: New Developments in Powder Diffraction Method”.
  • the total A1 value of the peak areas of the four peaks 1 to 4 is positively correlated with the amount of aluminum in the beta zeolite containing phosphorus.
  • the non-patent document Yoshihiro Kubota et. al. ⁇ Effective fabrication of catalysts from large-pore,multi-dimensional zeolites synthesized without using organic structure-directing agents ⁇ Chemistry of Materials ⁇ 2014 ⁇ 26(2) ⁇ 1250-1259( ⁇ Yoshihiro ⁇ ), there are silicon sites T1 to T9.
  • the area A2 value of peak 1 has a positive correlation with the amount of aluminum substituted at the silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the crystal structure of beta-type zeolite. . Note that if the area A2 value of peak 1 is large, the amount of ammonia (NH 3 ) adsorbed by the temperature programmed desorption method (TPD) increases. It is considered that O bonded to aluminum substituted at the silicon site of ⁇ T9 tends to become a strong acid site. Peak 1 represents a peak derived from aluminum substituted at silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the crystal structure of beta-type zeolite as described above.
  • Peak 2 represents a peak derived from aluminum substituted at the T1 and/or T2 silicon sites among the nine silicon sites T1 to T9 equivalently present in the beta zeolite crystal structure.
  • Peak 3 represents a peak derived from tetracoordinated aluminum in the vicinity of phosphoric acid.
  • Peak 4 represents a peak derived from hexacoordinated aluminum outside the zeolite framework.
  • NH 3 ammonia
  • the A (A2/A1) value is a value that shows a positive correlation with the abundance ratio of aluminum that tends to form acid sites with respect to the total amount of aluminum in the sample.
  • Silicon sites T3 to T9 belonging to peak 1 and silicon sites T1 and T2 belonging to peak 2 have a site number ratio of 3:1.
  • the number of silicon sites T1 to T9 in one unit cell of beta zeolite is 4 for each of T7 and T9, and 8 for each of T1 to T6 and T8.
  • the total of T3 to T9 is 48 sites, and the total of T1 and T2 is 16 sites.
  • a large A value which is the area ratio of peak 1
  • the A (A2/A1) value of such a beta-type zeolite containing phosphorus is 0.05 or more, it has high crystallinity and high heat resistance, but has a large number of Bronsted acid sites, resulting in severe heat. It becomes a highly active catalyst even when placed under the environment.
  • the relationship between the beta-type zeolite crystal structure and the 27 Al MAS NMR spectrum is described in the above-mentioned non-patent document Yoshihiro.
  • the A value is preferably in the range of 0.05 or more and 0.75 or less, and more preferably in the range of 0.14 or more and 0.5 or less from the viewpoint of excellent balance between high crystallinity and catalytic activity. Preferably, it is more preferably 0.14 or more and 0.3 or less.
  • the A value is 0.75 or less, the crystallinity is easily maintained at a high level, and the crystal structure is stabilized, so that the catalytic activity is suitable even in a severe thermal environment.
  • beta zeolite has high crystallinity, the pore size of beta zeolite is easily maintained, and the adsorption of the target substance is improved.
  • the A value can be suitably obtained by measuring the phosphorus-containing beta zeolite produced by the below-described production method by the below-described measurement method.
  • the pseudo Voigt function f(x) used in the peak separation of the pseudo Voigt spectrum can be derived from the following formula (1).
  • x is the value of the horizontal axis of the NMR spectrum (chemical shift value)
  • x 0 is the chemical shift value of the peak apex
  • S is the scaling factor to match the actual measurement
  • is - ⁇ (minus infinity) is the peak area ratio of the Lorentzian function (first term) in the range from to + ⁇ (plus infinity)
  • is the full width at half maximum of the peak
  • is the circumference constant
  • ln is the natural logarithm function
  • exp is the natural exponential function.
  • the chemical shift value of the peak apex is peak 5: -100 ppm or more and -106 ppm or less, peak 6: -106 ppm or more and -112 ppm or less, peak 7: It has a peak separated into three peaks of -112 ppm or more and -118 ppm or less, and the B value is 9.8 ppm or less when the full width at half maximum represented by the chemical shift value of peak 5 is taken as the B value.
  • the unit (ppm) of the B value is the horizontal axis unit (chemical shift value) in the 29 Si DDMAS NMR spectrum.
  • the B value is a value representing the heterogeneity of the structure near the acid site of beta zeolite.
  • the B value can be suitably obtained by measuring the phosphorus-containing beta zeolite produced by the below-described production method by the below-described measurement method.
  • the 29 Si DDMAS NMR spectrum of beta zeolite containing phosphorus for calculating the B value can be measured under the following conditions.
  • Radio wave pulse intensity The value is such that the pulse width that maximizes the peak on the low magnetic field side of Q8M8 when the spectrum center is 0.0 ppm is 4 ⁇ s.
  • Radio wave pulse width 4 ⁇ s 1 H decouple irradiation center (O2 value - 1 H SR value (chemical shift notation)): 4.7 ppm 1 H decoupling strength: 62.5 kHz
  • the spectrum obtained as described above is referred to as "Si measured spectrum".
  • the peaks 5 to 7 of the present invention are obtained by separating peaks from the measured spectrum of Si. Peak separation is performed by fitting a calculated spectrum created by summing the three above-mentioned pseudo Voigt functions to the measured Si spectrum in the range of 29 Si chemical shift values from -123 ppm to -92 ppm.
  • the B value is the full width at half maximum of peak 5 obtained by fitting.
  • peak 5 is a chemical bond of beta-type zeolite in which three —O (oxygen)—Si are continuously bonded and one —O—Al is bonded. It represents a peak derived from silicon (hereinafter referred to as “Si(1Al)”).
  • Si(1Al) a peak derived from silicon
  • Peak 6 represents a peak derived from silicon in which --O--Si is tetra-coordinated to silicon sites T3 to T6.
  • Peak 7 represents a peak derived from silicon in which --O--Si is tetra-coordinated to the silicon sites of T1 and T2.
  • the B value is 9.8 ppm or less, preferably in the range of 0.07 ppm or more and 9.8 ppm or less, and more preferably in the range of 1.0 ppm or more and 8.4 ppm or less. The lower the heterogeneity of the structure in the vicinity of the acid site serving as the active center, the higher the catalytic activity. be.
  • the beta-type zeolite containing phosphorus has an E (C ⁇ D) value, which is the product of the C value and the D value, of 1.0. 1 or more, a phosphorus-containing beta zeolite is provided.
  • E (C ⁇ D) value which is the product of the C value and the D value, of 1.0. 1 or more
  • a phosphorus-containing beta zeolite is provided.
  • the chemical shift value of the peak apex of the 1 H side slice spectrum at the peak is 8: 5.0 ppm or more and 6.0 ppm or less, and the peak 9: 4.4 ppm.
  • peak 10 has a peak separated into three peaks of 3.0 ppm or more and 4.4 ppm or less, and the peak area C2 value of peak 8 with respect to the total C1 value of the peak areas of the three peaks
  • the peak area ratio is defined as (C2/C1).
  • the D value is the peak intensity of the zeolite (302) plane relative to the peak intensity D1 of the (116) plane of ⁇ -Al 2 O 3 in the X-ray diffraction spectrum measured by XRD using CuK ⁇ rays. Let the ratio be (D2/D1).
  • the C value represents the amount of hydrogen (H) bonded to Bronsted acid sites
  • the D value represents the crystallinity of beta-type zeolite
  • the E (C ⁇ D) value is 1.1 or more.
  • the beta zeolite has a good balance of heat resistance and acid sites, and preferably maintains the acid sites even after durability.
  • the C (C2/C1) value, D (D2/D1) value, and E (C ⁇ D) value are obtained by measuring the phosphorus-containing beta zeolite produced by the production method described below by the measurement method described below. can be suitably obtained.
  • C(C2/C1) Value The 31 P- 1 H two-dimensional NMR spectrum of phosphorus-containing beta zeolite for calculating the C value can be measured under the following conditions. Magnetic field: 14.1 T ( 1 H 600MHz) Spectroscope: Bruker AVANCE NEO600 Measurement and data processing software: Bruker TopSpin NMR probe: 3.2 mm MAS probe Sample rotation speed: 20 kHz Standard sample for chemical shift value and radio wave intensity: Diammonium hydrogen phosphate Standard for chemical shift value: The peak of diammonium hydrogen phosphate on the low magnetic field side is 1.5 ppm.
  • the beta zeolite containing phosphorus has a peak apex chemical shift value of 8:5. It has three calculated peaks separated from 0 ppm to 6.0 ppm, peak 9 from 4.4 ppm to 5.0 ppm, and peak 10 from 3.0 ppm to 4.4 ppm.
  • the peak area of each peak is determined by the sum of the signal intensities of the calculated peaks at points in the entire range of the slice spectrum on the 1 H side at the vertex of the 31 P- 1 H two-dimensional NMR spectrum.
  • the calculated peak here is the peak calculated by the above-mentioned pseudo Voigt function.
  • the total C1 value of the peak areas of the three peaks, peaks 8-10 represents the amount of hydrogen near phosphorus in beta zeolite.
  • the peak area C2 value of peak 8 is Bronsted It represents the amount of H bound to the acid sites.
  • Peak 8 represents a peak derived from hydrogen bound to Bronsted acid points in the vicinity of phosphorus contained in beta-type zeolite.
  • Peak 9 represents a peak derived from hydrogen of water molecules in the vicinity of phosphorus contained in beta-type zeolite.
  • Peak 10 represents a peak derived from hydrogen at a Lewis acid site near P contained in beta-type zeolite.
  • the C (C2/C1) value represents the amount of hydrogen bonded to the Bronsted acid points near phosphorus relative to the amount of hydrogen near phosphorus contained in beta-type zeolite, and the higher the C value, the more phosphorus
  • the amount of hydrogen bonding to Bronsted acid sites in the vicinity of increases, and the value represents the amount of acid sites.
  • the C value is preferably 0.1 or more, more preferably 0.3 or more, and even more preferably 0.5 or more. As the C value increases, the amount of acid sites increases. However, if the acid sites are too large, the amount of aluminum forming acid sites increases and the crystallinity deteriorates.
  • D ( D2/D1) value Zeolite's ( 302) Let the peak intensity ratio of the peak intensity D2 value of the plane 302) be the D(D2/D1) value.
  • the D value is an index of the crystallinity of beta-type zeolite, and it can be said that the larger the D value, the higher the crystallinity of the zeolite and the better the heat resistance.
  • ⁇ -Al 2 O 3 is reference material 674a distributed by the National Institute of Standards and Technology. When the crystallinity is high, the crystal structure tends to be stable, and the catalytic activity tends to be improved.
  • the D value is preferably 1.3 or more, more preferably 1.8 or more.
  • the D value is obtained by subjecting a sample obtained by mixing the beta-type zeolite containing phosphorus to be measured and ⁇ -Al 2 O 3 as a standard substance in the same volume to X-ray diffraction measurement.
  • the peak intensity D1 of the (116) plane of Al 2 O 3 and the peak intensity D2 of the (302) plane of beta-type zeolite obtained by X-ray diffraction measurement are obtained, and the D (D2/D1) value is calculated.
  • the diffraction peak of ⁇ -Al 2 O 3 which is a standard substance, is generally observed in the range of the diffraction angle 2 ⁇ of 57.40° or more and 57.60° or less.
  • the reason for adopting the diffraction peak of the (116) plane as the diffraction peak of ⁇ -Al 2 O 3 is that the diffraction peak of the zeolite was not observed in the vicinity of the diffraction peak of the (116) plane and the diffraction peak of the (116) plane was not observed. This is because the accuracy of measurement is enhanced due to the high intensity.
  • the diffraction peak of the (302) plane of beta-type zeolite is generally observed in the range of the diffraction angle 2 ⁇ of 22.10° or more and 23.58° or less. XRD can be measured by the method described in Examples below.
  • E (C ⁇ D) value If the E (C ⁇ D) value is 1.1 or more, the crystallinity of beta-type zeolite is high and excellent even when the amount of hydrogen bonded to the acid sites is small. Alternatively, the crystallinity of beta-type zeolite is maintained to some extent and the amount of hydrogen bonded to acid sites is large, so that not only heat resistance but also excellent catalytic activity is exhibited.
  • the E(C ⁇ D) value is an index representing the quality of the catalytic activity in consideration of the amount of Bronsted acid sites in the vicinity of phosphorus of the phosphorus-containing beta-zeolite and the crystallinity of the phosphorus-containing beta-zeolite.
  • the E(CxD) value is less than 1.1, the amount of Bronsted acid sites near phosphorus or the crystallinity of the beta-type zeolite decreases, resulting in a decrease in heat resistance and a decrease in catalytic activity.
  • the E(CxD) value is preferably 1.2 or more, more preferably 1.5 or more. Also, the E(C ⁇ D) value may be 1.8 or less.
  • the peak area of the peak area A2 value of peak 1 with respect to the total A3 value of the peak areas of peaks 1 and 2 Provided is a phosphorus-containing beta zeolite having an F (A2/A3) ratio of 0.22 or more.
  • the 27 Al MAS NMR spectrum and peak area of beta-type zeolite containing phosphorus can be measured in the same manner as the A value described above.
  • the total A3 value of the peak areas of peaks 1 and 2 was replaced by nine silicon sites from T1 to T9 in the crystal structure of beta zeolite.
  • the F(A2/A3) value is a numerical value that shows a positive correlation with the abundance ratio of aluminum, which tends to form Bronsted acid sites, among aluminum substituted for silicon sites in the crystal structure of beta-type zeolite.
  • a beta-type zeolite containing phosphorus with an F(A2/A3) value of 0.22 or more has high crystallinity and excellent heat resistance.
  • the F value can be suitably obtained by measuring the phosphorus-containing beta-type zeolite produced by the production method described below by the measurement method described above.
  • the total A3 of the peak areas of peaks 1 and 2 is 4-coordinated aluminum contained within the structural framework of the crystal structure of beta-type zeolite (framework aluminum).
  • the peak area A2 is the same as the peak area A2 described above, and is positive to the amount of aluminum substituted at the silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the beta crystal structure.
  • the F (A2/A3) value is the total number of sites (64 sites) of T1 to T9 of silicon sites in one unit cell of beta-type zeolite and the total number of T3 to T9 of silicon sites that can be substituted by aluminum. As the ratio of (48 sites) approaches 0.75, beta zeolite has high crystallinity and excellent heat resistance, and aluminum is more uniformly dispersed in beta zeolite.
  • the F value is preferably 0.22 or more, and 0.4 or more. more preferred. If the F-value of the beta-type zeolite containing phosphorus is 0.22 or more, the aluminum of the beta-type zeolite containing phosphorus is more uniformly dispersed in the sample, and the catalytic activity is improved. If the F value is larger than 0.75, which is the site number ratio of the crystal structure, it indicates that the distribution of aluminum is biased or the crystal structure has changed. Therefore, the F value is preferably 0.75 or less, and may be 0.6 or less.
  • the G value is the ratio of the molar amount of aluminum to the total molar amount of aluminum, silicon and phosphorus constituting the phosphorus-containing beta zeolite.
  • Silicon and aluminum contained in beta-type zeolite serve as central atoms of TO4 units (T is the central atom) having a tetrahedral structure.
  • the molar ratio of aluminum contained in beta-type zeolite containing phosphorus, the molar ratio of phosphorus and the molar ratio of silicon described later are measured using a scanning fluorescent X-ray spectrometer as in the method of the examples described later. be able to.
  • the G value is preferably 0.5 mol % or more and 20 mol % or less.
  • the I value is the ratio of the molar amount of phosphorus to the total molar amount of aluminum, silicon and phosphorus constituting the phosphorus-containing beta zeolite. Phosphorus contained in beta zeolite containing phosphorus binds to acid sites of aluminum. The I value is preferably 0.1 mol % or more and 40 mol % or less.
  • the J value is the ratio of the molar amount of silicon to the total molar amount of aluminum, silicon and phosphorus constituting beta zeolite containing phosphorus. Silicon constitutes the structural framework of beta zeolites. The J value is preferably 60 mol % or more and 95 mol % or less.
  • the phosphorus-containing beta zeolite preferably has an I/G value of 0.7 or more and 1.0 or less.
  • the I/G value can also be expressed as the P/Al molar ratio.
  • the acid sites other than the acid site that is the center of catalytic activity (Lewis acid site) are modified with phosphorus, and the acid site that is the center of catalytic activity (Bronsted acid site) is maintained. . If the I/G value is 0.7 or more, the beta-type zeolite containing phosphorus can improve the catalytic activity while maintaining high crystallinity.
  • the I/G value exceeds 1.0 and is large, the acid site that is the center of catalytic activity is also modified with phosphorus, the amount of hexacoordinated aluminum increases, the crystal structure of beta-type zeolite changes, and the crystallinity deteriorates. may decrease.
  • the I / G value is in the range of 0.7 or more and 1.0 or less, the acid sites other than the acid sites that are the centers of catalytic activity are modified with phosphorus, and the acid sites that are the centers of catalytic activity are maintained. , it is possible to maintain high crystallinity and improve catalytic activity even in a severe thermal environment.
  • the I/G value is preferably 0.8 or higher.
  • the beta-type zeolite containing phosphorus preferably has a J/G value of 5 or more and 30 or less.
  • the J/G value can also be expressed as the Si/Al molar ratio. If the beta-type zeolite containing phosphorus has a J/G value of 5 or more and 30 or less, it has high crystallinity and can maintain catalytic activity even when placed in a severe thermal environment. If the J/G value is too large, the amount of aluminum contained in the phosphorus-containing beta-type zeolite is small, and the acid sites that are the center of catalytic activity may decrease, resulting in a decrease in catalytic activity.
  • the J/G value is preferably 10 or more, more preferably 15 or more, and preferably 25 or less.
  • the beta zeolite is preferably an OSDA-free beta zeolite synthesized using seed crystals and without using OSDA.
  • a method for producing OSDA-free beta zeolite is described, for example, in the above-mentioned Patent Document 1.
  • OSDA-free beta-type zeolite has a small J/G value (Si/Al molar ratio) and high crystallinity. If it is possible to retain aluminum that contributes to the formation of acid sites and remove aluminum that does not contribute to the formation of acid sites (dealuminization) while maintaining high crystallinity, the J / G value (Si / Al molar ratio) can be maintained to improve the catalytic activity while maintaining high crystallinity.
  • the OSDA-free beta-type zeolite containing dealuminated phosphorus has an A value of 0.05 or more, the aluminum that does not contribute to the formation of acid sites is dealuminated, resulting in high crystallinity and high catalytic activity.
  • the OSDA-free beta zeolite containing dealuminated phosphorus further has at least one of B value, E (C ⁇ D) value, F value, and I / G value (P / Al molar ratio) , it can be confirmed that when the above numerical range is satisfied, the crystallinity is high and the catalytic activity is high.
  • the OSDA-free beta-type zeolite may be proton-type, ammonium-type, sodium-type, potassium-type, or lithium-type.
  • the ion exchange sites may be exchanged with transition metal ions.
  • Transition metals that can be ion-exchanged include, for example, iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), chromium (Cr), molybdenum (Mo), manganese (Mn), vanadium (V), At least one selected from the group consisting of titanium (Ti), cerium (Ce), ruthenium (Ru), platinum (Pt), silver (Ag) and iridium (Ir).
  • Ion exchange with transition metal ions can be performed, for example, by dispersing beta-type zeolite in an ammonium nitrate aqueous solution to obtain ammonium-type beta-type zeolite, and then performing the method described in JP-A-2014-019601.
  • the phosphorus-containing beta zeolite is obtained by dealuminating OSDA-free beta zeolite and then contacting it with a phosphorus-containing compound so that the aforementioned A value is 0.05 or more. It is possible to obtain a beta-type zeolite containing phosphorus.
  • the phosphorus-containing beta zeolite having an A value of 0.05 or more is dealuminated OSDA-free beta zeolite, unlike the case where phosphorus is present in the form of an oxide on the surface of OSDA-free beta zeolite.
  • the acid sites other than the acid sites that are the centers of catalytic activity remaining after dealumination are modified with phosphorus, and the acid sites that are the centers of catalytic activity are maintained. Catalytic activity can be improved while still being kept high.
  • an ammonium salt it is preferable to bring the zeolite into contact with an ammonium salt to remove aluminum that does not contribute to the formation of acid sites without reducing the crystallinity of the beta-type zeolite as much as possible.
  • a method for dealuminizing beta zeolite can be performed, for example, by the method described in International Publication No. 2021/002322.
  • the A value, B value, E (C ⁇ D) value, F value, I / G value (P / Al molar ratio) and J / G value (Si / Al molar ratio) can be easily adjusted to a desired numerical range.
  • a dealuminated OSDA-free beta zeolite can be brought into contact with a phosphorus-containing compound to obtain a phosphorus-containing beta zeolite with an A value of 0.05 or more.
  • methods for bringing the dealuminated OSDA-free beta-type zeolite into contact with a phosphorus-containing compound include a vapor deposition method, an impregnation method, a precipitation method, an ion exchange method, and the like.
  • the vapor deposition method beta-type zeolite and a phosphorus-containing compound are placed in a container, and the phosphorus-containing compound is evaporated at room temperature or by heating to adhere the phosphorus-containing compound to the beta-type zeolite. mentioned.
  • beta zeolite is immersed in a liquid mixture of a phosphorus-containing compound and a solvent, and the mixture is dried by heating under normal pressure or reduced pressure to attach the phosphorus-containing compound to the beta zeolite.
  • the impregnation method includes incipient wetness method, evaporation to dryness method, pore-filling method, spray method, equilibrium adsorption method and the like. Examples of precipitation methods include a kneading method and a deposition method.
  • trimethyl phosphate When phosphorus is attached to beta-type zeolite, trimethyl phosphate, triethyl phosphate, trimethyl phosphite, triethyl phosphite, or the like can be used as the phosphorus-containing compound. Trimethyl phosphate is preferred because of its low boiling point.
  • the phosphorus-containing compound is preferably water-soluble, such as trimethyl phosphate, triethyl phosphate, trimethyl phosphite, triethyl phosphite, phosphoric acid , dihydrogen phosphates such as ammonium dihydrogen phosphate, sodium dihydrogen phosphate and potassium dihydrogen phosphate, and hydrogen phosphates such as diammonium hydrogen phosphate and dipotassium hydrogen phosphate.
  • Examples of phosphoric acid include orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid (H 5 P 3 O 10 ), polyphosphoric acid, metaphosphoric acid (HPO 3 ), ultraphosphoric acid, and the like. are mentioned.
  • Phosphoric acid such as orthophosphoric acid, ammonium phosphate such as trimethyl phosphate, ammonium dihydrogen phosphate, or diammonium hydrogen phosphate is preferred from the viewpoint of ease of drying.
  • Examples of the solvent to be mixed with the phosphorus-containing compound include polar organic solvents such as deionized water, ethanol, 2-propanol, and acetone. Deionized water and ethanol are preferably used because they are easy to handle and dry.
  • the phosphorus-containing compound may be in the range of 1% by mass or more and 25% by mass or less, or in the range of 2% by mass or more and 20% by mass or less with respect to 100% by mass of the total amount of the mixed liquid. It may be in the range of 5% by mass or more and 15% by mass or less.
  • the time for impregnating the mixed liquid with the beta zeolite can be 0.5 hours or more and 2 hours or less.
  • the beta zeolite containing a phosphorus-containing compound may be dried, the drying temperature may be 80° C. or higher and 200° C. or lower, and the drying time may be 0.5 hours or longer5. can be done within hours.
  • the pressure during drying is not particularly limited, and may be atmospheric pressure (0.1 MPa) or under reduced pressure of 0.1 MPa or less.
  • heat treatment is performed to obtain a beta zeolite containing phosphorus.
  • the heat treatment temperature is preferably in the range of 200° C. or higher and 800° C. or lower, more preferably in the range of 400° C. or higher and 700° C. or lower, in order to maintain the framework structure of beta zeolite.
  • the atmosphere for the heat treatment may be an air atmosphere or an inert gas atmosphere such as nitrogen.
  • Exhaust gas purifying composition The phosphorus-containing beta zeolite having an A value of 0.05 or more obtained as described above can be used in an exhaust gas purifying composition.
  • An exhaust gas purifying composition containing a phosphorus-containing beta zeolite with an A value of 0.05 or more is exposed to a severe thermal environment in a temperature range of, for example, 900° C. or higher and 1000° C. or lower. Since beta zeolite has high crystallinity and high catalytic activity, the skeleton structure of beta zeolite is maintained, it has stable hydrocarbon (HC) adsorption capacity, and exhibits stable high purification performance.
  • HC hydrocarbon
  • Such an exhaust gas purifying composition can exhibit stable and high exhaust gas purifying performance as an exhaust gas purifying catalyst for internal combustion engines powered by fossil fuels such as gasoline engines and diesel engines.
  • the exhaust gas purifying composition can be suitably used for purifying exhaust gas discharged from internal combustion engines such as four-wheeled motor vehicles and motorcycles.
  • Exhaust gas purifying compositions are effectively used to purify particularly hydrocarbons (HC) in exhaust gas.
  • the exhaust gas purifying composition can be suitably used for purifying hydrocarbons (HC) contained in the exhaust gas flowing through the exhaust passage of an internal combustion engine, and can also provide an exhaust gas purifying method.
  • a beta zeolite containing phosphorus with an A value of 0.05 or more further has a B value, E (C ⁇ D) value, F value, I / G value (P / Al molar ratio) and J / G value ( Si/Al molar ratio) preferably satisfies the above numerical range.
  • the exhaust gas purifying composition may be an exhaust gas purifying composition made of phosphorus-containing beta zeolite with an A value of 0.05 or more, and may contain other components other than phosphorus-containing beta zeolite. may contain.
  • Other components include conventionally known catalyst materials and the like.
  • the exhaust gas purifying composition may be in any form such as powder, paste or granules.
  • the exhaust gas purifying composition can be used as a catalyst layer formed on a catalyst support.
  • a catalyst support for example, a support made of ceramics or metal materials can be used. Ceramics used as catalyst supports include alumina (Al 2 O 3 ), mullite (3Al 2 O 3 -2SiO 2 ), cordierite (2MgO-2Al 2 O 3 -5SiO 2 ), aluminum titanate (Al 2 TiO 5 ), silicon carbide (SiC), and the like.
  • Metal materials used as catalyst supports include, for example, stainless steel.
  • the shape of the catalyst support is not particularly limited, but examples thereof include a honeycomb shape, a plate shape, a pellet shape, and the like.
  • the catalyst structure using the exhaust gas purifying composition for the catalyst layer may include a catalyst layer made of a conventionally known catalyst material other than the exhaust gas purifying composition.
  • a catalyst structure using an exhaust gas purifying composition for a catalyst layer can also be used as a DPF (Diesel Particulate Filter) or a GPF (Gasoline Particulate Filter).
  • Example 1 According to the method described in the example of WO2021/002322, specifically as follows, a dealuminated OSDA-free beta zeolite is prepared, phosphorus is attached to A beta zeolite containing (1) Preparation of Seed Crystal Tetraethylammonium hydroxide was used as an OSDA, sodium aluminate was used as an alumina source, and fine powdered silica (manufactured by Mizusawa Chemical Industry Co., Ltd., P707) was used as a silica source, and these were stirred and heated at 165 ° C. for 96 hours. was performed to synthesize a beta zeolite having a Si/Al molar ratio of 12. The resulting beta-type zeolite was calcined at 550° C. for 10 hours in an electric furnace while air was circulated to produce seed crystals containing no organic matter.
  • OSDA Seed Crystal Tetraethylammonium hydroxide
  • sodium aluminate was used as an
  • OSDA-free beta-type zeolite was prepared according to the method described in the examples of Japanese Patent No. 4904417, specifically as follows.
  • An aqueous solution was obtained by dissolving 2.35 g of sodium aluminate and 18.28 g of 36 mass % sodium hydroxide in 139 g of deionized water.
  • a mixture of 20.24 g of finely powdered silica (M-5, manufactured by CABOT) and 2.02 g of the seed crystal was added little by little to the aqueous solution and mixed with stirring to obtain a SiO 2 /Al 2 O 3 molar ratio.
  • the reaction mixture was placed in a 60 mL stainless steel sealed vessel and heated statically under autogenous pressure at 140° C. for 46 hours without aging and stirring. After cooling the closed container, the product was filtered and washed with warm water to obtain a white powder. It was confirmed by the X-ray diffraction measurement described later that the resulting white powder was sodium-type OSDA-free beta-type zeolite containing no impurities. As a result of ICP emission spectroscopic analysis, which will be described later, the Si/Al molar ratio was 5.5.
  • Preparation of phosphorus-containing beta zeolite Phosphorus was attached to the obtained dealuminated OSDA-free beta zeolite by the incipient wetness method to obtain a phosphorus-containing OSDA-free beta zeolite. . Specifically, 3.5 g (dry weight) of dealuminated OSDA-free beta zeolite and 0.613 g of 99% by mass trimethyl phosphate were placed in a closed container, and the pressure was reduced to 0.01 MPa, and then the pressure was reduced to 80°C. to obtain an OSDA-free beta-type zeolite on which a phosphorus-containing compound was vapor-deposited.
  • the obtained OSDA-free beta zeolite powder containing the compound containing phosphorus was dried at 120° C. for 3 hours in an air atmosphere of 0.1013 MPa to obtain a powder.
  • the dried powder was heat-treated at 600° C. for 1 hour in an air atmosphere of 0.1013 MPa (heating rate of 5° C./min) to obtain OSDA-free beta zeolite containing phosphorus.
  • a phosphorus-containing OSDA-free beta-type zeolite having an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 11.8 as measured by the evaluation method described later. got
  • Example 2 After carrying out the steps (1) to (4) of Example 1, an acid treatment using nitric acid was carried out as a post-treatment as shown below. That is, 5.5 g of dealuminated OSDA-free beta-type zeolite powder was dispersed in 25 mL of an aqueous nitric acid solution having a concentration of 1 mol/L, and the mixture was mixed at 95° C. for 15 hours for acid treatment. Filtration and washing with deionized water were then repeated five times. The obtained hydrous powder was dried at 100° C. for 12 hours or longer. Thus, a dealuminated OSDA-free beta zeolite powder having a Si/Al ratio of 20.4 as measured by the evaluation method described later was obtained.
  • the OSDA-free beta-type zeolite containing P was performed in the same manner as in the step (5) of Example 1, except that the amount of trimethyl phosphate was changed to 0.365 g. got The beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 20.4.
  • Example 3 After carrying out the steps (1) to (4) of Example 1, an acid treatment using nitric acid was carried out as a post-treatment as shown below. That is, 5.0 g of dealuminated OSDA-free beta-type zeolite powder was dispersed in 25 mL of an aqueous nitric acid solution having a concentration of 1 mol/L, and the mixture was mixed at 100° C. for 20 hours for acid treatment. Filtration and washing with deionized water were then repeated five times. The obtained hydrous powder was dried at 100° C. for 12 hours or longer. Thus, a dealuminated OSDA-free beta zeolite powder having a Si/Al ratio of 22.6 as measured by the evaluation method described later was obtained.
  • the beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 22.6.
  • Comparative example 1 A commercially available proton-type beta-type zeolite (HSZ-940, manufactured by Tosoh Corporation, Si/Al molar ratio: 17.5) was prepared.
  • step (5) of Example 1 3.5 g (dry weight) of dealuminated OSDA-free beta zeolite was changed to 3.5 g (dry weight) of commercially available proton-type beta zeolite, and trimethyl phosphate was
  • a beta-type zeolite containing P was obtained in the same manner as in step (5) of Example 1, except that the amount was changed to 0.401 g.
  • the beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 18.5.
  • a Value, F Value, B Value, C Value The A value and F value of each beta zeolite of Examples and Comparative Examples were calculated by measuring 27 Al MAS NMR spectra as described above. The A1 value, A2 value and A3 value for calculating the A value and the F value were obtained as relative values when the A1 value of Comparative Example 1 was normalized to 1. Further, the C1 value and C2 value for calculating the C value were obtained as relative values when C1 of Comparative Example 1 was normalized to 1.
  • 27 Al MAS NMR spectra of the beta-type zeolites of Examples and Comparative Examples for which peak separation was performed are shown in FIGS. 1A to 1D.
  • Table 2 shows the variables (x 0 , ⁇ , ⁇ , S) of the pseudo Voigt function of peaks 1 to 4 obtained by peak separation.
  • the B value of each beta zeolite of Examples and Comparative Examples was calculated by measuring the 29 Si DDMAS NMR spectrum as described above. 29 Si DDMAS NMR spectra of the beta zeolites of Examples and Comparative Examples for which peak separation was performed are shown in FIGS. 2A to 2D.
  • Table 3 shows the variables (x 0 , ⁇ , ⁇ , S) of the pseudo Voigt function of peaks 5 to 7 obtained by peak separation.
  • the C value of each beta zeolite of Examples and Comparative Examples was calculated by measuring the 31 P- 1 H two-dimensional NMR spectrum as described above.
  • 3A to 3D show slice spectra on the 1 H side of 31 P- 1 H two-dimensional NMR spectra of beta-type zeolites of Examples and Comparative Examples for which peak separation was performed.
  • Table 4 shows the variables (x 0 , ⁇ , ⁇ , S) of the pseudo Voigt function of peaks 8 to 10 obtained by peak separation.
  • D value XRD was measured using an X-ray diffractometer (RINT-TTR III, manufactured by Rigaku Corporation) using CuK ⁇ rays (0.15406 nm, 50 kV, 300 mA) as an X-ray source.
  • the measurement range was measured under the conditions of a diffraction angle 2 ⁇ of 5° to 80°, a scan speed of 20°/min, and a scan step width of 0.02°.
  • the software "PDXL2" was used for the diffraction intensity analysis. After removing the background, the intensity of the diffraction peak was obtained by fitting with a split-type pseudo-Voigt function using the K ⁇ 1 position as the peak position.
  • the peak intensity D1 of the (116) plane was obtained from the XRD that measured ⁇ -Al 2 O 3 , which is the standard material 674a distributed by the National Institute of Standards and Technology, and the XRD that measured each beta-type zeolite of Examples and Comparative Examples.
  • the peak intensity D2 of the (302) plane was determined from Diffraction peaks of ⁇ -Al 2 O 3 , which is a standard substance, were generally observed in a range of diffraction angle 2 ⁇ of 57.40° or more and 57.60° or less.
  • the diffraction peak of the (302) plane of beta zeolite was observed in the range of the diffraction angle 2 ⁇ of 22.10° or more and 23.58° or less.
  • E (C ⁇ D) Value The E (C ⁇ D) value, which is the product of the C and D values described above, was determined.
  • the amounts of aluminum, phosphorus, and silicon in beta zeolite were measured. From the measured amount of aluminum, the molar ratio of aluminum in the phosphorus-containing beta-type zeolite was calculated and used as the G value. From the measured amount of phosphorus, the molar ratio of phosphorus in the beta-type zeolite containing phosphorus was calculated and used as the I value.
  • Measurement samples were prepared as follows. Method for preparing measurement sample A vinyl chloride tube having a diameter of 30 mm was filled with beta-type zeolite and compression-molded to prepare a measurement sample.
  • Crystallinity retention rate The XRD spectrum of each exhaust gas purifying composition (beta-type zeolite) before and after the thermal durability test was measured according to the above-described XRD measurement.
  • the peak intensity of the strongest peak corresponding to the (302) plane of beta zeolite in the range of diffraction angle 2 ⁇ 22.10 ° or more and 23.58 ° or less in the XRD spectrum before the heat durability test is defined as the XRD crystallinity, and the following formula ( b) was used to calculate the XRD retention rate (crystallinity retention rate).
  • XRD retention rate (%) (XRD crystallinity after thermal durability test/XRD crystallinity before thermal durability test) x 100
  • the phosphorus-containing beta zeolites of Examples 1 to 3 had an A value of 0.05 or more and a large amount of acid sites.
  • the phosphorus-containing beta zeolites of Examples 1 to 3 have an A value of 0.05 or more, a B value of 9.8 ppm or less, and an E (C ⁇ D) value of 1.1.
  • each NMR spectrum satisfying an F value of 0.22 or more was measured.
  • the exhaust gas purifying compositions using the beta zeolite of Examples 1 to 3 had a higher specific surface area retention rate after the heat durability test than the exhaust gas purifying composition using the beta zeolite of Comparative Example 1. and maintained high crystallinity even after the heat durability test.
  • the exhaust gas purifying compositions using the beta zeolite of Examples 2 and 3 had a higher XRD retention rate after the thermal endurance test than the exhaust gas purifying composition using the beta zeolite of Comparative Example 1. , maintained high crystallinity after the thermal endurance test.
  • the beta-type zeolite containing phosphorus according to the present disclosure and the exhaust gas purifying composition using the same maintain high crystallinity and further improve heat resistance even when placed in a severe thermal environment. can do.
  • the phosphorus-containing beta-type zeolite and exhaust gas purification composition according to the present disclosure can be suitably used to purify exhaust gases emitted from internal combustion engines such as four-wheeled motor vehicles and motorcycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided are a β-type zeolite that maintains high crystallinity and improved heat resistance even in a severe thermal environment, and an exhaust gas-purifying composition. An 27Al MAS NMR spectrum of the β-type zeolite shows peaks that are separated into four peaks including: peak 1 having a chemical shift value of the peak apex of 55.4 to 59.0 ppm inclusive; peak 2 having a chemical shift value of the peak apex of 50.0 to 55.4 ppm inclusive; peak 3 having a chemical shift value of the peak apex of 30.0 to 50.0 ppm inclusive; and peak 4 having a chemical shift value of the peak apex of -15.0 to -5.0 ppm inclusive. When the first peak area ratio of the peak area A2 of peak 1 to the sum of the peak areas of the four peaks A1 is referred to A (A2/A1), then A is 0.05 or greater. The β-type zeolite contains phosphorus. 

Description

ベータ型ゼオライト及び排気ガス浄化用組成物BETA ZEOLITE AND COMPOSITION FOR EXHAUST GAS PURIFICATION
 本発明は、ベータ型ゼオライト及び排気ガス浄化用組成物に関する。 The present invention relates to a beta zeolite and a composition for purifying exhaust gas.
 合成ゼオライトは結晶性アルミノシリケートであり、その結晶構造に起因する均一な細孔を有している。この特徴を活かして、合成ゼオライトは、特定の大きさを有する分子のみを吸着する分子ふるい吸着剤や親和力の強い分子を吸着する吸着分離剤、又は触媒基剤として工業的に利用されている。そのようなゼオライトの1種であるベータ型ゼオライトは、炭化水素吸着能に優れているため、石油化学工業における触媒として、また排気ガス浄化用組成物に使用されている。排気ガス浄化用組成物に用いられるゼオライトには、850℃以上の厳しい熱環境下に耐え得る高い結晶性及び触媒活性が求められる。 Synthetic zeolite is a crystalline aluminosilicate and has uniform pores due to its crystal structure. Taking advantage of this feature, synthetic zeolites are industrially used as molecular sieve adsorbents that adsorb only molecules with a specific size, adsorption separation agents that adsorb molecules with strong affinity, or as catalyst bases. Beta zeolite, which is one of such zeolites, is used as a catalyst in the petrochemical industry and in exhaust gas purifying compositions because of its excellent ability to adsorb hydrocarbons. Zeolites used in exhaust gas purifying compositions are required to have high crystallinity and catalytic activity that can withstand severe thermal environments of 850° C. or higher.
 ベータ型ゼオライトは、有機構造規定剤(以下「OSDA」ともいう。)を用いて合成されていたが、例えば特許文献1には、OSDAを用いないベータ型ゼオライト(以下「OSDAフリーベータ型ゼオライト」ともいう)の合成法が提案されている。また、特許文献2には、ベータ型ゼオライトの構造維持が可能なリンを含有する、OSDAを用いて合成されたベータ型ゼオライトを含む排気ガス浄化用組成物が開示されている。 Beta zeolite has been synthesized using an organic structure-directing agent (hereinafter also referred to as "OSDA"). ) has been proposed. Further, Patent Document 2 discloses an exhaust gas purifying composition containing beta zeolite synthesized using OSDA, which contains phosphorus capable of maintaining the structure of beta zeolite.
米国特許出願公開2012/190534号明細書U.S. Patent Application Publication No. 2012/190534 国際公開第2018/131195号WO2018/131195
 上述した特許文献1に記載のゼオライトはリンを含有しておらず、かつ、Si/Alモル比が低いので、例えば850℃以上の厳しい熱環境下において結晶構造を維持することが難しい。また、特許文献2に記載のゼオライトは、リンを含有するものの結晶性が低いため、排ガス浄化用途等で求められる程度の耐熱性を有するものとは言い難い。 The zeolite described in Patent Document 1 mentioned above does not contain phosphorus and has a low Si/Al molar ratio, so it is difficult to maintain the crystal structure in a severe thermal environment of, for example, 850°C or higher. In addition, although the zeolite described in Patent Document 2 contains phosphorus, it has low crystallinity. Therefore, it is difficult to say that the zeolite has the degree of heat resistance required for exhaust gas purification and the like.
 そこで本発明は、厳しい熱環境下においても高い結晶性を維持し、耐熱性をより向上したベータ型ゼオライト及び排気ガス浄化用組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a beta-type zeolite and a composition for purifying exhaust gas that maintain high crystallinity even in a severe thermal environment and further improve heat resistance.
 本発明は、27Al MAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク1:55.4ppm以上59.0ppm以下、ピーク2:50.0ppm以上55.4ppm以下、ピーク3:30.0ppm以上50.0ppm以下、ピーク4:-15.0ppm以上-5.0ppm以下となる4つのピークに分離されるピークを有し、4つのピークのピーク面積の合計A1値に対するピーク1のピーク面積A2値のピーク面積比をA(A2/A1)値とした際にA値が0.05以上である、リンを含有するベータ型ゼオライトを提案する。 In the 27 Al MAS NMR spectrum of the present invention, the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50 .0 ppm or less, peak 4: -15.0 ppm or more -5.0 ppm or less, having a peak separated into four peaks, and the peak area A2 value of peak 1 with respect to the total A1 value of the peak areas of the four peaks A phosphorus-containing beta-type zeolite having an A value of 0.05 or more when the peak area ratio is defined as A (A2/A1) value is proposed.
 本発明は、前記リンを含有するベータ型ゼオライトを含む排気ガス浄化用組成物を提案する。 The present invention proposes an exhaust gas purifying composition containing the beta-type zeolite containing phosphorus.
 本発明が提案する厳しい熱環境下においても、高い結晶性を維持し、耐熱性をより向上したベータ型ゼオライト及び排気ガス浄化用組成物を提供することができる。 It is possible to provide a beta-type zeolite and a composition for exhaust gas purification that maintain high crystallinity and further improve heat resistance even under the severe thermal environment proposed by the present invention.
図1Aは実施例1に係るベータ型ゼオライトの27Al MAS NMRスペクトルを示す。1A shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 1. FIG. 図1Bは実施例2に係るベータ型ゼオライトの27Al MAS NMRスペクトルを示す。1B shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 2. FIG. 図1Cは実施例3に係るベータ型ゼオライトの27Al MAS NMRスペクトルを示す。1C shows the 27 Al MAS NMR spectrum of beta zeolite according to Example 3. FIG. 図1Dは比較例1に係るベータ型ゼオライトの27Al MAS NMRスペクトルを示す。1D shows the 27 Al MAS NMR spectrum of beta zeolite according to Comparative Example 1. FIG. 図2Aは実施例1に係るベータ型ゼオライトの29Si DDMAS NMRスペクトルを示す。2A shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 1. FIG. 図2Bは実施例2に係るベータ型ゼオライトの29Si DDMAS NMRスペクトルを示す。2B shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 2. FIG. 図2Cは実施例3に係るベータ型ゼオライトの29Si DDMAS NMRスペクトルを示す。2C shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Example 3. FIG. 図2Dは比較例1に係るベータ型ゼオライトの29Si DDMAS NMRスペクトルを示す。2D shows the 29 Si DDMAS NMR spectrum of beta zeolite according to Comparative Example 1. FIG. 図3Aは実施例1に係るベータ型ゼオライトの31P-H 2次元 NMRスペクトルのH側のスライススペクトルを示す。3A shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 1. FIG. 図3Bは実施例2に係るベータ型ゼオライトの31P-H 2次元 NMRスペクトルのH側のスライススペクトルを示す。3B shows the 1 H side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 2. FIG. 図3Cは実施例3に係るベータ型ゼオライトの31P-H 2次元 NMRスペクトルのH側のスライススペクトルを示す。3C shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of the beta zeolite according to Example 3. FIG. 図3Dは比較例1に係るベータ型ゼオライトの31P-H 2次元 NMRスペクトルのH側のスライススペクトルを示す。3D shows the 1 H-side slice spectrum of the 31 P- 1 H two-dimensional NMR spectrum of beta zeolite according to Comparative Example 1. FIG.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明は次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an embodiment. However, the present invention is not limited to the embodiments described below.
 リン(P)を含有するベータ型ゼオライト
 本発明の実施形態の一例は、27Al MAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク1:55.4ppm以上59.0ppm以下、ピーク2:50.0ppm以上55.4ppm以下、ピーク3:30.0ppm以上50.0ppm以下、ピーク4:-15.0ppm以上-5.0ppm以下となる4つのピークに分離されるピークを有し、4つのピークのピーク面積の合計A1値に対するピーク1のピーク面積A2値のピーク面積比をA(A2/A1)値とした際にA値が0.05以上である、リン(P)を含有するベータ型ゼオライトを提供する。
An example of an embodiment of the beta-type zeolite containing phosphorus (P) is a 27 Al MAS NMR spectrum in which the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm. 0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50.0 ppm or less, peak 4: -15.0 ppm or more and -5.0 ppm or less. Beta zeolite containing phosphorus (P), wherein the A value is 0.05 or more when the peak area ratio of the peak area A2 value of peak 1 to the total A1 value of the peak areas is defined as A (A2/A1) value. I will provide a.
 A(A2/A1)値
 A値を算出するためのベータ型ゼオライトの27Al MAS NMRスペクトルは、次の条件にて測定することができる。
 磁場:14.1 T(H 600MHz)
 分光器:ブルカー社製AVANCE NEO600
 測定及びデータ処理用ソフトウェア:ブルカー社製TopSpin
 NMRプローブ:3.2mmMASプローブ
 試料回転数:20kHz
 化学シフト値とラジオ波強度の標準試料:カリウムミョウバン
 化学シフト値の基準:カリウムミョウバンの中心ピークを-0.21ppmとする。
 スペクトル中心(O1値-SR値(化学シフト表記)):53.273ppm
 ラジオ波パルス強度:スペクトル中心が51.675ppmのときにカリウムミョウバンのピークを最大にするパルス幅が4.5μsとなる値とする。
 ラジオ波パルス幅:2.5μs
 測定間隔:10.4μs(上述のソフトウェア上でDW=5.2μs)
 測定ポイント数:961点(上述のソフトウェア上でTD=1922)
 スペクトルポイント数(上述のソフトウェア上のSI):4096点
A (A2/A1) Value The 27 Al MAS NMR spectrum of beta zeolite for calculating the A value can be measured under the following conditions.
Magnetic field: 14.1 T ( 1 H 600MHz)
Spectroscope: Bruker AVANCE NEO600
Measurement and data processing software: Bruker TopSpin
NMR probe: 3.2 mm MAS probe Sample rotation speed: 20 kHz
Standard sample for chemical shift value and radio wave intensity: Potassium alum Standard for chemical shift value: -0.21 ppm for the central peak of potassium alum.
Spectrum center (O1 value-SR value (chemical shift notation)): 53.273 ppm
Radio wave pulse intensity: A value that maximizes the peak of potassium alum when the spectrum center is 51.675 ppm and gives a pulse width of 4.5 μs.
Radio wave pulse width: 2.5 μs
Measurement interval: 10.4 μs (DW=5.2 μs on the above software)
Number of measurement points: 961 points (TD = 1922 on the above software)
Number of spectrum points (SI on the above software): 4096 points
 上述により得られたスペクトルを計算ソフト上でベースライン補正することにより、27Al MAS NMRスペクトルが得られる。ベースラインは、90ppmに最も近い点から100ppmに最も近い点までのすべての点の化学シフト値、信号強度のそれぞれを相加平均した点Q1と、-50ppmに最も近い点から-40ppmに最も近い点までのすべての点の化学シフト値、信号強度のそれぞれを相加平均した点Q2を結ぶことにより作成する。
 以上により得られたスペクトルを「Al実測スペクトル」と称する。本発明のピーク1~4は、Al実測スペクトルをピーク分離したものである。ピーク分離は、Al実測スペクトルに4個の擬フォークト関数の和で作成した計算スペクトルを、27Al化学シフト値-40ppmに最も近い点から90ppmに最も近い点までの範囲(以下、便宜上「-40ppm以上90ppm以下の範囲」と表記する。)でフィッティングすることにより実施する。擬フォークト関数は、同じ半値全幅のローレンツ関数とガウス関数の和である。ピーク分離で用いた擬フォークト関数f(x)を後述する式(1)に示す。各ピークのピーク面積は、Al実測スペクトルの-40ppm以上90ppm以下の範囲の点における擬フォークト関数により計算されるピークの信号強度の和により求める。
 なお、「擬フォークト関数」は、日本結晶学会誌34、86(1992)「特集 粉末回折法の新しい展開]の「6.プロファイル関数とパターン分解法」に基づくものである。
A 27 Al MAS NMR spectrum is obtained by performing baseline correction on the spectrum obtained as described above using calculation software. The baseline is the point Q1 that is the arithmetic average of the chemical shift values, signal intensities, respectively, of all points from the point closest to 90 ppm to the point closest to 100 ppm and the point Q1 from the point closest to −50 ppm to the point closest to −40 ppm. It is created by connecting point Q2 obtained by arithmetically averaging chemical shift values and signal intensities of all points up to the point.
The spectrum obtained as described above is referred to as "Al measured spectrum". The peaks 1 to 4 of the present invention are obtained by separating peaks from the measured Al spectrum. For peak separation, a calculated spectrum created by summing four pseudo Voigt functions in the measured Al spectrum was divided into a range from the point closest to the 27 Al chemical shift value of -40 ppm to the point closest to 90 ppm (hereinafter, for convenience, "-40 ppm It is described as "the range of 90 ppm or less".). The pseudo Voigt function is the sum of the same full width half maximum Lorentzian and Gaussian functions. The pseudo Voigt function f(x) used in peak separation is shown in Equation (1) below. The peak area of each peak is obtained from the sum of the signal intensities of the peaks calculated by the pseudo Voigt function at points in the range of -40 ppm to 90 ppm in the measured Al spectrum.
The "pseudo Voigt function" is based on "6. Profile function and pattern decomposition method" in Journal of the Crystallographic Society of Japan, 34, 86 (1992), "Special Issue: New Developments in Powder Diffraction Method".
 リンを含有するベータ型ゼオライトの27Al MAS NMRスペクトルにおいて、ピーク1~4の4つのピークのピーク面積の合計A1値は、リンを含有するベータ型ゼオライト中のアルミニウムの量と正の相関がある。ベータ型ゼオライトの結晶構造の1ユニットセルにおいて、非特許文献であるYoshihiro Kubota et.al.,「Effective fabrication of catalysts from large-pore,multi-dimensional zeolites synthesized without using organic structure-directing agents」、Chemistry of Materials、2014、26(2)、1250-1259(以下、「非特許文献Yoshihiro」という場合もある。)に示すように、T1~T9のシリコンサイトが存在する。ピーク1の面積A2値は、ベータ型ゼオライトの結晶構造において等価に存在するT1~T9の9か所のシリコンサイトのうちT3~T9のシリコンサイトに置換されたアルミニウムの量と正の相関がある。
 なお、ピーク1の面積A2値が大きいと昇温脱離法(TPD)によるアンモニア(NH)吸着量が大きくなるため、ベータ型ゼオライトの結晶構造において、T1~T9のシリコンサイトのうち、T3~T9のシリコンサイトに置換されたアルミニウムと結合したOが強い酸点となりやすいと考えられる。
 ピーク1は、上述したようにベータ型ゼオライトの結晶構造において等価に存在するT1~T9の9か所のシリコンサイトのうちT3~T9のシリコンサイトに置換されたアルミニウムに由来するピークを表す。ピーク2は、ベータ型ゼオライトの結晶構造において等価に存在するT1~T9の9か所のシリコンサイトのうちT1及び/又はT2のシリコンサイトに置換されたアルミニウムに由来するピークを表す。ピーク3は、リン酸近傍にある4配位アルミニウムに由来するピークを表す。ピーク4は、ゼオライト骨格外の6配位アルミニウムに由来するピークを表す。
 ベータ型ゼオライトの結晶構造において、T3~T9のシリコンサイトにアルミニウムが置換すると、アンモニア(NH)の吸着量が多くなり、アンモニアをゼオライトに吸着させた後に焼成により脱離すると、4配位のアルミニウムにより酸点が形成される。ベータ型ゼオライト中の4配位のアルミニウムにより作られる酸点は、ブレンステッド酸点である。ベータ型ゼオライト中の4配位のアルミニウムの酸点は、吸着した炭化水素(HC)を浄化する際の酸化反応の活性点となる。
In the 27 Al MAS NMR spectrum of the beta zeolite containing phosphorus, the total A1 value of the peak areas of the four peaks 1 to 4 is positively correlated with the amount of aluminum in the beta zeolite containing phosphorus. . In one unit cell of the crystal structure of beta-type zeolite, the non-patent document Yoshihiro Kubota et. al. ,「Effective fabrication of catalysts from large-pore,multi-dimensional zeolites synthesized without using organic structure-directing agents」、Chemistry of Materials、2014、26(2)、1250-1259(以下、「非特許文献Yoshihiro」という場合), there are silicon sites T1 to T9. The area A2 value of peak 1 has a positive correlation with the amount of aluminum substituted at the silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the crystal structure of beta-type zeolite. .
Note that if the area A2 value of peak 1 is large, the amount of ammonia (NH 3 ) adsorbed by the temperature programmed desorption method (TPD) increases. It is considered that O bonded to aluminum substituted at the silicon site of ~T9 tends to become a strong acid site.
Peak 1 represents a peak derived from aluminum substituted at silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the crystal structure of beta-type zeolite as described above. Peak 2 represents a peak derived from aluminum substituted at the T1 and/or T2 silicon sites among the nine silicon sites T1 to T9 equivalently present in the beta zeolite crystal structure. Peak 3 represents a peak derived from tetracoordinated aluminum in the vicinity of phosphoric acid. Peak 4 represents a peak derived from hexacoordinated aluminum outside the zeolite framework.
In the crystal structure of beta-type zeolite, when the silicon sites at T3 to T9 are substituted with aluminum, the amount of ammonia (NH 3 ) adsorbed increases. Acid sites are formed by aluminum. The acid sites created by tetracoordinated aluminum in beta zeolite are Bronsted acid sites. The acid sites of tetracoordinated aluminum in beta zeolite become active sites for oxidation reactions during purification of adsorbed hydrocarbons (HC).
 A(A2/A1)値は、試料中のアルミニウムの総量に対する酸点になりやすいアルミニウムの存在比と正の相関を示す値となる。またピーク1に属するT3からT9のシリコンサイトとピーク2に属するT1、T2のシリコンサイトは3:1のサイト数比の関係にある。ベータ型ゼオライトの1ユニットセル中のT1~T9のシリコンサイトのサイト数は、T7及びT9がそれぞれ4サイトであり、T1~T6及びT8がそれぞれ8サイトである。ベータ型ゼオライトの1ユニットセル中、T3~T9の合計は48サイトであり、T1及びT2の合計は16サイトである。アルミニウムが均一に分布して、ベータ型ゼオライトの結晶性が高くなるとピーク2よりピーク1の方が大きくなる。このため、ピーク1の面積比であるA値が大きいことは骨格外アルミニウムが少なく、かつ結晶性が高いことを示す。このようなリンを含有するベータ型ゼオライトのA(A2/A1)値が0.05以上であると、高結晶性かつ高耐熱性を有しながら、ブレンステッド酸点が多い状態となり、厳しい熱環境下におかれた場合でも高活性な触媒となる。
 なお、ベータ型ゼオライト結晶構造と27Al MAS NMRスペクトルとの関係については、上述した非特許文献Yoshihiroに記述がある。
The A (A2/A1) value is a value that shows a positive correlation with the abundance ratio of aluminum that tends to form acid sites with respect to the total amount of aluminum in the sample. Silicon sites T3 to T9 belonging to peak 1 and silicon sites T1 and T2 belonging to peak 2 have a site number ratio of 3:1. The number of silicon sites T1 to T9 in one unit cell of beta zeolite is 4 for each of T7 and T9, and 8 for each of T1 to T6 and T8. In one unit cell of beta zeolite, the total of T3 to T9 is 48 sites, and the total of T1 and T2 is 16 sites. When aluminum is uniformly distributed and the crystallinity of beta-type zeolite increases, peak 1 becomes larger than peak 2. Therefore, a large A value, which is the area ratio of peak 1, indicates that the amount of extra-framework aluminum is small and the crystallinity is high. When the A (A2/A1) value of such a beta-type zeolite containing phosphorus is 0.05 or more, it has high crystallinity and high heat resistance, but has a large number of Bronsted acid sites, resulting in severe heat. It becomes a highly active catalyst even when placed under the environment.
The relationship between the beta-type zeolite crystal structure and the 27 Al MAS NMR spectrum is described in the above-mentioned non-patent document Yoshihiro.
 A値は、0.05以上0.75以下の範囲内であることが好ましく、高結晶性と触媒活性とのバランスに優れる観点から0.14以上0.5以下の範囲内であることがより好ましく、0.14以上0.3以下であることが更に好ましい。A値が0.75以下であることにより結晶性を高く維持し易くなり、結晶構造が安定化することで厳しい熱環境においても触媒活性が好適となる。ベータ型ゼオライトの結晶性が高いと、ベータ型ゼオライトの細孔の大きさが維持されやすく、目的物質の吸着性が向上する。A値は、後述する製造方法によって製造されたリンを含有するベータ型ゼオライトを、後述する測定方法によって測定することにより、好適に得ることができる。擬フォークトスペクトルのピーク分離で用いた擬フォークト関数f(x)は、下記式(1)により導き出すことができる。 The A value is preferably in the range of 0.05 or more and 0.75 or less, and more preferably in the range of 0.14 or more and 0.5 or less from the viewpoint of excellent balance between high crystallinity and catalytic activity. Preferably, it is more preferably 0.14 or more and 0.3 or less. When the A value is 0.75 or less, the crystallinity is easily maintained at a high level, and the crystal structure is stabilized, so that the catalytic activity is suitable even in a severe thermal environment. When beta zeolite has high crystallinity, the pore size of beta zeolite is easily maintained, and the adsorption of the target substance is improved. The A value can be suitably obtained by measuring the phosphorus-containing beta zeolite produced by the below-described production method by the below-described measurement method. The pseudo Voigt function f(x) used in the peak separation of the pseudo Voigt spectrum can be derived from the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、xはNMRスペクトルの横軸の値(化学シフト値)、xはピーク頂点の化学シフト値、Sは実測に合わせるためのスケーリング係数、ηは-∞(マイナス無限大)から+∞(プラス無限大)の範囲でのローレンツ関数(第1項)のピーク面積比、Δはピークの半値全幅、πは円周率、lnは自然対数関数、expは自然指数関数を表す。
 ピーク分離では、4個の擬フォークト関数各々のx0、Δ、η、Sを変数として実測スペクトルと計算スペクトルの化学シフト値-40ppm以上90ppm以下の範囲の平均二乗偏差が最小となるように計算ソフトのソルバー機能を用いてフィッティングを行なう。スケーリング係数Sは全ピークのSの和が1となるように規格化した数値を記載する。
In formula (1), x is the value of the horizontal axis of the NMR spectrum (chemical shift value), x 0 is the chemical shift value of the peak apex, S is the scaling factor to match the actual measurement, η is -∞ (minus infinity) is the peak area ratio of the Lorentzian function (first term) in the range from to +∞ (plus infinity), Δ is the full width at half maximum of the peak, π is the circumference constant, ln is the natural logarithm function, and exp is the natural exponential function. .
In the peak separation, x 0, Δ, η, and S of each of the four pseudo-Voigt functions were used as variables, and the mean square deviation in the chemical shift value range of -40 ppm to 90 ppm between the measured spectrum and the calculated spectrum was calculated to be the minimum. Fitting is performed using the solver function of the software. Scaling coefficient S describes a numerical value normalized so that the sum of S of all peaks is 1.
 B値
 本発明の実施形態の他の例として、29Si DDMAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク5:-100ppm以上-106ppm以下、ピーク6:-106ppm以上-112ppm以下、ピーク7:-112ppm以上-118ppm以下となる3つのピークに分離されるピークを有し、ピーク5の化学シフト値で表記される半値全幅をB値とした際にB値が9.8ppm以下である、リンを含有するベータ型ゼオライトを提供する。なお、B値の単位(ppm)は、29Si DDMAS NMRスペクトルにおける横軸の単位(化学シフト値)である。後述するようにB値は、ベータ型ゼオライトの酸点近傍の構造の不均一性を表す値である。このように、リンを含有するベータ型ゼオライトのB値が9.8ppm以下であると、アルミニウム近傍の構造均一性が高く、耐熱性に優れるものとなる。B値は、後述する製造方法によって製造されたリンを含有するベータ型ゼオライトを、後述する測定方法によって測定することにより、好適に得ることができる。
B value As another example of the embodiment of the present invention, in the 29 Si DDMAS NMR spectrum, the chemical shift value of the peak apex is peak 5: -100 ppm or more and -106 ppm or less, peak 6: -106 ppm or more and -112 ppm or less, peak 7: It has a peak separated into three peaks of -112 ppm or more and -118 ppm or less, and the B value is 9.8 ppm or less when the full width at half maximum represented by the chemical shift value of peak 5 is taken as the B value. Phosphorus to provide a beta zeolite containing The unit (ppm) of the B value is the horizontal axis unit (chemical shift value) in the 29 Si DDMAS NMR spectrum. As will be described later, the B value is a value representing the heterogeneity of the structure near the acid site of beta zeolite. Thus, when the phosphorus-containing beta-type zeolite has a B value of 9.8 ppm or less, the structural uniformity in the vicinity of aluminum is high and the heat resistance is excellent. The B value can be suitably obtained by measuring the phosphorus-containing beta zeolite produced by the below-described production method by the below-described measurement method.
 B値を算出するためのリンを含有するベータ型ゼオライトの29Si DDMAS NMRスペクトルは、次の条件にて測定することができる。
 磁場:14.1 T(H 600MHz)
 分光器:ブルカー社製AVANCE NEO600
 測定及びデータ処理用ソフトウェア:ブルカー社製TopSpin
 NMRプローブ:3.2mmMASプローブ
 試料回転数:20 kHz
 化学シフト値とラジオ波強度の標準試料:オクタキス(トリメチルシロキシ)シルセスキオキサン(以下、「Q8M8」ともいう)
 化学シフト値の基準:Q8M8の低磁場側のピークを-12.6ppmとする。
 スペクトル中心(O1値-SR値(化学シフト表記)):-110ppm
 ラジオ波パルス強度:スペクトル中心が0.0ppmのときにQ8M8の低磁場側のピークを最大にするパルス幅が4μsとなる値とする。
 ラジオ波パルス幅:4μs
 Hデカップル照射中心(O2値-HのSR値(化学シフト表記)):4.7ppm
 Hデカップル強度:62.5kHz
 測定間隔:28μs(上述のソフトウェア上でDW=14μs)
 測定ポイント数:512点(上述のソフトウェア上でTD=1024)
 スペクトルポイント数(上述のソフトウェア上のSI):4096点
The 29 Si DDMAS NMR spectrum of beta zeolite containing phosphorus for calculating the B value can be measured under the following conditions.
Magnetic field: 14.1 T ( 1 H 600MHz)
Spectroscope: Bruker AVANCE NEO600
Measurement and data processing software: Bruker TopSpin
NMR probe: 3.2 mm MAS probe Sample rotation speed: 20 kHz
Standard sample for chemical shift value and radio wave intensity: octakis(trimethylsiloxy)silsesquioxane (hereinafter also referred to as "Q8M8")
Standard of chemical shift value: The peak of Q8M8 on the low magnetic field side is -12.6 ppm.
Spectrum center (O1 value - SR value (chemical shift notation)): -110 ppm
Radio wave pulse intensity: The value is such that the pulse width that maximizes the peak on the low magnetic field side of Q8M8 when the spectrum center is 0.0 ppm is 4 μs.
Radio wave pulse width: 4 μs
1 H decouple irradiation center (O2 value - 1 H SR value (chemical shift notation)): 4.7 ppm
1 H decoupling strength: 62.5 kHz
Measurement interval: 28 μs (DW=14 μs on the above software)
Number of measurement points: 512 points (TD = 1024 on the above software)
Number of spectrum points (SI on the above software): 4096 points
 上述のようにして得られたスペクトルを「Si実測スペクトル」と称する。本発明のピーク5~7は、Si実測スペクトルをピーク分離したものである。ピーク分離は、Si実測スペクトルに3個の上述した擬フォークト関数の和で作成した計算スペクトルを、29Si化学シフト値-123ppm以上-92ppm以下の範囲でフィッティングすることにより実施する。B値は、フィッティングにより得られたピーク5の半値全幅とする。 The spectrum obtained as described above is referred to as "Si measured spectrum". The peaks 5 to 7 of the present invention are obtained by separating peaks from the measured spectrum of Si. Peak separation is performed by fitting a calculated spectrum created by summing the three above-mentioned pseudo Voigt functions to the measured Si spectrum in the range of 29 Si chemical shift values from -123 ppm to -92 ppm. The B value is the full width at half maximum of peak 5 obtained by fitting.
 リンを含有するベータ型ゼオライトの29Si DDMAS NMRスペクトルにおいて、ピーク5はベータ型ゼオライトの化学結合において-O(酸素)-Siが3つ連続して結合し、-O-Alが1つ結合したケイ素(以下、「Si(1Al)」と表記する。)に由来するピークを表す。ベータ型ゼオライトにおいて、-O-Siが3つと-O-Alが1つ結合した場合のアルミニウムは、活性中心となる酸点が形成されやすい。ピーク5の半値全幅B値は酸点近傍の構造の不均一性を表す値となる。ピーク6はT3~T6のシリコンサイトに-O-Siが4配位したケイ素に由来するピークを表す。ピーク7はT1及びT2のシリコンサイトに-O-Siが4配位したケイ素に由来するピークを表す。
 B値は、9.8ppm以下であり、0.07ppm以上9.8ppm以下の範囲内であることが好ましく、1.0ppm以上8.4ppm以下の範囲内であることがより好ましい。活性中心となる酸点近傍の構造の不均一性が低い方が触媒活性を高くすることができるが、Si(1Al)の量が少な過ぎると酸点が少なくなり、触媒活性が低下することがある。
In the 29 Si DDMAS NMR spectrum of beta-type zeolite containing phosphorus, peak 5 is a chemical bond of beta-type zeolite in which three —O (oxygen)—Si are continuously bonded and one —O—Al is bonded. It represents a peak derived from silicon (hereinafter referred to as “Si(1Al)”). In beta-type zeolite, when three --O--Si and one --O--Al are combined, aluminum tends to form an acid site serving as an active center. The full width at half maximum B value of peak 5 represents the non-uniformity of the structure in the vicinity of the acid site. Peak 6 represents a peak derived from silicon in which --O--Si is tetra-coordinated to silicon sites T3 to T6. Peak 7 represents a peak derived from silicon in which --O--Si is tetra-coordinated to the silicon sites of T1 and T2.
The B value is 9.8 ppm or less, preferably in the range of 0.07 ppm or more and 9.8 ppm or less, and more preferably in the range of 1.0 ppm or more and 8.4 ppm or less. The lower the heterogeneity of the structure in the vicinity of the acid site serving as the active center, the higher the catalytic activity. be.
 E(C×D)値
 本発明の実施形態の他の例として、リンを含有するベータ型ゼオライトは、後述するようにC値とD値の積であるE(C×D)値が1.1以上である、リンを含有するベータ型ゼオライトを提供する。C値は、31P-H 2次元NMRスペクトルにおいて、頂点でのH側のスライススペクトルをピーク頂点の化学シフト値がピーク8:5.0ppm以上6.0ppm以下、ピーク9:4.4ppm以上5.0ppm以下、ピーク10:3.0ppm以上4.4ppm以下となる3つのピークに分離されるピークを有し、3つのピークのピーク面積の合計C1値に対するピーク8のピーク面積C2値のピーク面積比(C2/C1)とする。D値は、CuKα線を用いたXRDにより測定されるX線回折スペクトルにおけるα-Alの(116)面のピーク強度D1値に対するゼオライトの(302)面のピーク強度D2値のピーク強度比(D2/D1)とする。
 後述するようにC値は、ブレンステッド酸点に結合している水素(H)の量を表し、D値はベータ型ゼオライトの結晶性を表し、E(C×D)値が1.1以上であると、ベータ型ゼオライトは耐熱性及び酸点のバランスがよく、耐久後も好適に酸点を保つこととなる。C(C2/C1)値、D(D2/D1)値、E(C×D)値は、後述する製造方法によって製造されたリンを含有するベータ型ゼオライトを、後述する測定方法によって測定することにより、好適に得ることができる。
E (C×D) Value As another example of an embodiment of the present invention, the beta-type zeolite containing phosphorus has an E (C×D) value, which is the product of the C value and the D value, of 1.0. 1 or more, a phosphorus-containing beta zeolite is provided. In the 31 P- 1 H two-dimensional NMR spectrum, the chemical shift value of the peak apex of the 1 H side slice spectrum at the peak is 8: 5.0 ppm or more and 6.0 ppm or less, and the peak 9: 4.4 ppm. 5.0 ppm or less, peak 10: has a peak separated into three peaks of 3.0 ppm or more and 4.4 ppm or less, and the peak area C2 value of peak 8 with respect to the total C1 value of the peak areas of the three peaks The peak area ratio is defined as (C2/C1). The D value is the peak intensity of the zeolite (302) plane relative to the peak intensity D1 of the (116) plane of α-Al 2 O 3 in the X-ray diffraction spectrum measured by XRD using CuKα rays. Let the ratio be (D2/D1).
As will be described later, the C value represents the amount of hydrogen (H) bonded to Bronsted acid sites, the D value represents the crystallinity of beta-type zeolite, and the E (C × D) value is 1.1 or more. , the beta zeolite has a good balance of heat resistance and acid sites, and preferably maintains the acid sites even after durability. The C (C2/C1) value, D (D2/D1) value, and E (C×D) value are obtained by measuring the phosphorus-containing beta zeolite produced by the production method described below by the measurement method described below. can be suitably obtained.
 C(C2/C1)値
 C値を算出するためのリンを含有するベータ型ゼオライトの31P-H 2次元NMRスペクトルは、次の条件により測定することができる。
 磁場:14.1 T(H 600MHz)
 分光器:ブルカー社製AVANCE NEO600
 測定及びデータ処理用ソフトウェア:ブルカー社製TopSpin
 NMRプローブ:3.2mmMASプローブ
 試料回転数:20 kHz
 化学シフト値とラジオ波強度の標準試料:リン酸水素二アンモニウム
 化学シフト値の基準:リン酸水素二アンモニウムの低磁場側のピークを1.5ppmとする。
 31Pスペクトル中心(O1P値-31PのSR値(化学シフト表記)):-22ppm
 Hスペクトル中心(O2P値-HのSR値(化学シフト表記)):-4.7ppm
 H間接測定時のH照射法:周波数変調リーゴールドバーグ(FSLG)照射
 H間接測定時のH照射強度:83.3kHz
 H間接測定の測定間隔:135.94μs(上述のソフトウェア上でIN_F=67.97μs)
 H間接測定の測定ポイント数:64(上述のソフトウェア上でTD=128)
 偏極移動法:交差分極法(接触時間2.5ms)
 31P直接測定の測定間隔:12.2μs(上述のソフトウェア上でDW=6.1μs)
 31P直接測定の測定ポイント数:245点(上述のソフトウェア上でTD=490)
 交差分極法の31Pラジオ波パルス強度:42kHz
 交差分極法のHラジオ波パルス強度:70kHz
 励起パルスのHラジオ波パルス幅:3μs
 励起パルスのHラジオ波パルス強度:83.3kHz
 Hデカップル照射中心(O2値-HのSR値(化学シフト表記)):4.7ppm
 Hデカップル強度:62.5kHz
 Hスペクトルのポイント数(上述のソフトウェア上のSI):1024
 31Pスペクトルのポイント数(上述のソフトウェア上のSI):8192
C(C2/C1) Value The 31 P- 1 H two-dimensional NMR spectrum of phosphorus-containing beta zeolite for calculating the C value can be measured under the following conditions.
Magnetic field: 14.1 T ( 1 H 600MHz)
Spectroscope: Bruker AVANCE NEO600
Measurement and data processing software: Bruker TopSpin
NMR probe: 3.2 mm MAS probe Sample rotation speed: 20 kHz
Standard sample for chemical shift value and radio wave intensity: Diammonium hydrogen phosphate Standard for chemical shift value: The peak of diammonium hydrogen phosphate on the low magnetic field side is 1.5 ppm.
31 P spectrum center (O1P value - 31 P SR value (chemical shift notation)): -22 ppm
1 H spectrum center (O2P value - 1 H SR value (chemical shift notation)): -4.7 ppm
1 H irradiation method for 1 H indirect measurement: frequency-modulated Riegoldberg (FSLG) irradiation 1 H irradiation intensity for 1 H indirect measurement: 83.3 kHz
Measurement interval for 1 H indirect measurements: 135.94 μs (IN_F=67.97 μs on the software described above)
Number of measurement points for 1 H indirect measurement: 64 (TD=128 on the above software)
Polarization transfer method: cross-polarization method (contact time 2.5 ms)
Measurement interval for 31 P direct measurements: 12.2 μs (DW=6.1 μs on the software described above)
Number of measurement points for 31 P direct measurement: 245 points (TD = 490 on the above software)
Cross-polarized 31 P radiofrequency pulse intensity: 42 kHz
Cross-polarized 1 H radio wave pulse intensity: 70 kHz
1 H radio wave pulse width of excitation pulse: 3 μs
1 H radio wave pulse intensity of excitation pulse: 83.3 kHz
1 H decouple irradiation center (O2 value - 1 H SR value (chemical shift notation)): 4.7 ppm
1 H decoupling strength: 62.5 kHz
Number of points in 1 H spectrum (SI on software above): 1024
Number of points in 31 P spectrum (SI on software above): 8192
 リンを含有するベータ型ゼオライトは、リンを含有するベータ型ゼオライトの31P-H 2次元NMRスペクトルの頂点でのH側のスライススペクトルにおいて、ピーク頂点の化学シフト値がピーク8:5.0ppm以上6.0ppm以下、ピーク9:4.4ppm以上5.0ppm以下、ピーク10:3.0ppm以上4.4ppm以下となる3つに分離される計算ピークを有する。各ピークのピーク面積は、31P-H 2次元NMRスペクトルの頂点でのH側のスライススペクトルの全範囲の点における計算ピークの信号強度の和により求める。ここでの計算ピークとは前述の擬フォークト関数により計算されたピークである。
 ピーク8~10の3つのピークのピーク面積の合計C1値は、ベータ型ゼオライト中のリン近傍の水素の量を表す。ゼオライトに含まれる水素とリンの距離が短いとピーク面積が大きくなる。リンを含有するベータ型ゼオライトの31P-H 2次元NMRスペクトルの頂点でのH側のスライススペクトルにおいて、ピーク8のピーク面積C2値はベータ型ゼオライトに含まれるリンの近傍にあるブレンステッド酸点に結合しているHの量を表す。
 ピーク8はベータ型ゼオライトに含まれるリンの近傍にあるブレンステッド酸点に結合している水素に由来するピークを表す。ピーク9は、ベータ型ゼオライトに含まれるリンの近傍にある水分子の水素に由来するピークを表す。ピーク10は、ベータ型ゼオライトに含まれるPの近傍にあるルイス酸点の水素に由来するピークを表す。
The beta zeolite containing phosphorus has a peak apex chemical shift value of 8:5. It has three calculated peaks separated from 0 ppm to 6.0 ppm, peak 9 from 4.4 ppm to 5.0 ppm, and peak 10 from 3.0 ppm to 4.4 ppm. The peak area of each peak is determined by the sum of the signal intensities of the calculated peaks at points in the entire range of the slice spectrum on the 1 H side at the vertex of the 31 P- 1 H two-dimensional NMR spectrum. The calculated peak here is the peak calculated by the above-mentioned pseudo Voigt function.
The total C1 value of the peak areas of the three peaks, peaks 8-10, represents the amount of hydrogen near phosphorus in beta zeolite. The shorter the distance between hydrogen and phosphorus contained in zeolite, the larger the peak area. In the 1 H side slice spectrum at the vertex of the 31 P- 1 H two-dimensional NMR spectrum of beta zeolite containing phosphorus, the peak area C2 value of peak 8 is Bronsted It represents the amount of H bound to the acid sites.
Peak 8 represents a peak derived from hydrogen bound to Bronsted acid points in the vicinity of phosphorus contained in beta-type zeolite. Peak 9 represents a peak derived from hydrogen of water molecules in the vicinity of phosphorus contained in beta-type zeolite. Peak 10 represents a peak derived from hydrogen at a Lewis acid site near P contained in beta-type zeolite.
 C(C2/C1)値は、ベータ型ゼオライトに含まれるリンの近傍にある水素の量に対するリンの近傍にあるブレンステッド酸点に結合している水素の量を表し、C値が高いほどリンの近傍にあるブレンステッド酸点に結合している水素の量が多くなり、酸点の量を表す値となる。C値は、0.1以上であることが好ましく、0.3以上であることがより好ましく、0.5以上であることが更に好ましい。C値は、高いほど酸点の量が多くなるが、酸点が多すぎると酸点を形成するアルミニウム量が多くなり、結晶性が低下する。 The C (C2/C1) value represents the amount of hydrogen bonded to the Bronsted acid points near phosphorus relative to the amount of hydrogen near phosphorus contained in beta-type zeolite, and the higher the C value, the more phosphorus The amount of hydrogen bonding to Bronsted acid sites in the vicinity of increases, and the value represents the amount of acid sites. The C value is preferably 0.1 or more, more preferably 0.3 or more, and even more preferably 0.5 or more. As the C value increases, the amount of acid sites increases. However, if the acid sites are too large, the amount of aluminum forming acid sites increases and the crystallinity deteriorates.
 D(D2/D1)値
 リンを含有するベータ型ゼオライトのCuKα線を用いたXRDにより測定されるX線回折スペクトルにおけるα-Alの(116)面のピーク強度D1値に対するゼオライトの(302)面のピーク強度D2値のピーク強度比をD(D2/D1)値とする。
 D値は、ベータ型ゼオライトの結晶性の指標となり、D値が大きいほどゼオライトの結晶性が高くなり、耐熱性に優れるものといえる。α-Alは、アメリカ国立標準技術研究所が頒布する標準物質674aである。結晶性が高いと、結晶構造が安定するため、触媒活性が良くなる傾向がある。D値は、1.3以上であることが好ましく、1.8以上であることがより好ましい。
D ( D2/D1) value Zeolite's ( 302) Let the peak intensity ratio of the peak intensity D2 value of the plane 302) be the D(D2/D1) value.
The D value is an index of the crystallinity of beta-type zeolite, and it can be said that the larger the D value, the higher the crystallinity of the zeolite and the better the heat resistance. α-Al 2 O 3 is reference material 674a distributed by the National Institute of Standards and Technology. When the crystallinity is high, the crystal structure tends to be stable, and the catalytic activity tends to be improved. The D value is preferably 1.3 or more, more preferably 1.8 or more.
 D値は、測定対象となるリンを含有するベータ型ゼオライトと、標準物質であるα-Alを同体積で混合した試料をX線回折測定に付すことによって得られる。X線回折測定によって得られた標準物質であるAlの(116)面のピーク強度D1と、ベータ型ゼオライトの(302)面のピーク強度D2を求め、D(D2/D1)値を求める。標準物質であるα-Alの回折ピークは、一般的に回折角度2θが57.40°以上57.60°以下の範囲に観察される。α-Alの回折ピークとして(116)面の回折ピークを採用した理由は、(116)面の回折ピークの近辺にゼオライトの回折ピークが観察されず且つ(116)面の回折ピークが高強度なので測定の精度が高められるためである。ベータ型ゼオライトの(302)面の回折ピークは、一般的に回折角度2θが22.10°以上23.58°以下の範囲に観察される。XRDは、後述する実施例に記載した方法で測定することができる。 The D value is obtained by subjecting a sample obtained by mixing the beta-type zeolite containing phosphorus to be measured and α-Al 2 O 3 as a standard substance in the same volume to X-ray diffraction measurement. The peak intensity D1 of the (116) plane of Al 2 O 3 and the peak intensity D2 of the (302) plane of beta-type zeolite obtained by X-ray diffraction measurement are obtained, and the D (D2/D1) value is calculated. demand. The diffraction peak of α-Al 2 O 3 , which is a standard substance, is generally observed in the range of the diffraction angle 2θ of 57.40° or more and 57.60° or less. The reason for adopting the diffraction peak of the (116) plane as the diffraction peak of α-Al 2 O 3 is that the diffraction peak of the zeolite was not observed in the vicinity of the diffraction peak of the (116) plane and the diffraction peak of the (116) plane was not observed. This is because the accuracy of measurement is enhanced due to the high intensity. The diffraction peak of the (302) plane of beta-type zeolite is generally observed in the range of the diffraction angle 2θ of 22.10° or more and 23.58° or less. XRD can be measured by the method described in Examples below.
 E(C×D)値
 E(C×D)値は、1.1以上であれば酸点に結合している水素の量が少ない場合であってもベータ型ゼオライトの結晶性が高く、優れた触媒活性を示す、またはベータ型ゼオライトの結晶性をある程度維持しつつ酸点に結合している水素の量が多く、耐熱性だけでなく優れた触媒活性を示す。E(C×D)値は、リンを含有するベータ型ゼオライトのリン近傍のブレンステッド酸点の量とリンを含有するベータ型ゼオライトの結晶性を考慮した触媒活性の良否を表す指標となる。E(C×D)値が1.1を下回るとリン近傍のブレンステッド酸点の量、若しくはベータ型ゼオライトの結晶性が低くなり、耐熱性が低下して触媒活性が下がる。E(C×D)値は1.2以上であることが好ましく、1.5以上であることがより好ましい。またE(C×D)値は1.8以下であってもよい。
E (C × D) value If the E (C × D) value is 1.1 or more, the crystallinity of beta-type zeolite is high and excellent even when the amount of hydrogen bonded to the acid sites is small. Alternatively, the crystallinity of beta-type zeolite is maintained to some extent and the amount of hydrogen bonded to acid sites is large, so that not only heat resistance but also excellent catalytic activity is exhibited. The E(C×D) value is an index representing the quality of the catalytic activity in consideration of the amount of Bronsted acid sites in the vicinity of phosphorus of the phosphorus-containing beta-zeolite and the crystallinity of the phosphorus-containing beta-zeolite. When the E(CxD) value is less than 1.1, the amount of Bronsted acid sites near phosphorus or the crystallinity of the beta-type zeolite decreases, resulting in a decrease in heat resistance and a decrease in catalytic activity. The E(CxD) value is preferably 1.2 or more, more preferably 1.5 or more. Also, the E(C×D) value may be 1.8 or less.
 F(A2/A3)値
 本発明の実施形態の他の例として、27Al MAS NMRスペクトルにおいて、上述したピーク1及びピーク2のピーク面積の合計A3値に対するピーク1のピーク面積A2値のピーク面積比をF(A2/A3)値とした際に、F値が0.22以上である、リンを含有するベータ型ゼオライトを提供する。リンを含有するベータ型ゼオライトの27Al MAS NMRスペクトル、及び、ピーク面積は、上述のA値と同様に測定することができる。
 リンを含有するベータ型ゼオライトの27Al MAS NMRスペクトルにおいて、ピーク1及びピーク2のピーク面積の合計A3値は、ベータ型ゼオライトの結晶構造においてT1~T9の9か所のシリコンサイトに置換されたアルミニウムと正の相関がある。F(A2/A3)値は、ベータ型ゼオライトの結晶構造におけるシリコンサイトに置換されたアルミニウムの中で、ブレンステッド酸点になりやすいアルミニウムの存在比と正の相関を示す数値となる。F(A2/A3)値が0.22以上であるリンを含有するベータ型ゼオライトは、結晶性が高くて耐熱性に優れたものとなる。F値は、後述する製造方法によって製造されたリンを含有するベータ型ゼオライトを、前述した測定方法によって測定することにより、好適に得ることができる。
F(A2/A3) value As another example of the embodiment of the present invention, in the 27 Al MAS NMR spectrum, the peak area of the peak area A2 value of peak 1 with respect to the total A3 value of the peak areas of peaks 1 and 2 Provided is a phosphorus-containing beta zeolite having an F (A2/A3) ratio of 0.22 or more. The 27 Al MAS NMR spectrum and peak area of beta-type zeolite containing phosphorus can be measured in the same manner as the A value described above.
In the 27 Al MAS NMR spectrum of beta zeolite containing phosphorus, the total A3 value of the peak areas of peaks 1 and 2 was replaced by nine silicon sites from T1 to T9 in the crystal structure of beta zeolite. There is a positive correlation with aluminum. The F(A2/A3) value is a numerical value that shows a positive correlation with the abundance ratio of aluminum, which tends to form Bronsted acid sites, among aluminum substituted for silicon sites in the crystal structure of beta-type zeolite. A beta-type zeolite containing phosphorus with an F(A2/A3) value of 0.22 or more has high crystallinity and excellent heat resistance. The F value can be suitably obtained by measuring the phosphorus-containing beta-type zeolite produced by the production method described below by the measurement method described above.
 リンを含有するベータ型ゼオライトの27Al MAS NMRスペクトルにおいて、ピーク1及びピーク2のピーク面積の合計A3は、ベータ型ゼオライトの結晶構造の構造骨格内に含まれる4配位アルミニウム(骨格内アルミニウム)の総量と正の相関がある。ピーク面積A2は、上述のピーク面積A2と同じであり、ベータ結晶構造において等価に存在するT1~T9の9か所のシリコンサイトのうちT3~T9のシリコンサイトに置換されたアルミニウムの量と正の相関がある。F(A2/A3)値が、ベータ型ゼオライトの1ユニットセル中のシリコンサイトのT1~T9の合計のサイト数(64サイト)とアルミニウムが置換し得るシリコンサイトのT3~T9の合計のサイト数(48サイト)の比である0.75に近づくと、ベータ型ゼオライトは、結晶性が高くて耐熱性に優れ、かつアルミニウムがベータ型ゼオライトにより均一に分散していることを示す。 In the 27 Al MAS NMR spectrum of beta-type zeolite containing phosphorus, the total A3 of the peak areas of peaks 1 and 2 is 4-coordinated aluminum contained within the structural framework of the crystal structure of beta-type zeolite (framework aluminum). There is a positive correlation with the total amount of The peak area A2 is the same as the peak area A2 described above, and is positive to the amount of aluminum substituted at the silicon sites T3 to T9 among the nine silicon sites T1 to T9 equivalently present in the beta crystal structure. There is a correlation of The F (A2/A3) value is the total number of sites (64 sites) of T1 to T9 of silicon sites in one unit cell of beta-type zeolite and the total number of T3 to T9 of silicon sites that can be substituted by aluminum. As the ratio of (48 sites) approaches 0.75, beta zeolite has high crystallinity and excellent heat resistance, and aluminum is more uniformly dispersed in beta zeolite.
 リンを含有するベータ型ゼオライトの27Al MAS NMRスペクトルにおいて、結晶性が高くて耐熱性に優れたものとする観点から、好ましくはF値が0.22以上であり、0.4以上であるとより好ましい。リンを含有するベータ型ゼオライトのF値が0.22以上であれば、リンを含有するベータ型ゼオライトのアルミニウムが試料により均一に分散し、触媒活性が良くなる。F値が結晶構造のサイト数比である0.75より大きくなると、アルミニウムの分布に偏りがあるか若しくは結晶構造が変化していることを示す。このため、F値は0.75以下であることが好ましく、0.6以下であっても良い。 In the 27 Al MAS NMR spectrum of beta-type zeolite containing phosphorus, from the viewpoint of high crystallinity and excellent heat resistance, the F value is preferably 0.22 or more, and 0.4 or more. more preferred. If the F-value of the beta-type zeolite containing phosphorus is 0.22 or more, the aluminum of the beta-type zeolite containing phosphorus is more uniformly dispersed in the sample, and the catalytic activity is improved. If the F value is larger than 0.75, which is the site number ratio of the crystal structure, it indicates that the distribution of aluminum is biased or the crystal structure has changed. Therefore, the F value is preferably 0.75 or less, and may be 0.6 or less.
 G値
 G値は、リンを含有するベータ型ゼオライトを構成するアルミニウム、ケイ素及びリンの合計モル量に占めるアルミニウムのモル量の比率である。ベータ型ゼオライトに含まれるケイ素及びアルミニウムは、四面体構造をもつTO単位(Tは中心原子)の中心原子となる。リンを含有するベータ型ゼオライトに含まれるアルミニウムのモル比、後述するリンのモル比及びケイ素のモル比は、後述する実施例の方法のように、走査型蛍光X線分析装置を用いて測定することができる。リンを含有するベータ型ゼオライトに含まれるケイ素及びリンに対して、アルミニウムの量が少ないと、ベータ型ゼオライトの結晶性は向上する。G値は0.5モル%以上20モル%以下であることが好ましい。
G Value The G value is the ratio of the molar amount of aluminum to the total molar amount of aluminum, silicon and phosphorus constituting the phosphorus-containing beta zeolite. Silicon and aluminum contained in beta-type zeolite serve as central atoms of TO4 units (T is the central atom) having a tetrahedral structure. The molar ratio of aluminum contained in beta-type zeolite containing phosphorus, the molar ratio of phosphorus and the molar ratio of silicon described later are measured using a scanning fluorescent X-ray spectrometer as in the method of the examples described later. be able to. When the amount of aluminum is small relative to the silicon and phosphorus contained in the beta zeolite containing phosphorus, the crystallinity of the beta zeolite is improved. The G value is preferably 0.5 mol % or more and 20 mol % or less.
 I値、J値
 I値は、リンを含有するベータ型ゼオライトを構成するアルミニウム、ケイ素及びリンの合計モル量に占めるリンのモル量の比率である。リンを含有するベータ型ゼオライトに含まれるリンはアルミニウムの酸点に結合する。I値は0.1モル%以上40モル%以下であることが好ましい。
 J値は、リンを含有するベータ型ゼオライト中を構成するアルミニウム、ケイ素及びリンの合計モル量に占めるケイ素のモル量の比率である。ケイ素は、ベータ型ゼオライトの構造骨格を構成する。J値は60モル%以上95モル%以下であることが好ましい。
I Value, J Value The I value is the ratio of the molar amount of phosphorus to the total molar amount of aluminum, silicon and phosphorus constituting the phosphorus-containing beta zeolite. Phosphorus contained in beta zeolite containing phosphorus binds to acid sites of aluminum. The I value is preferably 0.1 mol % or more and 40 mol % or less.
The J value is the ratio of the molar amount of silicon to the total molar amount of aluminum, silicon and phosphorus constituting beta zeolite containing phosphorus. Silicon constitutes the structural framework of beta zeolites. The J value is preferably 60 mol % or more and 95 mol % or less.
 I/G値
 リンを含有するベータ型ゼオライトは、I/G値が0.7以上1.0以下であることが好ましい。I/G値は、P/Alモル比と表すこともできる。リンを含有するベータ型ゼオライトにおいて、触媒活性の中心となる酸点以外の酸点(ルイス酸点)がリンで修飾され、触媒活性の中心となる酸点(ブレンステッド酸点)が維持される。I/G値が0.7以上であれば、リンを含有するベータ型ゼオライトは、結晶性を高く維持したまま、触媒活性を良くすることができる。I/G値が1.0を超えて大きいと、触媒活性の中心となる酸点もリンで修飾されて、6配位のアルミニウムが増加しベータ型ゼオライトの結晶構造が変化し、結晶性が低下する場合がある。I/G値が0.7以上1.0以下の範囲内であれば、触媒活性の中心となる酸点以外の酸点をリンで修飾し、触媒活性の中心となる酸点が維持されて、厳しい熱環境下においても高い結晶性を維持して、触媒活性を良くすることができる。I/G値は、好ましくは0.8以上である。
I/G value The phosphorus-containing beta zeolite preferably has an I/G value of 0.7 or more and 1.0 or less. The I/G value can also be expressed as the P/Al molar ratio. In the beta-type zeolite containing phosphorus, the acid sites other than the acid site that is the center of catalytic activity (Lewis acid site) are modified with phosphorus, and the acid site that is the center of catalytic activity (Bronsted acid site) is maintained. . If the I/G value is 0.7 or more, the beta-type zeolite containing phosphorus can improve the catalytic activity while maintaining high crystallinity. When the I/G value exceeds 1.0 and is large, the acid site that is the center of catalytic activity is also modified with phosphorus, the amount of hexacoordinated aluminum increases, the crystal structure of beta-type zeolite changes, and the crystallinity deteriorates. may decrease. If the I / G value is in the range of 0.7 or more and 1.0 or less, the acid sites other than the acid sites that are the centers of catalytic activity are modified with phosphorus, and the acid sites that are the centers of catalytic activity are maintained. , it is possible to maintain high crystallinity and improve catalytic activity even in a severe thermal environment. The I/G value is preferably 0.8 or higher.
 J/G値
 リンを含有するベータ型ゼオライトは、J/G値が5以上30以下であることが好ましい。J/G値は、Si/Alモル比と表すこともできる。リンを含有するベータ型ゼオライトにおいて、J/G値が5以上30以下であれば、結晶性が高く、厳しい熱環境に置かれた場合であっても、触媒活性を維持することができる。J/G値が大きすぎると、リンを含有するベータ型ゼオライト中に含まれるアルミニウムの量が少なく、触媒活性の中心となる酸点が低下し、触媒活性が低下する可能性がある。J/G値が小さすぎると結晶性が低下し、結晶構造が不安定となるため、厳しい熱環境において結晶構造を維持することができず、触媒活性が低下する場合がある。J/G値は、好ましくは10以上であり、より好ましくは15以上であり、また、25以下であることが好ましい。
J/G Value The beta-type zeolite containing phosphorus preferably has a J/G value of 5 or more and 30 or less. The J/G value can also be expressed as the Si/Al molar ratio. If the beta-type zeolite containing phosphorus has a J/G value of 5 or more and 30 or less, it has high crystallinity and can maintain catalytic activity even when placed in a severe thermal environment. If the J/G value is too large, the amount of aluminum contained in the phosphorus-containing beta-type zeolite is small, and the acid sites that are the center of catalytic activity may decrease, resulting in a decrease in catalytic activity. If the J/G value is too small, the crystallinity will decrease and the crystal structure will become unstable, so the crystal structure cannot be maintained in a severe thermal environment, and the catalytic activity may decrease. The J/G value is preferably 10 or more, more preferably 15 or more, and preferably 25 or less.
 ベータ型ゼオライトは、種結晶を用い且つOSDAを用いずに合成されたOSDAフリーベータ型ゼオライトであることが好ましい。OSDAフリーベータ型ゼオライトの製造方法は、例えば上述の特許文献1に記載されている。OSDAフリーベータ型ゼオライトは、J/G値(Si/Alモル比)が小さく、結晶性が高い。高い結晶性を維持したまま、酸点の形成に寄与するアルミニウムを保持して、酸点の形成に寄与しないアルミニウムを除く(脱アルミニウム)ことができれば、J/G値(Si/Alモル比)を維持して、高い結晶性を維持しながら、触媒活性を向上することができる。脱アルミニウム化したリンを含有するOSDAフリーベータ型ゼオライトのA値が0.05以上であれば、酸点の形成に寄与しないアルミニウムを脱アルミニウム化し、結晶性が高く、触媒活性の高いものとなる。脱アルミニウム化したリンを含有するOSDAフリーベータ型ゼオライトは、さらにB値、E(C×D)値、F値、及びI/G値(P/Alモル比)のいずれか少なくとも1つの数値が、上述の数値範囲を満たす場合には、結晶性が高く、触媒活性の高いことが確認できる。 The beta zeolite is preferably an OSDA-free beta zeolite synthesized using seed crystals and without using OSDA. A method for producing OSDA-free beta zeolite is described, for example, in the above-mentioned Patent Document 1. OSDA-free beta-type zeolite has a small J/G value (Si/Al molar ratio) and high crystallinity. If it is possible to retain aluminum that contributes to the formation of acid sites and remove aluminum that does not contribute to the formation of acid sites (dealuminization) while maintaining high crystallinity, the J / G value (Si / Al molar ratio) can be maintained to improve the catalytic activity while maintaining high crystallinity. If the OSDA-free beta-type zeolite containing dealuminated phosphorus has an A value of 0.05 or more, the aluminum that does not contribute to the formation of acid sites is dealuminated, resulting in high crystallinity and high catalytic activity. . The OSDA-free beta zeolite containing dealuminated phosphorus further has at least one of B value, E (C × D) value, F value, and I / G value (P / Al molar ratio) , it can be confirmed that when the above numerical range is satisfied, the crystallinity is high and the catalytic activity is high.
 OSDAフリーベータ型ゼオライトは、プロトン型であってもよく、アンモニウム型であってもよく、あるいはナトリウム型、カリウム型、リチウム型であってもよい。イオン交換部位が遷移金属イオンで交換されたものであってもよい。イオン交換され得る遷移金属としては、例えば鉄(Fe)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、マンガン(Mn)、バナジウム(V)、チタン(Ti)、セリウム(Ce)、ルテニウム(Ru)、白金(Pt)、銀(Ag)及びイリジウム(Ir)からなる群から選択される少なくとも1種が挙げられる。遷移金属イオンとのイオン交換は、例えばベータ型ゼオライトを硝酸アンモニウム水溶液中に分散し、アンモニウム型ベータ型ゼオライトとした後、特開2014-019601号公報に記載の方法で行うことができる。 The OSDA-free beta-type zeolite may be proton-type, ammonium-type, sodium-type, potassium-type, or lithium-type. The ion exchange sites may be exchanged with transition metal ions. Transition metals that can be ion-exchanged include, for example, iron (Fe), copper (Cu), cobalt (Co), nickel (Ni), chromium (Cr), molybdenum (Mo), manganese (Mn), vanadium (V), At least one selected from the group consisting of titanium (Ti), cerium (Ce), ruthenium (Ru), platinum (Pt), silver (Ag) and iridium (Ir). Ion exchange with transition metal ions can be performed, for example, by dispersing beta-type zeolite in an ammonium nitrate aqueous solution to obtain ammonium-type beta-type zeolite, and then performing the method described in JP-A-2014-019601.
 リンを含有するベータ型ゼオライトの製造方法
 リンを含有するベータ型ゼオライトは、OSDAフリーベータ型ゼオライトを脱アルミニウム化した後、リンを含有する化合物と接触させて、前述のA値が0.05以上となる、リンを含有するベータ型ゼオライトを得ることができる。
 A値が0.05以上であるリンを含有するベータ型ゼオライトは、OSDAフリーベータ型ゼオライトの表面にリンが酸化物の状態で存在している場合と異なり、OSDAフリーベータ型ゼオライトを脱アルミニウム化した後にリンを付着させるため、脱アルミニウム化した後に残存する触媒活性の中心となる酸点以外の酸点がリンで修飾され、触媒活性の中心となる酸点が維持されるため、結晶性を高く維持したまま、触媒活性を良くすることができる。脱アルミニウムに際しては、ベータ型ゼオライトの結晶性を極力低下させずに、酸点の形成に寄与しないアルミニウムを除くために、アンモニウム塩と接触させて脱アルミニウムを行うことが好ましい。OSDAフリーベータ型ゼオライトとアンモニウム塩水溶液とを接触させることで、ゼオライトの骨格構造からアルミニウムを脱離させて、高い結晶性を維持しながら、触媒活性を向上させたベータ型ゼオライトを得ることができる。ベータ型ゼオライトの脱アルミニウムをする方法は、例えば国際公開第2021/002322号に記載の方法で行うことができる。かかる方法により脱アルミニウムすることにより、本願発明で規定するA値、B値、E(C×D)値、F値、I/G値(P/Alモル比)及びJ/G値(Si/Alモル比)を所望の数値範囲にし易くなる。
Method for Producing Phosphorus-Containing Beta Zeolite The phosphorus-containing beta zeolite is obtained by dealuminating OSDA-free beta zeolite and then contacting it with a phosphorus-containing compound so that the aforementioned A value is 0.05 or more. It is possible to obtain a beta-type zeolite containing phosphorus.
The phosphorus-containing beta zeolite having an A value of 0.05 or more is dealuminated OSDA-free beta zeolite, unlike the case where phosphorus is present in the form of an oxide on the surface of OSDA-free beta zeolite. Since phosphorus is attached after dealumination, the acid sites other than the acid sites that are the centers of catalytic activity remaining after dealumination are modified with phosphorus, and the acid sites that are the centers of catalytic activity are maintained. Catalytic activity can be improved while still being kept high. In dealumination, it is preferable to bring the zeolite into contact with an ammonium salt to remove aluminum that does not contribute to the formation of acid sites without reducing the crystallinity of the beta-type zeolite as much as possible. By bringing the OSDA-free beta zeolite into contact with the aqueous ammonium salt solution, aluminum is eliminated from the zeolite framework structure, and a beta zeolite having improved catalytic activity while maintaining high crystallinity can be obtained. . A method for dealuminizing beta zeolite can be performed, for example, by the method described in International Publication No. 2021/002322. By dealumination by such a method, the A value, B value, E (C × D) value, F value, I / G value (P / Al molar ratio) and J / G value (Si / Al molar ratio) can be easily adjusted to a desired numerical range.
 脱アルミニウム化したOSDAフリーベータ型ゼオライトは、リンを含有する化合物と接触させて、A値が0.05以上のリンを含有するベータ型ゼオライトを得ることができる。脱アルミニウム化したOSDAフリーベータ型ゼオライトと、リンを含有する化合物を接触させる方法は、蒸着法、含浸法、沈殿法、イオン交換法等が挙げられる。蒸着法としては、ベータ型ゼオライトと、リンを含有する化合物を容器に入れて、常温又は加熱してリンを含有する化合物を蒸発させて、ベータ型ゼオライトにリンを含有する化合物を付着させる方法が挙げられる。含浸法としては、リンを含有する化合物と溶媒とを混合した液体にベータ型ゼオライトを浸漬し、常圧又は減圧下で混合液を加熱乾燥させて、リンを含有させる化合物をベータ型ゼオライトに付着させる方法が挙げられる。含浸法としては、インシピエントウェットネス(incipientwetness)法、蒸発乾固法、ポアフィリング(pore-filling)法、スプレー法、平衡吸着法等が挙げられる。沈殿法としては、混錬法、沈着法等が挙げられる。 A dealuminated OSDA-free beta zeolite can be brought into contact with a phosphorus-containing compound to obtain a phosphorus-containing beta zeolite with an A value of 0.05 or more. Examples of methods for bringing the dealuminated OSDA-free beta-type zeolite into contact with a phosphorus-containing compound include a vapor deposition method, an impregnation method, a precipitation method, an ion exchange method, and the like. As the vapor deposition method, beta-type zeolite and a phosphorus-containing compound are placed in a container, and the phosphorus-containing compound is evaporated at room temperature or by heating to adhere the phosphorus-containing compound to the beta-type zeolite. mentioned. As the impregnation method, beta zeolite is immersed in a liquid mixture of a phosphorus-containing compound and a solvent, and the mixture is dried by heating under normal pressure or reduced pressure to attach the phosphorus-containing compound to the beta zeolite. There is a method to make The impregnation method includes incipient wetness method, evaporation to dryness method, pore-filling method, spray method, equilibrium adsorption method and the like. Examples of precipitation methods include a kneading method and a deposition method.
 リンをベータ型ゼオライトに付着させる場合には、リンを含有する化合物として、リン酸トリメチル、リン酸トリエチル、亜リン酸トリメチル、亜リン酸トリエチル等を用いることができる。沸点が低い点から、リン酸トリメチルが好ましい。含浸法によりリンをベータ型ゼオライトに付着させる場合には、リンを含有する化合物は水溶性であることが好ましく、例えばリン酸トリメチル、リン酸トリエチル、亜リン酸トリメチル、亜リン酸トリエチル、リン酸、リン酸二水素アンモニウム、リン酸二水素ナトリウム、リン酸二水素カリウム等のリン酸二水素塩、リン酸水素二アンモニウム、リン酸水素二カリウム等のリン酸水素塩等が挙げられる。リン酸としては、オルトリン酸(HPO)、ピロリン酸(H)、トリリン酸(H10)、ポリリン酸、メタリン酸(HPO)、ウルトラリン酸等が挙げられる。乾燥が容易である点から、オルトリン酸等のリン酸、リン酸トリメチル、リン酸二水素アンモニウム又はリン酸水素二アンモニウムのリン酸アンモニウムが好ましい。
 リンを含有する化合物と混合する溶媒としては、例えば脱イオン水、エタノール、2-プロパノール、アセトン等の極性有機溶媒が挙げられる。取り扱い易く、乾燥しやすい点から脱イオン水、エタノールを用いることが好ましい。
 リンを含有する化合物は、混合液の全体量100質量%に対して1質量%以上25質量%以下の範囲内であってもよく、2質量%以上20質量%以下の範囲内であってもよく、5質量%以上15質量%以下の範囲内であってもよい。含浸法によりベータ型ゼオライトにリンを含有する化合物を付着させる場合は、混合液中にベータ型ゼオライトを含浸する時間は、0.5時間以上2時間以内とすることができる。含浸法により作製する場合には、リンを含有する化合物を含むベータ型ゼオライトを乾燥してもよく、乾燥温度は80℃以上200℃以下とすることができ、乾燥時間は0.5時間以上5時間以内とすることができる。また、乾燥時の圧力は、特に制限されず、大気圧(0.1MPa)であってもよく、0.1MPa以下の減圧下であってもよい。
When phosphorus is attached to beta-type zeolite, trimethyl phosphate, triethyl phosphate, trimethyl phosphite, triethyl phosphite, or the like can be used as the phosphorus-containing compound. Trimethyl phosphate is preferred because of its low boiling point. When phosphorus is attached to beta zeolite by impregnation, the phosphorus-containing compound is preferably water-soluble, such as trimethyl phosphate, triethyl phosphate, trimethyl phosphite, triethyl phosphite, phosphoric acid , dihydrogen phosphates such as ammonium dihydrogen phosphate, sodium dihydrogen phosphate and potassium dihydrogen phosphate, and hydrogen phosphates such as diammonium hydrogen phosphate and dipotassium hydrogen phosphate. Examples of phosphoric acid include orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid (H 5 P 3 O 10 ), polyphosphoric acid, metaphosphoric acid (HPO 3 ), ultraphosphoric acid, and the like. are mentioned. Phosphoric acid such as orthophosphoric acid, ammonium phosphate such as trimethyl phosphate, ammonium dihydrogen phosphate, or diammonium hydrogen phosphate is preferred from the viewpoint of ease of drying.
Examples of the solvent to be mixed with the phosphorus-containing compound include polar organic solvents such as deionized water, ethanol, 2-propanol, and acetone. Deionized water and ethanol are preferably used because they are easy to handle and dry.
The phosphorus-containing compound may be in the range of 1% by mass or more and 25% by mass or less, or in the range of 2% by mass or more and 20% by mass or less with respect to 100% by mass of the total amount of the mixed liquid. It may be in the range of 5% by mass or more and 15% by mass or less. When the phosphorus-containing compound is attached to the beta zeolite by the impregnation method, the time for impregnating the mixed liquid with the beta zeolite can be 0.5 hours or more and 2 hours or less. When it is produced by an impregnation method, the beta zeolite containing a phosphorus-containing compound may be dried, the drying temperature may be 80° C. or higher and 200° C. or lower, and the drying time may be 0.5 hours or longer5. can be done within hours. Moreover, the pressure during drying is not particularly limited, and may be atmospheric pressure (0.1 MPa) or under reduced pressure of 0.1 MPa or less.
 OSDAフリーベータ型ゼオライトにリンを含有する化合物を付着させた後、熱処理し、リンを含むベータ型ゼオライトを得る。熱処理温度は、ベータ型ゼオライトの骨格構造を維持するため、200℃以上800℃以下の範囲内であることが好ましく、400℃以上700℃以下の範囲内であることがより好ましい。熱処理する雰囲気は、大気雰囲気、窒素等の不活性ガス雰囲気であってもよい。 After attaching a phosphorus-containing compound to the OSDA-free beta zeolite, heat treatment is performed to obtain a beta zeolite containing phosphorus. The heat treatment temperature is preferably in the range of 200° C. or higher and 800° C. or lower, more preferably in the range of 400° C. or higher and 700° C. or lower, in order to maintain the framework structure of beta zeolite. The atmosphere for the heat treatment may be an air atmosphere or an inert gas atmosphere such as nitrogen.
 排気ガス浄化用組成物
 以上のようにして得られたA値が0.05以上であるリンを含有するベータ型ゼオライトは、排気ガス浄化用組成物に用いることができる。A値が0.05以上であるリンを含有するベータ型ゼオライトを含む排気ガス浄化用組成物は、例えば900℃以上1000℃以下の温度範囲の厳しい熱環境に晒された場合であっても、ベータ型ゼオライトが高い結晶性と高い触媒活性を有するため、ベータ型ゼオライトの骨格構造が維持されて、安定した炭化水素(HC)の吸着能を有し、安定した高い浄化性能を示す。このような排気ガス浄化用組成物は、ガソリンエンジンやディーゼルエンジン等の化石燃料を動力源とする内燃機関の排気ガス浄化用触媒として、安定した高い排気ガス浄化性能を発揮することができる。特に、排気ガス浄化用組成物は、その高い耐熱性から、自動四輪車や自動二輪車などの内燃機関から排出される排気ガスを浄化するために好適に用いることができる。排気ガス浄化用組成物は、排気ガス中の特に炭化水素(HC)の浄化に有効に用いられる。排気ガス浄化用組成物は、内燃機関の排気通路を流通する排気ガスに含有される炭化水素(HC)の浄化に好適に用いることができ、排気ガス浄化方法を提供することもできる。A値が0.05以上であるリンを含有するベータ型ゼオライトは、さらにB値、E(C×D)値、F値、I/G値(P/Alモル比)及びJ/G値(Si/Alモル比)のいずれか少なくとも1つの数値が、上述の数値範囲を満たすことが好ましい。
Exhaust gas purifying composition The phosphorus-containing beta zeolite having an A value of 0.05 or more obtained as described above can be used in an exhaust gas purifying composition. An exhaust gas purifying composition containing a phosphorus-containing beta zeolite with an A value of 0.05 or more is exposed to a severe thermal environment in a temperature range of, for example, 900° C. or higher and 1000° C. or lower. Since beta zeolite has high crystallinity and high catalytic activity, the skeleton structure of beta zeolite is maintained, it has stable hydrocarbon (HC) adsorption capacity, and exhibits stable high purification performance. Such an exhaust gas purifying composition can exhibit stable and high exhaust gas purifying performance as an exhaust gas purifying catalyst for internal combustion engines powered by fossil fuels such as gasoline engines and diesel engines. In particular, due to its high heat resistance, the exhaust gas purifying composition can be suitably used for purifying exhaust gas discharged from internal combustion engines such as four-wheeled motor vehicles and motorcycles. Exhaust gas purifying compositions are effectively used to purify particularly hydrocarbons (HC) in exhaust gas. The exhaust gas purifying composition can be suitably used for purifying hydrocarbons (HC) contained in the exhaust gas flowing through the exhaust passage of an internal combustion engine, and can also provide an exhaust gas purifying method. A beta zeolite containing phosphorus with an A value of 0.05 or more further has a B value, E (C × D) value, F value, I / G value (P / Al molar ratio) and J / G value ( Si/Al molar ratio) preferably satisfies the above numerical range.
 排気ガス浄化用組成物は、A値が0.05以上のリンを含有するベータ型ゼオライトからなる排気ガス浄化用組成物であってもよく、リンを含有するベータ型ゼオライト以外の他の成分を含んでいてもよい。他の成分としては、従来公知の触媒材料等が挙げられる。 The exhaust gas purifying composition may be an exhaust gas purifying composition made of phosphorus-containing beta zeolite with an A value of 0.05 or more, and may contain other components other than phosphorus-containing beta zeolite. may contain. Other components include conventionally known catalyst materials and the like.
 排気ガス浄化用組成物は、粉末状、ペースト状、顆粒状等のいずれの形態であってもよい。例えば排気ガス浄化用組成物は、触媒支持体上に形成される触媒層として用いることができる。触媒支持体としては、例えば、セラミックス又は金属材料からなる支持体を用いることができる。触媒支持体として用いられるセラミックスとしては、アルミナ(Al)、ムライト(3Al-2SiO)、コージェライト(2MgO-2Al-5SiO)、チタン酸アルミニウム(AlTiO)、炭化ケイ素(SiC)等が挙げられる。触媒支持体として用いられる金属材料としては、例えばステンレス等が挙げられる。触媒支持体の形状としては、特に限定されるものではないが、例えば、ハニカム形状、板形状、ペレット形状等が挙げられる。 The exhaust gas purifying composition may be in any form such as powder, paste or granules. For example, the exhaust gas purifying composition can be used as a catalyst layer formed on a catalyst support. As the catalyst support, for example, a support made of ceramics or metal materials can be used. Ceramics used as catalyst supports include alumina (Al 2 O 3 ), mullite (3Al 2 O 3 -2SiO 2 ), cordierite (2MgO-2Al 2 O 3 -5SiO 2 ), aluminum titanate (Al 2 TiO 5 ), silicon carbide (SiC), and the like. Metal materials used as catalyst supports include, for example, stainless steel. The shape of the catalyst support is not particularly limited, but examples thereof include a honeycomb shape, a plate shape, a pellet shape, and the like.
 排気ガス浄化用組成物を触媒層に用いた触媒構造体は、排気ガス浄化用組成物以外の従来公知の触媒材料からなる触媒層を含んでいてもよい。また、排気ガス浄化用組成物を触媒層に用いた触媒構造体は、DPF(Diesel Particulate Filter)やGPF(Gasoline Particulate Filter)として用いることもできる。 The catalyst structure using the exhaust gas purifying composition for the catalyst layer may include a catalyst layer made of a conventionally known catalyst material other than the exhaust gas purifying composition. In addition, a catalyst structure using an exhaust gas purifying composition for a catalyst layer can also be used as a DPF (Diesel Particulate Filter) or a GPF (Gasoline Particulate Filter).
 以下、本発明を実施例及び比較例に基づいてさらに詳述する。本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in further detail based on examples and comparative examples. The invention is not limited to these examples.
 実施例1
 国際公開第2021/002322号の実施例に記載されている方法に準拠して、具体的には以下のようにして、脱アルミニウム化したOSDAフリーベータ型ゼオライトを準備し、リンを付着させてリンを含有するベータ型ゼオライトを得た。
 (1)種結晶の作製
 テトラエチルアンモニウムヒドロキシドをOSDAとして用い、アルミン酸ナトリウムをアルミナ源、微粉状シリカ(水澤化学工業社製、P707)をシリカ源とし、これらを165℃、96時間、撹拌加熱を行って、Si/Alモル比が12のベータ型ゼオライトを合成した。得られたベータ型ゼオライトを電気炉中で空気を流通しながら550℃で10時間焼成して、有機物を含まない種結晶を製造した。
Example 1
According to the method described in the example of WO2021/002322, specifically as follows, a dealuminated OSDA-free beta zeolite is prepared, phosphorus is attached to A beta zeolite containing
(1) Preparation of Seed Crystal Tetraethylammonium hydroxide was used as an OSDA, sodium aluminate was used as an alumina source, and fine powdered silica (manufactured by Mizusawa Chemical Industry Co., Ltd., P707) was used as a silica source, and these were stirred and heated at 165 ° C. for 96 hours. was performed to synthesize a beta zeolite having a Si/Al molar ratio of 12. The resulting beta-type zeolite was calcined at 550° C. for 10 hours in an electric furnace while air was circulated to produce seed crystals containing no organic matter.
 (2)OSDAフリーベータ型ゼオライトの作製
 特許第4904417号の実施例に記載されている方法に準拠して、具体的には以下のようにして、OSDAフリーベータ型ゼオライトを作製した。
 脱イオン水139gに、アルミン酸ナトリウム2.35gと、36質量%水酸化ナトリウム18.28gを溶解して水溶液を得た。微粉状シリカ(CABOT社製、M-5)20.24gと、前記種結晶2.02gを混合したものを、少しずつ前記水溶液に添加して撹拌混合し、SiO/Alモル比=40、NaO/SiOモル比=0.275、HO/SiOモル比=25、の組成となる反応混合物を得た。この反応混合物を60mLのステンレス製密封容器に入れて、熟成及び撹拌することなしに、140℃で46時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。後述するX線回折測定によって、得られた生成物である白色粉末は、不純物を含まないナトリウム型のOSDAフリーベータ型ゼオライトであることを確認した。後述するICP発光分光分析の結果、そのSi/Alモル比は5.5であった。
(2) Preparation of OSDA-free beta-type zeolite An OSDA-free beta-type zeolite was prepared according to the method described in the examples of Japanese Patent No. 4904417, specifically as follows.
An aqueous solution was obtained by dissolving 2.35 g of sodium aluminate and 18.28 g of 36 mass % sodium hydroxide in 139 g of deionized water. A mixture of 20.24 g of finely powdered silica (M-5, manufactured by CABOT) and 2.02 g of the seed crystal was added little by little to the aqueous solution and mixed with stirring to obtain a SiO 2 /Al 2 O 3 molar ratio. = 40, Na 2 O/SiO 2 molar ratio = 0.275, H 2 O/SiO 2 molar ratio = 25. The reaction mixture was placed in a 60 mL stainless steel sealed vessel and heated statically under autogenous pressure at 140° C. for 46 hours without aging and stirring. After cooling the closed container, the product was filtered and washed with warm water to obtain a white powder. It was confirmed by the X-ray diffraction measurement described later that the resulting white powder was sodium-type OSDA-free beta-type zeolite containing no impurities. As a result of ICP emission spectroscopic analysis, which will be described later, the Si/Al molar ratio was 5.5.
 (3)アンモニウム型OSDAフリーベータ型ゼオライトの作製
 得られたナトリウム型のOSDAフリーベータ型ゼオライト10gを、2mol/Lの硝酸アンモニウム水溶液300mLに分散させた。この分散液を80℃で24時間保持した。その後、分散液の濾過を行い、次いで十分な量の蒸留水で洗浄し、100℃で一晩乾燥させた。このようにして、アンモニウム型OSDAフリーベータ型ゼオライトを得た。
(3) Preparation of ammonium-type OSDA-free beta-type zeolite 10 g of the obtained sodium-type OSDA-free beta-type zeolite was dispersed in 300 mL of a 2 mol/L ammonium nitrate aqueous solution. This dispersion was held at 80° C. for 24 hours. The dispersion was then filtered, washed with a sufficient amount of distilled water, and dried at 100° C. overnight. Thus, an ammonium-type OSDA-free beta-type zeolite was obtained.
 (4)OSDAフリーベータ型ゼオライトの脱アルミニウム
 得られたアンモニウム型OSDAフリーベータ型ゼオライト10gを300mLの水に分散させて分散液を得た。脱アルミニウム剤としてケイフッ化アンモニウムを用いた。ケイフッ化アンモニウム粉末試薬53.5gを、前記分散液に添加し(ケイフッ化アンモニウム溶液1mol/L相当)、溶液を得た。この溶液を60℃で3時間加熱した。その後濾過及び脱イオン水による洗浄を5回繰り返した。得られた含水粉末を100℃で12時間以上乾燥した。このようにして後述する評価方法で測定したSi/Alモル比が11.8である、脱アルミニウム化したOSDAフリーベータ型ゼオライト粉末を得た。
(4) Dealumination of OSDA-free beta-type zeolite 10 g of the obtained ammonium-type OSDA-free beta-type zeolite was dispersed in 300 mL of water to obtain a dispersion liquid. Ammonium silicofluoride was used as the dealumination agent. 53.5 g of ammonium silicofluoride powder reagent was added to the dispersion liquid (equivalent to 1 mol/L of ammonium fluorosilicofluoride solution) to obtain a solution. The solution was heated at 60° C. for 3 hours. Filtration and washing with deionized water were then repeated five times. The obtained hydrous powder was dried at 100° C. for 12 hours or longer. Thus, a dealuminated OSDA-free beta-type zeolite powder having a Si/Al molar ratio of 11.8 as measured by the evaluation method described later was obtained.
 (5)リンを含有するベータ型ゼオライトの作製
 得られた脱アルミニウム化したOSDAフリーベータ型ゼオライトに、インシピエントウェットネス法によりリンを付着させ、リンを含有するOSDAフリーベータ型ゼオライトを得た。具体的には、脱アルミニウム化したOSDAフリーベータ型ゼオライト3.5g(乾燥重量)と、99質量%のリン酸トリメチル0.613gとを密閉容器に入れ、0.01MPaまで減圧したのち、80℃で8時間静置し、リンを含有する化合物を蒸着させたOSDAフリーベータ型ゼオライトを得た。得られたリンを含有する化合物を含むOSDAフリーベータ型ゼオライトの粉末を、0.1013MPaの大気雰囲気中、120℃で3時間乾燥させて粉末を得た。乾燥させた粉末を0.1013MPaの大気雰囲気中、600℃で1時間(昇温5℃/min)熱処理して、リンを含有するOSDAフリーベータ型ゼオライトを得た。後述する評価方法で測定したI/G値(P/Alモル比)が0.95、J/G値(Si/Alモル比)が11.8である、リンを含有するOSDAフリーベータ型ゼオライトを得た。
(5) Preparation of phosphorus-containing beta zeolite Phosphorus was attached to the obtained dealuminated OSDA-free beta zeolite by the incipient wetness method to obtain a phosphorus-containing OSDA-free beta zeolite. . Specifically, 3.5 g (dry weight) of dealuminated OSDA-free beta zeolite and 0.613 g of 99% by mass trimethyl phosphate were placed in a closed container, and the pressure was reduced to 0.01 MPa, and then the pressure was reduced to 80°C. to obtain an OSDA-free beta-type zeolite on which a phosphorus-containing compound was vapor-deposited. The obtained OSDA-free beta zeolite powder containing the compound containing phosphorus was dried at 120° C. for 3 hours in an air atmosphere of 0.1013 MPa to obtain a powder. The dried powder was heat-treated at 600° C. for 1 hour in an air atmosphere of 0.1013 MPa (heating rate of 5° C./min) to obtain OSDA-free beta zeolite containing phosphorus. A phosphorus-containing OSDA-free beta-type zeolite having an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 11.8 as measured by the evaluation method described later. got
 実施例2
 実施例1の(1)から(4)の工程を実施後、さらに、後処理として下記に示すように硝酸を用いた酸処理を行った。
 すなわち、脱アルミニウム化したOSDAフリーベータ型ゼオライト粉末5.5gを1mol/Lの濃度の硝酸水溶液25mLに分散させ、これを95℃で15時間混合して酸処理を行った。その後、濾過及び脱イオン水による洗浄を5回繰り返した。得られた含水粉末を100℃で12時間以上乾燥した。このようにして後述する評価方法で測定したSi/Al比が20.4である、脱アルミニウム化したOSDAフリーベータ型ゼオライト粉末を得た。その後、実施例1の(5)の工程に供した。
 また、実施例1の(5)の工程において、リン酸トリメチルの量を0.365gに変更した以外は実施例1の(5)の工程と同様にして、Pを含有するOSDAフリーベータ型ゼオライトを得た。かかるベータ型ゼオライトのI/G値(P/Alモル比)は0.95、J/G値(Si/Alモル比)は20.4であった。
Example 2
After carrying out the steps (1) to (4) of Example 1, an acid treatment using nitric acid was carried out as a post-treatment as shown below.
That is, 5.5 g of dealuminated OSDA-free beta-type zeolite powder was dispersed in 25 mL of an aqueous nitric acid solution having a concentration of 1 mol/L, and the mixture was mixed at 95° C. for 15 hours for acid treatment. Filtration and washing with deionized water were then repeated five times. The obtained hydrous powder was dried at 100° C. for 12 hours or longer. Thus, a dealuminated OSDA-free beta zeolite powder having a Si/Al ratio of 20.4 as measured by the evaluation method described later was obtained. Then, it was subjected to the step (5) of Example 1.
Further, in the step (5) of Example 1, the OSDA-free beta-type zeolite containing P was performed in the same manner as in the step (5) of Example 1, except that the amount of trimethyl phosphate was changed to 0.365 g. got The beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 20.4.
 実施例3
 実施例1の(1)から(4)の工程を実施後、さらに、後処理として下記に示すように硝酸を用いた酸処理を行った。
 すなわち、脱アルミニウム化したOSDAフリーベータ型ゼオライト粉末5.0gを1mol/Lの濃度の硝酸水溶液25mLに分散させ、これを100℃で20時間混合して酸処理を行った。その後、濾過及び脱イオン水による洗浄を5回繰り返した。得られた含水粉末を100℃で12時間以上乾燥した。このようにして後述する評価方法で測定したSi/Al比が22.6である、脱アルミニウム化したOSDAフリーベータ型ゼオライト粉末を得た。その後、実施例1の(5)の工程に供した。
 また、実施例1の(5)の工程において、リン酸トリメチルの量を0.331gに変更した以外は実施例1の(5)の工程と同様にして、リンを含有するOSDAフリーベータ型ゼオライトを得た。かかるベータ型ゼオライトのI/G値(P/Alモル比)は0.95、J/G値(Si/Alモル比)は22.6であった。
Example 3
After carrying out the steps (1) to (4) of Example 1, an acid treatment using nitric acid was carried out as a post-treatment as shown below.
That is, 5.0 g of dealuminated OSDA-free beta-type zeolite powder was dispersed in 25 mL of an aqueous nitric acid solution having a concentration of 1 mol/L, and the mixture was mixed at 100° C. for 20 hours for acid treatment. Filtration and washing with deionized water were then repeated five times. The obtained hydrous powder was dried at 100° C. for 12 hours or longer. Thus, a dealuminated OSDA-free beta zeolite powder having a Si/Al ratio of 22.6 as measured by the evaluation method described later was obtained. Then, it was subjected to the step (5) of Example 1.
Further, in the step (5) of Example 1, the amount of trimethyl phosphate was changed to 0.331 g, in the same manner as in the step (5) of Example 1 got The beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 22.6.
 比較例1
 市販のプロトン型ベータ型ゼオライト(東ソー社製、HSZ-940、Si/Alモル比が17.5)を用意した。実施例1の(5)の工程において、脱アルミニウム化したOSDAフリーベータ型ゼオライト3.5g(乾燥重量)を市販のプロトン型ベータ型ゼオライト3.5g(乾燥重量)に変更し、リン酸トリメチルの量を0.401gに変更した以外は実施例1の(5)の工程と同様にして、Pを含有するベータ型ゼオライトを得た。かかるベータ型ゼオライトのI/G値(P/Alモル比)は0.95、J/G値(Si/Alモル比)は18.5であった。
Comparative example 1
A commercially available proton-type beta-type zeolite (HSZ-940, manufactured by Tosoh Corporation, Si/Al molar ratio: 17.5) was prepared. In the step (5) of Example 1, 3.5 g (dry weight) of dealuminated OSDA-free beta zeolite was changed to 3.5 g (dry weight) of commercially available proton-type beta zeolite, and trimethyl phosphate was A beta-type zeolite containing P was obtained in the same manner as in step (5) of Example 1, except that the amount was changed to 0.401 g. The beta zeolite had an I/G value (P/Al molar ratio) of 0.95 and a J/G value (Si/Al molar ratio) of 18.5.
 実施例及び比較例の各ベータ型ゼオライトについて、以下の各評価を行った。結果を表1に記載する。 The following evaluations were performed for each beta zeolite of Examples and Comparative Examples. The results are listed in Table 1.
 A値、F値、B値、C値
 実施例及び比較例の各ベータ型ゼオライトにおけるA値及びF値は、前述のように27Al MAS NMRスペクトルを測定して算出した。なお、A値及びF値を算出するためのA1値、A2値及びA3値に関しては、比較例1のA1値を1と規格化した際の相対値として求めた。また、C値を算出するためのC1値及びC2値に関しては、比較例1のC1を1と規格化した際の相対値として求めた。ピーク分離を行った実施例及び比較例の各ベータ型ゼオライトの27Al MAS NMRスペクトルを図1A~図1Dに示す。また、ピーク分離により得られたピーク1~ピーク4の擬フォークト関数の変数(x0、Δ、η、S)を表2に示す。
 また、実施例及び比較例の各ベータ型ゼオライトにおけるB値は、前述のように29Si DDMAS NMRスペクトルを測定して算出した。ピーク分離を行った実施例及び比較例の各ベータ型ゼオライトの29Si DDMAS NMRスペクトルを図2A~図2Dに示す。また、ピーク分離により得られたピーク5~ピーク7の擬フォークト関数の変数(x0、Δ、η、S)を表3に示す。
 また、実施例及び比較例の各ベータ型ゼオライトにおけるC値は、前述のように31P-H 2次元 NMRスペクトルを測定して算出した。ピーク分離を行った実施例及び比較例の各ベータ型ゼオライトの31P-H 2次元 NMRスペクトルのH側のスライススペクトルを図3A~図3Dに示す。また、ピーク分離により得られたピーク8~ピーク10の擬フォークト関数の変数(x0、Δ、η、S)を表4に示す。
A Value, F Value, B Value, C Value The A value and F value of each beta zeolite of Examples and Comparative Examples were calculated by measuring 27 Al MAS NMR spectra as described above. The A1 value, A2 value and A3 value for calculating the A value and the F value were obtained as relative values when the A1 value of Comparative Example 1 was normalized to 1. Further, the C1 value and C2 value for calculating the C value were obtained as relative values when C1 of Comparative Example 1 was normalized to 1. 27 Al MAS NMR spectra of the beta-type zeolites of Examples and Comparative Examples for which peak separation was performed are shown in FIGS. 1A to 1D. Table 2 shows the variables (x 0 , Δ, η, S) of the pseudo Voigt function of peaks 1 to 4 obtained by peak separation.
The B value of each beta zeolite of Examples and Comparative Examples was calculated by measuring the 29 Si DDMAS NMR spectrum as described above. 29 Si DDMAS NMR spectra of the beta zeolites of Examples and Comparative Examples for which peak separation was performed are shown in FIGS. 2A to 2D. Table 3 shows the variables (x 0 , Δ, η, S) of the pseudo Voigt function of peaks 5 to 7 obtained by peak separation.
In addition, the C value of each beta zeolite of Examples and Comparative Examples was calculated by measuring the 31 P- 1 H two-dimensional NMR spectrum as described above. 3A to 3D show slice spectra on the 1 H side of 31 P- 1 H two-dimensional NMR spectra of beta-type zeolites of Examples and Comparative Examples for which peak separation was performed. Table 4 shows the variables (x 0 , Δ, η, S) of the pseudo Voigt function of peaks 8 to 10 obtained by peak separation.
 D値
 XRDは、X線回折装置(リガク社製、RINT-TTR III)を用い、X線源としてCuKα線(0.15406nm、50kV、300mA)を用いて測定した。測定範囲は回折角度2θ=5°から80°、スキャン速度20°/分、スキャンステップ幅0.02°の条件で測定した。回折強度の解析には、ソフトウェア「PDXL2」を用いた。バックグラウンドを除去後、Kα1位置をピーク位置として分割型擬Voigt関数でフィッティングして回折ピークの強度を得た。アメリカ国立標準技術研究所が頒布する標準物質674aであるα-Alを測定したXRDから(116)面のピーク強度D1を求め、実施例及び比較例の各ベータ型ゼオライトを測定したXRDから(302)面のピーク強度D2を求めた。標準物質であるα-Alの回折ピークは、一般的に回折角度2θが57.40°以上57.60°以下の範囲に観察された。ベータ型ゼオライトの(302)面の回折ピークは、回折角度2θが22.10°以上23.58°以下の範囲に観察された。
D value XRD was measured using an X-ray diffractometer (RINT-TTR III, manufactured by Rigaku Corporation) using CuKα rays (0.15406 nm, 50 kV, 300 mA) as an X-ray source. The measurement range was measured under the conditions of a diffraction angle 2θ of 5° to 80°, a scan speed of 20°/min, and a scan step width of 0.02°. The software "PDXL2" was used for the diffraction intensity analysis. After removing the background, the intensity of the diffraction peak was obtained by fitting with a split-type pseudo-Voigt function using the Kα1 position as the peak position. The peak intensity D1 of the (116) plane was obtained from the XRD that measured α-Al 2 O 3 , which is the standard material 674a distributed by the National Institute of Standards and Technology, and the XRD that measured each beta-type zeolite of Examples and Comparative Examples. The peak intensity D2 of the (302) plane was determined from Diffraction peaks of α-Al 2 O 3 , which is a standard substance, were generally observed in a range of diffraction angle 2θ of 57.40° or more and 57.60° or less. The diffraction peak of the (302) plane of beta zeolite was observed in the range of the diffraction angle 2θ of 22.10° or more and 23.58° or less.
 E(C×D)値
 前述のC値及びD値の積であるE(C×D)値を求めた。
E (C×D) Value The E (C×D) value, which is the product of the C and D values described above, was determined.
 G値、I値、J値、I/G値、J/G値
 走査型蛍光X線分析装置(リガク社製、ZSX PrimusII)を用いて、実施例及び比較例で得られたリンを含有するベータ型ゼオライト中のアルミニウム量、リン量、ケイ素量を測定した。測定したアルミニウム量からリンを含有するベータ型ゼオライト中に占めるアルミニウムのモル比を算出しG値とした。測定したリン量からリンを含有するベータ型ゼオライト中に占めるリンのモル比を算出しI値とした。測定したケイ素量からリンを含有するベータ型ゼオライト中に占めるケイ素のモル比を算出しJ値とした。G値、I値及びJ値から、I/G値、J/G値を求めた。測定試料は以下のように調製した。
 測定試料の調製方法
 ベータ型ゼオライトを直径30mmの塩化ビニル管に詰め、圧縮成型して測定試料を調製した。
G value, I value, J value, I/G value, J/G value Phosphorus obtained in Examples and Comparative Examples using a scanning fluorescent X-ray analyzer (manufactured by Rigaku, ZSX PrimusII) The amounts of aluminum, phosphorus, and silicon in beta zeolite were measured. From the measured amount of aluminum, the molar ratio of aluminum in the phosphorus-containing beta-type zeolite was calculated and used as the G value. From the measured amount of phosphorus, the molar ratio of phosphorus in the beta-type zeolite containing phosphorus was calculated and used as the I value. From the measured amount of silicon, the molar ratio of silicon in the phosphorus-containing beta-type zeolite was calculated and used as the J value. The I/G value and J/G value were obtained from the G value, I value and J value. Measurement samples were prepared as follows.
Method for preparing measurement sample A vinyl chloride tube having a diameter of 30 mm was filled with beta-type zeolite and compression-molded to prepare a measurement sample.
 熱耐久試験
 実施例及び比較例の各ベータ型ゼオライトを排ガス浄化用組成物として用いた。1000℃で25時間、10体積%HO雰囲気にて、下記サイクルで熱耐久試験を行った。
 サイクル:下記組成のモデルガスを流量3L/分で80秒、Airを流量3L/分で20秒を交互に、各ベータ型ゼオライトからなる各排ガス浄化用組成物に流通させた。
 モデルガス:Cを70mL/分、Oを70mL/分、NをBalanceとした。
 モデルガス及びAirには、それぞれ10体積%HOとなるように水入りタンクより気化させた水蒸気を混入させた。温度に応じて飽和水蒸気を調整し、上記体積%の水蒸気とした。
Thermal Durability Test Each beta zeolite of Examples and Comparative Examples was used as an exhaust gas purifying composition. A thermal endurance test was performed at 1000° C. for 25 hours in a 10 vol % H 2 O atmosphere with the following cycle.
Cycle: A model gas having the following composition was alternately flowed at a flow rate of 3 L/min for 80 seconds, and Air was flowed at a flow rate of 3 L/min for 20 seconds through each exhaust gas purifying composition composed of each beta-type zeolite.
Model gas: C 3 H 6 at 70 mL/min, O 2 at 70 mL/min, N 2 in balance.
The model gas and the air were each mixed with steam vaporized from a water-filled tank so as to be 10% by volume H 2 O. The saturated water vapor was adjusted according to the temperature to obtain the above volume % of water vapor.
 比表面積維持率
 熱耐久試験前後の各排ガス浄化用組成物(ベータ型ゼオライト)のBET比表面積を、ISO 9277(JIS Z8330:2013)に準拠して測定し、熱耐久試験前のBET比表面積に対する熱耐久試験後のBET比表面積の割合を比表面積維持率として算出した。具体的には、下記式(a)により比表面積維持率を算出した。
 (a)比表面積維持率(%)=(熱耐久試験後のBET比表面積/熱耐久試験前のBET比表面積)×100
Specific surface area maintenance rate The BET specific surface area of each exhaust gas purifying composition (beta-type zeolite) before and after the heat durability test was measured in accordance with ISO 9277 (JIS Z8330: 2013), and the BET specific surface area before the heat durability test was measured. The ratio of the BET specific surface area after the heat durability test was calculated as the specific surface area retention rate. Specifically, the specific surface area retention rate was calculated by the following formula (a).
(a) Specific surface area maintenance rate (%) = (BET specific surface area after heat durability test/BET specific surface area before heat durability test) x 100
 結晶性維持率
 熱耐久試験前後の各排ガス浄化用組成物(ベータ型ゼオライト)のXRDスペクトルを前述のXRDの測定に準拠して測定した。熱耐久試験前のXRDスペクトルにおける回折角度2θ=22.10°以上23.58°以下の範囲のベータ型ゼオライトの(302)面に相当する最強ピークのピーク強度をXRD結晶度とし、下記式(b)によりXRD維持率(結晶性維持率)を算出した。
 (b)XRD維持率(%)=(熱耐久試験後のXRD結晶度/熱耐久試験前のXRD結晶度)×100
Crystallinity retention rate The XRD spectrum of each exhaust gas purifying composition (beta-type zeolite) before and after the thermal durability test was measured according to the above-described XRD measurement. The peak intensity of the strongest peak corresponding to the (302) plane of beta zeolite in the range of diffraction angle 2θ = 22.10 ° or more and 23.58 ° or less in the XRD spectrum before the heat durability test is defined as the XRD crystallinity, and the following formula ( b) was used to calculate the XRD retention rate (crystallinity retention rate).
(b) XRD retention rate (%) = (XRD crystallinity after thermal durability test/XRD crystallinity before thermal durability test) x 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表1に示すように、実施例1から3のリンを含有するベータ型ゼオライトは、A値が0.05以上であり、酸点の量が多かった。図に示す各NMRスペクトルにおいて、実施例1から3のリンを含有するベータ型ゼオライトは、A値が0.05以上、B値が9.8ppm以下、E(C×D)値が1.1以上、F値が0.22以上を満たす各NMRスペクトルが測定された。実施例1から3のベータ型ゼオライトを用いた排気ガス浄化用組成物は、熱耐久試験後の比表面積維持率が、比較例1のベータ型ゼオライトを用いた排気ガス浄化用組成物よりも高くなり、熱耐久試験後も高い結晶性を維持していた。実施例2及び3のベータ型ゼオライトを用いた排気ガス浄化用組成物は、熱耐久試験後のXRD維持率が、比較例1のベータ型ゼオライトを用いた排気ガス浄化用組成物よりも高くなり、熱耐久試験後の高い結晶性を維持していた。 As shown in Table 1, the phosphorus-containing beta zeolites of Examples 1 to 3 had an A value of 0.05 or more and a large amount of acid sites. In each NMR spectrum shown in the figure, the phosphorus-containing beta zeolites of Examples 1 to 3 have an A value of 0.05 or more, a B value of 9.8 ppm or less, and an E (C × D) value of 1.1. As described above, each NMR spectrum satisfying an F value of 0.22 or more was measured. The exhaust gas purifying compositions using the beta zeolite of Examples 1 to 3 had a higher specific surface area retention rate after the heat durability test than the exhaust gas purifying composition using the beta zeolite of Comparative Example 1. and maintained high crystallinity even after the heat durability test. The exhaust gas purifying compositions using the beta zeolite of Examples 2 and 3 had a higher XRD retention rate after the thermal endurance test than the exhaust gas purifying composition using the beta zeolite of Comparative Example 1. , maintained high crystallinity after the thermal endurance test.
 本開示に係るリンを含有するベータ型ゼオライト及びそれを用いた排気ガス浄化用組成物は、厳しい熱環境下におかれた場合であっても、高い結晶性を維持し、耐熱性をより向上することができる。本開示に係るリンを含有するベータ型ゼオライト及び排気ガス浄化用組成物は、自動四輪車や自動二輪車などの内燃機関から排出される排気ガスを浄化するために好適に用いることができる。
 
The beta-type zeolite containing phosphorus according to the present disclosure and the exhaust gas purifying composition using the same maintain high crystallinity and further improve heat resistance even when placed in a severe thermal environment. can do. The phosphorus-containing beta-type zeolite and exhaust gas purification composition according to the present disclosure can be suitably used to purify exhaust gases emitted from internal combustion engines such as four-wheeled motor vehicles and motorcycles.

Claims (7)

  1.  27Al MAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク1:55.4ppm以上59.0ppm以下、ピーク2:50.0ppm以上55.4ppm以下、ピーク3:30.0ppm以上50.0ppm以下、ピーク4:-15.0ppm以上-5.0ppm以下となる4つのピークに分離されるピークを有し、4つのピークのピーク面積の合計A1値に対するピーク1のピーク面積A2値のピーク面積比をA(A2/A1)値とした際にA値が0.05以上である、リンを含有するベータ型ゼオライト。 In the 27 Al MAS NMR spectrum, the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50.0 ppm or less, Peak 4: has a peak separated into four peaks of −15.0 ppm or more and −5.0 ppm or less, and the peak area ratio of the peak area A2 value of peak 1 to the total A1 value of the peak areas of the four peaks A phosphorus-containing beta zeolite having an A (A2/A1) value of 0.05 or more.
  2.  29Si DDMAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク5:-100ppm以上-106ppm以下、ピーク6:-106ppm以上-112ppm以下、ピーク7:-112ppm以上-118ppm以下となる3つのピークに分離されるピークを有し、ピーク5の化学シフト値で表記される半値全幅をB値とした際にB値が9.8ppm以下である、リンを含有するベータ型ゼオライト。 In the 29 Si DDMAS NMR spectrum, the chemical shift value of the peak apex is separated into three peaks: Peak 5: -100 ppm to -106 ppm, Peak 6: -106 ppm to -112 ppm, Peak 7: -112 ppm to -118 ppm. and a phosphorus-containing beta zeolite having a B value of 9.8 ppm or less when the full width at half maximum represented by the chemical shift value of peak 5 is defined as B value.
  3.  31P-1H 2次元NMRスペクトルにおいて、頂点での1H側のスライススペクトルをピーク頂点の化学シフト値がピーク8:5.0ppm以上6.0ppm以下、ピーク9:4.4ppm以上5.0ppm以下、ピーク10:3.0ppm以上4.4ppm以下となる3つのピークに分離されるピークを有し、3本のピークのピーク面積の合計C1値に対するピーク8のピーク面積C2値のピーク面積比をC(C2/C1)値とし、CuKα線を用いたXRDにより測定されるX線回折スペクトルにおけるα-Al23の(116)面のピーク強度D1値に対するゼオライトの(302)面のピーク強度D2値のピーク強度比をD(D2/D1)値とした際に、C値とD値の積であるE(C×D)値が1.1以上である、リンを含有するベータ型ゼオライト。 In the 31 P- 1 H two-dimensional NMR spectrum, the chemical shift value of the peak apex of the 1 H side slice spectrum at the peak is peak 8: 5.0 ppm or more and 6.0 ppm or less, peak 9: 4.4 ppm or more and 5.0 ppm. Hereinafter, peak 10: has a peak separated into three peaks of 3.0 ppm or more and 4.4 ppm or less, and the peak area ratio of the peak area C2 value of peak 8 to the total C1 value of the peak areas of the three peaks is the C (C2/C1) value, and the peak of the (302) plane of the zeolite with respect to the peak intensity D1 value of the (116) plane of α-Al 2 O 3 in the X-ray diffraction spectrum measured by XRD using CuKα rays When the peak intensity ratio of the intensity D2 value is D (D2 / D1) value, the E (C × D) value, which is the product of the C value and the D value, is 1.1 or more. Zeolite.
  4.  27Al MAS NMRスペクトルにおいて、ピーク頂点の化学シフト値がピーク1:55.4ppm以上59.0ppm以下、ピーク2:50.0ppm以上55.4ppm以下、ピーク3:30.0ppm以上50.0ppm以下、ピーク4:-15.0ppm以上-5.0ppm以下となる4本のピークに分離されるピークを有し、ピーク1及びピーク2のピーク面積の合計A3値に対するピーク1のピーク面積A2値のピーク面積比をF(A2/A3)値とした際にF値が0.22以上である、リンを含有するベータ型ゼオライト。 In the 27 Al MAS NMR spectrum, the chemical shift value of the peak apex is peak 1: 55.4 ppm or more and 59.0 ppm or less, peak 2: 50.0 ppm or more and 55.4 ppm or less, peak 3: 30.0 ppm or more and 50.0 ppm or less, Peak 4: It has a peak separated into four peaks of -15.0 ppm or more and -5.0 ppm or less, and the peak area A2 value of peak 1 with respect to the total A3 value of the peak areas of peak 1 and peak 2 A phosphorus-containing beta-type zeolite having an F value of 0.22 or more when the area ratio is defined as F (A2/A3) value.
  5.  ゼオライト中に占めるアルミニウムのモル比をG値とし、ゼオライト中に占めるPのモル比をI値とした際に、I/G値が0.7以上1.0以下である、請求項1~4の何れか1項に記載のリンを含有するベータ型ゼオライト。 Claims 1 to 4, wherein the I/G value is 0.7 or more and 1.0 or less, where G is the molar ratio of aluminum in the zeolite and I is the molar ratio of P in the zeolite. A beta-type zeolite containing phosphorus according to any one of .
  6.  ゼオライト中に占めるアルミニウムのモル比をG値とし、ゼオライト中に占めるケイ素のモル比をJ値とした際に、J/G値が5以上30以下である、請求項1~5の何れか1項に記載のリンを含有するベータ型ゼオライト。 Any one of claims 1 to 5, wherein the J/G value is 5 or more and 30 or less, where G is the molar ratio of aluminum in the zeolite and J is the molar ratio of silicon in the zeolite. A beta-type zeolite containing phosphorus according to the above item.
  7.  請求項1~6の何れか1項に記載のリンを含有するベータ型ゼオライトを含む排気ガス浄化用組成物。
     
    An exhaust gas purifying composition comprising the phosphorus-containing beta zeolite according to any one of claims 1 to 6.
PCT/JP2022/021231 2021-06-14 2022-05-24 β-TYPE ZEOLITE AND EXHAUST GAS-PURIFYING COMPOSITION WO2022264758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529714A JPWO2022264758A1 (en) 2021-06-14 2022-05-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098551 2021-06-14
JP2021-098551 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264758A1 true WO2022264758A1 (en) 2022-12-22

Family

ID=84526172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021231 WO2022264758A1 (en) 2021-06-14 2022-05-24 β-TYPE ZEOLITE AND EXHAUST GAS-PURIFYING COMPOSITION

Country Status (2)

Country Link
JP (1) JPWO2022264758A1 (en)
WO (1) WO2022264758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000828A (en) * 2013-06-14 2015-01-05 ユニゼオ株式会社 (+n)-VALENT M SUBSTITUTED BETA ZEOLITE, GAS ADSORPTION AGENT INCLUDING THE SAME AND PRODUCTION METHOD OF THE SAME, AS WELL AS REMOVAL METHOD OF NITROGEN MONOXIDE
WO2019082990A1 (en) * 2017-10-25 2019-05-02 三井金属鉱業株式会社 Metal-substituted beta zeolite and method for producing same
WO2021002322A1 (en) * 2019-07-03 2021-01-07 三井金属鉱業株式会社 Beta-type zeolite and catalyst containing same
WO2021044687A1 (en) * 2019-09-05 2021-03-11 三井金属鉱業株式会社 Exhaust gas purifying composition and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000828A (en) * 2013-06-14 2015-01-05 ユニゼオ株式会社 (+n)-VALENT M SUBSTITUTED BETA ZEOLITE, GAS ADSORPTION AGENT INCLUDING THE SAME AND PRODUCTION METHOD OF THE SAME, AS WELL AS REMOVAL METHOD OF NITROGEN MONOXIDE
WO2019082990A1 (en) * 2017-10-25 2019-05-02 三井金属鉱業株式会社 Metal-substituted beta zeolite and method for producing same
WO2021002322A1 (en) * 2019-07-03 2021-01-07 三井金属鉱業株式会社 Beta-type zeolite and catalyst containing same
WO2021044687A1 (en) * 2019-09-05 2021-03-11 三井金属鉱業株式会社 Exhaust gas purifying composition and production method therefor

Also Published As

Publication number Publication date
JPWO2022264758A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
EP2860157B1 (en) Phosphorus-containing ultrastable y-type rare earth molecular sieve and preparation method therefor
JP5958070B2 (en) β-type iron silicate composition and nitrogen oxide reduction method
JP5169779B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP3322115B2 (en) Method for producing porous silica
CN110691757B (en) Direct synthesis of copper-containing SAPO materials with AFX structure and use of the materials
KR101473007B1 (en) Nitrogen oxide-reducing catalyst and method for reducing nitrogen oxide
EP3743381A1 (en) Process for synthesizing zeolite ssz-13
KR20200030539A (en) Direct synthesis of microporous aluminosilicate materials with AFX structure and comprising copper, and uses of such materials
EP4026612A1 (en) Exhaust gas purifying composition and production method therefor
WO2022264758A1 (en) β-TYPE ZEOLITE AND EXHAUST GAS-PURIFYING COMPOSITION
CN113713851A (en) Preparation method of In/H-beta catalyst for improving sulfur resistance and water resistance
CN113950460A (en) Method for producing zeolite
CN112188929A (en) For NOXSelectively reduced catalyst comprising a mixture of AFX-and BEA-structure zeolites and at least one transition metal
WO2018131195A1 (en) Exhaust gas-purifying composition
WO2023190681A1 (en) Beta zeolite and method for producing same
WO2023182344A1 (en) Zeolite, production method thereof, hydrocarbon adsorbent and exhaust gas purifying catalyst
CN109219482B (en) Composition for exhaust gas purification
WO2021215238A1 (en) Elemental phosphorus-containing zeolite and method for producing elemental phosphorus-containing zeolite
JP6345372B1 (en) Exhaust gas purification composition
KR20240012510A (en) Synthesis of AFX-BEA zeolite composite catalyst containing palladium for NOX adsorption
WO2001019731A1 (en) Novel compound and microporous material and method for production thereof
JPS61291042A (en) Preparation of hydrocarbon converting catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE