WO2022264201A1 - 制御・監視信号伝送システム - Google Patents

制御・監視信号伝送システム Download PDF

Info

Publication number
WO2022264201A1
WO2022264201A1 PCT/JP2021/022483 JP2021022483W WO2022264201A1 WO 2022264201 A1 WO2022264201 A1 WO 2022264201A1 JP 2021022483 W JP2021022483 W JP 2021022483W WO 2022264201 A1 WO2022264201 A1 WO 2022264201A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
data
voltage level
clock
station
Prior art date
Application number
PCT/JP2021/022483
Other languages
English (en)
French (fr)
Inventor
淳一 濱中
保則 田中
務 菅谷
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to EP21945881.7A priority Critical patent/EP4358465A1/en
Priority to JP2023529161A priority patent/JPWO2022264201A1/ja
Priority to CN202180098496.9A priority patent/CN117378168A/zh
Priority to PCT/JP2021/022483 priority patent/WO2022264201A1/ja
Priority to KR1020237035457A priority patent/KR20230157472A/ko
Publication of WO2022264201A1 publication Critical patent/WO2022264201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/06Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity or frequency or length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems

Definitions

  • signal lines between a master station provided on the control side and a plurality of slave stations provided on the controlled side are reduced in wiring, connected by a common transmission line, and synchronized by a transmission clock.
  • the present invention relates to a control/monitoring signal transmission system that transmits data by a transmission synchronization method.
  • wiring saving which reduces the number of wires, is widely implemented.
  • a general method for reducing wiring instead of parallel connection that directly connects each of the plurality of devices provided on the controlled side to the control unit provided on the control side, conversion of parallel signals and serial signals
  • a transmission synchronization method such as synchronizing with a transmission clock
  • a transmission synchronization method is known as a method of exchanging data by serial signals via a common transmission line.
  • Various methods have been proposed for exchanging data between a master station and a plurality of slave stations by transmission synchronization.
  • Japanese Unexamined Patent Application Publication No. 2002-16621 describes a serial pulse voltage signal in which the second half of one cycle of a clock is a power supply voltage and the first half is a region of a potential different from the power supply voltage.
  • a control/supervisory signal transmission system has been proposed in which a control signal is output from the master station in the second half region, and a signal with a higher frequency than the clock (hereinafter referred to as a "frequency signal”) is output from the slave station as a supervisory signal in the second half region. .
  • Japanese Patent Application Laid-Open No. 2002-152864 discloses a serial pulse voltage signal in which the second half of one cycle of a clock is a power supply voltage and the first half is a voltage level region different from the power supply voltage.
  • a control/supervisory signal transmission system has been proposed in which a region is time-divided and a control signal from a master station and a supervisory signal from a slave station are output to the divided regions.
  • the clock voltage domain in the serial pulse-like voltage signal (hereafter referred to as "voltage clock signal") for synchronizing the master station and multiple slave stations has a constant voltage level in order to function as a clock. It must be maintained for a certain period of time. That is, the voltage clock signal must have a duty ratio greater than or equal to a predetermined value.
  • the clock voltage domain (the latter half of one cycle of the clock, which is the power supply voltage in the prior art) is used for data transfer while maintaining the duty ratio of the voltage clock signal at a predetermined value or higher.
  • the use of frequency signals has been proposed as a technique.
  • the frequency of the frequency signal reaches a high frequency of about 1 MHz, the amplitude of the current change decreases due to the inductance of the transmission line, or the amplitude becomes unstable due to a transient phenomenon, which may make detection impossible.
  • the clock voltage domain in the voltage clock signal may not be used as the domain for sending and receiving data.
  • the voltage clock signal used in that case has a predetermined period in order to execute data transmission/reception between the master station and the slave station during the period between the clock voltage domains.
  • the voltage level change when the voltage level changes from a voltage level different from the voltage level of the high-potential clock voltage domain to the voltage level of the clock voltage domain (hereafter referred to as "rising edge"), the voltage level change is less dull. Therefore, the transition period becomes shorter than the transition period at the fall, and when extracting the data value using the time width from the synchronization base point (fall) to the rise, the extracted data value is incorrect. Sometimes it became a thing.
  • a control/monitoring signal transmission system includes a plurality of master stations that exchange data with a control unit and slave stations that exchange data with the master station by a transmission synchronization method via a common transmission line. . Then, in the period between the clock voltage regions of the voltage clock signal having the predetermined period and duty ratio, the voltage level is changed to the first voltage level set as the target in the first state. , when the impedance of the circuit composed of the plurality of internal circuits of the slave station and the transmission line becomes higher than the starting state before changing the voltage level, the impedance becomes lower than the first state; to the first voltage level through a second voltage level having the state of .
  • a circuit configured by a plurality of internal circuits of a slave station and a transmission line in a first state that is the first voltage level set as a target after changing the voltage level.
  • FIG. 1 is a time chart diagram of transmission signals in an embodiment of a control/monitoring signal transmission system according to the present invention
  • FIG. It is a system configuration diagram of the same embodiment.
  • 4 is a functional block diagram of a master station;
  • FIG. 4 is a schematic diagram showing a transmission procedure of a transmission signal;
  • 4 is a functional block diagram of an input slave station;
  • FIG. 4 is a functional block diagram of an output child station;
  • FIG. 4 is a time chart of transmission signals in another embodiment of the control/monitoring signal transmission system according to the present invention;
  • This control/monitoring signal transmission system is for centrally controlling a large number of devices arranged in a facility such as a factory in a control unit.
  • a master station 2 connected to a control unit 1 and common data signal lines DP and DN (hereinafter referred to as transmission lines), and a control station arranged in a facility to be controlled and connected to the transmission lines. It consists of a plurality of input slave stations 4 , output slave stations 5 and input/output slave stations 6 .
  • each child station is shown one by one, but there is no limit to the type and number of child stations connected to the transmission line.
  • the input unit 7 to which the input slave station 4 is connected, the output unit 8 to which the output slave station 5 is connected, and the input/output unit 9 to which the input/output slave station 6 is connected are arranged in the facility to be controlled. It is a device.
  • a reed switch for example, a reed switch, a microswitch, a push button switch, a photoelectric switch, and various other sensors can be cited as examples of the input unit 7, but the present invention is not limited to these.
  • actuators for example, actuators, (stepping) motors, solenoids, electromagnetic valves, relays, thyristors, and lamps can be cited as equivalents to the output unit 8, but are not limited to these.
  • the input/output unit 9 is a device having the functions of both the input unit 7 and the output unit 8.
  • devices such as temperature controllers, timers, counters, etc., which have both a function of transmitting information to the master station 2 and a function of performing an output operation based on data transmitted from the master station 2 can be mentioned. can.
  • the input unit 7 may be an input unit-integrated slave station 70 integrated with the input slave station 4 .
  • the output unit 8 may be an output unit-integrated slave station 80 integrated with the output slave station 5 .
  • the control unit 1 includes a management determination means 11 and an input/output unit 12 having arithmetic processing functions.
  • the management judgment means 11 receives data from the master station 2 via the input/output unit 12 and performs necessary arithmetic processing based on the internally stored program.
  • the master station 2 is connected to a transmission line, and includes an output data section 21, a management data section 22, a timing generation section 23, a master station output section 24, a master station input section 25, and an input data section 26, as shown in FIG. Prepare. Then, it outputs a voltage clock signal having a predetermined cycle and duty ratio including control data, and outputs the voltage clock signal from the input slave station 4, the output slave station 5, and the input/output slave station 6 during the period between the clock voltage domains of the voltage clock signal. , and outputs it to the input/output unit 12 of the control unit 1 .
  • the output data unit 21 delivers the data received from the control unit 1 to the master station output unit 24 as serial data.
  • the management data unit 22 transfers data necessary for instructing the child station to the master station output unit 24 as serial data in a management control data area described later.
  • the timing generator 23 is composed of an oscillator circuit (OSC) 31 and a timing generator 32. Based on the oscillator circuit (OSC) 31, the timing generator 32 generates a timing clock for this system. It is handed over to the station input section 25 .
  • OSC oscillator circuit
  • the master station output unit 24 consists of control data generation means 33 and line driver 34 . Based on the data received from the output data section 21 and the timing clock received from the timing generation section 23, the control data generation means 33 outputs a voltage clock signal including control data to the transmission line via the line driver 34.
  • the voltage clock signal is composed of a plurality of clock voltage domains in which a voltage level Ep higher than the threshold value Est is maintained for a predetermined time width in series at regular intervals.
  • the voltage level Ep is +24V.
  • the clock voltage domain is not limited as long as it functions as a synchronous clock, and can be determined as appropriate according to the usage environment and usage conditions. For example, a negative voltage lower than the ground level may be maintained for a predetermined period of time.
  • the data value is indicated by a voltage level lower than the voltage level Ep of the clock voltage domains.
  • the voltage level indicating the data value may be appropriately determined according to the usage environment and usage conditions, and may be set to a voltage level higher than the voltage level Ep of the clock voltage domain. The same is true even if the voltage level Ep of the clock voltage domain is a negative voltage lower than the ground level.
  • the impedance of the circuit composed of the internal circuits and transmission lines of all slave stations 4, 5, 6 (hereinafter referred to as "transmission circuit impedance”) takes a voltage level indicating the data value. In the state (first state) it is greater than the clock voltage domain. A transient phenomenon occurs when the voltage level Ep in the clock voltage domain changes to the voltage level indicating the data value.
  • the period between clock voltage domains is time-divided into four domains.
  • the four regions in the period between the clock voltage regions are defined as the I region, the V region, the F region, and the F region in the order closest to the transition period t in which the voltage level drops from the voltage level Ep of the clock voltage region. Let it be the P region.
  • the potential lower than the threshold Ect is the voltage level indicating the logical data value "1"
  • the potential higher than the threshold Ect is the voltage level indicating the logical data value "0”.
  • the threshold Ect is set between 10 V and the ground level (approximately 6 V), but its magnitude is not limited and may be set according to usage conditions and usage environments. Note that there is no limit to the correspondence between the voltage level indicating the data value and the logic data value, and it can be determined as appropriate according to the usage environment and usage conditions.
  • the P region of this embodiment is used only for output from the master station 2, and has a voltage level indicating a logical data value of "1" when the potential is lower than the threshold Est and a logical data value of "0" when the potential higher than the threshold Est. voltage level shown.
  • By increasing the time width of the region where the voltage level is high that is, by increasing the duty ratio above the set value, it becomes less susceptible to noise and improves the stability of the clock function.
  • the I area, V area, and F area there is no limit to the correspondence relationship between the voltage level indicating the data value and the logic data value, and it can be appropriately determined according to the usage environment and usage conditions.
  • the state (second state) in which the transmission circuit impedance is lower than the state (first state) in which the voltage level indicates the data value is obtained.
  • a voltage drop to the low voltage level GND is performed.
  • the low voltage level GND changes to the voltage level indicating the data value.
  • the state in which the transmission circuit impedance is lower than the state in which the voltage level indicating the data value is obtained can be created, for example, by setting the low voltage level GND to a level capable of sweeping away electric charges accumulated in the circuit and back electromotive force. can be done.
  • the transmission circuit impedance in the state of the voltage level indicating the data value is smaller than the clock voltage domain due to the circuit configuration, etc., the change from the voltage level indicating the data value to the voltage level Ep of the clock voltage domain In this case, the voltage level is changed to the voltage level Ep in the clock voltage domain through the voltage level at which the transmission circuit impedance becomes lower than that in the clock voltage domain.
  • the transmission procedure consists of a series of areas between the start signal ST and the next start signal ST in the voltage clock signal, including the management data area, the control/monitoring data area, and the CRC area, in one frame cycle. It is supposed to be. Stationary data is exchanged between the master station 2 and the input slave station 4, the output slave station 5, and the input/output slave station 6 using the control/monitoring data area.
  • unsteady data that is not assigned to the control/monitoring data area is exchanged using the management data area.
  • the CRC area is used to determine whether or not there is a transmission abnormality.
  • the voltage level Ep of the clock voltage domain in the management data area, control/monitoring data area, and CRC area is maintained longer than the time width of the clock voltage domain.
  • the time width of the start signal ST is not limited, and can be appropriately determined in consideration of usage conditions and the like.
  • the master station input unit 25 is composed of a line receiver 35 and monitoring data extraction means 36 .
  • the line receiver 35 receives the voltage clock signal from the transmission line, shapes the waveform, and delivers it to the monitoring data extraction means 36 .
  • the monitoring data extracting means 36 acquires the timing for extracting the data value using the timing clock delivered from the timing generator 23, and based on the digital value of the voltage level of the voltage clock signal delivered from the line receiver 35, Extract data. Then, they are handed over to the input data unit 26 as steady data DIO in the control/monitoring data area and management data DEX in the management data area.
  • the input data unit 26 converts serial input data received from the monitoring data extraction means 36 into parallel data, and outputs the data to the input/output unit 12 of the control unit 1 as monitoring data and management monitoring data.
  • the input slave station 4 includes a slave station input section 40 that executes main arithmetic processing, and a slave station line receiver 48 and a slave station line receiver 48 that are arranged between the slave station input section 40 and the transmission line.
  • a line driver 49 is provided to receive a voltage clock signal from a transmission line via a slave station line receiver 48 and output a supervisory signal to the transmission line via the slave station line driver 49 .
  • the slave station input unit 40 has transmission reception means 41 , management control data extraction means 42 , address extraction means 43 , address setting means 44 , management monitoring data transmission means 45 , input means 46 and monitoring data transmission means 47 .
  • the input slave station 4 of this embodiment has an MCU, which is a microcomputer control unit, as an internal circuit, and this MCU functions as a slave station input section 40.
  • the slave station line receiver 48 receives the voltage clock signal from the transmission line, shapes the waveform, and delivers it to the transmission/reception means 41 .
  • the transmission/reception means 41 discriminates the voltage level threshold Est and the threshold Ect, and outputs the digital value of the voltage level of the voltage clock signal delivered from the slave station line receiver 48 to the management control data extraction means 42 and the address extraction means. 43 and management/monitoring data transmission means 45 .
  • the management control data extraction means 42 determines the start signal ST based on the digital value of the voltage level of the voltage clock signal. Then, starting from the timing at which the start signal ST ends (falling edge in this embodiment), management data is extracted based on the digital value of the voltage level in the inter-pulse region corresponding to the management data region. The extracted management data is handed over to processing means (not shown) that executes processing based on the data.
  • the address extracting means 43 determines the start signal ST based on the digital value of the voltage level of the voltage clock signal, and counts the clock voltage domain starting from the timing (falling edge in this embodiment) at which the start signal ST ends. . Then, the timing at which this count value matches the own station address data set by the address setting means 44 is obtained.
  • This timing is the timing (hereinafter referred to as "local station area start timing") at which the data area assigned to the local station (hereinafter referred to as "local station area”) starts in the voltage clock signal.
  • the address extraction means 43 also obtains the timings of the I area, the V area, and the F area based on the elapsed time starting from the fall of the clock voltage domain.
  • the address extraction means 43 that has obtained the own station area start timing enables the monitoring data transmission means 47 during the period of the I area, V area, and F area assigned to the own station. If the own station domain consists of a plurality of periods between the clock voltage domains, the I domain, V domain, and F domain assigned to the own station appear until the self station domain ends. Each time, the monitor data transmitting means 47 is enabled during the period of the power supply voltage area.
  • the management monitoring data transmission means 45 determines the start signal ST based on the digital value of the voltage level of the voltage clock signal. With the timing at which the start signal ST ends as a starting point, the I region, V region, and F region in the period between the clock voltage regions corresponding to the management data region are set for the output of the monitor signal. Performs signal output in the area.
  • the monitoring signal output from the management monitoring data transmission means 45 is transmitted only when the data to be transmitted to the master station 2 has been handed over from the processing means (not shown).
  • the input means 46 delivers the data based on the input from the input section 7 to the monitoring data transmission means 47 .
  • the monitoring data transmitting means 47 outputs the data handed over from the input means 46 to the transmission line via the slave station line driver 49 as a monitoring signal.
  • the output slave station 5 includes a slave station output section 50 that executes main arithmetic processing, and a slave station line receiver 48 and a slave station line receiver 48 that are arranged between the slave station output section 50 and the transmission line.
  • a line driver 49 is provided to receive a voltage clock signal from a transmission line via a slave station line receiver 48 and output a supervisory signal to the transmission line via the slave station line driver 49 .
  • portions substantially the same as those of the input slave station 4 are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the slave station output unit 50 has transmission reception means 41 , management control data extraction means 42 , address extraction means 43 , address setting means 44 , management monitoring data transmission means 45 , control data extraction means 51 and output means 52 .
  • the output slave station 5 of this embodiment also has an MCU, which is a microcomputer control unit, as an internal circuit. .
  • the transmission/reception means 41 of the output slave station 5 receives the digital value of the voltage level of the voltage clock signal delivered from the slave station line receiver 48 as a management control data extraction means 42 , an address extraction means 43 , and a management monitoring data transmission means 45 . In addition to the control data extracting means 51 .
  • the address extracting means 43 of the output slave station 5 obtains the local station area start timing by counting the high potential area starting from the timing at which the start signal ST ends, and calculates the start timing of the own station area at the elapsed time starting from the fall of the clock voltage area. Based on this, the timing of the P area in the own station area is obtained. If the I area, V area, or F area is assigned for output from the master station 2 to its own station, its timing is also obtained.
  • the address extracting means 43 that has obtained the local station area start timing extracts the period of the P area assigned to the local station, and the period of the area if the I area, V area, or F area is assigned. , enable the monitoring data transmission means 47 . Also, if the local station area consists of a plurality of periods between the clock voltage areas, the I area, V area, F area, and P area assigned to the local station will continue until the end of the local station area. Each time it appears, the monitor data transmission means 47 is enabled for the period of the power supply voltage area.
  • the control data extraction means 51 extracts the control data based on the digital value of the voltage level of the voltage clock signal delivered from the transmission/reception means 41 and delivers it to the output means 52 when it is validated by the address extraction means 43 .
  • the output means 52 outputs information based on the control data handed over from the control data extraction means 51 to the output section 8, and causes the output section 8 to operate or stop.
  • the input/output slave station 6 has the functions of both the input slave station 4 and the output slave station 5, and has a slave station input/output section having both the configuration of the slave station input section 40 and the slave station output section 50. , and its configuration is substantially the same as that of the child station input section 40 and the child station output section 50, so illustration and description thereof will be omitted.
  • the data values in the I area, V area, F area, and P area are extracted based on the voltage level detected at a predetermined timing in the area. That is, data is exchanged by associating the voltage level of the voltage clock signal with the data value. Data is exchanged by associating the duty ratio of the voltage clock signal with the data value. It can be a thing.
  • FIG. 7 is a time chart of transmission signals in an embodiment in which data is exchanged by associating the duty ratio of the voltage clock signal with the data value.
  • substantially the same parts as those of the embodiment shown in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • the time width of the clock voltage domain corresponds to the data value.
  • the time width of the clock voltage domain can be obtained by measuring the elapsed time from the fall to the rise of the clock voltage domain.
  • the falling edge of the clock voltage domain which is the base point of the synchronization timing, is constant.
  • the time width of the clock voltage domain is small, the elapsed time from the falling edge to the rising edge of the clock voltage domain becomes long. Therefore, it is possible to determine whether the time width of the clock voltage domain is large or small based on the length of the elapsed time.
  • an elapsed time TL longer than a predetermined threshold indicates a data value "1" corresponding to a small time width
  • an elapsed time TS shorter than the predetermined threshold indicates a data value "0" corresponding to a large time width. It has become.
  • the time width of the clock voltage domain must be at least a certain width required to function as a clock, that is, the duty ratio must be greater than the set value of the voltage clock signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Selective Calling Equipment (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本発明に係る制御・監視信号伝送システムでは、制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備える。そして、所定の周期とデューティー比を有する電圧クロック信号のクロック電圧領域の間の期間において、電圧レベルを変化させた後の目標に設定されている第一の電圧レベルとなる第一の状態での、前記子局の複数の内部回路と前記伝送線で構成される回路のインピーダンスが、前記電圧レベルを変化させる前の開始状態より高くなる場合、前記インピーダンスが前記第一の状態より低くなる第二の状態をとる第二の電圧レベルを経て、前記第一の電圧レベルへ変化させる。

Description

制御・監視信号伝送システム
 本発明は、制御側に設けられた親局と被制御側に設けられた複数の子局との間の信号線を省配線化し、共通の伝送線で接続し、伝送クロックで同期させるなどの伝送同期方式によりデータの伝送を行う制御・監視信号伝送システムに関する。
 施設内に配置された多数の装置を集中制御するシステムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、被制御側に設けられた複数の機器の各々を制御側に設けられた制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と複数の装置にそれぞれ接続し、親局と複数の子局との間で共通の伝送線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。
 また、共通の伝送線を介してシリアル信号によりデータ授受を行う方式として、伝送クロックで同期させるなどの伝送同期方式が知られている。そして、伝送同期により親局と複数の子局の間でデータを授受するための様々な手法が提案されている。
 例えば、特開2002-16621号公報には、クロックの1周期の後半が電源電圧とされ前半が電源電圧と異なる電位の領域とされた直列のパルス状電圧信号において、クロックの1周期の前半領域に親局から制御信号を出力し、後半領域に、クロックより高い周波数の信号(以下、「周波数信号」とする)を監視信号として子局から出力する制御・監視信号伝送システムが提案されている。
 また、特開2002-152864号公報には、クロックの1周期の後半が電源電圧とされ前半が電源電圧と異なる電圧レベルの領域とされた直列のパルス状電圧信号において、クロックの1周期の前半領域を時分割し、分割された領域に親局からの制御信号と子局からの監視信号を出力する制御・監視信号伝送システムが提案されている。
特開2002-16621号公報 特開2002-152864号公報
 親局と複数の子局の間で同期をとるための直列のパルス状電圧信号(以下、「電圧クロック信号」とする)におけるクロック電圧領域は、クロックとして機能するために、一定の電圧レベルが所定の時間維持される必要がある。すなわち、電圧クロック信号は所定値以上のデューティー比を有する必要がある。
 そこで、上記従来技術のように、電圧クロック信号のデューティー比を所定値以上に維持しながら、クロック電圧領域(上記従来技術では電源電圧とされたクロックの1周期の後半)をデータの授受に用いる手法として周波数信号を用いることが提案されている。しかしながら、周波数信号は、周波数が1MHz程度の高周波になると伝送線のインダクタンスにより電流変化の振幅が減少し、或いは、過渡現象により振幅が不安定なものとなり、検出できない場合があった。すなわち、電圧クロック信号におけるクロック電圧領域は、データを授受する領域として利用できない場合があった。
 一方、電圧クロック信号におけるクロック電圧領域の間の期間の電位変化は同期に与える影響が小さい。そこで、上記従来技術のように、クロック電圧領域の間の期間(上記従来技術では電源電圧と異なる電圧レベルの領域)を、親局と子局とのデータ授受のために用いることが提案されている。そして、その場合に用いる電圧クロック信号は、クロック電圧領域の間の期間で親局と子局とのデータ授受を実行するために、所定の周期を有するものとされる。
 しかしながら、クロック電圧領域の間の期間を親局と子局とのデータ授受のために用いる場合には、電圧レベルの変化に際し回路のインピーダンス等に起因する電圧レベル変化がなまる、いわゆる過渡現象が起こり、この過渡現象の影響によりデータ授受の精度が低下する問題があった。
 例えば、PチャネルMOS型FETとコンデンサの組み合わせにより電圧レベルを変化させる場合、電圧クロック信号における高電位のクロック電圧領域の電圧レベルからそれと異なる電圧レベルへの変化(以下、「立下り」とする)に際して電圧レベル変化がなまるため、クロック電圧領域の立下りを同期の基点とする場合、同期のタイミングにずれが生じ、本来検出すべき電圧レベルと異なる電圧レベルを検出し、電圧レベルを利用して抽出されるデータ値が誤ったものとなってしまう場合があった。
 また、回路構成の特性上、高電位のクロック電圧領域の電圧レベルと異なる電圧レベルからクロック電圧領域の電圧レベルへの変化(以下、「立上り」とする)の際の電圧レベル変化のなまりが小さいため、その過渡期間が立下り時の過渡期間より短くなり、同期の基点(立下り)から立上りまでの時間幅を利用してデータ値を抽出する場合には、抽出されるデータ値が誤ったものとなってしまう場合があった。
 しかも、電圧レベル変化のなまりは、電圧クロック信号の周期とは無関係に、回路構成により決まるため、周期が早くなるほど、データ授受の精度に及ぼす影響は大きくなっていた。
 そこで、本発明は、所定の周期とデューティー比を有する電圧クロック信号のクロック電圧領域の間の期間を利用したデータの授受の精度を高めることができる制御・監視信号伝送システムを提供することを目的とする。
 本発明に係る制御・監視信号伝送システムでは、制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備える。そして、所定の周期とデューティー比を有する電圧クロック信号のクロック電圧領域の間の期間において、電圧レベルを変化させた後の目標に設定されている第一の電圧レベルとなる第一の状態での、前記子局の複数の内部回路と前記伝送線で構成される回路のインピーダンスが、前記電圧レベルを変化させる前の開始状態より高くなる場合、前記インピーダンスが前記第一の状態より低くなる第二の状態をとる第二の電圧レベルを経て、前記第一の電圧レベルへ変化させる。
 本発明によれば、電圧レベルを変化させた後の目標に設定されている第一の電圧レベルとなる第一の状態での、子局の複数の内部回路と伝送線で構成される回路のインピーダンスが、電圧レベルを変化させる前の開始状態より高くなる場合、インピーダンスが第一の状態より低くなる第二の状態をとる第二の電圧レベルを経て、第一の電圧レベルへ変化させることにより、過渡期間の短縮が可能となる。すなわち、過渡期間に起因する同期のタイミングに生じるずれを小さく抑えることができる。そのため、電圧クロック信号のクロック電圧領域の間の期間を利用したデータの授受の精度を高めることができる。
本発明に係る制御・監視信号伝送システムの実施形態における伝送信号のタイムチャート図である。 同実施形態のシステム構成図である。 親局の機能ブロック図である。 伝送信号の伝送手順を示す模式図である。 入力子局の機能ブロック図である。 出力子局の機能ブロック図である。 本発明に係る制御・監視信号伝送システムの他の実施形態における伝送信号のタイムチャート図である。
 本発明に係る制御・監視信号伝送システムの実施形態を説明する。
 この制御・監視信号伝送システムは、工場などの施設内に配置された多数の装置機器を制御部において集中制御するためのものである。図2に示すように、制御部1および共通データ信号線DP、DN(以下、伝送線とする)に接続された親局2と、被制御側となる施設内に配置され伝送線に接続された入力子局4、出力子局5および入出力子局6の複数で構成される。なお、図2においては、図示の便宜上、各々の子局が一つずつ示されているが、伝送線に接続される子局の種類や数に制限は無い。
 入力子局4が接続される入力部7、出力子局5が接続される出力部8および入出力子局6が接続される入出力部9は、被制御側となる施設内に配置された装置である。
 入力部7に相当するものとして、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、その他各種センサを挙げることができるが、これらに限定されるものではない。
 出力部8に相当するものとして、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプを挙げることができるが、これらに限定されるものではない。
 入出力部9は、入力部7と出力部8の双方の機能を備える装置機器である。例えば、温調、タイマ、カウンタ等の装置機器で、親局2に対し情報を送信する機能と、親局2から送信されたデータに基づき出力動作を行う機能の双方を備えるものを挙げることができる。
 なお、入力部7は、入力子局4と一体化された入力部一体型子局70であってもよい。また、出力部8は、出力子局5と一体化された出力部一体型子局80であってもよい。
 制御部1は、演算処理機能を持つ管理判断手段11と入出力ユニット12を備える。管理判断手段11は、入出力ユニット12を介して親局2からデータを受け取り、内部に記憶されたプログラムに基づいて必要な演算処理を行う。
 <親局の構成>
 親局2は、伝送線に接続され、図3に示すように、出力データ部21、管理データ部22、タイミング発生部23、親局出力部24、親局入力部25、入力データ部26を備える。そして、所定の周期とデューティー比を有する電圧クロック信号に制御データを含めて出力するとともに、入力子局4、出力子局5および入出力子局6から電圧クロック信号のクロック電圧領域の間の期間に出力された監視データを抽出し、制御部1の入出力ユニット12へ出力する。
 出力データ部21は、制御部1から受けたデータをシリアルデータとして親局出力部24へ引き渡す。
 管理データ部22は、制御部1から受けたデータに基づき、後述の管理制御データ領域において子局への指示に必要となるデータをシリアルデータとして親局出力部24へ引き渡す。
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、発振回路(OSC)31を基にタイミング発生手段32が、このシステムのタイミングクロックを生成し親局出力部24、親局入力部25に引き渡す。
 親局出力部24は、制御データ発生手段33とラインドライバ34からなる。制御データ発生手段33が、出力データ部21から受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ34を介して伝送線に制御データを含む電圧クロック信号を出力する。
 電圧クロック信号は、図1に示すように、閾値Estより高い電圧レベルEpが所定の時間幅維持されるクロック電圧領域の複数が定周期で連なり構成される。そして、この実施形態では電圧レベルEpが+24Vとされている。
 なお、クロック電圧領域は同期クロックとして機能するものであれば制限はなく、使用環境や使用状態に応じて適宜決めることができる。例えば、グランドレベルより低い負電圧が所定の時間幅維持されるものであってもよい。
 クロック電圧領域の間の期間では、クロック電圧領域の電圧レベルEpより低い電圧レベルによりデータ値が示されるものとなっている。ただし、データ値を示す電圧レベルは、使用環境や使用状態に応じて適宜決めればよく、クロック電圧領域の電圧レベルEpより高い電圧レベルとしてもよい。クロック電圧領域の電圧レベルEpがグランドレベルより低い負電圧であっても同様である。
 また、この実施形態では、全ての子局4、5、6の内部回路と伝送線で構成される回路のインピーダンス(以下、「伝送回路インピーダンス」とする)は、データ値を示す電圧レベルをとる状態(第一の状態)において、クロック電圧領域よりも大きいものとなる。そして、クロック電圧領域の電圧レベルEpからデータ値を示す電圧レベルへの変化に際し過渡現象が起こるものとなっている。
 クロック電圧領域の間の期間は、4個の領域に時分割されている。なお、以下の説明では、クロック電圧領域の間の期間の4個の領域を、電圧レベルがクロック電圧領域の電圧レベルEpから降下する過渡期間tに近い順に、I領域、V領域、F領域、P領域とする。
 この実施形態では、I領域、V領域、F領域において閾値Ectより低い電位が論理データ値“1”を示す電圧レベルと、閾値Ectより高い電位が論理データ値“0”を示す電圧レベルとなっている。この実施形態において閾値Ectは10Vとグランドレベルの間(約6V)に設定されているが、その大きさに制限はなく、使用状況や使用環境に応じて設定すればよい。なお、データ値を示す電圧レベルと論理データ値の対応関係に制限はなく、使用環境や使用状態に応じて適宜決めることができる。
 この実施形態のP領域は、親局2からの出力のみに用いられ、閾値Estより低い電位が論理データ値“1”を示す電圧レベルと、閾値Estより高い電位が論理データ値“0”を示す電圧レベルとなっている。そして、電圧レベルの高い領域の時間幅を大きくすることにより、すなわち、デューティー比を設定値より大きくすることにより、ノイズの影響を受けにくくするとともに、クロック機能の安定性を高めるものとなっている。なお、I領域、V領域、F領域と同様に、データ値を示す電圧レベルと論理データ値の対応関係に制限はなく、使用環境や使用状態に応じて適宜決めることができる。
 クロック電圧領域の電圧レベルEpからデータ値を示す電圧レベルへの変化に際しては、データ値を示す電圧レベルをとる状態(第一の状態)よりも伝送回路インピーダンスの低くなる状態(第二の状態)となる低電圧レベルGNDまでの電圧降下が行われるものとなっている。そして、低電圧レベルGNDを経て、データ値を示す電圧レベルへ変化するものとなっている。なお、データ値を示す電圧レベルをとる状態よりも伝送回路インピーダンスが低くなる状態は、例えば、低電圧レベルGNDを、回路に溜まった電荷や、逆起電力を一掃できるレベルとすることによりつくりだすことができる。
 なお、回路構成等により、データ値を示す電圧レベルをとる状態における伝送回路インピーダンスがクロック電圧領域よりも小さいものとなる場合は、データ値を示す電圧レベルからクロック電圧領域の電圧レベルEpへの変化に際し、クロック電圧領域よりも伝送回路インピーダンスの低くなる状態となる電圧レベルを経て、クロック電圧領域の電圧レベルEpへ変化させることになる。
 伝送手順は、図4に示すように、電圧クロック信号におけるスタート信号STと次のスタート信号STの間の、管理データ領域、制御・監視データ領域、そしてCRC領域と続く一連の領域を1フレームサイクルとするものとなっている。そして、制御・監視データ領域を利用した、親局2と入力子局4、出力子局5、及び、入出力子局6との定常データの授受が行われている。
 また、制御・監視データ領域への割り当てがされていない非定常データは管理データ領域を利用して授受されるものとなっている。更に、CRC領域を利用し、伝送異状の有無が判断されるものとなっている。
 スタート信号STでは、管理データ領域、制御・監視データ領域、及び、CRC領域におけるクロック電圧領域の電圧レベルEpがクロック電圧領域の時間幅より長く維持されるものとなっている。なお、スタート信号STの時間幅に制限はなく、使用条件等を考慮し適宜決めることができる。
 親局入力部25はラインレシーバ35と監視データ抽出手段36で構成される。ラインレシーバ35は、伝送線から電圧クロック信号を受け、波形整形して監視データ抽出手段36に引き渡す。
 監視データ抽出手段36は、タイミング発生部23から引き渡されたタイミングクロックを利用してデータ値を抽出するタイミングを得て、ラインレシーバ35から引き渡された電圧クロック信号の電圧レベルのデジタル値に基づき、データを抽出する。そして、制御・監視データ領域の定常データDIO、及び、管理データ領域の管理データDEXとして入力データ部26に引き渡す。
 入力データ部26は、監視データ抽出手段36から受け取った直列の入力データを並列(パラレル)データに変換し、監視データおよび管理監視データとして制御部1の入出力ユニット12へ出力する。
 <入力子局の構成>
 入力子局4は、図5に示すように、主要な演算処理を実行する子局入力部40、および、子局入力部40と伝送線の間に配置された子局ラインレシーバ48と子局ラインドライバ49を備え、子局ラインレシーバ48を介して伝送線から電圧クロック信号を受け、子局ラインドライバ49を介して伝送線へ監視信号を出力するものとなっている。
 子局入力部40は、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、管理監視データ送信手段45、入力手段46および監視データ送信手段47を有する。
 なお、この実施形態の入力子局4は、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入力部40として機能するものとなっている。
 子局ラインレシーバ48は、伝送線から電圧クロック信号を受け、波形整形して伝送受信手段41に引き渡す。
 伝送受信手段41は、電圧レベルの閾値Estと閾値Ectに対する判別を行い、子局ラインレシーバ48から引き渡された、電圧クロック信号の電圧レベルのデジタル値を、管理制御データ抽出手段42、アドレス抽出手段43および管理監視データ送信手段45に引き渡す。
 管理制御データ抽出手段42は、電圧クロック信号の電圧レベルのデジタル値に基づきスタート信号STを判別する。そして、スタート信号STが終了するタイミング(この実施形態では立下り)を起点とし、管理データ領域に相当するパルス間領域の電圧レベルのデジタル値に基づき、管理データを抽出する。抽出された管理データは、そのデータに基づいた処理を実行する、図示しない処理手段に引き渡される。
 アドレス抽出手段43は、電圧クロック信号の電圧レベルのデジタル値に基づきスタート信号STを判別し、スタート信号STが終了するタイミング(この実施形態では立下り)を起点とするクロック電圧領域のカウントを行う。そして、このカウント値がアドレス設定手段44で設定された自局アドレスデータと一致するタイミングを得る。なお、このタイミングは、電圧クロック信号において自局に割り当てられたデータ領域(以下、「自局領域」とする)が開始するタイミング(以下、「自局領域開始タイミング」とする)となる。
 アドレス抽出手段43は、また、クロック電圧領域の立下りを起点とする経過時間に基づき、I領域、V領域、及び、F領域のタイミングを得る。
 そして、自局領域開始タイミングを得たアドレス抽出手段43は、自局に割り当てられたI領域、V領域、及び、F領域の期間、監視データ送信手段47を有効にする。なお、自局領域が、クロック電圧領域の間の期間の複数で構成される場合は、自局領域が終了するまで、自局に割り当てられたI領域、V領域、及び、F領域が出現する都度、その電源電圧エリアの期間、監視データ送信手段47を有効にする。
 管理監視データ送信手段45は、電圧クロック信号の電圧レベルのデジタル値に基づきスタート信号STを判別する。そして、スタート信号STが終了するタイミングを起点とし、管理データ領域に相当するクロック電圧領域の間の期間におけるI領域、V領域、及び、F領域のうち、監視信号の出力用に設定されている領域での信号出力を行う。
 なお、管理監視データ送信手段45から出力される監視信号は、親局2に送信すべきデータが、図示しない処理手段から引き渡されている場合にのみ送信されるものとなっている。
 入力手段46は、入力部7からの入力に基づくデータを監視データ送信手段47に引き渡す。
 監視データ送信手段47は、アドレス抽出手段43により有効とされた場合に、入力手段46から引き渡されたデータを、子局ラインドライバ49を介して伝送線に監視信号として出力する。
 <出力子局の構成>
 出力子局5は、図6に示すように、主要な演算処理を実行する子局出力部50、および、子局出力部50と伝送線の間に配置された子局ラインレシーバ48と子局ラインドライバ49を備え、子局ラインレシーバ48を介して伝送線から電圧クロック信号を受け、子局ラインドライバ49を介して伝送線へ監視信号を出力するものとなっている。なお、図6において、入力子局4と実質的に同じ部分には同符号を付し、その説明を簡略化または省略する。
 子局出力部50は、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、管理監視データ送信手段45、制御データ抽出手段51および出力手段52を有する。
 この実施形態の出力子局5も入力子局4と同様に、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局出力部50として機能するものとなっている。
 出力子局5の伝送受信手段41は、子局ラインレシーバ48から引き渡された、電圧クロック信号の電圧レベルのデジタル値を、管理制御データ抽出手段42、アドレス抽出手段43および管理監視データ送信手段45に加え、更に、制御データ抽出手段51に引き渡す。
 出力子局5のアドレス抽出手段43は、スタート信号STが終了するタイミングを起点とする高電位領域のカウントにより自局領域開始タイミングを得て、クロック電圧領域の立下りを起点とする経過時間に基づき、自局領域におけるP領域のタイミングを得る。なお、I領域、V領域、又は、F領域が親局2から自局への出力のために割り当てられている場合は、そのタイミングも得る。
 そして、自局領域開始タイミングを得たアドレス抽出手段43は、自局に割り当てられたP領域の期間、そして、I領域、V領域、又は、F領域が割り当てられている場合はその領域の期間、監視データ送信手段47を有効にする。また、自局領域が、クロック電圧領域の間の期間の複数で構成される場合は、自局領域が終了するまで、自局に割り当てられたI領域、V領域、F領域、及びP領域が出現する都度、その電源電圧エリアの期間、監視データ送信手段47を有効にする。
 制御データ抽出手段51は、アドレス抽出手段43により有効とされた場合に、伝送受信手段41から引き渡された電圧クロック信号の電圧レベルのデジタル値に基づき制御データを抽出し、出力手段52に引き渡す。
 出力手段52は、制御データ抽出手段51から引き渡された制御データに基づいた情報を出力部8に出力し、出力部8を動作させ、或いは停止させる。
<入出力子局の構成>
 入出力子局6は入力子局4と出力子局5の双方の機能を備え、子局入力部40および子局出力部50の双方の構成を併せ持つ子局入出力部を有するものであるが、その構成は子局入力部40および子局出力部50と実質的に同じものであるため、図示およびその説明は省略する。
 この実施形態において、I領域、V領域、F領域、及びP領域におけるデータ値は、領域内の所定のタイミングで検出された電圧レベルに基づき抽出されるものとなっている。すなわち、電圧クロック信号の電圧レベルをデータ値に対応させることにより、データの授受が行われるものとなっているが、電圧クロック信号のデューティー比をデータ値に対応させることにより、データの授受を行うものとしてもよい。
 図7は、電圧クロック信号のデューティー比をデータ値に対応させることによりデータの授受を行う実施形態における伝送信号のタイムチャートである。なお、図7に示す実施形態の説明において、図1~6に示す実施形態と実質的に同一の部分には同符号を付し、その説明を省略または簡略化する。
 図7に示す実施形態では、クロック電圧領域の時間幅が、すなわち、電圧クロック信号のデューティー比がデータ値に対応するものとなっている。なお、クロック電圧領域の時間幅は、クロック電圧領域の立下りから立上りまでの経過時間を計測することにより得ることができる。
 図7に示す実施形態において、同期タイミングの基点となるクロック電圧領域の立下りは定周期とされているため、クロック電圧領域の時間幅が大きいときはクロック電圧領域の立下りから立上りまでの経過時間が小さく、クロック電圧領域の時間幅が小さいときはクロック電圧領域の立下りから立上りまでの経過時間が大きくなる。従って、経過時間の長短により、クロック電圧領域の時間幅の大小を判別することができる。
 図7においては、所定の閾値より長い経過時間TLは小さい時間幅に対応するデータ値“1”を、所定の閾値より短い経過時間TSは大きい時間幅に対応するデータ値“0”を示すものとなっている。クロック電圧領域の時間幅とデータ値との対応に制限はなく、使用状況に応じて適切に設定すればよい。ただし、クロック電圧領域の時間幅は、クロックとして機能するために必要な一定の幅以上とすること、すなわち、デューティー比を電圧クロック信号の設定値より大きくすることが必要である。
1 制御部
2 親局
4 入力子局
5 出力子局
6 入出力子局
7 入力部
8 出力部
9 入出力部
11 管理判断手段
12 入出力ユニット
21 出力データ部
22 管理データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26 入力データ部
31 発振回路(OSC)
32 タイミング発生手段
33 制御データ発生手段
34 ラインドライバ
35 監視信号検出手段
36 監視データ抽出手段
40 子局入力部
41 伝送受信手段
42 管理制御データ抽出手段
43 アドレス抽出手段
44 アドレス設定手段
45 管理監視データ送信手段
46 入力手段
47 監視データ送信手段
48 子局ラインレシーバ
49 子局ラインドライバ
50 子局出力部
51 制御データ抽出手段
52 出力手段
70 入力部一体型子局
80 出力部一体型子局

Claims (3)

  1.  制御部とデータの授受を行う親局と、共通の伝送線を介して伝送同期方式により前記親局とデータの授受を行う子局の複数を備え、
     所定の周期とデューティー比を有する電圧クロック信号のクロック電圧領域の間の期間において、
     電圧レベルを変化させた後の目標に設定されている第一の電圧レベルとなる第一の状態での、前記子局の複数の内部回路と前記伝送線で構成される回路のインピーダンスが、前記電圧レベルを変化させる前の開始状態より高くなる場合、前記インピーダンスが前記第一の状態より低くなる第二の状態をとる第二の電圧レベルを経て、前記第一の電圧レベルへ変化させることを特徴とする制御・監視信号伝送システム。
  2.  前記クロック電圧領域の間の期間が3以上の領域に時分割されている請求項1に記載の制御・監視信号伝送システム。
  3.  前記クロック電圧領域の間の期間において、前記クロック電圧領域の電圧レベルへ変化するタイミングを早め、デューティー比が前記所定のデューティー比より大きくなる領域を設ける請求項2に記載の制御・監視信号伝送システム。
     
PCT/JP2021/022483 2021-06-14 2021-06-14 制御・監視信号伝送システム WO2022264201A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21945881.7A EP4358465A1 (en) 2021-06-14 2021-06-14 Control/monitor signal transmission system
JP2023529161A JPWO2022264201A1 (ja) 2021-06-14 2021-06-14
CN202180098496.9A CN117378168A (zh) 2021-06-14 2021-06-14 控制监视讯号传输***
PCT/JP2021/022483 WO2022264201A1 (ja) 2021-06-14 2021-06-14 制御・監視信号伝送システム
KR1020237035457A KR20230157472A (ko) 2021-06-14 2021-06-14 제어·감시 신호 전송 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022483 WO2022264201A1 (ja) 2021-06-14 2021-06-14 制御・監視信号伝送システム

Publications (1)

Publication Number Publication Date
WO2022264201A1 true WO2022264201A1 (ja) 2022-12-22

Family

ID=84525743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022483 WO2022264201A1 (ja) 2021-06-14 2021-06-14 制御・監視信号伝送システム

Country Status (5)

Country Link
EP (1) EP4358465A1 (ja)
JP (1) JPWO2022264201A1 (ja)
KR (1) KR20230157472A (ja)
CN (1) CN117378168A (ja)
WO (1) WO2022264201A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016621A (ja) 2000-06-30 2002-01-18 Haamorinku:Kk 制御・監視信号伝送システム
JP2002152864A (ja) 2000-11-09 2002-05-24 Haamorinku:Kk 制御・監視信号伝送システム
JP2007081608A (ja) * 2005-09-13 2007-03-29 Nec Electronics Corp 出力バッファ回路
JP2009038474A (ja) * 2007-07-31 2009-02-19 Fujitsu Microelectronics Ltd 送信装置
WO2015056291A1 (ja) * 2013-10-15 2015-04-23 株式会社エニイワイヤ 制御・監視信号伝送システム
JP2021069036A (ja) * 2019-10-25 2021-04-30 株式会社 エニイワイヤ 組立用物品管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016621A (ja) 2000-06-30 2002-01-18 Haamorinku:Kk 制御・監視信号伝送システム
JP2002152864A (ja) 2000-11-09 2002-05-24 Haamorinku:Kk 制御・監視信号伝送システム
JP2007081608A (ja) * 2005-09-13 2007-03-29 Nec Electronics Corp 出力バッファ回路
JP2009038474A (ja) * 2007-07-31 2009-02-19 Fujitsu Microelectronics Ltd 送信装置
WO2015056291A1 (ja) * 2013-10-15 2015-04-23 株式会社エニイワイヤ 制御・監視信号伝送システム
JP2021069036A (ja) * 2019-10-25 2021-04-30 株式会社 エニイワイヤ 組立用物品管理システム

Also Published As

Publication number Publication date
CN117378168A (zh) 2024-01-09
JPWO2022264201A1 (ja) 2022-12-22
KR20230157472A (ko) 2023-11-16
EP4358465A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
CN101799698B (zh) 用于双线导体的驱动电路和生成两个输出电流的方法
CN107209811B (zh) 用于异步切换i2c数据线的***和方法
US8400791B2 (en) Power layer generation of inverter gate drive signals
CN112840387B (zh) 用于在同步模式下的psi5基极电流采样的电子装置和方法
CN109951407B (zh) 使用计时器与多个从设备进行基于边沿的通信
CN105790754A (zh) 一种数字隔离电路及其控制方法
CN1327615C (zh) 时钟中断检测电路
US20080054866A1 (en) Single wire synchronization circuitry for power converters
CN112051890A (zh) I2c总线的时钟控制方法、主设备及连接i2c总线的设备***
JP5562502B1 (ja) 制御・監視信号伝送システム
WO2022264201A1 (ja) 制御・監視信号伝送システム
US6008671A (en) Clock signal monitoring apparatus
JP5489440B2 (ja) 同期回路
CN104348587A (zh) 单线信号传输装置及传输方法
JP6853916B2 (ja) 制御・監視信号伝送システム
US6825705B2 (en) Clock signal generation circuit and audio data processing apparatus
JP6655768B2 (ja) 制御・監視信号伝送システム
JP5599533B1 (ja) 制御・監視信号伝送システム
WO2023242938A1 (ja) 制御・監視信号伝送システム
WO2018173129A1 (ja) 制御・監視信号伝送システム
JP6627958B1 (ja) 通信システム
WO2023105554A1 (ja) 制御・監視信号伝送システム
JP2002055181A (ja) 時計同期回路
JP2004247856A (ja) データ受信装置及びデータ送受信方法
JP4926234B2 (ja) 制御・監視信号伝送システムにおける信号伝送方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529161

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237035457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035457

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180098496.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021945881

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945881

Country of ref document: EP

Effective date: 20240115