WO2022262121A1 - 一种无线网络上行同步方法及*** - Google Patents

一种无线网络上行同步方法及*** Download PDF

Info

Publication number
WO2022262121A1
WO2022262121A1 PCT/CN2021/115708 CN2021115708W WO2022262121A1 WO 2022262121 A1 WO2022262121 A1 WO 2022262121A1 CN 2021115708 W CN2021115708 W CN 2021115708W WO 2022262121 A1 WO2022262121 A1 WO 2022262121A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
value
resource
initial
values
Prior art date
Application number
PCT/CN2021/115708
Other languages
English (en)
French (fr)
Inventor
蔡鑫
印翀
颜志凌
严凡
Original Assignee
中信科移动通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信科移动通信技术股份有限公司 filed Critical 中信科移动通信技术股份有限公司
Publication of WO2022262121A1 publication Critical patent/WO2022262121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a wireless network uplink synchronization method and system.
  • the 5G network In order to maintain the orthogonality between UE uplink signals, the 5G network must also ensure that the reception clocks of each UE signal at the gNodeB end are consistent. If the signal sent by the UE arrives at the gNodeB at different times, the time-domain samples of different OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols are aliased together. The receiving end of gNodeB will generate serious ISI (Inter-Symbol Interference, inter-symbol interference), which will seriously affect the correct demodulation of the data sent by the UE by the base station. As shown in Figure 1, when the UE sends a signal too early or too late, it will generate Inter-symbol interference, only when the UE transmits within a certain time range, will there be no inter-symbol interference.
  • ISI Inter-Symbol Interference, inter-symbol interference
  • TA Timing Advance
  • UEs that are far away from the gNodeB use a large TA value to greatly advance the transmission.
  • UEs that are closer to the gNodeB use a small TA value to send in advance by a small margin, so that the signals of each UE arrive at the gNodeB basically at the same time.
  • the gNodeB instructs the UE to adopt an appropriate TA through the uplink clock control (Timing Control) signaling, that is, the base station sends a TA value to inform the UE to use this TA to send signals in advance.
  • Timing Control uplink clock control
  • the base station when the TA value is accurate or within a certain error Within the range, the base station can try to demodulate the UE uplink signal without loss. When the TA error exceeds the range, the base station will have a demodulation error.
  • new UE positioning technologies such as multi-cell RTT (RTT with multiple cells), UL-TDOA, and UL-AOA are introduced.
  • These technologies require multiple base stations to send UL PRS (uplink positioning The reference signal, Uplink Positioning Reference Signal) is measured, and then the positioning module/server collects multiple measurement values and performs UE position calculation according to their respective algorithms, and finally obtains the precise position of the UE.
  • UL PRS uplink positioning The reference signal, Uplink Positioning Reference Signal
  • the positioning module/server collects multiple measurement values and performs UE position calculation according to their respective algorithms, and finally obtains the precise position of the UE. It can be seen that a key point of these positioning technologies is that the UL PRS sent by the UE can be received by multiple base stations.
  • the UE's UL PRS can be received by the serving cell and neighboring cells, but in some scenarios there will be a problem: the distance between multiple base stations and the UE is not equal, and sometimes the difference is very large. How does the UE Can maintain synchronization with multiple base stations?
  • the UE only maintains the synchronization between itself and the serving cell, that is, only maintains one TA value.
  • a single TA value can ensure the fine synchronization between the UE and the serving cell.
  • the distance gap is not particularly large, so according to the existing protocol and product design in the industry, a small amount of deviation ( ⁇ 2 to 3 TA values, converted to a distance difference of about 80 to 120 meters) will not affect the data reception and resolution of the base station. Tune.
  • the present application provides a wireless network uplink synchronization method and system to solve the defects existing in the prior art.
  • the present application provides a wireless network uplink synchronization method, including:
  • assigning initial UL PRS transmission resources to the UE based on preset a priori information includes:
  • the serving cell allocates the initial UL PRS transmission resources with reference to the preset prior information, so that the serving cell and multiple neighboring cells can receive the UL PRS of the UE;
  • the receiving the UL PRS sent by the UE on the initial UL PRS transmission resource, performing interactive and cooperative calculation according to a preset resource configuration strategy, and obtaining the TA resource includes:
  • the first UL PRS resource state, the second UL PRS resource state and the third UL PRS resource state are obtained from the maximum number of access users and the actual number of access users of the receiving base station.
  • the determining to maintain a single TA value includes:
  • the absolute value of the difference between the TA average value and the TA measurement value of the serving cell is less than or equal to the TA deviation tolerance value, send the TA average value to the UE as an advance amount;
  • the determination to maintain the TA values of all receiving base stations includes:
  • the determination maintains several TA values, including:
  • the TA deviation tolerance value Based on the maximum TA value, the TA deviation tolerance value and the number of the several TA values, obtain the specific values of the several TA values respectively;
  • a base station set having the number of the several TA values is obtained.
  • the updating the initial UL PRS transmission resource based on the TA resource, obtaining the updated UL PRS transmission resource, and allocating the updated UL PRS transmission resource to the UE includes:
  • the OFDM number used by the UL PRS is the number of each symbol in the number set of OFDM symbols plus the preset number of symbols.
  • the present application provides a wireless network uplink synchronization method, including:
  • the present application also provides a wireless network uplink synchronization system, including:
  • the initial module is configured to allocate initial UL PRS transmission resources for the UE based on preset a priori information after the UE accesses;
  • a calculation module configured to receive the UL PRS sent by the UE on the initial UL PRS transmission resource, perform interactive and collaborative calculation according to a preset resource configuration strategy, and obtain TA resources;
  • An allocation module configured to update the initial UL PRS transmission resources based on the TA resources, obtain updated UL PRS transmission resources, and allocate the updated UL PRS transmission resources to the UE.
  • the present application also provides a wireless network uplink synchronization system, including:
  • the first sending module is configured to acquire the initial UL PRS transmission resource sent by the receiving base station, and send the UL PRS based on the initial UL PRS transmission resource;
  • the second sending module is configured to acquire the TA resource calculated by the receiving base station and the updated UL PRS transmission resource, and transmit the UL PRS based on the TA resource and the updated UL PRS transmission resource.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the program, it implements any of the above-mentioned The steps of the wireless network uplink synchronization method are described.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of any one of the wireless network uplink synchronization methods described above are implemented.
  • the wireless network uplink synchronization method and system provided by this application can support multiple base stations and UEs to maintain synchronization through dynamic allocation and adjustment of UL PRS resources between multiple base stations and UEs, effectively improve UE positioning accuracy, and accurately calculate variable
  • the TA resource can adapt to different coverage scenarios and has high adaptability.
  • FIG. 1 is a schematic diagram of ISI interference caused by uplink asynchrony provided by the prior art
  • Fig. 2 is a schematic diagram of accuracy loss caused by out-of-synchronization in the multi-base station positioning process provided by the prior art
  • Fig. 3 is one of the flow diagrams of the wireless network uplink synchronization method provided by the present application.
  • Figure 4 is a schematic diagram of the UL PRS and normal data isolation gap provided by this application.
  • FIG. 5 is a schematic diagram of UL PRS resource allocation provided by the present application.
  • FIG. 6 is the second schematic flow diagram of the wireless network uplink synchronization method provided by the present application.
  • FIG. 7 is one of the structural schematic diagrams of the wireless network uplink synchronization system provided by the present application.
  • FIG. 8 is the second structural schematic diagram of the wireless network uplink synchronization system provided by the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by the present application.
  • the TA value of the serving cell used by the UE cannot meet the receiving requirements of multiple base stations, causing some base stations to be unable to receive and demodulate the UL PRS of the target UE, which seriously affects the positioning accuracy and even the positioning function.
  • This application A wireless network uplink synchronization method is proposed, by maintaining one or more TAs to ensure that the UE can send UL PRS to each base station with an appropriate TA value, so as to avoid the phenomenon that some base stations cannot receive UL PRS.
  • FIG 3 is one of the flow diagrams of the wireless network uplink synchronization method provided by the present application. As shown in Figure 3, the corresponding execution subject is the receiving base station, including:
  • the serving cell will allocate initial UL PRS transmission resources for the UE according to various prior information, and the UE sends UL PRS on the transmission resources, and each receiving base station receives After UL PRS, perform interactive and cooperative calculation according to the preset resource allocation strategy, and obtain the required TA number and the specific TA value delivered to the UE, so as to ensure that the TA value can ensure that each receiving base station can normally receive UL PRS, and each receiving base station further Update and adjust the initial UL PRS transmission resources, and send the updated UL PRS transmission resources to the UE for communication.
  • this application can support multiple base stations and UEs to maintain synchronization, effectively improve UE positioning accuracy, and accurately calculate variable TA resources to adapt to different coverage scenarios. Has high adaptability.
  • step 101 in the method includes:
  • the serving cell allocates the initial UL PRS transmission resources with reference to the preset prior information, so that the serving cell and multiple neighboring cells can receive the UL PRS of the UE;
  • the serving cell allocates UL PRS transmission resources for the UE with reference to various prior information. On this resource, both the serving cell and multiple neighboring cells can receive the UL PRS of the UE. , the total number of receiving base stations needs to be ⁇ 3.
  • various prior information includes: the distance between the UE and the serving base station, the distribution of each neighboring cell, and the PRS resources that can be allocated by this cell and each neighboring cell.
  • the serving cell needs to exchange information with neighboring cells, obtain a PRS time-frequency resource that is not occupied by the local cell and neighboring cells, and allocate it to the UE for UL PRS transmission to support positioning measurement.
  • the specific neighboring cells that need to receive the UE PRS can be determined by the distance from the UE to the serving base station and the distribution of neighboring cells, for example:
  • the serving base station can receive the UL PRS of the UE and cooperate to locate the UE.
  • the UE If the UE is far away from the serving base station, it can be inferred that the UE is at the edge of the serving cell, and at this time, the distance between the UE and the base station of the neighboring cell in the direction of the edge will be relatively short. At this time, several adjacent base stations in the edge direction can receive the UL PRS of the UE and cooperate to locate the UE.
  • the method of judging the distance between the UE and the serving base station can be measured through the random access channel PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the determination of the edge direction can be determined by the beam direction of the random access channel.
  • This application supports the synchronization between the UE and more base stations, which can ensure that more base stations participate in positioning measurement and calculation, and effectively improve the positioning accuracy of the UE.
  • the method step 102 includes:
  • the first UL PRS resource state, the second UL PRS resource state and the third UL PRS resource state are obtained from the maximum number of access users and the actual number of access users of the receiving base station.
  • the determination to maintain a single TA value fixedly includes:
  • the absolute value of the difference between the TA average value and the TA measurement value of the serving cell is less than or equal to the TA deviation tolerance value, send the TA average value to the UE as an advance amount;
  • the determination to maintain the TA values of all receiving base stations includes:
  • the determination maintains several TA values, including:
  • the TA deviation tolerance value and the number of the several TA values respectively obtain specific values of the several TA values
  • a base station set having the number of the several TA values is obtained.
  • the specific strategies for calculating TA resources in this application include three: fixed maintenance of a single TA value, maintenance of TA values of all receiving base stations, and dynamic maintenance of N TA values (N ⁇ number of receiving base stations).
  • the system supports static configuration to select a strategy, and can also dynamically switch between strategies: when the UL PRS resources of each base station are tight, you can choose to maintain a single TA value fixedly; when the UL PRS resources of each base station are very sufficient, you can choose Maintain the TA values of all receiving base stations; when the UL PRS resources of each base station are relatively sufficient, you can choose to dynamically maintain N TA values;
  • the UL PRS resource allocation of each base station can be judged by the ratio of the respective access UEs:
  • the maximum number of access users of the base station is 400, when the number of access users of all receiving base stations does not exceed 100, that is, the access user rate of no base station is > 25%, it can be considered that the resources are very sufficient at this time; when there is any When the number of access users of the receiving base station exceeds 300, that is, the access user rate of one base station is greater than 75%, which can be considered as resource shortage; other cases can be considered as sufficient resources;
  • the serving base station sends TA_avg to the UE as an advance amount
  • the serving base station sends TA_ser+M to the UE as an advance amount
  • the serving cell is relatively close to the UE, so it is certain that TA_avg>TA_ser.
  • M is equivalent to the tolerance value of TA deviation, and it is generally recommended to take 2 to 3.
  • the base station can guarantee the reception quality when the UE sends UL PRS with the issued TA. If the difference between the receiving base station and the delivered TA value is beyond the tolerance threshold, the correct reception of the next UL PRS cannot be guaranteed, so the measured value of the base station at the next measurement time point may not participate in the positioning calculation.
  • the serving base station needs to deliver the TA value measured by each receiving base station to the UE.
  • more UL PRS transmission resources need to be allocated to the UE, and as many resources as there are TA values are allocated to the UE. Since the UE can only use one TA at the same time, it is also necessary to ensure that various resources cannot be used at the same time.
  • N TA The number of TAs required to ensure that all receiving base stations can correctly receive UL PRS.
  • the specific value of N TAs is obtained by the following formula:
  • TA_1 TA_max - M
  • TA_2 TA_max - 3M
  • TA_N TA_max-(2 ⁇ N-1) ⁇ M
  • the receiving base station can be divided into N sets: [TA_1-M, TA_max], [TA_2-M, TA_1-M],...,[TA_min, TA_N-1-M].
  • the measured TA value of the receiving base station it is assigned to the above set, and the base stations in the same set are assigned the same UL PRS resource, and the UE will use the corresponding issued TA value to send UL PRS on this resource.
  • this application can flexibly and dynamically allocate UL PRS resources required for positioning, so as to improve the positioning effect without occupying too many resources.
  • step 103 of the method includes:
  • the OFDM number used by the UL PRS is the number of each symbol in the number set of OFDM symbols plus the preset number of symbols.
  • the number of TAs required at this time can be determined, and when the number of required TAs>1, the UL PRS resource of the UE is updated.
  • the UE can only use one TA to send at the same time point, so it must be ensured that there is only one UL PRS resource at the same time.
  • the TA value used by the UL PRS is different from the TA value of the normal uplink service transmission of the serving cell.
  • the number of OFDM symbols that can be used in the UL PRS time domain length is ⁇ 1, 2, 4, 8, 12 ⁇ , and all symbols (14) in each slot can be provided for PRS.
  • this application sets the gap value to 2 symbols (this length can contain 34 TA unit values), within these 2 symbols, no data transmission is performed, and it is reserved for UL PRS to send in advance. That is, the number of OFDM that can be used by UL PRS is ⁇ 1+2, 2+2, 4+2, 8+2, 12+2 ⁇ , all of which can be controlled in one slot, and there will be no cross-slot transmission.
  • This application uses gaps to separate data transmission and UL PRS transmission, without affecting normal uplink data transmission, and uses reasonable remaining symbols as gaps, and hardly changes existing standard protocols.
  • FIG. 6 is one of the flow diagrams of the wireless network uplink synchronization method provided by the present application. As shown in FIG. 6, the corresponding execution subject is UE, including:
  • the UE accesses the serving cell of the receiving base station, it will receive the allocated initial UL PRS transmission resource, and the UE sends the UL PRS on the initial UL PRS transmission resource;
  • the UE After the receiving base station calculates the TA resource and sends it to the UE, the UE transmits the UL PRS according to the dynamic update of the UL PRS resource and the TA value. Receive UL PRS for positioning measurement.
  • This application supports the synchronization between the UE and more base stations, which can ensure that more base stations participate in positioning measurement and calculation, and effectively improve the positioning accuracy of the UE.
  • the wireless network uplink synchronization system provided by this application is described below, and the wireless network uplink synchronization system described below and the wireless network uplink synchronization method described above can be referred to in correspondence.
  • FIG. 7 is one of the structural schematic diagrams of the wireless network uplink synchronization system provided by the present application. As shown in FIG. 7, it includes: an initial module 71, a calculation module 72 and an allocation module 73, wherein:
  • the initial module 71 is configured to allocate an initial UL PRS transmission resource for the UE based on preset a priori information after the UE accesses;
  • the calculation module 72 is configured to receive the UL PRS sent by the UE on the initial UL PRS transmission resource , perform interactive and cooperative calculation according to a preset resource configuration strategy to obtain TA resources;
  • the allocation module 73 is configured to update the initial UL PRS transmission resources based on the TA resources, obtain updated UL PRS transmission resources, and allocate the updated UL PRS transmission resources UL PRS transmission resources to the UE.
  • this application can support multiple base stations and UEs to maintain synchronization, effectively improve UE positioning accuracy, and accurately calculate variable TA resources to adapt to different coverage scenarios. Has high adaptability.
  • FIG. 8 is the second structural schematic diagram of the wireless network uplink synchronization system provided by the present application. As shown in FIG. 8 , it includes: a first sending module 81 and a second sending module 82, wherein:
  • the first sending module 81 is used to obtain the initial UL PRS transmission resource sent by the receiving base station, and send the UL PRS based on the initial UL PRS transmission resource; the second sending module 82 is used to obtain the TA resource calculated by the receiving base station and the updated TA resource UL PRS transmission resource, transmitting UL PRS based on the TA resource and the updated UL PRS transmission resource.
  • This application uses gaps to separate data transmission and UL PRS transmission, without affecting normal uplink data transmission, and uses reasonable remaining symbols as gaps, and hardly changes existing standard protocols.
  • FIG. 9 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 910, a communication interface (Communications Interface) 920, a memory (memory) 930 and a communication bus 940, Wherein, the processor 910 , the communication interface 920 , and the memory 930 communicate with each other through the communication bus 940 .
  • the processor 910 can call the logic instructions in the memory 930 to execute the wireless network uplink synchronization method.
  • the method includes: after the UE accesses, allocate initial UL PRS transmission resources for the UE based on preset prior information; receive the The UL PRS sent by the UE on the initial UL PRS transmission resource is interactively and collaboratively calculated according to the preset resource configuration strategy to obtain TA resources; the initial UL PRS transmission resource is updated based on the TA resources to obtain an updated UL PRS Transmission resources, allocating the updated UL PRS transmission resources to the UE.
  • the above-mentioned logic instructions in the memory 930 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer During execution, the computer can execute the wireless network uplink synchronization method provided by the above methods, the method includes: after the UE accesses, allocate initial UL PRS transmission resources for the UE based on preset prior information; The UL PRS sent on the initial UL PRS transmission resource is interactively and collaboratively calculated according to a preset resource configuration strategy to obtain TA resources; based on the TA resource, the initial UL PRS transmission resource is updated to obtain updated UL PRS transmission resources , allocating the updated UL PRS transmission resource to the UE.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the wireless network uplink synchronization methods provided above, the method includes : After the UE accesses, allocate initial UL PRS transmission resources for the UE based on preset a priori information; receive the UL PRS sent by the UE on the initial UL PRS transmission resources, and interact according to the preset resource configuration strategy Cooperative calculation to obtain TA resources; update the initial UL PRS transmission resources based on the TA resources, obtain updated UL PRS transmission resources, and allocate the updated UL PRS transmission resources to the UE.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线网络上行同步方法及***,包括:待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。本申请通过多个基站和UE之间进行UL PRS资源的动态分配调整,能支持多个基站与UE保持同步,有效提升UE定位精度,并精确计算可变的TA资源以适应不同的覆盖场景,具有很高的适应性。

Description

一种无线网络上行同步方法及***
相关申请的交叉引用
本申请要求于2021年06月17提交的申请号为202110674105.5,发明名称为“一种无线网络上行同步方法及***”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种无线网络上行同步方法及***。
背景技术
为了保持UE上行信号之间的正交性,5G网络同样必须保证各UE信号在gNodeB端的接收时钟一致。如果UE发送的信号到达gNodeB时时间上不齐,不同的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)符号的时域样值混叠在一起。gNodeB接收端会产生严重的ISI(Inter-Symbol Interference,码间干扰),将严重影响基站正确解调出UE发送的数据,如图1所示,当UE过早或过晚发送信号,都会产生符号间干扰,只有UE在一定时间范围内发送,才不会产生符号间干扰。
为使各UE信号在gNodeB端的接收时钟一致,可以通过控制UE采用不同的上行时钟提前量(TA,Timing Advance)来实现,即距离gNodeB较远的UE采用大TA值来大幅度提前发送,距离gNodeB较近的UE采用小TA值来小幅度提前发送,从而使各个UE的信号基本同时到达gNodeB。gNodeB通过上行时钟控制(Timing Control)信令指示UE采用适当的TA,即基站下发TA值通知UE以此TA来提前发送信号,根据现有协议和产品设计,当TA值准确或在一定误差范围内,基站能够无损失的争取解调出UE上行信号,当TA误差超过范围,此时基站会发生解调错误。
在最新的3GPP R16 5G协议中,引入了新的UE定位技术如多小区RTT(RTT with multiple cells)、UL-TDOA、UL-AOA,这些技术需要多个基站对UE发送的UL PRS(上行定位参考信号,Uplink Positioning  Reference Signal)进行测量,随后定位模块/服务器收集多个测量值并根据各自的算法进行UE位置演算,最终得到UE精准位置。可以看到,这些定位技术的一个关键点就是UE发送的UL PRS能够被多个的基站接收到。虽然按照5G R16协议是支持UE的UL PRS能被服务小区和邻区接收,但在某些场景中会存在一个问题:多个基站与UE的距离不等,有时甚至会相差特别大,UE如何能够与多个基站维持同步?
目前,UE只维护其与服务小区之间的同步,即只维护一个TA值,单个TA值能够保证UE与服务小区精同步,如果这个服务小区之外的其它基站与之相距不远或距离UE的距离差距不是特别大,那么根据现有的协议和业内产品设计,少量的偏差值(±2~3个TA值,换算成距离差大概是80~120米)不影响基站的数据接收和解调。但是如果各基站与UE的距离差超过一定范围,则注定UE采用的TA值不能满足某些基站的需求,造成这些基站无法接收和解调出目标定位UE的UL PRS,这样会严重影响定位精度甚至定位功能,如图2所示。
发明内容
本申请提供一种无线网络上行同步方法及***,用以解决现有技术中存在的缺陷。
第一方面,本申请提供一种无线网络上行同步方法,包括:
待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;
接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;
基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
在一个实施例中,所述待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源,包括:
待所述UE接入服务小区,所述服务小区参考所述预设先验信息分配所述初始UL PRS传输资源,使所述服务小区和多个邻区均能接收所述UE的UL PRS;
确定接收基站数量不能小于预设基站阈值;
通过所述服务小区与所述多个邻区进行信息交互,获取空余PRS时频资源,将所述空余PRS时频资源分配给所述UE作为支撑定位测量;
基于所述UE与接收基站的距离以及所述多个邻区的分布方向,确定接收所述UE的UL PRS的具体邻区。
在一个实施例中,所述接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源,包括:
当处于第一UL PRS资源状态时,确定固定维护单个TA值;
当处于第二UL PRS资源状态时,确定维护所有接收基站的TA值;
当处于第三UL PRS资源状态时,确定维护若干个TA值,所述若干个TA值小于接收基站数量;
其中,所述第一UL PRS资源状态、所述第二UL PRS资源状态和所述第三UL PRS资源状态由接收基站的最大接入用户数和实际接入用户数所得到。
在一个实施例中,所述确定固定维护单个TA值,包括:
对所有接收基站的TA值进行排序,取其中的若干个TA值进行平均,得到TA平均值,并获取服务小区TA测量值;
若所述TA平均值和所述服务小区TA测量值之差的绝对值小于等于TA偏差容忍值,下发所述TA平均值给所述UE作为提前量;
若所述TA平均值和所述服务小区TA测量值之差的绝对值大于TA偏差容忍值,下发所述服务小区TA测量值与所述TA偏差容忍值之和给所述UE作为提前量;
对应地,所述确定维护所有接收基站的TA值,包括:
将所有接收基站的TA值下发给所述UE,其中所述UE在同一时间仅接收单个TA值;
对应地,所述确定维护若干个TA值,包括:
对所有接收基站的TA值进行排序,取最大TA值和最小TA值;
基于所述最大TA值所述最小TA值和所述TA偏差容忍值得到所述若干个TA值的个数;
基于所述最大TA值、所述TA偏差容忍值和所述若干个TA值的个 数,分别得到所述若干个TA值的具体数值;
基于所述若干个TA值的具体数值、所述TA偏差容忍值、所述最大TA值和所述最小TA值,得到具有所述若干个TA值的个数的基站集合。
在一个实施例中,所述基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE,包括:
获取UL PRS时域长度使用的OFDM symbols个数集合,确定每个slot内的所有symbols均提供给UL PRS使用;
确定提前量的gap值与预设个数symbols,使所述UL PRS使用的OFDM数为所述OFDM symbols个数集合中的各个symbols个数加上所述预设个数symbols。
第二方面,本申请提供一种无线网络上行同步方法,包括:
获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;
获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
第三方面,本申请还提供一种无线网络上行同步***,包括:
初始模块,用于待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;
计算模块,用于接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;
分配模块,用于基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
第四方面,本申请还提供一种无线网络上行同步***,包括:
第一发送模块,用于获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;
第二发送模块,用于获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
第五方面,本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述无线网络上行同步方法的步骤。
第六方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述无线网络上行同步方法的步骤。
本申请提供的无线网络上行同步方法及***,通过多个基站和UE之间进行UL PRS资源的动态分配调整,能支持多个基站与UE保持同步,有效提升UE定位精度,并精确计算可变的TA资源以适应不同的覆盖场景,具有很高的适应性。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的上行不同步造成的ISI干扰示意图;
图2是现有技术提供的多基站定位过程中不同步带来的精度损失示意图;
图3是本申请提供的无线网络上行同步方法的流程示意图之一;
图4是本申请提供的UL PRS与正常数据隔离gap示意图;
图5是本申请提供的UL PRS资源分配示意图;
图6是本申请提供的无线网络上行同步方法的流程示意图之二;
图7是本申请提供的无线网络上行同步***的结构示意图之一;
图8是本申请提供的无线网络上行同步***的结构示意图之二;
图9是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实 施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对现有技术中,UE采用的服务小区TA值不能满足多个基站的接收需求,造成某些基站无法接收和解调出目标定位UE的UL PRS,严重影响定位精度甚至定位功能的问题,本申请提出一种无线网络上行同步方法,通过维护一个或多个TA来保证UE能够以合适的TA值来向各个基站发送UL PRS,以避免有基站出现无法接收UL PRS的现象。
图3是本申请提供的无线网络上行同步方法的流程示意图之一,如图3所示,对应的执行主体是接收基站,包括:
101,待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;
102,接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;
103,基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
具体地,待UE接入接收基站的服务小区时,服务小区会根据各种先验信息为该UE分配初始的UL PRS传输资源,UE则在该传输资源上发送UL PRS,各接收基站接收到UL PRS后根据预设资源配置策略进行交互协作计算,得到所需TA个数和具体下发给UE的TA值,保证此TA值能够保证各接收基站能够正常进行UL PRS接收,各接收基站进一步更新和调整初始的UL PRS传输资源,将更新后的UL PRS传输资源发送至UE进行通信。
本申请通过多个基站和UE之间进行UL PRS资源的动态分配调整,能支持多个基站与UE保持同步,有效提升UE定位精度,并精确计算可变的TA资源以适应不同的覆盖场景,具有很高的适应性。
基于上述实施例,该方法中步骤101包括:
待所述UE接入服务小区,所述服务小区参考所述预设先验信息分配所述初始UL PRS传输资源,使所述服务小区和多个邻区均能接收所述UE的UL PRS;
确定接收基站数量不能小于预设基站阈值;
通过所述服务小区与所述多个邻区进行信息交互,获取空余PRS时频资源,将所述空余PRS时频资源分配给所述UE作为支撑定位测量;
基于所述UE与接收基站的距离以及所述多个邻区的分布方向,确定接收所述UE的UL PRS的具体邻区。
具体地,UE接入服务小区,服务小区参考各种先验信息为UE分配UL PRS传输资源,在该资源上,服务小区和多个邻区都能够接收该UE的UL PRS,根据定位技术需要,总共接收的基站数需要≥3。
其中,各种先验信息包括:UE离服务基站的距离、各邻小区分布、本小区和各邻小区可分配PRS资源。
在此过程,服务小区需要与各邻小区进行信息交互,获取一个在本小区和邻小区都没被占用的PRS时频资源分配给UE做UL PRS传输以支撑定位测量。
需要接收此UE PRS的具体邻小区可由UE离服务基站的距离和各邻小区分布决定,例如:
如果UE离服务基站近,可推断出UE在服务小区中心,这时UE离邻区基站距离会偏远。这时可以让服务基站及其周围一圈基站来接收UE的UL PRS,合作来为UE进行定位。
如果UE离服务基站远,可推断出UE在服务小区边缘,这时UE离该边缘方向邻区基站距离会较近。这时可以让该边缘方向的数个邻基站来接收UE的UL PRS,合作来为UE进行定位。
判断UE距离服务基站远近的方法可通过随机接入信道PRACH(Physical Random Access Channel,物理随机接入信道)测量,测量的时偏值越大代表UE距离基站越远。
边缘方向的确定可以通过随机接入信道的波束方向来确定。
本申请支持UE与更多基站保持同步,能够保证更多的基站参与定位测量和演算,有效的提升UE定位精度。
基于上述任一实施例,该方法步骤102包括:
当处于第一UL PRS资源状态时,确定固定维护单个TA值;
当处于第二UL PRS资源状态时,确定维护所有接收基站的TA值;
当处于第三UL PRS资源状态时,确定维护若干个TA值,所述若干 个TA值小于接收基站数量;
其中,所述第一UL PRS资源状态、所述第二UL PRS资源状态和所述第三UL PRS资源状态由接收基站的最大接入用户数和实际接入用户数所得到。
其中,所述确定固定维护单个TA值,包括:
对所有接收基站的TA值进行排序,取其中的若干个TA值进行平均,得到TA平均值,并获取服务小区TA测量值;
若所述TA平均值和所述服务小区TA测量值之差的绝对值小于等于TA偏差容忍值,下发所述TA平均值给所述UE作为提前量;
若所述TA平均值和所述服务小区TA测量值之差的绝对值大于TA偏差容忍值,下发所述服务小区TA测量值与所述TA偏差容忍值之和给所述UE作为提前量;
对应地,所述确定维护所有接收基站的TA值,包括:
将所有接收基站的TA值下发给所述UE,其中所述UE在同一时间仅接收单个TA值;
对应地,所述确定维护若干个TA值,包括:
对所有接收基站的TA值进行排序,取最大TA值和最小TA值;
基于所述最大TA值所述最小TA值和所述TA偏差容忍值得到所述若干个TA值的个数;
基于所述最大TA值、所述TA偏差容忍值和所述若干个TA值的个数,分别得到所述若干个TA值的具体数值;
基于所述若干个TA值的具体数值、所述TA偏差容忍值、所述最大TA值和所述最小TA值,得到具有所述若干个TA值的个数的基站集合。
具体地,本申请计算TA资源的具体策略包括三个:固定维护单个TA值、维护所有接收基站的TA值、动态维护N个TA值(N<接收基站数)。
***支持静态配置选择一种策略,也能够动态的在各个策略之间进行切换:当各基站UL PRS资源紧张时,可选择固定维护单个TA值;当各基站UL PRS资源非常充足时,可选择维护所有接收基站的TA值;当各基站UL PRS资源比较充足的情况下,可选择动态维护N个TA值;
此处,各基站UL PRS资源分配情况可以通过各自接入UE比例来判 断:
假设基站最大接入用户数为400,当所有接收基站的接入用户数不超过100时,即没有一个基站的接入用户率>25%,此时可以认定为资源非常充足;当有任何一个接收基站的接入用户数超过300时,即有一个基站的接入用户率>75%,此时可以认定为资源紧张;其余情况可以认为是资源比较充足;
下面详细说明各个策略下,基站如何维护并修正TA值。
1)维护单个TA值
在此策略下,首先获取所有接收基站测量得到的TA值进行排序,取中间N个值进行平均,如接收基站为偶数则N=2,接收基站为奇数则N=3,算出TA均值TA_avg,取服务小区TA测量值TA_ser。
当|TA_ser-TA_avg|≤M,服务基站下发TA_avg给UE作为提前量;
当|TA_ser-TA_avg|>M,服务基站下发TA_ser+M给UE作为提前量;
一般来说服务小区距离UE会较近,因此TA_avg>TA_ser是可以肯定的。这里的M相当于TA偏差的容忍值,一般建议可取2~3。
按此策略,如果接收基站的TA测量值与下发TA值的差值在容忍门限以内,可以保证UE以此下发TA发送UL PRS时,该基站能够保证接收质量。如果接收基站与下发TA值的差值在容忍门限以外,无法保证下次UL PRS的正确接收,因此该基站下个测量时间点的测量值可以不参与定位演算。
2)维护全部TA值
在此策略下,服务基站需要将每一个接收基站测量出的TA值都下发给UE。这时就需要为UE分配更多的UL PRS传输资源,有多少个TA值就为UE分配多少个资源。因为UE在同一时间只能使用一个TA,所以还要保证各个资源不能在同一时间。
3)维护N个TA值(N<接收基站数)
根据策略1)的描述,当接收基站测量TA值差距过大时,一个TA值不够用,会造成某些基站不能参与定位演算,如果需要保证所有的接收 基站都能参与,可以动态的计算出需要维护的最小TA数。
在此策略下,首先获取所有接收基站测量得到的TA值进行排序,取最大TA值TA_max和最小TA值TA_min。
Figure PCTCN2021115708-appb-000001
其中M为TA偏差的容忍,
这里求出的N值就是保证所有接收基站都能正确接收UL PRS所需的TA数,N个TA的具体值由以下公式得出:
TA_1=TA_max-M
TA_2=TA_max-3M
……
TA_N=TA_max-(2×N-1)×M
通过这些计算出的TA值结合接收基站测量得到的TA值就可以将接收基站划分为N个集合:[TA_1-M,TA_max],[TA_2-M,TA_1-M],……,[TA_min,TA_N-1-M]。
根据接收基站的测量TA值将其归于以上集合,同一集合中的基站给予分配同一个UL PRS资源,UE会在此资源上采用对应的下发TA值发送UL PRS。
本申请通过不同场景下的TA资源计算,能灵活动态的分配定位所需的UL PRS资源,提升定位效果的同时不占用过多资源。
基于上述任一实施例,该方法步骤103包括:
获取UL PRS时域长度使用的OFDM symbols个数集合,确定每个slot内的所有symbols均提供给UL PRS使用;
确定提前量的gap值与预设个数symbols,使所述UL PRS使用的OFDM数为所述OFDM symbols个数集合中的各个symbols个数加上所述预设个数symbols。
具体地,根据前述实施例能够确定此时所需TA个数,当所需TA数>1时,更新UE的UL PRS资源。
UE在同一时间点上只能使用一个TA进行发送,因此要保证同一时间上只存在一个UL PRS资源。
需要特别明确的是,UL PRS所用的TA值与服务小区正常上行业务传输TA值是不同的,为了尽可能小的影响正常数据传输,建议将UL PRS 资源安排在UL子帧的最后。与正常上行传输设置gap,保持时域隔离,如图4所示:
在5G R16协议上,UL PRS时域长度能够使用的OFDM symbols个数为{1,2,4,8,12},每slot内所有的symbols(14个)都可以提供给PRS使用。
根据这个设计,本申请将gap值设为2个symbols(此长度可以包含34个TA单位值),在这2个symbols内,不做数据传输,留给UL PRS来进行提前发送。即UL PRS能够使用的OFDM数为{1+2,2+2,4+2,8+2,12+2},都能控制在一个slot内,不会存在跨slot传输。
因此可知当所需TA数>1时,按周期性时分原则来为各个UL PRS分配资源,如图5所示。
本申请通过利用gap来分离数据传输和UL PRS传输,不影响正常的上行数据传输,并采用合理的剩余symbols作为gap,几乎不会对现有标准协议进行改动。
图6是本申请提供的无线网络上行同步方法的流程示意图之一,如图6所示,对应的执行主体是UE,包括:
201,获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;
202,获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
具体地,UE在接入接收基站的服务小区后,会接收到分配的初始UL PRS传输资源,UE在该初始UL PRS传输资源发送UL PRS;
待接收基站计算得到TA资源并发送给UE后,UE按照动态更新UL PRS资源和TA值传输UL PRS,UE在相应资源上采用相应的TA值发送UL PRS,接收基站也同样在相应的资源上接收UL PRS进行定位测量。
本申请支持UE与更多基站保持同步,能够保证更多的基站参与定位测量和演算,有效的提升UE定位精度。
下面对本申请提供的无线网络上行同步***进行描述,下文描述的无线网络上行同步***与上文描述的无线网络上行同步方法可相互对应参照。
图7是本申请提供的无线网络上行同步***的结构示意图之一,如图7所示,包括:初始模块71、计算模块72和分配模块73,其中:
初始模块71用于待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;计算模块72用于接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;分配模块73用于基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
本申请通过多个基站和UE之间进行UL PRS资源的动态分配调整,能支持多个基站与UE保持同步,有效提升UE定位精度,并精确计算可变的TA资源以适应不同的覆盖场景,具有很高的适应性。
图8是本申请提供的无线网络上行同步***的结构示意图之二,如图8所示,包括:第一发送模块81和第二发送模块82,其中:
第一发送模块81用于获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;第二发送模块82用于获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
本申请通过利用gap来分离数据传输和UL PRS传输,不影响正常的上行数据传输,并采用合理的剩余symbols作为gap,几乎不会对现有标准协议进行改动。
图9示例了一种电子设备的实体结构示意图,如图9所示,该电子设备可以包括:处理器(processor)910、通信接口(Communications Interface)920、存储器(memory)930和通信总线940,其中,处理器910,通信接口920,存储器930通过通信总线940完成相互间的通信。处理器910可以调用存储器930中的逻辑指令,以执行无线网络上行同步方法,该方法包括:待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
此外,上述的存储器930中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的无线网络上行同步方法,该方法包括:待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的无线网络上行同步方法,该方法包括:待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种无线网络上行同步方法,其特征在于,包括:
    待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;
    接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;
    基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
  2. 根据权利要求1所述的无线网络上行同步方法,其特征在于,所述待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源,包括:
    待所述UE接入服务小区,所述服务小区参考所述预设先验信息分配所述初始UL PRS传输资源,使所述服务小区和多个邻区均能接收所述UE的UL PRS;
    确定接收基站数量不能小于预设基站阈值;
    通过所述服务小区与所述多个邻区进行信息交互,获取空余PRS时频资源,将所述空余PRS时频资源分配给所述UE作为支撑定位测量;
    基于所述UE与接收基站的距离以及所述多个邻区的分布方向,确定接收所述UE的UL PRS的具体邻区。
  3. 根据权利要求1所述的无线网络上行同步方法,其特征在于,所述接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源,包括:
    当处于第一UL PRS资源状态时,确定固定维护单个TA值;
    当处于第二UL PRS资源状态时,确定维护所有接收基站的TA值;
    当处于第三UL PRS资源状态时,确定维护若干个TA值,所述若干个TA值小于接收基站数量;
    其中,所述第一UL PRS资源状态、所述第二UL PRS资源状态和所述第三UL PRS资源状态由接收基站的最大接入用户数和实际接入用户数所得到。
  4. 根据权利要求3所述的无线网络上行同步方法,其特征在于,所 述确定固定维护单个TA值,包括:
    对所有接收基站的TA值进行排序,取其中的若干个TA值进行平均,得到TA平均值,并获取服务小区TA测量值;
    若所述TA平均值和所述服务小区TA测量值之差的绝对值小于等于TA偏差容忍值,下发所述TA平均值给所述UE作为提前量;
    若所述TA平均值和所述服务小区TA测量值之差的绝对值大于TA偏差容忍值,下发所述服务小区TA测量值与所述TA偏差容忍值之和给所述UE作为提前量;
    对应地,所述确定维护所有接收基站的TA值,包括:
    将所有接收基站的TA值下发给所述UE,其中所述UE在同一时间仅接收单个TA值;
    对应地,所述确定维护若干个TA值,包括:
    对所有接收基站的TA值进行排序,取最大TA值和最小TA值;
    基于所述最大TA值所述最小TA值和所述TA偏差容忍值得到所述若干个TA值的个数;
    基于所述最大TA值、所述TA偏差容忍值和所述若干个TA值的个数,分别得到所述若干个TA值的具体数值;
    基于所述若干个TA值的具体数值、所述TA偏差容忍值、所述最大TA值和所述最小TA值,得到具有所述若干个TA值的个数的基站集合。
  5. 根据权利要求1所述的无线网络上行同步方法,其特征在于,所述基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE,包括:
    获取UL PRS时域长度使用的OFDM symbols个数集合,确定每个slot内的所有symbols均提供给UL PRS使用;
    确定提前量的gap值与预设个数symbols,使所述UL PRS使用的OFDM数为所述OFDM symbols个数集合中的各个symbols个数加上所述预设个数symbols。
  6. 一种无线网络上行同步方法,其特征在于,包括:
    获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;
    获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
  7. 一种无线网络上行同步***,其特征在于,包括:
    初始模块,用于待UE接入后,基于预设先验信息为所述UE分配初始UL PRS传输资源;
    计算模块,用于接收所述UE在所述初始UL PRS传输资源上发送的UL PRS,根据预设资源配置策略进行交互协作计算,得到TA资源;
    分配模块,用于基于所述TA资源更新所述初始UL PRS传输资源,获得更新后的UL PRS传输资源,分配所述更新后的UL PRS传输资源至所述UE。
  8. 一种无线网络上行同步***,其特征在于,包括:
    第一发送模块,用于获取接收基站发送的初始UL PRS传输资源,基于所述初始UL PRS传输资源发送UL PRS;
    第二发送模块,用于获取所述接收基站计算得到的TA资源和更新的UL PRS传输资源,基于所述TA资源和所述更新的UL PRS传输资源传输UL PRS。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述无线网络上行同步方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述无线网络上行同步方法的步骤。
PCT/CN2021/115708 2021-06-17 2021-08-31 一种无线网络上行同步方法及*** WO2022262121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110674105.5A CN113411880B (zh) 2021-06-17 2021-06-17 一种无线网络上行同步方法及***
CN202110674105.5 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022262121A1 true WO2022262121A1 (zh) 2022-12-22

Family

ID=77685060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115708 WO2022262121A1 (zh) 2021-06-17 2021-08-31 一种无线网络上行同步方法及***

Country Status (2)

Country Link
CN (1) CN113411880B (zh)
WO (1) WO2022262121A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507471A (zh) * 2015-09-07 2017-03-15 北京信威通信技术股份有限公司 无线通信***中的定位增强方法、装置及***
US20170339658A1 (en) * 2016-05-18 2017-11-23 Qualcomm Incorporated Narrowband positioning signal design and procedures
CN109479255A (zh) * 2016-07-15 2019-03-15 高通股份有限公司 用于使用窄带定位参考信号来定位设备的技术
CN111342943A (zh) * 2019-04-29 2020-06-26 维沃移动通信有限公司 Prs资源配置方法、测量间隔配置方法和相关设备
WO2020204600A2 (en) * 2019-04-02 2020-10-08 Samsung Electronics Co., Ltd. Methods and apparatus for configuring 5g new radio uplink positioning reference signals
CN112188541A (zh) * 2019-07-04 2021-01-05 大唐移动通信设备有限公司 信号传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507472A (zh) * 2015-09-07 2017-03-15 北京信威通信技术股份有限公司 一种无线通信***中的定位方法
CN106856612B (zh) * 2015-12-09 2020-03-03 中国联合网络通信集团有限公司 一种多点协同通信方法及基站
CN111586855B (zh) * 2019-02-15 2024-02-09 华为技术有限公司 信号传输的方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507471A (zh) * 2015-09-07 2017-03-15 北京信威通信技术股份有限公司 无线通信***中的定位增强方法、装置及***
US20170339658A1 (en) * 2016-05-18 2017-11-23 Qualcomm Incorporated Narrowband positioning signal design and procedures
CN109479255A (zh) * 2016-07-15 2019-03-15 高通股份有限公司 用于使用窄带定位参考信号来定位设备的技术
WO2020204600A2 (en) * 2019-04-02 2020-10-08 Samsung Electronics Co., Ltd. Methods and apparatus for configuring 5g new radio uplink positioning reference signals
CN111342943A (zh) * 2019-04-29 2020-06-26 维沃移动通信有限公司 Prs资源配置方法、测量间隔配置方法和相关设备
CN112188541A (zh) * 2019-07-04 2021-01-05 大唐移动通信设备有限公司 信号传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on NR positioning signals", 3GPP DRAFT; R1-1903901 DISCUSSION ON DL&UL PRS, vol. RAN WG1, 3 April 2019 (2019-04-03), Xi'an, China, pages 1 - 6, XP051707055 *

Also Published As

Publication number Publication date
CN113411880A (zh) 2021-09-17
CN113411880B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US20200389862A1 (en) Methods and Arrangements in a Telecommunications Network
US10880141B1 (en) Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
CN110062455B (zh) 上行定时提前量的确定方法及装置、存储介质、电子装置
US8654734B2 (en) Multi-cell channel state information-reference symbol patterns for long term evolution extended cyclic prefix and code division multiplexing-time multiplexing
US20080013521A1 (en) Uplink access request in an OFDM communication environment
US8422577B1 (en) Method and system for selecting cyclic prefix length based on signal quality reports
EP3952185A1 (en) Method for transmission configuration indication of dmrs port and related apparatus, and storage medium
CN111565083A (zh) 时间同步的方法、ue、基站、设备及计算机可读存储介质
US10389571B2 (en) System implemented on the basis of a field broadband bus architecture of industrial internet
WO2020024218A1 (en) Standalone sss for rrm and channel estimation enhancement
CN110891316B (zh) 一种时域资源配置方法及接入网设备
WO2021139188A1 (zh) 一种上行同步调整方法及装置
US20200304275A1 (en) Methods and wireless communication nodes for improving transmission link performance
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2012034584A1 (en) Method of and base station for configuring a data transmission scheme based on data frames in a communication network
WO2022262121A1 (zh) 一种无线网络上行同步方法及***
CN111698769B (zh) 数据发送方法、装置及***
CN114337772B (zh) 数据传输方法和装置
WO2020228544A1 (zh) 一种随机接入上行共享信道配置方法、随机信道接入方法和设备
WO2018052355A1 (en) Method and network node for enabling reduced interference in a wireless network
US12004148B2 (en) Transmission configuration indication method of DMRS port and related apparatus, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE