WO2022262009A1 - 油水冷却器及其运行控制方法和用其构建的冷却*** - Google Patents

油水冷却器及其运行控制方法和用其构建的冷却*** Download PDF

Info

Publication number
WO2022262009A1
WO2022262009A1 PCT/CN2021/102475 CN2021102475W WO2022262009A1 WO 2022262009 A1 WO2022262009 A1 WO 2022262009A1 CN 2021102475 W CN2021102475 W CN 2021102475W WO 2022262009 A1 WO2022262009 A1 WO 2022262009A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cooler
cooler body
water
pump
Prior art date
Application number
PCT/CN2021/102475
Other languages
English (en)
French (fr)
Inventor
王汪洋
王捷
王电辉
黎贤钛
赖邦吉
俞天翔
Original Assignee
浙江尔格科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江尔格科技股份有限公司 filed Critical 浙江尔格科技股份有限公司
Publication of WO2022262009A1 publication Critical patent/WO2022262009A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means

Definitions

  • the forced oil circulation cooling system is a common cooling system in transformers.
  • the reliability of the oil-water cooler largely determines the reliability of the cooling system.
  • an oil-water cooler includes a cooler body and an oil pump for forced oil circulation.
  • the transformer oil exchanges heat with water in the cooler, and flows back to the transformer oil tank after cooling.
  • the cooler body and the oil pump must work normally at the same time to ensure the cooling effect. Once one of the two fails, it must be shut down for maintenance, resulting in a power outage, affecting the normal supply of power and causing losses. For this reason, in recent years, a transformer forced oil circulation cooling system with one cooler and one backup has appeared. This cooling system is equipped with two sets of coolers.
  • one of the coolers fails, it can be switched to another set of cooling.
  • the device works, so that online maintenance can be performed.
  • the failure frequency of the cooler in this cooling system has not been reduced, so that the later maintenance cost has not been reduced under the condition of greater investment in equipment.
  • two sets of coolers have failures at the same time, they can only be shut down for maintenance, resulting in power outages and losses.
  • the present application provides an oil-water cooler; when the oil-water cooler of the present application operates in a specific way, the frequency of failures is lower than that of the prior art, so the maintenance cost is lower, and the present application
  • the applied oil-water cooler has a specific structure. As long as one of the oil pumps and one of the cooler bodies it is equipped with is normal, online maintenance can be realized. Compared with the existing technology, the range of online maintenance is wider and the probability of shutdown maintenance is lower. small.
  • the present application also provides an operation control method of the oil-water cooler.
  • this application also provides a transformer forced oil circulation cooling system constructed with the oil-water cooler.
  • the cooling system of this application operates in a specific way, with low failure rate and low maintenance cost, and the specific structure determines its online The scope of maintenance is wider, and the probability of downtime for maintenance is smaller.
  • the oil-water cooler comprises a No. I cooler body, a No. II cooler body and a control cabinet; the oil inlet of the No. I cooler body is connected with the oil outlet of the No. I oil pump through the No. I oil inlet pipeline, and the No. I
  • the No. I oil inlet pipeline is provided with the No. I check valve and the No. I oil circuit electric valve in sequence along the oil flow direction; the oil inlet of the No. II cooler body passes through the No. II oil inlet pipeline and the oil outlet of the No. II oil pump. connected, the No. II oil inlet pipeline is provided with the No. II check valve and the No. II oil circuit electric valve in sequence along the oil flow direction; the No. I oil inlet pipeline and the No.
  • connection point of the No. I oil inlet line and the bypass oil line is located between the No. I check valve and the electric valve of the No. I oil line, and the connection point of the No. II oil inlet line and the bypass oil line is located at the No. II check valve.
  • control cabinet is respectively connected with the No. I oil pump, the No. The leakage alarm on the device body is electrically connected.
  • the oil-water cooler is equipped with No. I cooler body and No. II cooler body, and is equipped with No. I oil pump and No. II oil pump, No. I cooler body, No. II cooler body, No. I
  • the oil pump and the No. II oil pump are connected through a specific pipeline. Under normal circumstances, one of the two oil pumps can supply oil to the No. I cooler body and the No. II cooler body. At this time, the oil The liquid is divided into two paths through the bypass oil circuit and enters the No. I cooler body and the No. II cooler body respectively. After heat exchange, it flows into the oil outlet joint pipe.
  • the oil pressure and flow rate of the liquid in the cooler body are lower, so that the frequency of the cooler body failure is reduced, and because the oil is divided into two cooler bodies, the heat exchange efficiency is higher, so that the oil pump can be controlled Running at a lower speed reduces the frequency of failure of the oil pump. At the same time, due to the low speed of the oil pump and the low working flow of the oil pump, the frequency of failure of the cooler body can be further reduced.
  • the No. I oil pump can supply oil for the No. I cooler body and the No. II cooler body alone, and the No. II oil pump can also separately supply oil for the No. I cooler body and the No.
  • the oil inlets of the No. I oil pump and No. II oil pump are respectively connected to the two oil outlets of the oil inlet manifold through pipelines equipped with butterfly valves; the No. I cooler The oil outlets of the main body and No. II cooler body are respectively connected to the two inlets of the oil outlet pipe through pipelines equipped with butterfly valves.
  • the water inlets of the No. I cooler body and the No. II cooler body are respectively connected to the two water outlets of the water inlet manifold through pipelines equipped with butterfly valves and water flow switches
  • the water outlets of the No. I cooler body and No. II cooler body are respectively connected to the two water inlets of the water outlet manifold through pipelines equipped with butterfly valves and water flow switches; the water flow switches are electrically connected to the control cabinet .
  • the water flow switch With the water flow switch, the water supply pipeline and the water outlet pipeline can be cut off by closing the butterfly valve, and online maintenance can be carried out.
  • the water flow switch can send a fault signal when there is no water, so that the reliability of the oil-water cooler of the present invention is higher.
  • the No. I oil inlet pipeline is provided with a No. I oil flow meter for detecting the oil flow;
  • the No. II oil inlet pipeline is provided with a No. II oil flow meter for detecting the oil flow.
  • the No. I oil flow meter and No. II oil flow meter are both electrically connected to the control cabinet. In this way, the failure of the oil pump can be judged by the oil flow meter when the flow rate is abnormal, and the controller can switch to another oil pump to work.
  • bypass oil passage valve is provided on the bypass oil passage.
  • the bypass oil passage can be cut off by closing the bypass oil passage valve, and the overall on-line maintenance of the cooler body and its corresponding oil supply pipeline can be performed.
  • the bypass oil circuit valve is a manual butterfly valve. The frequency of use of bypass oil circuit valves is low, and the use of manual butterfly valves is beneficial to control costs.
  • one oil pump supplies oil to the two cooler bodies at the same time. Since the oil is divided into the two cooler bodies, the oil pressure and flow rate of the oil in the cooler bodies are relatively low, thereby cooling The frequency of failure of the cooler body is reduced, and because the oil is divided into two cooler bodies, the heat exchange efficiency is higher, so that the oil pump can be controlled to run at a lower speed, so that the frequency of oil pump failure is also reduced. , At the same time, the frequency of failure of the cooler body can be further reduced.
  • Transformer forced oil circulation water cooling system which adopts the aforementioned oil-water cooler of the present application.
  • the cooling system of the present application adopts the above-mentioned oil-water cooler of the present application, in a specific operation mode, the frequency of failures is lower, so that the maintenance cost is lower; and when a failure occurs, only one oil pump and one cooler body can If it works normally, online maintenance can be realized, so that the transformer can work normally and avoid losses. Compared with the existing technology, the scope of online maintenance is wider, and the probability of downtime for maintenance is lower.
  • the oil-water cooler operates according to the aforementioned operation control method of this application.
  • the frequency of failure of the oil-water cooler is lower than that of the prior art, thereby lowering the maintenance cost.
  • the oil-water cooler is equipped with a No. I cooler body and a No. II cooler body, and is equipped with a No. I oil pump and a No. II oil pump.
  • one of the two oil pumps can be used as the No. I cooler body and No. II cooler body supply oil to the two cooler bodies.
  • the oil is divided into two paths through the bypass oil circuit and enters No. I cooler body and No. II cooler body respectively.
  • the No. I oil pump can supply oil for the No. I cooler body and the No. II cooler body alone, and the No. II oil pump can also separately supply oil for the No.
  • Fig. 1 is the front view of the oil-water cooler of the embodiment of the present application
  • FIG 3 is a schematic diagram of the oil flow direction of the oil-water cooler in the embodiment of the present application during normal operation; (No. I oil pump supplies oil to No. I cooler body and No. II cooler body)
  • Fig. 4 is a schematic diagram of the oil flow direction when the No. II oil pump supplies oil to the No. I cooler body and the No. II cooler body;
  • Fig. 5 is a schematic diagram of the oil flow direction when the No. I oil pump supplies oil to the No. I cooler body;
  • Fig. 6 is a schematic diagram of the oil flow direction when the No. II oil pump supplies oil to the No. II cooler body;
  • Fig. 7 is a schematic diagram of the oil flow direction when the No. I oil pump supplies oil to the No. II cooler body;
  • Fig. 8 is a schematic diagram of oil flow direction when No. II oil pump supplies oil to No. I cooler body;
  • the reference signs in the figure are: No. 1-I cooler body; No. 2-II cooler body; 3-No. I oil pump; No. 4-I check valve; No. 5-I oil circuit electric valve; No. 6-II Oil pump; 7-II check valve; 8-II oil circuit electric valve; 9-oil inlet joint; 10-oil outlet joint; 11-control cabinet; 12-I oil inlet pipeline; 13-II Oil inlet pipeline; 14-bypass oil circuit; 15-bypass oil circuit valve; 16-water inlet joint; 17-water outlet joint; 18-I oil flow meter; 19-II oil flow meter; 20- base.
  • the oil-water cooler of this embodiment includes No. I cooler body 1 , No. II cooler body 2 and a control cabinet 11 .
  • the oil inlet of the No. I cooler body 1 is connected to the oil outlet of the No. I oil pump 3 through the No. I oil inlet pipeline 12, and the No. I oil inlet pipeline 12 is sequentially arranged along the oil flow direction.
  • No. I check valve 4 and No. I oil circuit electric valve 5 are provided; the oil inlet of No. II cooler body 2 is connected with the oil outlet of No. II oil pump 6 through No. II oil inlet pipeline 13.
  • No. II check valve 7 and No. II oil circuit electric valve 8 are sequentially arranged on No. oil inlet line 13 along the direction of oil flow.
  • the No. I oil inlet pipeline 12 and the No. II oil inlet pipeline 13 communicate through the bypass oil passage 14, and the connection point between the No. I oil inlet pipeline 12 and the bypass oil passage 14 is located at the No. I non-return Between the valve 4 and the electric valve 5 of the No. I oil circuit, the connection point of the No. II oil inlet pipeline 13 and the bypass oil circuit 14 is located between the No. II check valve 7 and the electric valve 8 of the No. II oil circuit.
  • control cabinet 11 is connected with the No. I oil pump 3, the No. I oil circuit electric valve 5, the II oil pump 6, the No. II oil circuit electric valve 8, and the No. I cooler body 1 and the No. II cooler
  • the leakage alarm on the body 2 is electrically connected.
  • the oil inlets of the No. I oil pump 3 and the No. II oil pump 6 are respectively connected to the two oil outlets of the oil inlet manifold 9 through pipelines equipped with manual butterfly valves; the No. I cooler body
  • the oil outlets of No. 1 and II cooler bodies 2 are respectively connected to the two inlets of the oil outlet manifold 10 through pipelines equipped with manual butterfly valves.
  • the butterfly valve in the pipeline adopts manual butterfly valve, which can meet the needs and convenience of use, and is conducive to cost control.
  • the water inlets of the No. I cooler body 1 and the No. II cooler body 2 are respectively connected to the two water outlets of the water inlet pipe 16 through pipelines equipped with a manual butterfly valve and a water flow switch.
  • the water outlets of No. I cooler body 1 and No. II cooler body 2 are respectively connected to the two water inlets of the water outlet manifold 17 through pipelines equipped with manual butterfly valves and water flow switches; the water flow switch and the control cabinet 11 electrical connections.
  • the butterfly valve in the pipeline adopts a manual butterfly valve to meet the needs and convenience of use, and is conducive to cost control.
  • the No. I oil inlet line 12 is provided with a No. I oil flow meter 18 for detecting oil flow;
  • the No. II oil inlet line 13 is provided with a No. II oil flow meter 18 for detecting oil flow.
  • Meter 19; the No. I oil flow meter 18 and No. II oil flow meter 19 are both electrically connected to the control cabinet 11.
  • bypass oil passage 14 is provided with a bypass oil passage valve 15 .
  • the bypass oil passage valve 15 is a manual butterfly valve.
  • the oil-water cooler also includes a base 20; the No. I cooler body 1, the No. II cooler body 2, the No. I oil pump 3, the No. II oil pump 6 and the control cabinet 11 are fixed on the base 20. .
  • the operation control method of the oil-water cooler is as follows:
  • No. I oil pump 3 fails, switch to No. II oil pump 6 to work, and arrange maintenance for No. I oil pump 3. After switching to No. II oil pump 6, No. II oil pump 6 supplies oil to No. I cooler body 1 and No. II cooler body 2, and the oil flow direction is shown in FIG. 4 . During maintenance, close the butterfly valve located between the No. 1 oil pump 3 inlet and the oil inlet manifold 9 outlet, and carry out online maintenance or replacement.
  • the forced oil circulation water cooling system of the transformer is constructed by using the oil-water cooler of the above-mentioned embodiment.
  • the oil-water cooler operates according to the operation control method in the above-mentioned embodiment.
  • oil-water cooler of the present application can also be operated according to other methods, for example, it can be:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种油水冷却器,包括I号冷却器本体(1)、II号冷却器本体(2)和控制柜(11);I号冷却器本体(1)的进油口通过I号进油管路(12)与I号油泵(3)的出油口相连;II号冷却器本体(2)的进油口通过II号进油管路(13)与II号油泵(6)的出油口相连;I号进油管路(12)和II号进油管路(13)通过旁通油路(14)连通。该油水冷却器按照特定的方式运行时,出现故障的频率较低,且油水冷却器具有特定的构造,只要其中一个油泵和一个冷却器本体正常,都可以实现在线检修,相比现有技术,在线检修的范围更广,出现停机检修的概率更小。

Description

油水冷却器及其运行控制方法和用其构建的冷却*** 技术领域
本申请涉及强迫油循环水冷技术,更具体的说是涉及强迫油循环水冷却器及其运行控制方法和用其构建的冷却***。
背景技术
变压器是电力***中的关键组件,电力的稳定供应需要变压器的可靠运行才能得到保障。而变压器的可靠运行,则需要为其配备可靠的冷却***。
现有技术中,强迫油循环冷却***是变压器中常见的冷却***,在变压器强迫油循环冷却***中,油水冷却器的可靠性很大程度上决定了冷却***的可靠性。通常,油水冷却器包含冷却器本体和用于强迫油循环的油泵,工作时,变压器油在冷却器中与水进行热交换,冷却后,流回变压器油箱。冷却器本体和油泵必须同时正常工作才能保证冷却效果,一旦两者之一出现故障,必须停机检修,导致出现停电现象,影响电力的正常供应,造成损失。为此,近年来出现了冷却器一备一用设置的变压器强迫油循环冷却***,这种冷却***配备有两组冷却器,在其中一组冷却器出现故障时,可以切换到另一组冷却器工作,从而可以在线检修。但是,这种冷却***中冷却器出现故障的频率并没有降低,使得在更大设备投入的情况下,后期维护成本没有得到降低。此外,在出现两组冷却器同时存在故障这样的特殊情况时,也只能停机检修,造成停电,导致损失。
技术问题
针对现有技术的不足之处,本申请提供了一种油水冷却器;本申请的油水冷却器按照特定的方式运行时,出现故障的频率较现有技术低,从而维护成本较低,且本申请的油水冷却器具有特定的构造,只要其配备的其中一个油泵和其中一个冷却器本体正常,都可以实现在线检修,相比现有技术,在线检修的范围更广,出现停机检修的概率更小。对应的,本申请也提供了该油水冷却器的运行控制方法,使用本申请的运行控制方法控制本申请的油水冷却器工作,可以使油水冷却器出现故障的频率较现有技术得到降低,从而降低维护成本。同时,本申请也提供了用该油水冷却器构建的变压器强迫油循环冷却***,本申请的冷却***,按照特定的方式运行,故障率低,从而维护成本低,且特定的构造决定了其在线检修的范围更广,出现停机检修的概率更小。
技术解决方案
对于冷却器,本申请的具体技术方案如下:
油水冷却器,包括I号冷却器本体、II号冷却器本体和控制柜;所述I号冷却器本体的进油口通过I号进油管路与I号油泵的出油口相连,所述I号进油管路上沿油流方向依序设有I号止回阀和I号油路电动阀门;所述II号冷却器本体的进油口通过II号进油管路与II号油泵的出油口相连,所述II号进油管路上沿油流方向依序设有II号止回阀和II号油路电动阀门;所述I号进油管路和II号进油管路通过旁通油路连通,所述I号进油管路和旁通油路的连接点位于I号止回阀和I号油路电动阀门之间,所述II号进油管路和旁通油路的连接点位于II号止回阀和II号油路电动阀门之间;所述控制柜分别与I号油泵、I号油路电动阀门、II号油泵、II号油路电动阀门,以及I号冷却器本体和II号冷却器本体上的渗漏报警器电性连接。
本申请的上述技术方案中,油水冷却器配备有I号冷却器本体和II号冷却器本体,同时配备有I号油泵和II号油泵,I号冷却器本体、II号冷却器本体、I号油泵及II号油泵通过特定的管路连接,正常情况下,可以由两个油泵中的其中一个油泵为I号冷却器本体和II号冷却器本体两个冷却器本体供油,此时,油液通过旁通油路分成两路分别进入I号冷却器本体和II号冷却器本体,经热交换后,再汇入出油联管,由于油液被分流到两个冷却器本体中,油液在冷却器本体中的油压和流速都较低,从而冷却器本体出现故障的频率得到降低,且由于油液被分流道两个冷却器本体中,热交换效率更高,从而可以控制油泵以更低的转速运行,从而使得油泵出现故障的频率也得到降低,同时,由于油泵运行转速低,油泵的工作流量较低,也可以进一步的降低冷却器本体出现故障的频率。此外,本申请的油水冷却器中,I号油泵可以单独为I号冷却器本体和II号冷却器本体供油,II号油泵也可以单独为I号冷却器本体和II号冷却器本体供油,从而,在出现故障时,只要有一个油泵和一个冷却器本体能够正常工作,就可以实现在线检修,使变压器能正常工作,避免造成损失,相比现有技术,能够在线检修的范围更广,出现停机检修的概率更低。
作为优化,前述的油水冷却器中,所述I号油泵和II号油泵的进油口分别通过安装有蝶阀的管路与进油联管的两个出油口相连;所述I号冷却器本体和II号冷却器本体出油口分别通过安装有蝶阀的管路与出油联管的两个入口相连。通过设置进油联管和出油联管,使得管路较为简洁,产品较为紧凑,整体性好;连接油泵和进油联管,以及连接冷却器本体和出油联管的管路上设有蝶阀,可以通过关闭蝶阀,阻断油液的流动,进行在线检修。
作为优化,前述的油水冷却器中,所述I号冷却器本体和II号冷却器本体的进水口分别通过安装有蝶阀和水流量开关的管路与进水联管的两个出水口连接,所述I号冷却器本体和II号冷却器本体的出水口分别通过安装有蝶阀和水流量开关的管路与出水联管的两个进水口相连;所述水流量开关和控制柜电性连接。通过设置进水联管和出水联管同样使得管路更加简洁,产品结构紧凑,整体性好;连接进水联管和冷却器本体,以及连接出水联管和冷却器本体的管路上设有蝶阀和水流量开关,可以通过关闭蝶阀切断供水管路和出水管路,进行在线检修,通过水流量开关在无水时发送故障信号,使得本发明的油水冷却器可靠性更高。
作为优化,前述的油水冷却器中,所述I号进油管路上设有用于检测油液流量的I号油流量计;所述II号进油管路上设有用于检测油液流量的II号油流量计;所述I号油流量计和II号油流量计均与控制柜电性连接。 由此,可以通过油流量计在流量异常时判断出油泵故障,并由控制器切换至另一个油泵工作。
作为优化,前述的油水冷却器中,所述旁通油路上设有旁通油路阀门。由此,可以通过关闭旁通油路阀门切断旁通油路,对冷却器本体及其对应的供油管路进行整体在线检修。进一步,所述旁通油路阀门为手动蝶阀。旁通油路阀门使用频率低,采用手动蝶阀有利于控制成本。
作为优化,前述的油水冷却器还包括底座;所述I号冷却器本体、II号冷却器本体、I号油泵、II号油泵及控制柜均固定设于底座上。通过设置底座,使得产品整体性好,且便于物流运输和现场安装。
对于运行控制方法,本申请提供如下技术方案:
前述本申请的油水冷却器的运行控制方法,该方法中,正常工作模式下,I号油泵和II号油泵其中一个工作,另一个备用,I号油路电动阀门和II号油路电动阀门打开,I号冷却器本体和II号冷却器本体均处于工作状态;在I号冷却器本体和II号冷却器本体中的其中一个出现故障时,关闭对应的油路电动阀门,使出现故障的冷却器本体停止工作,等待检修;在工作中的油泵出现故障时,切换至另一个油泵工作,出现故障的油泵等待检修。
本申请的上述方法中,一个油泵同时为两个冷却器本体供油,由于油液被分流到两个冷却器本体中,油液在冷却器本体中的油压和流速都较低,从而冷却器本体出现故障的频率得到降低,且由于油液被分流道两个冷却器本体中,热交换效率更高,从而可以控制油泵以更低的转速运行,从而使得油泵出现故障的频率也得到降低,同时也可以进一步的降低冷却器本体出现故障的频率。
对于冷却***,本申请提供如下技术方案:
变压器强迫油循环水冷***,该***采用前述本申请的油水冷却器。
由于本申请的冷却***采用前述本申请的油水冷却器,在特定运行方式下,出现故障的频率更低,从而维护成本较低;且在出现故障时,只要有一个油泵和一个冷却器本体能够正常工作,就可以实现在线检修,使变压器能正常工作,避免造成损失,相比现有技术,能够在线检修的范围更广,出现停机检修的概率更低。
作为优化,前述的变压器强迫油循环水冷***中,油水冷却器按照前述本申请的运行控制方法运行。由此,油水冷却器出现故障的频率较现有技术更低,从而维护成本更低。
有益效果
综上,本申请中,油水冷却器配备有I号冷却器本体和II号冷却器本体,同时配备有I号油泵和II号油泵,正常情况下,可以由两个油泵中的其中一个油泵为I号冷却器本体和II号冷却器本体两个冷却器本体供油,此时,油液通过旁通油路分成两路分别进入I号冷却器本体和II号冷却器本体,经热交换后,再汇入出油联管,由于油液被分流到两个冷却器本体中,油液在冷却器本体中的油压和流速都较低,从而冷却器本体出现故障的频率得到降低,且由于油液被分流道两个冷却器本体中,热交换效率更高,从而可以控制油泵以更低的转速运行,从而使得油泵出现故障的频率也得到降低,同时,由于油泵运行转速低,油泵的工作流量较低,也可以进一步的降低冷却器本体出现故障的频率。此外,本申请的油水冷却器中,I号油泵可以单独为I号冷却器本体和II号冷却器本体供油,II号油泵也可以单独为I号冷却器本体和II号冷却器本体供油,从而,在出现故障时,只要有一个油泵和一个冷却器本体能够正常工作,就可以实现在线检修,使变压器能正常工作,避免造成损失,相比现有技术,能够在线检修的范围更广,出现停机检修的概率更低。
附图说明
图1是本申请实施例的油水冷却器的主视图;
图2是本申请实施例的油水冷却器的侧视图;
图3是本申请实施例的油水冷却器正常运行时的油流方向示意图;(I号油泵为I号冷却器本体和II号冷却器本体供油)
图4是II号油泵为I号冷却器本体和II号冷却器本体供油时的油流方向示意图;
图5是I号油泵为I号冷却器本体供油时的油流方向示意图;
图6是II号油泵为II号冷却器本体供油时的油流方向示意图;
图7是I号油泵为II号冷却器本体供油时的油流方向示意图;
图8是II号油泵为I号冷却器本体供油时的油流方向示意图;
图中附图标记为:1-I号冷却器本体;2- II号冷却器本体;3- I号油泵;4-I号止回阀;5-I号油路电动阀门;6-II号油泵;7-II号止回阀;8-II号油路电动阀门;9-进油联管;10-出油联管;11-控制柜;12-I号进油管路;13-II号进油管路;14-旁通油路;15-旁通油路阀门;16-进水联管;17-出水联管;18-I号油流量计;19-II号油流量计;20-底座。
本发明的最佳实施方式
下面将结合附图,通过具体实施例对本申请作进一步说明,但并不作为限制本申请的依据。以下实施例中,没有详细说明的内容均为本领域技术常识。
实施例:
参见图1和图2,本实施例的油水冷却器,包括I号冷却器本体1、II号冷却器本体2和控制柜11。
本实施例中,所述I号冷却器本体1的进油口通过I号进油管路12与I号油泵3的出油口相连,所述I号进油管路12上沿油流方向依序设有I号止回阀4和I号油路电动阀门5;所述II号冷却器本体2的进油口通过II号进油管路13与II号油泵6的出油口相连,所述II号进油管路13上沿油流方向依序设有II号止回阀7和II号油路电动阀门8。
本实施例中,所述I号进油管路12和II号进油管路13通过旁通油路14连通,所述I号进油管路12和旁通油路14的连接点位于I号止回阀4和I号油路电动阀门5之间,所述II号进油管路13和旁通油路14的连接点位于II号止回阀7和II号油路电动阀门8之间。
本实施例中,所述控制柜11分别与I号油泵3、I号油路电动阀门5、II号油泵6、II号油路电动阀门8,以及I号冷却器本体1和II号冷却器本体2上的渗漏报警器电性连接。
本实施例中,所述I号油泵3和II号油泵6的进油口分别通过安装有手动蝶阀的管路与进油联管9的两个出油口相连;所述I号冷却器本体1和II号冷却器本体2出油口分别通过安装有手动蝶阀的管路与出油联管10的两个入口相连。管路中的蝶阀采用手动蝶阀能满足使用需要和使用便利性,且有利于控制成本。
本实施例中,所述I号冷却器本体1和II号冷却器本体2的进水口分别通过安装有手动蝶阀和水流量开关的管路与进水联管16的两个出水口连接,所述I号冷却器本体1和II号冷却器本体2的出水口分别通过安装有手动蝶阀和水流量开关的管路与出水联管17的两个进水口相连;所述水流量开关和控制柜11电性连接。同上,管路中的蝶阀采用手动蝶阀能满足使用需要和使用便利性,且有利于控制成本。
本实施例中,所述I号进油管路12上设有用于检测油液流量的I号油流量计18;所述II号进油管路13上设有用于检测油液流量的II号油流量计19;所述I号油流量计18和II号油流量计19均与控制柜11电性连接。
本实施例中,所述旁通油路14上设有旁通油路阀门15。所述旁通油路阀门15为手动蝶阀。
本实施例中,油水冷去器还包括底座20;所述I号冷却器本体1、II号冷却器本体2、I号油泵3、II号油泵6及控制柜11均固定设于底座20上。
本实施例中,油水冷却器的运行控制方法如下:
正常工作模式下,I号油泵3工作,II号油泵6备用,I号油路电动阀门5和II号油路电动阀门8打开,I号冷却器本体1和II号冷却器本体2均处于工作状态。正常工作模式下,油液经分流管路分成两路分别进入I号冷却器本体1和II号冷却器本体2,即I号油泵3同时为两个冷却器本体供油,油流方向如图3所示,此时,油液在冷却器本体中的油压和流速都较低,热交换效率高。由于热交换效率高,可以控制油泵以较低的转速运转,具体参数以厂家根据换热需求测试后确定。
在I号冷却器本体1和II号冷却器本体2中的其中一个出现故障时,关闭对应的油路电动阀门,使出现故障的冷却器本体停止工作,等待检修。如果是I号冷却器本体1出现故障,I号油路电动阀门5关闭后,I号油泵3为II号冷却器本体2供油,油流方向如图7所示;如果是II号冷却器本体2出现故障,II号油路电动阀门8关闭后,I号油泵3为I号冷却器本体1供油,油流方向如图5所示。检修时,关闭设于出现故障的冷却器本体出油口与出油联管间的蝶阀,然后即可对出现故障的冷却器本体进行在维修或更换。
在I号油泵3出现故障时,切换至II号油泵6工作,对I号油泵3安排检修。切换到II号油泵6工作后,II号油泵6为I号冷却器本体1和II号冷却器本体2供油,油流方向如图4所示。检修时,关闭设于I号油泵3进口与进油联管9出口间的蝶阀,进行在线维修或更换。
在II号油泵6工作过程中,如果其中一个冷却器本体出现故障,同样也是关闭对应的油路电动阀门,使出现故障的冷却器本体停止工作,等待检修。如果是I号冷却器本体1出现故障,I号油路电动阀门5关闭后,II号油泵6为II号冷却器本体2供油,油流方向如图6所示;如果是II号冷却器本体2出现故障,II号油路电动阀门8关闭后,II号油泵6为I号冷却器本体1供油,油流方向如图8所示。检修时,关闭设于出现故障的冷却器本体出油口与出油联管间的蝶阀,然后即可对出现故障的冷却器本体进行在维修或更换。
作为上述实施例的油水冷却器的一个具体应用案例:在该应用案例中,变压器强迫油循环水冷***采用上述实施例的油水冷却器构建。且油水冷却器按照上述实施例中的运行控制方法运行。
需要指出的是,本申请的油水冷却器也可以按照其它方法运行,例如可以是:
正常工作模式下,I号油泵3为I号冷却器本体1供油,II号油泵6和II号冷却器本体2备用;在I号冷却器本体1出现故障时,切换至II号冷却器本体2工作,I号油泵3为II号冷却器本体2供油,I号冷却器本体1等待检修;在I号油泵3出现故障时,切换至II号油泵6工作,II号油泵6为I号冷却器本体1供油,I号油泵3等待检修。采用上述方法运行,油水冷却器同样可以在一个油泵和一个冷却器本体能正常工作的情况下,实现在线检修(这是油水冷却器的构造决定的)。但是,相比现有技术,油水冷却器出现故障的频率不会降低,后期维护成本相对较高。
上面所述的实施例仅是对本申请的优选实施方式进行描述,并非对本申请的构思和范围进行限定。在不脱离本申请设计构思的前提下,本领域普通人员对本申请的技术方案做出的各种变型和改进,均应落入到本申请的保护范围,本申请请求保护的技术内容,已经全部记载在权利要求书中。

Claims (10)

  1. 油水冷却器,其特征在于:包括I号冷却器本体(1)、II号冷却器本体(2)和控制柜(11);
    所述I号冷却器本体(1)的进油口通过I号进油管路(12)与I号油泵(3)的出油口相连,所述I号进油管路(12)上沿油流方向依序设有I号止回阀(4)和I号油路电动阀门(5);所述II号冷却器本体(2)的进油口通过II号进油管路(13)与II号油泵(6)的出油口相连,所述II号进油管路(13)上沿油流方向依序设有II号止回阀(7)和II号油路电动阀门(8);
    所述I号进油管路(12)和II号进油管路(13)通过旁通油路(14)连通,所述I号进油管路(12)和旁通油路(14)的连接点位于I号止回阀(4)和I号油路电动阀门(5)之间,所述II号进油管路(13)和旁通油路(14)的连接点位于II号止回阀(7)和II号油路电动阀门(8)之间;
    所述控制柜(11)分别与I号油泵(3)、I号油路电动阀门(5)、II号油泵(6)、II号油路电动阀门(8),以及I号冷却器本体(1)和II号冷却器本体(2)上的渗漏报警器电性连接。
  2. 根据权利要求1所述的油水冷却器,其特征在于:所述I号油泵(3)和II号油泵(6)的进油口分别通过安装有手动蝶阀的管路与进油联管(9)的两个出油口相连;所述I号冷却器本体(1)和II号冷却器本体(2)出油口分别通过安装有手动蝶阀的管路与出油联管(10)的两个入口相连。
  3. 根据权利要求1所述的油水冷却器,其特征在于:所述I号冷却器本体(1)和II号冷却器本体(2)的进水口分别通过安装有蝶阀和水流量开关的管路与进水联管(16)的两个出水口连接,所述I号冷却器本体(1)和II号冷却器本体(2)的出水口分别通过安装有蝶阀和水流量开关的管路与出水联管(17)的两个进水口相连;所述水流量开关和控制柜(11)电性连接。
  4. 根据权利要求1所述的油水冷却器,其特征在于:所述I号进油管路(12)上设有用于检测油液流量的I号油流量计(18);所述II号进油管路(13)上设有用于检测油液流量的II号油流量计(19);所述I号油流量计(18)和II号油流量计(19)均与控制柜(11)电性连接。
  5. 根据权利要求1所述的油水冷却器,其特征在于:所述旁通油路(14)上设有旁通油路阀门(15)。
  6. 根据权利要求5所述的油水冷却器,其特征在于:所述旁通油路阀门(15)为手动蝶阀。
  7. 根据权利要求1-6任一权利要求所述的油水冷却器,其特征在于:还包括底座(20);所述I号冷却器本体(1)、II号冷却器本体(2)、I号油泵(3)、II号油泵(6)及控制柜(11)均固定设于底座(20)上。
  8. 如权利要求1所述的油水冷却器的运行控制方法,其特征在于:该方法中,正常工作模式下,I号油泵(3)和II号油泵(6)其中一个工作,另一个备用,I号油路电动阀门(5)和II号油路电动阀门(8)打开,I号冷却器本体(1)和II号冷却器本体(2)均处于工作状态;
    在I号冷却器本体(1)和II号冷却器本体(2)中的其中一个出现故障时,关闭对应的油路电动阀门,使出现故障的冷却器本体停止工作,等待检修;
    在工作中的油泵出现故障时,切换至另一个油泵工作,出现故障的油泵等待检修。
  9. 变压器强迫油循环水冷***,其特征在于:该***采用权利要求1所述的油水冷却器。
  10. 根据权利要求9所述的变压器强迫油循环水冷***,其特征在于:该***中,油水冷却器按照权利要求8所述的运行控制方法运行。
PCT/CN2021/102475 2021-06-18 2021-06-25 油水冷却器及其运行控制方法和用其构建的冷却*** WO2022262009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110682496.5A CN113517115A (zh) 2021-06-18 2021-06-18 油水冷却器及其运行控制方法和用其构建的冷却***
CN202110682496.5 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022262009A1 true WO2022262009A1 (zh) 2022-12-22

Family

ID=78066029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102475 WO2022262009A1 (zh) 2021-06-18 2021-06-25 油水冷却器及其运行控制方法和用其构建的冷却***

Country Status (2)

Country Link
CN (1) CN113517115A (zh)
WO (1) WO2022262009A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114225506A (zh) * 2021-12-13 2022-03-25 浙江尔格科技股份有限公司 自动排污的油水冷却器及其自动排污方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158411A (en) * 1980-05-09 1981-12-07 Mitsubishi Electric Corp Cooling device for transformer
JPS58122708A (ja) * 1982-01-14 1983-07-21 Toshiba Corp 油入電器の冷却装置
JPS6041209A (ja) * 1983-08-16 1985-03-04 Toshiba Corp 送油風冷式変圧器
CN202431487U (zh) * 2011-11-01 2012-09-12 莱芜钢铁股份有限公司 氮压机冷却***
CN205376257U (zh) * 2016-02-23 2016-07-06 四川金广实业(集团)股份有限公司 矿热炉变压器冷却装置
CN109404258A (zh) * 2018-11-16 2019-03-01 沈阳鼓风机集团压力容器有限公司 一种用于压缩机组的润滑油***
CN208806122U (zh) * 2018-09-28 2019-04-30 新疆中泰化学阜康能源有限公司 电力变压器双型冷却装置
CN209041061U (zh) * 2018-10-24 2019-06-28 Ihi寿力压缩技术(苏州)有限公司 一种油冷在线切换***
CN212380257U (zh) * 2020-04-30 2021-01-19 银川电气配套设备制造有限公司 一种防堵排沙型油水冷却装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963857A (ja) * 1995-08-23 1997-03-07 Toshiba Corp 送油風冷式油入電気機器
CN202196640U (zh) * 2011-08-11 2012-04-18 鞍山钢制压力容器有限公司 一种变压器用的冷却装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158411A (en) * 1980-05-09 1981-12-07 Mitsubishi Electric Corp Cooling device for transformer
JPS58122708A (ja) * 1982-01-14 1983-07-21 Toshiba Corp 油入電器の冷却装置
JPS6041209A (ja) * 1983-08-16 1985-03-04 Toshiba Corp 送油風冷式変圧器
CN202431487U (zh) * 2011-11-01 2012-09-12 莱芜钢铁股份有限公司 氮压机冷却***
CN205376257U (zh) * 2016-02-23 2016-07-06 四川金广实业(集团)股份有限公司 矿热炉变压器冷却装置
CN208806122U (zh) * 2018-09-28 2019-04-30 新疆中泰化学阜康能源有限公司 电力变压器双型冷却装置
CN209041061U (zh) * 2018-10-24 2019-06-28 Ihi寿力压缩技术(苏州)有限公司 一种油冷在线切换***
CN109404258A (zh) * 2018-11-16 2019-03-01 沈阳鼓风机集团压力容器有限公司 一种用于压缩机组的润滑油***
CN212380257U (zh) * 2020-04-30 2021-01-19 银川电气配套设备制造有限公司 一种防堵排沙型油水冷却装置

Also Published As

Publication number Publication date
CN113517115A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2022262009A1 (zh) 油水冷却器及其运行控制方法和用其构建的冷却***
CN110258727A (zh) 多补偿无负压管网叠压二次供水成套设备
CN207019210U (zh) 空调***应急制冷装置和空调***
CN111712101A (zh) 气体稳压装置及风力发电变流器水冷***
CN112092658B (zh) 中央液冷快充电站***
CN102425794B (zh) 烧嘴冷却水***
CN210832367U (zh) 一种数据机房节能蓄冷应急***
CN114449857B (zh) 液冷***
CN212713742U (zh) 一种溅射镀膜冷却水循环***
CN201351137Y (zh) 冷却水***的保安应急装置
CN218935392U (zh) 一种冗余改造的气动阀门结构
CN207003530U (zh) 中高区互为应急备用的二次供水设备
CN218713540U (zh) 一种二次供水泵房不间断供水***
CN214537463U (zh) 一种冗余冷却***
CN221442838U (zh) 液环泵工作液串联式监控***
CN112235997B (zh) 一种用于数据中心制冷的冷水***
CN219976152U (zh) 一种海洋深水油气开采安装修井控制***液压动力单元
CN219321060U (zh) 一种用于非能动核电厂的设备冷却水***
CN214537464U (zh) 一种冗余冷却***
CN215947033U (zh) 一种聚酯工艺用的酯化废水处理***
CN219914793U (zh) 一种热风阀漏水检查装置
CN217031449U (zh) 一种新型数据中心冷却塔智慧节能补水***
CN213480638U (zh) 一种具有高压调整复式装置的风冷涡旋冷水机组
CN213633426U (zh) 电动式、多浓度标准油存储装置
CN203578373U (zh) 一种测厚仪冷却单元补水增压装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945592

Country of ref document: EP

Kind code of ref document: A1