WO2022261946A1 - 混合动力汽车的发动机启动控制方法及装置 - Google Patents

混合动力汽车的发动机启动控制方法及装置 Download PDF

Info

Publication number
WO2022261946A1
WO2022261946A1 PCT/CN2021/100935 CN2021100935W WO2022261946A1 WO 2022261946 A1 WO2022261946 A1 WO 2022261946A1 CN 2021100935 W CN2021100935 W CN 2021100935W WO 2022261946 A1 WO2022261946 A1 WO 2022261946A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
torque capacity
coefficient
clutch torque
temperature
Prior art date
Application number
PCT/CN2021/100935
Other languages
English (en)
French (fr)
Inventor
罗品奎
陶冬生
Original Assignee
舍弗勒技术股份两合公司
罗品奎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 罗品奎 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/100935 priority Critical patent/WO2022261946A1/zh
Priority to CN202180099549.9A priority patent/CN117500706A/zh
Publication of WO2022261946A1 publication Critical patent/WO2022261946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers

Definitions

  • the present application relates to the technical field of hybrid electric vehicles, in particular to a method and device for controlling engine startup of a hybrid electric vehicle.
  • the clutch torque capacity is increased at a reasonable rate to a constant clutch torque capacity, and the clutch is partially engaged to transmit this constant clutch torque capacity to the engine, thereby adjusting the engine speed below the drive Threshold speed for motor speed.
  • the present application proposes a method and device for controlling engine startup of a hybrid electric vehicle.
  • an engine startup control method of a hybrid electric vehicle includes an engine, a drive motor, and a motor set between the engine and the drive motor.
  • the clutch of the engine startup control method includes: a first judging step, which is used to judge whether the startup time data of the engine in this startup satisfies a predetermined condition after the startup of the engine is completed; the first calculation Step, if it is judged that the start-up time data satisfies the predetermined condition, then calculate the first coefficient corresponding to the working temperature of the engine at this start-up according to the start-up time data; the second judgment step, for determining whether it is necessary to adjust the clutch torque capacity adaptation amount corresponding to the operating temperature of the engine according to the first coefficient; Adjust the clutch torque capacity adaptation amount corresponding to the operating temperature according to the first coefficient and the predetermined compensation amount, and store the adjusted clutch torque capacity adaptation amount and the operating temperature correspondingly, wherein the adjusted clutch The torque capacity adaptation is used for
  • an engine start control device for a hybrid electric vehicle includes an engine, a drive motor, and a clutch arranged between the engine and the drive motor, the The engine start control device includes: a first judging module, used for judging whether the start time data of the engine during the current start of the engine satisfies a predetermined condition after the current start of the engine is completed; a first calculation module, for if If it is determined that the start-up time data satisfies the predetermined condition, then calculate a first coefficient corresponding to the working temperature of the engine at this start-up according to the start-up time data; The first coefficient determines whether it is necessary to adjust the clutch torque capacity adaptation amount corresponding to the operating temperature of the engine; and an adjustment module is used to adjust the clutch torque capacity adaptation amount according to the first coefficient coefficient and a predetermined compensation amount to adjust the clutch torque capacity adaptation amount corresponding to the operating temperature, and store the adjusted clutch torque capacity adaptation amount and the operating temperature correspondingly, wherein the adjusted clutch torque
  • the engine start control method and device of a hybrid electric vehicle of the present application After the start of the engine is completed, it is judged whether the start time data of the engine in this start satisfies a predetermined condition; if it is determined that the start time data If the predetermined condition is met, then calculate the first coefficient corresponding to the working temperature of the engine at the current start according to the start time data; determine whether it is necessary to adjust the The clutch torque capacity adaptation amount corresponding to the working temperature; and if it is determined that the clutch torque capacity adaptation amount needs to be adjusted, adjust the clutch torque capacity adaptation amount corresponding to the operating temperature according to the first coefficient and a predetermined compensation amount amount, and correspondingly store the adjusted clutch torque capacity adaptation amount and the operating temperature, wherein the adjusted clutch torque capacity adaptation amount is used for the next start of the engine corresponding to the operating temperature, thus, can be Frequent adjustment of the clutch torque capacity adaptation is avoided, thereby effectively avoiding instability of the starting torque caused by frequent adjustments of the clutch torque capacity adaptation, thereby enhancing the robustness of the adjustment of the
  • the clutch torque capacity adaptation can converge at different operating temperatures, eliminating the influence of the operating temperature on the clutch torque capacity adaptation, thus Improve the drivability of the vehicle.
  • FIG. 1 is a schematic structural diagram of a powertrain of a hybrid electric vehicle in the related art.
  • FIG. 2 is a schematic diagram of an engine start process of a hybrid vehicle having a P2 module in the related art.
  • FIG. 3 is a schematic diagram of an engine start process of a hybrid electric vehicle having a P2 module in the related art.
  • FIG. 4 is a schematic diagram of the startup time of the engine startup process of the hybrid vehicle having the P2 module in the related art.
  • FIG. 5 is a schematic diagram of changes in clutch torque capacity adaptation involved in the self-learning process in the related art.
  • Fig. 6 is a flow chart of a method for controlling engine startup of a hybrid electric vehicle according to an exemplary embodiment.
  • FIG. 7 is a schematic diagram showing the convergence of clutch torque capacity adaptation at different temperatures involved in the self-learning process after applying the engine start-up control method of this embodiment and the related art.
  • Fig. 8 is a schematic diagram showing values of the current temperature Dx according to an exemplary embodiment.
  • FIG. 9 is a schematic diagram of the comparison of changes in clutch torque capacity adaptation involved in the self-learning process after applying the engine start-up control method of this embodiment and the related art.
  • Fig. 10 is a block diagram of an engine start control device for a hybrid vehicle according to an exemplary embodiment.
  • the clutch torque capacity increases at a reasonable rate to a constant clutch torque capacity, and the clutch is partially engaged to deliver this constant clutch torque capacity to the engine, thereby adjusting the engine speed to to a threshold speed below the drive motor speed.
  • the friction torque of the engine is greater than the average value, or the actual torque of the clutch is less than the required torque due to serious wear, the resultant force used to pull the engine speed, that is, the clutch
  • the difference between the torque of the engine and the friction torque of the engine is smaller than normal, which causes the engine speed to take more time to reach the threshold speed, causing the overall time of the engine start process to be delayed.
  • FIG. 1 is a schematic structural diagram of a powertrain of a hybrid electric vehicle in the related art.
  • the hybrid vehicle includes an engine (English: engine), a P2 module and a gearbox (English: gearbox).
  • the P2 module includes a k0 clutch (English: clutch) and a drive motor (English: motor), the P2 module is located between the engine and the gearbox, and the k0 clutch is located between the engine and the drive motor.
  • FIG. 2 is a schematic diagram of an engine start process of a hybrid vehicle having a P2 module in the related art. As shown in Figure 2, the engine start process goes through stage P1, stage P2 and stage P3 successively. stop), startup status (English: crank) and running status (English: run).
  • phase P1 the clutch torque capacity is increased at a reasonable rate to a constant clutch torque capacity M, k0 the clutch is partially engaged to deliver this constant clutch torque capacity to the engine, thereby regulating the engine speed below the drive motor
  • the threshold speed of the speed during which the engine torque capacity is 0 because the engine has not been started; when the engine speed is higher than the threshold speed, the stage P2 is entered.
  • phase P2 the engine is started (ignition), and the clutch torque capacity is reduced at a reasonable rate until the clutch is fully opened, thereby preventing the entire vehicle from bouncing due to subsequent direct engagement of the clutch. Since the engine has been started, the engine torque capacity is not 0, and the engine speed is adjusted through the engine torque capacity.
  • phase P3 the clutch torque capacity is increased at a reasonable rate, the k0 clutch is partially engaged to transfer the clutch torque capacity to the engine, thereby adjusting the engine speed to be close to the drive motor speed, when the engine speed is approximately the same as the drive motor speed, the k0 clutch Fully engaged, the engine speed curve basically overlaps with the drive motor speed curve, that is, the engine speed synchronization process is performed.
  • the friction torque of the engine is greater than the actual torque of the k0 clutch, the engine speed cannot even be increased, resulting in failure to start the engine successfully.
  • the self-learning strategy includes: if the starting time of the engine in this start is too long, increase the clutch torque capacity adaptation amount used for the current start of the engine, and use the increased clutch torque capacity adaptation amount As the clutch torque capacity adaptation to be used for the next startup; if the engine startup time in this startup is too short, reduce the clutch torque capacity adaptation used for the engine startup this time, and use the reduced clutch
  • the adaptive torque capacity is used as the adaptive torque capacity of the clutch to be used in the next startup.
  • ⁇ M is the clutch torque capacity adaptation used for the engine startup this time
  • ⁇ ML is the torque capacity to be increased
  • KL is the torque adjustment coefficient
  • T2 is the acceptable engine start time
  • T2+ ⁇ t2 is the upper limit value of the start time
  • T3 is the start time of the engine this time
  • t0 is the time unit.
  • ⁇ M is the clutch torque capacity adaptation used for the engine startup this time
  • ⁇ Ms is the torque capacity to be reduced
  • Ks is the torque adjustment coefficient
  • T2 is the acceptable starting time of the engine
  • T2- ⁇ t1 is the lower limit of the starting time
  • T1 is the starting time of the current engine start
  • t0 is the time unit.
  • FIG. 4 is a schematic diagram of the startup time of the engine startup process of the hybrid vehicle having the P2 module in the related art.
  • the threshold torque capacity is T0 and the threshold speed is N0
  • the curves L1, L2 and L3 correspond to the three start curves of the engine respectively
  • the respective start times T1, T2 and T3 of the curves L1, L2 and L3 are all from the The time period from when the torque capacity of the clutch reaches the threshold torque capacity T0 until the engine speed reaches the threshold speed N0, wherein the start time T1 is shorter than the start time T2, and the start time T2 is shorter than the start time T3.
  • the starting time T2 is the acceptable starting time of the engine
  • the upper limit of the starting time is T2+ ⁇ t2
  • the lower limit of the starting time is T2- ⁇ t1. Therefore, when the starting time is greater than the lower limit of the starting time T2- ⁇ t1 and When it is less than the start time upper limit value T2+ ⁇ t2, there is no need to adjust the adaptive clutch torque capacity used for the current start of the engine.
  • Fig. 5 is a schematic diagram of changes in clutch torque capacity adaptation involved in the self-learning process in the related art. As shown in Fig. 5, if the above-mentioned self-learning strategy is adopted, the clutch torque capacity calculated by self-learning fluctuates up and down, which may not be stable enough , that is, the stability may be poor.
  • the clutch torque capacity adaptation amount ⁇ M' to be used when the engine is started next time changes frequently, the data in the storage device for storing ⁇ M', such as EEPROM, changes frequently, which increases the memory capacity of the storage device. Write times, thereby shortening the life of the storage device.
  • the accidental factor of engine operating temperature is not considered in the determination of the clutch torque capacity adaptation ⁇ M' to be used when the engine is started next time, this will lead to the determined clutch torque capacity adaptation ⁇ M' being inappropriate. If the clutch torque capacity compensation value is not suitable, the inappropriate ⁇ M' will cause vehicle drivability problems, such as short or long engine start-up time.
  • the application proposes an engine start control method and device for a hybrid electric vehicle. After the start of the engine is completed, it is judged whether the start time data of the engine in this start satisfies a predetermined condition; If the time data satisfies the predetermined condition, then calculate the first coefficient corresponding to the working temperature of the engine when starting this time according to the start time data; an adaptive amount of clutch torque capacity corresponding to an operating temperature; and if it is determined that the adaptive amount of clutch torque capacity needs to be adjusted, adjusting the adaptive amount of clutch torque capacity corresponding to the operating temperature according to the first coefficient and a predetermined compensation amount, And correspondingly store the adjusted clutch torque capacity adaptation amount and the operating temperature, wherein the adjusted clutch torque capacity adaptation amount is used for the next startup of the engine corresponding to the operating temperature.
  • the operating temperature of the engine in this application refers to the operating temperature at which the engine operates, that is, the ambient operating temperature of the engine.
  • Fig. 6 is a flow chart showing a method for controlling engine startup of a hybrid electric vehicle according to an exemplary embodiment.
  • the hybrid electric vehicle may be HEV or PHEV, and the structure of the powertrain of the hybrid electric vehicle may adopt the structure shown in Fig. 1
  • the structure shown, specifically, the hybrid vehicle includes an engine, a drive motor, and a clutch arranged between the engine and the drive motor, and the control method can be applied to a hybrid control unit of a hybrid vehicle (English: Hybrid Control Unit, referred to as: HCU). That is to say, the HCU can use the control method in this embodiment to realize the engine start control of the hybrid electric vehicle.
  • HCU Hybrid Control Unit
  • FIG. 6 describes the process of self-learning the clutch torque capacity adaptation.
  • the method shown in FIG. 6 is executed every time the engine is started at the current temperature to determine the clutch torque capacity adaptation ⁇ M to be used in the next start of the engine at a different operating temperature.
  • the control method may include the following steps.
  • step S610 after the current start of the engine is completed, it is judged whether the start time data of the engine during the current start satisfies a predetermined condition. Step S610 corresponds to the first judging step.
  • start-up time data that can characterize whether the clutch torque capacity adaptation used in the current start-up of the engine is appropriate can be obtained, and the start-up time data may include but not limited to engine The start time in this start, and the time data related to the start time of the engine in this start.
  • the starting time data meeting the predetermined condition may include but not limited to that the starting time data falls outside the acceptable starting time data range, that is, when the starting time data is greater than the upper limit value of the starting time data range, or If the start-up time data is less than the lower limit value of the start-up time data range, the start-up time data satisfies the predetermined condition, and the judgment in step S610 is "Yes", and the following step S620 is executed.
  • step S610 executes the following step S650.
  • the clutch torque capacity adaptation ⁇ M used in the first startup of the engine at different operating temperatures is 0, that is, the initial value of the clutch torque capacity adaptation is 0, and the method of this embodiment can be used to determine the Clutch torque capacity adaptation in non-initial starts at different operating temperatures.
  • step S620 a first coefficient corresponding to the working temperature of the engine at the current startup is calculated according to the startup time data. Step S620 corresponds to a first calculation step.
  • any suitable algorithm can be used to calculate the first coefficient that can be used to characterize the urgency of the self-learning of the clutch torque capacity adaptation amount corresponding to the engine and the operating temperature according to the above-mentioned start-up time data, so that in the following steps In S630, it may be determined according to the calculated first coefficient whether it is necessary to perform self-learning on the adaptive torque capacity of the clutch corresponding to the operating temperature of the engine.
  • step S630 it is determined according to the first coefficient whether it is necessary to adjust the clutch torque capacity adaptation amount for the engine corresponding to the operating temperature. Step S630 corresponds to the second judging step.
  • step S620 if the first coefficient calculated in step S620 indicates that the urgency of the self-learning of the clutch torque capacity adaptation corresponding to the operating temperature of the engine is high, for example, the first coefficient falls outside the coefficient range, then It indicates that the clutch torque capacity adaptation corresponding to the engine operating temperature needs to be self-learned, that is, the clutch torque capacity adaptation needs to be adjusted, that is, if the judgment in step S630 is “Yes”, the following step S640 is executed.
  • step S620 If the first coefficient calculated in step S620 indicates that the urgency of the self-learning of the clutch torque capacity adaptation amount corresponding to the engine and the operating temperature is low, for example, the first coefficient falls within the coefficient range, which means that there is no need to adjust the engine and the clutch torque capacity.
  • the adaptive torque capacity of the clutch corresponding to the operating temperature is self-learning, that is, there is no need to adjust the adaptive torque capacity of the clutch, that is, if the judgment in step S630 is "No", the following step S650 is executed.
  • step S640 adjusting the clutch torque capacity adaptation amount corresponding to the operating temperature according to the first coefficient and the predetermined compensation amount, and correspondingly storing the adjusted clutch torque capacity adaptation amount and the operating temperature, Wherein the adjusted adaptive clutch torque capacity is used for the next startup of the engine corresponding to the working temperature.
  • Step S640 corresponds to an adjustment step.
  • the clutch torque capacity adaptation for the engine corresponding to the working temperature at this start can be adjusted according to the first coefficient calculated based on the start time data and the predetermined compensation amount. and store the operating temperature and the corresponding adjusted clutch torque capacity adaptation amount, the adjusted clutch torque capacity adaptation amount is used as the clutch torque capacity adaptation amount to be used in the next startup of the engine corresponding to the operating temperature quantity.
  • the predetermined compensation amount may be a preset value, for example, a value pre-calibrated by an engineer.
  • the predetermined compensation amount may generally take a value of 3-5 Nm.
  • the predetermined compensation amount can also be a value calculated by combining the relevant data of the engine’s historical start-up and using a corresponding algorithm.
  • This embodiment does not specifically limit the setting method and specific value of the predetermined compensation amount.
  • any other suitable manner and any suitable value may be used as the predetermined compensation amount according to actual application requirements.
  • the clutch torque capacity adaptive amount used for the next startup of the engine corresponding to the working temperature may be adjusted according to the first coefficient and the predetermined compensation amount in the following manner: obtain the first coefficient and adjust A correspondence table between directions (decrease/increase), look up the adjustment direction corresponding to the start-up time data in the correspondence table, and adjust the engine and the The clutch torque capacity adaptation amount corresponding to the working temperature.
  • the clutch torque capacity adaptive amount used for the next startup of the engine corresponding to the operating temperature may also be adjusted according to the first coefficient and the predetermined compensation amount in the following manner: the first coefficient and the predetermined compensation amount are obtained: A table of correspondences between algorithms for adjusting the adaptive amount of the aforementioned clutch torque capacity, searching for an algorithm corresponding to the first coefficient in the table of correspondences, and using the searched algorithm to calculate the predetermined compensation amount for An adjustment amount of the clutch torque capacity adaptation amount is adjusted, and the clutch torque capacity adaptation amount is adjusted using the adjustment amount.
  • step S650 the clutch torque capacity adaptation amount for the engine corresponding to the operating temperature is stored.
  • a clutch torque capacity array is set corresponding to the working temperature array, and the values in the clutch torque capacity array correspond to the values in the working temperature array one by one.
  • the clutch torque capacity corresponding to the target temperature is determined in the clutch torque capacity array to be used for starting the engine at the target temperature, and the engine starting shown in FIG.
  • the control method determines whether it is necessary to adjust the clutch torque capacity adaptation amount for the engine corresponding to the target temperature, and if it is necessary to adjust the clutch torque capacity adaptation amount for the engine corresponding to the target temperature, then set the target temperature corresponding to The clutch torque capacity is adjusted to the updated clutch torque capacity; if it is not necessary to adjust the clutch torque capacity adaptation amount corresponding to the target temperature for the engine, then keep the clutch torque capacity adaptation amount corresponding to the target temperature unchanged.
  • the clutch torque capacity adaptation used in this startup can be directly stored as the lower value corresponding to the working temperature.
  • the engine starting control method of the hybrid electric vehicle of the present embodiment after completing this start of the engine, judges whether the start time data of the engine in this start satisfies a predetermined condition; if it is judged that the start time data If the predetermined condition is met, then calculate the first coefficient corresponding to the working temperature of the engine at the current start according to the start time data; determine whether it is necessary to adjust the The adaptive amount of clutch torque capacity corresponding to the working temperature; if it is determined that the adaptive amount of clutch torque capacity needs to be adjusted, then adjust the adaptive amount of clutch torque capacity corresponding to the operating temperature according to the first coefficient and a predetermined compensation amount , and correspondingly store the adjusted clutch torque capacity adaptation and the working temperature, thereby avoiding frequent adjustments to the clutch torque capacity adaptation, thereby effectively avoiding the The starting torque is unstable, thereby enhancing the robustness of the adjustment of the clutch torque capacity adaptation.
  • the clutch torque capacity adaptation can converge at different operating temperatures, eliminating the influence of the operating temperature on the clutch torque capacity adaptation, thus Improve the drivability of the vehicle.
  • FIG. 7 is a schematic diagram showing the convergence of clutch torque capacity adaptation at different temperatures involved in the self-learning process after applying the engine start-up control method of this embodiment and the related art.
  • the clutch torque capacity adaptation involved in the engine starting process is not constant, and the operating temperature of the engine directly affects the size of the clutch torque capacity adaptation, for example, in Fig.
  • the corresponding clutch torque capacity adaptation of the engine is ⁇ M1; when the engine is working at a temperature of about D3, the corresponding clutch torque capacity adaptation of the engine is ⁇ M3, for For some vehicles, the difference between ⁇ M1 and ⁇ M3 is too large to be ignored.
  • the start time data may include: during the current start of the engine, from when the torque capacity of the clutch reaches a threshold torque capacity until the speed of the engine reaches a threshold speed wherein, in the case where the startup time is greater than the upper limit value of the startup time or in the case that the startup time is smaller than the lower limit value of the startup time, the first judging step judges that the startup time data satisfies the predetermined conditions.
  • the start-up time data of the engine at the current temperature during this start-up may include the start-up time of the engine during this start-up, and the start-up time represents: during this start-up of the engine, the torque capacity of the self-clutch reaches The time from when the threshold torque capacity is reached to when the rotational speed of the engine reaches the threshold rotational speed.
  • step S610 if the start-up time is greater than the start-up time upper limit or the start-up time is less than the start-up time lower limit, then it is judged as “Yes” in step S610; otherwise, if the start-up time is not less than the start-up time lower limit and the If the start-up time is not greater than the upper limit of the start-up time, it is judged as "No” in step S610.
  • a working temperature array corresponding to the working temperature of the engine is preset, and the temperature values in the working temperature array are preset discrete temperature values, and the working temperature array includes n preset temperature values (n is a positive integer greater than 2), the minimum value and maximum value in the working temperature array are equivalent to the critical value of the working temperature of the engine.
  • the temperature values in the working temperature array can be arranged in order from low to high, and can also be arranged in order from high to low, and any suitable algorithm can be used to determine the temperature corresponding to the working temperature in the working temperature array. the first temperature.
  • step S620 may include: calculating the first temperature corresponding to the operating temperature in the operating temperature array according to the preset operating temperature array; Start time to calculate the coefficient corresponding to the first temperature as the first coefficient.
  • the first coefficient exists corresponding to the first temperature, so there is a first coefficient array corresponding to the working temperature array, and the values in the first coefficient array are all the same as those in the working temperature array The values correspond to each other.
  • the first temperature corresponding to the working temperature in the working temperature array can be obtained by comparing the average value of two adjacent temperature values in the working temperature array with the size of the working temperature.
  • the preset temperature value (that is, the working temperature) is determined as the first temperature.
  • the first temperature corresponding to the working temperature is determined as the minimum value in the working temperature array. temperature value; if the working temperature is greater than the mean value of the two largest temperature values in the working temperature array, then determine the first temperature corresponding to the working temperature as the maximum temperature value in the working temperature array; if the working If the temperature is greater than the mean value of the i-th temperature value and the previous i-1th temperature value in the working temperature array, and less than the mean value of the i-th temperature value and the i+1th temperature value adjacent thereafter, then the The first temperature is determined as the ith temperature value.
  • the working temperature at this startup is less than the average value of the smallest temperature value in the working temperature array, then determine the first temperature corresponding to the working temperature as the smallest temperature in the working temperature array value; if the working temperature is greater than the maximum temperature value in the working temperature array, the first temperature corresponding to the working temperature is determined as the maximum temperature value in the working temperature array; if the working temperature is greater than the maximum temperature value in the working temperature array If the i-th temperature value is smaller than the subsequent i+1-th temperature value, then the first temperature is determined as the i-th temperature value.
  • the temperature values in the working temperature array are arranged in descending order.
  • the temperature values in the working temperature array are arranged in order from large to small, it is sufficient to directly exchange the greater than and less than in the logic judgment when determining the first temperature.
  • the above-mentioned implementation of determining the first temperature corresponding to the working temperature at the start-up in the working temperature array is only an example, and a correlation can be adopted according to the working temperature and the temperature value in the working temperature array.
  • Algorithm to determine the first temperature matching the working temperature for example, determine the temperature value with the smallest difference with the working temperature in the working temperature array as the first temperature, this application does not specifically limit this, as long as it can be determined It is sufficient to set the first temperature matching the working temperature.
  • the first coefficient can be obtained by calculating the coefficient corresponding to the first temperature according to the above starting time data and the acceptable engine starting time and using a correlation algorithm.
  • each temperature value in the working temperature array corresponds to a first coefficient
  • the first coefficient array is set corresponding to the working temperature array in this embodiment, and the value of the first coefficient array is equal to the value in the working temperature array.
  • Kx' is the xth first coefficient Kx in the first coefficient array, that is, the first coefficient corresponding to the first temperature determined in the previous start of this start
  • T2 is the acceptable engine start time
  • T2+ ⁇ t2 Indicates the upper limit of the start time
  • T3 is the start time of the current start of the engine
  • t0 is the time unit
  • T2- ⁇ t1 represents the lower limit of the start time
  • T1 is the start time of the current start of the engine
  • Rond() is the Integer function
  • Gu is a positive integer
  • Gd is a negative integer.
  • step S630 includes: judging whether the first coefficient is greater than the first coefficient upper limit or less than the first coefficient lower limit; when the first coefficient is greater than the first coefficient upper limit If the engine is not working or if the first coefficient is less than the first coefficient lower limit value, it is determined that it is necessary to adjust the clutch torque capacity adaptation amount corresponding to the operating temperature of the engine at the time of starting this time.
  • the first coefficient represents the self-learning of the clutch torque capacity adaptive amount of the engine corresponding to the operating temperature
  • the degree of urgency is high, and it is necessary to perform self-study on the adaptive clutch torque capacity of the engine corresponding to the operating temperature, and the judgment in step S630 is "Yes".
  • the first coefficient indicates that the urgency of the self-learning of the clutch torque capacity adaptation amount corresponding to the operating temperature of the engine is low , there is no need to perform self-study on the adaptive clutch torque capacity corresponding to the engine temperature and the working temperature, and the judgment in step S630 is "No".
  • step S640 may include: determining a torque adjustment direction according to the first coefficient; according to the torque adjustment direction, adjusting the clutch torque capacity adaptation amount corresponding to the working temperature by the predetermined compensation quantity.
  • the first coefficient Kx is less than the first coefficient lower limit value Kd, it means that the start-up time is too short and the target clutch torque capacity transmitted by the clutch is too large. Therefore, it is necessary to reduce the clutch temperature corresponding to the first temperature during the current start-up of the engine.
  • the first coefficient Kx needs to be initialized to 0, and after it is determined that there is no need to adjust the clutch torque capacity adaptation, the first coefficient Kx needs to be kept at the previously calculated value. That is, in each start of the engine, the first coefficient Kx is only calculated when it is determined in step S610 that the first coefficient Kx needs to be calculated (that is, the starting time data in this start satisfies the predetermined condition), and the second The initial values of a coefficient Kx are all 0.
  • the self-learning process is activated, that is, if the starting time of the engine in this start of the working temperature Dx is greater than the starting time upper limit or less than the starting time lower limit, then determine the corresponding value of the working temperature Dx in the working temperature array first temperature.
  • first coefficient K2 >the upper limit of the first coefficient Ku
  • use the formula ⁇ M2 ⁇ M2'+ ⁇ M0 to calculate the adjusted clutch torque capacity adaptation and store it, and at the same time, clear the first coefficient K2 Zero
  • the lower limit of the first coefficient Kd ⁇ the first coefficient K2 ⁇ the upper limit of the first coefficient Ku then the clutch torque capacity adaptation will not be adjusted and the first coefficient K2 will remain unchanged, which is calculated after this start The K2 value.
  • the clutch torque capacity adaptation array M becomes an adjusted array, and the clutch torque capacity adaptation ⁇ M of the engine next start can be based on the clutch torque capacity adaptation array ⁇ M to determine.
  • the above engine start control method further includes:
  • the target clutch torque capacity adaptation value of the target temperature is calculated according to the stored corresponding relationship between the clutch torque capacity adaptation value array and the working temperature array, and according to the clutch basic torque capacity and the target clutch torque capacity adaptation amount, calculating the target clutch torque capacity when starting fuel supply to the engine;
  • fuel supply to the engine is started when the torque capacity of the clutch reaches the target clutch torque capacity and the rotation speed of the engine reaches a predetermined rotation speed.
  • the intermediate variables Gu and Gd calculated according to the start-up time data and acceptable start-up time data of the engine in this start-up are introduced to represent the urgency of self-learning for this start-up of the engine. Only when the learning urgency K is above the upper limit Ku or below the lower limit Kd is the clutch torque capacity adaption corresponding to the operating temperature of the engine at the current startup adjusted.
  • the curve of the clutch torque capacity adaptive amount ⁇ M in this embodiment does not fluctuate, and more importantly, , through the above self-learning strategy, the clutch torque capacity adaptation ⁇ M converges at different operating temperatures, eliminating the influence of the starting operating temperature on the clutch torque capacity adaptation ⁇ M, and improving the drivability of the vehicle.
  • the clutch base torque capacity is introduced into the calculation of the target clutch torque capacity when fuel is supplied to the engine.
  • corresponding algorithms including but not limited to addition can be used to calculate the target clutch torque capacity when starting to supply fuel to the engine in the next start of the engine.
  • the basic torque capacity of the clutch can be determined according to the resistance torque of the engine. Specifically, the basic torque capacity of the clutch can be determined in the following manner: obtain relevant information affecting the drag torque of the engine, wherein the relevant information includes the cooling water temperature of the engine; determine the drag torque of the engine according to the relevant information; Drag torque, which determines the basic torque capacity of the clutch.
  • a cooling water temperature sensor may be used to detect the cooling water temperature, and the cooling water temperature detected by the cooling water temperature sensor may be obtained.
  • a command is sent to a fuel feed device including a fuel tank and an injector, for example, to start fueling the engine; in response to receiving the command, the fuel feed device starts fueling the engine.
  • the engine start control method of the hybrid electric vehicle of this embodiment after completing each start under different working temperatures of the engine, in the case that the start time data of the engine in this start satisfies the predetermined condition, according to the start time data Calculate the first coefficient corresponding to the working temperature at this startup, determine whether it is necessary to adjust the clutch torque capacity adaptation amount for the engine corresponding to the working temperature according to the first coefficient, and only determine according to the first coefficient Adjust the clutch torque capacity adaptation when it is necessary to adjust the clutch torque capacity adaptation, and store the adjusted clutch torque capacity adaptation and the corresponding operating temperature to form the clutch torque capacity adaptation array and the operating temperature array, in During the next startup of the engine corresponding to the target temperature, calculate the target clutch torque capacity corresponding to the target temperature according to the stored clutch torque capacity adaptation array and the working temperature array, and when the torque capacity of the clutch reaches the calculated target clutch torque capacity and When the engine speed reaches the threshold speed, the fuel supply to the engine starts, so that since the used target clutch torque capacity is calculated based on the adjusted clutch torque capacity adaptation, the engine
  • Fig. 10 is a block diagram of an engine start control device for a hybrid electric vehicle according to an exemplary embodiment.
  • the hybrid electric vehicle can be HEV or PHEV, and the structure of the powertrain of the hybrid electric vehicle can be as shown in Fig. 1 Specifically, the hybrid vehicle includes an engine, a drive motor, and a clutch disposed between the engine and the drive motor.
  • the control device 1000 can be applied to a hybrid control unit HCU of a hybrid vehicle. As shown in FIG. 10 , the control device 1000 may include a first judgment module 1010 , a first calculation module 1020 , a second judgment module 1030 and an adjustment module 1040 .
  • the first judging module 1010 is configured to judge whether the starting time data of the engine during this startup satisfies a predetermined condition after the current startup of the engine is completed; the first calculation module 1020 is connected to the first judging module 1010, If it is determined that the starting time data satisfies the predetermined condition, calculating a first coefficient corresponding to the working temperature of the engine at the current starting time according to the starting time data.
  • the second judgment module 1030 is connected with the first calculation module 1020, and is used to determine whether it is necessary to adjust the clutch torque capacity adaptation amount corresponding to the engine and the operating temperature according to the first coefficient; the adjustment module 1040 and the second judgment module The module 1030 is connected to adjust the adaptive clutch torque capacity corresponding to the operating temperature according to the first coefficient and the predetermined compensation amount if it is determined that the adaptive clutch torque capacity needs to be adjusted, and adjust the adjusted
  • the adapted clutch torque capacity and the operating temperature are stored correspondingly, wherein the adjusted adapted clutch torque capacity is used for the next start of the engine corresponding to the operating temperature.
  • the first calculation module 1020 is configured to: calculate the first temperature corresponding to the working temperature in the working temperature array according to the preset working temperature array; Data and acceptable engine start time to calculate the coefficient corresponding to the first temperature as the first coefficient, wherein the start time data includes: during the current start of the engine, the torque from the clutch The starting time from when the capacity reaches the threshold torque capacity until the rotational speed of the engine reaches the threshold rotational speed.
  • the first calculation module 1020 is configured to: compare the temperature value in the working temperature array with the working temperature, and obtain that the working temperature is in the working temperature array corresponding to the first temperature.
  • the starting time data includes: during the current starting period of the engine, from when the torque capacity of the clutch reaches a threshold torque capacity to when the rotational speed of the engine reaches a threshold rotational speed Start-up time, wherein, when the start-up time is greater than the upper limit of the start-up time or less than the lower limit of the start-up time, the first judging module judges that the start-up time data satisfies the required the predetermined conditions.
  • the second judging module 1030 is configured to: judge whether the first coefficient is greater than the first coefficient upper limit or smaller than the first coefficient lower limit; In the case of the first coefficient upper limit value or in the case of the first coefficient being smaller than the first coefficient lower limit value, it is determined that the clutch torque capacity adaptation amount needs to be adjusted.
  • the adjustment module 1040 is configured to: determine the torque adjustment direction according to the first coefficient; according to the torque adjustment direction, adjust the clutch torque capacity adaptation amount corresponding to the working temperature by The predetermined compensation amount.
  • the adjustment module 1040 is configured to: if the first coefficient is greater than the upper limit value of the first coefficient, determine that the torque adjustment direction is upward adjustment, and make the working The clutch torque capacity adaptation amount corresponding to the temperature is increased by the predetermined compensation amount; if the first coefficient is less than the first coefficient lower limit value, it is determined that the torque adjustment direction is downward adjustment, and the operating temperature corresponds to The clutch torque capacity adaptation amount is decreased by the predetermined compensation amount.
  • the above-mentioned control device 1000 may further include: a second calculation module (not shown), configured to, before the next start-up period of the engine corresponding to the target temperature, according to the stored clutch torque According to the corresponding relationship between the capacity adaptation array and the working temperature array, calculate the target clutch torque capacity adaptation at the target temperature, and calculate the time when fuel is started to be supplied to the engine according to the clutch basic torque capacity and the target clutch torque capacity adaptation
  • the target clutch torque capacity of the clutch a starting module (not shown), used for during the next start of the engine corresponding to the target temperature, when the torque capacity of the clutch reaches the target clutch torque capacity and the When the rotational speed of the engine reaches a predetermined rotational speed, fuel supply to the engine is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

本申请涉及混合动力汽车的发动机启动控制方法及装置,该方法包括:在完成所述发动机的本次启动后,若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与发动机的本次启动时的工作温度相对应的第一系数;根据所述第一系数确定为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动,由此,既可避免频繁地调整离合器扭矩容量适应量,又能使离合器扭矩容量适应量在不同温度下收敛,提高驾驶性能。

Description

混合动力汽车的发动机启动控制方法及装置 技术领域
本申请涉及混合动力汽车技术领域,尤其涉及一种混合动力汽车的发动机启动控制方法及装置。
背景技术
相关技术中,在混合动力汽车的发动机启动过程中,离合器扭矩容量以合理的速率增加至恒定离合器扭矩容量,离合器部分接合以向发动机传递该恒定离合器扭矩容量,从而将发动机转速调整至低于驱动电机转速的阈值转速。
发明内容
有鉴于此,本申请提出了一种混合动力汽车的发动机启动控制方法及装置。
为了解决上述技术问题,根据本申请的一方面,提供了一种混合动力汽车的发动机启动控制方法,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,所述发动机启动控制方法包括:第一判断步骤,用于在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;第一计算步骤,用于若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;第二判断步骤,用于根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;以及调整步骤,用于若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。
根据本申请的另一方面,提供了一种混合动力汽车的发动机启动控制装置,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,所述发动机启动控制装置包括:第一判断模块,用于在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;第一计算模块,用于若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;第二判断模块,用于根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;以及调整模块,用于若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。
根据本申请的混合动力汽车的发动机启动控制方法及装置,在完成发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;以及若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应 存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动,由此,可避免频繁地调整离合器扭矩容量适应量,从而可有效避免由于频繁地调整离合器扭矩容量适应量而导致的启动扭矩不稳定,进而可以增强离合器扭矩容量适应量的调整的鲁棒性。此外,由于可避免频繁地调整离合器扭矩容量适应量,因此可有效避免由于频繁地调整离合器扭矩容量适应量而导致的存储装置中的数据频繁地改变,进而可以降低该存储装置的擦写次数,由此可延长该存储装置的寿命。
另一方面,由于在离合器扭矩容量适应量确定过程中,考虑发动机的工作温度,使得离合器扭矩容量适应量可在不同的工作温度下收敛,消除了工作温度对离合器扭矩容量适应量的影响,从而提高车辆的驾驶性能。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1是相关技术中的一种混合动力汽车的动力总成的结构示意图。
图2是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的示意图。
图3是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的示意图。
图4是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的启动时间的示意图。
图5是相关技术中的自学习过程涉及的离合器扭矩容量适应量的变化示意图。
图6是根据一示例性实施例示出的一种混合动力汽车的发动机启动控制方法的流程图。
图7是应用本实施例与相关技术的发动机启动控制方法后的自学习过程涉及的离合器扭矩容量适应量在不同温度下收敛的示意图。
图8是根据一示例性实施例示出的当前温度Dx的取值示意图。
图9是应用本实施例与相关技术的发动机启动控制方法后的自学习过程涉及的离合器扭矩容量适应量的变化比较示意图。
图10是根据一示例性实施例示出的一种混合动力汽车的发动机启动控制装置的框图。
具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在另外一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
如背景技术部分所描述的,在混合动力汽车的发动机启动过程中,离合器扭矩容量以合理的速率增加至恒定离合器扭矩容量,离合器部分接合以向发动机传递该恒定离合器扭矩容量,从而将发动机 转速调整至低于驱动电机转速的阈值转速。
在某些情况下,例如,由于冷却水的温度低而导致发动机的摩擦扭矩大于平均值、或者由于磨损严重而导致离合器的实际扭矩小于所需要的扭矩,用于拉动发动机转速的合力、即离合器的扭矩与发动机的摩擦扭矩之间的差小于正常值,这导致需要花费更多的时间才能够使发动机转速达到阈值转速,从而导致发动机启动处理的总时间被延迟。
为解决上述问题,相关技术中,若发动机本次启动中的启动时间超过可接受时间,则增大本次启动所使用的离合器扭矩容量适应量;若发动机本次启动中的启动时间未达到该可接受时间,则减少本次启动所使用的离合器扭矩容量适应量,并将该离合器扭矩容量适应量存储于诸如EEPROM等的存储装置中以作为下次启动要使用的离合器扭矩容量适应量。这样,在下次启动时,获取存储装置所存储的离合器扭矩容量适应量,并根据所获取的离合器扭矩容量适应量来计算要使用的离合器扭矩容量,以使得发动机转速能够及时地达到阈值转速。
然而,对于上述技术而言,即使在由于一些偶发因素(例如,发动机水温或离合器温度等因素的扰动)而导致发动机本次启动中的启动时间略大于可接受时间或略小于可接受时间的情况下,仍然需要减小或增大离合器扭矩容量适应量,这导致发动机下次启动时所要使用的离合器扭矩容量适应量频繁地改变从而导致启动扭矩不稳定,并且导致存储装置中的数据频繁地改变,从而增大了该存储装置的擦写次数,进而缩短了该存储装置的寿命。
为便于更好地理解上述问题,以下结合图1至图5来进行详细阐述。
图1是相关技术中的一种混合动力汽车的动力总成的结构示意图。如图1所示,该混合动力汽车包括发动机(英文:engine)、P2模块和变速箱(英文:gearbox)。其中,P2模块包括k0离合器(英文:clutch)和驱动电机(英文:motor),P2模块位于发动机和变速箱之间,并且k0离合器位于发动机和驱动电机之间。
图2是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的示意图。如图2所示,发动机启动处理依次经历阶段P1、阶段P2和阶段P3,在整个发动机启动处理中,发动机的状态(即,发动机的控制器所发出的运行状态)依次为停止状态(英文:stop)、启动状态(英文:crank)和运转状态(英文:run)。
如图2所示,在阶段P1中,离合器扭矩容量以合理的速率增加至恒定离合器扭矩容量M,k0离合器部分接合以向发动机传递该恒定离合器扭矩容量,从而将发动机转速调整至低于驱动电机转速的阈值转速,在此期间,由于发动机尚未启动,因此发动机扭矩容量为0;在发动机转速高于该阈值转速时,进入阶段P2。
在阶段P2中,发动机启动(点火),离合器扭矩容量以合理的速率减小直至离合器完全打开,从而防止后续直接接合离合器导致的整车顿挫。由于发动机已经启动,因此发动机扭矩容量不为0,通过发动机扭矩容量来调整发动机转速。
在阶段P3中,离合器扭矩容量以合理的速率增加,k0离合器部分接合以向发动机传递离合器扭矩容量、从而将发动机转速调整至接近驱动电机转速,在发动机转速与驱动电机转速基本一致时,k0离合器完全接合,发动机转速曲线与驱动电机转速曲线基本重叠、即进行发动机转速同步处理。
然而,在某些情况下,例如,由于冷却水的温度低而导致发动机的摩擦扭矩大于平均值、或者由于磨损严重而导致k0离合器的实际扭矩小于所需要的扭矩,拉动发动机转速的合力(该合力=k0离合器的实际扭矩-发动机的摩擦扭矩)变得小于正常状态,这导致需要花费更多的时间才能够使发动机转速达到该阈值转速,从而导致发动机启动处理的总时间被延迟。更甚者,在某些极端情况下,由于发动机的摩擦扭矩大于k0离合器的实际扭矩,甚至无法拉高发动机转速,从而导致无法成功启动发动机。
为了确保发动机转速可以及时达到阈值转速,可以考虑适当增加恒定离合器扭矩容量M,示意性地,图3是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的示意图,如图3所示的,k0离合器使用较大的离合器扭矩容量M1来拉动发动机转速。具体地,在阶段P1中,向恒定离合器扭矩容量M增加通过自学习策略计算得出的离合器扭矩容量适应量△M以获得调整后的较大的离合器扭矩容量M1(即,M1=M+△M)。明显可见,使用自学习策略后,离合器扭矩容量从M增加到M1,发动机转速上升速率变快,能够在较短时间内达到阈值转速。
相关技术中,自学习策略包括:若发动机在本次启动中的启动时间过长,则增大用于发动机的本次启动的离合器扭矩容量适应量,并使用增大后的离合器扭矩容量适应量作为下次启动要使用的离合器扭矩容量适应量;若发动机在本次启动中的启动时间过短,则减小用于发动机的本次启动的离合器扭矩容量适应量,并使用减小后的离合器扭矩容量适应量作为下次启动要使用的离合器扭矩容量适应量。
在一种可能的实现方式中,若发动机在本次启动中的启动时间过长,则使用公式△M’=△M+△ML和公式△ML=KL*(T3–(T2+△t2))/t0来计算发动机下次启动时所要使用的离合器扭矩容量适应量△M’并对其进行存储,△M为发动机本次启动所使用的离合器扭矩容量适应量,△ML为要增加的扭矩容量,KL为扭矩调整系数,T2为能够接受的发动机启动时间,T2+△t2表示启动时间上限值,T3为发动机的本次启动的启动时间,t0为时间单位。
在一种可能的实现方式中,若发动机在本次启动中的启动时间过短,则使用公式△M’=△M-△Ms和公式△Ms=Ks*(T2-△t1–T1)/t0来计算发动机下次启动时所要使用的离合器扭矩容量适应量△M’并对其进行存储,△M为发动机本次启动所使用的离合器扭矩容量适应量,△Ms为要减少的扭矩容量,Ks为扭矩调整系数,T2为能够接受的发动机启动时间,T2-△t1表示启动时间下限值,T1为发动机的本次启动的启动时间,t0为时间单位。
图4是相关技术中的具有P2模块的混合动力汽车的发动机启动处理的启动时间的示意图。如图4所示,阈值扭矩容量为T0且阈值转速为N0,曲线L1、L2和L3分别对应于发动机的三次启动曲线,曲线L1、L2和L3各自的启动时间T1、T2和T3均为自离合器的扭矩容量达到阈值扭矩容量T0时起至发动机转速达到阈值转速N0为止的时间段,其中启动时间T1小于启动时间T2,并且启动时间T2小于启动时间T3。其中,启动时间T2是能够接受的发动机启动时间,启动时间上限值为T2+△t2,启动时间下限值为T2-△t1,因此,在启动时间大于启动时间下限值T2-△t1且小于启动时间上限值T2+△t2时,无需调整用于发动机的本次启动的离合器扭矩容量适应量。
图5是相关技术中的自学习过程涉及的离合器扭矩容量适应量的变化示意图,如图5所示,若采用上述自学习策略,则自学习计算出的离合器扭矩容量上下波动,其可能不够稳定、即稳定性可能较差。 具言之,若采用上述自学习策略,则如图5所示的,在发动机启动时间接近能够接受的发动机启动时间T2时,由于一些偶发因素例如发动机的工作温度的扰动,导致启动时间略大于T2或略小于T2,在该情况下按照上述自学习策略,仍然需要减小或增大离合器扭矩容量适应量,这导致发动机下次启动时所要使用的离合器扭矩容量适应量△M’频繁地改变,从而导致启动扭矩不稳定,该自学习策略的鲁棒性较差。另外,由于发动机下次启动时所要使用的离合器扭矩容量适应量△M’频繁地改变,因此用于存储△M’的存储装置例如EEPROM中的数据频繁地改变,增大了该存储装置的擦写次数,从而缩短了该存储装置的寿命。此外,由于发动机下次启动时所要使用的离合器扭矩容量适应量△M’的确定过程中不考虑发动机的工作温度这一偶发因素,这将导致确定出的离合器扭矩容量适应量△M’不是合适的离合器扭矩容量补偿值,不合适的△M’会导致车辆出现驾驶性能问题,如出现发动机启动时间短或过长问题。
为此,本申请提出一种混合动力汽车的发动机启动控制方法及装置,在完成发动机的本次启动后,判断发动机在本次启动中的启动时间数据是否满足预定条件;若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;根据所述第一系数确定是否需要调整用于发动机与该工作温度对应的离合器扭矩容量适应量;以及若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整该工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和该工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于该工作温度的下次启动。
由此,一方面,可避免频繁地调整离合器扭矩容量适应量,从而不仅可以有效避免由于频繁地调整离合器扭矩容量适应量而导致的启动扭矩不稳定,而且还可以有效避免由于频繁地调整离合器扭矩容量适应量而导致的存储装置中的数据频繁地改变,进而不仅可以增强离合器扭矩容量适应量的调整的鲁棒性,而且还可以降低该存储装置的擦写次数、由此可延长该存储装置的寿命;另一方面,由于在离合器扭矩容量适应量确定过程中,考虑了发动机的工作温度,使得离合器扭矩容量适应量可在不同的工作温度下收敛,消除发动机的工作温度对离合器扭矩容量适应量的影响,从而提高车辆的驾驶性能。
需要说明的是,本申请中的发动机的工作温度指的是发动机在该工作温度下运行,即发动机的环境运行温度。
为更好地理解本申请,以下结合图6所示的流程图来详细说明。
图6是根据一示例性实施例示出的一种混合动力汽车的发动机启动控制方法的流程图,该混合动力汽车可为HEV或PHEV,该混合动力汽车的动力总成的结构可采用图1所示的结构,具体地,该混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,该控制方法可以应用于混合动力汽车的混合动力控制单元(英文:Hybrid Control Unit,简称:HCU)。也就是说,HCU可采用本实施方式中的控制方法来实现混合动力汽车的发动机启动控制。
应能够理解,图6描述了对离合器扭矩容量适应量进行自学习的过程。每当完成发动机在当前温度的本次启动后就执行图6所示的方法,以确定发动机在不同工作温度的下次启动中所要使用的离合器扭矩容量适应量△M。如图6所示,该控制方法可以包括如下步骤。
在步骤S610中,在完成发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件。步骤S610对应于第一判断步骤。
本实施例中,在完成发动机的本次启动后,可获取能够表征在发动机的本次启动中所使用的离合器扭矩容量适应量是否合适的启动时间数据,该启动时间数据可包括但不限于发动机在本次启动中的启动时间、以及与发动机在本次启动中的启动时间有关的时间数据。
该启动时间数据满足预定条件可包括但不限于该启动时间数据落在能够接受的启动时间数据范围之外,即,在该启动时间数据大于该启动时间数据范围的上限值的情况下,或者在该启动时间数据小于该启动时间数据范围的下限值的情况下,该启动时间数据满足该预定条件,步骤S610中判断为“是”,执行下述步骤S620。
反之,在该启动时间数据不小于该启动时间数据范围的下限值并且不大于该启动时间数据范围的上限值的情况下,该启动时间数据不满足该预定条件,步骤S610中判断为“否”,执行下述步骤S650。
应能够理解,发动机在不同工作温度的首次启动中所使用的离合器扭矩容量适应量△M为0,即离合器扭矩容量适应量的初始值为0,可使用本实施例的方法来确定用于发动机在不同工作温度的非首次启动中的离合器扭矩容量适应量。
在步骤S620中,根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数。步骤S620对应于第一计算步骤。
本实施例中,可根据上述启动时间数据采用任意合适的算法来计算可用于表征发动机与所述工作温度对应的离合器扭矩容量适应量的自学习的急迫程度的第一系数,以便于在下述步骤S630中可根据所计算出的第一系数来确定是否需要对用于发动机与所述工作温度对应的离合器扭矩容量适应量进行自学习。
在步骤S630中,根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量。步骤S630对应于第二判断步骤。
本实施例中,若在步骤S620中计算出的第一系数表征发动机与所述工作温度对应的离合器扭矩容量适应量的自学习的急迫程度高,例如第一系数落入系数范围之外,则表示需要对发动机与所述工作温度对应的离合器扭矩容量适应量进行自学习,即,需要调整该离合器扭矩容量适应量,亦即,步骤S630中判断为“是”,执行下述步骤S640。
若在步骤S620中计算出的第一系数表征发动机与所述工作温度对应的离合器扭矩容量适应量的自学习的急迫程度低,例如第一系数落入系数范围之内,则表示无需对发动机与所述工作温度对应的离合器扭矩容量适应量进行自学习,即,无需调整该离合器扭矩容量适应量,亦即,步骤S630中判断为“否”,执行下述步骤S650。
在步骤S640中,根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。步骤S640对应于调整步骤。
本实施例中,可在完成发动机的本次启动后,根据基于启动时间数据所计算出的第一系数以及预定补偿量来调整用于发动机与本次启动时的工作温度对应的离合器扭矩容量适应量,并存储所述工作 温度和与其对应的调整后的离合器扭矩容量适应量,该调整后的离合器扭矩容量适应量作为发动机对应于所述工作温度的下次启动中要使用的离合器扭矩容量适应量。
其中,预定补偿量可以是预设值,例如可以是工程师预先标定的值,示例性的,预定补偿量一般可取值为3-5Nm。当然,应能够理解,预定补偿量还可以是结合发动机历史启动相关数据并采用相应算法计算出的值,本实施例对预定补偿量的设置方式和具体取值不作具体限定,本领域技术人员在本实施例的基础上,完全可以根据实际应用需求采用其他任意合适的方式以及任意合适的取值作为该预定补偿量。
在一种可能的实现方式中,可通过如下方式来根据第一系数和预定补偿量来调整用于发动机对应于所述工作温度的下次启动的离合器扭矩容量适应量:获取第一系数与调整方向(减少/增加)之间的对应关系表,在该对应关系表中查找与启动时间数据相对应的调整方向,根据所查找到的调整方向和该预定补偿量来调整用于发动机与所述工作温度对应的离合器扭矩容量适应量。
在一种可能的实现方式中,也可通过如下方式来根据第一系数和预定补偿量来调整用于发动机对应于所述工作温度的下次启动的离合器扭矩容量适应量:获取第一系数与用于调整前述离合器扭矩容量适应量的算法之间的对应关系表,在该对应关系表中查找与第一系数相对应的算法,根据该预定补偿量并使用所查找到的算法来计算用于调整前述离合器扭矩容量适应量的调整量,使用该调整量来调整前述离合器扭矩容量适应量。
在步骤S650中,存储用于发动机与所述工作温度对应的离合器扭矩容量适应量。
由于发动机在每次启动时的工作温度都不是固定不变的,当发动机在不同工作温度完成启动的启动次数大于预设次数时,发动机的多个工作温度可形成一个工作温度数组,由于每个不同的工作温度都对应存储一个离合器扭矩容量适应量,因此,与工作温度数组对应的设置有离合器扭矩容量数组,离合器扭矩容量数组中的值与工作温度数组中的值一一对应。
本实施例中,发动机在目标温度启动之前,在离合器扭矩容量数组中确定出与该目标温度对应的离合器扭矩容量用于发动机在该目标温度下的启动,并利用上述图6所示的发动机启动控制方法判定是否需要调整用于所述发动机与所述目标温度对应的离合器扭矩容量适应量,若需要调整用于所述发动机与所述目标温度对应的离合器扭矩容量适应量,则将目标温度对应的离合器扭矩容量调整为更新后的离合器扭矩容量;若不需要调整用于所述发动机与所述目标温度对应的离合器扭矩容量适应量,则保持目标温度对应的离合器扭矩容量适应量不变。
本实施例中,若当前温度下的本次启动中所使用的离合器扭矩容量适应量无需调整时,可直接存储本次启动中所使用的离合器扭矩容量适应量作为对应于所述工作温度的下次启动中所要使用的离合器扭矩容量适应量。
本实施例的混合动力汽车的发动机启动控制方法,在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所 述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,由此,可避免频繁地调整离合器扭矩容量适应量,从而可有效避免由于频繁地调整离合器扭矩容量适应量而导致的启动扭矩不稳定,进而可以增强离合器扭矩容量适应量的调整的鲁棒性。此外,由于可避免频繁地调整离合器扭矩容量适应量,因此可有效避免由于频繁地调整离合器扭矩容量适应量而导致的存储装置中的数据频繁地改变,进而可以降低该存储装置的擦写次数,由此可延长该存储装置的寿命。
另一方面,由于在离合器扭矩容量适应量确定过程中,考虑发动机的工作温度,使得离合器扭矩容量适应量可在不同的工作温度下收敛,消除了工作温度对离合器扭矩容量适应量的影响,从而提高车辆的驾驶性能。
图7是应用本实施例与相关技术的发动机启动控制方法后的自学习过程涉及的离合器扭矩容量适应量在不同温度下收敛的示意图。如图7所示,发动机在不同工作温度下运行时,发动机启动过程中涉及的离合器扭矩容量适应量不是固定不变的,发动机的工作温度直接影响离合器扭矩容量适应量的大小,例如,在图7中,当发动机在大约D1的温度下工作时,相应的发动机的离合器扭矩容量适应量是ΔM1,当发动机在大约D3的温度下工作时,相应的发动机的离合器扭矩容量适应量是ΔM3,对于某些车辆而言,ΔM1和ΔM3之间的差值太大,不应忽略不计。与采用现有技术中的自学习策略来调整发动机本次启动中所使用的离合器扭矩容量适应量的情况相比,在采用本实施例的自学习策略来调整该离合器扭矩容量适应量的情况下,使得离合器扭矩容量适应量在不同工作温度下收敛,考虑发动机的工作温度确定出更加合理恰当的离合器扭矩容量适应量,从而提高驾驶性能。
在一种可能的实现方式中,所述启动时间数据可以包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间,其中,在所述启动时间大于启动时间上限值的情况下或者在所述启动时间小于启动时间下限值的情况下,所述第一判断步骤判断为所述启动时间数据满足所述预定条件。
本实施例中,发动机在当前温度下的本次启动中的启动时间数据可以包括发动机在本次启动中的启动时间,该启动时间表示:在发动机的本次启动期间,自离合器的扭矩容量达到阈值扭矩容量时起至发动机的转速达到阈值转速为止的时间。相应地,若该启动时间大于启动时间上限值或者该启动时间小于启动时间下限值,则在步骤S610中判断为“是”,反之,若该启动时间不小于启动时间下限值并且该启动时间不大于启动时间上限值,则在步骤S610中判断为“否”。
由于发动机通常在一定的温度范围内工作,发动机的工作温度的取值是离散的,在发动机的启动次数比较多时,对应的工作温度的取值也比较多,为了节省存储装置的存储容量,本申请中预先设置一个能够与发动机的工作温度相对应的工作温度数组,该工作温度数组中的温度值为预先设置的离散的温度值,该工作温度数组中包括n个预设的温度值(n为大于2的正整数),该工作温度数组中的最小值和最大值与发动机的工作温度的临界值相当。该工作温度数组中的温度值可以按照从低到高的顺序进行排列,也可以按照从高到低的顺序排列,可采用任意合适的算法在该工作温度数组中确定出与所述工作温度对应的第一温度。
在一种可能的实现方式中,步骤S620可包括:根据预先设置的工作温度数组计算所述工作温度在所述工作温度数组中对应的第一温度;根据所述启动时间数据和能够接受的发动机启动时间来计算所 述第一温度对应的系数作为所述第一系数。
由于第一温度来源于预设的工作温度数组,第一系数与第一温度对应存在,因此与工作温度数组对应的设置有第一系数数组,第一系数数组中的值都与工作温度数组中的值一一对应。
本实施例中,可通过比较工作温度数组中两个相邻温度值的均值与所述工作温度的大小,得到所述工作温度在所述工作温度数组中对应的第一温度。
在一种可能的实现方式中,若本次启动时的工作温度与所述工作温度数组中的某个预设的温度值的大小相同,则直接将该预设的温度值(即所述工作温度)确定为第一温度。
在一种可能的实现方式中,若本次启动时的工作温度小于工作温度数组中两个最小的温度值的均值,则将所述工作温度对应的第一温度确定为工作温度数组中的最小的温度值;若所述工作温度大于工作温度数组中两个最大的温度值的均值,则将所述工作温度对应的第一温度确定为工作温度数组中的最大的温度值;若所述工作温度大于工作温度数组中第i个温度值与之前相邻的第i-1个温度值的均值,并小于第i个温度值与之后相邻的第i+1个温度值的均值,则将第一温度确定为第i个温度值。
例如,工作温度数组用D[D1,D2,……Dn]表示,若工作温度数组中的温度值按照从小到大的顺序排列,本次启动时的工作温度用Dx表示:若Dx<(D1+D2)/2,则x=1,表示所述工作温度在工作温度数组中对应的第一温度是D1;若Dx>(Dn-1+Dn)/2,则x=n,表示所述工作温度在工作温度数组中对应的第一温度是Dn;若(Di-1+Di)/2<Dx<=(Di+D(i+1))/2,则x=i,i是大于1小于n的整数值,表示所述工作温度在工作温度数组中对应的第一温度是Di。
在一种可能的实现方式中,若本次启动时的工作温度小于工作温度数组中最小的温度值的均值,则将所述工作温度对应的第一温度确定为工作温度数组中的最小的温度值;若所述工作温度大于工作温度数组中最大的温度值,则将所述工作温度对应的第一温度确定为工作温度数组中的最大的温度值;若所述工作温度大于工作温度数组中第i个温度值,并小于之后相邻的第i+1个温度值,则将第一温度确定为第i个温度值。
例如,工作温度数组用D[D1,D2,……Dn]表示,若工作温度数组中的温度值按照从小到大的顺序排列,本次启动时的工作温度用Dx表示:若Dx<D1,则x=1,表示所述工作温度在工作温度数组中对应的第一温度是D1;若Dx>Dn,则x=n,表示所述工作温度在工作温度数组中对应的第一温度是Dn;若Di<Dx<=D(i+1),则x=i,i是大于1小于n的整数值,表示所述工作温度在工作温度数组中对应的第一温度是Di。
在上述实现方式中,示例性的,工作温度数组中的温度值按照从小到大的顺序排列。当然,工作温度数组中的温度值若按照从大到小的顺序排列时,在确定第一温度时直接将逻辑判断中的大于和小于进行互换即可。
值得一提的是,上述在工作温度数组中确定本次启动时的工作温度对应的第一温度的实现方式仅为示例性说明,可根据所述工作温度和工作温度数组中的温度值采用相关算法来确定与所述工作温度匹配的第一温度,例如,将工作温度数组中与所述工作温度的差值最小的温度值确定为第一温度,本申请对此不作具体限定,只要能够确定出与所述工作温度匹配的第一温度即可。
本实施例中,可根据上述启动时间数据和能够接受的发动机启动时间并采用相关算法来计算第一 温度对应的系数得到第一系数。
需要说明的是,由于工作温度数组中的每个温度值都对应一个第一系数,本实施例中对应工作温度数组设置第一系数数组,第一系数数组的值与工作温度数组中的值一一对应。
在一种可能的实现方式中,可使用公式Kx=Kx’+Gu+Gd来计算与第一温度对应的第一系数Kx,其中,若发动机在本次启动中的启动时间过长(例如,该启动时间大于启动时间上限值),则可使用公式Gu=Rond((T3–(T2+△t2))/t0)来计算Gu;若发动机在本次启动中的启动时间过短(例如,该启动时间小于启动时间下限值),则可使用公式Gd=Rond((T1–(T2-△t1))/t0)来计算Gd。
其中,Kx’为第一系数数组中第x个第一系数Kx,即与本次启动前一次启动中确定的第一温度对应的第一系数,T2为能够接受的发动机启动时间,T2+△t2表示启动时间上限值,T3为发动机的本次启动的启动时间,t0为时间单位,T2-△t1表示启动时间下限值,T1为发动机的本次启动的启动时间,Rond()为取整函数,Gu为正整数,Gd为负整数。
在一种可能的实现方式中,步骤S630包括:判断所述第一系数是否大于第一系数上限值或者小于第一系数下限值;在所述第一系数大于第一系数上限值的情况下或者在所述第一系数小于第一系数下限值的情况下,判断为需要调整用于所述发动机与本次启动时的工作温度对应的离合器扭矩容量适应量。
本实施例中,若第一系数大于第一系数上限值或者第一系数小于第一系数下限值,则该第一系数表征发动机与所述工作温度对应的离合器扭矩容量适应量的自学习的急迫程度高,需要对发动机与所述工作温度对应的离合器扭矩容量适应量进行自学习,步骤S630中判断为“是”。否则,若第一系数不小于第一系数下限值并且不大于第一系数上限值,则该第一系数表征发动机与所述工作温度对应的离合器扭矩容量适应量的自学习的急迫程度低,无需对发动机与所述工作温度应的离合器扭矩容量适应量进行自学习,步骤S630中判断为“否”。
在一种可能的实现方式中,步骤S640可包括:根据所述第一系数确定扭矩调整方向;按照所述扭矩调整方向,使所述工作温度对应的离合器扭矩容量适应量调整了所述预定补偿量。
本实施例中,若第一系数Kx大于第一系数上限值Ku,则表示启动时间太长、离合器所传递的目标离合器扭矩容量太小,因此,需要增大发动机的本次启动中与所述工作温度对应的离合器扭矩容量适应量,因而确定为扭矩调整方向为上调,并且使用于发动机与所述工作温度对应的离合器扭矩容量适应量增加预定补偿量,即,△Mx’=△Mx+△M0,其中,△Mx’表示调整后的离合器扭矩容量适应量,△Mx表示用于发动机与所述工作温度对应的离合器扭矩容量适应量,△M0表示预定补偿量,其可由工程师来标定,Ku表示第一系数的上限值,其可由工程师来标定。
若第一系数Kx小于第一系数下限值Kd,则表示启动时间太短、离合器所传递的目标离合器扭矩容量太大,因此,需要减小发动机的本次启动中与第一温度对应的离合器扭矩容量适应量,因而确定为扭矩调整方向为下调,并且使用于发动机与所述工作温度对应的离合器扭矩容量适应量减少预定补偿量,即,△Mx’=△Mx-△M0,其中,△Mx’表示调整后的离合器扭矩容量适应量,△Mx表示用于发动机与所述工作温度对应的离合器扭矩容量适应量,△M0表示预定补偿量,其可由工程师来标定,Kd表示第一系数的下限值,其可由工程师来标定。
需要说明的是,在调整了离合器扭矩容量适应量后,需要将第一系数Kx初始化为0,在确定无需调整离合器扭矩容量适应量后,需要将第一系数Kx保持先前计算出来的值。亦即,发动机的每次启动中,只有在步骤S610中判断为需要计算第一系数Kx的情况下(即,该次启动中的启动时间数据满足预定条件)才计算第一系数Kx,并且第一系数Kx的初始值均为0。
以下描述作为本实施例的自学习策略的具体示例。
工作温度数组D[D1,D2,……Dn],自学习策略中涉及的第一系数数组K[K1,K2,……Kn],自学习策略中涉及的离合器扭矩容量适应量数组M[△M1,△M2,……△Mn],三个数组中的值一一对应。
计算中间变量Gu和Gd。具体地,若发动机在工作温度Dx的本次启动中的启动时间大于启动时间上限值,则使用公式Gu=Rond((T3–(T2+△t2))/t0)来计算Gu;若发动机在工作温度Dx的本次启动中的启动时间小于启动时间下限值,则使用公式Gd=Rond((T1–(T2-△t1))/t0)来计算Gd。
若自学习过程激活,即,若发动机在工作温度Dx的本次启动中的启动时间大于启动时间上限值或者小于启动时间下限值,则确定所述工作温度Dx在工作温度数组中对应的第一温度。
如图8所示,图8是所述工作温度DX的一个示例性示意图,所述工作温度DX满足:(D1+D2)/2<Dx<=(D2+D3)/2,因此x的取值为2。使用公式K2=K2’+Gu+Gd来计算与第一温度对应的第一系数K2,K2’为上一次启动后D2温度对应的第一系数K2。
若第一系数K2>第一系数上限值Ku,则使用公式△M2=△M2’+△M0来计算调整后的离合器扭矩容量适应量并对其进行存储,同时,使第一系数K2清零;若第一系数K2<第一系数下限值Kd,则使用公式△M2=△M2’-△M0来计算调整后的离合器扭矩容量适应量并对其进行存储,同时,使第一系数K2清零;若第一系数下限值Kd≤第一系数K2≤第一系数上限值Ku,则不调整离合器扭矩容量适应量并且保持第一系数K2不变,即为本次启动后计算的K2值。
示例性的,由于发动机经过无数次不同工作温度的启动,导致离合器扭矩容量适应量数组M成为一个调整后的阵列,发动机在下次启动的离合器扭矩容量适应量△M可以根据离合器扭矩容量适应量数组△M来确定。
在一种可能的实现方式中,上述发动机启动控制方法还包括:
在进行所述发动机与目标温度对应的下次启动期之前,根据存储的离合器扭矩容量适应量数组和工作温度数组的对应关系,计算所述目标温度的目标离合器扭矩容量适应量,并根据离合器基本扭矩容量和所述目标离合器扭矩容量适应量,计算开始向所述发动机供给燃料时的目标离合器扭矩容量;
在进行所述发动机与所述目标温度对应的下次启动期间,在所述离合器的扭矩容量达到所述目标离合器扭矩容量且所述发动机的转速达到预定转速时,开始向所述发动机供给燃料。
具体的,如图9所示,图9是离合器扭矩容量适应量△M的计算示意图。若发动机的下次启动的目标温度为Dy,通过下列方式确定发动机在Dy温度下的目标离合器扭矩容量适应量△M:若Dy<D1,y=1,则△M=△M1;若Dy>Dn,y=n,则△M=△Mn;若Di<Dy<=D(i+1),y=i,i是大于1小于n的整数值,则△M=(Dy-Di)/(D(i+1)-Di)*△M(i+1)+(D(i+1)-Dy)/(D(i+1)-Di)*△Mi。
因此,引入根据发动机在本次启动中的启动时间数据和能够接受的启动时间数据所计算出的中间 变量Gu和Gd来计算用于表征发动机本次启动需要自学习的急迫程度,只要在累计自学习的急迫程度K达到上限值Ku以上或达到下限值Kd以下的情况下,才调整用于发动机在本次启动时的工作温度对应的离合器扭矩容量适应量。具体如图8所示的,相较于现有技术中的离合器扭矩容量适应量△M的曲线频繁地波动,本实施例的离合器扭矩容量适应量△M的曲线并未波动,更重要的是,通过上述自学习策略使得离合器扭矩容量适应量△M在不同工作温度下收敛,消除发动的工作温度对离合器扭矩容量适应量△M的影响,提高车辆的驾驶性能。
本实施例中,在计算向发动机供给燃料时的目标离合器扭矩容量时引入了离合器基本扭矩容量。可以根据离合器基本扭矩容量和目标离合器扭矩容量适应量,采用包括但不限于加法等的相应算法来计算在发动机的下次启动中开始向发动机供给燃料时的目标离合器扭矩容量。
在一种可能的实现方式中,可根据发动机的阻力矩来确定离合器基本扭矩容量。具体地,可通过如下方式来确定离合器基本扭矩容量:获取影响发动机的阻力矩的相关信息,其中该相关信息包括发动机的冷却水温度;根据该相关信息,确定发动机的阻力矩;根据所确定的阻力矩,确定离合器基本扭矩容量。
由于包括但不限于发动机的冷却水温度的相关信息会影响发动机的阻力矩,例如,冷却水温度越低,发动机的阻力矩越大,因此,可以根据相关信息来确定发动机的阻力矩,再根据所确定的阻力矩来确定基本离合器扭矩容量。在一种可能的实现方式中,可以使用冷却水温度传感器来检测冷却水温度,并且可以获取冷却水温度传感器所检测到的冷却水温度。
在进行发动机的下次启动期间,可监测离合器扭矩容量是否降低至所计算出的目标离合器扭矩容量以及发动机转速是否达到阈值转速;在监测到离合器扭矩容量降低至该目标离合器扭矩容量且发动机转速达到该阈值转速时,例如向包括燃料箱和喷油器的燃料进给装置发送用于开始向发动机供给燃料的命令;响应于接收到该命令,燃料进给装置开始向发动机供给燃料。
本实施例的混合动力汽车的发动机启动控制方法,在完成发动机的不同工作温度下的每次启动后,在发动机在本次启动中的启动时间数据满足预定条件的情况下,根据该启动时间数据计算与本次启动时的工作温度对应的第一系数,根据该第一系数来确定是否需要调整用于发动机与所述工作温度对应的离合器扭矩容量适应量,并且只有在根据该第一系数确定为需要调整离合器扭矩容量适应量的情况下才调整离合器扭矩容量适应量,并存储调整后的离合器扭矩容量适应量和与之对应的工作温度,形成离合器扭矩容量适应量数组和工作温度数组,在进行发动机对应于目标温度的下次启动期间,根据存储的离合器扭矩容量适应量数组和工作温度数组计算对应目标温度的目标离合器扭矩容量,在离合器的扭矩容量达到所计算出的目标离合器扭矩容量且发动机转速达到阈值转速时,开始向发动机供给燃料,这样,由于所使用的目标离合器扭矩容量是基于调整后的离合器扭矩容量适应量而计算出的,因此发动机在目标温度的下次启动中所使用的目标离合器扭矩容量总是合理的,从而使得在发动机在目标温度的下次启动中发动机转速能够及时地达到阈值转速,进而能够及时地完成发动机启动处理,由于发动机的不同工作温度对应的调整后的离合器扭矩容量适应量是不同的,能够消除发动机的工作温度对离合器扭矩容量适应量的影响,提高车辆驾驶性能。
图10是根据一示例性实施例示出的一种混合动力汽车的发动机启动控制装置的框图,该混合动力 汽车可为HEV或PHEV,该混合动力汽车的动力总成的结构可采用图1所示的结构,具体地,该混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器。该控制装置1000可以应用于混合动力汽车的混合动力控制单元HCU。如图10所示,该控制装置1000可以包括第一判断模块1010、第一计算模块1020、第二判断模块1030和调整模块1040。
第一判断模块1010,用于在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;第一计算模块1020与第一判断模块1010连接,用于若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数。
第二判断模块1030与第一计算模块1020连接,用于根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;调整模块1040与第二判断模块1030连接,用于若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。
在一种可能的实现方式中,所述第一计算模块1020被配置为:根据预先设置的工作温度数组计算所述工作温度在所述工作温度数组中对应的第一温度;根据所述启动时间数据和能够接受的发动机启动时间来计算所述第一温度对应的系数作为所述第一系数,其中,所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间。
在一种可能的实现方式中,所述第一计算模块1020被配置为:将所述工作温度数组中的温度值与所述工作温度进行比较,得到所述工作温度在所述工作温度数组中对应的第一温度。
在一种可能的实现方式中,所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间,其中,在所述启动时间大于启动时间上限值的情况下或者在所述启动时间小于启动时间下限值的情况下,所述第一判断模块判断为所述启动时间数据满足所述预定条件。
在一种可能的实现方式中,所述第二判断模块1030被配置为:判断所述第一系数是否大于第一系数上限值或者小于第一系数下限值;在所述第一系数大于第一系数上限值的情况下或者在所述第一系数小于第一系数下限值的情况下,判断为需要调整所述离合器扭矩容量适应量。
在一种可能的实现方式中,所述调整模块1040被配置为:根据所述第一系数确定扭矩调整方向;按照所述扭矩调整方向,使所述工作温度对应的离合器扭矩容量适应量调整了所述预定补偿量。
在一种可能的实现方式中,所述调整模块1040被配置为:若所述第一系数大于所述第一系数上限值,则确定为所述扭矩调整方向为上调,并且使所述工作温度对应的离合器扭矩容量适应量增加所述预定补偿量;若所述第一系数小于所述第一系数下限值,则确定为所述扭矩调整方向为下调,并且使所述工作温度对应的离合器扭矩容量适应量减少所述预定补偿量。
在一种可能的实现方式中,上述控制装置1000还可以包括:第二计算模块(未示出),用于在进行所述发动机与目标温度对应的下次启动期之前,根据存储的离合器扭矩容量适应量数组和工作温度 数组的对应关系,计算所述目标温度的目标离合器扭矩容量适应量,并根据离合器基本扭矩容量和所述目标离合器扭矩容量适应量,计算开始向所述发动机供给燃料时的目标离合器扭矩容量;启动模块(未示出),用于在进行所述发动机与所述目标温度对应的下次启动期间,在所述离合器的扭矩容量达到所述目标离合器扭矩容量且所述发动机的转速达到预定转速时,开始向所述发动机供给燃料。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (16)

  1. 一种混合动力汽车的发动机启动控制方法,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,其特征在于,所述发动机启动控制方法包括:
    第一判断步骤,用于在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;
    第一计算步骤,用于若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;
    第二判断步骤,用于根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;以及
    调整步骤,用于若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。
  2. 根据权利要求1所述的发动机启动控制方法,其特征在于,所述第一计算步骤包括:
    根据预先设置的工作温度数组计算所述工作温度在所述工作温度数组中对应的第一温度;
    根据所述启动时间数据和能够接受的发动机启动时间来计算所述第一温度对应的系数作为所述第一系数,其中,所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间。
  3. 根据权利要求2所述的发动机启动控制方法,其特征在于,所述第一计算步骤包括:
    将所述工作温度数组中的温度值与所述工作温度进行比较,得到所述工作温度在所述工作温度数组中对应的第一温度。
  4. 根据权利要求1所述的发动机启动控制方法,其特征在于,
    所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间,
    其中,在所述启动时间大于启动时间上限值的情况下或者在所述启动时间小于启动时间下限值的情况下,所述第一判断步骤判断为所述启动时间数据满足所述预定条件。
  5. 根据权利要求1所述的发动机启动控制方法,其特征在于,所述第二判断步骤包括:
    判断所述第一系数是否大于第一系数上限值或者小于第一系数下限值;
    在所述第一系数大于第一系数上限值的情况下或者在所述第一系数小于第一系数下限值的情况下,判断为需要调整所述离合器扭矩容量适应量。
  6. 根据权利要求5所述的发动机启动控制方法,其特征在于,所述调整步骤包括:
    根据所述第一系数确定扭矩调整方向;
    按照所述扭矩调整方向,使所述工作温度对应的离合器扭矩容量适应量调整了所述预定补偿量。
  7. 根据权利要求6所述的发动机启动控制方法,其特征在于,所述调整步骤包括:
    若所述第一系数大于所述第一系数上限值,则确定为所述扭矩调整方向为上调,并且使所述工作温度对应的离合器扭矩容量适应量增加所述预定补偿量;
    若所述第一系数小于所述第一系数下限值,则确定为所述扭矩调整方向为下调,并且使所述工作温度对应的离合器扭矩容量适应量减少所述预定补偿量。
  8. 根据权利要求1至7中任一项所述的发动机启动控制方法,其特征在于,在所述调整步骤之后还包括:
    第二计算步骤,用于在进行所述发动机与目标温度对应的下次启动期之前,根据存储的离合器扭矩容量适应量数组和工作温度数组的对应关系,计算所述目标温度的目标离合器扭矩容量适应量,并根据离合器基本扭矩容量和所述目标离合器扭矩容量适应量,计算开始向所述发动机供给燃料时的目标离合器扭矩容量;
    启动步骤,用于在进行所述发动机与所述目标温度对应的下次启动期间,在所述离合器的扭矩容量达到所述目标离合器扭矩容量且所述发动机的转速达到预定转速时,开始向所述发动机供给燃料。
  9. 一种混合动力汽车的发动机启动控制装置,所述混合动力汽车包括发动机、驱动电机、以及设置在所述发动机和所述驱动电机之间的离合器,其特征在于,所述发动机启动控制装置包括:
    第一判断模块,用于在完成所述发动机的本次启动后,判断所述发动机在本次启动中的启动时间数据是否满足预定条件;
    第一计算模块,用于若判断为所述启动时间数据满足所述预定条件,则根据所述启动时间数据计算与所述发动机的本次启动时的工作温度相对应的第一系数;
    第二判断模块,用于根据所述第一系数确定是否需要调整用于所述发动机与所述工作温度对应的离合器扭矩容量适应量;以及
    调整模块,用于若判断为需要调整所述离合器扭矩容量适应量,则根据所述第一系数和预定补偿量来调整所述工作温度对应的所述离合器扭矩容量适应量,并对调整后的离合器扭矩容量适应量和所述工作温度进行对应存储,其中调整后的离合器扭矩容量适应量用于所述发动机对应于所述工作温度的下次启动。
  10. 根据权利要求9所述的发动机启动控制装置,其特征在于,所述第一计算模块被配置为:
    根据预先设置的工作温度数组计算所述工作温度在所述工作温度数组中对应的第一温度;
    根据所述启动时间数据和能够接受的发动机启动时间来计算所述第一温度对应的系数作为所述第一系数,其中,所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间。
  11. 根据权利要求10所述的发动机启动控制装置,其特征在于,所述第一计算模块被配置为:
    将所述工作温度数组中的温度值与所述工作温度进行比较,得到所述工作温度在所述工作温度数组中对应的第一温度。
  12. 根据权利要求9所述的发动机启动控制装置,其特征在于,
    所述启动时间数据包括:在所述发动机的本次启动期间,自所述离合器的扭矩容量达到阈值扭矩容量时起至所述发动机的转速达到阈值转速为止的启动时间,
    其中,在所述启动时间大于启动时间上限值的情况下或者在所述启动时间小于启动时间下限值的情况下,所述第一判断模块判断为所述启动时间数据满足所述预定条件。
  13. 根据权利要求9所述的发动机启动控制装置,其特征在于,所述第二判断模块被配置为:
    判断所述第一系数是否大于第一系数上限值或者小于第一系数下限值;
    在所述第一系数大于第一系数上限值的情况下或者在所述第一系数小于第一系数下限值的情况下,判断为需要调整所述离合器扭矩容量适应量。
  14. 根据权利要求13所述的发动机启动控制装置,其特征在于,所述调整模块被配置为:
    根据所述第一系数确定扭矩调整方向;
    按照所述扭矩调整方向,使所述工作温度对应的离合器扭矩容量适应量调整了所述预定补偿量。
  15. 根据权利要求14所述的发动机启动控制装置,其特征在于,所述调整模块被配置为:
    若所述第一系数大于所述第一系数上限值,则确定为所述扭矩调整方向为上调,并且使所述工作温度对应的离合器扭矩容量适应量增加所述预定补偿量;
    若所述第一系数小于所述第一系数下限值,则确定为所述扭矩调整方向为下调,并且使所述工作温度对应的离合器扭矩容量适应量减少所述预定补偿量。
  16. 根据权利要求9至15中任一项所述的发动机启动控制装置,其特征在于,还包括:
    第二计算模块,用于在进行所述发动机与目标温度对应的下次启动期之前,根据存储的离合器扭矩容量适应量数组和工作温度数组的对应关系,计算所述目标温度的目标离合器扭矩容量适应量,并根据离合器基本扭矩容量和所述目标离合器扭矩容量适应量,计算开始向所述发动机供给燃料时的目标离合器扭矩容量;
    启动模块,用于在进行所述发动机与所述目标温度对应的下次启动期间,在所述离合器的扭矩容量达到所述目标离合器扭矩容量且所述发动机的转速达到预定转速时,开始向所述发动机供给燃料。
PCT/CN2021/100935 2021-06-18 2021-06-18 混合动力汽车的发动机启动控制方法及装置 WO2022261946A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/100935 WO2022261946A1 (zh) 2021-06-18 2021-06-18 混合动力汽车的发动机启动控制方法及装置
CN202180099549.9A CN117500706A (zh) 2021-06-18 2021-06-18 混合动力汽车的发动机启动控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100935 WO2022261946A1 (zh) 2021-06-18 2021-06-18 混合动力汽车的发动机启动控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022261946A1 true WO2022261946A1 (zh) 2022-12-22

Family

ID=84526078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100935 WO2022261946A1 (zh) 2021-06-18 2021-06-18 混合动力汽车的发动机启动控制方法及装置

Country Status (2)

Country Link
CN (1) CN117500706A (zh)
WO (1) WO2022261946A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061678A1 (ja) * 2011-10-28 2013-05-02 日産自動車株式会社 ハイブリッド車両の制御装置
CN105059104A (zh) * 2015-07-31 2015-11-18 奇瑞汽车股份有限公司 混合动力汽车驱动***及其发动机启动控制方法
CN105492276A (zh) * 2013-09-13 2016-04-13 加特可株式会社 混合动力车的控制装置
JP2019025985A (ja) * 2017-07-27 2019-02-21 日産自動車株式会社 ハイブリッド車両のエンジンの始動制御装置および始動制御方法
CN110040130A (zh) * 2018-01-15 2019-07-23 福特全球技术公司 使用变矩器离合器容量估计的混合动力车辆控制
CN111824111A (zh) * 2019-04-22 2020-10-27 福特全球技术公司 用于混合动力车辆起步的方法和***
CN112519750A (zh) * 2019-09-03 2021-03-19 舍弗勒技术股份两合公司 混合动力汽车的发动机启动控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061678A1 (ja) * 2011-10-28 2013-05-02 日産自動車株式会社 ハイブリッド車両の制御装置
CN105492276A (zh) * 2013-09-13 2016-04-13 加特可株式会社 混合动力车的控制装置
CN105059104A (zh) * 2015-07-31 2015-11-18 奇瑞汽车股份有限公司 混合动力汽车驱动***及其发动机启动控制方法
JP2019025985A (ja) * 2017-07-27 2019-02-21 日産自動車株式会社 ハイブリッド車両のエンジンの始動制御装置および始動制御方法
CN110040130A (zh) * 2018-01-15 2019-07-23 福特全球技术公司 使用变矩器离合器容量估计的混合动力车辆控制
CN111824111A (zh) * 2019-04-22 2020-10-27 福特全球技术公司 用于混合动力车辆起步的方法和***
CN112519750A (zh) * 2019-09-03 2021-03-19 舍弗勒技术股份两合公司 混合动力汽车的发动机启动控制方法及装置

Also Published As

Publication number Publication date
CN117500706A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US20080157539A1 (en) Electrical power supply system for motor vehicle
US7473206B2 (en) Engine controller and control method
KR101836611B1 (ko) 연료전지차량의 시동 제어방법
US8065065B2 (en) Lock-up control for torque converter
US6990953B2 (en) Idle rotation control of an internal combustion engine
EP1911650A1 (en) Mode Change Control System for a Hybrid Vehicle
US9592824B1 (en) Method and device for learning engine clutch kiss point of hybrid vehicle
US11148553B2 (en) Apparatus for controlling temperature of fuel cell and method thereof
US8924129B2 (en) Fuel pump control device for an internal combustion engine
US9174628B2 (en) Method and apparatus for controlling an electrically powered hydraulic pump in a powertrain system
US10173665B2 (en) Transmission control method
CN108278359B (zh) 变速箱低温蠕动控制方法及***
WO2022261946A1 (zh) 混合动力汽车的发动机启动控制方法及装置
US10094436B2 (en) Method of controlling damper clutch through learning
US9316274B2 (en) Method for operating a powertrain in a motor vehicle
CN113202645A (zh) 一种怠速控制方法及装置、节油器、芯片及车辆
CN112519750A (zh) 混合动力汽车的发动机启动控制方法及装置
CN115214601A (zh) 混合动力汽车的发动机启动控制方法及装置
CN114074647A (zh) 混合动力汽车的发动机滑行启动控制方法及装置
WO2022094902A1 (zh) 混合动力汽车的发动机启动控制方法及装置
US20220136450A1 (en) System for variably controlling engine-on line in consideration of cooling after fatc engine is turned on
US20210277987A1 (en) Control System for Opportunistic Heating of Transmission Fluid
CN114126938A (zh) 混合动力车辆控制方法以及混合动力车辆控制装置
US20230024414A1 (en) Device for controlling charging of hydrogen tank for vehicle
WO2022252119A1 (zh) 混合动力汽车的发动机启动控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099549.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945531

Country of ref document: EP

Kind code of ref document: A1