WO2022261893A1 - 数据传输处理方法、装置、终端及存储介质 - Google Patents

数据传输处理方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022261893A1
WO2022261893A1 PCT/CN2021/100587 CN2021100587W WO2022261893A1 WO 2022261893 A1 WO2022261893 A1 WO 2022261893A1 CN 2021100587 W CN2021100587 W CN 2021100587W WO 2022261893 A1 WO2022261893 A1 WO 2022261893A1
Authority
WO
WIPO (PCT)
Prior art keywords
sdt
rsrp
ssb
rsrp threshold
threshold
Prior art date
Application number
PCT/CN2021/100587
Other languages
English (en)
French (fr)
Inventor
林雪
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/100587 priority Critical patent/WO2022261893A1/zh
Priority to CN202180096976.1A priority patent/CN117136623A/zh
Publication of WO2022261893A1 publication Critical patent/WO2022261893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a data transmission processing method, device, terminal and storage medium.
  • Small Data Transmission is a technology based on energy-saving considerations that enables the terminal to perform data transmission in the RRC_IDLE state (ie idle state) or RRC_INACTIVE state (ie inactive state).
  • the UE when there is a valid Configured Grant (CG) resource on the carrier selected by the UE, the UE preferentially selects CG-SDT; otherwise, if there is a random access RA-SDT resource on the carrier selected by the UE , the UE selects RA-SDT.
  • CG Configured Grant
  • Embodiments of the present application provide a data transmission processing method, device, terminal, and storage medium. Described technical scheme is as follows:
  • an embodiment of the present application provides a data transmission processing method, the method is executed by a terminal, and the method includes:
  • the data transmission mode includes executing RA-SDT or performing fallback
  • the performing fallback includes: falling back to the random access RA process, Or, fall back to the radio resource control RRC connection recovery procedure.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the reference signal SS-RSRP corresponding to at least one SSB is higher than or equal to the first RSRP threshold, select one SSB from the SSBs whose corresponding SS-RSRP is higher than or equal to the first RSRP threshold to perform RA- SDT.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the RA process is executed according to the RA configuration on the current bandwidth part BWP.
  • the corresponding RA-SDT type selected by the terminal is executed.
  • the RA process includes:
  • the second RSRP threshold is a threshold for selecting the SSB of the RA.
  • the first RSRP threshold is equal to the second RSRP threshold
  • the first RSRP threshold and the second RSRP threshold are the same threshold parameter
  • the first RSRP threshold is not equal to the second RSRP threshold.
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP, and
  • the first RSRP threshold is equal to the second RSRP threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 2-step RA process;
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP, and
  • the first RSRP threshold is not equal to the second RSRP threshold, a 2-step RA process is performed according to the SSB determined by the second RSRP threshold.
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is equal to the second RSRP
  • the threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 4-step RA process
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is not equal to the second
  • the SSB determined according to the second RSRP threshold performs a 4-step RA process.
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and the current BWP does not have resources for 2-step RA , performing a 4-step RA process according to the SSB determined by the second RSRP threshold.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the terminal falls back to the 4-step RA process.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the terminal When there is no SSB with a corresponding SS-RSRP higher than or equal to the first RSRP threshold, the terminal falls back to the RA process, and reselects the RA type according to the third RSRP threshold;
  • the third RSRP threshold is used for the terminal to select between two RA types.
  • the determining and executing the data transmission method according to the selection result of the SSB used for RA-SDT includes:
  • the method before selecting the synchronization signal block SSB for random access small data transmission RA-SDT according to the first reference signal received power RSRP threshold, the method further includes:
  • the first condition includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • a data transmission processing method is provided, the method is executed by a terminal, and the method includes:
  • the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the first RSRP threshold is carried by configuration information of 2-step RA-SDT;
  • the first RSRP threshold is carried by configuration information of 4-step RA-SDT.
  • the second condition further includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the method further includes:
  • an embodiment of the present application provides a data transmission processing device, the device is used in a terminal, and the device includes:
  • a selection module configured to select a synchronization signal block SSB for random access small data transmission RA-SDT according to the first reference signal received power RSRP threshold;
  • a processing module configured to determine and execute a data transmission method according to the selection result of the SSB used for RA-SDT, the data transmission method includes executing RA-SDT or performing fallback, and the execution fallback includes: falling back to random Access the RA procedure, or fall back to the radio resource control RRC connection recovery procedure.
  • the processing module is configured to:
  • the reference signal SS-RSRP corresponding to at least one SSB is higher than or equal to the first RSRP threshold, select one SSB from the SSBs whose corresponding SS-RSRP is higher than or equal to the first RSRP threshold to perform RA- SDT.
  • the processing module is configured to:
  • the processing module is configured to:
  • the RA process is executed according to the RA configuration on the current bandwidth part BWP.
  • the processing module is configured to:
  • the processing module is configured to:
  • the second RSRP threshold is a threshold for selecting the SSB of the RA.
  • the first RSRP threshold is equal to the second RSRP threshold
  • the first RSRP threshold and the second RSRP threshold are the same threshold parameter
  • the first RSRP threshold is not equal to the second RSRP threshold.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP, and
  • the first RSRP threshold is equal to the second RSRP threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 2-step RA process;
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP, and
  • the first RSRP threshold is not equal to the second RSRP threshold, a 2-step RA process is performed according to the SSB determined by the second RSRP threshold.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is equal to the second RSRP
  • the threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 4-step RA process
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is not equal to the second
  • the SSB determined according to the second RSRP threshold performs a 4-step RA process.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there is no 2-step RA resource in the current BWP, according to the The SSB determined by the second RSRP threshold performs a 4-step RA process.
  • the processing module is configured to:
  • the terminal falls back to the 4-step RA process.
  • the processing module is configured to:
  • the terminal When there is no SSB with a corresponding SS-RSRP higher than or equal to the first RSRP threshold, the terminal falls back to the RA process, and reselects the RA type according to the third RSRP threshold;
  • the third RSRP threshold is used for the terminal to select between two RA types.
  • the processing module is configured to:
  • the selection module is further configured to, before selecting the SSB for RA-SDT according to the first RSRP threshold, when the terminal is in the RRC inactive state and meets the first condition, select Processing in the form of RA-SDT;
  • the first condition includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • an embodiment of the present application provides a data transmission processing device, the device is used in a terminal, and the device includes:
  • a selection module configured to execute RA-SDT when the terminal is in an RRC inactive state and satisfies a second condition
  • the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the first RSRP threshold is carried by configuration information of 2-step RA-SDT;
  • the first RSRP threshold is carried by configuration information of 4-step RA-SDT.
  • the second condition further includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the selection module is further configured to execute RA when the terminal is in an RRC inactive state and does not meet the second condition.
  • an embodiment of the present application provides a computer device, the computer device includes a processor, a memory, and a transceiver, the memory stores a computer program, and the computer program is used to be executed by the processor to The above data transmission processing method is realized.
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the above data transmission processing method.
  • a computer program product comprising computer instructions stored on a computer readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the above data transmission processing method.
  • a chip is provided, and the chip is used to run in a computer device, so that the computer device executes the above data transmission processing method.
  • a computer program is provided, the computer program is executed by a processor of a computer device to implement the above data transmission processing method.
  • the terminal can select the SSB for RA-SDT according to an RSRP threshold, and determine whether to perform RA-SDT or perform fallback according to the selection result, thus providing a method of performing RA-SDT or RA-SDT according to the RSRP threshold.
  • a fallback plan For the uplink small data process, the terminal can select the SSB for RA-SDT according to an RSRP threshold, and determine whether to perform RA-SDT or perform fallback according to the selection result, thus providing a method of performing RA-SDT or RA-SDT according to the RSRP threshold.
  • a fallback plan A fallback plan.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a data transmission processing method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a data transmission processing method provided by an embodiment of the present application.
  • Fig. 4 is a schematic flow chart of executing RA-SDT involved in the embodiment shown in Fig. 3;
  • Fig. 5 is a schematic flow chart of executing rollback involved in the embodiment shown in Fig. 3;
  • Fig. 6 is a schematic flow chart of executing rollback involved in the embodiment shown in Fig. 3;
  • FIG. 7 is a flowchart of a data transmission processing method provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of a data transmission processing method provided by an embodiment of the present application.
  • FIG. 9 is a block diagram of a data transmission processing device provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of a data transmission processing device provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • the network architecture may include: a terminal 10 and a base station 20 .
  • the number of terminals 10 is generally multiple, and one or more terminals 10 may be distributed in a cell managed by each base station 20 .
  • the terminal 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile station ( Mobile Station, MS), terminal device (terminal device) and so on.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the base station 20 is a device deployed in an access network to provide a wireless communication function for the terminal 10 .
  • the base station 20 may include various forms of satellite base stations, macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different.
  • gNodeB 5G New Radio
  • gNB 5G New Radio
  • the name "base station” may change as communication technology evolves.
  • the above-mentioned devices that provide the wireless communication function for the terminal 10 are collectively referred to as base stations.
  • the above-mentioned network architecture also includes other network devices, such as: a central control node (Central Network Control, CNC), an access and mobility management function (Access and Mobility Management Function, AMF ) device, session management function (Session Management Function, SMF) or user plane function (User Plane Function, UPF) device, etc.
  • a central control node Central Network Control, CNC
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the "5G NR system" in the embodiments of the present disclosure may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system, or can also be applied to the system before the 5G NR system, such as Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the 5G NR system is a new generation of wireless communication system proposed based on users' requirements for wireless communication speed, delay, high-speed mobility, and energy efficiency, as well as the diversity and complexity of wireless communication services in future life.
  • the main application scenarios of the 5G system are: Enhanced Mobile Broadband (eMBB), Ultra-reliable and Low Latency Communications (URLLC), Massive Machine Type Communication (mMTC) ).
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-reliable and Low Latency Communications
  • mMTC Massive Machine Type Communication
  • RRC_INACTIVE a new Radio Resource Control (RRC) state
  • RRC_INACTIVE a new Radio Resource Control (RRC) state
  • RRC_IDLE RRC idle state
  • RRC_ACTIVE RRC connected state
  • RRC_IDLE Mobility is UE-based cell selection and reselection, paging is initiated by the Core Network (CN), the paging area is configured by the CN, there is no UE context on the base station side, and there is no RRC connection between the UE and the base station.
  • CN Core Network
  • RRC_CONNECTED There is an RRC connection between the UE and the base station, and there is a UE context between the base station and the UE.
  • the network side knows the location of the UE at the specific cell level. Mobility is mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • RRC_INACTIVE Mobility is UE-based cell selection and reselection, there is a connection between CN-NR, UE context exists on a base station, paging is triggered by Radio Access Network (RAN), RAN-based paging The paging area is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • RAN Radio Access Network
  • LTE UP EDT Long Term Evolution Up Early Data Transmission
  • EDT ie Small Data Transmission
  • the UE may always remain in the idle state, suspend state or inactive state, and completes the transmission of uplink and/or downlink small data packets.
  • the network will configure a maximum transport block (Transport Block, TB) size that the current network allows transmission on SIB2, and the UE judges the amount of data to be transmitted. If it is less than the maximum TB size broadcast, the UE can initiate EDT On the contrary, the UE uses the normal connection establishment process and enters the connected state to transmit data.
  • Transport Block Transport Block
  • the base station can directly submit the uplink data to the core network after receiving the connection recovery request and the uplink data sent by the UE.
  • the use of pre-configured uplink resource PUR for data transmission in IDLE state is introduced.
  • the PUR is only valid in the currently configured cell, that is, when the UE detects a cell change and initiates random access in the new cell, the UE needs to release the PUR configured in the original cell.
  • the PUR transmission process is similar to LTE UP EDT, except that the process of sending a preamble to obtain a timing advance (Timing Advance, TA) and an uplink scheduling grant (UpLink grant, UL grant) is omitted.
  • RRC_IDLE RRC idle state
  • RRC_INACTIVE RRC inactive state
  • RRC_CONNECTED RRC connected state
  • the RRC_INACTIVE state is a new state introduced by the 5G system from the perspective of energy saving.
  • the radio bearer and all radio resources will be released, but the UE side and the base station side retain the UE access context to quickly restore the RRC connection.
  • UEs with infrequent data transmission are kept in the RRC_INACTIVE state.
  • the UE in the RRC_INACTIVE state does not support data transmission.
  • Rel-17 set up a project to carry out research on small data transmission SDT under RRC_INACTIVE.
  • the project goals mainly have two directions: uplink small data transmission based on random access process (two-step/four-step) and based on pre-configured resources (such as CG type1) uplink small data transmission.
  • a clear criterion is needed for the UE to select SDT resources.
  • the UE when there are valid CG resources on the carrier selected by the UE, the UE preferentially selects CG-SDT; otherwise, if there are random access SDT (Random Access SDT, RA-SDT) resources on the carrier selected by the UE, then The UE selects RA-SDT, and further selects between 2-step RA-SDT and 4-step RA-SDT according to the Reference Signal Receiving Power (RSRP) threshold.
  • RSRP Reference Signal Receiving Power
  • FIG. 2 shows a data transmission processing method provided by an embodiment of the present application.
  • the method may be performed by a terminal, where the foregoing terminal may be a terminal in the network architecture shown in FIG. 1 .
  • the method may include the steps of:
  • Step 201 select a synchronization signal block SSB for random access small data transmission RA-SDT according to the first reference signal received power RSRP threshold.
  • Step 202 determine and execute the data transmission method according to the selection result of the SSB used for RA-SDT, the data transmission method includes executing RA-SDT or performing fallback, and the execution fallback includes: falling back to the random access RA process , or, fall back to the radio resource control RRC connection recovery procedure.
  • the terminal can select the SSB for RA-SDT according to an RSRP threshold, and determine whether to perform RA-SDT or SSB according to the selection result. Fallback, so as to provide a solution to perform RA-SDT or fallback according to the RSRP threshold.
  • FIG. 3 shows a data transmission processing method provided by an embodiment of the present application.
  • the method may be performed by a terminal, where the foregoing terminal may be a terminal in the network architecture shown in FIG. 1 .
  • the method may include the steps of:
  • step 301 when the terminal is in the RRC inactive state and meets the first condition, choose to perform processing in the manner of RA-SDT.
  • the terminal when the terminal is in the RRC inactive state, if there is data to be transmitted, it may detect whether the first condition for selecting RA-SDT is satisfied.
  • the first condition includes at least one of the following conditions:
  • Radio Bearer Radio Bearer
  • the terminal can detect whether all the data to be transmitted comes from radio bearers that are allowed to trigger SDT. If so, the subsequent conditions for starting RA-SDT transmission may be met; The conditions for subsequent initiation of RA-SDT transmission are not met.
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network.
  • the terminal can detect whether the amount of data to be transmitted is less than or equal to the data volume threshold configured by the network (for example, the data volume threshold can be the maximum TB size pre-configured on the network side) , if yes, then the condition for starting the subsequent RA-SDT transmission may be satisfied; otherwise, it is considered that the condition for starting the subsequent RA-SDT transmission is not satisfied.
  • the data volume threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT.
  • the terminal can detect whether the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT. The conditions for subsequent initiation of RA-SDT transmission are not met.
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the terminal can detect whether the currently selected carrier has RA-SDT resources and no valid CG-SDT resources. If so, it may satisfy the subsequent start of RA-SDT transmission Otherwise, it is considered that the condition for starting the subsequent RA-SDT transmission is not met.
  • the terminal can perform the CG-SDT process first; or, if the selected carrier does not have RA-SDT resources, the terminal considers that the subsequent RA-SDT transmission is not met. condition.
  • Step 302 select the SSB for RA-SDT according to the first RSRP threshold.
  • the terminal determines to select RA-SDT for processing, and selects the SSB for RA-SDT according to the first RSRP threshold.
  • the terminal when the terminal determines to select RA-SDT for processing, the terminal may detect whether there is a reference signal SS-RSRP corresponding to at least one SSB that is higher than or equal to the first An RSRP threshold, if yes, select an SSB for RA-SDT from the SSBs whose corresponding SS-RSRP is higher than or equal to the first RSRP threshold.
  • the terminal determines to select RA-SDT for processing, if there is at least one reference signal SS-RSRP corresponding to SSB higher than or equal to the first RSRP threshold , select any SSB as the SSB for RA-SDT.
  • the terminal determines to select RA-SDT for processing, if there is no reference signal SS-RSRP corresponding to at least one SSB higher than or equal to the first RSRP threshold, the SSB for RA-SDT is not selected.
  • Step 303 determine and execute the data transmission mode according to the selection result of the SSB used for RA-SDT, the data transmission mode includes executing RA-SDT or performing fallback, and performing fallback includes: falling back to the random access RA process, Or, fall back to the radio resource control RRC connection recovery procedure.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the reference signal SS-RSRP corresponding to at least one SSB is higher than or equal to the first RSRP threshold, select one SSB from the SSBs whose corresponding SS-RSRP is higher than or equal to the first RSRP threshold to perform RA-SDT.
  • the terminal detects that there is at least one SSB corresponding to a reference signal SS-RSRP higher than or equal to the first RSRP threshold, and the corresponding SS-RSRP is higher than or equal to the first RSRP threshold If one of the SSBs is selected for RA-SDT, the RA-SDT process can be performed through the selected SSB.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • any SSB is selected to perform RA-SDT.
  • the terminal if the terminal detects that there is no reference signal SS-RSRP corresponding to at least one SSB higher than or equal to the first RSRP threshold, and randomly selects an SSB for RA-SDT, it can pass The selected SSB performs the RA-SDT procedure.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the RA process is executed according to the RA configuration on the current bandwidth part BWP.
  • the terminal detects that there is no reference signal SS-RSRP corresponding to at least one SSB higher than or equal to the first RSRP threshold, and the SSB used for RA-SDT is not selected, the current BWP
  • the RA configuration above performs the RA process.
  • the RA process is performed according to the RA configuration on the current bandwidth part BWP, including:
  • the terminal when the terminal executes the RA procedure according to the RA configuration on the current BWP, the terminal may execute the corresponding RA procedure according to the selected RA-SDT type.
  • the second RSRP threshold is a threshold for selecting the SSB of the RA.
  • the terminal when the terminal executes the RA process corresponding to the RA-SDT type selected by the terminal according to the RA configuration on the current BWP, it can combine the RA configuration, the first RSRP threshold, and the SSB used to select RA
  • the second RSRP threshold is used to execute the RA process corresponding to the RA-SDT type selected by the terminal.
  • the first RSRP threshold is equal to the second RSRP threshold; that is, two RSRP thresholds are configured in the terminal, which are respectively the first RSRP threshold and the second RSRP threshold, and the two The values of the RSRP thresholds are equal.
  • the first RSRP threshold and the second RSRP threshold are the same threshold parameter; that is, a single RSRP threshold is configured in the terminal, and the single PSRP threshold is used as the first RSRP threshold and also as the second RSRP threshold .
  • the first RSRP threshold is not equal to the second RSRP threshold; that is, two RSRP thresholds are configured in the terminal, namely the first RSRP threshold and the second RSRP threshold, and the values of the two RSRP thresholds are not equal .
  • the first RSRP threshold and the second RSRP threshold execute the The RA process corresponding to the RA-SDT type selected by the terminal includes:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT
  • the first When an RSRP threshold is equal to the second RSRP threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 2-step RA process; that is, in combination with RA configuration, the first RSRP threshold , and the second RSRP threshold used to select the SSB of RA to execute the RA process corresponding to the RA-SDT type selected by the terminal, if the RA-SDT type currently selected by the terminal is 2-step RA-SDT, there is a user
  • the terminal can randomly select an SSB to perform the 2-step RA process corresponding to the 2-step RA-
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP
  • a 2-step RA process is performed according to the SSB determined by the second RSRP threshold; that is, in combination with the RA configuration, the first RSRP threshold, and the
  • the second RSRP threshold of SSB is used to execute the RA process corresponding to the RA-SDT type selected by the terminal, if the RA-SDT type currently selected by the terminal is 2-step RA-SDT, there are resources for 2-step RA on the current BWP
  • the terminal can execute the 2-step RA process corresponding to the 2-step RA-SDT according to the SSB determined by the second RSRP threshold
  • the first RSRP threshold and the second RSRP threshold execute the The RA process corresponding to the RA-SDT type selected by the terminal includes:
  • the RA-SDT type selected by the terminal is 4-step RA-SDT
  • the first RSRP threshold is equal to the second RSRP threshold or the first RSRP threshold
  • the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 4-step RA process; that is, after combining the RA configuration, the first RSRP threshold, and the second RSRP used to select the SSB of RA Threshold, when performing the RA process corresponding to the RA-SDT type selected by the terminal, if the RA-SDT type currently selected by the terminal is 4-step RA-SDT, there are resources for 4-step RA on the current BWP, and the first RSRP threshold If it is equal to the second RSRP or is the same parameter, the terminal can randomly select an SSB to perform the 4-step RA process corresponding to the 4-step RA-S
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is not equal to the second RSRP threshold Time-limited, perform a 4-step RA process based on the SSB determined by the second RSRP threshold; that is, perform terminal selection in conjunction with the RA configuration, the first RSRP threshold, and the second RSRP threshold used to select the SSB of the RA
  • the terminal can execute the 4-step RA process corresponding to the 4-step RA-SDT according to the SSB determined by the second RSRP threshold.
  • the first RSRP threshold and the second RSRP threshold execute the The RA process corresponding to the RA-SDT type selected by the terminal includes:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and the current BWP does not have resources for 2-step RA, according to
  • the SSB determined by the second RSRP threshold performs a 4-step RA process; that is, a terminal-selected RA-SDT is performed in conjunction with the RA configuration, the first RSRP threshold, and the second RSRP threshold used to select the SSB of the RA
  • the terminal can directly determine the SSB according to the second RSRP threshold.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the terminal falls back to the 4-step RA process.
  • the terminal may directly fall back to the 4-step RA process, for example, according to The SSB determined by the second RSRP threshold directly executes the 4-step RA process.
  • the data transmission mode is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the terminal When there is no SSB corresponding to the SS-RSRP higher than or equal to the first RSRP threshold, the terminal falls back to the RA process, and reselects the RA type according to the third RSRP threshold;
  • the third RSRP threshold is used for the terminal to select between two RA types.
  • the process of the terminal falling back to the RA process and reselecting the RA type according to the third RSRP threshold includes two implementation methods:
  • Mode 1 directly select the RA type according to the third RSRP without re-executing the carrier selection;
  • Mode 2 Carrier selection and other steps are performed again, that is, a complete RACH process is completed.
  • the terminal may fall back to the RA process of reselecting the RA type, For example, the RA type is first selected through the third RSRP threshold, and then the RA process corresponding to the selected RA type is executed according to the SSB determined by the second RSRP threshold.
  • the data transmission method when the data transmission method includes performing fallback, the data transmission method is determined and executed according to the selection result of the SSB used for RA-SDT, including:
  • the terminal may select an SSB to perform the RA-SDT process.
  • FIG. 4 shows a schematic flowchart of executing RA-SDT according to the embodiment of the present application. As shown in Figure 4, the process may include the following steps:
  • the UE in the RRC_INACTIVE state selects RA-SDT when the first condition is met.
  • the first condition may at least include:
  • All data to be transmitted comes from RBs that are allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the behaviors performed by UE after selecting RA-SDT include at least:
  • S42a Select the RA-SDT type. For example, if only one type of RA-SDT resource is configured on the current BWP, that is, one of 2-step RA-SDT or 4-step RA-SDT, the UE selects the current BWP. The configured RA-SDT type; otherwise, the UE performs selection between 2-step RA-SDT and 4-step RA-SDT according to the fourth RSRP threshold, wherein the fourth RSRP threshold is used for the UE to select between the two RA-SDT Choose between SDT types.
  • initialize parameter configuration for example, initial power configuration, maximum number of transmission times configuration, RSRP threshold configuration, etc.
  • S42c Perform random access resource selection, including: selecting an SSB according to the first RSRP threshold.
  • the UE selects one of them to perform RA-SDT; for example, assuming that 8 SSBs are currently supported, the UE measures the reference signal of each SSB and determines the downlink RSRP measurement result corresponding to each SSB , and then compare the measurement results of these 8 SSBs with the first RSRP threshold to determine whether the RSRP measurement result of at least one SSB is greater than the first RSRP threshold.
  • the UE selects one SSB to perform RA-SDT.
  • S42d Select an access preamble (preamble), a paging occasion (Paging Occasion, PO), or a random access occasion (RACH Occasion, RO).
  • the terminal may fall back to RA and re-execute the RA process.
  • FIG. 5 shows a schematic flowchart of performing rollback according to the embodiment of the present application. As shown in Figure 5, the process may include the following steps:
  • the UE in the RRC_INACTIVE state selects RA-SDT when the first condition is met.
  • This first condition includes at least:
  • All the data to be transmitted comes from the RB (Radio bearer, radio bearer) that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the behavior of UE after selecting RA-SDT includes at least:
  • S52a Select an RA-SDT type. For example, if only one type of RA-SDT resource is configured on the current BWP, that is, one of 2-step RA-SDT or 4-step RA-SDT, the UE selects the RA-SDT type configured on the current BWP; Otherwise, the UE performs selection between 2-step RA-SDT and 4-step RA-SDT according to the fourth RSRP threshold, wherein the fourth RSRP threshold is used for the UE to select between the two RA-SDT types; For example, when the RSRP measured by the UE is greater than the third RSRP threshold, 2-step RA-SDT is selected, otherwise 4-step RA-SDT is selected.
  • the process can include:
  • the UE behavior includes:
  • the UE initiates a legacy RA and/or indicates to the upper layer that the SDT process has not been successfully completed or cancelled.
  • the process can include:
  • the UE can also indicate that the upper layer SDT process has been canceled or has not been successfully completed, and the upper layer triggers the legacy RRC resume process.
  • the above-mentioned high layer may be the RRC layer and/or the NAS layer.
  • the terminal may fall back to RA and re-execute the RA process.
  • FIG. 6 shows a schematic flowchart of performing rollback according to the embodiment of the present application. As shown in Fig. 6, the process may include the following steps.
  • the UE in the RRC_INACTIVE state selects RA-SDT when the first condition is met.
  • the first condition includes at least:
  • All the data to be transmitted comes from the RB (Radio Bearer, radio bearer) that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the behavior of UE after selecting RA-SDT includes at least:
  • S62a Select the RA-SDT type. Specifically, if only one type of RA-SDT resource is configured on the current BWP, that is, one of 2-step RA-SDT or 4-step RA-SDT, the UE selects the current BWP The RA-SDT type configured above; otherwise, the UE performs selection between 2-step RA-SDT and 4-step RA-SDT according to the fourth RSRP threshold, where the fourth RSRP threshold is used for the UE to select between the two RAs - Choose between SDT types;
  • S62c Perform random access resource selection.
  • the process includes: selecting SSBs according to the first RSRP threshold; if there is at least one SSB greater than the first RSRP threshold, the UE selects one of them to perform RA-SDT; if none of the SSBs is greater than the first RSRP threshold, the behavior of the UE includes: consider SDT If the process is not successfully completed or the SDT is canceled, the UE initiates a legacy RA and/or indicates to the upper layer that the SDT process has not been successfully completed or cancelled.
  • the process can include:
  • the UE will fall back to 2-step RA. If the current BWP is not configured with 2-step RA, it will fall back to 4-step RA; if the UE selects If the RA-SDT type is 4-step RA-SDT, the UE falls back to 4-step RA; or the UE falls back to 4-step RA;
  • the UE If the UE falls back from 2-step RA-SDT to 2-step RA, and the first RSRP threshold is equal to the second RSRP threshold, or the first RSRP threshold is the same as the second RSRP threshold, the UE randomly selects an SSB to perform 2-step RA; if the first RSRP threshold is not equal to the second RSRP threshold, the UE determines the SSB to perform 2-step RA according to the second RSRP threshold;
  • the UE If the UE falls back from 4-step RA-SDT to 4-step RA, and the first RSRP threshold is equal to the second RSRP threshold, or the first RSRP threshold is the same as the second RSRP threshold, the UE randomly selects an SSB to perform 4-step RA; if the first RSRP threshold is not equal to the second RSRP threshold, the UE determines the SSB to perform 4-step RA according to the second RSRP threshold;
  • the UE determines the SSB to execute 4-step RA according to the second RSRP threshold.
  • the terminal may directly select the RA type without performing the carrier selection process, and perform the parameter initialization step according to the selected RA type.
  • the UE can also indicate that the upper layer SDT process has been canceled or has not been successfully completed, and the upper layer triggers the legacy RRC resume process.
  • the terminal can select the SSB for RA-SDT according to an RSRP threshold, and determine whether to perform RA-SDT or SSB according to the selection result. Fallback, so as to provide a solution to perform RA-SDT or fallback according to the RSRP threshold.
  • FIG. 7 shows a data transmission processing method provided by an embodiment of the present application.
  • the method may be performed by a terminal, where the foregoing terminal may be a terminal in the network architecture shown in FIG. 1 .
  • the method may include the steps of:
  • Step 701 when the terminal is in the RRC inactive state and meets the second condition, choose to execute RA-SDT; the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the terminal When the terminal is in the RRC inactive state and there is data to be transmitted, the terminal can detect whether there is an SSB greater than the first RSRP threshold, and if so, consider that RA-SDT can be executed.
  • the terminal can judge whether to execute RA-SDT according to an RSRP threshold, thus providing a method of selecting RA-SDT according to the RSRP threshold scheme for data transmission.
  • FIG. 8 shows a data transmission processing method provided by an embodiment of the present application.
  • the method may be performed by a terminal, where the foregoing terminal may be a terminal in the network architecture shown in FIG. 1 .
  • the method may include the steps of:
  • Step 801 when the terminal is in the RRC inactive state and meets the second condition, choose to execute RA-SDT; the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the first RSRP threshold is carried by the configuration information of 2-step RA-SDT;
  • the first RSRP threshold is carried by configuration information of 4-step RA-SDT.
  • the second condition further includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • Step 802 when the terminal is in the RRC inactive state and does not meet the second condition, choose to execute RA.
  • the terminal can directly perform the RA process.
  • the terminal takes the presence of an SSB that satisfies the first RSRP threshold as one of the conditions for selecting RA-SDT, that is, the UE in the RRC_INACTIVE state selects RA-SDT if the first condition is met, otherwise , UE selects RA, and the above first condition includes:
  • All data to be transmitted comes from RBs that are allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources;
  • the judging process of whether there is an SSB greater than the first RSRP threshold is performed based on the RA-SDT type selected by the UE; for example, if the UE meets the conditions of 2-step RA-SDT (for example, the Conditions may include that the current BWP has resources for 2-step RA-SDT), then use the first RSRP threshold included in the configuration of 2-step RA-SDT, if the UE meets 4-step RA-SDT conditions (for example, 4-step The condition of RA-SDT may include that the current BWP does not have resources for 2-step RA-SDT), then use the first RSRP threshold included in the configuration of 4-step RA-SDT.
  • the Conditions may include that the current BWP has resources for 2-step RA-SDT
  • 4-step RA-SDT conditions for example, 4-step
  • the condition of RA-SDT may include that the current BWP does not have resources for 2-step RA-SDT), then use the first RSRP threshold included in the configuration of
  • the terminal can judge whether to choose to execute RA-SDT or RA according to an RSRP threshold, thus providing a method of selecting according to the RSRP threshold.
  • RA-SDT or RA in order to carry out the scheme of data transmission.
  • FIG. 9 shows a block diagram of a data transmission processing device provided by an embodiment of the present application.
  • the device is used in a terminal, and has the function of realizing the steps executed by the terminal in the above data transmission processing method.
  • the device may include:
  • a selection module 901 configured to select a synchronization signal block SSB for random access small data transmission RA-SDT according to the first reference signal received power RSRP threshold;
  • the processing module 902 is configured to determine and execute the data transmission mode according to the selection result of the SSB used for RA-SDT, the data transmission mode includes executing RA-SDT or performing fallback, and the execution fallback includes: falling back to Random access RA procedure, or fallback to radio resource control RRC connection recovery procedure.
  • the processing module 902 is configured to:
  • the reference signal SS-RSRP corresponding to at least one SSB is higher than or equal to the first RSRP threshold, select one SSB from the SSBs whose corresponding SS-RSRP is higher than or equal to the first RSRP threshold to perform RA- SDT.
  • the processing module is configured to:
  • the processing module is configured to:
  • the RA process is executed according to the RA configuration on the current bandwidth part BWP.
  • the processing module is configured to:
  • the processing module is configured to:
  • the second RSRP threshold is a threshold for selecting the SSB of the RA.
  • the first RSRP threshold is equal to the second RSRP threshold
  • the first RSRP threshold and the second RSRP threshold are the same threshold parameter
  • the first RSRP threshold is not equal to the second RSRP threshold.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP, and
  • the first RSRP threshold is equal to the second RSRP threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 2-step RA process;
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there are resources for 2-step RA on the current BWP , and when the first RSRP threshold is not equal to the second RSRP threshold, perform a 2-step RA process on the SSB determined according to the second RSRP threshold.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is equal to the second RSRP
  • the threshold or the first RSRP threshold and the second RSRP are the same threshold parameter, randomly select an SSB to perform a 4-step RA process
  • the RA-SDT type selected by the terminal is 4-step RA-SDT, and the first RSRP threshold is not equal to the
  • a 4-step RA process is performed according to the SSB determined by the second RSRP threshold.
  • the processing module is configured to:
  • the RA-SDT type selected by the terminal is 2-step RA-SDT, and there is no 2-step RA resource in the current BWP, according to the The SSB determined by the second RSRP threshold performs a 4-step RA process.
  • the processing module is configured to:
  • the terminal falls back to the 4-step RA process.
  • the processing module is configured to:
  • the terminal When there is no SSB with a corresponding SS-RSRP higher than or equal to the first RSRP threshold, the terminal falls back to the RA process, and reselects the RA type according to the third RSRP threshold;
  • the third RSRP threshold is used for the terminal to select between two RA types.
  • the processing module is configured to:
  • the selection module is further configured to, before selecting the SSB for RA-SDT according to the first RSRP threshold, when the terminal is in the RRC inactive state and meets the first condition, select Processing in the form of RA-SDT;
  • the first condition includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the terminal can select the SSB for RA-SDT according to an RSRP threshold, and determine whether to perform RA-SDT or SSB according to the selection result. Fallback, so as to provide a solution to perform RA-SDT or fallback according to the RSRP threshold.
  • FIG. 10 shows a block diagram of a data transmission processing device provided by an embodiment of the present application.
  • the device is used in a terminal, and has the function of realizing the steps executed by the terminal in the above data transmission processing method.
  • the device may include:
  • a selection module 1001 configured to execute RA-SDT when the terminal is in an RRC inactive state and meets a second condition
  • the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the first RSRP threshold is carried by configuration information of 2-step RA-SDT;
  • the first RSRP threshold is carried by configuration information of 4-step RA-SDT.
  • the second condition further includes at least one of the following conditions:
  • All the data to be transmitted comes from the radio bearer RB that is allowed to trigger SDT;
  • the amount of data to be transmitted is less than or equal to the data amount threshold configured by the network
  • the downlink RSRP measurement result is greater than or equal to the RSRP threshold for performing SDT;
  • the selected carrier has RA-SDT resources and no valid CG-SDT resources.
  • the selection module is further configured to execute RA when the terminal is in an RRC inactive state and does not meet the second condition.
  • the terminal can judge whether to choose to execute RA-SDT or RA according to an RSRP threshold, thus providing a method of selecting according to the RSRP threshold.
  • RA-SDT or RA in order to carry out the scheme of data transmission.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 11 shows a schematic structural diagram of a computer device 1100 provided by an embodiment of the present application.
  • the computer device 1100 may include: a processor 1101 , a receiver 1102 , a transmitter 1103 , a memory 1104 and a bus 1105 .
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 can be implemented as a communication component, which can be a communication chip.
  • the communication chip can also be called a transceiver.
  • the memory 1104 is connected to the processor 1101 through the bus 1105 .
  • the memory 1104 may be used to store a computer program, and the processor 1101 is used to execute the computer program, so as to implement various steps performed by the terminal device in the foregoing method embodiments.
  • volatile or non-volatile storage devices include but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • the computer device includes a processor, a memory, and a transceiver (the transceiver may include a receiver and a transmitter, the receiver is used to receive information, and the transmitter is used to send information);
  • the processor is configured to select a synchronization signal block SSB for random access small data transmission RA-SDT according to the first reference signal received power RSRP threshold;
  • the processor is further configured to determine and execute a data transmission mode according to the selection result of the SSB used for RA-SDT, the data transmission mode includes executing RA-SDT or performing fallback, and the execution fallback includes: fallback Return to the random access RA procedure, or fall back to the radio resource control RRC connection recovery procedure.
  • the processor when the computer device is implemented as a terminal, the processor is configured to execute RA-SDT when the terminal is in an RRC inactive state and meets a second condition;
  • the second condition includes: there is an SSB whose corresponding SS-RSRP is greater than or equal to the first RSRP threshold.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the above-mentioned method shown in FIG. 2 or FIG. 3 , by The various steps performed by the terminal.
  • the present application also provides a computer program product including computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the method shown in FIG. 2, FIG. 3, FIG. 7 or FIG. 8, and the terminal executes each step.
  • the present application also provides a chip, which is used to run in a computer device, so that the computer device executes each method executed by the terminal in the method shown in FIG. 2 , FIG. 3 , FIG. 7 or FIG. 8 above. step.
  • the present application also provides a computer program, the computer program is executed by a processor of a computer device, so as to implement each step executed by a terminal in the method shown in FIG. 2 , FIG. 3 , FIG. 7 or FIG. 8 .
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输处理方法、装置、终端及存储介质,属于无线通信技术领域。方法包括:根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。本申请提供了一种根据RSRP门限执行RA-SDT或者回退的方案。

Description

数据传输处理方法、装置、终端及存储介质 技术领域
本申请涉及无线通信技术领域,特别涉及一种数据传输处理方法、装置、终端及存储介质。
背景技术
小数据传输(Small Data Transmission,SDT)是一种基于节能的考虑,使终端处于RRC_IDLE态(即空闲态)或者RRC_INACTIVE态(即非激活态)下进行数据传输的技术。
在小数据传输技术中,当UE所选载波上存在有效的配置授权(Configured Grant,CG)资源时,UE优先选择CG-SDT;否则,若UE所选载波上存在随机接入RA-SDT资源,则UE选择RA-SDT。
发明内容
本申请实施例提供了一种数据传输处理方法、装置、终端及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种数据传输处理方法,所述方法由终端执行,所述方法包括:
根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于所述第一RSRP门限时,从对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB中选择一个SSB执行RA-SDT。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,选择任意一个SSB执行RA-SDT。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行与所述终端选择的RA-SDT类型对应的RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上 的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程;
其中,所述第二RSRP门限是用于选择RA的SSB的门限。
在一种可能的实现方式中,所述第一RSRP门限等于所述第二RSRP门限;
或者,所述第一RSRP门限和所述第二RSRP门限为同一门限参数;
或者,所述第一RSRP门限不等于所述第二RSRP门限。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行2步RA过程;
或者,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行2步RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行4步RA过程;
或者,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在用于2步RA的资源时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至4步RA过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至RA过程,并重新根据第三RSRP门限选择RA类型;
其中,所述第三RSRP门限用于所述终端在两种RA类型之间进行选择。
在一种可能的实现方式中,当所述数据传输方式包括执行回退时,所述根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
确定SDT过程未成功完成或取消SDT过程,回退至RA过程,并通知上层SDT已取消 或未能成功完成;
或者,
确定SDT过程未成功完成或取消SDT过程,向上层发送SDT已取消或未完成的指示;当上层收到所述指示时,通过上层取消SDT,并重新发起RRC连接恢复过程。
在一种可能的实现方式中,所述根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB之前,还包括:
当所述终端处于RRC非激活态,且满足第一条件时,选择以RA-SDT的方式进行处理;
所述第一条件包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
一方面,提供了一种数据传输处理方法,所述方法由终端执行,所述方法包括:
当所述终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;
所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
在一种可能的实现方式中,当所述终端满足2步RA-SDT的条件时,所述第一RSRP门限由2步RA-SDT的配置信息携带;
当所述终端满足4步RA-SDT的条件时,所述第一RSRP门限由4步RA-SDT的配置信息携带。
在一种可能的实现方式中,所述第二条件还包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
在一种可能的实现方式中,所述方法还包括:
当所述终端处于RRC非激活态,且不满足所述第二条件时,选择执行RA。
另一方面,本申请实施例提供了一种数据传输处理装置,所述装置用于终端中,所述装置包括:
选择模块,用于根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
处理模块,用于根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
在一种可能的实现方式中,所述处理模块,用于,
当存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于所述第一RSRP门限时,从对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB中选择一个SSB执行RA-SDT。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,选择任意一个SSB执行RA-SDT。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行与所述终端选择的RA-SDT类型对应的RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程;
其中,所述第二RSRP门限是用于选择RA的SSB的门限。
在一种可能的实现方式中,所述第一RSRP门限等于所述第二RSRP门限;
或者,所述第一RSRP门限和所述第二RSRP门限为同一门限参数;
或者,所述第一RSRP门限不等于所述第二RSRP门限。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行2步RA过程;
或者,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行2步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行4步RA过程;
或者,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在2步RA资源时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至RA过程,并重新根据第三RSRP门限选择RA类型;
其中,所述第三RSRP门限用于所述终端在两种RA类型之间进行选择。
在一种可能的实现方式中,当所述数据传输方式包括执行回退时,所述处理模块,用于,
确定SDT过程未成功完成或取消SDT过程,回退至RA过程,并通知上层SDT已取消或未能成功完成;
或者,
确定SDT过程未成功完成或取消SDT过程,向上层发送SDT已取消或未完成的指示;当上层收到指示时,通过上层取消SDT,并重新发起RRC连接恢复过程。
在一种可能的实现方式中,所述选择模块,还用于根据所述第一RSRP门限选择用于RA-SDT的SSB之前,当终端处于RRC非激活态,且满足第一条件时,选择以RA-SDT的方式进行处理;
所述第一条件包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
另一方面,本申请实施例提供了一种数据传输处理装置,所述装置用于终端中,所述装置包括:
选择模块,用于当所述终端处于RRC非激活态,且满足第二条件时,执行RA-SDT;
所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
在一种可能的实现方式中,当所述终端满足2步RA-SDT的条件时,所述第一RSRP门限由2步RA-SDT的配置信息携带;
当所述终端满足4步RA-SDT的条件时,所述第一RSRP门限由4步RA-SDT的配置信息携带。
在一种可能的实现方式中,所述第二条件还包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
在一种可能的实现方式中,所述选择模块,还用于当所述终端处于RRC非激活态,且不满足所述第二条件时,执行RA。
再一方面,本申请实施例提供了一种计算机设备,所述计算机设备包括处理器、存储器和收发器,所述存储器存储有计算机程序,所述计算机程序用于被所述处理器执行,以实现上述数据传输处理方法。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述数据传输处理方法。
另一方面,提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述数据传输处理方法。
另一方面,提供了一种芯片,该芯片用于在计算机设备中运行,以使得所述计算机设备执行上述数据传输处理方法。
另一方面,提供了一种计算机程序,该计算机程序由计算机设备的处理器执行,以实现上述数据传输处理方法。
本申请实施例提供的技术方案可以带来如下有益效果:
对于上行小数据过程,终端可以根据一个RSRP门限来选择用于RA-SDT的SSB,并根据选择结果确定是执行RA-SDT还是执行回退,从而提供了一种根据RSRP门限执行RA-SDT或者回退的方案。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信***的网络架构的示意图;
图2是本申请一个实施例提供的数据传输处理方法的流程图;
图3是本申请一个实施例提供的数据传输处理方法的流程图;
图4是图3所示实施例涉及的一种执行RA-SDT的流程示意图;
图5是图3所示实施例涉及的一种执行回退的流程示意图;
图6是图3所示实施例涉及的一种执行回退的流程示意图;
图7是本申请一个实施例提供的数据传输处理方法的流程图;
图8是本申请一个实施例提供的数据传输处理方法的流程图;
图9是本申请一个实施例提供的数据传输处理装置的框图;
图10是本申请一个实施例提供的数据传输处理装置的框图;
图11是本申请一个实施例提供的计算机设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的通信***的网络架构的示意图。该网络架构可以包括:终端10和基站20。
终端10的数量通常为多个,每一个基站20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
基站20是一种部署在接入网中用以为终端10提供无线通信功能的装置。基站20可以包括各种形式的卫星基站,宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如在5G新空口(New Radio,NR)***中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为基站。
可选的,图1中未示出的是,上述网络架构还包括其它网络设备,比如:中心控制节点(Central Network Control,CNC)、接入和移动性管理功能(Access and Mobility Management Function,AMF)设备、会话管理功能(Session Management Function,SMF)或者用户面功能(User Plane Function,UPF)设备等等。
本公开实施例中的“5G NR***”也可以称为5G***或者NR***,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR***,也可以适用于5G NR***后续的演进***,或者,也可以适用于5G NR***之前的***,比如长期演进(Long Term Evolution,LTE)***。
在介绍本申请后续各个实施例所示的方案之前,首先对本申请涉及的几个名词概念进行介绍。
1)5G NR***
5G NR***是基于用户对无线通信的速率、延迟、高速移动性、能效的要求,以及未来生活中的无线通信业务的多样性、复杂性的需求而提出的新一代的无线通信***。5G***的主要应用场景为:增强移动超宽带(Enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-reliable and Low Latency Communications,URLLC)、大规模机器类通信(Massive Machine Type Communication,mMTC)。
在5G网络环境中,为了降低空口信令和快速恢复无线连接、快速恢复数据业务,定义一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活态(RRC_INACTIVE)状态,这种状态有别于RRC空闲态(RRC_IDLE)和RRC连接态(RRC_ACTIVE)。上述三种RRC状态如下:
RRC_IDLE:移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置,基站侧不存在UE上下文,UE和基站之间不存在RRC连接。
RRC_CONNECTED:UE和基站之间存在RRC连接,基站和UE存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由无线接入网络(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
2)长期演进上行小数据传输(Long Term Evolution Up Early Data Transmission,LTE UP EDT)
在LTE中,已经引入了EDT,即小数据传输。在该过程中,UE可能始终保持在idle状态、suspend状态或者inactive状态,完成上行和/或下行小数据包的传输。在配置上,网络会在SIB2上配置一个当前网络允许传输的最大传输块(Transport Block,TB)size,UE判断自己待传输的数据量,如果小于这个广播的最大TB size,则UE可以发起EDT传输;反之,UE使用正常的连接建立过程,进入连接态传输数据。
若UE发起UP-EDT的小区与最后的服务小区相同,则基站在收到UE发送的连接恢复请求及上行数据后,可以直接将上行数据递交给核心网。
3)预配置上行资源(Preconfigured Uplink Resource,PUR)
在LTE Release16中,针对窄带物联网(Narrow Band Internet of Things,NB-IoT)和增强机器类通信(Enhance Machine Type Communication,eMTC)场景,引入了在IDLE态利用预配置上行资源PUR进行数据传输的方法。PUR只在当前配置的小区内有效,即当UE检测到小区变化,并在新的小区发起随机接入时,UE需要释放原小区配置的PUR。PUR传输流程和LTE UP EDT类似,只是省去了发送前导码获取定时提前(Timing Advance,TA)和上行调度许可(UpLink grant,UL grant)的过程。
4)R17 SDT
在5G NR***中,RRC状态分为3种,分别为:RRC_IDLE(RRC空闲态)、RRC_INACTIVE(RRC非激活态)、RRC_CONNECTED(RRC连接态)。其中RRC_INACTIVE态是5G***从节能角度考虑引入的新状态,对于RRC_INACTIVE态的UE,无线承载和全部无线资源都会被释放,但UE侧和基站侧保留UE接入上下文,以便快速恢复RRC连接,网络通常将数据传输不频繁的UE保持在RRC_INACTIVE态。Rel-16之前,处于RRC_INACTIVE状态的UE不支持数据传输,当MO或MT数据到达时,UE需要恢复连接,待数据传输完成后再释放到INACTIVE状态。对于数据量小且传输频率低的UE,这样的传输机制会导致不必要的功耗和信令开销。因此,Rel-17立项开展对RRC_INACTIVE下小数据传输SDT的研究,项目目标主要有两个方向:基于随机接入过程(两步/四步)的上行小数据传输以及基于预配置资源(如CG type1)的上行小数据传输。
当网络为UE配置了不同类型的SDT资源时,需要一个明确的准则用于UE选择SDT资源。在相关技术中,当UE所选载波上存在有效的CG资源时,UE优先选择CG-SDT;否则,若UE所选载波上存在随机接入SDT(Random Access SDT,RA-SDT)资源,则UE选择RA-SDT,并进一步根据参考信号接收功率(Reference Signal Receiving Power,RSRP)门限在2-step RA-SDT和4-step RA-SDT之间进行选择。
然而,相关技术中并未明确如何选择RA-SDT所使用的同步信号块(Synchronization  Signal Block,SSB),以及,当不存在合适的SSB时,如何进行回退的方案。
请参考图2,其示出了本申请一个实施例提供的数据传输处理方法。该方法可以由终端执行,其中,上述终端可以是图1所示的网络架构中的终端。该方法可以包括如下步骤:
步骤201,根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB。
步骤202,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,该数据传输方式包括执行RA-SDT或者执行回退,该执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来选择用于RA-SDT的SSB,并根据选择结果确定是执行RA-SDT还是执行回退,从而提供了一种根据RSRP门限执行RA-SDT或者回退的方案。
请参考图3,其示出了本申请一个实施例提供的数据传输处理方法。该方法可以由终端执行,其中,上述终端可以是图1所示的网络架构中的终端。该方法可以包括如下步骤:
步骤301,当终端处于RRC非激活态,且满足第一条件时,选择以RA-SDT的方式进行处理。
在本申请实施例中,当终端处于RRC非激活态时,若有数据需要传输,则可以检测是否满足选择RA-SDT的第一条件。
其中,该第一条件包括以下条件中的至少一种:
1)待传输数据全部来自于允许触发SDT的无线承载(Radio Bearer,RB)。
当终端处于RRC非激活态,且存在待传输数据时,终端可以检测待传输数据是否全部来自于允许触发SDT的无线承载,若是,则可能满足后续的启动RA-SDT传输的条件,否则,认为不满足后续的启动RA-SDT传输的条件。
2)待传输数据量小于或等于网络配置的数据量门限。
当终端处于RRC非激活态,且存在待传输数据时,终端可以检测待传输数据量是否小于或者等于网络配置的数据量门限(比如,该数据量门限可以是网络侧预先配置的最大TB size),若是,则可能满足后续的启动RA-SDT传输的条件,否则,认为不满足后续的启动RA-SDT传输的条件。
3)下行RSRP测量结果大于或等于执行SDT的RSRP门限。
当终端处于RRC非激活态,且存在待传输数据时,终端可以检测下行RSRP测量结果是否大于或等于执行SDT的RSRP门限,若是,则可能满足后续的启动RA-SDT传输的条件,否则,认为不满足后续的启动RA-SDT传输的条件。
4)所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
当终端处于RRC非激活态,且存在待传输数据时,终端可以检测当前所选的载波是否存在RA-SDT资源且没有有效的CG-SDT资源,若是,则可能满足后续的启动RA-SDT传输的条件,否则,认为不满足后续的启动RA-SDT传输的条件。
比如,若所选载波存在有效的CG-SDT资源,则终端可以优先执行CG-SDT过程;或者,若所选载波不存在RA-SDT资源,则终端认为不满足后续的启动RA-SDT传输的条件。
步骤302,根据第一RSRP门限选择用于RA-SDT的SSB。
其中,当终端处于RRC非激活态,且满足第一条件时,终端确定选择以RA-SDT的方式进行处理,并根据第一RSRP门限选择用于RA-SDT的SSB。
在本申请实施例的一种可能的实现方式中,当终端确定选择以RA-SDT的方式进行处理时,终端可以检测是否存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,若是,则从对应的SS-RSRP高于或者等于该第一RSRP门限的SSB中选择一个 用于RA-SDT的SSB。
在本申请实施例的一种可能的实现方式中,当终端确定选择以RA-SDT的方式进行处理时,若存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,则选择任意一个SSB,作为用于RA-SDT的SSB。
在本申请实施例的一种可能的实现方式中,当终端确定选择以RA-SDT的方式进行处理时,若不存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,则不选择用于RA-SDT的SSB。
步骤303,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,该数据传输方式包括执行RA-SDT或者执行回退,执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限时,从对应的SS-RSRP高于或者等于该第一RSRP门限的SSB中选择一个SSB执行RA-SDT。
在本申请实施例中,若终端检测到存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,且从对应的SS-RSRP高于或者等于该第一RSRP门限的SSB中选择一个用于RA-SDT的SSB,则可以通过选择的SSB执行RA-SDT过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,选择任意一个SSB执行RA-SDT。
在本申请实施例中,若终端检测到不存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,且随机选择了一个用于RA-SDT的SSB,则可以通过选择的SSB执行RA-SDT过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程。
在本申请实施例中,若终端检测到不存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于该第一RSRP门限,且未选择用于RA-SDT的SSB,则可以根据当前BWP上的RA配置执行RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行与该终端选择的RA-SDT类型对应的RA过程。
在本申请实施例中,终端在根据当前BWP上的RA配置执行RA过程时,终端可以根据选择的RA-SDT类型来执行相对应的RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行该终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,根据当前BWP上的RA配置、该第一RSRP门限以及第二RSRP门限,执行该终端选择的RA-SDT类型对应的RA过程;
其中,该第二RSRP门限是用于选择RA的SSB的门限。
在本申请实施例中,终端在根据当前BWP上的RA配置,执行该终端选择的RA-SDT 类型对应的RA过程时,可以结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程。
在一种可能的实现方式中,该第一RSRP门限等于该第二RSRP门限;也就是说,终端中配置有两个RSRP门限,分别为第一RSRP门限和第二RSRP门限,且这两个RSRP门限的值相等。
或者,该第一RSRP门限和该第二RSRP门限为同一门限参数;也就是说,终端中配置有单个RSRP门限,且该单个PSRP门限即作为第一RSRP门限使用,也作为第二RSRP门限使用。
或者,该第一RSRP门限不等于该第二RSRP门限;也就是说,终端中配置有两个RSRP门限,分别为第一RSRP门限和第二RSRP门限,且这两个RSRP门限的值不相等。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,根据当前BWP上的RA配置、该第一RSRP门限以及第二RSRP门限,执行该终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,该终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且该第一RSRP门限等于该第二RSRP门限或者该第一RSRP门限与该第二RSRP为同一门限参数时,随机选择一个SSB执行2步RA过程;也就是说,在结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程时,若终端当前选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且第一RSRP门限与该第二RSRP相等或者为同一参数,则终端可以随机选择一个SSB来执行与2步RA-SDT相对应的2步RA过程;
或者,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,该终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且该第一RSRP门限不等于该第二RSRP门限时,根据该第二RSRP门限确定的SSB执行2步RA过程;也就是说,在结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程时,若终端当前选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且第一RSRP门限与该第二RSRP不相等,则终端可以根据该第二RSRP门限确定的SSB,执行与2步RA-SDT相对应的2步RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,根据当前BWP上的RA配置、该第一RSRP门限以及第二RSRP门限,执行该终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,该终端选择的RA-SDT类型为4步RA-SDT,且该第一RSRP门限等于该第二RSRP门限或者该第一RSRP门限与该第二RSRP为同一门限参数时,随机选择一个SSB执行4步RA过程;也就是说,在结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程时,若终端当前选择的RA-SDT类型为4步RA-SDT,当前BWP上存在用于4步RA的资源,且第一RSRP门限与该第二RSRP相等或者为同一参数,则终端可以随机选择一个SSB来执行与4步RA-SDT相对应的4步RA过程;
或者,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,该终端选择的RA-SDT类型为4步RA-SDT,且该第一RSRP门限不等于该第二RSRP门限时,根据该第二RSRP门限确定的SSB执行4步RA过程;也就是说,在结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程时,若终端当前选择的RA-SDT类型为4步RA-SDT,当前BWP上存在用于4步RA的资源,且第一RSRP门限与该第二RSRP不相等,则终端可以根据该第二RSRP门限确定的SSB,来执行与4步RA-SDT相对应的4步RA过程。
在一种可能的实现方式中,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,根据当前BWP上的RA配置、该第一RSRP门限以及第二RSRP门限,执行该终端选择的RA-SDT类型对应的RA过程,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,该终端选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在用于2步RA的资源时,根据该第二RSRP门限确定的SSB执行4步RA过程;也就是说,在结合RA配置、该第一RSRP门限、以及用于选择RA的SSB的第二RSRP门限,来执行终端选择的RA-SDT类型对应的RA过程时,若终端当前选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在用于2步RA的资源,则终端可以根据该第二RSRP门限确定的SSB,直接执行4步RA过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,该终端回退至4步RA过程。
在本申请实施例的另一种可能的实现方式中,若不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,则终端可以直接回退至4步RA过程,比如,根据该第二RSRP门限确定的SSB,直接执行4步RA过程。
在一种可能的实现方式中,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,该终端回退至RA过程,并重新根据第三RSRP门限选择RA类型;
其中,该第三RSRP门限用于该终端在两种RA类型之间进行选择。
其中,终端回退至RA过程,并重新根据第三RSRP门限选择RA类型的过程包括两种实现方式:
方式1:不重新执行载波选择,直接根据第三RSRP选择RA类型;
方式2:重新执行载波选择等步骤,即完成一个完整的RACH过程。
在本申请实施例的另一种可能的实现方式中,若不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB,则终端还可以回退至重新选择RA类型的RA过程,比如,先通过第三RSRP门限选择RA类型,然后根据该第二RSRP门限确定的SSB,执行与选择的RA类型相对应的RA过程。
在一种可能的实现方式中,当该数据传输方式包括执行回退时,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
确定SDT过程未成功完成或取消SDT过程,回退至RA过程,并通知上层SDT已取消或未能成功完成;
或者,确定SDT过程未成功完成或取消SDT过程,向上层发送SDT已取消或未完成的指示;当上层收到指示时,通过上层取消SDT,并重新发起RRC连接恢复过程。
基于本申请实施例的上述方案,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,终端可以任选一个SSB执行RA-SDT过程。比如,请参考图4,其示出了本申请实施例涉及的一种执行RA-SDT的流程示意图。如图4所示,该过程可以包括如下步骤:
S41,处于RRC_INACTIVE态的UE在满足第一条件的情况下选择RA-SDT。
其中,该第一条件可以至少包括:
待传输数据全部来自于允许触发SDT的RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
UE选择RA-SDT后执行的行为至少包括:
S42a,选择RA-SDT类型,例如,若当前BWP上只配置了一种类型的RA-SDT资源,即2-step RA-SDT或4-stepRA-SDT中的一种,则UE选择当前BWP上配置的RA-SDT类型;否则,UE根据第四RSRP门限在2-step RA-SDT和4-step RA-SDT之间执行选,其中,所述第四RSRP门限用于UE在两种RA-SDT类型之间进行选择。
S42b,根据所确定的RA-SDT类型,初始化参数配置;例如,初始功率配置,最大传输次数配置,RSRP门限配置等。
S42c,进行随机接入资源选择,包括:根据第一RSRP门限选择SSB。
如果存在至少一个SSB大于第一RSRP门限,则UE选择其中一个执行RA-SDT;例如,假设当前下去支持8个SSB,UE测量每个SSB的参考信号,确定每个SSB对应的下行RSRP测量结果,然后用这8个SSB的测量结果和第一RSRP门限做对比,确定是否存在至少一个SSB的RSRP测量结果大于第一RSRP门限。
若没有一个SSB大于第一RSRP门限,则UE任选一个SSB执行RA-SDT。
S42d,选择接入前导(preamble)、寻呼时机(Paging Occasion,PO)、或者随机接入时机(RACH Occasion,RO)。
基于本申请实施例的上述方案,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,终端可以回退至RA,并重新执行RA过程。比如,请参考图5,其示出了本申请实施例涉及的一种执行回退的流程示意图。如图5所示,该过程可以包括如下步骤:
S51,处于RRC_INACTIVE态的UE在满足第一条件的情况下选择RA-SDT。
该第一条件至少包括:
待传输数据全部来自于允许触发SDT的RB(Radio bearer,无线承载);
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
UE选择RA-SDT后的行为至少包括:
S52a,选择RA-SDT类型。例如,若当前BWP上只配置了一种类型的RA-SDT资源,即2-step RA-SDT或4-step RA-SDT中的一种,则UE选择当前BWP上配置的RA-SDT类型;否则,UE根据第四RSRP门限在2-step RA-SDT和4-step RA-SDT之间执行选,其中,所述第四RSRP门限用于UE在两种RA-SDT类型之间进行选择;比如,当UE测量得到的RSRP大于第三RSRP门限,则选择2-step RA-SDT,否则选择4-step RA-SDT。
S52b,根据所确定的RA-SDT类型,初始化参数配置。
S52c,进行随机接入资源选择。
该过程可以包括:
根据第一RSRP门限选择SSB;如果存在至少一个SSB大于第一RSRP门限,则UE选择其中一个执行RA-SDT;若没有一个SSB大于第一RSRP门限,则UE行为包括:
认为SDT过程没有成功完成或取消SDT,UE发起legacy RA和/或指示上高层SDT过程没有成功完成或取消。
S53,UE发起RA过程。该过程可以包括:
执行载波选择,RA类型选择,参数初始化,SSB选择,preamble选择,RO选择等。
此外,UE还可以指示上层SDT过程已取消或未成功完成,高层触发legacy的RRC resume过程。
其中,上述高层可以为RRC层和/或NAS层。
基于本申请实施例的上述方案,当不存在对应的SS-RSRP高于或者等于该第一RSRP门限的SSB时,终端可以回退至RA,并重新执行RA过程。比如,请参考图6,其示出了本申请实施例涉及的一种执行回退的流程示意图。如图6所示,该过程可以包括如下步骤。
S61,处于RRC_INACTIVE态的UE在满足第一条件的情况下选择RA-SDT。
其中,第一条件至少包括:
待传输数据全部来自于允许触发SDT的RB(Radio Bearer,无线承载);
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
UE选择RA-SDT后的行为至少包括:
S62a,选择RA-SDT类型,具体的,若当前BWP上只配置了一种类型的RA-SDT资源,即2-step RA-SDT或4-stepRA-SDT中的一种,则UE选择当前BWP上配置的RA-SDT类型;否则,UE根据第四RSRP门限在2-step RA-SDT和4-step RA-SDT之间执行选,其中,所述第四RSRP门限用于UE在两种RA-SDT类型之间进行选择;
S62b,根据所确定的RA-SDT类型,初始化参数配置;
S62c,进行随机接入资源选择。该过程包括:根据第一RSRP门限选择SSB;如果存在至少一个SSB大于第一RSRP门限,则UE选择其中一个执行RA-SDT;若没有一个SSB大于第一RSRP门限,UE的行为包括:认为SDT过程没有成功完成或取消SDT,UE发起legacy RA和/或指示上高层SDT过程没有成功完成或取消。
S63,UE发起legacy RA过程。该过程可以包括:
若UE所选RA-SDT的类型为2-step RA-SDT,则UE回退到2-step RA,若当前BWP没有配置2-step RA,则回退到4-step RA;若UE所选RA-SDT类型为4-step RA-SDT,则UE回退到4-step RA;或UE回退到4-step RA;
若UE由2-step RA-SDT回退到2-step RA,且第一RSRP门限等于第二RSRP门限,或第一RSRP门限与第二RSRP门限相同,则UE随机选择一个SSB执行2-step RA;若第一RSRP门限不等于第二RSRP门限,则UE根据第二RSRP门限确定SSB执行2-step RA;
若UE由4-step RA-SDT回退到4-step RA,且第一RSRP门限等于第二RSRP门限,或第一RSRP门限与第二RSRP门限相同,则UE随机选择一个SSB执行4-step RA;若第一RSRP门限不等于第二RSRP门限,则UE根据第二RSRP门限确定SSB执行4-step RA;
若UE由2-step RA-SDT回退到4-step RA,则UE根据第二RSRP门限确定SSB执行4-step RA。
在上述的legacy RA过程中,终端可以不需要执行载波选择的过程,直接选择RA类型,并根据所选的RA类型执行参数初始化的步骤。
此外,UE还可以指示上层SDT过程已取消或未成功完成,高层触发legacy的RRC resume过程。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来选择用于RA-SDT的SSB,并根据选择结果确定是执行RA-SDT还是执行回退,从而提供了一种根据RSRP门限执行RA-SDT或者回退的方案。
请参考图7,其示出了本申请一个实施例提供的数据传输处理方法。该方法可以由终端执行,其中,上述终端可以是图1所示的网络架构中的终端。该方法可以包括如下步骤:
步骤701,当终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
当终端处于RRC非激活态,且存在待传输数据时,终端可以检测是否存在大于第一RSRP门限的SSB,若是,则认为可以执行RA-SDT。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来判断是否执行RA-SDT,从而提供了一种根据RSRP门限来选择以RA-SDT方式进行数据传输的方案。
请参考图8,其示出了本申请一个实施例提供的数据传输处理方法。该方法可以由终端执行,其中,上述终端可以是图1所示的网络架构中的终端。该方法可以包括如下步骤:
步骤801,当终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
在一种可能的实现方式中,当该终端满足2步RA-SDT的条件时,该第一RSRP门限由2步RA-SDT的配置信息携带;
当该终端满足4步RA-SDT的条件时,该第一RSRP门限由4步RA-SDT的配置信息携带。
在一种可能的实现方式中,该第二条件还包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
步骤802,当该终端处于RRC非激活态,且不满足该第二条件时,选择执行RA。
在本申请实施例中,若终端处于RRC非激活态,且不满足第二条件,比如,不存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB时,终端可以直接执行RA过程。
在本申请实施例中,终端将存在满足第一RSRP门限的SSB作为选择RA-SDT的条件之一,也就是说,处于RRC_INACTIVE态的UE在满足第一条件的情况下选择RA-SDT,否则,UE选择RA,上述第一条件包括:
待传输数据全部来自于允许触发SDT的RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源;
存在大于第一RSRP门限的SSB。
其中,是否存在大于第一RSRP门限的SSB的判断过程是基于UE所选的RA-SDT类型来执行的;例如,若UE满足2步RA-SDT的条件(比如,满足2步RA-SDT的条件可以包括当前BWP存在用于2步RA-SDT的资源),则使用包含在2步RA-SDT的配置中的第一RSRP门限,若UE满足4步RA-SDT条件(比如,满足4步RA-SDT的条件可以包括当前BWP不存在用于2步RA-SDT的资源),则使用包含在4步RA-SDT的配置中的第一RSRP门限。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来判断是选择执行RA-SDT还是执行RA,从而提供了一种根据RSRP门限来选择RA-SDT或者RA,以进行数据传输的方案。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图9,其示出了本申请一个实施例提供的数据传输处理装置的框图。该装置用于终端中,且具有实现上述数据传输处理方法中,由终端执行的步骤的功能。如图9所示,该装置可以包括:
选择模块901,用于根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
处理模块902,用于根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
在一种可能的实现方式中,所述处理模块902,用于,
当存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于所述第一RSRP门限时,从对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB中选择一个SSB执行RA-SDT。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,选择任意一个SSB执行RA-SDT。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行与所述终端选择的RA-SDT类型对应的RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程;
其中,所述第二RSRP门限是用于选择RA的SSB的门限。
在一种可能的实现方式中,所述第一RSRP门限等于所述第二RSRP门限;
或者,所述第一RSRP门限和所述第二RSRP门限为同一门限参数;
或者,所述第一RSRP门限不等于所述第二RSRP门限。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行2步RA过程;
或者,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行2步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行4步RA过程;
或者,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在2步RA资源时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至4步RA过程。
在一种可能的实现方式中,所述处理模块,用于,
当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至RA过程,并重新根据第三RSRP门限选择RA类型;
其中,所述第三RSRP门限用于所述终端在两种RA类型之间进行选择。
在一种可能的实现方式中,当所述数据传输方式包括执行回退时,所述处理模块,用于,
确定SDT过程未成功完成或取消SDT过程,回退至RA过程,并通知上层SDT已取消或未能成功完成;
或者,
确定SDT过程未成功完成或取消SDT过程,向上层发送SDT已取消或未完成的指示;当上层收到指示时,通过上层取消SDT,并重新发起RRC连接恢复过程。
在一种可能的实现方式中,所述选择模块,还用于根据所述第一RSRP门限选择用于RA-SDT的SSB之前,当终端处于RRC非激活态,且满足第一条件时,选择以RA-SDT的方式进行处理;
所述第一条件包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来选择用于RA-SDT的SSB,并根据选择结果确定是执行RA-SDT还是执行回退,从而提供了一种根据RSRP门限执行RA-SDT或者回退的方案。
请参考图10,其示出了本申请一个实施例提供的数据传输处理装置的框图。该装置用于终端中,且具有实现上述数据传输处理方法中,由终端执行的步骤的功能。如图10所示,该装置可以包括:
选择模块1001,用于当所述终端处于RRC非激活态,且满足第二条件时,执行RA-SDT;
所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
在一种可能的实现方式中,当所述终端满足2步RA-SDT的条件时,所述第一RSRP门限由2步RA-SDT的配置信息携带;
当所述终端满足4步RA-SDT的条件时,所述第一RSRP门限由4步RA-SDT的配置信息携带。
在一种可能的实现方式中,所述第二条件还包括以下条件中的至少一种:
待传输数据全部来自于允许触发SDT的无线承载RB;
待传输数据量小于或等于网络配置的数据量门限;
下行RSRP测量结果大于或等于执行SDT的RSRP门限;
所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
在一种可能的实现方式中,所述选择模块,还用于当所述终端处于RRC非激活态,且不满足所述第二条件时,执行RA。
综上所述,在本申请实施例所示的方案中,对于上行小数据过程,终端可以根据一个RSRP门限来判断是选择执行RA-SDT还是执行RA,从而提供了一种根据RSRP门限来选择RA-SDT或者RA,以进行数据传输的方案。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图11,其示出了本申请一个实施例提供的计算机设备1100的结构示意图。该计算机设备1100可以包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1102和发射器1103可以实现为一个通信组件,该通信组件可以是一块通信芯片。该通信芯片也可以称为收发器。
存储器1104通过总线1105与处理器1101相连。
存储器1104可用于存储计算机程序,处理器1101用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在示例性实施例中,所述计算机设备包括处理器、存储器和收发器(该收发器可以包括接收器和发射器,接收器用于接收信息,发射器用于发送信息);
在一种可能的实现方式中,当计算机设备实现为终端时,
所述处理器,用于根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
所述处理器,还用于根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
在另一种可能的实现方式中,当计算机设备实现为终端时,所述处理器,用于当所述终端处于RRC非激活态,且满足第二条件时,执行RA-SDT;
所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
本申请实施例中的终端执行的各个方法步骤可以参考上述图2、图3、图7或图8所示实施例中由终端执行的全部或者部分步骤,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述图2或图3所示的方法中,由终端执行的各个步骤。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述图2、图3、图7或图8所示的方法中,由终端执行的各个步骤。
本申请还提供了一种芯片,该芯片用于在计算机设备中运行,以使得所述计算机设备执行如上述图2、图3、图7或图8所示的方法中,由终端执行的各个步骤。
本申请还提供了一种计算机程序,该计算机程序由计算机设备的处理器执行,以实现如上述图2、图3、图7或图8所示的方法中,由终端执行的各个步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种数据传输处理方法,其特征在于,所述方法由终端执行,所述方法包括:
    根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
    根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
  2. 根据权利要求1所述的方法,其特征在于,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    当存在至少一个SSB所对应的参考信号SS-RSRP高于或者等于所述第一RSRP门限时,从对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB中选择一个SSB执行RA-SDT。
  3. 根据权利要求1所述的方法,其特征在于,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,选择任意一个SSB执行RA-SDT。
  4. 根据权利要求1所述的方法,其特征在于,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程。
  5. 根据权利要求4所述的方法,其特征在于,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前带宽部分BWP上的RA配置,执行RA过程,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行与所述终端选择的RA-SDT类型对应的RA过程。
  6. 根据权利要求5所述的方法,其特征在于,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,根据当前BWP上的RA配置,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程;
    其中,所述第二RSRP门限是用于选择RA的SSB的门限。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一RSRP门限等于所述第二RSRP门限;
    或者,所述第一RSRP门限和所述第二RSRP门限为同一门限参数;
    或者,所述第一RSRP门限不等于所述第二RSRP门限。
  8. 根据权利要求6所述的方法,其特征在于,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行2步RA过程;
    或者,
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,当前BWP上存在用于2步RA的资源,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行2步RA过程。
  9. 根据权利要求6所述的方法,其特征在于,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限等于所述第二RSRP门限或者所述第一RSRP门限与所述第二RSRP为同一门限参数时,随机选择一个SSB执行4步RA过程;
    或者,
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为4步RA-SDT,且所述第一RSRP门限不等于所述第二RSRP门限时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
  10. 根据权利要求6所述的方法,其特征在于,当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,根据当前BWP上的RA配置、所述第一RSRP门限以及第二RSRP门限,执行所述终端选择的RA-SDT类型对应的RA过程,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB,所述终端选择的RA-SDT类型为2步RA-SDT,且当前BWP不存在用于2步RA的资源时,根据所述第二RSRP门限确定的SSB执行4步RA过程。
  11. 根据权利要求1所述的方法,其特征在于,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至4步RA过程。
  12. 根据权利要求1所述的方法,其特征在于,根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    当不存在对应的SS-RSRP高于或者等于所述第一RSRP门限的SSB时,所述终端回退至RA过程,并重新根据第三RSRP门限选择RA类型;
    其中,所述第三RSRP门限用于所述终端在两种RA类型之间进行选择。
  13. 根据权利要求1所述的方法,其特征在于,当所述第一数据传输方式包括执行回退时,所述根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,包括:
    确定SDT过程未成功完成或取消SDT过程,回退至RA过程,并通知上层SDT已取消或未能成功完成;
    或者,
    确定SDT过程未成功完成或取消SDT过程,向上层发送SDT已取消或未完成的指示;当上层收到所述指示时,通过上层取消SDT,并重新发起RRC连接恢复过程。
  14. 根据权利要求1所述的方法,其特征在于,所述根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB之前,还包括:
    当所述终端处于RRC非激活态,且满足第一条件时,选择以RA-SDT方式进行处理;
    所述第一条件包括以下条件中的至少一种:
    待传输数据全部来自于允许触发SDT的无线承载RB;
    待传输数据量小于或等于网络配置的数据量门限;
    下行RSRP测量结果大于或等于执行SDT的RSRP门限;
    所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
  15. 一种数据传输处理方法,其特征在于,所述方法由终端执行,所述方法包括:
    当所述终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;
    所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
  16. 根据权利要求15所述的方法,其特征在于,
    当所述终端满足2步RA-SDT的条件时,所述第一RSRP门限由2步RA-SDT的配置信息携带;
    当所述终端满足4步RA-SDT的条件时,所述第一RSRP门限由4步RA-SDT的配置信息携带。
  17. 根据权利要求15所述的方法,其特征在于,所述第二条件还包括以下条件中的至少一种:
    待传输数据全部来自于允许触发SDT的无线承载RB;
    待传输数据量小于或等于网络配置的数据量门限;
    下行RSRP测量结果大于或等于执行SDT的RSRP门限;
    所选载波存在RA-SDT资源且没有有效的CG-SDT资源。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    当所述终端处于RRC非激活态,且不满足所述第二条件时,选择执行RA。
  19. 一种数据传输处理装置,其特征在于,所述装置用于终端中,所述装置包括:
    选择模块,用于根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
    处理模块,用于根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA过程,或者,回退到无线资源控制RRC连接恢复过程。
  20. 一种数据传输处理装置,其特征在于,所述装置用于终端中,所述装置包括:
    处理模块,用于当所述终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;
    所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
  21. 一种计算机设备,其特征在于,所述计算机设备实现为终端,所述计算机设备包括处理器、存储器和收发器;
    所述处理器,用于根据第一参考信号接收功率RSRP门限选择用于随机接入的小数据传输RA-SDT的同步信号块SSB;
    所述处理器,还用于根据对用于RA-SDT的SSB的选择结果确定数据传输方式并执行,所述数据传输方式包括执行RA-SDT或者执行回退,所述执行回退包括:回退到随机接入RA 过程,或者,回退到无线资源控制RRC连接恢复过程。
  22. 一种计算机设备,其特征在于,所述计算机设备实现为终端,所述计算机设备包括处理器、存储器和收发器;
    所述处理器,用于当所述终端处于RRC非激活态,且满足第二条件时,选择执行RA-SDT;
    所述第二条件包括:存在对应的SS-RSRP大于或者等于第一RSRP门限的SSB。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至18任一项所述的数据传输处理方法。
  24. 一种芯片,其特征在于,所述芯片用于在计算机设备中运行,以使得所述计算机设备执行如权利要求1至18任一项所述的数据传输处理方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,并执行所述计算机指令,使得所述计算机设备执行如权利要求1至18任一项所述的数据传输处理方法。
  26. 一种计算机程序,其特征在于,所述计算机程序由计算机设备的处理器执行,以实现如权利要求1至18任一项所述的数据传输处理方法。
PCT/CN2021/100587 2021-06-17 2021-06-17 数据传输处理方法、装置、终端及存储介质 WO2022261893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/100587 WO2022261893A1 (zh) 2021-06-17 2021-06-17 数据传输处理方法、装置、终端及存储介质
CN202180096976.1A CN117136623A (zh) 2021-06-17 2021-06-17 数据传输处理方法、装置、终端及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100587 WO2022261893A1 (zh) 2021-06-17 2021-06-17 数据传输处理方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2022261893A1 true WO2022261893A1 (zh) 2022-12-22

Family

ID=84525912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100587 WO2022261893A1 (zh) 2021-06-17 2021-06-17 数据传输处理方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN117136623A (zh)
WO (1) WO2022261893A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769505A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 随机接入方法、终端及网络设备
WO2021002632A1 (ko) * 2019-07-03 2021-01-07 주식회사 케이티 소량 데이터의 부하 제어 방법 및 장치
US20210274525A1 (en) * 2020-02-27 2021-09-02 FG Innovation Company Limited User equipment and method for small data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769505A (zh) * 2018-07-26 2020-02-07 维沃移动通信有限公司 随机接入方法、终端及网络设备
WO2021002632A1 (ko) * 2019-07-03 2021-01-07 주식회사 케이티 소량 데이터의 부하 제어 방법 및 장치
US20210274525A1 (en) * 2020-02-27 2021-09-02 FG Innovation Company Limited User equipment and method for small data transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMAIL DISCUSSION RAPPORTEUR (ZTE CORPORATION): "Common aspects between CG and RACH", 3GPP DRAFT; R2-2101162, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-Meeting; 20210125 - 20210205, 14 January 2021 (2021-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974149 *
OPPO: "Discussion on RACH based SDT", 3GPP DRAFT; R2-2100284, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973484 *

Also Published As

Publication number Publication date
CN117136623A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN105306681B (zh) 一种支持多个sim卡共享rf处理器的管理方法及装置
JP2021510255A (ja) ビーム失敗回復方法、装置およびデバイス
CN109792768B (zh) 一种随机接入方法及装置
US11602001B2 (en) Method and device for resuming data radio bearer, storage medium and electronic device
KR102622293B1 (ko) 정보 보고 방법, 수신 방법, 단말 장치 및 네트워크 장치
EP4333489A1 (en) Sdt failure reporting method, terminal device, and network device
JP2023519587A (ja) 端末装置及び基地局
JP7111812B2 (ja) 通信装置のランダム・アクセス方法、装置、及び記憶媒体
WO2019194296A1 (ja) 通信制御方法
US20230284231A1 (en) Data transmission method and apparatus, communication device, and storage medium
CN116982388A (zh) 小数据传输模式中的传输
WO2023213140A1 (zh) 通信方法、资源配置方法、设备、网络节点、***及介质
WO2022261893A1 (zh) 数据传输处理方法、装置、终端及存储介质
CN112203306A (zh) 终端、通信方法、装置及存储介质
CN114731731A (zh) 通信方法及装置
CN114270980A (zh) 当从空闲状态或非活跃状态转变时,在到无线网络的连接建立过程中由ue较早地设置不同的bwp
WO2023082067A1 (zh) 通信方法及通信装置
EP4395446A1 (en) Instruction method, data transmission method, communication node, and storage medium
WO2024011523A1 (zh) 激活或去激活上行定位参考信号的方法、装置
WO2024077510A1 (zh) 信号接收、发送方法及装置
EP4340527A1 (en) Communication method and communication apparatus
WO2023102748A1 (zh) 小数据传输失败的上报方法、装置、设备及存储介质
WO2024011525A1 (zh) 上行定位方法、装置及存储介质
WO2022233257A1 (zh) 通信方法以及相关联的装置、***、介质、产品和芯片
WO2023108420A1 (zh) 定时提前的有效性的确定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945479

Country of ref document: EP

Kind code of ref document: A1