WO2022259973A1 - Battery abnormality detecting device, and battery abnormality detecting method - Google Patents

Battery abnormality detecting device, and battery abnormality detecting method Download PDF

Info

Publication number
WO2022259973A1
WO2022259973A1 PCT/JP2022/022607 JP2022022607W WO2022259973A1 WO 2022259973 A1 WO2022259973 A1 WO 2022259973A1 JP 2022022607 W JP2022022607 W JP 2022022607W WO 2022259973 A1 WO2022259973 A1 WO 2022259973A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
impedance
reference range
abnormality detection
detection device
Prior art date
Application number
PCT/JP2022/022607
Other languages
French (fr)
Japanese (ja)
Inventor
章 河邉
仁 小林
圭一 藤井
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to CN202280039092.7A priority Critical patent/CN117396769A/en
Priority to JP2023527836A priority patent/JPWO2022259973A1/ja
Priority to EP22820154.7A priority patent/EP4354164A1/en
Publication of WO2022259973A1 publication Critical patent/WO2022259973A1/en
Priority to US18/526,679 priority patent/US20240110992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery abnormality detection device and a battery abnormality detection method.
  • HEVs Hybrid Electric Vehicles
  • EVs Electric Vehicles
  • a secondary battery as a power source
  • a lithium-ion battery LiB
  • a battery management system BMS is used to safely use the secondary battery.
  • Patent Document 1 describes the use of an AC impedance method in which voltage and current are measured while an AC signal is swept through the battery in order to measure the temperature inside the battery.
  • An object of the present disclosure is to provide a battery state detection device and a battery abnormality detection method that can realize highly accurate battery abnormality detection.
  • a battery abnormality detection device includes an AC impedance measurement unit that measures AC impedance of a battery cell, and determines whether the AC impedance is included in a reference range, and determines whether the AC impedance is within the reference range. and an abnormality determination unit that determines that the battery cell is an abnormal cell when the battery cell is not included in the cell.
  • the present disclosure can provide a battery abnormality detection device and a battery abnormality detection method that can realize highly accurate battery abnormality detection.
  • FIG. 1 is a block diagram of a battery abnormality detection system according to Embodiment 1.
  • FIG. FIG. 2 is a flowchart of battery abnormality detection processing according to the first embodiment.
  • 3 is a diagram showing an equivalent circuit of the battery according to Embodiment 1.
  • FIG. 4 is a diagram showing the AC impedance of the battery according to Embodiment 1.
  • FIG. 5 is a diagram showing the relationship between changes in AC impedance of the battery and deterioration of the battery according to Embodiment 1.
  • FIG. 6 is a block diagram of an abnormality determination unit according to Embodiment 1.
  • FIG. FIG. 9 is a diagram illustrating a specific example of abnormal cell determination processing according to the second embodiment.
  • 10 is a block diagram of an abnormality determination unit according to Embodiment 3.
  • FIG. 11 is a diagram showing an example of temperature dependence of AC impedance according to the third embodiment.
  • 12 is a diagram showing the appearance of a battery according to Embodiment 3.
  • FIG. 13 is a diagram showing the internal temperature of the battery during thermal equilibrium according to the third embodiment.
  • FIG. 14 is a diagram showing the internal temperature of the battery during thermal non-equilibrium according to the third embodiment.
  • FIG. 15 is a diagram showing the appearance of the assembled battery according to Embodiment 3.
  • FIG. FIG. 16 is a diagram showing the internal temperature of the assembled battery during thermal equilibrium according to the third embodiment.
  • FIG. 17 is a diagram showing the internal temperature of the assembled battery during thermal non-equilibrium according to the third embodiment.
  • FIG. 18 is a flowchart of battery abnormality detection processing according to the third embodiment.
  • FIG. 19 is a flowchart of battery abnormality detection processing according to the third embodiment.
  • 20 is a block diagram of an abnormality determination unit according to Embodiment 4.
  • FIG. 21 is a diagram showing an outline of a battery abnormality detection system according to Embodiment 4.
  • the BMS monitors the voltage, current, and temperature of all battery cells included in the assembled battery, and uses these measurement data to monitor the state of the battery.
  • the current of all battery cells can be uniformly obtained by monitoring the charge/discharge current of the entire assembled battery.
  • the temperatures of all battery cells are acquired by placing a thermistor for measurement in the assembled battery.
  • an estimated value is usually taken in consideration of the temperature distribution and the like.
  • a battery abnormality detection device includes an AC impedance measurement unit that measures AC impedance of a battery cell, and determines whether the AC impedance is included in a reference range, and determines whether the AC impedance is within the reference range. and an abnormality determination unit that determines that the battery cell is an abnormal cell when the battery cell is not included in the cell.
  • the battery abnormality detection device can detect battery cell abnormality using the AC impedance value itself. As a result, the battery abnormality detection device can realize highly accurate battery abnormality detection.
  • the AC impedance measurement unit measures the AC impedance of each of a plurality of directly connected battery cells, including the battery cell, and the abnormality determination unit determines the reference from the plurality of measured AC impedances.
  • a range may be calculated, it may be determined whether each of the plurality of AC impedances is included in the reference range, and a battery cell whose AC impedance is not included in the reference range may be determined as an abnormal cell.
  • the abnormality determination unit excludes the maximum value and the minimum value from the plurality of measured AC impedances, calculates the average value of the plurality of AC impedances after the exclusion, and based on the average value
  • the reference range may be calculated.
  • the battery abnormality detection device further includes a storage unit that stores AC impedance measured in the past, and the abnormality determination unit determines the reference range based on the AC impedance measured in the past. good too.
  • the abnormality determination unit determines, as the reference range, a range corresponding to the first battery state of the current battery cell from a plurality of ranges previously associated with a plurality of first battery states.
  • One battery state may include at least one of temperature, voltage, and SOC (State of Charge) of the battery cell.
  • the battery abnormality detection device may further include a communication unit that communicates with a server device via a communication network, and the reference range may be obtained from the server device.
  • the AC impedance measurement unit may measure the AC impedance when the battery cell is in thermal equilibrium.
  • the AC impedance measuring unit measures the AC impedance when the battery cell is in a predetermined second battery state, and the second battery state is the temperature, voltage, and SOC (State of Charge).
  • a battery abnormality detection method measures the AC impedance of a battery cell, determines whether the AC impedance is included in the reference range, and if the AC impedance is not included in the reference range , the battery cell is determined to be an abnormal cell.
  • the battery abnormality detection method can detect battery cell abnormality using the AC impedance value itself.
  • the battery abnormality detection device can realize highly accurate battery abnormality detection.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • FIG. 1 is a block diagram of a battery abnormality detection system 200 according to this embodiment.
  • the assembled battery 101 includes a plurality of batteries B1 to B8 (hereinafter, any one of the batteries B1 to B8 is referred to as a battery B).
  • Battery B is, in other words, a battery cell.
  • Battery B is specifically a lithium ion battery, but may be another battery such as a nickel metal hydride battery.
  • the assembled battery 101 functions as a power source for the load 102 and supplies power to the load 102 .
  • the load 102 is, for example, an EV motor, but is not particularly limited.
  • a charging device for charging the assembled battery 101 may be connected to the position of the load 102 instead of the load 102 .
  • the battery abnormality detection system 200 includes a relay 103, a transistor 104, a reference resistor 105, a load resistance 106, a temperature sensor 107, a battery abnormality detection device 100, and a host controller 130.
  • the relay 103 is connected between the assembled battery 101 and the load 102 .
  • the transistor 104 is, for example, an FET (Field Effect Transistor), but may be a bipolar transistor.
  • the drain of transistor 104 is connected to load resistor 106 , the source of transistor 104 is connected to reference resistor 105 , and the gate (ie, control terminal) of transistor 104 is connected to signal generator 114 .
  • the battery abnormality detection device 100 is included in the BMS, for example.
  • the battery abnormality detection device 100 includes an AC impedance measurement section 110 , an abnormality determination section 120 , a control section 121 and a communication section 122 .
  • the battery abnormality detection device 100 is composed of one or more integrated circuits.
  • the functions of the abnormality determination unit 120 and the control unit 121 may be realized by a processor executing a program, may be realized by a dedicated circuit, or may be realized by a combination thereof.
  • the AC impedance measurement unit 110 measures the AC impedances Z1 to Z8 of the assembled battery 101.
  • Abnormality determination unit 120 detects an abnormality in each of the plurality of batteries B included in assembled battery 101 using AC impedances Z1 to Z8.
  • the AC impedance measurement unit 110 includes a temperature measurement unit 111, a current measurement unit 113, a signal generation unit 114, a voltage measurement unit 115, a timing generation unit 117, and an AC impedance calculation unit 118.
  • the temperature measurement unit 111 measures the temperature Temp of the temperature sensor 107 .
  • the temperature sensor 107 is, for example, a temperature sensor using a thermistor, but may be a temperature sensor using other elements such as a thermocouple.
  • the current measurement unit 113 measures the current Iac flowing through the reference resistor 105 . Specifically, the current measurement unit 113 measures the current Iac by measuring the voltage across the reference resistor 105 .
  • the signal generator 114 applies a control signal to the control terminal of the transistor 104 . This control signal can be set to an arbitrary frequency, and is characterized by applying an AC signal to a closed circuit composed of the assembled battery 101 , the load resistor 106 , the transistor 104 and the reference resistor 105 .
  • the voltage measurement unit 115 measures the voltages V1 to V8 of the batteries B1 to B8 that make up the assembled battery 101.
  • the voltage measurement unit 115 includes multiple AD converters.
  • the timing generator 117 controls current and voltage measurement timings in the current measurement unit 113 and the voltage measurement unit 115 .
  • the AC impedance calculation unit 118 calculates the AC impedances Z1 to Z8 of the batteries B1 to B8 based on the current Iac measured by the current measurement unit 113 and the voltages V1 to V8 measured by the voltage measurement unit 115. Specifically, AC impedance calculator 118 calculates AC impedance Zn of battery Bn by dividing voltage Vn by current Iac. where n is 1-8. Each AC impedance is complex and has a real component Zre and an imaginary component Zim.
  • the abnormality determination unit 120 detects abnormal cells from a plurality of batteries B using AC impedances Z1 to Z8. In other words, the abnormality determination unit 120 determines whether or not each of the plurality of batteries B is an abnormal cell.
  • an abnormal cell is a battery cell that is not in a normal state, for example, a battery cell that needs to be replaced. Further, the abnormality determination unit 120 notifies the upper control unit 130 of the determination result via the control unit 121 and the communication unit 122 .
  • the control unit 121 controls the AC impedance measurement unit 110 and the like.
  • the communication unit 122 performs communication between the battery abnormality detection device 100 and the host control unit 130 .
  • the host controller 130 controls the entire battery pack. For example, in the case of in-vehicle installation, the host controller 130 may control the vehicle.
  • FIG. 2 is a flowchart of battery abnormality detection processing by the battery abnormality detection device 100 .
  • AC impedance measuring section 110 measures AC impedances Z1 to Z8 (S101).
  • the signal generator 114 generates a control signal having multiple frequency components and applies the generated control signal to the control terminal of the transistor 104 .
  • current measuring section 113 measures current Iac flowing through reference resistor 105 .
  • voltage measurement unit 115 measures voltages V1 to V8 of batteries B1 to B8.
  • AC impedance calculator 118 calculates AC impedances Z1 to Z8 of batteries B1 to B8 based on the measured current Iac and the measured voltages V1 to V8.
  • the AC impedance calculator 118 converts the current Iac into a complex current, and converts the voltages V1 to V8 into complex voltages.
  • the AC impedance calculator 118 performs the averaging process of the complex current and the averaging process of the complex voltage, and calculates the AC impedance by dividing the complex voltage after the averaging process by the complex current after the averaging process.
  • the impedance real part Z1re and the impedance imaginary part Z1im are output as the AC impedance of the battery B1.
  • the AC impedance calculation unit 118 may correct the AC impedance based on the temperature Temp measured by the temperature measurement unit 111 .
  • FIG. 3 is a diagram showing an example of a battery model, which is an equivalent circuit of battery B.
  • the battery B has a circuit configuration in which a resistor R0, a parallel-connected resistor R1 and a capacitive element C1, and a parallel-connected resistor R2 and a capacitive element C2 are connected in series.
  • the battery model is represented by three resistors and two capacities is shown here, the number of resistors and the number of capacities are not limited to this.
  • a battery model may be represented by four or more resistors and three or more capacities.
  • the numbers of resistors and capacitors may be the same or different.
  • FIG. 4 is a diagram showing the AC impedance of Battery B.
  • FIG. FIG. 4 is a diagram called a Cole-Cole plot, also called a Nyquist plot.
  • the characteristics of region A shown in FIG. 3 depend on R0 shown in FIG. 3, the characteristics of region B depend on R1 and C1, and the characteristics of region C depend on R2 and C2.
  • FIG. 5 is a diagram showing the relationship between changes in AC impedance of battery B and deterioration of battery B.
  • the AC impedance of battery B has an initial characteristic indicated by a solid line in FIG.
  • the electrode performance of battery B deteriorates
  • the AC impedance of battery B changes to the characteristic indicated by the dashed line in FIG.
  • the electrolyte performance of Battery B deteriorates
  • the AC impedance of Battery B changes to the characteristic indicated by the dashed line in FIG.
  • the abnormality determination unit 120 uses the AC impedances Z1 to Z8 to determine whether each of the plurality of batteries B is an abnormal cell.
  • FIG. 6 is a block diagram showing the configuration of the abnormality determination section 120. As shown in FIG. Abnormality determination unit 120 includes input unit 201 , comparison unit 202 , determination unit 203 , input/output unit 204 , and reference range calculation unit 205 .
  • the input unit 201 acquires and holds the AC impedances Z1 to Z8 of each battery B.
  • Reference range calculator 205 calculates a reference range using AC impedances Z1 to Z8. Comparing section 202 compares AC impedances Z1 to Z8 with a reference range, and determines whether AC impedances Z1 to Z8 are included in the reference range.
  • the determination unit 203 determines that the battery B, whose AC impedance is not within the reference range, is an abnormal cell.
  • the input/output unit 204 outputs the determination result of the determination unit 203 to the control unit 121 .
  • FIG. 7 is a diagram showing a specific example of abnormal cell determination processing.
  • the reference range calculator 205 calculates a reference range (S102). Specifically, as shown in FIG. 7, the reference range calculator 205 excludes the maximum value (Z4) and the minimum value (Z7) from the AC impedances Z1 to Z8. Next, the reference range calculator 205 calculates the average value of the AC impedances (Z1, Z2, Z3, Z5, Z6, Z8) after exclusion as a reference value.
  • the reference range calculator 205 may use the average value of all the AC impedances Z1 to Z8 as the reference value without excluding the maximum and minimum values.
  • the reference range calculation unit 205 excludes N AC impedances from the side with the largest value from the plurality of AC impedances, and excludes M AC impedances from the side with the smallest value, and the AC after exclusion
  • An average impedance value may be calculated as a reference value.
  • N and M are arbitrary natural numbers.
  • N and M may be the same value or may be different values.
  • a median value or the like may be used instead of the average value.
  • the reference range calculator 205 determines the reference range based on the reference value.
  • the reference range is the reference value ⁇ X%.
  • X is about 30 to 100, for example.
  • the upper limit of the reference range may be defined as the average value + ⁇
  • the lower limit of the reference range may be defined as the average value ⁇ .
  • ⁇ and ⁇ are predetermined values.
  • ⁇ and ⁇ may be the same value or may be different values.
  • the comparison unit 202 selects an AC impedance to be processed (S103), and determines whether or not the AC impedance to be processed is included in the reference range (S104). In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
  • the determination unit 203 determines that the battery B to be processed corresponding to the AC impedance to be processed is a normal cell (S105). On the other hand, when the AC impedance to be processed is not included in the reference range (No in S104), determination unit 203 determines that battery B to be processed is an abnormal cell (S106).
  • battery B4 is determined to be an abnormal cell because AC impedance Z4 is not included in the reference range.
  • the other batteries B1-3 and 5-8 are determined to be normal cells.
  • the determination processing for each battery B is performed sequentially has been described, the determination processing for a plurality of batteries B may be performed in parallel.
  • the input/output unit 204 outputs the determination result to the control unit 121 (S108). This determination result is notified to the upper control unit 130 via the control unit 121 and the communication unit 122 .
  • the host control unit 130 displays an error or the like to prompt replacement of the abnormal cell.
  • the battery abnormality detection device 100 includes the AC impedance measurement unit 110 that measures the AC impedance of the battery cell (battery B), and determines whether the AC impedance is within the reference range. and an abnormality determination unit 120 that determines that the battery cell is an abnormal cell when it is not included in the range.
  • the battery abnormality detection device 100 can detect the abnormality of the battery cell using the AC impedance value itself. Therefore, the battery abnormality detection device 100 can realize highly accurate battery abnormality detection. For example, in addition to calculating SOC (State of Charge) or SOH (State of Health), the value of AC impedance itself is used to detect a battery cell abnormality, thereby achieving more accurate battery abnormality detection.
  • the AC impedance measurement unit 110 measures the AC impedances (Z1 to Z8) of each of the plurality of directly connected battery cells (B1 to B7).
  • Abnormality determination unit 120 calculates a reference range from the plurality of measured AC impedances (Z1 to Z8), determines whether each of the plurality of AC impedances (Z1 to Z8) is included in the reference range, A battery cell whose impedance is not within the reference range is determined to be an abnormal cell.
  • the abnormality determination unit 120 excludes the maximum value and the minimum value from the plurality of measured AC impedances (Z1 to Z8), calculates the average value of the plurality of AC impedances after the exclusion, and based on the average value Calculate the reference range.
  • the battery abnormality detection device 100 can detect battery abnormality by measuring the AC impedance of all battery cells of the assembled battery and monitoring changes in the AC impedance of each battery cell. This can improve the safety of the system.
  • a signal in the frequency domain of about 1000 Hz is used for measuring AC impedance. This makes it possible to easily measure AC impedance.
  • FIG. 8 is a block diagram of abnormality determination section 120A according to the present embodiment.
  • Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120A shown in FIG.
  • An abnormality determination unit 120A shown in FIG. 8 includes a storage unit 206 in addition to the configuration of the abnormality determination unit 120 shown in FIG. Also, the function of the reference range calculator 205A is different from that of the reference range calculator 205A.
  • the storage unit 206 stores past AC impedance 207 .
  • Reference range calculator 205A calculates a reference range using past AC impedance 207 .
  • FIG. 9 is a diagram showing a specific example of abnormal cell determination processing according to the present embodiment.
  • the past AC impedance 207 is the AC impedance Z1 to Z8 of the previous Tn-1 (indicated by broken lines in FIG. 9).
  • the current Tn AC impedances Z1 to Z8 are held in the input unit 201.
  • FIG. 9 is a diagram showing a specific example of abnormal cell determination processing according to the present embodiment.
  • the past AC impedance 207 is the AC impedance Z1 to Z8 of the previous Tn-1 (indicated by broken lines in FIG. 9).
  • the current Tn AC impedances Z1 to Z8 are held in the input unit 201.
  • the reference range calculator 205A uses the AC impedance of Tn-1 as a reference value. Specifically, the past AC impedance of the same battery B is used as a reference value for each of the plurality of AC impedances. That is, the past Z1 is used as the reference value for Z1, and the past Z2 is used as the reference value for Z2.
  • the reference value may be calculated from a plurality of AC impedances obtained in a plurality of past measurements. For example, the average value, median value, maximum value, or minimum value of a plurality of AC impedances may be used as the reference value.
  • the reference range calculator 205A determines the reference range based on the reference value.
  • the reference range is the reference value ⁇ X%.
  • X is about 10 to 50, for example.
  • the upper limit of the reference range may be defined as the average value + ⁇
  • the lower limit of the reference range may be defined as the average value ⁇ .
  • ⁇ and ⁇ are predetermined values.
  • ⁇ and ⁇ may be the same value or may be different values.
  • comparison unit 202 determines whether each AC impedance is included in the reference range corresponding to the AC impedance. In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
  • the determination unit 203 determines that the battery B corresponding to the AC impedance is a normal cell. Moreover, when the AC impedance is not included in the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is an abnormal cell.
  • the battery B4 is determined to be an abnormal cell because the AC impedance Z4 is not included in the reference range W4.
  • the other batteries B1-3 and 5-8 are determined to be normal cells.
  • reference ranges other than the reference ranges W4 and W7 of the AC impedances Z4 and Z7 are omitted.
  • the battery abnormality detection device 100 includes the storage unit 206 that stores the AC impedance measured in the past. 120 A of abnormality determination parts determine a reference range based on the AC impedance measured in the past. Thereby, the battery abnormality detection device 100 can determine the abnormality of each battery B using the AC impedance.
  • FIG. 10 is a block diagram of abnormality determination section 120B according to the present embodiment.
  • Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120B shown in FIG. 10 instead of abnormality determination section 120A.
  • the abnormality determination unit 120B shown in FIG. 10 differs from the reference range calculation unit 205A and the storage unit 206 in the functions of the reference range calculation unit 205B and the storage unit 206B in contrast to the configuration of the abnormality determination unit 120A shown in FIG.
  • the storage unit 206B stores the reference range table 208.
  • the reference range table 208 is a table that associates a reference range with a combination of temperature and voltage.
  • AC impedance changes according to temperature and voltage.
  • FIG. 11 is a diagram showing an example of temperature dependence of AC impedance. As shown in FIG. 11, AC impedance varies with temperature.
  • the reference range calculator 205B refers to the reference range table 208 and determines the reference range of each AC impedance based on the voltages V1 to V8 and the temperature Temp at the time of measurement of the AC impedances Z1 to Z8. For example, the reference range calculator 205B determines the reference range associated with the voltage V1 and the temperature Temp in the reference range table 208 as the reference range of the AC impedance Z1. Similarly, the reference range calculator 205B determines the reference range associated with the voltage V2 and the temperature Temp in the reference range table 208 as the reference range of the AC impedance Z2.
  • the reference range table 208 shows the reference value
  • the reference range calculation unit 205B calculates the reference range using the same method as in the first or second embodiment.
  • a reference range may be calculated from the values.
  • comparison unit 202 determines whether each AC impedance is included in the reference range corresponding to the AC impedance. In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
  • the determination unit 203 determines that the battery B corresponding to the AC impedance is a normal cell. Moreover, when the AC impedance is not included in the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is an abnormal cell.
  • the reference range table 208 may be a table that associates a reference range with a combination of temperature, voltage, and SOC.
  • the reference range calculator 205B may further use the current SOC to determine the reference range. At least one of temperature, voltage, and SOC may be used.
  • the Temp obtained by the temperature measuring unit 111 may differ from the internal temperature of the battery B.
  • FIG. 12 is a diagram showing the appearance of Battery B (battery cell).
  • 13 and 14 are diagrams showing examples of temperatures along the XY line shown in FIG. FIG. 13 shows the temperature during thermal equilibrium, and FIG. 14 shows the temperature during thermal non-equilibrium.
  • the time of thermal equilibrium is a state in which the battery B is in a non-operating state and is not being charged or discharged.
  • the thermal non-equilibrium state is a state in which the battery is being charged or discharged.
  • Temp As shown in FIG. 14, during thermal non-equilibrium, the surface and inside of battery B have different temperatures. Also, Temp obtained by the temperature measuring unit 111 is the temperature of the surface of the battery B. FIG. Therefore, during thermal non-equilibrium, Temp differs from the actual internal temperature.
  • FIG. 15 is a diagram showing the appearance of an assembled battery 101 including a plurality of batteries B1 to B8.
  • 16 and 17 are diagrams showing examples of temperatures along the XY line shown in FIG. FIG. 16 shows the temperature during thermal equilibrium, and FIG. 17 shows the temperature during thermal non-equilibrium.
  • Temp As shown in FIG. 17, during thermal non-equilibrium, the temperature of the battery B4 arranged near the center and the surface of the assembled battery 101 are different. Also, Temp obtained by the temperature measurement unit 111 is the temperature of the surface of the assembled battery 101 . Therefore, during thermal non-equilibrium, Temp differs from the actual internal temperature.
  • FIG. 18 is a flowchart of battery abnormality detection processing by battery abnormality detection device 100 according to the present embodiment. The process shown in FIG. 18 has step S110 added to the process shown in FIG.
  • the battery abnormality detection device 100 determines whether the assembled battery 101 is in thermal equilibrium (S110). When the assembled battery 101 is in thermal equilibrium (Yes in S110), the battery abnormality detection device 100 measures the AC impedance (S101), and uses the AC impedance to detect abnormal cells (S102 to S108).
  • the thermal equilibrium state is, for example, a state in which no current flows through the load 102 and the assembled battery 101 is chemically stable.
  • the battery abnormality detection device 100 determines that the assembled battery 101 is in thermal equilibrium when a predetermined time (for example, about 1 hour) has passed after charging or discharging. It should be noted that the determination as to whether the battery is being charged or discharged may be made based on, for example, a control signal indicating whether the battery is in operation or not, which is supplied from the host controller 130 . For example, this control signal may be a signal for controlling relay 103 .
  • the temperature Temp becomes closer to the internal temperature of the battery B, so the reference range associated with the temperature can be appropriately selected, thereby improving the accuracy of abnormality detection.
  • the AC impedance may be similarly measured in the thermal equilibrium state.
  • FIG. 19 is a flowchart of battery abnormality detection processing in that case. The process shown in FIG. 19 has step S111 added to the process shown in FIG.
  • the battery abnormality detection device 100 determines whether the battery state of the assembled battery 101 is in a predetermined state (S111). When the battery state is in a predetermined state (Yes in S111), the battery abnormality detection device 100 measures the AC impedance (S101), and uses the AC impedance to detect abnormal cells (S102 to S108).
  • the battery state includes at least one of the temperature, voltage, and SOC of the assembled battery 101 (battery B).
  • the AC impedance can be measured in the same state, so variations in the AC impedance depending on the battery state can be reduced.
  • the accuracy of abnormality detection can be improved.
  • abnormality determination unit 120B determines the current first battery state of the battery cell (battery B) from a plurality of ranges previously associated with a plurality of first battery states. Determine the range as the reference range.
  • the first battery state includes at least one of battery cell temperature, voltage, and SOC.
  • the AC impedance measurement unit 110 measures the AC impedance when the battery cells are in thermal equilibrium.
  • the AC impedance measurement unit 110 measures the AC impedance when the battery cell is in a predetermined second battery state.
  • the second battery state includes at least one of battery cell temperature, voltage, and SOC.
  • FIG. 20 is a block diagram of abnormality determination section 120C according to the present embodiment.
  • Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120C shown in FIG. 20 instead of abnormality determination section 120B.
  • Abnormality determination unit 120C shown in FIG. 20 differs from the third embodiment in that reference range table 208 stored in storage unit 206B is obtained from external server device 300.
  • FIG. 20 is a block diagram of abnormality determination section 120C according to the present embodiment.
  • Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120C shown in FIG. 20 instead of abnormality determination section 120B.
  • Abnormality determination unit 120C shown in FIG. 20 differs from the third embodiment in that reference range table 208 stored in storage unit 206B is obtained from external server device 300.
  • FIG. 21 is a diagram showing an overview of the battery abnormality detection system 200 according to this embodiment.
  • battery abnormality detection system 200 includes battery abnormality detection device 100 and server device 300 .
  • the server device 300 is a server device arranged at a location remote from the battery abnormality detection device 100 .
  • the server device 300 is a so-called cloud server.
  • the server device 300 is communicatively connected to other server devices via a cloud network 301, for example.
  • the battery abnormality detection device 100 is installed in an automobile 400 such as an EV, monitors an assembled battery 101 for driving a motor 401 of the automobile 400, and estimates the state of the assembled battery 101.
  • the communication unit 122 included in the battery abnormality detection device 100 receives, for example, the reference range table 208 corresponding to the current state of the assembled battery 101 from the server device 300 by wireless communication.
  • a relay device (not shown) may be interposed between the communication unit 122 and the server device 300 .
  • the communication performed by the communication unit 122 may be wireless communication or wired communication.
  • the communication standard for communication performed by the communication unit 122 is not particularly limited either.
  • the server device 300 manages the deterioration state (SOC, SOH, etc.) of the assembled battery 101 .
  • the battery abnormality detection device 100 receives the reference range table 208 corresponding to the current deterioration state of the assembled battery 101 from the server device 300, and uses the received reference range table 208 to detect the reference range according to the method described in the third embodiment. Set a range.
  • the battery abnormality detection device 100 may receive a reference range corresponding to the current battery state of the assembled battery 101 from the server device 300 and detect an abnormal cell using the received reference range. At this time, the battery abnormality detection device 100 may transmit the current battery state of the assembled battery 101 to the server device 300 and receive the reference range corresponding to the battery state from the server device 300 . Also, the battery abnormality detection device 100 may receive a reference value instead of the reference range.
  • the battery abnormality detection device 100 further includes the communication unit 122 that communicates with the server device 300 via a communication network, and the reference range is acquired from the server device 300.
  • the communication unit 122 that communicates with the server device 300 via a communication network, and the reference range is acquired from the server device 300.
  • the battery abnormality detection device and the battery abnormality detection system for batteries used in automobiles such as EVs have been described. batteries may be targeted.
  • the battery abnormality detection device 100 performs determination by each of the plurality of methods for determining abnormal cells described in a plurality of embodiments, and determines battery B, which has been determined as an abnormal cell by at least one method, to be an abnormal cell.
  • the circuit configurations described in the above embodiments are examples, and the present disclosure is not limited to the above circuit configurations.
  • the present disclosure also includes a circuit capable of realizing the characteristic functions of the present disclosure, as well as the circuit configuration described above.
  • an element such as a switching element (transistor), a resistive element, or a capacitive element is connected in series or parallel to a certain element. included.
  • the components included in the integrated circuit are realized by hardware.
  • some of the components contained in an integrated circuit may be implemented by executing software programs suitable for that component.
  • Some of the components included in the integrated circuit are implemented by a program execution unit such as a CPU (Central Processing Unit) or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory.
  • processing executed by a specific processing unit may be executed by another processing unit. Further, in the operations described in the above embodiments, the order of multiple processes may be changed, and multiple processes may be performed in parallel.
  • REFERENCE SIGNS LIST 100 battery abnormality detector 101 assembled battery 102 load 103 relay 104 transistor 105 reference resistor 106 load resistor 107 temperature sensor 110 AC impedance measurement unit 111 temperature measurement unit 113 current measurement unit 114 signal generation unit 115 voltage measurement unit 117 timing generation unit 118 AC Impedance calculation unit 120, 120A, 120B, 120C Abnormality determination unit 121 Control unit 122 Communication unit 130 Upper control unit 200 Battery abnormality detection system 201 Input unit 202 Comparison unit 203 Determination unit 204 Input/output unit 205, 205A, 205B Reference range calculation unit 206, 206B storage unit 207 past AC impedance 208 reference range table 300 server device 301 cloud network 400 automobile 401 motor B, B1 to B8 battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

A battery abnormality detecting device (100) is provided with: an alternating current impedance measuring unit (110) for measuring an alternating current impedance of a battery cell; and an abnormality determining unit (120) for determining that the battery cell is an abnormal cell if the alternating current impedance does not lie within a standard range. For example, the alternating current impedance measuring unit (110) measures the alternating current impedance (Z1 to Z8) of each of a plurality of directly connected battery cells, and the abnormality determining unit (120) calculates the standard range from the plurality of measured alternating current impedances (Z1 to Z8), determines whether each of the plurality of alternating current impedances (Z1 to Z8) lies within the standard range, and determines that a battery cell having an alternating current impedance that does not lie within the standard range is an abnormal cell.

Description

電池異常検知装置及び電池異常検知方法BATTERY ABNORMALITY DETECTION DEVICE AND BATTERY ABNORMALITY DETECTION METHOD
 本開示は、電池異常検知装置及び電池異常検知方法に関する。 The present disclosure relates to a battery abnormality detection device and a battery abnormality detection method.
 HEV(Hybrid Electric Vehicle)、または、EV(Electric Vehicle)など、二次電池を電源として走行する自動車の開発が行われている。例えば、二次電池としてリチウムイオン電池(LiB:Lithium-ion Battery)が用いられる。また、二次電池を安全に使用するためにバッテリーマネージメントシステム(BMS:Battery Management System)が用いられる。 Automobiles such as HEVs (Hybrid Electric Vehicles) and EVs (Electric Vehicles) that run on a secondary battery as a power source are being developed. For example, a lithium-ion battery (LiB) is used as a secondary battery. Also, a battery management system (BMS) is used to safely use the secondary battery.
 特許文献1には、電池内部の温度を測定するために、電池に交流信号を掃引させながら電圧と電流を測定する交流インピーダンス法を用いることが記載されている。 Patent Document 1 describes the use of an AC impedance method in which voltage and current are measured while an AC signal is swept through the battery in order to measure the temperature inside the battery.
特許第5261622号公報Japanese Patent No. 5261622
 本開示は、高精度の電池異常検知を実現できる電池状態検知装置及び電池異常検知方法を提供することを目的とする。 An object of the present disclosure is to provide a battery state detection device and a battery abnormality detection method that can realize highly accurate battery abnormality detection.
 本開示の一態様に係る電池異常検知装置は、電池セルの交流インピーダンスを測定する交流インピーダンス測定部と、前記交流インピーダンスが基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない場合、前記電池セルが異常セルであると判定する異常判定部とを備える。 A battery abnormality detection device according to an aspect of the present disclosure includes an AC impedance measurement unit that measures AC impedance of a battery cell, and determines whether the AC impedance is included in a reference range, and determines whether the AC impedance is within the reference range. and an abnormality determination unit that determines that the battery cell is an abnormal cell when the battery cell is not included in the cell.
 本開示は、高精度の電池異常検知を実現できる電池異常検知装置及び電池異常検知方法を提供できる。 The present disclosure can provide a battery abnormality detection device and a battery abnormality detection method that can realize highly accurate battery abnormality detection.
図1は、実施の形態1に係る電池異常検知システムのブロック図である。FIG. 1 is a block diagram of a battery abnormality detection system according to Embodiment 1. FIG. 図2は、実施の形態1に係る電池異常検知処理のフローチャートである。FIG. 2 is a flowchart of battery abnormality detection processing according to the first embodiment. 図3は、実施の形態1に係る電池の等価回路を示す図である。3 is a diagram showing an equivalent circuit of the battery according to Embodiment 1. FIG. 図4は、実施の形態1に係る電池の交流インピーダンスを示す図である。4 is a diagram showing the AC impedance of the battery according to Embodiment 1. FIG. 図5は、実施の形態1に係る電池の交流インピーダンスの変化と電池の劣化との関係を示す図である。FIG. 5 is a diagram showing the relationship between changes in AC impedance of the battery and deterioration of the battery according to Embodiment 1. FIG. 図6は、実施の形態1に係る異常判定部のブロック図である。6 is a block diagram of an abnormality determination unit according to Embodiment 1. FIG. 図7は、実施の形態1に係る異常セルの判定処理の具体例を示す図である。FIG. 7 is a diagram showing a specific example of the abnormal cell determination process according to the first embodiment. 図8は、実施の形態2に係る異常判定部のブロック図である。8 is a block diagram of an abnormality determination unit according to Embodiment 2. FIG. 図9は、実施の形態2に係る異常セルの判定処理の具体例を示す図である。FIG. 9 is a diagram illustrating a specific example of abnormal cell determination processing according to the second embodiment. 図10は、実施の形態3に係る異常判定部のブロック図である。10 is a block diagram of an abnormality determination unit according to Embodiment 3. FIG. 図11は、実施の形態3に係る交流インピーダンスの温度依存性の例を示す図である。FIG. 11 is a diagram showing an example of temperature dependence of AC impedance according to the third embodiment. 図12は、実施の形態3に係る電池の外観を示す図である。12 is a diagram showing the appearance of a battery according to Embodiment 3. FIG. 図13は、実施の形態3に係る熱平衡時における電池の内部温度を示す図である。FIG. 13 is a diagram showing the internal temperature of the battery during thermal equilibrium according to the third embodiment. 図14は、実施の形態3に係る熱非平衡時における電池の内部温度を示す図である。FIG. 14 is a diagram showing the internal temperature of the battery during thermal non-equilibrium according to the third embodiment. 図15は、実施の形態3に係る組電池の外観を示す図である。FIG. 15 is a diagram showing the appearance of the assembled battery according to Embodiment 3. FIG. 図16は、実施の形態3に係る熱平衡時における組電池の内部温度を示す図である。FIG. 16 is a diagram showing the internal temperature of the assembled battery during thermal equilibrium according to the third embodiment. 図17は、実施の形態3に係る熱非平衡時における組電池の内部温度を示す図である。FIG. 17 is a diagram showing the internal temperature of the assembled battery during thermal non-equilibrium according to the third embodiment. 図18は、実施の形態3に係る電池異常検知処理のフローチャートである。FIG. 18 is a flowchart of battery abnormality detection processing according to the third embodiment. 図19は、実施の形態3に係る電池異常検知処理のフローチャートである。FIG. 19 is a flowchart of battery abnormality detection processing according to the third embodiment. 図20は、実施の形態4に係る異常判定部のブロック図である。20 is a block diagram of an abnormality determination unit according to Embodiment 4. FIG. 図21は、実施の形態4に係る電池異常検知システムの概要を示す図である。FIG. 21 is a diagram showing an outline of a battery abnormality detection system according to Embodiment 4. FIG.
 (本開示の基礎となった知見)
 近年、電気自動車をはじめとする環境対応車、及び再生可能エネルギーを安定供給させるための蓄電池など、二次電池を使用したアプリケーションが急増している。エネルギー密度が高いことから、この二次電池としてリチウムイオン電池を採用することが多い。このリチウムイオン電池は、過充電、過放電及び温度によって劣化が加速することが知られており、最悪のケースでは発煙発火、さらには爆発の危険な状態に至ることもあるため、通常はBMSに組み込まれて適切な制御が行われる。
(Findings on which this disclosure is based)
In recent years, there has been a rapid increase in applications using secondary batteries, such as eco-friendly vehicles such as electric vehicles and storage batteries for stably supplying renewable energy. Because of its high energy density, a lithium ion battery is often used as the secondary battery. This lithium-ion battery is known to accelerate deterioration due to overcharge, overdischarge, and temperature. It is built in and properly controlled.
 一般的にBMSは、組電池に含まれる全ての電池セルの電圧と電流と温度とをモニタし、これらの測定データを用いて、電池の状態を監視する。全ての電池セルの電流は組電池全体の充放電電流をモニタすることで一律に取得できる。また、全ての電池セルの温度に関しては、測定用のサーミスタを組電池に配置して取得する。しかしながら、サーミスタの取り付け場所及び数に制約があるため、通常は温度分布などを考慮した推定値を取ることが多い。また、電池ケースの外の温度であるため、セル温度として取り扱うには誤差を考慮する必要がある。 Generally, the BMS monitors the voltage, current, and temperature of all battery cells included in the assembled battery, and uses these measurement data to monitor the state of the battery. The current of all battery cells can be uniformly obtained by monitoring the charge/discharge current of the entire assembled battery. Further, the temperatures of all battery cells are acquired by placing a thermistor for measurement in the assembled battery. However, since there are restrictions on the locations and number of thermistors to be installed, an estimated value is usually taken in consideration of the temperature distribution and the like. In addition, since it is the temperature outside the battery case, it is necessary to consider the error when treating it as the cell temperature.
 このようなBMSでは、安全性を向上するために、高精度に電池異常を検知できることが望まれている。 In such a BMS, it is desired to be able to detect battery abnormalities with high accuracy in order to improve safety.
 本開示の一態様に係る電池異常検知装置は、電池セルの交流インピーダンスを測定する交流インピーダンス測定部と、前記交流インピーダンスが基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない場合、前記電池セルが異常セルであると判定する異常判定部とを備える。 A battery abnormality detection device according to an aspect of the present disclosure includes an AC impedance measurement unit that measures AC impedance of a battery cell, and determines whether the AC impedance is included in a reference range, and determines whether the AC impedance is within the reference range. and an abnormality determination unit that determines that the battery cell is an abnormal cell when the battery cell is not included in the cell.
 これによれば、当該電池異常検知装置は、交流インピーダンスの値そのものを用いて電池セルの異常を検知できる。これにより、当該電池異常検知装置は、高精度の電池異常検知を実現できる。 According to this, the battery abnormality detection device can detect battery cell abnormality using the AC impedance value itself. As a result, the battery abnormality detection device can realize highly accurate battery abnormality detection.
 例えば、前記交流インピーダンス測定部は、前記電池セルを含む、直接に接続された複数の電池セルの各々の交流インピーダンスを測定し、前記異常判定部は、測定された複数の前記交流インピーダンスから前記基準範囲を算出し、前記複数の交流インピーダンスの各々が前記基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない電池セルを異常セルと判定してもよい。 For example, the AC impedance measurement unit measures the AC impedance of each of a plurality of directly connected battery cells, including the battery cell, and the abnormality determination unit determines the reference from the plurality of measured AC impedances. A range may be calculated, it may be determined whether each of the plurality of AC impedances is included in the reference range, and a battery cell whose AC impedance is not included in the reference range may be determined as an abnormal cell.
 例えば、前記異常判定部は、測定された前記複数の交流インピーダンスから、最大値及び最小値を除外し、除外した後の複数の交流インピーダンスの平均値を算出し、前記平均値に基づき前記基準範囲を算出してもよい。 For example, the abnormality determination unit excludes the maximum value and the minimum value from the plurality of measured AC impedances, calculates the average value of the plurality of AC impedances after the exclusion, and based on the average value The reference range may be calculated.
 例えば、前記電池異常検知装置は、さらに、過去に測定された交流インピーダンスを記憶する記憶部を備え、前記異常判定部は、前記過去に計測された交流インピーダンスに基づき、前記基準範囲を決定してもよい。 For example, the battery abnormality detection device further includes a storage unit that stores AC impedance measured in the past, and the abnormality determination unit determines the reference range based on the AC impedance measured in the past. good too.
 例えば、前記異常判定部は、複数の第1電池状態に予め対応付けられた複数の範囲から、現在の前記電池セルの前記第1電池状態に対応する範囲を前記基準範囲に決定し、前記第1電池状態は、前記電池セルの温度、電圧及びSOC(State of Charge)の少なくとも一つを含んでもよい。 For example, the abnormality determination unit determines, as the reference range, a range corresponding to the first battery state of the current battery cell from a plurality of ranges previously associated with a plurality of first battery states. One battery state may include at least one of temperature, voltage, and SOC (State of Charge) of the battery cell.
 例えば、前記電池異常検知装置は、さらに、サーバ装置と通信網を介して通信する通信部を備え、前記基準範囲は、前記サーバ装置から取得されてもよい。 For example, the battery abnormality detection device may further include a communication unit that communicates with a server device via a communication network, and the reference range may be obtained from the server device.
 例えば、前記交流インピーダンス測定部は、前記電池セルが熱平衡状態の時に前記交流インピーダンスを測定してもよい。 For example, the AC impedance measurement unit may measure the AC impedance when the battery cell is in thermal equilibrium.
 例えば、前記交流インピーダンス測定部は、前記電池セルが、予め定められた第2電池状態の時に前記交流インピーダンスを測定し、前記第2電池状態は、前記電池セルの温度、電圧及びSOC(State of Charge)の少なくとも一つを含んでもよい。 For example, the AC impedance measuring unit measures the AC impedance when the battery cell is in a predetermined second battery state, and the second battery state is the temperature, voltage, and SOC (State of Charge).
 本開示の一態様に係る電池異常検知方法は、電池セルの交流インピーダンスを測定し、前記交流インピーダンスが基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない場合、前記電池セルが異常セルであると判定する。 A battery abnormality detection method according to an aspect of the present disclosure measures the AC impedance of a battery cell, determines whether the AC impedance is included in the reference range, and if the AC impedance is not included in the reference range , the battery cell is determined to be an abnormal cell.
 これによれば、当該電池異常検知方法は、交流インピーダンスの値そのものを用いて電池セルの異常を検知できる。これにより、当該電池異常検知装置は、高精度の電池異常検知を実現できる。 According to this, the battery abnormality detection method can detect battery cell abnormality using the AC impedance value itself. As a result, the battery abnormality detection device can realize highly accurate battery abnormality detection.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, these general or specific aspects may be realized by a system, method, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. and any combination of recording media.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be specifically described with reference to the drawings. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 It should be noted that each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected with respect to substantially the same structure, and the overlapping description may be abbreviate|omitted or simplified.
 (実施の形態1)
 まず、本実施の形態に係る電池異常検知システム及び電池異常検知装置の構成を説明する。図1は、本実施の形態に係る電池異常検知システム200のブロック図である。組電池101は、複数の電池B1~B8(以下、電池B1~B8のうち任意の1つを電池Bと記載する)を含む。電池Bは、言い換えれば、電池セルである。電池Bは、具体的には、リチウムイオン電池であるが、ニッケル水素電池などその他の電池であってもよい。組電池101は、負荷102の電源として機能し、負荷102に電力を供給する。負荷102は、例えば、EVのモータであるが、特に限定されない。なお、負荷102に代えて、組電池101を充電するための充電装置が負荷102の位置に接続される場合もある。
(Embodiment 1)
First, configurations of a battery abnormality detection system and a battery abnormality detection device according to the present embodiment will be described. FIG. 1 is a block diagram of a battery abnormality detection system 200 according to this embodiment. The assembled battery 101 includes a plurality of batteries B1 to B8 (hereinafter, any one of the batteries B1 to B8 is referred to as a battery B). Battery B is, in other words, a battery cell. Battery B is specifically a lithium ion battery, but may be another battery such as a nickel metal hydride battery. The assembled battery 101 functions as a power source for the load 102 and supplies power to the load 102 . The load 102 is, for example, an EV motor, but is not particularly limited. A charging device for charging the assembled battery 101 may be connected to the position of the load 102 instead of the load 102 .
 電池異常検知システム200は、リレー103と、トランジスタ104と、参照抵抗105と、負荷抵抗106と、温度センサ107と、電池異常検知装置100と、上位制御部130とを備える。 The battery abnormality detection system 200 includes a relay 103, a transistor 104, a reference resistor 105, a load resistance 106, a temperature sensor 107, a battery abnormality detection device 100, and a host controller 130.
 リレー103は、組電池101と負荷102との間に接続されている。トランジスタ104は、例えば、FET(Field Effect Transistor)であるが、バイポーラトランジスタであってもよい。トランジスタ104のドレインは、負荷抵抗106に接続され、トランジスタ104のソースは、参照抵抗105に接続され、トランジスタ104のゲート(つまり、制御端子)は、信号生成部114に接続される。 The relay 103 is connected between the assembled battery 101 and the load 102 . The transistor 104 is, for example, an FET (Field Effect Transistor), but may be a bipolar transistor. The drain of transistor 104 is connected to load resistor 106 , the source of transistor 104 is connected to reference resistor 105 , and the gate (ie, control terminal) of transistor 104 is connected to signal generator 114 .
 電池異常検知装置100は、例えば、BMSに含まれる。電池異常検知装置100は、交流インピーダンス測定部110と、異常判定部120と、制御部121と、通信部122とを備える。例えば、電池異常検知装置100は、1又は複数の集積回路で構成される。また、異常判定部120及び制御部121の機能は、プロセッサがプログラムを実行することにより実現されてもよいし、専用回路により実現されてもよいし、これらの組み合わせにより実現されてもよい。 The battery abnormality detection device 100 is included in the BMS, for example. The battery abnormality detection device 100 includes an AC impedance measurement section 110 , an abnormality determination section 120 , a control section 121 and a communication section 122 . For example, the battery abnormality detection device 100 is composed of one or more integrated circuits. Also, the functions of the abnormality determination unit 120 and the control unit 121 may be realized by a processor executing a program, may be realized by a dedicated circuit, or may be realized by a combination thereof.
 交流インピーダンス測定部110は、組電池101の交流インピーダンスZ1~Z8を測定する。異常判定部120は、交流インピーダンスZ1~Z8を用いて組電池101に含まれる複数の電池Bの各々の異常を検知する。 The AC impedance measurement unit 110 measures the AC impedances Z1 to Z8 of the assembled battery 101. Abnormality determination unit 120 detects an abnormality in each of the plurality of batteries B included in assembled battery 101 using AC impedances Z1 to Z8.
 交流インピーダンス測定部110は、温度測定部111と、電流測定部113と、信号生成部114と、電圧測定部115と、タイミング生成部117と、交流インピーダンス算出部118と、を備える。 The AC impedance measurement unit 110 includes a temperature measurement unit 111, a current measurement unit 113, a signal generation unit 114, a voltage measurement unit 115, a timing generation unit 117, and an AC impedance calculation unit 118.
 温度測定部111は、温度センサ107の温度Tempを測定する。温度センサ107は、例えば、サーミスタを用いた温度センサであるが、熱電対などのその他の素子を用いた温度センサであってもよい。 The temperature measurement unit 111 measures the temperature Temp of the temperature sensor 107 . The temperature sensor 107 is, for example, a temperature sensor using a thermistor, but may be a temperature sensor using other elements such as a thermocouple.
 電流測定部113は、参照抵抗105に流れる電流Iacを測定する。電流測定部113は、具体的には、参照抵抗105の両端の電圧を測定することで電流Iacを測定する。信号生成部114は、トランジスタ104の制御端子に制御信号を印加する。この制御信号は任意の周波数に設定でき、組電池101と負荷抵抗106とトランジスタ104と参照抵抗105で構成される閉回路に交流信号を印加することを特徴とする。 The current measurement unit 113 measures the current Iac flowing through the reference resistor 105 . Specifically, the current measurement unit 113 measures the current Iac by measuring the voltage across the reference resistor 105 . The signal generator 114 applies a control signal to the control terminal of the transistor 104 . This control signal can be set to an arbitrary frequency, and is characterized by applying an AC signal to a closed circuit composed of the assembled battery 101 , the load resistor 106 , the transistor 104 and the reference resistor 105 .
 電圧測定部115は、組電池101を構成する複数の電池B1~B8の電圧V1~V8を測定する。例えば、電圧測定部115は、複数のAD変換器を含む。タイミング生成部117は、電流測定部113及び電圧測定部115における電流及び電圧の測定タイミングを制御する。 The voltage measurement unit 115 measures the voltages V1 to V8 of the batteries B1 to B8 that make up the assembled battery 101. For example, the voltage measurement unit 115 includes multiple AD converters. The timing generator 117 controls current and voltage measurement timings in the current measurement unit 113 and the voltage measurement unit 115 .
 交流インピーダンス算出部118は、電流測定部113によって測定された電流Iac、及び、電圧測定部115によって測定された電圧V1~V8に基づいて電池B1~B8の交流インピーダンスZ1~Z8を計算する。具体的には、交流インピーダンス算出部118は、電圧Vnを電流Iacで除算することで電池Bnの交流インピーダンスZnを算出する。ここでnは1~8である。各交流インピーダンスは複素数であり、実数成分Zreと虚数成分Zimとを持つ。 The AC impedance calculation unit 118 calculates the AC impedances Z1 to Z8 of the batteries B1 to B8 based on the current Iac measured by the current measurement unit 113 and the voltages V1 to V8 measured by the voltage measurement unit 115. Specifically, AC impedance calculator 118 calculates AC impedance Zn of battery Bn by dividing voltage Vn by current Iac. where n is 1-8. Each AC impedance is complex and has a real component Zre and an imaginary component Zim.
 異常判定部120は、交流インピーダンスZ1~Z8を用いて、複数の電池Bから異常セルを検出する。つまり、異常判定部120は、複数の電池Bの各々が異常セルであるか否かを判定する。ここで、異常セルとは、正常な状態でない電池セルであり、例えば、交換が必要な電池セルである。また、異常判定部120は、制御部121及び通信部122を介して、判定結果を上位制御部130へ通知する。 The abnormality determination unit 120 detects abnormal cells from a plurality of batteries B using AC impedances Z1 to Z8. In other words, the abnormality determination unit 120 determines whether or not each of the plurality of batteries B is an abnormal cell. Here, an abnormal cell is a battery cell that is not in a normal state, for example, a battery cell that needs to be replaced. Further, the abnormality determination unit 120 notifies the upper control unit 130 of the determination result via the control unit 121 and the communication unit 122 .
 制御部121は、交流インピーダンス測定部110等の制御を行う。通信部122は、電池異常検知装置100と、上位制御部130との通信を行う。上位制御部130は、電池パック全体の制御を行う。例えば、車載の場合には、上位制御部130は、車両の制御等を行ってもよい。 The control unit 121 controls the AC impedance measurement unit 110 and the like. The communication unit 122 performs communication between the battery abnormality detection device 100 and the host control unit 130 . The host controller 130 controls the entire battery pack. For example, in the case of in-vehicle installation, the host controller 130 may control the vehicle.
 次に、電池異常検知装置100の動作の流れを説明する。図2は、電池異常検知装置100による電池異常検知処理のフローチャートである。まず、交流インピーダンス測定部110は、交流インピーダンスZ1~Z8を測定する(S101)。 Next, the operation flow of the battery abnormality detection device 100 will be described. FIG. 2 is a flowchart of battery abnormality detection processing by the battery abnormality detection device 100 . First, AC impedance measuring section 110 measures AC impedances Z1 to Z8 (S101).
 具体的には、信号生成部114は、複数の周波数成分を有する制御信号を生成し、生成した制御信号をトランジスタ104の制御端子に印加する。次に、電流測定部113は、参照抵抗105に流れる電流Iacを測定する。次に、電圧測定部115は、電池B1~B8の電圧V1~V8を測定する。そして、交流インピーダンス算出部118は、測定された電流Iac、及び、測定された電圧V1~V8に基づいて電池B1~B8の交流インピーダンスZ1~Z8を計算する。 Specifically, the signal generator 114 generates a control signal having multiple frequency components and applies the generated control signal to the control terminal of the transistor 104 . Next, current measuring section 113 measures current Iac flowing through reference resistor 105 . Next, voltage measurement unit 115 measures voltages V1 to V8 of batteries B1 to B8. Then, AC impedance calculator 118 calculates AC impedances Z1 to Z8 of batteries B1 to B8 based on the measured current Iac and the measured voltages V1 to V8.
 具体的には、交流インピーダンス算出部118は、電流Iacを複素電流に変換し、電圧V1~V8を複素電圧に変換する。交流インピーダンス算出部118は、複素電流の平均化処理および複素電圧の平均化処理を行い、平均化処理後の複素電圧を平均化処理後の複素電流で除算することにより交流インピーダンスを計算する。例えば、電池B1の交流インピーダンスとしては、インピーダンス実部Z1re、及び、インピーダンス虚部Z1imが出力される。また、交流インピーダンス算出部118は、温度測定部111によって測定された温度Tempに基づいて交流インピーダンスを補正してもよい。 Specifically, the AC impedance calculator 118 converts the current Iac into a complex current, and converts the voltages V1 to V8 into complex voltages. The AC impedance calculator 118 performs the averaging process of the complex current and the averaging process of the complex voltage, and calculates the AC impedance by dividing the complex voltage after the averaging process by the complex current after the averaging process. For example, the impedance real part Z1re and the impedance imaginary part Z1im are output as the AC impedance of the battery B1. Also, the AC impedance calculation unit 118 may correct the AC impedance based on the temperature Temp measured by the temperature measurement unit 111 .
 図3は、電池Bの等価回路である電池モデルの例を示す図である。図3に示されるように、電池Bは、抵抗R0と、並列接続された抵抗R1及び容量素子C1と、並列接続された抵抗R2及び容量素子C2と、が直列接続された回路構成であると考えることができる。なお、ここでは、電池モデルが、3個の抵抗と2個の容量とで表される例を示すが、抵抗の数及び容量の数はこれに限らない。例えば、電池モデルは、4個以上の抵抗と、3個以上の容量とで表されてもよい。また、抵抗と容量との数は同じあってもよいし、異なってもよい。 FIG. 3 is a diagram showing an example of a battery model, which is an equivalent circuit of battery B. FIG. As shown in FIG. 3, the battery B has a circuit configuration in which a resistor R0, a parallel-connected resistor R1 and a capacitive element C1, and a parallel-connected resistor R2 and a capacitive element C2 are connected in series. can think. Although an example in which the battery model is represented by three resistors and two capacities is shown here, the number of resistors and the number of capacities are not limited to this. For example, a battery model may be represented by four or more resistors and three or more capacities. Also, the numbers of resistors and capacitors may be the same or different.
 図4は、電池Bの交流インピーダンスを示す図である。図4は、Cole-Coleプロットと呼ばれる図であり、ナイキストプロットとも呼ばれる。また、同図に示す領域Aの特性は、図3に示すR0に依存し、領域Bの特性はR1及びC1に依存し、領域Cの特性はR2及びC2に依存する。 FIG. 4 is a diagram showing the AC impedance of Battery B. FIG. FIG. 4 is a diagram called a Cole-Cole plot, also called a Nyquist plot. The characteristics of region A shown in FIG. 3 depend on R0 shown in FIG. 3, the characteristics of region B depend on R1 and C1, and the characteristics of region C depend on R2 and C2.
 ここで、電池モデルパラメータは、電池Bが劣化することにより変化する。つまり、電池Bの交流インピーダンスは、電池Bが劣化することにより変化する。図5は、電池Bの交流インピーダンスの変化と電池Bの劣化との関係を示す図である。電池Bの交流インピーダンスは、図5において実線で示される初期特性を有する。電池Bの電極性能が劣化すると、電池Bの交流インピーダンスは図5において破線で示される特性に変化する。また、電池Bの電解液性能が劣化すると、電池Bの交流インピーダンスは図5において一点鎖線で示される特性に変化する。 Here, the battery model parameters change as the battery B deteriorates. That is, the AC impedance of battery B changes as battery B deteriorates. FIG. 5 is a diagram showing the relationship between changes in AC impedance of battery B and deterioration of battery B. In FIG. The AC impedance of battery B has an initial characteristic indicated by a solid line in FIG. When the electrode performance of battery B deteriorates, the AC impedance of battery B changes to the characteristic indicated by the dashed line in FIG. Further, when the electrolyte performance of Battery B deteriorates, the AC impedance of Battery B changes to the characteristic indicated by the dashed line in FIG.
 図2に示すステップS102以降において、異常判定部120は、交流インピーダンスZ1~Z8を用いて、複数の電池Bの各々が異常セルであるか否かを判定する。図6は、異常判定部120の構成を示すブロック図である。異常判定部120は、入力部201と、比較部202と、判定部203と、入出力部204と、基準範囲算出部205とを備える。 After step S102 shown in FIG. 2, the abnormality determination unit 120 uses the AC impedances Z1 to Z8 to determine whether each of the plurality of batteries B is an abnormal cell. FIG. 6 is a block diagram showing the configuration of the abnormality determination section 120. As shown in FIG. Abnormality determination unit 120 includes input unit 201 , comparison unit 202 , determination unit 203 , input/output unit 204 , and reference range calculation unit 205 .
 入力部201は、各電池Bの交流インピーダンスZ1~Z8を取得し保持する。基準範囲算出部205は、交流インピーダンスZ1~Z8を用いて基準範囲を算出する。比較部202は、交流インピーダンスZ1~Z8と基準範囲とを比較し、交流インピーダンスZ1~Z8が基準範囲に含まれるか否かを判定する。判定部203は、交流インピーダンスが基準範囲に含まれない電池Bを異常セルと判定する。入出力部204は、判定部203の判定結果を制御部121へ出力する。 The input unit 201 acquires and holds the AC impedances Z1 to Z8 of each battery B. Reference range calculator 205 calculates a reference range using AC impedances Z1 to Z8. Comparing section 202 compares AC impedances Z1 to Z8 with a reference range, and determines whether AC impedances Z1 to Z8 are included in the reference range. The determination unit 203 determines that the battery B, whose AC impedance is not within the reference range, is an abnormal cell. The input/output unit 204 outputs the determination result of the determination unit 203 to the control unit 121 .
 図7は、異常セルの判定処理の具体例を示す図である。図2に示すように、基準範囲算出部205は、基準範囲を算出する(S102)。具体的には、図7に示すように、基準範囲算出部205は、交流インピーダンスZ1~Z8から、最大値(Z4)と最小値(Z7)とを除外する。次に、基準範囲算出部205は、除外した後の交流インピーダンス(Z1、Z2、Z3、Z5、Z6、Z8)の平均値を基準値として算出する。 FIG. 7 is a diagram showing a specific example of abnormal cell determination processing. As shown in FIG. 2, the reference range calculator 205 calculates a reference range (S102). Specifically, as shown in FIG. 7, the reference range calculator 205 excludes the maximum value (Z4) and the minimum value (Z7) from the AC impedances Z1 to Z8. Next, the reference range calculator 205 calculates the average value of the AC impedances (Z1, Z2, Z3, Z5, Z6, Z8) after exclusion as a reference value.
 なお、基準範囲算出部205は、最大値及び最小値を除外せず、全ての交流インピーダンスZ1~Z8の平均値を基準値として用いてもよい。または、基準範囲算出部205は、複数の交流インピーダンスから、値が大きい側からN個の交流インピーダンスを除外し、かつ、値が小さい側からM個の交流インピーダンスを除外し、除外した後の交流インピーダンスの平均値を基準値として算出してもよい。ここで、N及びMは、任意の自然数である。また、N及びMは同じ値であってもよいし、異なる値であってもよい。また、平均値の代わりに中央値等が用いられてもよい。 Note that the reference range calculator 205 may use the average value of all the AC impedances Z1 to Z8 as the reference value without excluding the maximum and minimum values. Alternatively, the reference range calculation unit 205 excludes N AC impedances from the side with the largest value from the plurality of AC impedances, and excludes M AC impedances from the side with the smallest value, and the AC after exclusion An average impedance value may be calculated as a reference value. Here, N and M are arbitrary natural numbers. Also, N and M may be the same value or may be different values. Also, a median value or the like may be used instead of the average value.
 次に、基準範囲算出部205は、基準値に基づき基準範囲を決定する。例えば、基準範囲は、基準値±X%の範囲である。ここで、Xは、例えば、30~100程度である。なお、基準範囲の上限値は平均値+αで定義され、基準範囲の下限値は平均値-βで定義されてもよい。ここで、α及びβは予め定められた値である。また、αとβとは同一の値であってもよいし、異なる値であってもよい。 Next, the reference range calculator 205 determines the reference range based on the reference value. For example, the reference range is the reference value ±X%. Here, X is about 30 to 100, for example. Note that the upper limit of the reference range may be defined as the average value +α, and the lower limit of the reference range may be defined as the average value−β. Here, α and β are predetermined values. Also, α and β may be the same value or may be different values.
 次に、比較部202は、処理対象の交流インピーダンスを選択し(S103)、処理対象の交流インピーダンスが基準範囲に含まれるか否かを判定する(S104)。言い換えると、比較部202は、交流インピーダンスと基準値との差分が予め定められた値未満であるか否かを判定する。 Next, the comparison unit 202 selects an AC impedance to be processed (S103), and determines whether or not the AC impedance to be processed is included in the reference range (S104). In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
 判定部203は、処理対象の交流インピーダンスが基準範囲に含まれる場合(S104でYes)、処理対象の交流インピーダンスに対応する処理対象の電池Bを正常セルと判定する(S105)。一方、判定部203は、処理対象の交流インピーダンスが基準範囲に含まれない場合(S104でNo)、処理対象の電池Bを異常セルと判定する(S106)。 When the AC impedance to be processed is included in the reference range (Yes in S104), the determination unit 203 determines that the battery B to be processed corresponding to the AC impedance to be processed is a normal cell (S105). On the other hand, when the AC impedance to be processed is not included in the reference range (No in S104), determination unit 203 determines that battery B to be processed is an abnormal cell (S106).
 全ての電池Bの処理が完了していない場合(S107でNo)、次の交流インピーダンスが選択され(S103)、ステップS104以降の処理が同様に行われる。つまり、全ての電池Bに対して判定が行われる。 If the processing of all batteries B has not been completed (No in S107), the next AC impedance is selected (S103), and the processing from step S104 onward is performed in the same manner. That is, determination is made for all batteries B. FIG.
 図7に示す例では、交流インピーダンスZ4が基準範囲に含まれないため電池B4は異常セルと判定される。また、それ以外の電池B1~3、5~8は正常セルと判定される。なお、ここでは、順次各電池Bの判定処理を行う例を述べたが、複数の電池Bの判定処理が並列に行われてもよい。 In the example shown in FIG. 7, battery B4 is determined to be an abnormal cell because AC impedance Z4 is not included in the reference range. The other batteries B1-3 and 5-8 are determined to be normal cells. Here, although an example in which the determination processing for each battery B is performed sequentially has been described, the determination processing for a plurality of batteries B may be performed in parallel.
 全ての電池Bの処理が完了した場合(S107でYes)、入出力部204は、判定結果を制御部121に出力する(S108)。この判定結果は、制御部121及び通信部122を介して、上位制御部130に通知される。異常セルが検知された場合には、例えば、上位制御部130は、異常セルの交換等を促すためのエラー表示等を行う。 When the processing of all batteries B is completed (Yes in S107), the input/output unit 204 outputs the determination result to the control unit 121 (S108). This determination result is notified to the upper control unit 130 via the control unit 121 and the communication unit 122 . When an abnormal cell is detected, for example, the host control unit 130 displays an error or the like to prompt replacement of the abnormal cell.
 以上のように、電池異常検知装置100は、電池セル(電池B)の交流インピーダンスを測定する交流インピーダンス測定部110と、交流インピーダンスが基準範囲に含まれるか否かを判定し、交流インピーダンスが基準範囲に含まれない場合、電池セルが異常セルであると判定する異常判定部120とを備える。これにより、電池異常検知装置100は、交流インピーダンスの値そのものを用いて電池セルの異常を検知できる。よって、電池異常検知装置100は、高精度の電池異常検知を実現できる。例えば、SOC(State of Charge)又はSOH(State of Health)等の算出に加え、交流インピーダンスの値そのものを用いて電池セルの異常を検知することで、より高精度の電池異常検知を実現できる。 As described above, the battery abnormality detection device 100 includes the AC impedance measurement unit 110 that measures the AC impedance of the battery cell (battery B), and determines whether the AC impedance is within the reference range. and an abnormality determination unit 120 that determines that the battery cell is an abnormal cell when it is not included in the range. Thereby, the battery abnormality detection device 100 can detect the abnormality of the battery cell using the AC impedance value itself. Therefore, the battery abnormality detection device 100 can realize highly accurate battery abnormality detection. For example, in addition to calculating SOC (State of Charge) or SOH (State of Health), the value of AC impedance itself is used to detect a battery cell abnormality, thereby achieving more accurate battery abnormality detection.
 例えば、交流インピーダンス測定部110は、直接に接続された複数の電池セル(B1~B7)の各々の交流インピーダンス(Z1~Z8)を測定する。異常判定部120は、測定された複数の交流インピーダンス(Z1~Z8)から基準範囲を算出し、複数の交流インピーダンス(Z1~Z8)の各々が基準範囲に含まれるか否かを判定し、交流インピーダンスが基準範囲に含まれない電池セルを異常セルと判定する。 For example, the AC impedance measurement unit 110 measures the AC impedances (Z1 to Z8) of each of the plurality of directly connected battery cells (B1 to B7). Abnormality determination unit 120 calculates a reference range from the plurality of measured AC impedances (Z1 to Z8), determines whether each of the plurality of AC impedances (Z1 to Z8) is included in the reference range, A battery cell whose impedance is not within the reference range is determined to be an abnormal cell.
 例えば、異常判定部120は、測定された複数の交流インピーダンス(Z1~Z8)から、最大値及び最小値を除外し、除外した後の複数の交流インピーダンスの平均値を算出し、平均値に基づき基準範囲を算出する。 For example, the abnormality determination unit 120 excludes the maximum value and the minimum value from the plurality of measured AC impedances (Z1 to Z8), calculates the average value of the plurality of AC impedances after the exclusion, and based on the average value Calculate the reference range.
 このように、電池異常検知装置100は、組電池の全電池セルに対して交流インピーダンスの測定を実施し、それぞれの電池セルの交流インピーダンスの変化をモニタすることで、電池の異常を検知できる。これにより、システムの安全性を向上できる。 In this way, the battery abnormality detection device 100 can detect battery abnormality by measuring the AC impedance of all battery cells of the assembled battery and monitoring changes in the AC impedance of each battery cell. This can improve the safety of the system.
 また、本実施の形態では、交流インピーダンスの測定に、例えば、1000Hz程度の周波数領域の信号が用いられる。これにより、容易に交流インピーダンスの測定を実現できる。 Also, in the present embodiment, for example, a signal in the frequency domain of about 1000 Hz is used for measuring AC impedance. This makes it possible to easily measure AC impedance.
 (実施の形態2)
 本実施の形態では、異常セルの判定方法の別の例を説明する。図8は、本実施の形態に係る異常判定部120Aのブロック図である。本実施の形態に係る電池異常検知装置100は、異常判定部120の代わりに図8に示す異常判定部120Aを備える。
(Embodiment 2)
In this embodiment, another example of the method of determining abnormal cells will be described. FIG. 8 is a block diagram of abnormality determination section 120A according to the present embodiment. Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120A shown in FIG.
 図8に示す異常判定部120Aは、図6に示す異常判定部120の構成に加え、記憶部206を備える。また、基準範囲算出部205Aの機能が、基準範囲算出部205と異なる。 An abnormality determination unit 120A shown in FIG. 8 includes a storage unit 206 in addition to the configuration of the abnormality determination unit 120 shown in FIG. Also, the function of the reference range calculator 205A is different from that of the reference range calculator 205A.
 記憶部206は、過去の交流インピーダンス207を記憶する。基準範囲算出部205Aは、過去の交流インピーダンス207を用いて基準範囲を算出する。 The storage unit 206 stores past AC impedance 207 . Reference range calculator 205A calculates a reference range using past AC impedance 207 .
 図9は、本実施の形態に係る異常セルの判定処理の具体例を示す図である。この例では、過去の交流インピーダンス207は、前回Tn-1の交流インピーダンスZ1~Z8(図9において破線で示す)である。現在Tnの交流インピーダンスZ1~Z8は、入力部201に保持される。 FIG. 9 is a diagram showing a specific example of abnormal cell determination processing according to the present embodiment. In this example, the past AC impedance 207 is the AC impedance Z1 to Z8 of the previous Tn-1 (indicated by broken lines in FIG. 9). The current Tn AC impedances Z1 to Z8 are held in the input unit 201. FIG.
 基準範囲算出部205Aは、Tn-1の交流インピーダンスを基準値として用いる。具体的には、複数の交流インピーダンスの各々に対して、過去の同じ電池Bの交流インピーダンスが基準値として用いられる。つまり、Z1の基準値として過去のZ1が用いられ、Z2の基準値として過去のZ2が用いられる。 The reference range calculator 205A uses the AC impedance of Tn-1 as a reference value. Specifically, the past AC impedance of the same battery B is used as a reference value for each of the plurality of AC impedances. That is, the past Z1 is used as the reference value for Z1, and the past Z2 is used as the reference value for Z2.
 なお、ここでは、前回の交流インピーダンスが基準値として用いられる例を示したが、過去の複数回の測定で得られた複数の交流インピーダンスから基準値が算出されてもよい。例えば、複数の交流インピーダンスの平均値、中央値、最大値又は最小値が基準値として用いられてもよい。 Although an example in which the previous AC impedance is used as the reference value is shown here, the reference value may be calculated from a plurality of AC impedances obtained in a plurality of past measurements. For example, the average value, median value, maximum value, or minimum value of a plurality of AC impedances may be used as the reference value.
 次に、基準範囲算出部205Aは、基準値に基づき基準範囲を決定する。例えば、基準範囲は、基準値±X%の範囲である。ここで、Xは、例えば、10~50程度である。なお、基準範囲の上限値は平均値+αで定義され、基準範囲の下限値は平均値-βで定義されてもよい。ここで、α及びβは予め定められた値である。また、αとβとは同一の値であってもよいし、異なる値であってもよい。 Next, the reference range calculator 205A determines the reference range based on the reference value. For example, the reference range is the reference value ±X%. Here, X is about 10 to 50, for example. Note that the upper limit of the reference range may be defined as the average value +α, and the lower limit of the reference range may be defined as the average value−β. Here, α and β are predetermined values. Also, α and β may be the same value or may be different values.
 次に、比較部202は、各交流インピーダンスが、当該交流インピーダンスに対応する基準範囲に含まれるか否かを判定する。言い換えると、比較部202は、交流インピーダンスと基準値との差分が予め定められた値未満であるか否かを判定する。 Next, the comparison unit 202 determines whether each AC impedance is included in the reference range corresponding to the AC impedance. In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
 判定部203は、交流インピーダンスが基準範囲に含まれる場合、当該交流インピーダンスに対応する電池Bを正常セルと判定する。また、判定部203は、交流インピーダンスが基準範囲に含まれない場合、当該交流インピーダンスに対応する電池Bを異常セルと判定する。 When the AC impedance is within the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is a normal cell. Moreover, when the AC impedance is not included in the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is an abnormal cell.
 図9に示す例では、交流インピーダンスZ4が基準範囲W4に含まれないため電池B4は異常セルと判定される。また、それ以外の電池B1~3、5~8は正常セルと判定される。なお、図9では、交流インピーダンスZ4及びZ7の基準範囲W4及びW7以外の基準範囲は図示を省略している。 In the example shown in FIG. 9, the battery B4 is determined to be an abnormal cell because the AC impedance Z4 is not included in the reference range W4. The other batteries B1-3 and 5-8 are determined to be normal cells. In FIG. 9, reference ranges other than the reference ranges W4 and W7 of the AC impedances Z4 and Z7 are omitted.
 以上のように、本実施の形態に係る電池異常検知装置100は、過去に測定された交流インピーダンスを記憶する記憶部206を備える。異常判定部120Aは、過去に計測された交流インピーダンスに基づき、基準範囲を決定する。これにより、電池異常検知装置100は、交流インピーダンスを用いて各電池Bの異常を判定できる。 As described above, the battery abnormality detection device 100 according to the present embodiment includes the storage unit 206 that stores the AC impedance measured in the past. 120 A of abnormality determination parts determine a reference range based on the AC impedance measured in the past. Thereby, the battery abnormality detection device 100 can determine the abnormality of each battery B using the AC impedance.
 (実施の形態3)
 本実施の形態では、異常セルの判定方法の別の例を説明する。図10は、本実施の形態に係る異常判定部120Bのブロック図である。本実施の形態に係る電池異常検知装置100は、異常判定部120Aの代わりに図10に示す異常判定部120Bを備える。
(Embodiment 3)
In this embodiment, another example of the method of determining abnormal cells will be described. FIG. 10 is a block diagram of abnormality determination section 120B according to the present embodiment. Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120B shown in FIG. 10 instead of abnormality determination section 120A.
 図10に示す異常判定部120Bは、図8に示す異常判定部120Aの構成に対して、基準範囲算出部205B及び記憶部206Bの機能が、基準範囲算出部205A及び記憶部206と異なる。 The abnormality determination unit 120B shown in FIG. 10 differs from the reference range calculation unit 205A and the storage unit 206 in the functions of the reference range calculation unit 205B and the storage unit 206B in contrast to the configuration of the abnormality determination unit 120A shown in FIG.
 記憶部206Bは、基準範囲テーブル208を記憶する。基準範囲テーブル208は、温度と電圧との組み合わせに対して、基準範囲を対応付けたテーブルである。ここで、交流インピーダンスは、温度及び電圧に応じて変化する。図11は、交流インピーダンスの温度依存性の例を示す図である。図11に示すように、交流インピーダンスは温度に応じて変化する。 The storage unit 206B stores the reference range table 208. The reference range table 208 is a table that associates a reference range with a combination of temperature and voltage. Here, AC impedance changes according to temperature and voltage. FIG. 11 is a diagram showing an example of temperature dependence of AC impedance. As shown in FIG. 11, AC impedance varies with temperature.
 基準範囲算出部205Bは、交流インピーダンスZ1~Z8の測定時の電圧V1~V8及び温度Tempに基づき、基準範囲テーブル208を参照して、各交流インピーダンスの基準範囲を決定する。例えば、基準範囲算出部205Bは、基準範囲テーブル208において、電圧V1及び温度Tempに対応付けられている基準範囲を、交流インピーダンスZ1の基準範囲に決定する。同様に、基準範囲算出部205Bは、基準範囲テーブル208において、電圧V2及び温度Tempに対応付けられている基準範囲を、交流インピーダンスZ2の基準範囲に決定する。 The reference range calculator 205B refers to the reference range table 208 and determines the reference range of each AC impedance based on the voltages V1 to V8 and the temperature Temp at the time of measurement of the AC impedances Z1 to Z8. For example, the reference range calculator 205B determines the reference range associated with the voltage V1 and the temperature Temp in the reference range table 208 as the reference range of the AC impedance Z1. Similarly, the reference range calculator 205B determines the reference range associated with the voltage V2 and the temperature Temp in the reference range table 208 as the reference range of the AC impedance Z2.
 なお、ここでは、基準範囲テーブル208に基準範囲が示される例を示したが、基準範囲テーブル208は基準値を示し、基準範囲算出部205Bにおいて、実施の形態1又は2と同様の手法により基準値から基準範囲が算出されてもよい。 Although an example in which the reference range is shown in the reference range table 208 is shown here, the reference range table 208 shows the reference value, and the reference range calculation unit 205B calculates the reference range using the same method as in the first or second embodiment. A reference range may be calculated from the values.
 次に、比較部202は、各交流インピーダンスが、当該交流インピーダンスに対応する基準範囲に含まれるか否かを判定する。言い換えると、比較部202は、交流インピーダンスと基準値との差分が予め定められた値未満であるか否かを判定する。 Next, the comparison unit 202 determines whether each AC impedance is included in the reference range corresponding to the AC impedance. In other words, comparison section 202 determines whether the difference between the AC impedance and the reference value is less than a predetermined value.
 判定部203は、交流インピーダンスが基準範囲に含まれる場合、当該交流インピーダンスに対応する電池Bを正常セルと判定する。また、判定部203は、交流インピーダンスが基準範囲に含まれない場合、当該交流インピーダンスに対応する電池Bを異常セルと判定する。 When the AC impedance is within the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is a normal cell. Moreover, when the AC impedance is not included in the reference range, the determination unit 203 determines that the battery B corresponding to the AC impedance is an abnormal cell.
 なお、交流インピーダンスはSOCに応じても変化する。よって、基準範囲テーブル208は、温度と電圧とSOCとの組み合わせに対して、基準範囲を対応付けたテーブルであってもよい。この場合、基準範囲算出部205Bは、さらに、現在のSOCを用いて基準範囲を決定してもよい。なお、温度と電圧とSOCとうち少なくとも一つが用いられてもよい。 Note that the AC impedance also changes according to the SOC. Therefore, the reference range table 208 may be a table that associates a reference range with a combination of temperature, voltage, and SOC. In this case, the reference range calculator 205B may further use the current SOC to determine the reference range. At least one of temperature, voltage, and SOC may be used.
 ここで、また、温度測定部111で得られたTempは、電池Bの内部温度と異なる場合がある。図12は、電池B(電池セル)の外観を示す図である。図13及び図14は、図12に示すX-Y線における温度の例を示す図である。図13は、熱平衡時における温度を示し、図14は、熱非平衡時における温度を示す。なお、熱平衡時とは、電池Bが非稼働の状態であり、充電及び放電が行われていない状態である。また、熱非平衡時が稼働している状態であり、充電又は放電が行われている状態である。 Here, the Temp obtained by the temperature measuring unit 111 may differ from the internal temperature of the battery B. FIG. 12 is a diagram showing the appearance of Battery B (battery cell). 13 and 14 are diagrams showing examples of temperatures along the XY line shown in FIG. FIG. 13 shows the temperature during thermal equilibrium, and FIG. 14 shows the temperature during thermal non-equilibrium. In addition, the time of thermal equilibrium is a state in which the battery B is in a non-operating state and is not being charged or discharged. Further, the thermal non-equilibrium state is a state in which the battery is being charged or discharged.
 図14に示すように熱非平衡時には、電池Bの表面と内部とで温度が異なる。また、温度測定部111で得られたTempは、電池Bの表面の温度である。よって、熱非平衡時には、Tempは実際の内部温度とは異なる。 As shown in FIG. 14, during thermal non-equilibrium, the surface and inside of battery B have different temperatures. Also, Temp obtained by the temperature measuring unit 111 is the temperature of the surface of the battery B. FIG. Therefore, during thermal non-equilibrium, Temp differs from the actual internal temperature.
 図15は、複数の電池B1~B8を含む組電池101の外観を示す図である。図16及び図17は、図15に示すX-Y線における温度の例を示す図である。図16は、熱平衡時における温度を示し、図17は、熱非平衡時における温度を示す。 FIG. 15 is a diagram showing the appearance of an assembled battery 101 including a plurality of batteries B1 to B8. 16 and 17 are diagrams showing examples of temperatures along the XY line shown in FIG. FIG. 16 shows the temperature during thermal equilibrium, and FIG. 17 shows the temperature during thermal non-equilibrium.
 図17に示すように熱非平衡時には、中央付近に配置されている電池B4と、組電池101の表面とで温度が異なる。また、温度測定部111で得られたTempは、組電池101の表面の温度である。よって、熱非平衡時には、Tempは実際の内部温度とは異なる。 As shown in FIG. 17, during thermal non-equilibrium, the temperature of the battery B4 arranged near the center and the surface of the assembled battery 101 are different. Also, Temp obtained by the temperature measurement unit 111 is the temperature of the surface of the assembled battery 101 . Therefore, during thermal non-equilibrium, Temp differs from the actual internal temperature.
 よって、電池異常検知装置100は、組電池101が熱平衡状態の際の交流インピーダンスを用いて異常セルを検知してもよい。図18は、本実施の形態に係る電池異常検知装置100による電池異常検知処理のフローチャートである。図18に示す処理は、図2に示す処理に対してステップS110が追加されている。 Therefore, the battery abnormality detection device 100 may detect an abnormal cell using the AC impedance when the assembled battery 101 is in thermal equilibrium. FIG. 18 is a flowchart of battery abnormality detection processing by battery abnormality detection device 100 according to the present embodiment. The process shown in FIG. 18 has step S110 added to the process shown in FIG.
 電池異常検知装置100は、組電池101が熱平衡状態であるか否かを判定する(S110)。電池異常検知装置100は、組電池101が熱平衡状態である場合(S110でYes)、交流インピーダンスを測定し(S101)、交流インピーダンスを用いて異常セルの検知(S102~S108)を行う。 The battery abnormality detection device 100 determines whether the assembled battery 101 is in thermal equilibrium (S110). When the assembled battery 101 is in thermal equilibrium (Yes in S110), the battery abnormality detection device 100 measures the AC impedance (S101), and uses the AC impedance to detect abnormal cells (S102 to S108).
 ここで、熱平衡状態とは、例えば、負荷102に電流が流れていない状態、かつ、組電池101が化学的に安定している状態である。例えば、電池異常検知装置100は、充電後又は放電後、所定時間(例えば1時間程度)が経過した場合に、組電池101が熱平衡状態であると判定する。なお、充電中又は放電中であるかの判断は、例えば、上位制御部130から供給される電池の稼働又は非稼働を示す制御信号に基づき行われてもよい。例えば、この制御信号はリレー103を制御するための信号であってもよい。 Here, the thermal equilibrium state is, for example, a state in which no current flows through the load 102 and the assembled battery 101 is chemically stable. For example, the battery abnormality detection device 100 determines that the assembled battery 101 is in thermal equilibrium when a predetermined time (for example, about 1 hour) has passed after charging or discharging. It should be noted that the determination as to whether the battery is being charged or discharged may be made based on, for example, a control signal indicating whether the battery is in operation or not, which is supplied from the host controller 130 . For example, this control signal may be a signal for controlling relay 103 .
 上記により、温度Tempが電池Bの内部の温度により近くなるため、温度に対応付けられている基準範囲を適切に選択できるので異常検知の精度を向上できる。 Due to the above, the temperature Temp becomes closer to the internal temperature of the battery B, so the reference range associated with the temperature can be appropriately selected, thereby improving the accuracy of abnormality detection.
 なお、実施の形態1又は実施の形態2で説明した異常検知処理を用いる場合においても同様に熱平衡状態において交流インピーダンスを測定してもよい。 It should be noted that even when using the abnormality detection process described in the first or second embodiment, the AC impedance may be similarly measured in the thermal equilibrium state.
 また、熱平衡状態に限らず、特定の電池状態において交流インピーダンスが測定されてもよい。図19は、その場合の電池異常検知処理のフローチャートである。図19に示す処理は、図2に示す処理に対してステップS111が追加されている。 Also, the AC impedance may be measured in a specific battery state, not limited to the thermal equilibrium state. FIG. 19 is a flowchart of battery abnormality detection processing in that case. The process shown in FIG. 19 has step S111 added to the process shown in FIG.
 電池異常検知装置100は、組電池101の電池状態が、予め定められた所定状態であるか否かを判定する(S111)。電池異常検知装置100は、電池状態が所定状態である場合(S111でYes)、交流インピーダンスを測定し(S101)、交流インピーダンスを用いて異常セルの検知(S102~S108)を行う。 The battery abnormality detection device 100 determines whether the battery state of the assembled battery 101 is in a predetermined state (S111). When the battery state is in a predetermined state (Yes in S111), the battery abnormality detection device 100 measures the AC impedance (S101), and uses the AC impedance to detect abnormal cells (S102 to S108).
 ここで、電池状態とは、組電池101(電池B)の温度、電圧及びSOCの少なくとも一つを含む。これにより、同一の状態において交流インピーダンスを測定できるので、電池状態に依存する交流インピーダンスのばらつきを低減できる。例えば、上述した実施の形態2の手法において、過去の測定条件と現在の測定条件とを合わすことができるので異常検知の精度を向上できる。 Here, the battery state includes at least one of the temperature, voltage, and SOC of the assembled battery 101 (battery B). As a result, the AC impedance can be measured in the same state, so variations in the AC impedance depending on the battery state can be reduced. For example, in the method of the second embodiment described above, since the past measurement conditions and the current measurement conditions can be matched, the accuracy of abnormality detection can be improved.
 以上のように、本実施の形態に係る異常判定部120Bは、複数の第1電池状態に予め対応付けられた複数の範囲から、現在の電池セル(電池B)の第1電池状態に対応する範囲を基準範囲に決定する。第1電池状態は、電池セルの温度、電圧及びSOCの少なくとも一つを含む。 As described above, abnormality determination unit 120B according to the present embodiment determines the current first battery state of the battery cell (battery B) from a plurality of ranges previously associated with a plurality of first battery states. Determine the range as the reference range. The first battery state includes at least one of battery cell temperature, voltage, and SOC.
 例えば、交流インピーダンス測定部110は、電池セルが熱平衡状態の時に交流インピーダンスを測定する。 For example, the AC impedance measurement unit 110 measures the AC impedance when the battery cells are in thermal equilibrium.
 例えば、交流インピーダンス測定部110は、電池セルが、予め定められた第2電池状態の時に交流インピーダンスを測定する。第2電池状態は、電池セルの温度、電圧及びSOCの少なくとも一つを含む。 For example, the AC impedance measurement unit 110 measures the AC impedance when the battery cell is in a predetermined second battery state. The second battery state includes at least one of battery cell temperature, voltage, and SOC.
 (実施の形態4)
 本実施の形態では、実施の形態3に係る異常セルの判定方法の変形例を説明する。図20は、本実施の形態に係る異常判定部120Cのブロック図である。本実施の形態に係る電池異常検知装置100は、異常判定部120Bの代わりに図20に示す異常判定部120Cを備える。図20に示す異常判定部120Cでは、記憶部206Bに記憶される基準範囲テーブル208が外部のサーバ装置300から取得される点が実施の形態3と異なる。
(Embodiment 4)
In this embodiment, a modification of the abnormal cell determination method according to the third embodiment will be described. FIG. 20 is a block diagram of abnormality determination section 120C according to the present embodiment. Battery abnormality detection device 100 according to the present embodiment includes abnormality determination section 120C shown in FIG. 20 instead of abnormality determination section 120B. Abnormality determination unit 120C shown in FIG. 20 differs from the third embodiment in that reference range table 208 stored in storage unit 206B is obtained from external server device 300. FIG.
 図21は、本実施の形態に係る電池異常検知システム200の概要を示す図である。図21に示されるように、電池異常検知システム200は、電池異常検知装置100と、サーバ装置300とを備える。サーバ装置300は、電池異常検知装置100と離れた場所に配置されたサーバ装置である。サーバ装置300は、いわゆるクラウドサーバである。サーバ装置300は、例えば、他のサーバ装置とクラウドネットワーク301によって通信接続されている。 FIG. 21 is a diagram showing an overview of the battery abnormality detection system 200 according to this embodiment. As shown in FIG. 21 , battery abnormality detection system 200 includes battery abnormality detection device 100 and server device 300 . The server device 300 is a server device arranged at a location remote from the battery abnormality detection device 100 . The server device 300 is a so-called cloud server. The server device 300 is communicatively connected to other server devices via a cloud network 301, for example.
 電池異常検知装置100は、例えば、EVなどの自動車400に搭載され、自動車400のモータ401を駆動するための組電池101を監視し、組電池101の状態を推定する。電池異常検知装置100が備える通信部122は、例えば、現在の組電池101の状態に対応する基準範囲テーブル208を無線通信によってサーバ装置300から受信する。なお、通信部122とサーバ装置300との間には、図示されない中継装置が介在する場合がある。通信部122によって行われる通信は、無線通信であってもよいし、有線通信であってもよい。通信部122によって行われる通信の通信規格についても特に限定されない。 The battery abnormality detection device 100 is installed in an automobile 400 such as an EV, monitors an assembled battery 101 for driving a motor 401 of the automobile 400, and estimates the state of the assembled battery 101. The communication unit 122 included in the battery abnormality detection device 100 receives, for example, the reference range table 208 corresponding to the current state of the assembled battery 101 from the server device 300 by wireless communication. A relay device (not shown) may be interposed between the communication unit 122 and the server device 300 . The communication performed by the communication unit 122 may be wireless communication or wired communication. The communication standard for communication performed by the communication unit 122 is not particularly limited either.
 例えば、サーバ装置300は、組電池101の劣化状態(SOC又はSOH等)を管理している。電池異常検知装置100は、現在の組電池101の劣化状態に対応する基準範囲テーブル208をサーバ装置300から受信し、受信した基準範囲テーブル208を用いて、実施の形態3で説明した手法により基準範囲を設定する。なお、電池異常検知装置100は、現在の組電池101の電池状態に対応する基準範囲をサーバ装置300から受信し、受信した基準範囲を用いて異常セルを検知してもよい。このとき、電池異常検知装置100は、現在の組電池101の電池状態をサーバ装置300に送信し、当該電池状態に対応する基準範囲をサーバ装置300から受信してもよい。また、電池異常検知装置100は、基準範囲の代わりに基準値を受信してもよい。 For example, the server device 300 manages the deterioration state (SOC, SOH, etc.) of the assembled battery 101 . The battery abnormality detection device 100 receives the reference range table 208 corresponding to the current deterioration state of the assembled battery 101 from the server device 300, and uses the received reference range table 208 to detect the reference range according to the method described in the third embodiment. Set a range. The battery abnormality detection device 100 may receive a reference range corresponding to the current battery state of the assembled battery 101 from the server device 300 and detect an abnormal cell using the received reference range. At this time, the battery abnormality detection device 100 may transmit the current battery state of the assembled battery 101 to the server device 300 and receive the reference range corresponding to the battery state from the server device 300 . Also, the battery abnormality detection device 100 may receive a reference value instead of the reference range.
 以上のように、電池異常検知装置100は、さらに、サーバ装置300と通信網を介して通信する通信部122を備え、基準範囲は、サーバ装置300から取得される。これにより、例えば、電池Bの劣化状態を反映した判定を行うことができるので異常検知の精度を向上できる。 As described above, the battery abnormality detection device 100 further includes the communication unit 122 that communicates with the server device 300 via a communication network, and the reference range is acquired from the server device 300. As a result, for example, it is possible to make a determination that reflects the state of deterioration of the battery B, so that the accuracy of abnormality detection can be improved.
 以上、実施の形態について説明したが、本開示は、上記実施の形態に限定されるものではない。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments.
 例えば、上記実施の形態では、EVなどの自動車に用いられる電池を対象とする電池異常検知装置及び電池異常検知システムについて説明されたが、電池異常検知装置及び電池異常検知システムは、どのような用途の電池を対象としてもよい。 For example, in the above embodiments, the battery abnormality detection device and the battery abnormality detection system for batteries used in automobiles such as EVs have been described. batteries may be targeted.
 また、上記では、複数の実施の形態において、異常セルの判定方法の複数の例を説明したが、これらが組み合わされてもよい。例えば、電池異常検知装置100は、複数の実施の形態において説明した複数の異常セルの判定方法の各々で判定を行い、少なくとも一つの方法で異常セルと判定された電池Bを異常セルと判定してもよい。 In the above description, multiple examples of methods for determining abnormal cells have been described in multiple embodiments, but these may be combined. For example, the battery abnormality detection device 100 performs determination by each of the plurality of methods for determining abnormal cells described in a plurality of embodiments, and determines battery B, which has been determined as an abnormal cell by at least one method, to be an abnormal cell. may
 また、上記実施の形態で説明された回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、または容量素子等の素子が接続されたものも本開示に含まれる。 Also, the circuit configurations described in the above embodiments are examples, and the present disclosure is not limited to the above circuit configurations. In other words, the present disclosure also includes a circuit capable of realizing the characteristic functions of the present disclosure, as well as the circuit configuration described above. For example, to the extent that the same function as the above circuit configuration can be realized, an element such as a switching element (transistor), a resistive element, or a capacitive element is connected in series or parallel to a certain element. included.
 また、上記実施の形態において、集積回路に含まれる構成要素は、ハードウェアによって実現された。しかしながら、集積回路に含まれる構成要素の一部は、当該構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。集積回路に含まれる構成要素の一部は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Also, in the above embodiments, the components included in the integrated circuit are realized by hardware. However, some of the components contained in an integrated circuit may be implemented by executing software programs suitable for that component. Some of the components included in the integrated circuit are implemented by a program execution unit such as a CPU (Central Processing Unit) or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory. may
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、上記実施の形態において説明された動作において、複数の処理の順序が変更されてもよいし、複数の処理が並行して行われてもよい。 Further, in the above embodiment, the processing executed by a specific processing unit may be executed by another processing unit. Further, in the operations described in the above embodiments, the order of multiple processes may be changed, and multiple processes may be performed in parallel.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, forms obtained by applying various modifications to each embodiment that a person skilled in the art can think of, or realized by arbitrarily combining the components and functions of each embodiment within the scope of the present disclosure. Also included in the present disclosure is the form of
 100 電池異常検知装置
 101 組電池
 102 負荷
 103 リレー
 104 トランジスタ
 105 参照抵抗
 106 負荷抵抗
 107 温度センサ
 110 交流インピーダンス測定部
 111 温度測定部
 113 電流測定部
 114 信号生成部
 115 電圧測定部
 117 タイミング生成部
 118 交流インピーダンス算出部
 120、120A、120B、120C 異常判定部
 121 制御部
 122 通信部
 130 上位制御部
 200 電池異常検知システム
 201 入力部
 202 比較部
 203 判定部
 204 入出力部
 205、205A、205B 基準範囲算出部
 206、206B 記憶部
 207 過去の交流インピーダンス
 208 基準範囲テーブル
 300 サーバ装置
 301 クラウドネットワーク
 400 自動車
 401 モータ
 B、B1~B8 電池
REFERENCE SIGNS LIST 100 battery abnormality detector 101 assembled battery 102 load 103 relay 104 transistor 105 reference resistor 106 load resistor 107 temperature sensor 110 AC impedance measurement unit 111 temperature measurement unit 113 current measurement unit 114 signal generation unit 115 voltage measurement unit 117 timing generation unit 118 AC Impedance calculation unit 120, 120A, 120B, 120C Abnormality determination unit 121 Control unit 122 Communication unit 130 Upper control unit 200 Battery abnormality detection system 201 Input unit 202 Comparison unit 203 Determination unit 204 Input/ output unit 205, 205A, 205B Reference range calculation unit 206, 206B storage unit 207 past AC impedance 208 reference range table 300 server device 301 cloud network 400 automobile 401 motor B, B1 to B8 battery

Claims (9)

  1.  電池セルの交流インピーダンスを測定する交流インピーダンス測定部と、
     前記交流インピーダンスが基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない場合、前記電池セルが異常セルであると判定する異常判定部とを備える
     電池異常検知装置。
    an AC impedance measurement unit that measures the AC impedance of the battery cell;
    an abnormality determination unit that determines whether the AC impedance is within a reference range, and determines that the battery cell is an abnormal cell if the AC impedance is not within the reference range. .
  2.  前記交流インピーダンス測定部は、
     前記電池セルを含む、直接に接続された複数の電池セルの各々の交流インピーダンスを測定し、
     前記異常判定部は、
      測定された複数の前記交流インピーダンスから前記基準範囲を算出し、
      前記複数の交流インピーダンスの各々が前記基準範囲に含まれるか否かを判定し、前記交流インピーダンスが前記基準範囲に含まれない電池セルを異常セルと判定する
     請求項1記載の電池異常検知装置。
    The AC impedance measurement unit is
    measuring the AC impedance of each of a plurality of directly connected battery cells, including the battery cell;
    The abnormality determination unit is
    calculating the reference range from the plurality of measured AC impedances;
    2. The battery abnormality detection device according to claim 1, wherein it is determined whether each of the plurality of AC impedances is included in the reference range, and a battery cell whose AC impedance is not included in the reference range is determined as an abnormal cell.
  3.  前記異常判定部は、
      測定された前記複数の交流インピーダンスから、最大値及び最小値を除外し、
      除外した後の複数の交流インピーダンスの平均値を算出し、
      前記平均値に基づき前記基準範囲を算出する
     請求項2記載の電池異常検知装置。
    The abnormality determination unit is
    Excluding the maximum and minimum values from the plurality of measured AC impedances,
    Calculate the average value of multiple AC impedances after exclusion,
    The battery abnormality detection device according to claim 2, wherein the reference range is calculated based on the average value.
  4.  前記電池異常検知装置は、さらに、
     過去に測定された交流インピーダンスを記憶する記憶部を備え、
     前記異常判定部は、前記過去に計測された交流インピーダンスに基づき、前記基準範囲を決定する
     請求項1記載の電池異常検知装置。
    The battery abnormality detection device further comprises
    Equipped with a storage unit that stores the AC impedance measured in the past,
    The battery abnormality detection device according to claim 1, wherein the abnormality determination unit determines the reference range based on the AC impedance measured in the past.
  5.  前記異常判定部は、複数の第1電池状態に予め対応付けられた複数の範囲から、現在の前記電池セルの前記第1電池状態に対応する範囲を前記基準範囲に決定し、
     前記第1電池状態は、前記電池セルの温度、電圧及びSOC(State of Charge)の少なくとも一つを含む
     請求項1記載の電池異常検知装置。
    The abnormality determination unit determines, as the reference range, a range corresponding to the first battery state of the current battery cell from a plurality of ranges previously associated with a plurality of first battery states,
    The battery abnormality detection device according to claim 1, wherein the first battery state includes at least one of temperature, voltage, and SOC (State of Charge) of the battery cell.
  6.  前記電池異常検知装置は、さらに、サーバ装置と通信網を介して通信する通信部を備え、
     前記基準範囲は、前記サーバ装置から取得される
     請求項1記載の電池異常検知装置。
    The battery abnormality detection device further comprises a communication unit that communicates with the server device via a communication network,
    The battery abnormality detection device according to claim 1, wherein the reference range is obtained from the server device.
  7.  前記交流インピーダンス測定部は、前記電池セルが熱平衡状態の時に前記交流インピーダンスを測定する
     請求項1~6のいずれか1項に記載の電池異常検知装置。
    The battery abnormality detection device according to any one of claims 1 to 6, wherein the AC impedance measurement unit measures the AC impedance when the battery cell is in a thermal equilibrium state.
  8.  前記交流インピーダンス測定部は、前記電池セルが、予め定められた第2電池状態の時に前記交流インピーダンスを測定し、
     前記第2電池状態は、前記電池セルの温度、電圧及びSOC(State of Charge)の少なくとも一つを含む
     請求項1~7のいずれか1項に記載の電池異常検知装置。
    The AC impedance measuring unit measures the AC impedance when the battery cell is in a predetermined second battery state,
    The battery abnormality detection device according to any one of claims 1 to 7, wherein the second battery state includes at least one of temperature, voltage and SOC (State of Charge) of the battery cell.
  9.  電池セルの交流インピーダンスを測定し、
     前記交流インピーダンスが基準範囲に含まれるか否かを判定し、
     前記交流インピーダンスが前記基準範囲に含まれない場合、前記電池セルが異常セルであると判定する
     電池異常検知方法。
    Measure the AC impedance of the battery cell,
    Determining whether the AC impedance is included in the reference range,
    determining that the battery cell is an abnormal cell when the AC impedance is not within the reference range.
PCT/JP2022/022607 2021-06-07 2022-06-03 Battery abnormality detecting device, and battery abnormality detecting method WO2022259973A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280039092.7A CN117396769A (en) 2021-06-07 2022-06-03 Battery abnormality detection device and battery abnormality detection method
JP2023527836A JPWO2022259973A1 (en) 2021-06-07 2022-06-03
EP22820154.7A EP4354164A1 (en) 2021-06-07 2022-06-03 Battery abnormality detecting device, and battery abnormality detecting method
US18/526,679 US20240110992A1 (en) 2021-06-07 2023-12-01 Battery anomaly detection device and battery anomaly detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021095357 2021-06-07
JP2021-095357 2021-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/526,679 Continuation US20240110992A1 (en) 2021-06-07 2023-12-01 Battery anomaly detection device and battery anomaly detection method

Publications (1)

Publication Number Publication Date
WO2022259973A1 true WO2022259973A1 (en) 2022-12-15

Family

ID=84426026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022607 WO2022259973A1 (en) 2021-06-07 2022-06-03 Battery abnormality detecting device, and battery abnormality detecting method

Country Status (5)

Country Link
US (1) US20240110992A1 (en)
EP (1) EP4354164A1 (en)
JP (1) JPWO2022259973A1 (en)
CN (1) CN117396769A (en)
WO (1) WO2022259973A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
JP2000030747A (en) * 1998-07-10 2000-01-28 Mitsubishi Chemicals Corp Manufacture of stacked type secondary battery
JP2010067502A (en) * 2008-09-11 2010-03-25 Mazda Motor Corp Power storage device
JP2011137681A (en) * 2009-12-28 2011-07-14 Panasonic Corp Impedance detection circuit, battery power supply apparatus, and battery utilization system
WO2012095913A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Method for evaluating deterioration of lithium ion secondary cell, and cell pack
JP5261622B1 (en) 2011-08-01 2013-08-14 アルプス・グリーンデバイス株式会社 Power storage device temperature measurement method
JP2015222195A (en) * 2014-05-22 2015-12-10 トヨタ自動車株式会社 Method of determining applicability of used secondary battery to reconstituted product, and method of reconstituting battery-pack
JP2016085062A (en) * 2014-10-23 2016-05-19 エンネット株式会社 Device and method for determining battery deterioration
JP2018128769A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Battery exchange support system and server used for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888941A (en) * 1994-09-16 1996-04-02 Fuji Electric Co Ltd Determining device of quality of storage battery for uninterruptible power supply unit
JP2000030747A (en) * 1998-07-10 2000-01-28 Mitsubishi Chemicals Corp Manufacture of stacked type secondary battery
JP2010067502A (en) * 2008-09-11 2010-03-25 Mazda Motor Corp Power storage device
JP2011137681A (en) * 2009-12-28 2011-07-14 Panasonic Corp Impedance detection circuit, battery power supply apparatus, and battery utilization system
WO2012095913A1 (en) * 2011-01-14 2012-07-19 パナソニック株式会社 Method for evaluating deterioration of lithium ion secondary cell, and cell pack
JP5261622B1 (en) 2011-08-01 2013-08-14 アルプス・グリーンデバイス株式会社 Power storage device temperature measurement method
JP2015222195A (en) * 2014-05-22 2015-12-10 トヨタ自動車株式会社 Method of determining applicability of used secondary battery to reconstituted product, and method of reconstituting battery-pack
JP2016085062A (en) * 2014-10-23 2016-05-19 エンネット株式会社 Device and method for determining battery deterioration
JP2018128769A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Battery exchange support system and server used for the same

Also Published As

Publication number Publication date
US20240110992A1 (en) 2024-04-04
JPWO2022259973A1 (en) 2022-12-15
EP4354164A1 (en) 2024-04-17
CN117396769A (en) 2024-01-12

Similar Documents

Publication Publication Date Title
EP3002597B1 (en) Battery control device
EP1873542B1 (en) Apparatus and method for estimating charge of a battery
JP6111275B2 (en) Battery control device
JP5349810B2 (en) Storage device abnormality detection device, method, and program
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
EP3171187B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP6371415B2 (en) Method for determining the reliability of degradation state parameters
JP6101714B2 (en) Battery control device, battery system
EP3171186B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP6298920B2 (en) Battery control device
CN112313521A (en) Battery monitoring device, integrated circuit, and battery monitoring system
EP3958006B1 (en) Battery diagnosis apparatus and method
JP7067549B2 (en) Power storage element management device and power storage element management method
JP6868976B2 (en) Deterioration estimation method for rechargeable batteries, deterioration estimation circuit, and electronic devices and automobiles using it
JP7016704B2 (en) Rechargeable battery system
JP7463008B2 (en) Battery cell diagnostic device and method
WO2022049804A1 (en) Determination device relating to plurality of batteries, electricity storage system, determination method and determination program
US20240094303A1 (en) Battery state estimation device, battery state estimation system, and battery state estimation method
EP3015835B1 (en) A method and a system for determining the operating temperature of a cell of an electric charge accumulator assembly without physical temperature sensors, particularly for electric or hybrid motor vehicles
WO2022259973A1 (en) Battery abnormality detecting device, and battery abnormality detecting method
JP2021511495A (en) Current sensor diagnostic equipment and method
KR20210011235A (en) Apparatus and method for diagnosing battery cell
JP2024050293A (en) Semiconductor device, battery monitoring method, and battery monitoring system
CN117590229A (en) Battery monitoring device and method and electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527836

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039092.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022820154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820154

Country of ref document: EP

Effective date: 20240108