WO2022259773A1 - Diagnosis system - Google Patents

Diagnosis system Download PDF

Info

Publication number
WO2022259773A1
WO2022259773A1 PCT/JP2022/018381 JP2022018381W WO2022259773A1 WO 2022259773 A1 WO2022259773 A1 WO 2022259773A1 JP 2022018381 W JP2022018381 W JP 2022018381W WO 2022259773 A1 WO2022259773 A1 WO 2022259773A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic
sensor
magnetic
unit
diagnosis
Prior art date
Application number
PCT/JP2022/018381
Other languages
French (fr)
Japanese (ja)
Inventor
慶大 山根
理香 馬場
崇子 溝口
一真 松井
真年 森下
啓輔 竹本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202280040291.XA priority Critical patent/CN117425614A/en
Publication of WO2022259773A1 publication Critical patent/WO2022259773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B27/00Indicating operating conditions of escalators or moving walkways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B31/00Accessories for escalators, or moving walkways, e.g. for sterilising or cleaning

Definitions

  • the present invention relates to a diagnostic system for passenger conveyors.
  • Patent Document 1 describes a configuration in which a sensor is mounted in the inner space of the diagnostic step, and the diagnostic step is circulated inside the escalator to measure the inside of the escalator. For example, regular inspection steps are replaced with diagnostic steps during regular inspections to improve the efficiency of regular inspections. Since the diagnostic step circulates inside the escalator, it is necessary to associate the time when the data was obtained with the position of the diagnostic step at that time.
  • an acceleration sensor is used to acquire the timing at which a diagnostic step is pulled into the back side of an escalator and reversed, and the step position is estimated based on the elapsed time from the reversal.
  • Patent Document 1 assumes that the escalator is running at a constant speed, so it is difficult to apply it to, for example, an escalator that reduces its operating speed to save power when there are no passengers.
  • a diagnostic system is a diagnostic system for diagnosing an abnormality in a passenger conveyor that conveys passengers by cyclically moving a plurality of steps that are endlessly connected, wherein the plurality of steps include at least A diagnostic step comprising one or more diagnostic sensors including a magnetic sensor, and generating a magnetic map that is a correlation between positions on the passenger conveyor and detection values of the magnetic sensor during one cycle of the diagnostic step.
  • a magnetic map generating unit a position estimating unit for estimating a position where the detection value of the diagnostic sensor on the passenger conveyor is detected based on the magnetic map and the detection value of the magnetic sensor during circulating movement; and an abnormality diagnosis unit that performs an abnormality diagnosis based on the detection value of the diagnostic sensor.
  • the present invention it is possible to accurately estimate the detection position of the diagnostic sensor detection value even in a situation where the driving speed changes.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an escalator.
  • FIG. 2 is a perspective view showing a schematic configuration of a diagnostic step.
  • FIG. 3 is a functional block diagram of the diagnostic system.
  • FIG. 4 is a diagram illustrating an example of noise reduction processing.
  • FIG. 5 is a diagram illustrating an example of positioning of diagnostic steps.
  • FIG. 6 is a diagram showing an example of time-series magnetic detection data after noise reduction processing.
  • FIG. 7 is a diagram for explaining the second method of position correspondence.
  • FIG. 8 is a diagram illustrating an example of self-position estimation processing.
  • FIG. 9 is a flow chart showing an example of an abnormality detection operation.
  • FIG. 10 is a diagram illustrating an example of abnormality occurrence determination and abnormality sign determination.
  • FIG. 10 is a diagram illustrating an example of abnormality occurrence determination and abnormality sign determination.
  • FIG. 11 is a block diagram showing Modification 1 of the configuration of the diagnostic system.
  • FIG. 12 is a block diagram showing Modification 2 of the configuration of the diagnosis system.
  • FIG. 13 is a block diagram showing Modification 3 of the configuration of the diagnosis system.
  • FIG. 14 is a block diagram showing Modification 4 of the configuration of the diagnosis system.
  • FIG. 15 is a block diagram showing Modified Example 5 of the configuration of the diagnostic system.
  • FIG. 16 is a block diagram showing Modification 6 of the configuration of the diagnosis system.
  • FIG. 17 is a block diagram showing Modification 7 of the configuration of the diagnosis system.
  • each component may be singular or plural.
  • the position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention.
  • the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
  • the subscripts may be omitted in the description.
  • FIG. 1 is a diagram showing an example of a passenger conveyor that is a diagnosis target of the diagnosis system according to the present invention.
  • the passenger conveyor is an escalator
  • FIG. 1 is a schematic diagram showing a schematic configuration of the escalator 100.
  • the escalator 100 includes steps 1 and 1a, a chain 2, a housing frame 3, a terminal gear 4, a drive motor 6, a lower terminal gear 9, a handrail 8, guide rails 11a and 11b, a control device 12, an upper entrance/exit floor plate 13a and A lower entrance/exit floor plate 13b and the like are provided.
  • the terminal gear 4 , the drive motor 6 , the lower terminal gear 9 , the control device 12 and the like are provided inside the housing frame 3 .
  • a plurality of steps 1 and one diagnostic step 1a are endlessly connected by a loop-shaped chain 2.
  • the escalator 100 transports passengers by cyclically moving a plurality of steps 1 and diagnostic steps 1a that are endlessly connected.
  • the diagnostic step 1a is hatched.
  • the upper entrance/exit floor plate 13 a is a steel plate forming the floor surface of the upper entrance/exit of the escalator 100 .
  • the lower entrance/exit floor plate 13 b is a steel plate forming the floor surface of the lower entrance/exit of the escalator 100 .
  • a terminal gear 4 with which the chain 2 is meshed is provided inside the housing frame 3 below the upper floor board 13a.
  • the steps 1 and 1a connected to the chain 2 circulate between the upper boarding floor 13a and the lower boarding floor 13b.
  • the handrail 8 rotates in synchronization with the chain 2.
  • the terminal gear 4 is driven by a drive motor 6 having a drive gear 5 .
  • Drive motor 6 is controlled by controller 12 .
  • a drive chain belt 7 is mounted between the drive gear 5 and the terminal gear 4 .
  • a lower terminal gear 9 is provided inside the housing frame 3 below the floor board 13b for the entrance/exit. Chain 2 meshes with this lower terminal gear 9 .
  • Each step 1, 1a has a substantially fan-shaped side portion.
  • Each step 1, 1a is provided with a front guide roller 10a and a rear guide roller 10b.
  • a pair of front guide rollers 10a and rear guide rollers 10b are provided on the left and right sides of each step 1, 1a, ie, in the front and back direction of the paper surface.
  • Inside the housing frame 3 a guide rail 11a on which the front guide roller 10a runs and a guide rail 11b on which the rear guide roller 10b runs are provided inside the housing frame 3, a guide rail 11a on which the front guide roller 10a runs and a guide rail 11b on which the rear guide roller 10b runs are provided.
  • a pair of guide rails 11 a and 11 b are provided on the upper and lower sides of the housing frame 3 .
  • FIG. 2 is a perspective view showing a schematic configuration of the diagnostic step 1a.
  • the diagnostic step 1 a has a tread portion 21 on which a passenger rides, a riser portion 22 continuous with the tread portion 21 , and a pair of side portions 23 . Each side portion 23 is provided with a front guide roller 10a and a rear guide roller 10b.
  • a sensor terminal 24 is provided in the diagnostic step 1a.
  • a sensor unit 25 , a control unit 26 and a wireless communication unit 27 are provided in the sensor terminal 24 .
  • the step 1 has the same structure as the diagnostic step 1a, it differs from the diagnostic step 1a in that the sensor terminal 24 is not provided.
  • FIG. 3 is a functional block diagram showing the functional configuration of the diagnostic system according to this embodiment.
  • the diagnostic system 1000 includes a diagnostic step 1a and a control device 12 provided in the escalator 100, and a position estimation device 51, an abnormality diagnosis device 52 and a communication device 53 of a monitoring center 50 for performing diagnostic processing remotely.
  • the data collection device 30 transmits and receives data to and from the monitoring center 50 via the network 40 .
  • the sensor terminal 24 is provided in the diagnostic step 1a.
  • the sensor terminal 24 is provided with a sensor section 25 , a control section 26 and a wireless communication section 27 .
  • the sensor unit 25 is provided with a magnetic sensor 251, a sound sensor 252, and an acceleration sensor 253 as diagnostic sensors.
  • a control device 12 provided in the housing frame 3 of the escalator 100 is provided with a data collection device 30 having a data storage section 301 and a communication section 302 .
  • the magnetic detection data of the magnetic sensor 251 , the sound detection data of the sound sensor 252 and the acceleration detection data of the acceleration sensor 253 are transmitted to the data collection device 30 by the wireless communication section 27 .
  • the wireless communication unit 27 uses low power consumption and low cost short-range wireless.
  • a battery is used as a power source for the sensor terminal 24, and the battery is replaced if necessary, for example, during regular inspections.
  • the time-series detection data during one cycle of the diagnostic step 1a is temporarily stored in a memory (not shown) provided in the control unit 26.
  • the time-series detection data for multiple rounds is transmitted by the wireless communication unit 27 .
  • time-series detection data for multiple rounds will be referred to as a time-series detection data group.
  • Data transmission by the wireless communication unit 27 is repeatedly performed at predetermined time intervals.
  • the data collection device 30 stores the time series detection data group received by the communication unit 302 in the data storage unit 301 .
  • a plurality of time-series detection data groups accumulated in the data storage unit 301 are transmitted to the monitoring center 50 at predetermined time intervals. This transmission is executed by a transmission command from the monitoring center 50 . For example, every 24 hours, the monitoring center 50 outputs a command to transmit a group of time-series detection data.
  • the data collection device 30 receives a transmission command from the monitoring center 50
  • the data collection device 30 transmits to the monitoring center 50 the time series detection data group for 24 hours accumulated in the data storage unit 301 .
  • a plurality of time series detection data groups transmitted from the communication unit 302 are received by the communication device 53 of the monitoring center 50 via the network 40 .
  • the monitoring center 50 includes a position estimation device 51 , an abnormality diagnosis device 52 and a communication device 53 .
  • the position estimation device 51 includes a magnetic map generation section 511 , a self-position estimation section 512 , a noise reduction section 513 and a storage section 514 .
  • the noise reduction unit 513 performs noise reduction processing included in time-series detection data (magnetism detection data, sound detection data, and acceleration detection data) used when generating a magnetic map. Details of the noise reduction processing will be described later.
  • the magnetic map generation unit 511 generates a magnetic map based on the time-series magnetic detection data after noise reduction processing. Specifically, the magnetic map is generated by associating the detection value at each time with the position on the escalator 100 with respect to the time-series magnetic detection data for one round. The magnetic map generation processing will be described later. The magnetic map generation process is performed as an initial operation when the diagnostic step 1a is installed on the escalator 100. FIG. The generated magnetic map is stored in storage unit 514 .
  • self-position estimating section 512 calculates each detected value of time-series sound detection data and time-series acceleration detection data used for abnormality diagnosis, based on the time-series magnetic detection data and the magnetic map. Associate with each position. By performing the self-position estimation process, it is known at which position of the escalator 100 the sound detection data and the acceleration detection data detected at the same time as the specific data of the magnetic detection data are detected. Details of self-position estimation processing in self-position estimation section 512 will be described later.
  • the abnormality diagnosis device 52 performs abnormality diagnosis of the escalator 100 based on the magnetic map and detection data of the diagnostic sensor.
  • the abnormality diagnosis device 52 includes an abnormality estimation section 521 , a noise reduction section 522 , a storage section 523 and a notification section 524 .
  • the abnormality estimating section 521 performs an abnormality estimating process, which will be described later, based on the sound detection data after the self-position estimating process by the self-position estimating section 512 .
  • the noise reduction unit 522 performs noise reduction processing on the time-series detection data group used for abnormality diagnosis.
  • the notification unit 524 performs a notification operation when the abnormality estimation unit 521 determines that there is an abnormality. In response to the abnormality notification by the notification operation, the inspection work of the escalator 100 is carried out by the operator.
  • the storage unit 523 stores determination reference data used for abnormality diagnosis, time-series detection data groups acquired from the data collection device 30, and the like.
  • FIG. 4 is a diagram for explaining an example of noise reduction processing in the noise reduction units 513 and 522.
  • the time-series magnetic detection data included in the time-series detection data group will be described as an example.
  • FIG. 4 shows time-series magnetic detection data when the diagnostic step 1a is circulated at a constant speed.
  • the vertical axis represents detected values
  • the horizontal axis represents time.
  • the time-series magnetic detection data D1 is the data of the first round
  • the time-series magnetic detection data D2 is the data of the second round
  • the time-series magnetic detection data D3 is the data of the third round.
  • the time-series magnetic detection data D2 is shown shifted by ⁇ along the vertical axis with respect to the time-series magnetic detection data D1.
  • the time-series magnetic detection data D3 is shown shifted by ⁇ from the time-series magnetic detection data D2 along the vertical axis.
  • T is the time required for one round of cyclic movement, that is, the period.
  • noise n1 occurs in time-series magnetic detection data D1
  • noise n2 occurs in time-series magnetic detection data D2
  • noise n3 occurs in time-series magnetic detection data D3.
  • the noise reduction units 513 and 522 for example, by taking the average of the detection values at the same timing of the time-series magnetic detection data D1 to D3 of multiple rounds, the detection values of the portions where the noises n1 to n3 are generated are reduced. Let When averaging is performed using time-series magnetic detection data for 10 rounds, if noise occurs only in one round, the detected value of the noise portion is reduced to 1/10 by averaging. .
  • the time-series magnetic detection data after the averaging process is used as the time-series magnetic detection data after the noise reduction process.
  • the noise reduction processing for time-series sound detection data and time-series acceleration detection data is also performed in the same manner as for the time-series magnetic detection data described above.
  • the magnetic map generation unit 511 associates the magnetic detection value at each time with the position on the escalator 100 with respect to the time-series magnetic detection data for one round on which the noise reduction processing has been performed by the noise reduction unit 513 .
  • a map M (magnetism detection values, positions) is generated.
  • the movement start position of the diagnostic step 1a is positioned at a predetermined position. Then, from that position, the diagnostic step 1a is rotated at a constant speed a plurality of times or more to obtain a plurality of time-series magnetic detection data as shown in FIG.
  • the number of laps is more than one will be described as an example. However, if a noise reduction process capable of reducing noise with one round of detection data is employed, the number of rounds may be one.
  • Positioning of the movement start position of the diagnostic step 1a to a predetermined position is performed, for example, as follows.
  • the operator manually operates the control device 12 to adjust the position of the diagnostic step 1a while visually observing the diagnostic step 1a.
  • the diagnostic step 1a is positioned at a position extended from the lower doorway floor plate 13b (hereinafter, this position will be referred to as a reference position A). .
  • time-series magnetic detection data D after noise reduction processing as shown in FIG. 6 is obtained.
  • the horizontal axis is the elapsed time after the diagnostic step 1a passes the reference position A.
  • the time-series magnetic detection data D represents the magnetism around the diagnostic step 1a during one round of the diagnostic step 1a, that is, the state of the magnetization of the parts of the escalator 100.
  • the cyclically moving diagnostic step 1a becomes the reference position A every cycle T, and the magnetic sensor 251 detects the detected value Da.
  • the magnetic map generation unit 511 generates a magnetic map in which the time-series magnetic detection data D and each position of the escalator 100 are associated with each other based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position A. , (Db, B), . . , (Dc, C), . . . , (De, E), . . . , (Df, F), . That is, the magnetic map M can be expressed as M (magnetism detection value, position).
  • FIG. 7 is a diagram showing time-series magnetic detection data D1 and time-series acceleration detection data D10.
  • References A to F correspond to positions A to F of the escalator 100 shown in FIG.
  • FIG. 5 looking at the posture of diagnostic step 1a, the second posture from position E to position F is upside down from the first posture from position A to position B.
  • FIG. While the diagnostic step 1a moves from the position B to the position E, the posture of the diagnostic step 1a gradually changes from the first posture to the second posture.
  • the diagnostic step 1a moves from the position F to the position A, the posture of the diagnostic step 1a gradually changes from the second posture to the first posture.
  • the detection value of the acceleration sensor 253 provided in the diagnostic step 1a changes according to the movement of the diagnostic step 1a.
  • the acceleration detected by the acceleration sensor 253 includes that caused by gravity and that caused by vibration of the acceleration sensor 253 .
  • the general shape of the line indicating the time-series acceleration detection data D10 is determined by the acceleration caused by gravity. Acceleration caused by the vibration of the acceleration sensor 253 appears as minute vibrations on the line.
  • the detected value is +d in the first posture and -d in the second posture. While the diagnostic step 1a moves from position B to position E, the detected value gradually changes from +d to -d, and at position P1, the detected value reverses from positive to negative. Further, while the diagnostic step 1a moves from position F to position A, the detected value gradually changes from -d to +d, and at position P2, the detected value reverses from minus to plus.
  • the timing at which this detected value is inverted can be used as a reference position in magnetic map generation. For example, when the reversal position P1 is set as the reference position, one cycle is from the reversal position P1 to the next reversal position P1.
  • the magnetic map generator 511 generates a magnetic map that associates the time-series magnetic detection data D with each position of the escalator 100 based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position P1. , (De, E), . . . , (Df, F), . . , (Da, A), . . . , (Db, B), .
  • the reversal position P1 appearing in the detection value of the acceleration sensor 253 is used as the reference position when generating the magnetic map.
  • the detection value of the sound sensor 252 may be used to set the reference position of the escalator 100. If the position (site) where the loudest sound is detected during one round of the diagnostic step 1a is known in advance, the timing at which the maximum detection value is detected can be set as the reference position. For example, suppose that the motor sound of the drive motor 6 is detected as the maximum detection value when the diagnostic step 1a is at position C in FIG. In that case, the position C where the detection value Dc in FIG. 6 is detected is set as the reference position. Then, based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position C, a magnetic map M (magnetism detection values, positions) is generated.
  • a magnetic map M magnetism detection values, positions
  • the magnetic map M (magnetism detection value, position) of one round of the diagnostic step 1a is a data group (Dc, C), ..., (De, E), ..., (Df, F), ... . . , (Da, A), . . . , (Db, B), . . . , (Dc, C).
  • the position of the diagnostic step 1a when the magnetization of the magnetized parts among the parts provided in the escalator 100 is detected is used as the reference position.
  • the magnetism of the drive motor 6 is detected as the maximum detection value when the diagnostic step 1a is at position C in FIG. In that case, the position C where the detected value Dc in FIG. value, position).
  • the magnetic map M (magnetism detection value, position) of one round of the diagnostic step 1a is a data group (Dc, C), ..., (De, E), ..., (Df, F), ... . . , (Da, A), . . . , (Db, B), . . .
  • FIG. 8 is a diagram illustrating an example of self-position estimation processing.
  • the line indicated by symbol M represents the magnetic map M (magnetism detection value, position), and has the same shape as the time-series magnetic detection data D shown in FIG.
  • a line indicated by symbol S is time-series sound detection data of the sound sensor 252 .
  • the vertical axis represents detection values of magnetic sensor 251 and sound sensor 252
  • the horizontal axis represents positions on escalator 100 .
  • a position B is obtained by fitting this detected value to the magnetic map M (magnetic detected value, position).
  • the value Db is located at locations other than the position B, so when performing fitting, the detection values before and after the detection value Db are also referred to to determine the position of the detection value Db. is position B. That is, it can be seen that the position of the diagnostic step 1a is the position B when the detection value Db of the magnetic sensor 251 is detected.
  • the detection value Sb of the sound sensor 252 detected at the same timing as the detection value Db is estimated to be sound detection data detected when the diagnostic step 1a is at the position B. That is, the self-position estimation is to estimate the position of the diagnostic step 1a on the escalator 100 when the detection value Sb is detected. By performing such self-position estimation processing, it is possible to know where in the escalator 100 each detection value of the time-series sound detection data S was detected.
  • FIG. 9 is a flowchart showing an example of an abnormality detection operation in the abnormality diagnosis device 52.
  • the monitoring center 50 acquires a plurality of time-series detection data groups from the data collection device 30 by transmitting a data transmission command to the data collection device 30 . Then, abnormality diagnosis processing is sequentially performed on the plurality of acquired time-series detection data groups.
  • the flowchart shown in FIG. 9 shows the processing by one data transmission command, which is repeatedly executed at predetermined time intervals.
  • step S90 a data transmission command is transmitted to the data collection device 30, and multiple time-series detection data groups accumulated in the data storage unit 301 are collected.
  • the time-series detection data group includes multiple types of time-series detection data groups corresponding to the sensors provided in the sensor unit 25 .
  • the sensor unit 25 since the sensor unit 25 is provided with a magnetic sensor 251, a sound sensor 252, and an acceleration sensor 253, the time-series detection data group includes a time-series magnetic detection data group and a time-series sound detection data group. Groups and time-series acceleration detection data groups are included.
  • step S91 noise reduction processing is performed by the noise reduction unit 522 on the first time-series detection data group among the plurality of time-series detection data groups.
  • step S92 the abnormality estimation unit 521 determines whether or not an abnormality has occurred based on the time-series sound detection data and the time-series acceleration detection data after noise reduction processing.
  • step S92 when it is determined that there is an abnormality (YES), the process proceeds to step S94, and when it is determined that there is no abnormality (NO), the process proceeds to step S93.
  • step S93 the abnormality estimation unit 521 determines whether or not there is an abnormality sign based on the time-series sound detection data and the time-series acceleration detection data after noise reduction processing.
  • step S93 if it is determined that there is a sign of abnormality (YES), the process proceeds to step S94, and if it is determined that there is no sign of abnormality (NO), the process proceeds to step S97.
  • FIG. 10 is a diagram illustrating an example of abnormality occurrence determination in step S92 and abnormality sign determination in step S93.
  • the time-series sound detection data and the time-series acceleration detection data after the noise reduction processing are compared with the determination reference data.
  • the determination criterion data is stored in the storage unit 523 .
  • a group of time-series detection data is obtained from the data collection device 30 during the initial operation for generating the magnetic map M (magnetism detection values, positions) after the diagnostic step 1a is installed.
  • the storage unit 523 stores the time-series detection data obtained by subjecting the time-series detection data group to noise reduction processing as determination reference data.
  • the time-series detection data includes time-series magnetic detection data, time-series sound detection data, and time-series acceleration detection data.
  • FIG. 10 is a diagram showing time-series sound detection data S11 and S12 obtained by noise reduction processing, and time-series sound detection data S0 as determination reference data.
  • the horizontal axis is time t.
  • a line S1 is a first judgment line obtained by multiplying each value of the judgment reference data S0 by ⁇ 1.
  • a line S2 is a second determination line obtained by multiplying each value of the determination reference data S0 by ⁇ 2 (> ⁇ 1).
  • the second determination line S2 is used for abnormality occurrence determination.
  • the first determination line S1 is used for abnormality portent determination.
  • the line of time-series sound detection data S11 crosses the first determination line S1 near time tc.
  • the abnormality estimating unit 521 determines that there is a sign of abnormality, that is, there is a sign of abnormality, when any part of the escalator 100 has a sign of abnormality.
  • the time-series sound detection data S12 is a line when more time has passed since the acquisition of the time-series sound detection data S11.
  • step S92 If it is determined that an abnormality has occurred in at least one of the time-series sound detection data and the time-series acceleration detection data, it is determined that an abnormality has occurred in step S92. Similarly, if at least one of the time-series sound detection data and the time-series acceleration detection data is determined to have a sign of abnormality, it is determined at step S93 that there is a sign of abnormality.
  • step S94 a process of estimating which position of the escalator 100 is where an abnormality or a sign of abnormality has occurred is performed.
  • time-series magnetic detection data, time-series sound detection data, and time-series acceleration detection data subjected to noise reduction processing are obtained.
  • the abnormality diagnosis device 52 acquires the position where the detection value of the time-series magnetic detection data is Dc by causing the self-position estimation unit 512 to perform self-position estimation processing.
  • the position C is obtained by fitting the detection value Dc to the magnetic map M (magnetism detection value, position) (see FIG. 8).
  • the detection value Sc1 detected at the same timing as the detection value Dc is the detection value obtained when the diagnostic step 1a is positioned at the position C.
  • FIG. it can be seen that a sign of anomaly has occurred in the part arranged near the position C.
  • the detection value Sc2 By performing the same processing for the detection value Sc2, it can be found that the part arranged near the position C has an abnormality.
  • step S94 the location where an anomaly sign or an anomaly has occurred is estimated. Furthermore, in step S95, the component with an anomaly sign or an anomaly is estimated. As shown in FIG. 5, near the position C of the escalator 100, a chain 2, a terminal gear 4, a drive gear 5, a drive motor 6, and the like are provided.
  • the abnormality estimator 521 estimates an abnormal part in addition to estimating an abnormal position. By estimating not only the occurrence of an abnormality but also the abnormal component, it is possible to quickly and appropriately deal with the occurrence of an abnormality.
  • Time-series sound detection data and time-series acceleration detection data include not only the magnitude of sound and vibration, but also the frequency of sound and vibration.
  • the storage unit 523 stores in advance failure determination data in which abnormal noise frequencies and abnormal vibration frequencies are listed for each part and each failure type.
  • the abnormality estimating unit 521 estimates the component in which an abnormality or an abnormality sign has occurred and the content of the failure based on the frequency of the sound and the frequency of the vibration at the position C.
  • step S96 the notification unit 524 notifies that an abnormality or a sign of abnormality has occurred.
  • the report information includes at least one of the occurrence of an abnormality or an anomaly symptom, the location where the anomaly or an anomaly symptom has occurred, the part, and the contents of the failure.
  • step S97 it is determined whether or not the noise reduction processing and the abnormality occurrence or abnormality sign determination processing have been completed for all of the plurality of time-series detection data groups.
  • step S94 if it is determined that the diagnosis has not been completed (NO), the process returns to step S91, and if it is determined that the diagnosis has been completed (YES), the series of diagnostic processes is terminated.
  • the diagnostic step 1a when the diagnostic step 1a provided with the diagnostic sensors including the magnetic sensor 251 is introduced, the diagnostic step 1a is circularly moved to the magnetic map M (magnetic map M). detection value, position).
  • This magnetic map M magnetism detection value, position
  • This magnetic map M is a map representing the magnetic state at each position in the escalator 100 . Therefore, the detection position of the diagnostic sensor detection value acquired during escalator operation can be obtained by comparing the magnetic detection value detected at the same timing as the detection value with the magnetic map M (magnetism detection value, position). can be done. That is, even in a situation where the driving speed changes, it is possible to accurately estimate the detection position of the diagnostic sensor detection value, and to perform constant diagnosis.
  • the data detected by the sensor unit 25 in the diagnostic step 1a is transmitted to a remote monitoring device provided with a position estimation device 51 and an abnormality diagnosis device 52 by communication.
  • the data is transmitted to the center 50. Therefore, the status of the escalator 100 can be constantly monitored from a remote location. Furthermore, the monitoring center 50 can easily monitor a plurality of escalators all the time.
  • the detection value of the magnetic sensor 251 is compared with the magnetic map M (magnetism detection value, position) to estimate the detection position. Therefore, it is preferable that the output of the magnetic sensor 251 is stable in order to accurately estimate the position. Therefore, in the present embodiment, the magnetization of the parts provided in the escalator 100 is used to correct the offset and drift of the magnetic sensor 251 .
  • the detection value of the magnetic sensor 251 at position C near the drive motor 6 is used as the reference value for correction. Then, based on the detected value at position C, the detected values at other positions are corrected so that the detected value at position C is always constant. For example, when the detected value at position C is ⁇ times the initial value, correction is performed by multiplying the detected values at all positions by (1/ ⁇ ). As a result, it is possible to remove the influence of the output change of the magnetic sensor 251 and prevent deterioration of self-position estimation accuracy.
  • This correction operation may be performed by any one of the control unit 26 provided in the sensor terminal 24, the data collection device 30, the position estimation device 51, and the abnormality diagnosis device 52.
  • self-position estimation processing is performed to associate the sound detection data with the position on the escalator 100 based on the detection data of the magnetic sensor 251 and the generated magnetic map M (magnetism detection value, position). Furthermore, the self-position estimation process may be performed using the reversal timing in the detection data of the acceleration sensor 253 together.
  • the reversal timing occurs when the diagnostic step 1a moves to a specific position on the escalator 100. FIG. Therefore, by also using this reversal timing, it is possible to improve the accuracy of self-position estimation, and it is possible to perform an abnormality diagnosis with high accuracy.
  • a diagnostic sensor other than the acceleration sensor 253 may be used. For example, an altitude sensor or the like may be further added as a diagnostic sensor and its detection data may be used together.
  • diagnostic system 1000 is not limited to the configuration shown in the block diagram of FIG.
  • FIG. 11 is a block diagram showing Modification 1 of the configuration of diagnostic system 1000.
  • the diagnosis system 1000 of FIG. 3 is configured such that a plurality of time-series detection data groups stored in the data storage unit 301 are transmitted to the communication device 53 of the monitoring center 50 via the network 40 by the communication unit 302 .
  • the communication unit 302 of the control device 12 and the communication device 53 of the monitoring center 50 are omitted.
  • the diagnostic system 1000A employs a system in which a plurality of time-series detection data groups stored in the data storage unit 301 are collected by an operator during regular inspections and sent to the monitoring center 50 .
  • Portable storage media such as, for example, USB flash drives and portable hard disk drives are used for data retrieval. Since the communication unit 302 and the communication device 53 are not required, the cost of the communication system can be reduced.
  • FIG. 12 is a block diagram showing Modified Example 2 of the configuration of the diagnostic system 1000.
  • the data storage section 301 and the communication section 302 provided in the control device 12 are provided in the diagnostic step 1a.
  • a plurality of time-series detection data groups stored in the data storage unit 301 are transmitted to the communication device 53 of the monitoring center 50 via the network 40 from the communication unit 302 provided in the diagnostic step 1a.
  • FIG. 13 is a block diagram showing Modification 3 of the configuration of diagnostic system 1000.
  • a diagnostic system 1000C of Modified Example 3 omits the communication unit 302 and the communication device 53 provided in the diagnostic system 1000B of FIG.
  • a plurality of time-series detection data groups stored in the data storage unit 301 are collected by a worker during regular inspections and sent to the monitoring center 50 .
  • the position estimation device 51 and the abnormality diagnosis device 52 of the monitoring center 50 create a magnetic map M (magnetism detection values, positions) based on the collected time-series detection data group and perform diagnosis processing.
  • FIG. 14 is a block diagram showing Modification 4 of the configuration of diagnostic system 1000. As shown in FIG. In the diagnostic system 1000D of Modified Example 4, the position estimating device 51 and the abnormality diagnostic device 52 provided in the monitoring center 50 in the diagnostic system 1000 of FIG. However, the notification unit 524 provided in the abnormality diagnosis device 52 of FIG. 3 is arranged in the monitoring center 50 .
  • the diagnostic processing if an abnormality or an abnormality predictor has occurred, notification information is transmitted from the communication unit 302 to the communication device 53 of the monitoring center 50 via the network 40 . Then, notification information is presented by the notification unit 524 .
  • the monitoring center 50 can acquire the time-series detection data group stored in the data storage unit 301 of the data collection device 30 by transmitting a transmission command for the time-series detection data group to the control device 12. .
  • FIG. 15 is a block diagram showing Modified Example 5 of the configuration of the diagnostic system 1000.
  • a diagnostic system 1000E of modification 5 replaces the communication unit 302 of the data collection device 30 with a wireless communication unit 302A for short-range communication in the diagnostic system 1000D shown in FIG.
  • an information processing device 54 such as a personal computer is arranged in place of the notification unit 524 of the monitoring center 50 .
  • the wireless communication unit 302A receives detection data of the sensors 251 to 253 from the wireless communication unit 27 provided in the diagnostic step 1a.
  • a magnetic map M (magnetism detection values, positions) generated as a result of diagnosis processing by the position estimation device 51 and the abnormality diagnosis device 52 provided in the control device 12 and the time-series detection data group stored in the data storage unit 301 etc. are collected by the worker at the time of periodic inspection and sent to the monitoring center 50 .
  • the information processing device 54 can confirm the diagnostic processing result and the magnetic map M (magnetism detection value, position).
  • the information processing device 54 can also perform confirmation, analysis, and the like of the collected time-series detection data group.
  • the abnormality diagnosis device 52 is not provided with the notification unit 524, but the abnormality diagnosis device 52 may be provided with the notification unit 524.
  • the operator can confirm the abnormal state during the periodic inspection, and can deal with the abnormality on the spot.
  • the diagnosis result can be confirmed by reading the diagnosis result held in the storage unit 523 with a personal computer or the like.
  • FIG. 16 is a block diagram showing Modification 6 of the configuration of diagnostic system 1000.
  • the data storage section 301, the communication section 302, the position estimation device 51, and the abnormality diagnostic device 52 provided in the control device 12 in the diagnostic system 1000D of FIG. 14 are arranged in the diagnostic step 1a.
  • the wireless communication unit 27 provided in the diagnostic step 1a is omitted.
  • the diagnostic system 1000F stores detection data detected by the sensor unit 25, generates a magnetic map M (magnetic detection value, position) based on the detection data, and diagnoses based on the detection data and the magnetic map M (magnetic detection value, position). All of the processing is performed by the data storage section 301, the position estimation device 51 and the abnormality diagnosis device 52 provided in the diagnostic step 1a.
  • the diagnosis result is transmitted from the communication unit 302 to the communication device 53 of the monitoring center 50 via the network 40 .
  • the notification unit 524 notifies based on the received diagnosis result.
  • the monitoring center 50 can also acquire the time-series detection data group stored in the data storage unit 301 by transmitting a transmission command for the time-series detection data group to the control device 12 .
  • FIG. 17 is a block diagram showing Modified Example 7 of the configuration of the diagnostic system 1000.
  • a diagnostic system 1000G of Modification 7 omits the communication unit 302 provided in the diagnostic step 1a in the diagnostic system 1000F shown in FIG. Instead of the unit 524, an information processing device 54 such as a personal computer is arranged.
  • a magnetic map M (magnetism detection values, positions) generated as a result of diagnostic processing by the position estimation device 51 and the abnormality diagnosis device 52 provided in the diagnostic step 1a and time-series detection data stored in the data storage unit 301
  • Data on the groups and the like are collected by workers during periodic inspections and sent to the monitoring center 50 .
  • the information processing device 54 can confirm the diagnostic processing result and the magnetic map M (magnetism detection value, position).
  • the information processing device 54 can also perform confirmation, analysis, and the like of the collected time-series detection data group.
  • the operator can check the diagnosis result by reading the diagnosis result held in the storage unit 523 by a personal computer or the like at the time of regular inspection, and can deal with the abnormality on the spot. can do.
  • a notification unit 524 may be provided.
  • the functional units in the configuration are electric circuits, electronic circuits, logic circuits, and
  • the functional units in the position estimation device 51 and the abnormality diagnosis device 52 are electric circuits, electronic circuits, logic circuits, and
  • integrated circuits, microcomputers, processors, and similar computing devices ROM, RAM, flash memory, hard disks, SSDs, memory cards, optical disks, and similar storage devices, buses, networks, and similar communication devices, and a program executed by a combination of peripheral devices, and the present invention can be realized in any implementation mode.
  • two or more programs may be implemented as one program
  • one program may be implemented as two or more programs.
  • the diagnostic system 1000 diagnoses an abnormality in the escalator 100, which is a passenger conveyor that conveys passengers by circulating a plurality of steps 1 and 1a that are endlessly connected.
  • a diagnostic system 1000 comprising a diagnostic step 1a comprising one or more diagnostic sensors including at least a magnetic sensor 251 included in a plurality of steps 1, 1a, and an escalator 100 during one cycle of the diagnostic step 1a.
  • a magnetic map generation unit 511 that generates a magnetic map M (detected magnetic value, position) that is a correlation between the position and the detected value of the magnetic sensor 251,
  • a self-position estimation unit 512 that estimates the position where the detection value of the sound sensor 252 in the escalator 100 is detected based on the detection value of the sensor 251, and an abnormality estimation unit that performs abnormality diagnosis based on the detection value of the sound sensor 252. 521 and .
  • the magnetic map M (magnetism detection value, position) represents the correlation between the position on the escalator 100 and the detection value of the magnetic sensor 251 during one cycle of the diagnostic step 1a. Based on the magnetic map M (magnetism detection value, position) and the detection value of the magnetic sensor 251 during circular movement, the position where the detection value of the sound sensor 252 in the escalator 100 is detected is estimated. Therefore, even when the operating speed of the escalator changes, it is possible to accurately estimate the detection position of the detection value of the diagnostic sensor, and to perform constant diagnosis.
  • the diagnostic step 1a includes, as diagnostic sensors, an acceleration sensor 253 as a position specifying sensor capable of specifying the position of the diagnostic step 1a on the escalator 100, and a sound sensor.
  • the magnetic map generation unit 511 may generate a magnetic map M (magnetism detection value, position) using the position (for example, reversal position P1) specified by the position specifying sensor as a reference position.
  • the position specified by the position specifying sensor as the reference position when generating the magnetic map, the operation of generating the magnetic map can be automated and highly accurate.
  • the diagnostic step 1a is provided with an acceleration sensor 253 as a position specifying sensor, and the magnetic map generator 511 estimates the timing at which the posture of the diagnostic step 1a is reversed based on the sensor output of the acceleration sensor 253.
  • the reversal position P1 of the diagnostic step 1a at that timing may be used as a reference position to generate a magnetic map M (magnetism detection values, positions). The detection of the reversal position P1 by the acceleration sensor 253 can be easily performed with high precision.
  • the escalator 100 includes a magnetized component (for example, the drive motor 6) having magnetization, and the magnetic map generation unit 511 generates the magnetized component when the magnetic sensor 251 detects the magnetization of the magnetized component.
  • a magnetic map M (magnetism detection values, positions) may be generated using the position C of the diagnostic step 1a as a reference position.
  • the self-position estimation unit 512 generates a magnetic map M (magnetism detection value, position), the detection values of the magnetic sensor 251 during circular movement, and the acceleration sensor 253 as a sensor for position identification.
  • M magnetism detection value, position
  • the detection values of the magnetic sensor 251 during circular movement and the acceleration sensor 253 as a sensor for position identification.
  • the reversal position P1 the position at which the detection value of the sound sensor 252 as the diagnostic sensor is detected may be estimated.
  • a reversal position P1 detected by the acceleration sensor 253 occurs when the diagnostic step 1a moves to a specific position on the escalator 100.
  • FIG. therefore, by also using this reverse position P1 for self-position estimation, self-position estimation accuracy can be improved, and abnormality diagnosis can be performed with high accuracy.
  • the escalator 100 may be provided with a magnetized component (for example, the drive motor 6), and the output error of the magnetic sensor 251 may be corrected based on the magnetization of the magnetized component.
  • the control unit 26 or the data collection device 30 performs correction processing. As a result, it is possible to remove the influence of the output change of the magnetic sensor 251 and prevent deterioration of self-position estimation accuracy.
  • the abnormality estimation unit 521 detects an abnormality based on the position estimated by the self-position estimation unit 512 and the detection data of the diagnostic sensor (for example, the sound sensor 252). Estimate parts. By estimating the abnormal component as well as the occurrence of an abnormality, it is possible to quickly and appropriately deal with the occurrence of an abnormality.
  • the diagnostic system comprises a communication unit provided in the housing frame 3 of the escalator 100 or the diagnostic step 1a in which the driving motor 6 for circulating the steps 1 and 1a is arranged. 302, and a monitoring center 50 as a remote monitoring unit that receives and transmits data through communication with the communication unit 302 and is provided with a self-position estimation unit 512 and an abnormality diagnosis device 52, and detects data detected by the diagnostic sensor. is transmitted to the monitoring center 50 by the communication unit 302 . Therefore, the escalator 100 can be remotely monitored at all times.
  • the communication unit 302 is provided in the housing frame 3 of the escalator 100, and the diagnostic step 1a transmits detection data of the diagnostic sensor to the communication unit provided in the housing frame 3.
  • 302 may further include a wireless communication unit 27 that transmits by wireless communication, and the communication unit 302 may transmit the detection data transmitted from the diagnostic step 1 a to the monitoring center 50 .
  • a short-range wireless device with low power consumption can be used as the wireless communication unit 27, and a small-capacity power source such as a battery can be used as the power source arranged in the diagnostic step 1a.
  • the self-position estimating unit 512 and the abnormality estimating unit 521 connect the housing frame 3 of the escalator 100 in which the driving motor 6 for cyclically moving the steps 1 and 1a is arranged, or the diagnosis further comprising a communication unit 302 provided in the diagnostic step 1a and provided in the housing frame 3 or the diagnostic step 1a; The diagnosis result is transmitted to the monitoring center 50 by the communication section 302 .
  • the monitoring center 50 only needs to prepare a device that can receive test results, so it is possible, for example, to receive diagnostic results via an information terminal such as a personal computer or a mobile phone via the Internet. Therefore, it is possible for a worker to receive the diagnosis result from the information terminal and inspect the escalator 100 having an abnormality without setting up a large-scale monitoring center.
  • (C11) As shown in Figs. It further comprises a data storage unit 301 for storing the detection data of.
  • the operator collects the detection data accumulated in the data storage unit 301 and analyzes the detection data by the self-position estimation unit 512 and the abnormality estimation unit 521, thereby eliminating the need to provide a communication device.
  • the self-position estimating unit 512 and the abnormality estimating unit 521 are connected to the housing frame 3 of the escalator 100 in which the drive motor 6 for cyclically moving the steps 1 and 1a is arranged, or the diagnosis
  • the housing frame 3 provided in the step 1a for diagnosis and provided with the self-position estimating section 512 and the abnormality estimating section 521 or the diagnostic step 1a further includes a storage section 523 for storing the diagnosis result of the abnormality estimating section 521.
  • the worker can confirm the diagnosis result by reading out the diagnosis result held in the storage unit 523 with a personal computer or the like at the time of periodic inspection, and can deal with the abnormality on the spot.

Landscapes

  • Escalators And Moving Walkways (AREA)

Abstract

A diagnosis system which diagnoses an abnormality and constitutes part of a passenger conveyor for conveying passengers by moving a plurality of endlessly connected steps in a circulating manner, said system being equipped with: a diagnosis step which is included among said plurality of steps and is equipped with one or more diagnosis sensors which at least include a magnetic sensor; a magnetic map generation unit for generating a magnetic map, which is the correlation between a detected value from the magnetic sensor and the location along the passenger conveyor while the diagnosis step makes one circuit thereof; a location estimation unit for estimating the location along the passenger conveyor where the detected value of the diagnosis step is detected, on the basis of the magnetic map and the detected value from the magnetic sensor when circulating; and an abnormality diagnosis unit for diagnosing an abnormality on the basis of the detected value from the diagnosis sensor.

Description

診断システムdiagnostic system
 本発明は、乗客コンベアの診断システムに関する。 The present invention relates to a diagnostic system for passenger conveyors.
 特許文献1には、診断用ステップの内部空間にセンサを搭載し、診断用ステップをエスカレータ内で循環させることでエスカレータ内部の測定を行う構成が記載されている。例えば、定期検査時に通常のステップを診断用ステップと入れ替え、定期点検の効率化を図っている。診断用ステップはエスカレータ内を循環するため、データが得られた時刻とそのときの診断用ステップの位置を対応づける必要がある。特許文献1では、加速度センサを用いて診断用ステップがエスカレータ裏側に引き込まれ反転するタイミングを取得し、反転からの経過時間でステップ位置を推定している。 Patent Document 1 describes a configuration in which a sensor is mounted in the inner space of the diagnostic step, and the diagnostic step is circulated inside the escalator to measure the inside of the escalator. For example, regular inspection steps are replaced with diagnostic steps during regular inspections to improve the efficiency of regular inspections. Since the diagnostic step circulates inside the escalator, it is necessary to associate the time when the data was obtained with the position of the diagnostic step at that time. In Patent Document 1, an acceleration sensor is used to acquire the timing at which a diagnostic step is pulled into the back side of an escalator and reversed, and the step position is estimated based on the elapsed time from the reversal.
日本国特開2006-76729号公報Japanese Patent Application Laid-Open No. 2006-76729
 しかしながら、特許文献1に記載の技術では、エスカレータが定速運転していることを前提としているため、例えば、乗客がいないときに運転速度を低下させ節電するエスカレータなどには、適用が難しい。 However, the technology described in Patent Document 1 assumes that the escalator is running at a constant speed, so it is difficult to apply it to, for example, an escalator that reduces its operating speed to save power when there are no passengers.
 本発明の態様による診断システムは、無端状に連結された複数のステップを循環移動させて乗客を搬送する乗客コンベアの、異常を診断する診断システムであって、前記複数のステップに含まれ、少なくとも磁気センサを含む1以上の診断用センサを備える診断用ステップと、前記診断用ステップが一循環する間の前記乗客コンベアにおける位置と前記磁気センサの検出値との相関関係である磁気マップを生成する磁気マップ生成部と、前記磁気マップと循環移動時の前記磁気センサの検出値とに基づいて、前記乗客コンベアにおける前記診断用センサの検出値が検出された位置を推定する位置推定部と、前記診断用センサの検出値に基づいて異常診断を行う異常診断部と、を備える。 A diagnostic system according to an aspect of the present invention is a diagnostic system for diagnosing an abnormality in a passenger conveyor that conveys passengers by cyclically moving a plurality of steps that are endlessly connected, wherein the plurality of steps include at least A diagnostic step comprising one or more diagnostic sensors including a magnetic sensor, and generating a magnetic map that is a correlation between positions on the passenger conveyor and detection values of the magnetic sensor during one cycle of the diagnostic step. a magnetic map generating unit; a position estimating unit for estimating a position where the detection value of the diagnostic sensor on the passenger conveyor is detected based on the magnetic map and the detection value of the magnetic sensor during circulating movement; and an abnormality diagnosis unit that performs an abnormality diagnosis based on the detection value of the diagnostic sensor.
 本発明によれば、運転速度が変化する状況においても、診断用センサ検出値の検出位置を精度良く推定することができる。 According to the present invention, it is possible to accurately estimate the detection position of the diagnostic sensor detection value even in a situation where the driving speed changes.
図1は、エスカレータの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an escalator. 図2は、診断用ステップの概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of a diagnostic step. 図3は、診断システムの機能ブロック図である。FIG. 3 is a functional block diagram of the diagnostic system. 図4は、ノイズ低減処理の一例を説明する図である。FIG. 4 is a diagram illustrating an example of noise reduction processing. 図5は、診断用ステップの位置決めの一例を説明する図である。FIG. 5 is a diagram illustrating an example of positioning of diagnostic steps. 図6は、ノイズ低減処理後の時系列磁気検出データの一例を示す図である。FIG. 6 is a diagram showing an example of time-series magnetic detection data after noise reduction processing. 図7は、位置対応付けの第2の方法を説明する図である。FIG. 7 is a diagram for explaining the second method of position correspondence. 図8は、自己位置推定処理の一例を説明する図である。FIG. 8 is a diagram illustrating an example of self-position estimation processing. 図9は、異常検出動作の一例を示すフローチャートである。FIG. 9 is a flow chart showing an example of an abnormality detection operation. 図10は、異常発生判定および異常予兆判定の一例を説明する図である。FIG. 10 is a diagram illustrating an example of abnormality occurrence determination and abnormality sign determination. 図11は、診断システムの構成の変形例1を示すブロック図である。FIG. 11 is a block diagram showing Modification 1 of the configuration of the diagnostic system. 図12は、診断システムの構成の変形例2を示すブロック図である。FIG. 12 is a block diagram showing Modification 2 of the configuration of the diagnosis system. 図13は、診断システムの構成の変形例3を示すブロック図である。FIG. 13 is a block diagram showing Modification 3 of the configuration of the diagnosis system. 図14は、診断システムの構成の変形例4を示すブロック図である。FIG. 14 is a block diagram showing Modification 4 of the configuration of the diagnosis system. 図15は、診断システムの構成の変形例5を示すブロック図である。FIG. 15 is a block diagram showing Modified Example 5 of the configuration of the diagnostic system. 図16は、診断システムの構成の変形例6を示すブロック図である。FIG. 16 is a block diagram showing Modification 6 of the configuration of the diagnosis system. 図17は、診断システムの構成の変形例7を示すブロック図である。FIG. 17 is a block diagram showing Modification 7 of the configuration of the diagnosis system.
 以下、図面を参照して本発明の実施形態を説明する。実施例は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The examples are exemplifications for explaining the present invention, and are appropriately omitted and simplified for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural. The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings. When there are a plurality of components having the same or similar functions, they may be described with the same reference numerals and different suffixes. Further, when there is no need to distinguish between these constituent elements, the subscripts may be omitted in the description.
 図1は、本発明に係る診断システムの診断対象である乗客コンベアの一例を示す図である。本実施の形態では乗客コンベアはエスカレータであり、図1は、エスカレータ100の概略構成を示す模式図である。エスカレータ100は、ステップ1,1a、チェーン2、筐体フレーム3、ターミナルギヤ4、駆動モータ6、下部ターミナルギヤ9、ハンドレール8、案内レール11a,11b、制御装置12、上部乗降口床板13aおよび下部乗降口床板13b等を備えている。ターミナルギヤ4、駆動モータ6、下部ターミナルギヤ9および制御装置12等は、筐体フレーム3内に設けられている。  Fig. 1 is a diagram showing an example of a passenger conveyor that is a diagnosis target of the diagnosis system according to the present invention. In this embodiment, the passenger conveyor is an escalator, and FIG. 1 is a schematic diagram showing a schematic configuration of the escalator 100. As shown in FIG. The escalator 100 includes steps 1 and 1a, a chain 2, a housing frame 3, a terminal gear 4, a drive motor 6, a lower terminal gear 9, a handrail 8, guide rails 11a and 11b, a control device 12, an upper entrance/exit floor plate 13a and A lower entrance/exit floor plate 13b and the like are provided. The terminal gear 4 , the drive motor 6 , the lower terminal gear 9 , the control device 12 and the like are provided inside the housing frame 3 .
 エスカレータ100においては、複数のステップ1と1つの診断用ステップ1aとが、ループ状のチェーン2によって無端状に連結されている。エスカレータ100は、無端状に連結された複数のステップ1と診断用ステップ1aとを循環移動させることで、乗客を搬送する。なお、図1では、診断用ステップ1aにハッチングを施した。上部乗降口床板13aは、エスカレータ100の上部乗降口の床面を構成する鋼板である。下部乗降口床板13bは、エスカレータ100の下部乗降口の床面を構成する鋼板である。 In the escalator 100, a plurality of steps 1 and one diagnostic step 1a are endlessly connected by a loop-shaped chain 2. The escalator 100 transports passengers by cyclically moving a plurality of steps 1 and diagnostic steps 1a that are endlessly connected. In FIG. 1, the diagnostic step 1a is hatched. The upper entrance/exit floor plate 13 a is a steel plate forming the floor surface of the upper entrance/exit of the escalator 100 . The lower entrance/exit floor plate 13 b is a steel plate forming the floor surface of the lower entrance/exit of the escalator 100 .
 上部乗降口床板13aの下側の筐体フレーム3内には、チェーン2が噛み合っているターミナルギヤ4が設けられている。このターミナルギヤ4によりチェーン2を駆動すると、チェーン2に連結された各ステップ1,1aが、上部乗降口床板13aと下部乗降口床板13bとの間を循環移動する。また、チェーン2と同期して、ハンドレール8が周回する。ターミナルギヤ4は、駆動ギヤ5を有する駆動モータ6により駆動される。駆動モータ6は制御装置12によって制御される。駆動ギヤ5とターミナルギヤ4とには、駆動チェーンベルト7が装架されている。下部乗降口床板13bの下側の筐体フレーム3内には、下部ターミナルギヤ9が設けられている。チェーン2は、この下部ターミナルギヤ9に噛み合っている。 A terminal gear 4 with which the chain 2 is meshed is provided inside the housing frame 3 below the upper floor board 13a. When the chain 2 is driven by the terminal gear 4, the steps 1 and 1a connected to the chain 2 circulate between the upper boarding floor 13a and the lower boarding floor 13b. In addition, the handrail 8 rotates in synchronization with the chain 2. - 特許庁The terminal gear 4 is driven by a drive motor 6 having a drive gear 5 . Drive motor 6 is controlled by controller 12 . A drive chain belt 7 is mounted between the drive gear 5 and the terminal gear 4 . A lower terminal gear 9 is provided inside the housing frame 3 below the floor board 13b for the entrance/exit. Chain 2 meshes with this lower terminal gear 9 .
 各ステップ1,1aは、側部が略扇形状に形成されている。各ステップ1,1aは、前部案内ローラ10aと後部案内ローラ10bとが設けられている。前部案内ローラ10aおよび後部案内ローラ10bは、各ステップ1,1aの左右すなわち紙面表裏方向に1対ずつ設けられている。筐体フレーム3内には、前部案内ローラ10aが走行する案内レール11aと、後部案内ローラ10bが走行する案内レール11bとが設けられている。案内レール11a,11bは、筐体フレーム3内の上下に一対ずつ設けられている。 Each step 1, 1a has a substantially fan-shaped side portion. Each step 1, 1a is provided with a front guide roller 10a and a rear guide roller 10b. A pair of front guide rollers 10a and rear guide rollers 10b are provided on the left and right sides of each step 1, 1a, ie, in the front and back direction of the paper surface. Inside the housing frame 3, a guide rail 11a on which the front guide roller 10a runs and a guide rail 11b on which the rear guide roller 10b runs are provided. A pair of guide rails 11 a and 11 b are provided on the upper and lower sides of the housing frame 3 .
 ステップ1,1aが下部ターミナルギヤ9からターミナルギヤ4へと移動する際には、前部案内ローラ10aおよび後部案内ローラ10bは、上側の案内レール11a,11bを走行する。ターミナルギヤ4に到達したステップ1,1aは、ターミナルギヤ4に沿って移動する。ステップ1,1aが、ターミナルギヤ4に沿ってターミナルギヤ4の図示上側から図示下側に移動すると、ステップ1,1aの姿勢が反転する。反転したステップ1,1aの前部案内ローラ10aおよび後部案内ローラ10bは、下側の案内レール11a,11bに乗り移る。ステップ1,1aがターミナルギヤ4から下部ターミナルギヤ9へと移動する際には、前部案内ローラ10aおよび後部案内ローラ10bは、下側の案内レール11a,11bを走行する。下部ターミナルギヤ9に到達したステップ1,1aは、下部ターミナルギヤ9に沿って移動し、再び姿勢が反転する。反転したステップ1,1aの前部案内ローラ10aおよび後部案内ローラ10bは、上側の案内レール11a,11bに乗り移る。 When the steps 1 and 1a move from the lower terminal gear 9 to the terminal gear 4, the front guide roller 10a and the rear guide roller 10b run on the upper guide rails 11a and 11b. After reaching the terminal gear 4, the steps 1 and 1a move along the terminal gear 4. As shown in FIG. When the steps 1 and 1a move along the terminal gear 4 from the upper side of the terminal gear 4 in the drawing to the lower side in the drawing, the postures of the steps 1 and 1a are reversed. The front and rear guide rollers 10a and 10b of the reversed steps 1 and 1a are transferred to the lower guide rails 11a and 11b. When the steps 1, 1a move from the terminal gear 4 to the lower terminal gear 9, the front guide roller 10a and the rear guide roller 10b run on the lower guide rails 11a, 11b. After reaching the lower terminal gear 9, the steps 1 and 1a move along the lower terminal gear 9 and reverse their attitudes again. The front and rear guide rollers 10a and 10b of the reversed steps 1 and 1a are transferred to the upper guide rails 11a and 11b.
 図2は、診断用ステップ1aの概略構成を示す斜視図である。診断用ステップ1aは、乗客が乗る踏面部21と、踏面部21に連続する蹴上げ部22と、一対の側面部23を有する。各側面部23には、前部案内ローラ10aおよび後部案内ローラ10bが設けられている。診断用ステップ1a内には、センサ端末24が設けられている。センサ端末24内には、センサ部25と制御部26と無線通信部27とが設けられている。なお、ステップ1も構造は診断用ステップ1aと同様であるが、センサ端末24を備えていない点が診断用ステップ1aと異なる。 FIG. 2 is a perspective view showing a schematic configuration of the diagnostic step 1a. The diagnostic step 1 a has a tread portion 21 on which a passenger rides, a riser portion 22 continuous with the tread portion 21 , and a pair of side portions 23 . Each side portion 23 is provided with a front guide roller 10a and a rear guide roller 10b. A sensor terminal 24 is provided in the diagnostic step 1a. A sensor unit 25 , a control unit 26 and a wireless communication unit 27 are provided in the sensor terminal 24 . Although the step 1 has the same structure as the diagnostic step 1a, it differs from the diagnostic step 1a in that the sensor terminal 24 is not provided.
 図3は、本実施の形態における診断システムの機能構成を示す機能ブロック図である。診断システム1000は、エスカレータ100に設けられた診断用ステップ1aおよび制御装置12と、遠隔において診断処理を行う監視センタ50の位置推定装置51、異常診断装置52および通信装置53とを含む。データ収集装置30は、ネットワーク40を介して監視センタ50との間でデータの送受信を行う。 FIG. 3 is a functional block diagram showing the functional configuration of the diagnostic system according to this embodiment. The diagnostic system 1000 includes a diagnostic step 1a and a control device 12 provided in the escalator 100, and a position estimation device 51, an abnormality diagnosis device 52 and a communication device 53 of a monitoring center 50 for performing diagnostic processing remotely. The data collection device 30 transmits and receives data to and from the monitoring center 50 via the network 40 .
 上述したように、診断用ステップ1a内にはセンサ端末24が設けられている。センサ端末24は、センサ部25と制御部26と無線通信部27とが設けられている。センサ部25には、診断用センサとして磁気センサ251、音センサ252および加速度センサ253が設けられている。エスカレータ100の筐体フレーム3内に備えられた制御装置12には、データ記憶部301および通信部302を備えるデータ収集装置30が設けられている。磁気センサ251の磁気検出データ、音センサ252の音検出データおよび加速度センサ253の加速度検出データは、無線通信部27によりデータ収集装置30へ送信される。無線通信部27には低電力消費で低価格な短距離無線が用いられる。センサ端末24の電力源としては電池が用いられ、例えば、定期点検の際に、必要であれば電池交換をする。 As described above, the sensor terminal 24 is provided in the diagnostic step 1a. The sensor terminal 24 is provided with a sensor section 25 , a control section 26 and a wireless communication section 27 . The sensor unit 25 is provided with a magnetic sensor 251, a sound sensor 252, and an acceleration sensor 253 as diagnostic sensors. A control device 12 provided in the housing frame 3 of the escalator 100 is provided with a data collection device 30 having a data storage section 301 and a communication section 302 . The magnetic detection data of the magnetic sensor 251 , the sound detection data of the sound sensor 252 and the acceleration detection data of the acceleration sensor 253 are transmitted to the data collection device 30 by the wireless communication section 27 . The wireless communication unit 27 uses low power consumption and low cost short-range wireless. A battery is used as a power source for the sensor terminal 24, and the battery is replaced if necessary, for example, during regular inspections.
 データ収集の方法としては、例えば、診断用ステップ1aが一巡する間の時系列検出データを、制御部26が備えるメモリ(不図示)に一旦保持する。そして、メモリ内に複数周回分の時系列検出データが溜まった時点で、その複数周回分の時系列検出データを無線通信部27により送信する。以下では、複数周回分の時系列検出データを、時系列検出データ群と呼ぶことにする。無線通信部27によるデータの送信は、所定の時間間隔で繰り返し行われる。データ収集装置30は、通信部302により受信した時系列検出データ群をデータ記憶部301に記憶する。 As a data collection method, for example, the time-series detection data during one cycle of the diagnostic step 1a is temporarily stored in a memory (not shown) provided in the control unit 26. When time-series detection data for multiple rounds is accumulated in the memory, the time-series detection data for multiple rounds is transmitted by the wireless communication unit 27 . Hereinafter, time-series detection data for multiple rounds will be referred to as a time-series detection data group. Data transmission by the wireless communication unit 27 is repeatedly performed at predetermined time intervals. The data collection device 30 stores the time series detection data group received by the communication unit 302 in the data storage unit 301 .
 データ記憶部301に蓄積された複数の時系列検出データ群は、所定時間毎に監視センタ50へ送信される。この送信は、監視センタ50からの送信指令により実行される。例えば、24時間毎に、監視センタ50から時系列検出データ群の送信指令が出力される。データ収集装置30は、監視センタ50から送信指令を受信すると、データ記憶部301に蓄積された24時間分の時系列検出データ群を監視センタ50へ送信する。通信部302から送信された複数の時系列検出データ群は、ネットワーク40を介して監視センタ50の通信装置53により受信される。 A plurality of time-series detection data groups accumulated in the data storage unit 301 are transmitted to the monitoring center 50 at predetermined time intervals. This transmission is executed by a transmission command from the monitoring center 50 . For example, every 24 hours, the monitoring center 50 outputs a command to transmit a group of time-series detection data. When the data collection device 30 receives a transmission command from the monitoring center 50 , the data collection device 30 transmits to the monitoring center 50 the time series detection data group for 24 hours accumulated in the data storage unit 301 . A plurality of time series detection data groups transmitted from the communication unit 302 are received by the communication device 53 of the monitoring center 50 via the network 40 .
 監視センタ50は、位置推定装置51、異常診断装置52および通信装置53を備えている。位置推定装置51は、磁気マップ生成部511、自己位置推定部512、ノイズ低減部513および記憶部514を備えている。ノイズ低減部513は、磁気マップ生成時に用いる時系列検出データ(磁気検出データ、音検出データおよび加速度検出データ)に含まれているノイズの低減処理を行う。ノイズ低減処理の詳細については後述する。 The monitoring center 50 includes a position estimation device 51 , an abnormality diagnosis device 52 and a communication device 53 . The position estimation device 51 includes a magnetic map generation section 511 , a self-position estimation section 512 , a noise reduction section 513 and a storage section 514 . The noise reduction unit 513 performs noise reduction processing included in time-series detection data (magnetism detection data, sound detection data, and acceleration detection data) used when generating a magnetic map. Details of the noise reduction processing will be described later.
 磁気マップ生成部511では、ノイズ低減処理後の時系列磁気検出データに基づいて磁気マップを生成する。具体的には、1周回分の時系列磁気検出データに対して、各時刻の検出値とエスカレータ100における位置との対応付けを行うことで、磁気マップを生成する。磁気マップ生成処理については後述する。磁気マップ生成処理は、エスカレータ100に診断用ステップ1aを設置した際の初期動作として行われる。生成された磁気マップは、記憶部514に記憶される。 The magnetic map generation unit 511 generates a magnetic map based on the time-series magnetic detection data after noise reduction processing. Specifically, the magnetic map is generated by associating the detection value at each time with the position on the escalator 100 with respect to the time-series magnetic detection data for one round. The magnetic map generation processing will be described later. The magnetic map generation process is performed as an initial operation when the diagnostic step 1a is installed on the escalator 100. FIG. The generated magnetic map is stored in storage unit 514 .
 自己位置推定部512は、後述するように、時系列磁気検出データと磁気マップとに基づいて、異常診断に用いられる時系列音検出データおよび時系列加速度検出データの各検出値と、エスカレータ100における各位置との対応付けを行う。自己位置推定処理を行うことにより、磁気検出データの内の特定のデータと同時に検出された音検出データおよび加速度検出データが、エスカレータ100のどの位置において検出されたものであるかが分かる。自己位置推定部512における自己位置推定処理の詳細は後述する。 As will be described later, self-position estimating section 512 calculates each detected value of time-series sound detection data and time-series acceleration detection data used for abnormality diagnosis, based on the time-series magnetic detection data and the magnetic map. Associate with each position. By performing the self-position estimation process, it is known at which position of the escalator 100 the sound detection data and the acceleration detection data detected at the same time as the specific data of the magnetic detection data are detected. Details of self-position estimation processing in self-position estimation section 512 will be described later.
 異常診断装置52は、磁気マップと診断用センサの検出データとに基づいて、エスカレータ100の異常診断を行う。異常診断装置52は、異常推定部521,ノイズ低減部522,記憶部523および報知部524を備えている。異常推定部521は、自己位置推定部512により自己位置推定処理された後の音検出データに基づいて、後述する異常推定処理を行う。ノイズ低減部522は、異常診断に用いる時系列検出データ群に対してノイズ低減処理を行う。報知部524は、異常推定部521で異常と判定されると報知動作を行う。報知動作による異常報知を受けて、作業員によるエスカレータ100の点検作業が実施される。記憶部523には、異常診断に使用する判定基準データや、データ収集装置30から取得された時系列検出データ群などが格納される。 The abnormality diagnosis device 52 performs abnormality diagnosis of the escalator 100 based on the magnetic map and detection data of the diagnostic sensor. The abnormality diagnosis device 52 includes an abnormality estimation section 521 , a noise reduction section 522 , a storage section 523 and a notification section 524 . The abnormality estimating section 521 performs an abnormality estimating process, which will be described later, based on the sound detection data after the self-position estimating process by the self-position estimating section 512 . The noise reduction unit 522 performs noise reduction processing on the time-series detection data group used for abnormality diagnosis. The notification unit 524 performs a notification operation when the abnormality estimation unit 521 determines that there is an abnormality. In response to the abnormality notification by the notification operation, the inspection work of the escalator 100 is carried out by the operator. The storage unit 523 stores determination reference data used for abnormality diagnosis, time-series detection data groups acquired from the data collection device 30, and the like.
(ノイズ低減処理)
 図4は、ノイズ低減部513,522におけるノイズ低減処理の一例を説明する図である。ここでは、時系列検出データ群に含まれる時系列磁気検出データを例に説明する。図4は、診断用ステップ1aを一定速度で周回させた場合の時系列磁気検出データを示したものである。図4において、縦軸は検出値を表し、横軸は時間を表す。時系列磁気検出データD1は1周目のデータであり、時系列磁気検出データD2は2周目のデータであり、時系列磁気検出データD3は3周目のデータである。時系列磁気検出データD2は、時系列磁気検出データD1に対して縦軸に沿ってΔだけずらして示した。同様に、時系列磁気検出データD3は、時系列磁気検出データD2に対して縦軸に沿ってΔだけずらして示した。Tは循環移動の1周に要する時間、すなわち周期である。
(noise reduction processing)
FIG. 4 is a diagram for explaining an example of noise reduction processing in the noise reduction units 513 and 522. As shown in FIG. Here, the time-series magnetic detection data included in the time-series detection data group will be described as an example. FIG. 4 shows time-series magnetic detection data when the diagnostic step 1a is circulated at a constant speed. In FIG. 4, the vertical axis represents detected values, and the horizontal axis represents time. The time-series magnetic detection data D1 is the data of the first round, the time-series magnetic detection data D2 is the data of the second round, and the time-series magnetic detection data D3 is the data of the third round. The time-series magnetic detection data D2 is shown shifted by Δ along the vertical axis with respect to the time-series magnetic detection data D1. Similarly, the time-series magnetic detection data D3 is shown shifted by Δ from the time-series magnetic detection data D2 along the vertical axis. T is the time required for one round of cyclic movement, that is, the period.
 図4に示す例では、時系列磁気検出データD1にはノイズn1が生じており、時系列磁気検出データD2にはノイズn2が生じており、時系列磁気検出データD3にはノイズn3が生じている。ノイズ低減部513,522では、例えば、複数周回の時系列磁気検出データD1~D3の同一タイミングの検出値の平均を取ることで、各ノイズn1~n3が発生している部分の検出値を低減させる。10周回分の時系列磁気検出データを用いて平均処理を行う場合、ノイズが1周回分のみにしか発生していない場合には、平均処理によりノイズ部分の検出値は1/10に低減される。この平均処理後の時系列磁気検出データを、ノイズ低減処理後の時系列磁気検出データとして用いる。なお、時系列音検出データおよび時系列加速度検出データに関するノイズ低減処理も、上述した時系列磁気検出データの場合と同様に行われる。 In the example shown in FIG. 4, noise n1 occurs in time-series magnetic detection data D1, noise n2 occurs in time-series magnetic detection data D2, and noise n3 occurs in time-series magnetic detection data D3. there is In the noise reduction units 513 and 522, for example, by taking the average of the detection values at the same timing of the time-series magnetic detection data D1 to D3 of multiple rounds, the detection values of the portions where the noises n1 to n3 are generated are reduced. Let When averaging is performed using time-series magnetic detection data for 10 rounds, if noise occurs only in one round, the detected value of the noise portion is reduced to 1/10 by averaging. . The time-series magnetic detection data after the averaging process is used as the time-series magnetic detection data after the noise reduction process. The noise reduction processing for time-series sound detection data and time-series acceleration detection data is also performed in the same manner as for the time-series magnetic detection data described above.
(磁気マップ生成処理)
 磁気マップ生成部511は、ノイズ低減部513でノイズ低減処理した1周回分の時系列磁気検出データに対して、各時刻の磁気検出値とエスカレータ100における位置との対応付けを行うことで、磁気マップM(磁気検出値、位置)を生成する。対応付けの処理方法としては種々の方法があるが、以下では、3種類の処理方法について説明する。
(Magnetic map generation processing)
The magnetic map generation unit 511 associates the magnetic detection value at each time with the position on the escalator 100 with respect to the time-series magnetic detection data for one round on which the noise reduction processing has been performed by the noise reduction unit 513 . A map M (magnetism detection values, positions) is generated. Although there are various methods for processing the association, three types of processing methods will be described below.
 第1の方法について説明する。まず、診断用ステップ1aの移動開始位置を、所定の位置に位置決めする。そして、その位置から診断用ステップ1aを一定速度で複数回以上周回させて、図4に示すような複数の時系列磁気検出データを取得する。ここでは、上述したようなノイズ低減処理を考慮して、周回数が複数回以上の場合を例に説明する。しかし、1周回分の検出データでノイズ低減が可能なノイズ低減処理を採用するならば、周回数は1であっても構わない。 The first method will be explained. First, the movement start position of the diagnostic step 1a is positioned at a predetermined position. Then, from that position, the diagnostic step 1a is rotated at a constant speed a plurality of times or more to obtain a plurality of time-series magnetic detection data as shown in FIG. Here, in consideration of the noise reduction processing as described above, a case where the number of laps is more than one will be described as an example. However, if a noise reduction process capable of reducing noise with one round of detection data is employed, the number of rounds may be one.
 診断用ステップ1aの移動開始位置の所定の位置への位置決めは、例えば、次のように行う。作業員が診断用ステップ1aを目視で観察しながら、制御装置12を手動操作して診断用ステップ1aの位置を調整する。そのような調整を行うことで、図5に示すように、診断用ステップ1aを下部乗降口床板13bから繰り出された位置(以下では、この位置を基準位置Aと呼ぶことにする)に位置決めする。 Positioning of the movement start position of the diagnostic step 1a to a predetermined position is performed, for example, as follows. The operator manually operates the control device 12 to adjust the position of the diagnostic step 1a while visually observing the diagnostic step 1a. By performing such adjustment, as shown in FIG. 5, the diagnostic step 1a is positioned at a position extended from the lower doorway floor plate 13b (hereinafter, this position will be referred to as a reference position A). .
 取得された複数の時系列磁気検出データは、監視センタ50へ送信され、位置推定装置51のノイズ低減部513で、上述したノイズ低減処理が行われる。その結果、図6に示すようなノイズ低減処理後の時系列磁気検出データDが得られる。横軸は、診断用ステップ1aが基準位置Aを通過してからの経過時間である。原点O(t=0)が、図5に示した基準位置Aに対応する。時系列磁気検出データDは、診断用ステップ1aが一巡する間の診断用ステップ1aの周辺の磁気、すなわち、エスカレータ100の部品の磁化の様子を表している。循環移動する診断用ステップ1aは、周期Tごとに基準位置Aとなり、検出値Daが磁気センサ251により検出される。図6のt=tb,tc,te,tfの各時刻において、診断用ステップ1aの位置はそれぞれ図5のB,C,E,Fとなる。そして、t=taにおいて基準位置Aに戻ることになる。 A plurality of acquired time-series magnetic detection data are transmitted to the monitoring center 50, and the noise reduction processing described above is performed by the noise reduction unit 513 of the position estimation device 51. As a result, time-series magnetic detection data D after noise reduction processing as shown in FIG. 6 is obtained. The horizontal axis is the elapsed time after the diagnostic step 1a passes the reference position A. As shown in FIG. The origin O (t=0) corresponds to the reference position A shown in FIG. The time-series magnetic detection data D represents the magnetism around the diagnostic step 1a during one round of the diagnostic step 1a, that is, the state of the magnetization of the parts of the escalator 100. FIG. The cyclically moving diagnostic step 1a becomes the reference position A every cycle T, and the magnetic sensor 251 detects the detected value Da. At times t=tb, tc, te, and tf in FIG. 6, the diagnostic step 1a is positioned at B, C, E, and F in FIG. 5, respectively. Then, it returns to the reference position A at t=ta.
 磁気マップ生成部511は、診断用ステップ1aの移動速度と基準位置Aからの経過時間とに基づいて、時系列磁気検出データDとエスカレータ100の各位置とを対応付けた磁気マップを生成する。すなわち、診断用ステップ1aの1周回の磁気マップMは、データ群(Da、A),・・・,(Db、B),・・・,(Dc、C),・・・,(De、E),・・・,(Df、F),・・・,(Da、A)のように(磁気検出値、位置)のデータの集まりで表される。すなわち、磁気マップMはM(磁気検出値、位置)のように表現することができる。 The magnetic map generation unit 511 generates a magnetic map in which the time-series magnetic detection data D and each position of the escalator 100 are associated with each other based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position A. , (Db, B), . . , (Dc, C), . . . , (De, E), . . . , (Df, F), . That is, the magnetic map M can be expressed as M (magnetism detection value, position).
 第2の方法について説明する。第2の方法では、センサ部25に設けられた加速度センサ253の検出値を利用して磁気マップM(磁気検出値、位置)を生成する。図7は、時系列磁気検出データD1と時系列加速度検出データD10とを示す図である。符号A~Fは、図5に示すエスカレータ100の位置A~Fに対応している。図5に示す例では、診断用ステップ1aの姿勢を見ると、位置Eから位置Fまでの第2の姿勢は、位置Aから位置Bまでの第1の姿勢と上下逆転している。診断用ステップ1aが位置Bから位置Eまで移動する間に、診断用ステップ1aの姿勢は第1の姿勢から第2の姿勢へと徐々に変化する。一方、診断用ステップ1aが位置Fから位置Aまで移動する間に、診断用ステップ1aの姿勢は第2の姿勢から第1の姿勢へと徐々に変化する。 The second method will be explained. In the second method, the detected values of the acceleration sensor 253 provided in the sensor section 25 are used to generate the magnetic map M (magnetism detected values, positions). FIG. 7 is a diagram showing time-series magnetic detection data D1 and time-series acceleration detection data D10. References A to F correspond to positions A to F of the escalator 100 shown in FIG. In the example shown in FIG. 5, looking at the posture of diagnostic step 1a, the second posture from position E to position F is upside down from the first posture from position A to position B. FIG. While the diagnostic step 1a moves from the position B to the position E, the posture of the diagnostic step 1a gradually changes from the first posture to the second posture. On the other hand, while the diagnostic step 1a moves from the position F to the position A, the posture of the diagnostic step 1a gradually changes from the second posture to the first posture.
 診断用ステップ1a内に設けられた加速度センサ253の検出値は、診断用ステップ1aの移動によって変化する。加速度センサ253で検出される加速度には、重力に起因するものと、加速度センサ253の振動に起因するものとが含まれる。時系列加速度検出データD10を示すラインの概略の形状は、重力に起因する加速度によって決まる。加速度センサ253の振動に起因する加速度は、ライン上の微小な振動として現れる。 The detection value of the acceleration sensor 253 provided in the diagnostic step 1a changes according to the movement of the diagnostic step 1a. The acceleration detected by the acceleration sensor 253 includes that caused by gravity and that caused by vibration of the acceleration sensor 253 . The general shape of the line indicating the time-series acceleration detection data D10 is determined by the acceleration caused by gravity. Acceleration caused by the vibration of the acceleration sensor 253 appears as minute vibrations on the line.
 図7に示す時系列加速度検出データD10においては、第1の姿勢では検出値は+dとなり、第2の姿勢では検出値は-dとなる。そして、診断用ステップ1aが位置Bから位置Eまで移動する間に検出値は+dから-dへと徐々に変化し、位置P1において検出値がプラスからマイナスへと反転する。また、診断用ステップ1aが位置Fから位置Aまで移動する間に検出値は-dから+dへと徐々に変化し、位置P2において検出値がマイナスからプラスへと反転する。この検出値が反転するタイミングを、磁気マップ生成における基準位置とすることができる。例えば、反転位置P1を基準位置に設定した場合、反転位置P1から次の反転位置P1までが、周回の1周期である。 In the time-series acceleration detection data D10 shown in FIG. 7, the detected value is +d in the first posture and -d in the second posture. While the diagnostic step 1a moves from position B to position E, the detected value gradually changes from +d to -d, and at position P1, the detected value reverses from positive to negative. Further, while the diagnostic step 1a moves from position F to position A, the detected value gradually changes from -d to +d, and at position P2, the detected value reverses from minus to plus. The timing at which this detected value is inverted can be used as a reference position in magnetic map generation. For example, when the reversal position P1 is set as the reference position, one cycle is from the reversal position P1 to the next reversal position P1.
 磁気マップ生成部511は、診断用ステップ1aの移動速度と基準位置P1からの経過時間とに基づいて、時系列磁気検出データDとエスカレータ100の各位置とを対応付けた磁気マップを生成する。すなわち、診断用ステップ1aの1周回の磁気マップM(磁気検出値、位置)は、データ群(Dp、P1),・・・,(De、E),・・・,(Df、F),・・・,(Da、A),・・・,(Db、B),・・・,(Dp、P1)のように(磁気検出値、位置)のデータの集まりで表される。このように、第2の方法では、加速度センサ253の検出値に現れる反転位置P1を、磁気マップ生成時の基準位置に利用する。その結果、磁気マップ生成動作の自動化および高精度化を図ることができる。 The magnetic map generator 511 generates a magnetic map that associates the time-series magnetic detection data D with each position of the escalator 100 based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position P1. , (De, E), . . . , (Df, F), . . , (Da, A), . . . , (Db, B), . Thus, in the second method, the reversal position P1 appearing in the detection value of the acceleration sensor 253 is used as the reference position when generating the magnetic map. As a result, it is possible to achieve automation and high accuracy of the magnetic map generation operation.
 なお、加速度センサ253の検出値の代わりに、音センサ252の検出値を利用してエスカレータ100における基準位置を設定しても良い。診断用ステップ1aが一巡する間で最も大きな音を検出する位置(部位)が予め分かっていれば、最大検出値が検出されるタイミングを基準位置とすることができる。例えば、診断用ステップ1aが図5の位置Cの時に、最大検出値として駆動モータ6のモータ音を検出したとする。その場合には、図6の検出値Dcが検出される位置Cを基準位置に設定する。そして、診断用ステップ1aの移動速度と基準位置Cからの経過時間とに基づいて、磁気マップM(磁気検出値、位置)を生成する。診断用ステップ1aの1周回の磁気マップM(磁気検出値、位置)は、データ群(Dc、C),・・・,(De、E),・・・,(Df、F),・・・,(Da、A),・・・,(Db、B),・・・,(Dc、C)のように(磁気検出値、位置)のデータの集まりで表される。 Note that instead of the detection value of the acceleration sensor 253, the detection value of the sound sensor 252 may be used to set the reference position of the escalator 100. If the position (site) where the loudest sound is detected during one round of the diagnostic step 1a is known in advance, the timing at which the maximum detection value is detected can be set as the reference position. For example, suppose that the motor sound of the drive motor 6 is detected as the maximum detection value when the diagnostic step 1a is at position C in FIG. In that case, the position C where the detection value Dc in FIG. 6 is detected is set as the reference position. Then, based on the moving speed of the diagnostic step 1a and the elapsed time from the reference position C, a magnetic map M (magnetism detection values, positions) is generated. The magnetic map M (magnetism detection value, position) of one round of the diagnostic step 1a is a data group (Dc, C), ..., (De, E), ..., (Df, F), ... . . , (Da, A), . . . , (Db, B), . . . , (Dc, C).
 第3の方法について説明する。第3の方法では、エスカレータ100に設けられている部品の内で、磁化されている部品の磁化を検出したときの診断用ステップ1aの位置を基準位置とする。例えば、診断用ステップ1aが図5の位置Cの時に、最大検出値として駆動モータ6の磁気を検出したとする。その場合には、図6の検出値Dcが検出される位置Cを基準位置に設定し、診断用ステップ1aの移動速度と基準位置Cからの経過時間とに基づいて、磁気マップM(磁気検出値、位置)を生成する。診断用ステップ1aの1周回の磁気マップM(磁気検出値、位置)は、データ群(Dc、C),・・・,(De、E),・・・,(Df、F),・・・,(Da、A),・・・,(Db、B),・・・,(Dc、C)のように(磁気検出値、位置)のデータの集まりで表される。このように、磁化されている部品の磁化を検出したときの診断用ステップ1aの位置を基準位置とすることで、第2の方法のように基準位置を特定するためのセンサ(加速度センサ253)を追加で設ける必要がない。そのため、コスト低減を図ることができる。 The third method will be explained. In the third method, the position of the diagnostic step 1a when the magnetization of the magnetized parts among the parts provided in the escalator 100 is detected is used as the reference position. For example, assume that the magnetism of the drive motor 6 is detected as the maximum detection value when the diagnostic step 1a is at position C in FIG. In that case, the position C where the detected value Dc in FIG. value, position). The magnetic map M (magnetism detection value, position) of one round of the diagnostic step 1a is a data group (Dc, C), ..., (De, E), ..., (Df, F), ... . . , (Da, A), . . . , (Db, B), . . . , (Dc, C). Thus, by using the position of the diagnostic step 1a when the magnetization of the magnetized part is detected as the reference position, a sensor (acceleration sensor 253) for identifying the reference position as in the second method is used. need not be additionally provided. Therefore, cost reduction can be achieved.
(自己位置推定処理)
 図8は、自己位置推定処理の一例を説明する図である。図8において、符号Mで示すラインは磁気マップM(磁気検出値、位置)を表しており、図6に示した時系列磁気検出データDと同じ形状のラインである。符号Sで示すラインは音センサ252の時系列音検出データである。図8では、縦軸は磁気センサ251および音センサ252の検出値を表し、横軸はエスカレータ100における位置を表す。
(Self-position estimation processing)
FIG. 8 is a diagram illustrating an example of self-position estimation processing. In FIG. 8, the line indicated by symbol M represents the magnetic map M (magnetism detection value, position), and has the same shape as the time-series magnetic detection data D shown in FIG. A line indicated by symbol S is time-series sound detection data of the sound sensor 252 . In FIG. 8 , the vertical axis represents detection values of magnetic sensor 251 and sound sensor 252 , and the horizontal axis represents positions on escalator 100 .
 ここで、磁気センサ251の検出値としてDbが検出された場合を考える。この検出値を磁気マップM(磁気検出値、位置)にフィッティングすると、位置Bが得られる。図8の磁気マップM(磁気検出値、位置)では値Dbの個所は位置B以外にもあるので、フィッティングを行う際には検出値Dbの前後の検出値も参考にして検出値Dbの位置が位置Bであると決定する。すなわち、磁気センサ251の検出値Dbが検出されたときの診断用ステップ1aの位置は、位置Bであることが分かる。 Here, consider the case where Db is detected as the detection value of the magnetic sensor 251 . A position B is obtained by fitting this detected value to the magnetic map M (magnetic detected value, position). In the magnetic map M (magnetism detection values, positions) in FIG. 8, the value Db is located at locations other than the position B, so when performing fitting, the detection values before and after the detection value Db are also referred to to determine the position of the detection value Db. is position B. That is, it can be seen that the position of the diagnostic step 1a is the position B when the detection value Db of the magnetic sensor 251 is detected.
 そして、検出値Dbと同タイミングで検出された音センサ252の検出値Sbは、診断用ステップ1aが位置Bの時に検出された音検出データであると推定される。すなわち、自己位置推定とは、検出値Sbが検出されたときの、診断用ステップ1aのエスカレータ100における位置を推定することである。このような自己位置推定処理を行うことにより、時系列音検出データSの各検出値が、エスカレータ100のどこで検出されたものであるかが分かる。 The detection value Sb of the sound sensor 252 detected at the same timing as the detection value Db is estimated to be sound detection data detected when the diagnostic step 1a is at the position B. That is, the self-position estimation is to estimate the position of the diagnostic step 1a on the escalator 100 when the detection value Sb is detected. By performing such self-position estimation processing, it is possible to know where in the escalator 100 each detection value of the time-series sound detection data S was detected.
 図9は、異常診断装置52における異常検出動作の一例を示すフローチャートである。監視センタ50は、データ送信指令をデータ収集装置30へ送信することで、複数の時系列検出データ群がデータ収集装置30から取得される。そして、取得された複数の時系列検出データ群に対して順に異常診断処理を行う。図9に示すフローチャートは、一回のデータ送信指令による処理を示したものであり、所定時間間隔で繰り返し実行される。 FIG. 9 is a flowchart showing an example of an abnormality detection operation in the abnormality diagnosis device 52. FIG. The monitoring center 50 acquires a plurality of time-series detection data groups from the data collection device 30 by transmitting a data transmission command to the data collection device 30 . Then, abnormality diagnosis processing is sequentially performed on the plurality of acquired time-series detection data groups. The flowchart shown in FIG. 9 shows the processing by one data transmission command, which is repeatedly executed at predetermined time intervals.
 ステップS90では、データ送信指令をデータ収集装置30へ送信して、データ記憶部301に蓄積された複数の時系列検出データ群を収集する。時系列検出データ群は、センサ部25に設けられている各センサ対応する複数種類の時系列検出データ群が含まれている。図3に示す例では、センサ部25には磁気センサ251、音センサ252および加速度センサ253が設けられているので、時系列検出データ群には、時系列磁気検出データ群、時系列音検出データ群および時系列加速度検出データ群が含まれている。ステップS91では、複数の時系列検出データ群の内の最初の時系列検出データ群に関して、ノイズ低減部522によるノイズ低減処理を行わせる。 In step S90, a data transmission command is transmitted to the data collection device 30, and multiple time-series detection data groups accumulated in the data storage unit 301 are collected. The time-series detection data group includes multiple types of time-series detection data groups corresponding to the sensors provided in the sensor unit 25 . In the example shown in FIG. 3, since the sensor unit 25 is provided with a magnetic sensor 251, a sound sensor 252, and an acceleration sensor 253, the time-series detection data group includes a time-series magnetic detection data group and a time-series sound detection data group. Groups and time-series acceleration detection data groups are included. In step S91, noise reduction processing is performed by the noise reduction unit 522 on the first time-series detection data group among the plurality of time-series detection data groups.
 ステップS92では、ノイズ低減処理後の時系列音検出データおよび時系列加速度検出データに基づいて、異常が発生しているか否かの判定を異常推定部521により行わせる。ステップS92において、異常発生あり(YES)と判定された場合にはステップS94へ進み、異常発生なし(NO)と判定された場合にはステップS93へ進む。ステップS93では、ノイズ低減処理後の時系列音検出データおよび時系列加速度検出データに基づいて、異常予兆があるか否かの判定を異常推定部521により行わせる。ステップS93において、異常予兆あり(YES)と判定された場合にはステップS94へ進み、異常予兆なし(NO)と判定された場合にはステップS97へ進む。 In step S92, the abnormality estimation unit 521 determines whether or not an abnormality has occurred based on the time-series sound detection data and the time-series acceleration detection data after noise reduction processing. In step S92, when it is determined that there is an abnormality (YES), the process proceeds to step S94, and when it is determined that there is no abnormality (NO), the process proceeds to step S93. In step S93, the abnormality estimation unit 521 determines whether or not there is an abnormality sign based on the time-series sound detection data and the time-series acceleration detection data after noise reduction processing. In step S93, if it is determined that there is a sign of abnormality (YES), the process proceeds to step S94, and if it is determined that there is no sign of abnormality (NO), the process proceeds to step S97.
 図10は、ステップS92の異常発生判定およびステップS93の異常予兆判定の一例を説明する図である。異常発生判定および異常予兆判定では、ノイズ低減処理後の時系列音検出データおよび時系列加速度検出データを判定基準データと比較して判定する。なお、判定基準データは記憶部523に記憶されている。診断用ステップ1aの設置後に磁気マップM(磁気検出値、位置)を生成する初期動作時には、時系列検出データ群がデータ収集装置30から取得される。記憶部523には、その時系列検出データ群をノイズ低減処理した後の時系列検出データが判定基準データとして記憶される。時系列検出データは、時系列磁気検出データ、時系列音検出データおよび時系列加速度検出データを含む。 FIG. 10 is a diagram illustrating an example of abnormality occurrence determination in step S92 and abnormality sign determination in step S93. In the abnormality occurrence determination and the abnormality sign determination, the time-series sound detection data and the time-series acceleration detection data after the noise reduction processing are compared with the determination reference data. Note that the determination criterion data is stored in the storage unit 523 . A group of time-series detection data is obtained from the data collection device 30 during the initial operation for generating the magnetic map M (magnetism detection values, positions) after the diagnostic step 1a is installed. The storage unit 523 stores the time-series detection data obtained by subjecting the time-series detection data group to noise reduction processing as determination reference data. The time-series detection data includes time-series magnetic detection data, time-series sound detection data, and time-series acceleration detection data.
 図10は、ノイズ低減処理によって得られた時系列音検出データS11,S12と、判定基準データとしての時系列音検出データS0とを示す図である。横軸は時間tである。ラインS1は、判定基準データS0の各値をα1倍して得られる第1判定ラインである。また、ラインS2は、判定基準データS0の各値をα2(>α1)倍して得られる第2判定ラインである。異常発生判定には、第2判定ラインS2が用いられる。異常予兆判定には、第1判定ラインS1が用いられる。 FIG. 10 is a diagram showing time-series sound detection data S11 and S12 obtained by noise reduction processing, and time-series sound detection data S0 as determination reference data. The horizontal axis is time t. A line S1 is a first judgment line obtained by multiplying each value of the judgment reference data S0 by α1. A line S2 is a second determination line obtained by multiplying each value of the determination reference data S0 by α2 (>α1). The second determination line S2 is used for abnormality occurrence determination. The first determination line S1 is used for abnormality portent determination.
 図10に示す例では、時系列音検出データS11のラインは、時間tc付近において第1判定ラインS1を越えている。この場合、異常推定部521は、エスカレータ100のいずれかの部品に異常の予兆がみられると、すなわち、異常予兆ありと判定する。時系列音検出データS12は、時系列音検出データS11を取得してからさらに時間が経過したときのラインである。時系列音検出データS12のラインは、t=tc付近において第2判定ラインS2を越えている。この場合、異常推定部521は、エスカレータ100のいずれかの部品に異常が発生したと、すなわち、異常発生ありと判定する。 In the example shown in FIG. 10, the line of time-series sound detection data S11 crosses the first determination line S1 near time tc. In this case, the abnormality estimating unit 521 determines that there is a sign of abnormality, that is, there is a sign of abnormality, when any part of the escalator 100 has a sign of abnormality. The time-series sound detection data S12 is a line when more time has passed since the acquisition of the time-series sound detection data S11. The line of time-series sound detection data S12 crosses the second determination line S2 near t=tc. In this case, the abnormality estimation unit 521 determines that an abnormality has occurred in any part of the escalator 100, that is, that an abnormality has occurred.
 なお、図10では、時系列音検出データの時間的変化から異常発生または異常予兆の判定について説明したが、時系列加速度検出データを用いた異常発生または異常予兆の判定も同様に行われる。時系列音検出データおよび時系列加速度検出データの少なくとも一方において異常発生ありと判定されると、ステップS92において異常発生ありと判定される。同様に、時系列音検出データおよび時系列加速度検出データの少なくとも一方において異常予兆ありと判定されると、ステップS93において異常予兆ありと判定される。 In FIG. 10, the determination of the occurrence of an abnormality or the sign of abnormality based on the temporal change of the time-series sound detection data has been described, but the determination of the occurrence of an abnormality or the sign of abnormality using the time-series acceleration detection data is also performed in the same manner. If it is determined that an abnormality has occurred in at least one of the time-series sound detection data and the time-series acceleration detection data, it is determined that an abnormality has occurred in step S92. Similarly, if at least one of the time-series sound detection data and the time-series acceleration detection data is determined to have a sign of abnormality, it is determined at step S93 that there is a sign of abnormality.
 図9のフローチャートに戻って、ステップS94では、異常発生または異常予兆が起こっている位置が、エスカレータ100のどの位置であるかを推定する処理を行う。上述したステップS91のノイズ低減処理では、ノイズ低減処理された時系列磁気検出データ、時系列音検出データおよび時系列加速度検出データが得られる。図10において、時系列音検出データS11,S12のt=tcにおける検出値は、時系列音検出データS11の場合にはSc1であり、時系列音検出データS12の場合にはSc2である。また、t=tcにおける時系列磁気検出データの検出値は、図6に示したようにDcである。 Returning to the flowchart of FIG. 9, in step S94, a process of estimating which position of the escalator 100 is where an abnormality or a sign of abnormality has occurred is performed. In the noise reduction processing in step S91 described above, time-series magnetic detection data, time-series sound detection data, and time-series acceleration detection data subjected to noise reduction processing are obtained. In FIG. 10, the detected value at t=tc of the time-series sound detection data S11 and S12 is Sc1 for the time-series sound detection data S11 and Sc2 for the time-series sound detection data S12. Also, the detection value of the time-series magnetic detection data at t=tc is Dc as shown in FIG.
 異常診断装置52は、時系列磁気検出データの検出値がDcとなる位置を、自己位置推定部512に自己位置推定処理を行わせることで取得する。自己位置推定処理では、検出値Dcを磁気マップM(磁気検出値、位置)にフィッティングすることで位置Cが得られる(図8参照)。その結果、検出値Dcと同じタイミングで検出された検出値Sc1は、診断用ステップ1aが位置Cに位置するときに得られた検出値であることが分かる。すなわち、位置Cの付近に配置されている部品に、異常の予兆が発生していることが分かる。検出値Sc2についても同様の処理を行うことで、位置Cの付近に配置されている部品に異常が発生していることが分かる。 The abnormality diagnosis device 52 acquires the position where the detection value of the time-series magnetic detection data is Dc by causing the self-position estimation unit 512 to perform self-position estimation processing. In the self-position estimation process, the position C is obtained by fitting the detection value Dc to the magnetic map M (magnetism detection value, position) (see FIG. 8). As a result, it can be seen that the detection value Sc1 detected at the same timing as the detection value Dc is the detection value obtained when the diagnostic step 1a is positioned at the position C. FIG. In other words, it can be seen that a sign of anomaly has occurred in the part arranged near the position C. By performing the same processing for the detection value Sc2, it can be found that the part arranged near the position C has an abnormality.
 ステップS94では、異常予兆または異常が発生している位置の推定を行った。さらに、ステップS95では、異常予兆または異常が発生している部品の推定を行う。図5に示すように、エスカレータ100の位置Cの付近には、チェーン2、ターミナルギヤ4、駆動ギヤ5、駆動モータ6等が設けられている。異常推定部521では、異常な位置の推定に加えて、異常な部品の推定も行う。異常発生の推定だけでなく、異常部品の推定も行うことで、異常発生時に素早くかつ適切に対処することができる。 In step S94, the location where an anomaly sign or an anomaly has occurred is estimated. Furthermore, in step S95, the component with an anomaly sign or an anomaly is estimated. As shown in FIG. 5, near the position C of the escalator 100, a chain 2, a terminal gear 4, a drive gear 5, a drive motor 6, and the like are provided. The abnormality estimator 521 estimates an abnormal part in addition to estimating an abnormal position. By estimating not only the occurrence of an abnormality but also the abnormal component, it is possible to quickly and appropriately deal with the occurrence of an abnormality.
 チェーン2、ターミナルギヤ4、駆動ギヤ5、駆動モータ6に異常が発生した場合、それぞれの部品に特徴的な異音や異常振動が発生する。時系列音検出データおよび時系列加速度検出データには、音および振動の大きさだけでなく、音や振動の周波数も含まれている。また、記憶部523には、部品毎および故障の種類毎に、異音の周波数および異常振動の周波数をリスト化した故障判別用データが予め記憶されている。異常推定部521は、位置Cにおける音の周波数および振動の周波数に基づいて、異常または異常予兆が発生している部品や故障内容の推定を行う。 When an abnormality occurs in the chain 2, the terminal gear 4, the drive gear 5, or the drive motor 6, abnormal noises and abnormal vibrations characteristic of each part occur. Time-series sound detection data and time-series acceleration detection data include not only the magnitude of sound and vibration, but also the frequency of sound and vibration. Further, the storage unit 523 stores in advance failure determination data in which abnormal noise frequencies and abnormal vibration frequencies are listed for each part and each failure type. The abnormality estimating unit 521 estimates the component in which an abnormality or an abnormality sign has occurred and the content of the failure based on the frequency of the sound and the frequency of the vibration at the position C. FIG.
 ステップS96では、異常または異常予兆が発生していることを報知部524によって報知する。報知情報としては、異常または異常予兆の発生、異常または異常予兆が発生している位置、部品および故障内容の少なくとも一つが含まれる。ステップS96の処理が終了したならば、ステップS97へ進む。ステップS97では、ノイズ低減処理と異常発生または異常予兆の判定処理とが、複数の時系列検出データ群の全てに対して終了したか否かを判定する。ステップS94において、終了していない(NO)と判定されるとステップS91へ戻り、終了した(YES)と判定されると一連の診断処理を終了する。 In step S96, the notification unit 524 notifies that an abnormality or a sign of abnormality has occurred. The report information includes at least one of the occurrence of an abnormality or an anomaly symptom, the location where the anomaly or an anomaly symptom has occurred, the part, and the contents of the failure. After completing the process of step S96, the process proceeds to step S97. In step S97, it is determined whether or not the noise reduction processing and the abnormality occurrence or abnormality sign determination processing have been completed for all of the plurality of time-series detection data groups. In step S94, if it is determined that the diagnosis has not been completed (NO), the process returns to step S91, and if it is determined that the diagnosis has been completed (YES), the series of diagnostic processes is terminated.
 上述したように、本実施の形態の診断システムでは、磁気センサ251を含む診断用センサが設けられた診断用ステップ1aを導入した際に、診断用ステップ1aを循環移動させて磁気マップM(磁気検出値、位置)を作成する。この磁気マップM(磁気検出値、位置)は、エスカレータ100内の各位置における磁気状態を表すマップである。そのため、エスカレータ運用時に取得される診断用センサ検出値の検出位置を、その検出値と同タイミングで検出された磁気検出値を磁気マップM(磁気検出値、位置)と照らし合わせることで取得することができる。すなわち、運転速度が変化する状況においても、診断用センサ検出値の検出位置を精度良く推定することができ、常時診断を行うことが可能となる。 As described above, in the diagnostic system of the present embodiment, when the diagnostic step 1a provided with the diagnostic sensors including the magnetic sensor 251 is introduced, the diagnostic step 1a is circularly moved to the magnetic map M (magnetic map M). detection value, position). This magnetic map M (magnetism detection value, position) is a map representing the magnetic state at each position in the escalator 100 . Therefore, the detection position of the diagnostic sensor detection value acquired during escalator operation can be obtained by comparing the magnetic detection value detected at the same timing as the detection value with the magnetic map M (magnetism detection value, position). can be done. That is, even in a situation where the driving speed changes, it is possible to accurately estimate the detection position of the diagnostic sensor detection value, and to perform constant diagnosis.
 さらに、本実施の形態では、図3に示すように、診断用ステップ1a内のセンサ部25で検出したデータを、通信により、位置推定装置51および異常診断装置52が設けられた遠隔地の監視センタ50に送信するようにしている。そのため、エスカレータ100の状況を、遠隔地で常時監視することができる。さらに、監視センタ50において、複数のエスカレータの常時監視を容易に行うことができる。 Furthermore, in the present embodiment, as shown in FIG. 3, the data detected by the sensor unit 25 in the diagnostic step 1a is transmitted to a remote monitoring device provided with a position estimation device 51 and an abnormality diagnosis device 52 by communication. The data is transmitted to the center 50. Therefore, the status of the escalator 100 can be constantly monitored from a remote location. Furthermore, the monitoring center 50 can easily monitor a plurality of escalators all the time.
 なお、上述したように、診断用ステップ1aの位置推定では、磁気センサ251の検出値を磁気マップM(磁気検出値、位置)と照らし合わせて検出位置を推定している。そのため、位置推定を精度良く行うためには、磁気センサ251の出力が安定していることが好ましい。そこで、本実施の形態では、エスカレータ100に設けられた部品の磁化を利用して、磁気センサ251のオフセットやドリフトを補正するようにした。 As described above, in the position estimation of diagnostic step 1a, the detection value of the magnetic sensor 251 is compared with the magnetic map M (magnetism detection value, position) to estimate the detection position. Therefore, it is preferable that the output of the magnetic sensor 251 is stable in order to accurately estimate the position. Therefore, in the present embodiment, the magnetization of the parts provided in the escalator 100 is used to correct the offset and drift of the magnetic sensor 251 .
 例えば、駆動モータ6の磁化は安定しているので、駆動モータ6に近い位置Cにおける磁気センサ251の検出値を補正の基準値とする。そして、位置Cの検出値を基準として、すなわち、位置Cの検出値が常に一定となるようにその他の位置の検出値を補正する。例えば、位置Cの検出値が初期の値に対してβ倍になった場合、すべての位置における検出値を(1/β)倍することで補正を行う。その結果、磁気センサ251の出力変化の影響を除去でき、自己位置推定精度の悪化を防止することができる。この補正動作は、センサ端末24に設けられた制御部26、データ収集装置30、位置推定装置51、異常診断装置52のいずれで行っても良い。 For example, since the magnetization of the drive motor 6 is stable, the detection value of the magnetic sensor 251 at position C near the drive motor 6 is used as the reference value for correction. Then, based on the detected value at position C, the detected values at other positions are corrected so that the detected value at position C is always constant. For example, when the detected value at position C is β times the initial value, correction is performed by multiplying the detected values at all positions by (1/β). As a result, it is possible to remove the influence of the output change of the magnetic sensor 251 and prevent deterioration of self-position estimation accuracy. This correction operation may be performed by any one of the control unit 26 provided in the sensor terminal 24, the data collection device 30, the position estimation device 51, and the abnormality diagnosis device 52. FIG.
 上述した実施の形態では、磁気センサ251の検出データと生成した磁気マップM(磁気検出値、位置)とに基づいて、音検出データとエスカレータ100における位置とを対応付ける自己位置推定処理を行った。さらに、加速度センサ253の検出データにおける反転タイミングも併用して、自己位置推定処理を行うようにしても良い。反転タイミングは、診断用ステップ1aがエスカレータ100の特定の位置に移動したときに生じる。そのため、この反転タイミングも利用することで、自己位置推定精度の向上を図ることができ、精度良く異常診断を行うことができる。なお、加速度センサ253以外の診断用センサを利用しても良い。例えば、高度センサ等を診断用センサとしてさらに追加し、その検出データを併用しても良い。 In the above-described embodiment, self-position estimation processing is performed to associate the sound detection data with the position on the escalator 100 based on the detection data of the magnetic sensor 251 and the generated magnetic map M (magnetism detection value, position). Furthermore, the self-position estimation process may be performed using the reversal timing in the detection data of the acceleration sensor 253 together. The reversal timing occurs when the diagnostic step 1a moves to a specific position on the escalator 100. FIG. Therefore, by also using this reversal timing, it is possible to improve the accuracy of self-position estimation, and it is possible to perform an abnormality diagnosis with high accuracy. A diagnostic sensor other than the acceleration sensor 253 may be used. For example, an altitude sensor or the like may be further added as a diagnostic sensor and its detection data may be used together.
 なお、診断システム1000の構成は、図3のブロック図に示した構成に限定されない。 The configuration of diagnostic system 1000 is not limited to the configuration shown in the block diagram of FIG.
(診断システム構成の変形例1)
 図11は、診断システム1000の構成の変形例1を示すブロック図である。図3の診断システム1000では、データ記憶部301に記憶された複数の時系列検出データ群を、通信部302により、ネットワーク40を介して監視センタ50の通信装置53へ送信する構成とした。一方、図11に示す診断システム1000Aでは、制御装置12の通信部302と監視センタ50の通信装置53とを省略した。診断システム1000Aでは、データ記憶部301に記憶された複数の時系列検出データ群は、定期点検時に作業員によってデータ回収され、監視センタ50へと送られるシステムが採用される。データ回収には、例えば、USBフラッシュドライブ(USB flash drive)やポータブル・ハードディスクドライブ等の携帯用記憶媒体が用いられる。通信部302と通信装置53とが不要となるため、通信システムに関するコスト低減を図ることができる。
(Modification 1 of diagnosis system configuration)
FIG. 11 is a block diagram showing Modification 1 of the configuration of diagnostic system 1000. As shown in FIG. The diagnosis system 1000 of FIG. 3 is configured such that a plurality of time-series detection data groups stored in the data storage unit 301 are transmitted to the communication device 53 of the monitoring center 50 via the network 40 by the communication unit 302 . On the other hand, in the diagnostic system 1000A shown in FIG. 11, the communication unit 302 of the control device 12 and the communication device 53 of the monitoring center 50 are omitted. The diagnostic system 1000A employs a system in which a plurality of time-series detection data groups stored in the data storage unit 301 are collected by an operator during regular inspections and sent to the monitoring center 50 . Portable storage media such as, for example, USB flash drives and portable hard disk drives are used for data retrieval. Since the communication unit 302 and the communication device 53 are not required, the cost of the communication system can be reduced.
(診断システム構成の変形例2)
 図12は、診断システム1000の構成の変形例2を示すブロック図である。変形例2の診断システム1000Bでは、制御装置12に設けられていたデータ記憶部301および通信部302を、診断用ステップ1a内に設けるようにした。データ記憶部301に記憶された複数の時系列検出データ群は、診断用ステップ1a内に設けられた通信部302からネットワーク40を介して監視センタ50の通信装置53へ送信される。
(Modification 2 of diagnosis system configuration)
FIG. 12 is a block diagram showing Modified Example 2 of the configuration of the diagnostic system 1000. As shown in FIG. In the diagnostic system 1000B of Modified Example 2, the data storage section 301 and the communication section 302 provided in the control device 12 are provided in the diagnostic step 1a. A plurality of time-series detection data groups stored in the data storage unit 301 are transmitted to the communication device 53 of the monitoring center 50 via the network 40 from the communication unit 302 provided in the diagnostic step 1a.
(診断システム構成の変形例3)
 図13は、診断システム1000の構成の変形例3を示すブロック図である。変形例3の診断システム1000Cは、図12の診断システム1000Bに設けられていた通信部302と通信装置53とを省略したものである。データ記憶部301に記憶された複数の時系列検出データ群は、定期点検時に作業員によってデータ回収され、監視センタ50へと送られる。監視センタ50の位置推定装置51および異常診断装置52では、回収された時系列検出データ群に基づいて磁気マップM(磁気検出値、位置)の作成および診断処理が行われる。
(Modification 3 of diagnosis system configuration)
FIG. 13 is a block diagram showing Modification 3 of the configuration of diagnostic system 1000. As shown in FIG. A diagnostic system 1000C of Modified Example 3 omits the communication unit 302 and the communication device 53 provided in the diagnostic system 1000B of FIG. A plurality of time-series detection data groups stored in the data storage unit 301 are collected by a worker during regular inspections and sent to the monitoring center 50 . The position estimation device 51 and the abnormality diagnosis device 52 of the monitoring center 50 create a magnetic map M (magnetism detection values, positions) based on the collected time-series detection data group and perform diagnosis processing.
(診断システム構成の変形例4)
 図14は、診断システム1000の構成の変形例4を示すブロック図である。変形例4の診断システム1000Dでは、図3の診断システム1000において監視センタ50に設けられていた位置推定装置51および異常診断装置52を、エスカレータ200の制御装置12内に設けるようにした。ただし、図3の異常診断装置52に設けられていた報知部524については、監視センタ50に配置される。
(Modification 4 of Diagnosis System Configuration)
FIG. 14 is a block diagram showing Modification 4 of the configuration of diagnostic system 1000. As shown in FIG. In the diagnostic system 1000D of Modified Example 4, the position estimating device 51 and the abnormality diagnostic device 52 provided in the monitoring center 50 in the diagnostic system 1000 of FIG. However, the notification unit 524 provided in the abnormality diagnosis device 52 of FIG. 3 is arranged in the monitoring center 50 .
 診断システム1000Dにおいては、磁気マップM(磁気検出値、位置)の生成と記憶、および、図9に示した診断処理の内でステップS96の処理を除く診断処理は、制御装置12に設けられた位置推定装置51および異常診断装置52によって行われる。診断処理の結果、異常または異常予兆が発生している場合には、報知情報が通信部302からネットワーク40を介して監視センタ50の通信装置53へ送信される。そして、報知部524によって報知情報が提示される。もちろん、監視センタ50は、時系列検出データ群の送信指令を制御装置12に送信することで、データ収集装置30のデータ記憶部301に記憶されている時系列検出データ群を取得することもできる。 In the diagnostic system 1000D, the generation and storage of the magnetic map M (magnetism detection values, positions), and the diagnostic processing shown in FIG. It is performed by the position estimation device 51 and the abnormality diagnosis device 52 . As a result of the diagnostic processing, if an abnormality or an abnormality predictor has occurred, notification information is transmitted from the communication unit 302 to the communication device 53 of the monitoring center 50 via the network 40 . Then, notification information is presented by the notification unit 524 . Of course, the monitoring center 50 can acquire the time-series detection data group stored in the data storage unit 301 of the data collection device 30 by transmitting a transmission command for the time-series detection data group to the control device 12. .
(診断システム構成の変形例5)
 図15は、診断システム1000の構成の変形例5を示すブロック図である。変形例5の診断システム1000Eは、図14に示した診断システム1000Dにおいて、データ収集装置30の通信部302を短距離通信用の無線通信部302Aに置き換え、監視センタ50の通信装置53を省略し、監視センタ50の報知部524に代えてパーソナルコンピュータ等の情報処理装置54を配置したものである。無線通信部302Aは、診断用ステップ1aに設けられた無線通信部27から、センサ251~253の検出データを受信する。
(Modification 5 of diagnostic system configuration)
FIG. 15 is a block diagram showing Modified Example 5 of the configuration of the diagnostic system 1000. As shown in FIG. A diagnostic system 1000E of modification 5 replaces the communication unit 302 of the data collection device 30 with a wireless communication unit 302A for short-range communication in the diagnostic system 1000D shown in FIG. , an information processing device 54 such as a personal computer is arranged in place of the notification unit 524 of the monitoring center 50 . The wireless communication unit 302A receives detection data of the sensors 251 to 253 from the wireless communication unit 27 provided in the diagnostic step 1a.
 制御装置12に設けられた位置推定装置51および異常診断装置52による診断処理の結果、生成された磁気マップM(磁気検出値、位置)およびデータ記憶部301に記憶されている時系列検出データ群等は、定期点検時に作業員によってデータ回収され、監視センタ50へと送られる。監視センタ50では、情報処理装置54によって診断処理結果や磁気マップM(磁気検出値、位置)を確認することができる。また、情報処理装置54により、回収された時系列検出データ群の確認および分析等を行うこともできる。 A magnetic map M (magnetism detection values, positions) generated as a result of diagnosis processing by the position estimation device 51 and the abnormality diagnosis device 52 provided in the control device 12 and the time-series detection data group stored in the data storage unit 301 etc. are collected by the worker at the time of periodic inspection and sent to the monitoring center 50 . In the monitoring center 50, the information processing device 54 can confirm the diagnostic processing result and the magnetic map M (magnetism detection value, position). The information processing device 54 can also perform confirmation, analysis, and the like of the collected time-series detection data group.
 なお、図15に示す構成では、異常診断装置52に報知部524が設けられていないが、異常診断装置52に報知部524を設ける構成としても良い。報知部524を設けることにより、定期点検時に作業員が異常状態を確認することができ、その場で異常に対処することができる。もちろん、報知部524が設けられない構成であっても、記憶部523に保持されている診断結果をパソコン等により読み出すことにより、診断結果を確認することができる。 In the configuration shown in FIG. 15, the abnormality diagnosis device 52 is not provided with the notification unit 524, but the abnormality diagnosis device 52 may be provided with the notification unit 524. By providing the notification unit 524, the operator can confirm the abnormal state during the periodic inspection, and can deal with the abnormality on the spot. Of course, even if the notification unit 524 is not provided, the diagnosis result can be confirmed by reading the diagnosis result held in the storage unit 523 with a personal computer or the like.
(診断システム構成の変形例6)
 図16は、診断システム1000の構成の変形例6を示すブロック図である。変形例6の診断システム1000Fは、図14の診断システム1000Dにおいて制御装置12に設けられていたデータ記憶部301,通信部302,位置推定装置51および異常診断装置52を診断用ステップ1a内に配置し、診断用ステップ1aに設けられていた無線通信部27を省略したものである。
(Modification 6 of diagnostic system configuration)
FIG. 16 is a block diagram showing Modification 6 of the configuration of diagnostic system 1000. As shown in FIG. In the diagnostic system 1000F of Modified Example 6, the data storage section 301, the communication section 302, the position estimation device 51, and the abnormality diagnostic device 52 provided in the control device 12 in the diagnostic system 1000D of FIG. 14 are arranged in the diagnostic step 1a. However, the wireless communication unit 27 provided in the diagnostic step 1a is omitted.
 診断システム1000Fでは、センサ部25で検出された検出データの記憶、検出データに基づく磁気マップM(磁気検出値、位置)の生成、検出データおよび磁気マップM(磁気検出値、位置)に基づく診断処理の全てが、診断用ステップ1a内に設けられたデータ記憶部301,位置推定装置51および異常診断装置52によって行われる。診断結果は、通信部302からネットワーク40を介して監視センタ50の通信装置53へ送信される。監視センタ50では、受信した診断結果に基づいて報知部524による報知を行う。もちろん、監視センタ50は、時系列検出データ群の送信指令を制御装置12に送信することで、データ記憶部301に記憶されている時系列検出データ群を取得することもできる。 The diagnostic system 1000F stores detection data detected by the sensor unit 25, generates a magnetic map M (magnetic detection value, position) based on the detection data, and diagnoses based on the detection data and the magnetic map M (magnetic detection value, position). All of the processing is performed by the data storage section 301, the position estimation device 51 and the abnormality diagnosis device 52 provided in the diagnostic step 1a. The diagnosis result is transmitted from the communication unit 302 to the communication device 53 of the monitoring center 50 via the network 40 . In the monitoring center 50, the notification unit 524 notifies based on the received diagnosis result. Of course, the monitoring center 50 can also acquire the time-series detection data group stored in the data storage unit 301 by transmitting a transmission command for the time-series detection data group to the control device 12 .
(診断システム構成の変形例7)
 図17は、診断システム1000の構成の変形例7を示すブロック図である。変形例7の診断システム1000Gは、図16に示した診断システム1000Fにおいて、診断用ステップ1aに設けられた通信部302を省略し、監視センタ50の通信装置53を省略し、監視センタ50の報知部524に代えてパーソナルコンピュータ等の情報処理装置54を配置したものである。
(Modification 7 of diagnostic system configuration)
FIG. 17 is a block diagram showing Modified Example 7 of the configuration of the diagnostic system 1000. As shown in FIG. A diagnostic system 1000G of Modification 7 omits the communication unit 302 provided in the diagnostic step 1a in the diagnostic system 1000F shown in FIG. Instead of the unit 524, an information processing device 54 such as a personal computer is arranged.
 診断用ステップ1aに設けられた位置推定装置51および異常診断装置52による診断処理の結果、生成された磁気マップM(磁気検出値、位置)およびデータ記憶部301に記憶されている時系列検出データ群等は、定期点検時に作業員によってデータ回収され、監視センタ50へと送られる。監視センタ50では、情報処理装置54によって診断処理結果や磁気マップM(磁気検出値、位置)を確認することができる。また、情報処理装置54により、回収された時系列検出データ群の確認および分析等を行うこともできる。さらに、変形例5の場合と同様に、定期点検時に作業員が記憶部523に保持されている診断結果をパソコン等により読み出すことにより、診断結果を確認することができ、その場で異常に対処することができる。また、報知部524を設けるようにしても良い。 A magnetic map M (magnetism detection values, positions) generated as a result of diagnostic processing by the position estimation device 51 and the abnormality diagnosis device 52 provided in the diagnostic step 1a and time-series detection data stored in the data storage unit 301 Data on the groups and the like are collected by workers during periodic inspections and sent to the monitoring center 50 . In the monitoring center 50, the information processing device 54 can confirm the diagnostic processing result and the magnetic map M (magnetism detection value, position). The information processing device 54 can also perform confirmation, analysis, and the like of the collected time-series detection data group. Furthermore, as in the case of modification 5, the operator can check the diagnosis result by reading the diagnosis result held in the storage unit 523 by a personal computer or the like at the time of regular inspection, and can deal with the abnormality on the spot. can do. Also, a notification unit 524 may be provided.
 なお、図3,11~17に示すブロック図において、構成における機能部、例えば、位置推定装置51および異常診断装置52における各機能部は、電気回路、電子回路、論理回路、およびそれらを内蔵した集積回路のほか、マイコン、プロセッサ、及びこれらに類する演算装置と、ROM、RAM、フラッシュメモリ、ハードディスク、SSD、メモリカード、光ディスク及びこれらに類する記憶装置と、バス、ネットワーク及びこれらに類する通信装置、及び周辺の諸装置の組み合わせによって実行されるプログラムによって実現してもよく、いずれの実現態様でも本発明は成立し得る。また、実施例において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 In the block diagrams shown in FIGS. 3 and 11 to 17, the functional units in the configuration, for example, the functional units in the position estimation device 51 and the abnormality diagnosis device 52, are electric circuits, electronic circuits, logic circuits, and In addition to integrated circuits, microcomputers, processors, and similar computing devices, ROM, RAM, flash memory, hard disks, SSDs, memory cards, optical disks, and similar storage devices, buses, networks, and similar communication devices, and a program executed by a combination of peripheral devices, and the present invention can be realized in any implementation mode. Also, in the embodiment, two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。 According to the embodiment of the present invention described above, the following effects are achieved.
(C1)図1,3に示すように、診断システム1000は、無端状に連結された複数のステップ1,1aを循環移動させて乗客を搬送する乗客コンベアであるエスカレータ100の、異常を診断する診断システム1000であって、複数のステップ1,1aに含まれ、少なくとも磁気センサ251を含む1以上の診断用センサを備える診断用ステップ1aと、診断用ステップ1aが一循環する間のエスカレータ100における位置と磁気センサ251の検出値との相関関係である磁気マップM(磁気検出値、位置)を生成する磁気マップ生成部511と、磁気マップM(磁気検出値、位置)と循環移動時の磁気センサ251の検出値とに基づいて、エスカレータ100における音センサ252の検出値が検出された位置を推定する自己位置推定部512と、音センサ252の検出値に基づいて異常診断を行う異常推定部521と、を備える。 (C1) As shown in FIGS. 1 and 3, the diagnostic system 1000 diagnoses an abnormality in the escalator 100, which is a passenger conveyor that conveys passengers by circulating a plurality of steps 1 and 1a that are endlessly connected. A diagnostic system 1000 comprising a diagnostic step 1a comprising one or more diagnostic sensors including at least a magnetic sensor 251 included in a plurality of steps 1, 1a, and an escalator 100 during one cycle of the diagnostic step 1a. A magnetic map generation unit 511 that generates a magnetic map M (detected magnetic value, position) that is a correlation between the position and the detected value of the magnetic sensor 251, A self-position estimation unit 512 that estimates the position where the detection value of the sound sensor 252 in the escalator 100 is detected based on the detection value of the sensor 251, and an abnormality estimation unit that performs abnormality diagnosis based on the detection value of the sound sensor 252. 521 and .
 図8に示すように、磁気マップM(磁気検出値、位置)は、診断用ステップ1aが一循環する間のエスカレータ100における位置と磁気センサ251の検出値との相関関係を表している。そして、その磁気マップM(磁気検出値、位置)と循環移動時の磁気センサ251の検出値とに基づいて、エスカレータ100における音センサ252の検出値が検出された位置を推定する。そのため、エスカレータ運用時に運転速度が変化する状況においても、診断用センサ検出値の検出位置を精度良く推定することができ、常時診断を行うことが可能となる。 As shown in FIG. 8, the magnetic map M (magnetism detection value, position) represents the correlation between the position on the escalator 100 and the detection value of the magnetic sensor 251 during one cycle of the diagnostic step 1a. Based on the magnetic map M (magnetism detection value, position) and the detection value of the magnetic sensor 251 during circular movement, the position where the detection value of the sound sensor 252 in the escalator 100 is detected is estimated. Therefore, even when the operating speed of the escalator changes, it is possible to accurately estimate the detection position of the detection value of the diagnostic sensor, and to perform constant diagnosis.
(C2)図5,7に示すように、診断用ステップ1aは、診断用センサとして、循環移動する診断用ステップ1aのエスカレータ100における位置を特定できる位置特定用センサとしての加速度センサ253や音センサ252を備え、磁気マップ生成部511は、位置特定用センサで特定した位置(例えば、反転位置P1)を基準位置として、磁気マップM(磁気検出値、位置)を生成しても良い。位置特定用センサで特定した位置を、磁気マップ生成時の基準位置に利用することで、磁気マップ生成動作の自動化および高精度化を図ることができる。 (C2) As shown in FIGS. 5 and 7, the diagnostic step 1a includes, as diagnostic sensors, an acceleration sensor 253 as a position specifying sensor capable of specifying the position of the diagnostic step 1a on the escalator 100, and a sound sensor. 252, the magnetic map generation unit 511 may generate a magnetic map M (magnetism detection value, position) using the position (for example, reversal position P1) specified by the position specifying sensor as a reference position. By using the position specified by the position specifying sensor as the reference position when generating the magnetic map, the operation of generating the magnetic map can be automated and highly accurate.
(C3)また、診断用ステップ1aは位置特定用センサとして加速度センサ253を備え、磁気マップ生成部511は、加速度センサ253のセンサ出力に基づいて診断用ステップ1aの姿勢が反転するタイミングを推定し、そのタイミングにおける診断用ステップ1aの反転位置P1を基準位置として磁気マップM(磁気検出値、位置)を生成するようにしても良い。加速度センサ253による反転位置P1の検出は、容易に高精度に行うことができる。 (C3) Further, the diagnostic step 1a is provided with an acceleration sensor 253 as a position specifying sensor, and the magnetic map generator 511 estimates the timing at which the posture of the diagnostic step 1a is reversed based on the sensor output of the acceleration sensor 253. , the reversal position P1 of the diagnostic step 1a at that timing may be used as a reference position to generate a magnetic map M (magnetism detection values, positions). The detection of the reversal position P1 by the acceleration sensor 253 can be easily performed with high precision.
(C4)図5,6に示すように、エスカレータ100は磁化を有する磁化部品(例えば、駆動モータ6)を含み、磁気マップ生成部511は、磁気センサ251が磁化部品の磁化を検出したときの診断用ステップ1aの位置Cを基準位置として、磁気マップM(磁気検出値、位置)を生成するようにしても良い。磁化されている部品の磁化を検出したときの診断用ステップ1aの位置を基準位置とすることで、基準位置を特定するためのセンサ(加速度センサ253)を追加で設ける必要がない。そのため、コスト低減を図ることができる。 (C4) As shown in FIGS. 5 and 6, the escalator 100 includes a magnetized component (for example, the drive motor 6) having magnetization, and the magnetic map generation unit 511 generates the magnetized component when the magnetic sensor 251 detects the magnetization of the magnetized component. A magnetic map M (magnetism detection values, positions) may be generated using the position C of the diagnostic step 1a as a reference position. By setting the position of the diagnostic step 1a when the magnetization of the magnetized component is detected as the reference position, there is no need to additionally provide a sensor (acceleration sensor 253) for specifying the reference position. Therefore, cost reduction can be achieved.
(C5)図5,7に示すように、自己位置推定部512は、磁気マップM(磁気検出値、位置)と循環移動時の磁気センサ251および位置特定用センサとしての加速度センサ253の検出値(例えば、反転位置P1)とに基づいて、診断用センサとしての音センサ252の検出値が検出された位置を推定するようにしても良い。加速度センサ253で検出される反転位置P1は、診断用ステップ1aがエスカレータ100の特定の位置に移動したときに生じる。そのため、この反転位置P1も自己位置推定に用いることで、自己位置推定精度の向上を図ることができ、精度良く異常診断を行うことができる。 (C5) As shown in FIGS. 5 and 7, the self-position estimation unit 512 generates a magnetic map M (magnetism detection value, position), the detection values of the magnetic sensor 251 during circular movement, and the acceleration sensor 253 as a sensor for position identification. (For example, the reversal position P1), the position at which the detection value of the sound sensor 252 as the diagnostic sensor is detected may be estimated. A reversal position P1 detected by the acceleration sensor 253 occurs when the diagnostic step 1a moves to a specific position on the escalator 100. FIG. Therefore, by also using this reverse position P1 for self-position estimation, self-position estimation accuracy can be improved, and abnormality diagnosis can be performed with high accuracy.
(C6)さらに、エスカレータ100には磁化を有する磁化部品(例えば、駆動モータ6)が設けられ、磁化部品の磁化に基づいて磁気センサ251の出力誤差を補正するようにしても良い。例えば、制御部26やデータ収集装置30で補正処理を行う。その結果、磁気センサ251の出力変化の影響を除去でき、自己位置推定精度の悪化を防止することができる。 (C6) Further, the escalator 100 may be provided with a magnetized component (for example, the drive motor 6), and the output error of the magnetic sensor 251 may be corrected based on the magnetization of the magnetized component. For example, the control unit 26 or the data collection device 30 performs correction processing. As a result, it is possible to remove the influence of the output change of the magnetic sensor 251 and prevent deterioration of self-position estimation accuracy.
(C7)図9のステップS95の処理のように、異常推定部521は、自己位置推定部512により推定された位置と診断用センサ(例えば、音センサ252)の検出データとに基づいて、異常部品を推定する。異常発生だけでなく、異常部品の推定も行うことで、異常発生時に素早くかつ適切に対処することができる。 (C7) As in the process of step S95 in FIG. 9, the abnormality estimation unit 521 detects an abnormality based on the position estimated by the self-position estimation unit 512 and the detection data of the diagnostic sensor (for example, the sound sensor 252). Estimate parts. By estimating the abnormal component as well as the occurrence of an abnormality, it is possible to quickly and appropriately deal with the occurrence of an abnormality.
(C8)図3,12に示すように、診断システムは、複数のステップ1,1aを循環移動させる駆動モータ6が配置されるエスカレータ100の筐体フレーム3または診断用ステップ1aに設けられる通信部302と、通信部302と通信によりデータの受送信が行われ、自己位置推定部512および異常診断装置52が設けられる遠隔監視部としての監視センタ50と、をさらに備え、診断用センサの検出データを、通信部302により監視センタ50に送信する。よって、常時、エスカレータ100を遠隔監視することができる。 (C8) As shown in FIGS. 3 and 12, the diagnostic system comprises a communication unit provided in the housing frame 3 of the escalator 100 or the diagnostic step 1a in which the driving motor 6 for circulating the steps 1 and 1a is arranged. 302, and a monitoring center 50 as a remote monitoring unit that receives and transmits data through communication with the communication unit 302 and is provided with a self-position estimation unit 512 and an abnormality diagnosis device 52, and detects data detected by the diagnostic sensor. is transmitted to the monitoring center 50 by the communication unit 302 . Therefore, the escalator 100 can be remotely monitored at all times.
(C9)さらに、図3に示すように、通信部302はエスカレータ100の筐体フレーム3に設けられ、診断用ステップ1aは、診断用センサの検出データを筐体フレーム3に設けられた通信部302に無線通信により送信する無線通信部27をさらに備え、通信部302は、診断用ステップ1aから送信された検出データを監視センタ50に送信するようにしても良い。無線通信部27には電力消費の少ない近距離無線装置を用いることができ、診断用ステップ1aに配置する電源として、電池のような小容量の電源を用いることができる。 (C9) Further, as shown in FIG. 3, the communication unit 302 is provided in the housing frame 3 of the escalator 100, and the diagnostic step 1a transmits detection data of the diagnostic sensor to the communication unit provided in the housing frame 3. 302 may further include a wireless communication unit 27 that transmits by wireless communication, and the communication unit 302 may transmit the detection data transmitted from the diagnostic step 1 a to the monitoring center 50 . A short-range wireless device with low power consumption can be used as the wireless communication unit 27, and a small-capacity power source such as a battery can be used as the power source arranged in the diagnostic step 1a.
(C10)図14,16に示すように、自己位置推定部512および異常推定部521は、複数のステップ1,1aを循環移動させる駆動モータ6が配置されるエスカレータ100の筐体フレーム3または診断用ステップ1aに設けられ、筐体フレーム3または診断用ステップ1aに設けられる通信部302と、通信部302と通信によりデータの受送信を行う監視センタ50と、をさらに備え、異常推定部521の診断結果を、通信部302により監視センタ50に送信する。 (C10) As shown in FIGS. 14 and 16, the self-position estimating unit 512 and the abnormality estimating unit 521 connect the housing frame 3 of the escalator 100 in which the driving motor 6 for cyclically moving the steps 1 and 1a is arranged, or the diagnosis further comprising a communication unit 302 provided in the diagnostic step 1a and provided in the housing frame 3 or the diagnostic step 1a; The diagnosis result is transmitted to the monitoring center 50 by the communication section 302 .
 このような構成の場合、監視センタ50は検査結果を受信できる装置を用意すれば良いので、例えば、インターネットを介してパソコンやモバイルフォン等の情報端末により診断結果を受信することが可能となる。そのため、大掛かりな監視センタを設けなくても、作業員が情報端末により診断結果を受信し、異常のあるエスカレータ100を点検するという形態が可能となる。 In the case of such a configuration, the monitoring center 50 only needs to prepare a device that can receive test results, so it is possible, for example, to receive diagnostic results via an information terminal such as a personal computer or a mobile phone via the Internet. Therefore, it is possible for a worker to receive the diagnosis result from the information terminal and inspect the escalator 100 having an abnormality without setting up a large-scale monitoring center.
(C11)図11,13,15,17に示すように、複数のステップ1,1aを循環移動させる駆動モータ6が配置されるエスカレータ100の筐体フレーム3または診断用ステップ1aは、センサ部25の検出データを蓄積するデータ記憶部301をさらに備える。この場合、データ記憶部301に蓄積された検出データを作業員が回収して、自己位置推定部512および異常推定部521により検出データのデータ解析を行うことで、通信装置を設ける必要がない。 (C11) As shown in Figs. It further comprises a data storage unit 301 for storing the detection data of. In this case, the operator collects the detection data accumulated in the data storage unit 301 and analyzes the detection data by the self-position estimation unit 512 and the abnormality estimation unit 521, thereby eliminating the need to provide a communication device.
(C12)図15,17に示すように、自己位置推定部512および異常推定部521は、複数のステップ1,1aを循環移動させる駆動モータ6が配置されるエスカレータ100の筐体フレーム3または診断用ステップ1aに設けられ、自己位置推定部512および異常推定部521が設けられた筐体フレーム3または診断用ステップ1aは、異常推定部521の診断結果を記憶する記憶部523をさらに備える。この場合、定期点検時に作業員が記憶部523に保持されている診断結果をパソコン等により読み出すことにより、診断結果を確認することができ、その場で異常に対処することができる。 (C12) As shown in FIGS. 15 and 17, the self-position estimating unit 512 and the abnormality estimating unit 521 are connected to the housing frame 3 of the escalator 100 in which the drive motor 6 for cyclically moving the steps 1 and 1a is arranged, or the diagnosis The housing frame 3 provided in the step 1a for diagnosis and provided with the self-position estimating section 512 and the abnormality estimating section 521 or the diagnostic step 1a further includes a storage section 523 for storing the diagnosis result of the abnormality estimating section 521. FIG. In this case, the worker can confirm the diagnosis result by reading out the diagnosis result held in the storage unit 523 with a personal computer or the like at the time of periodic inspection, and can deal with the abnormality on the spot.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。例えば、本発明は、エスカレータ以外の乗客コンベアに対しても適用できる。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. For example, the present invention can be applied to passenger conveyors other than escalators. Moreover, although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 1…ステップ、1a…診断用ステップ、2…チェーン、3…筐体フレーム、4…ターミナルギヤ、6…駆動モータ、9…下部ターミナルギヤ、12…制御装置、24…センサ端末、25…センサ部、26…制御部、27…無線通信部、30…データ収集装置、50…監視センタ、51…位置推定装置、52…異常診断装置、53…通信装置、54…情報処理装置、251…磁気センサ、252…音センサ、253…加速度センサ、301…データ記憶部、302…通信部、511…磁気マップ生成部、512…自己位置推定部、513,522…ノイズ低減部、514,523…記憶部、521…異常推定部、524…報知部、1000,1000A~1000G…診断システム DESCRIPTION OF SYMBOLS 1... Step, 1a... Diagnosis step, 2... Chain, 3... Case frame, 4... Terminal gear, 6... Drive motor, 9... Lower terminal gear, 12... Control device, 24... Sensor terminal, 25... Sensor part , 26... Control unit, 27... Wireless communication unit, 30... Data collection device, 50... Monitoring center, 51... Position estimation device, 52... Abnormal diagnosis device, 53... Communication device, 54... Information processing device, 251... Magnetic sensor , 252... Sound sensor 253... Acceleration sensor 301... Data storage unit 302... Communication unit 511... Magnetic map generation unit 512... Self- position estimation unit 513, 522... Noise reduction unit 514, 523... Storage unit , 521...Abnormality estimating unit, 524...Notifying unit, 1000, 1000A to 1000G...Diagnostic system

Claims (12)

  1.  無端状に連結された複数のステップを循環移動させて乗客を搬送する乗客コンベアの、異常を診断する診断システムであって、
     前記複数のステップに含まれ、少なくとも磁気センサを含む1以上の診断用センサを備える診断用ステップと、
     前記診断用ステップが一循環する間の前記乗客コンベアにおける位置と前記磁気センサの検出値との相関関係である磁気マップを生成する磁気マップ生成部と、
     前記磁気マップと循環移動時の前記磁気センサの検出値とに基づいて、前記乗客コンベアにおける前記診断用センサの検出値が検出された位置を推定する位置推定部と、
     前記診断用センサの検出値に基づいて異常診断を行う異常診断部と、を備える診断システム。
    A diagnostic system for diagnosing an abnormality in a passenger conveyor that conveys passengers by cyclically moving a plurality of steps that are endlessly connected,
    a diagnostic step included in the plurality of steps and comprising one or more diagnostic sensors including at least a magnetic sensor;
    a magnetic map generation unit that generates a magnetic map that is a correlation between a position on the passenger conveyor and a detection value of the magnetic sensor during one cycle of the diagnostic step;
    a position estimating unit that estimates a position where the detection value of the diagnostic sensor on the passenger conveyor is detected based on the magnetic map and the detection value of the magnetic sensor during circulating movement;
    A diagnosis system comprising: an abnormality diagnosis unit that performs an abnormality diagnosis based on a detection value of the diagnostic sensor.
  2.  請求項1に記載の診断システムにおいて、
     前記診断用ステップは、前記診断用センサとして、循環移動する前記診断用ステップの前記乗客コンベアにおける位置を特定できる位置特定用センサを備え、
     前記磁気マップ生成部は、前記位置特定用センサで特定した位置を基準位置として、前記磁気マップを生成する、診断システム。
    The diagnostic system of claim 1, wherein
    The diagnostic step includes, as the diagnostic sensor, a position specifying sensor capable of specifying the position of the diagnostic step that circulates on the passenger conveyor,
    The diagnostic system, wherein the magnetic map generator generates the magnetic map using the position specified by the position specifying sensor as a reference position.
  3.  請求項2に記載の診断システムにおいて、
     前記診断用ステップは前記位置特定用センサとして加速度センサを備え、
     前記磁気マップ生成部は、前記加速度センサのセンサ出力に基づいて前記診断用ステップの姿勢が反転するタイミングを推定し、前記タイミングにおける前記診断用ステップの位置を基準位置として前記磁気マップを生成する、診断システム。
    The diagnostic system of claim 2, wherein
    the diagnostic step comprises an acceleration sensor as the position identifying sensor;
    The magnetic map generation unit estimates a timing at which the posture of the step for diagnosis is reversed based on the sensor output of the acceleration sensor, and generates the magnetic map using the position of the step for diagnosis at the timing as a reference position. diagnostic system.
  4.  請求項1に記載の診断システムにおいて、
     前記乗客コンベアは磁化を有する磁化部品を含み、
     前記磁気マップ生成部は、前記磁気センサが前記磁化部品の磁化を検出したときの前記診断用ステップの位置を基準位置として、前記磁気マップを生成する、診断システム。
    The diagnostic system of claim 1, wherein
    the passenger conveyor includes a magnetized component having a magnetization;
    The diagnostic system, wherein the magnetic map generation unit generates the magnetic map using the position of the diagnostic step when the magnetic sensor detects the magnetization of the magnetized component as a reference position.
  5.  請求項2に記載の診断システムにおいて、
     前記位置推定部は、前記磁気マップと循環移動時の前記磁気センサおよび前記位置特定用センサの検出値とに基づいて、前記診断用センサの検出値が検出された位置を推定する、診断システム。
    The diagnostic system of claim 2, wherein
    The diagnostic system, wherein the position estimating unit estimates a position where the detection value of the diagnostic sensor is detected based on the magnetic map and the detection values of the magnetic sensor and the position specifying sensor during cyclic movement.
  6.  請求項1に記載の診断システムにおいて、
     前記乗客コンベアには磁化を有する磁化部品が設けられ、
     前記磁化部品の磁化に基づいて前記磁気センサの出力誤差を補正する補正部をさらに備える、診断システム。
    The diagnostic system of claim 1, wherein
    The passenger conveyor is provided with magnetized parts having magnetization,
    A diagnostic system, further comprising a correction unit that corrects an output error of the magnetic sensor based on the magnetization of the magnetized component.
  7.  請求項1に記載の診断システムにおいて、
     前記異常診断部は、前記位置推定部により推定された位置と前記診断用センサの検出データとに基づいて、異常部品を推定する、診断システム。
    The diagnostic system of claim 1, wherein
    The diagnosis system according to claim 1, wherein the abnormality diagnosis unit estimates the abnormal component based on the position estimated by the position estimation unit and detection data of the diagnostic sensor.
  8.  請求項1に記載の診断システムにおいて、
     複数の前記ステップを循環移動させる駆動装置が配置される前記乗客コンベアの固定部または前記診断用ステップに設けられる通信装置と、
     前記通信装置と通信によりデータの受送信が行われ、前記位置推定部および前記異常診断部が設けられる遠隔監視部と、をさらに備え、
     前記診断用センサの検出データを、前記通信装置により前記遠隔監視部に送信する、診断システム。
    The diagnostic system of claim 1, wherein
    a communication device provided at a fixed portion of the passenger conveyor or at the diagnosis step, in which a driving device for cyclically moving the plurality of steps is arranged;
    a remote monitoring unit that receives and transmits data through communication with the communication device and is provided with the position estimation unit and the abnormality diagnosis unit;
    A diagnostic system, wherein data detected by the diagnostic sensor is transmitted to the remote monitoring unit by the communication device.
  9.  請求項8に記載の診断システムにおいて、
     前記通信装置は前記乗客コンベアの前記固定部に設けられ、
     前記診断用ステップは、前記診断用センサの検出データを前記固定部に設けられた前記通信装置に無線通信により送信する無線通信装置をさらに備え、
     前記通信装置は、前記診断用ステップから送信された前記検出データを前記遠隔監視部に送信する、診断システム。
    The diagnostic system of claim 8, wherein
    The communication device is provided at the fixed portion of the passenger conveyor,
    The diagnostic step further includes a wireless communication device that transmits data detected by the diagnostic sensor to the communication device provided on the fixed portion by wireless communication,
    The diagnostic system, wherein the communication device transmits the detection data transmitted from the diagnostic step to the remote monitoring unit.
  10.  請求項1に記載の診断システムにおいて、
     前記位置推定部および前記異常診断部は、複数の前記ステップを循環移動させる駆動装置が配置される前記乗客コンベアの固定部または前記診断用ステップに設けられ、
     前記乗客コンベアの前記固定部または前記診断用ステップに設けられる通信装置と、
     前記通信装置と通信によりデータの受送信を行う遠隔監視部と、をさらに備え、
     前記異常診断部の診断結果を、前記通信装置により前記遠隔監視部に送信する、診断システム。
    The diagnostic system of claim 1, wherein
    The position estimating unit and the abnormality diagnosing unit are provided at a fixed portion of the passenger conveyor where a driving device for circulating the plurality of steps is arranged or at the diagnostic step,
    a communication device provided at the fixed portion or the diagnostic step of the passenger conveyor;
    A remote monitoring unit that receives and transmits data by communication with the communication device,
    A diagnosis system, wherein a diagnosis result of the abnormality diagnosis unit is transmitted to the remote monitoring unit through the communication device.
  11.  請求項1に記載の診断システムにおいて、
     複数の前記ステップを循環移動させる駆動装置が配置される前記乗客コンベアの固定部または前記診断用ステップは、
     前記診断用センサの検出データを蓄積するデータ記憶部をさらに備える、診断システム。
    The diagnostic system of claim 1, wherein
    The fixed part of the passenger conveyor or the diagnostic step in which a driving device for circulating the plurality of steps is arranged,
    A diagnostic system, further comprising a data storage unit that accumulates detection data of the diagnostic sensor.
  12.  請求項1に記載の診断システムにおいて、
     前記位置推定部および前記異常診断部は、複数の前記ステップを循環移動させる駆動装置が配置される前記乗客コンベアの固定部または前記診断用ステップに設けられ、
     前記位置推定部および前記異常診断部が設けられた前記固定部または前記診断用ステップは、前記異常診断部の診断結果を記憶する診断結果記憶部をさらに備える、診断システム。
    The diagnostic system of claim 1, wherein
    The position estimating unit and the abnormality diagnosing unit are provided at a fixed portion of the passenger conveyor where a driving device for circulating the plurality of steps is arranged or at the diagnostic step,
    A diagnosis system according to claim 1, wherein the fixing section or the diagnostic step provided with the position estimation section and the abnormality diagnosis section further includes a diagnosis result storage section that stores a diagnosis result of the abnormality diagnosis section.
PCT/JP2022/018381 2021-06-10 2022-04-21 Diagnosis system WO2022259773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280040291.XA CN117425614A (en) 2021-06-10 2022-04-21 Diagnostic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-097590 2021-06-10
JP2021097590A JP2022189170A (en) 2021-06-10 2021-06-10 diagnostic system

Publications (1)

Publication Number Publication Date
WO2022259773A1 true WO2022259773A1 (en) 2022-12-15

Family

ID=84425831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018381 WO2022259773A1 (en) 2021-06-10 2022-04-21 Diagnosis system

Country Status (3)

Country Link
JP (1) JP2022189170A (en)
CN (1) CN117425614A (en)
WO (1) WO2022259773A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216399A (en) * 2012-04-05 2013-10-24 Toshiba Elevator Co Ltd Temporary tool for measuring device of man conveyor
JP2015054780A (en) * 2013-09-13 2015-03-23 東芝エレベータ株式会社 Abnormality diagnostic system for passenger conveyor
JP2019105457A (en) * 2017-12-08 2019-06-27 株式会社日立ビルシステム Bearing inspection device
JP2019158514A (en) * 2018-03-12 2019-09-19 株式会社日立ビルシステム Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216399A (en) * 2012-04-05 2013-10-24 Toshiba Elevator Co Ltd Temporary tool for measuring device of man conveyor
JP2015054780A (en) * 2013-09-13 2015-03-23 東芝エレベータ株式会社 Abnormality diagnostic system for passenger conveyor
JP2019105457A (en) * 2017-12-08 2019-06-27 株式会社日立ビルシステム Bearing inspection device
JP2019158514A (en) * 2018-03-12 2019-09-19 株式会社日立ビルシステム Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor

Also Published As

Publication number Publication date
JP2022189170A (en) 2022-12-22
CN117425614A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
US20100094798A1 (en) Anomaly diagnosis system for passenger conveyors
CN110775756B (en) Elevator component inspection system
KR101322434B1 (en) Intelligent condition-monitoring and fault diagnostic system
JP2005516871A (en) Elevator remote monitoring method and apparatus
CN108358030A (en) Diagnosis ladder for passenger conveyors
JP6522203B1 (en) Passenger conveyor anomaly detection system
JP2009012891A (en) Passenger conveyer monitoring device and remote monitoring system
KR101204487B1 (en) Operating sound collection system and operating sound collection method
US20190260973A1 (en) Rail vehicle underframe inspection device and corresponding inspection method
JP4577794B2 (en) Abnormality diagnosis system for passenger conveyor
JP2007112565A (en) Drive system diagnostic device
CN107783495B (en) Unit control system
WO2022259773A1 (en) Diagnosis system
CN103508303B (en) Abnormality diagnostic method, apparatus for diagnosis of abnormality and there is the apparatus of passenger conveyor of apparatus for diagnosis of abnormality
KR102383001B1 (en) A System for Investigating A Reducer Condition of a Train
CN110758456B (en) Wheel rail health state monitoring system and method
JP6748044B2 (en) Passenger conveyor inspection device and passenger conveyor inspection system
KR102574551B1 (en) A System for Diagnosing an Operating Condition of Reducer in a Train
CN102686369B (en) Assembly for diagnosing a device with moving parts
WO2019193682A1 (en) Diagnostic device, sensor data collection apparatus, diagnostic method, diagnostic program, and diagnostic system
JP2024004415A (en) Passenger conveyor diagnostic system and diagnostic method
KR102119320B1 (en) A Detecting System for a Condition of a Wheel and Bearing Automatically
WO2018220678A1 (en) Rail diagnostic device for passenger conveyer
EP4299498A1 (en) Elevator systems and robot operations associated therewith
CN117842823A (en) Passenger conveyor system and data collection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040291.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819959

Country of ref document: EP

Kind code of ref document: A1