WO2022259698A1 - 生分解性プラスチック製品の製造方法及び製造システム - Google Patents

生分解性プラスチック製品の製造方法及び製造システム Download PDF

Info

Publication number
WO2022259698A1
WO2022259698A1 PCT/JP2022/013736 JP2022013736W WO2022259698A1 WO 2022259698 A1 WO2022259698 A1 WO 2022259698A1 JP 2022013736 W JP2022013736 W JP 2022013736W WO 2022259698 A1 WO2022259698 A1 WO 2022259698A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic waste
biodegradable plastic
plastic product
manufacturing
fine particles
Prior art date
Application number
PCT/JP2022/013736
Other languages
English (en)
French (fr)
Inventor
俊明 青木
秀樹 青木
隆典 青木
宏憲 青木
Original Assignee
西日本エコロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西日本エコロジー株式会社 filed Critical 西日本エコロジー株式会社
Priority to EP22819888.3A priority Critical patent/EP4155000A4/en
Publication of WO2022259698A1 publication Critical patent/WO2022259698A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/70Kitchen refuse; Food waste
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Definitions

  • the present invention relates to a method and system for manufacturing biodegradable plastic products made of organic matter.
  • Japan is also switching from plastic products to bioplastic and green plastic products as part of the realization of a carbon-neutral society.
  • Non-Patent Document 1 it is known that some parts are made from 75% or more petroleum-derived raw materials and some are made into bioplastics. However, it is known that these biodegradable bioplastics decompose only partially in normal indoor and soil environments and over a long period of five years or more, and only in special environments with high temperatures and humidity ( Non-Patent Document 1).
  • Non-Patent Document 2 organic waste discharged from the manufacturing industry, for example, shochu lees, is methane fermented or converted into animal feed.
  • Polylactic Acid is a plant-derived resin that uses 100% plant starch and sugar as raw materials. wheat, buckwheat), bean curd refuse, rice bran, wheat bran, corn, potato, sweet potato, sugarcane, etc.
  • PLA (polylactic acid) green plastic biodegradation does not require that the soil to be decomposed be in a special environment, and it is desirable that PLA (polylactic acid) biodegrades in a short period of time even in ordinary soil environments.
  • the raw materials for biodegradable green plastic products are not limited to shochu lees, sake lees, corn, sugarcane, potatoes, bamboo, etc., but also organic waste (e.g., shochu lees, etc.) ) can also be used as raw materials.
  • organic waste e.g., shochu lees, etc.
  • shochu lees for example, the cost of machinery for methane fermentation tends to increase, and because of the high cost, it cannot be introduced in small-scale shochu manufacturing plants.
  • biodegradable plastics are partially decarbonized as biodegradable biomass (15 to 25% of the raw material), but petroleum accounts for more than half, making it completely biodegradable. is not.
  • the present invention was created in view of the conventional circumstances as described above. It aims at providing the manufacturing system.
  • the first invention is a method for producing biodegradable plastic products, comprising a step of crushing and pulverizing organic waste, and an organic waste that has a high water content and is difficult to dewater and requires crushing and pulverization.
  • a method for producing biodegradable plastic products comprising a step of polylactic acid conversion of waste, and a molding step of producing biodegradable plastic products in a molding apparatus using the polylactic acid organic waste as a raw material. offer.
  • a second invention provides a method for producing a biodegradable plastic product according to the first invention, wherein the solidification step includes stirring together with predetermined secondary materials.
  • a third invention provides a biodegradable plastic product according to the first or second invention, wherein the inorganic treatment agent is powder containing silicon.
  • a fourth invention is the polylactic acid organic waste according to any one of the first to third inventions, comprising the step of mixing cellulose nanofibers with the polylactic acid organic waste. and cellulose nanofibers as a raw material in the molding process.
  • the organic waste before the crushing/pulverization step is separated, and each separated organic waste is crushed/pulverized. and a step of mixing each solidified organic waste separated after performing the water absorption and solidification step, wherein in the step of pulverizing into fine particles, the solidification mixed in the mixing step Disclosed is a method for manufacturing biodegradable plastic products by drying organic waste and pulverizing into fine particles.
  • a sixth invention is a biodegradable plastic product according to any one of the first to fifth inventions, wherein the step of polylactating includes adding cellulose to the polylactated organic waste.
  • a manufacturing method is provided.
  • a seventh invention is a biodegradable plastic according to any one of the first to sixth inventions, wherein the biodegradable plastic product is a packaging plastic product, a PET bottle, a food tray, a film product, or a mulch film. Provide a method of manufacturing a product.
  • An eighth invention is a manufacturing system for manufacturing biodegradable plastic products, comprising a device for crushing and pulverizing organic waste, and an inorganic processing agent and water-absorbing organic matter for the crushed and pulverized organic waste. a device that agitates to absorb water and solidify, a device that dries the solidified organic waste and powders it into fine particles, and a device that converts the organic waste powdered into fine particles into polylactic acid
  • a biodegradable plastic product manufacturing system comprising: a molding apparatus for manufacturing biodegradable plastic products using a molding apparatus using polylactated organic waste as a raw material.
  • the organic waste is crushed and pulverized, and the inorganic treatment agent and water-absorbing organic matter are added to the crushed and pulverized organic waste, which is stirred to absorb water and solidify.
  • the solidified organic waste is dried and pulverized into fine particles, and the pulverized organic waste is polylactic acid. Then, we decided to manufacture biodegradable plastic products with a molding machine using the polylactic acid-treated organic waste as a raw material.
  • biodegradable plastic products that biodegrade in a short period of time in a normal soil environment using any organic matter as a raw material.
  • FIG. 1 is a flow chart showing an example of a biodegradable plastic product manufacturing flow according to an embodiment of the present invention.
  • 1 is a conceptual diagram showing the overall configuration of a biodegradable plastic product manufacturing system according to the embodiment;
  • FIG. It is a figure which shows an example of the packaging container manufactured by the said embodiment.
  • FIG. It is a figure which shows an example of the film bag manufactured by the said embodiment.
  • shochu lees such as rice, wheat, potatoes, buckwheat, etc.
  • rice sake lees bean curd refuse
  • rice bran beer lees
  • sugarcane lees corn, potatoes, various grains, etc.
  • PVA polylactic acidation
  • biodegradable plastic products that mixes and molds cellulose nanofibers (CNF) extracted from organic waste of fibrous materials obtained from wood, bamboo, paper, etc.
  • CNF cellulose nanofibers
  • PVA polylactic acid
  • CNF cellulose nanofiber
  • the biodegradable plastic products manufactured by the technology of the present invention are water-soluble, for example, at room temperature or at high temperatures of 65°C or higher, and are finally dissolved in water and carbon dioxide by microorganisms in agricultural soil. decomposed.
  • Fig. 1 is a flow chart of a basic manufacturing method of a biodegradable plastic product according to one embodiment of the present invention.
  • the organic waste is crushed/pulverized (step S10).
  • the organic waste is 100% natural resources such as shochu lees such as rice, wheat, potatoes, and buckwheat, rice sake lees, bean curd refuse, rice bran, beer lees, sugar cane lees, corn, potatoes, and various grains.
  • step S12 an inorganic processing agent and a water-absorbing organic substance are added to the crushed/pulverized organic waste and stirred to absorb water and solidify.
  • Water absorption is carried out with shochu lees and beer lees, which have a high water content. Powder into fine particles.
  • the size becomes, for example, about 40 microns or more.
  • Inorganic treatment agents are powders containing minerals such as silicon (coral), for example. to solidify. Since silicon is suitable as a fertilizer, it becomes a nutrient for the soil after burying the manufactured biodegradable plastic products. For example, shochu is said to be 93% water and 7% nutrients, and it is important how to remove water. It becomes possible. Sub-materials are added at this time when the original raw material (organic waste) does not have enough starch, such as rice bran and bean curd refuse. The amount of starch in secondary materials varies depending on the raw material, so they are adjusted and added.
  • step S16 the organic waste pulverized into fine particles in step S14 is converted into polylactic acid (PLA) (step S16).
  • PVA polylactic acid
  • Polylactic acid is a plant-derived synthetic plastic that produces lactic acid through the fermentation action of lactic acid bacteria on the glucose and sucrose contained in the raw material starch.
  • step S18 biodegradable plastic products are manufactured using a molding device using organic waste converted to polylactic acid (PLA) as a raw material.
  • a step S20 of mixing the polylactic acid (PLA) biodegradable plastic material and cellulose nanofiber (CNF) is provided, and the mixture is used as a raw material to mold a biodegradable plastic product with a molding apparatus, thereby increasing the strength.
  • Biodegradable plastics with different thicknesses can be made. Therefore, by changing the proportional distribution according to the product (application), it is possible to create a variety of products.
  • FIG. 2 is a conceptual diagram showing the overall configuration of the manufacturing system.
  • the manufacturing system 100 of the present embodiment includes a primary treatment process 20 that detoxifies organic waste, non-drainage treatment, mixing, and stirring, and a secondary treatment process 30 that includes a material conversion process 32 and a product conversion process 40. .
  • the organic waste 10A is waste liquid (lees) of shochu brewing such as potatoes, rice, and buckwheat, and is absorbed and solidified by adding the inorganic treatment agent 12 and stirring (water absorption/solidification step 24A).
  • the organic waste 10B is lees from sake brewing and beer manufacturing, and is water-absorbed and solidified by adding the inorganic treatment agent 12 and stirring (water-absorbing and solidifying step 24B).
  • the organic waste 10C is other organic waste (bean curd refuse and rice bran), and by adding the inorganic processing agent 12 and stirring, water is absorbed and solidified (water absorption/solidification step 24C).
  • the organic waste that has absorbed water and solidified as described above is transported to, for example, a biodegradable plastic product manufacturing plant 50 and transferred to the secondary treatment process 30 .
  • the organic wastes 10A to 10C are dried and powdered/micronized (powder/micronized process 34).
  • the micronized organic waste is converted to polylactic acid (PLA) (polylactic acid conversion step 36).
  • cellulose nanofibers are extracted from the fibrous organic waste 10D such as bamboo charcoal and wood, and mixed with polylactic acid (PLA) organic waste.
  • PVA polylactic acid
  • Cellulose + polylactic acid waste mixing step 38 Cellulose nanofibers can be used to make biodegradable plastic products with different strengths and thicknesses by changing the blending ratio with polylactic acid organic waste.
  • component adjustment process 42 component adjustment is performed (component adjustment process 42), molding is performed with a predetermined molding machine (molding process 44), and a biodegradable plastic product as a finished product 60 is obtained.
  • molding various known molding techniques suitable for the product to be molded (T-die method, vacuum/pressure molding, press molding, blow molding, injection molding, etc.) can be employed.
  • pattern A is various biodegradable plastic products (PET bottles, various biodegradable plastic bags, packaging plastic products)
  • pattern B is food manufacturing / Products for the processing industry, supermarkets, and department stores (food packaging trays, disposable lunch boxes, etc.)
  • Pattern C includes various agricultural biodegradable plastics (multi-film, pots, biodegradable plastics for various greenhouses, etc.).
  • FIG. 3 shows an example of a packaging container 62 manufactured by the manufacturing system 100 of this embodiment
  • FIG. 4 shows an example of a film bag 64 manufactured by the manufacturing system 100 of this embodiment
  • FIG. 5 shows an example of powder pulverized in the step of pulverizing into fine particles according to the present embodiment.
  • Fine particles 66A are an example of potato shochu lees as a raw material
  • fine particles 66B are an example of rice shochu lees as a raw material. be.
  • the organic waste is crushed and pulverized, and the inorganic treatment agent and the water-absorbing organic matter are added to the crushed and pulverized organic waste, and the organic waste is agitated to absorb water. ⁇ It solidifies.
  • the solidified organic waste is dried and pulverized into fine particles, and the pulverized organic waste is polylactic acid.
  • biodegradable plastic products with a molding machine using the polylactic acid-treated organic waste as a raw material. Therefore, it is possible to manufacture biodegradable plastic products that are biodegradable in a normal soil environment in a short period of time using any organic matter as a raw material.
  • the above-described embodiment is just an example, and can be modified as appropriate within a range in which similar effects can be achieved.
  • the organic waste shown in the above embodiment is an example, and all vegetable organic waste such as seaweed, food waste, sake rice cake, and sugar cane can be used as raw materials.
  • polylactic acid organic waste is mixed with cellulose nanofibers and molded, but this is also an example, and cellulose nanofibers may be mixed as necessary.
  • the mixing ratio may be appropriately changed according to the application.
  • the molding method shown in the above embodiment is also an example, and various known plastic molding methods can be applied.
  • the products described above are only examples, and various biodegradable plastic products can be manufactured.
  • the organic waste is crushed and pulverized, and the inorganic treatment agent and water-absorbing organic matter are added to the crushed and pulverized organic waste, which is stirred to absorb water and solidify.
  • the solidified organic waste is dried and pulverized into fine particles, and the pulverized organic waste is polylactic acid. Then, we decided to manufacture biodegradable plastic products with a molding machine using the polylactic acid-treated organic waste as a raw material.
  • 10A to 10D Organic waste 12: Treatment agent 14: Secondary material 20: Primary treatment process 22: Detoxification/non-drainage treatment/mixing/stirring process 24A to 24C: Water absorption/solidification process 30: Secondary treatment process 32: Raw material production process 34: Powder/particulate process 36: Polylactic acid process 38: Process of mixing polylactic acid organic waste and cellulose nanofiber 40: Product production process 42: Component adjustment process 44: Molding process 50 : Biodegradable plastic product manufacturing plant 60: Finished product 62: Packaging container 64: Film bag 66A, 66B: Fine powder 100: Manufacturing system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】任意の有機性廃棄物を原料として、通常の土壌環境で短期間に生分解される生分解性プラスチック製品の製造方法及びその製造システムを提供する。 【解決手段】有機性廃棄物を破砕・粉砕し、破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する。この固化した有機性廃棄物を乾燥し、微粒子に粉末化し、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する。そして、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する。

Description

生分解性プラスチック製品の製造方法及び製造システム
 本発明は、有機物からなる生分解性プラスチック製品の製造方法及びその製造システムに関する。
 従来のプラスチック製品は石油由来で、土壌・水中での分解ができず、焼却・埋め立て等の手段で処理されており、一部海中等への不法投棄もされ、環境に悪影響を及ぼしてきた。
 しかしながら、世界的な脱炭素社会が叫ばれてきた現在、我が国でもカーボンニュートラル社会の実現の一環として、プラスチック製品をバイオプラスチック及びグリーンプラスチック化した製品に切り替えつつある。
 例えば、75%以上の石油由来の原料から作られ一部をバイオプラスチック化が知られている。しかし、これらの生分解バイオプラチックは、通常の屋内環境や土壌環境での分解は一部でしかも5年以上の長期にわたり、高温多湿の特殊な環境でのみ分解されることが知られている(非特許文献1)。
 一方、製造業から排出される有機性廃棄物は、例えば、焼酎粕はメタン発酵や飼料化がされている(非特許文献2)。
ナショナル・ジオグラフィック、"バイオプラスチックは環境に優しいって本当?"、2018年11月20日、[令和3年5月29日検索]、インターネット<https://natgeo.nikkeibp.co.jp/atcl/news/18/111900500/>
食品と容器 Vol.57、2016年11月、「焼酎製造工程で発生する蒸留残渣(焼酎粕)の利活用
 ポリ乳酸樹脂(Poly Lactic Acid, PLA)は、原材料を植物のでんぷんや糖を100%用いる植物由来樹脂で、石油系原材料を一切使用しない環境に優しい合成樹脂で当社は焼酎粕(米・芋・麦・蕎麦)、おから、米糠、フスマ、トウモロコシ、ジャガイモ、サツマイモ、サトウキビ等の食品廃棄物の含有する澱粉、糖分等を活用して生分解性グリーンプラ製品を製造する。
 PLA(ポリ乳酸)グリーンプラスチック生分解は、分解される土壌が特殊な環境である必要はなく、一般的な通常の土壌環境でも短期間で生分解されることが望ましい。また、生分解性グリーンプラスチック製品のための原料が、焼酎粕、酒粕、トウモロコシやサトウキビ、芋類、竹等に限らず、工場等で大量に排出される有機性廃棄物(例えば、焼酎粕等)をも原料とできることが望ましい。他方例えば、焼酎粕では、メタン発酵するための機械の費用が大型化する傾向があり、高額なため、小規模の焼酎製造工場では導入することができない。
 また、従来の生分解性プラスチックは製品の一部(原料の15~25%)を生分解性バイオマスとして脱炭素化するようにしているが、石油部分が半分以上を占め、完全な生分解性ではない。
 そこで、本発明は以上のような従来存在した諸事情に鑑み創出されたもので、任意の有機物を原料として、通常の土壌環境で短期間に生分解される生分解性プラスチック製品の製造方法及びその製造システムを提供することを目的とする。
 第1の発明は、生分解性プラスチック製品の製造方法であって、有機性廃棄物を破砕・粉砕する工程と、含水率が高く脱水が困難なうえに破砕・粉砕等が必要な有機性廃棄物に、無機処理剤及び吸水性処理剤を投入して攪拌し、吸水・固化する工程と、固化した有機性廃棄物を乾燥し、微粒子に粉末化する工程と、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する工程と、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する成形工程と、を備える生分解性プラスチック製品の製造方法を提供する。
 第2の発明は、第1の発明において、前記固化する工程において、所定の副資材とともに攪拌する生分解性プラスチック製品の製造方法を提供する。
 第3の発明は、第1又は第2の発明において、前記無機処理剤は、ケイ素を含んだ粉末である生分解性プラスチック製品を提供する。
 第4の発明は、第1~第3の発明のいずれかにおいて、前記ポリ乳酸化された有機性廃棄物に、セルロースナノファイバーを混合する工程、を含み、ポリ乳酸化された有機性廃棄物とセルロースナノファイバーの混合物を原料として、前記成形工程において、生分解性プラスチック製品を製造する生分解性プラスチック製品の製造方法を提供する。
 第5の発明は、第1~第4の発明のいずれかにおいて、前記破砕・粉砕工程前の有機性廃棄物を分別し、分別された各々の有機性廃棄物ごとに、前記破砕・粉砕する工程と、前記吸水・固化する工程を行った後、分別された各々の固化した有機性廃棄物を混合する工程、を含み、前記微粒子に粉末化する工程において、前記混合する工程で混合した固化した有機性廃棄物を乾燥し、微粒子に粉末化する生分解性プラスチック製品の製造方法を提供する。
 第6の発明は、第1~第5の発明のいずれかにおいて、前記ポリ乳酸化する工程には、ポリ乳酸化された有機性廃棄物にセルロースを加える工程が含まれる生分解性プラスチック製品の製造方法を提供する。
 第7の発明は、第1~第6の発明のいずれかにおいて、前記生分解性ブラスチック製品とは、包装用プラスチック製品、ペットボトル、食品トレイ、フィルム製品、マルチフィルムである生分解性プラスチック製品の製造方法を提供する。
 第8の発明は、生分解性プラスチック製品の製造を行う製造システムであって、有機性廃棄物を破砕・粉砕する装置と、破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入し、攪拌して吸水・固化する装置と、固化した有機性廃棄物を乾燥し、微粒子に粉末化する装置と、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する装置と、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する成形装置と、を備える生分解性プラスチック製品の製造システムを提供する。
 本発明によれば、有機性廃棄物を破砕・粉砕し、破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する。この固化した有機性廃棄物を乾燥し、微粒子に粉末化し、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する。そして、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造することとした。
 このため、任意の有機物を原料として、通常の土壌環境で短期間に生分解される生分解性プラスチック製品を製造することができる。
本発明の一実施形態による生分解性プラスチック製品の製造フローの一例を示すフローチャートである。 前記実施形態の生分解性プラスチック製品の製造システムの全体構成を示す概念図である。 前記実施形態で製造した包装容器の一例を示す図である。 前記実施形態で製造したフィルム袋の一例を示す図である。 前記実施形態の微粒子に粉末化する工程で微粉末化した微粉末の一例を示す図である。
 本発明は、多様な有機性廃棄物、例えば、米・麦・芋・蕎麦等の焼酎粕、米清酒粕、おから、米糠、ビール粕、サトウキビ粕、トウモロコシ、ジャガイモ、各種穀物等の100%天然資源をポリ乳酸化(PLA)した土壌還元性生分解性プラスチック製品の製造技術である。ポリ乳酸は、原料素材の澱粉質に含まれるブドウ糖(グルコース)、糖分(スクロース)に乳酸菌を作用させると、その発酵作用で乳酸が得られる植物由来の合成プラスチックである。
 また、木・竹・紙等から得られる繊維質材料の有機性廃棄物から取り出すセルロースナノファイバー(CNF)を混合して成形する生分解性プラスチック製品の製造技術である。ポリ乳酸化(PLA)した生分解性プラスチック材料と、セルロースナノファイバー(CNF)を比例配分することにより、強度・厚みの異なる生分解性プラスチックができるため、製品(用途)に応じて比例配分を変更することで、多様な製品をつくることができる。
 本発明の技術で製造された生分解性プラスチック製品は、例えば、常温や65℃以上の高温で溶解する水溶性を備え、最終的には、農業用土壌等において、微生物により水と二酸化炭素に分解される。
 <基本的な製造方法>・・・図1は、本発明の一実施形態の生分解性プラスチック製品の基本的な製造方法のフローチャートである。まず、有機性廃棄物を破砕・粉砕する(ステップS10)。有機性廃棄物は、米・麦・芋・蕎麦等の焼酎粕、米清酒粕、おから、米糠、ビール粕、サトウキビ粕、トウモロコシ、ジャガイモ、各種穀物等の100%天然資源である。
 次に、破砕・粉砕した有機性廃棄物に無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する(ステップS12)。吸水は、含水率の高い焼酎粕、ビール粕で行い、無機処理剤を投入して無害化後、必要に応じて副資材と混合し、ステップS14において、固化した有機性廃棄物を乾燥し、微粒子に粉末化する。粉砕機で粉砕すると、大きさは、例えば、約40ミクロン以上となる。
 無機処理剤は、例えば、ケイ素等(珊瑚)の鉱物を含んだ粉末であって、それを水分の多い有機性廃棄物に入れて攪拌すると、粉末が水を吸収するため、それを乾燥することで固化する。ケイ素は、肥料として好適なため、製造した生分解性プラスチック製品を埋めた後に、土壌の栄養となる。例えば、焼酎は、93%が水、7%が養分と言われており、いかに水分を抜くかが重要であるが、本実施例の無機処理剤によって水分を吸収することで、乾燥・固化が可能となる。副資材は、この際に、元の原料(有機性廃棄物)に、澱粉質が足りない場合に入れるもので、例えば、米糠、おからなどである。副資材は、原料によって、澱粉質の量が異なるので、調整して加える。
 次に、ステップS14で微粒子に粉末化した有機性廃棄物をポリ乳酸(PLA)化する(ステップS16)。ポリ乳酸は、原料素材の澱粉質に含まれるブドウ糖(グルコース)、糖分(スクロース)に乳酸菌を作用させると、その発酵作用で乳酸が得られる植物由来の合成プラスチックである。
 次に、ステップS18で、ポリ乳酸(PLA)化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する。このとき、ポリ乳酸化(PLA)した生分解性プラスチック材料と、セルロースナノファイバー(CNF)を混合するステップS20を設け、混合物を原料として成形装置で生分解性プラスチック製品を成形することで、強度・厚みの異なる生分解性プラスチックができる。そのため、製品(用途)に応じて比例配分を変更することで、多様な製品をつくることができる。
 <生分解性プラスチック製品の製造システムの構成>・・・次に、図2を参照して、本実施形態の生分解性プラスチック製品の製造システムの全体構成について説明する。図2は、製造システムの全体構成を示す概念図である。本実施形態の製造システム100は、有機性廃棄物の無害化・無排水処理・混合・攪拌を行う一次処理工程20と、原料化工程32及び製品化工程40を含む二次処理工程30を含む。
 まず、一次処理工程20の前に、複数種類の有機性廃棄物が分別され、分別された各有機性廃棄物毎に、一次処理が行われる。例えば、有機性廃棄物10Aは、芋・米・そば等の焼酎醸造の廃液(粕)、であり、無機処理剤12を加えて攪拌することで、吸水・固化する(吸水・固化工程24A)。また、有機性廃棄物10Bは、清酒醸造、ビール製造の粕であって、無機処理剤12を加えて攪拌することで、吸水・固化する(吸水・固化工程24B)。また、有機性廃棄物10Cは、その他の有機性廃棄物(おからや米糠)であり、無機処理剤12を加えて攪拌することで、吸水・固化する(吸水・固化工程24C)。
 以上の吸水・固化工程24A~24Cにおいて、元の原料(有機性廃棄物)に、澱粉質が足りない場合には、必要に応じて、米糠、おからなどの副資材14を入れる。副資材14は、原料によって、澱粉質の量が異なるので、調整して加える。
 以上のようにして吸水・固化された有機性廃棄物は、例えば、生分解性プラスチック製品製造工場50へ運ばれ、二次処理工程30にうつる。まず、原料化工程32において、有機性廃棄物10A~10Cを乾燥し、粉末・微粒子化する(粉末・微粒子化工程34)。そして、微粒子化した有機性廃棄物をポリ乳酸(PLA)化する(ポリ乳酸化工程36)。
 また、必要に応じて、原料化工程32では、竹炭や木材等の繊維質の有機性廃棄物10Dからセルロースナノファイバー(CNF)を取り出し、ポリ乳酸(PLA)化した有機性廃棄物と混合する(セルロース+ポリ乳酸化廃棄物混合工程38)。セルロースナノファイバーは、ポリ乳酸化有機性廃棄物との配合量を変えることにより、強度や厚みの異なる多様な生分解性プラスチック製品を作ることができる。
 そして、製品化工程40にうつり、成分調整を行い(成分調整工程42)、所定の成形機で成形し(成形工程44)、完成品60の生分解性プラスチック製品を得る。なお、成形は、成形する製品に適した公知の各種の成形手法(Tダイ法、真空・圧空成形、プレス成形、ブロー成形、射出成形など)を採用することができる。
 完成品60の生分解性プラスチック製品のパターンとしては、例えば、パターンAとして、各種生分解性プラスチック製品(ペットボトル、各種生分解性レジ袋、包装用プラスチック製品)、パターンBとして、食品製造・加工業・スーパーマーケット・デパート用製品(食品包装用トレイ、使い捨て弁当箱等)、パターンCとして、各種農業用生分解性プラスチック(マルチフィルム、ポット、各種ハウスの生分解性プラスチック等)がある。
 図3には、本実施形態の製造システム100で製造した包装容器62の一例が示され、図4には、本実施形態の製造システム100で製造したフィルム袋64の一例が示されている。図5は、本実施形態の微粒子に粉末化する工程で微粒子化した粉末の一例を示し、微粒子66Aは、原料が芋焼酎粕であり、微粒子66Bは、原料が米焼酎粕の場合の一例である。
 <効果>・・・以上説明した実施形態によれば、有機性廃棄物を破砕・粉砕し、破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する。この固化した有機性廃棄物を乾燥し、微粒子に粉末化し、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する。そして、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造することとした。このため、任意の有機物を原料として、通常の土壌環境で短期間に生分解される生分解性プラスチック製品を製造することができる。
 なお、上述した実施形態は、一例であり、同様の効果を奏する範囲内で適宜変更が可能である。例えば、前記実施形態で示した有機性廃棄物は一例であり、例えば、海藻、食品廃棄物、清酒の米粕、砂糖きびなど、植物性の有機廃棄物全般が原料として利用可能である。また、前記実施形態では、ポリ乳酸化した有機性廃棄物に、セルロールナノファイバーを混合して成形しているが、これも一例であり、セルロースナノファイバーは、必要に応じて混合すればよく、また、混合割合も、用途に応じて適宜変更してよい。また、前記実施例で示した成形手法も一例であり、公知の各種のプラスチック成形手法が適用可能である。更に上述した製品は一例であって、多様な生分解性プラスチック製品を製造することができる。
 本発明によれば、有機性廃棄物を破砕・粉砕し、破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する。この固化した有機性廃棄物を乾燥し、微粒子に粉末化し、微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する。そして、ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造することとした。
 このため、任意の有機物を原料として、通常の土壌環境で短期間に生分解される生分解性プラスチック製品の製造方法及びその製造システムとして好適である。
 10A~10D:有機性廃棄物
 12:処理剤
 14:副資材
 20:一次処理工程
 22:無害化・無排水処理・混合・攪拌過程
 24A~24C:吸水・固化工程
 30:二次処理工程
 32:原料化工程
 34:粉末・微粒子化工程
 36:ポリ乳酸化工程
 38:ポリ乳酸化された有機性廃棄物とセルロースナノファイバーを混合する工程
 40:製品化工程
 42:成分調整工程
 44:成形工程
 50:生分解性プラスチック製品製造工場
 60:完成品
 62:包装容器
 64:フィルム袋
 66A、66B:微粉末
100:製造システム
 

Claims (8)

  1.  生分解性プラスチック製品の製造方法であって、
     有機性廃棄物を破砕・粉砕する工程と、
     破砕・粉砕した有機性廃棄物に、ケイ素等の無機処理剤及び吸水性有機物を投入して攪拌し、吸水・固化する工程と、
     固化した有機性廃棄物を乾燥し、微粒子に粉末化する工程と、
     微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する工程と、
     ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する成形工程と、を備える生分解性プラスチック製品の製造方法。
  2.  前記固化する工程において、所定の副資材とともに攪拌する請求項1に記載の生分解性プラスチック製品の製造方法。
  3.  前記無機処理剤は、ケイ素を含んだ粉末である請求項1又は2に記載の生分解性プラスチック製品の製造方法。
  4.  前記ポリ乳酸化された有機性廃棄物に、セルロースナノファイバーを混合する工程、
    を含み、
     ポリ乳酸化された有機性廃棄物とセルロースナノファイバーの混合物を原料として、前記成形工程において、生分解性プラスチック製品を製造する請求項1~3のいずれか一項に記載の生分解性プラスチック製品の製造方法。
  5.  前記破砕・粉砕する工程前の有機性廃棄物を分別し、分別された各々の有機性廃棄物ごとに、前記破砕・粉砕する工程と、前記吸水・固化する工程を行った後、
     分別された各々の固化した有機性廃棄物を混合する工程、
    を含み、
     前記微粒子に粉末化する工程において、前記混合する工程で混合した固化した有機性廃棄物を乾燥し、微粒子に粉末化する請求項1~4のいずれか一項に記載の生分解性プラスチック製品の製造方法。
  6.  前記ポリ乳酸化する工程には、ポリ乳酸化された有機性廃棄物にセルロースを加える工程が含まれる請求項1~5のいずれか一項に記載の生分解性プラスチック製品の製造方法。
  7.  前記生分解性ブラスチック製品とは、包装用プラスチック製品、ペットボトル、食品トレイ、フィルム製品、マルチフィルムである請求項1~6のいずれか一項に記載の生分解性プラスチック製品の製造方法。
  8.  生分解性プラスチック製品の製造を行う製造システムであって、
     有機性廃棄物を破砕・粉砕する装置と、
     破砕・粉砕した有機性廃棄物に、無機処理剤及び吸水性有機物を投入し、攪拌して吸水・固化する装置と、
     固化した有機性廃棄物を乾燥し、微粒子に粉末化する装置と、
     微粒子に粉末化した有機性廃棄物を、ポリ乳酸化する装置と、
     ポリ乳酸化された有機性廃棄物を原料として、成形装置で生分解性プラスチック製品を製造する成形装置と、
    を備える生分解性プラスチック製品の製造システム。
PCT/JP2022/013736 2021-06-09 2022-03-23 生分解性プラスチック製品の製造方法及び製造システム WO2022259698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22819888.3A EP4155000A4 (en) 2021-06-09 2022-03-23 METHOD FOR PRODUCING BIODEGRADABLE PLASTIC PRODUCT AND PRODUCTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-096844 2021-06-09
JP2021096844A JP7058822B1 (ja) 2021-06-09 2021-06-09 生分解性プラスチック製品の製造方法及び製造システム

Publications (1)

Publication Number Publication Date
WO2022259698A1 true WO2022259698A1 (ja) 2022-12-15

Family

ID=81378502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013736 WO2022259698A1 (ja) 2021-06-09 2022-03-23 生分解性プラスチック製品の製造方法及び製造システム

Country Status (3)

Country Link
EP (1) EP4155000A4 (ja)
JP (1) JP7058822B1 (ja)
WO (1) WO2022259698A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192822A (ja) * 1997-01-14 1998-07-28 Mitsubishi Materials Corp 改良された生ごみ処理用配合物
JPH1157682A (ja) * 1997-08-25 1999-03-02 Masayuki Matsumoto 焼酎蒸留カスの固形化方法
JP2001205648A (ja) * 2000-01-31 2001-07-31 Gun Ei Chem Ind Co Ltd キャベツ成形物の製造方法及び用途
JP2002028606A (ja) * 2000-07-13 2002-01-29 Kyushu Inst Of Technology 生ゴミから乳酸発酵原料を製造する方法及びその装置
JP2006305540A (ja) * 2005-05-02 2006-11-09 Toru Ueda 稲藁等からの高効率乳酸・コハク酸生産方法及び土壌改良材生産方法
JP2006312157A (ja) * 2005-05-04 2006-11-16 Toru Ueda 稲藁等からの高効率乳酸・コハク酸生産方法及び石膏系土壌改良材・建築用資材生産方法
JP2010188230A (ja) * 2009-02-16 2010-09-02 Nippon Sheet Glass Co Ltd バイオマス原料の処理方法
JP2011160753A (ja) * 2010-02-12 2011-08-25 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192822A (ja) * 1997-01-14 1998-07-28 Mitsubishi Materials Corp 改良された生ごみ処理用配合物
JPH1157682A (ja) * 1997-08-25 1999-03-02 Masayuki Matsumoto 焼酎蒸留カスの固形化方法
JP2001205648A (ja) * 2000-01-31 2001-07-31 Gun Ei Chem Ind Co Ltd キャベツ成形物の製造方法及び用途
JP2002028606A (ja) * 2000-07-13 2002-01-29 Kyushu Inst Of Technology 生ゴミから乳酸発酵原料を製造する方法及びその装置
JP2006305540A (ja) * 2005-05-02 2006-11-09 Toru Ueda 稲藁等からの高効率乳酸・コハク酸生産方法及び土壌改良材生産方法
JP2006312157A (ja) * 2005-05-04 2006-11-16 Toru Ueda 稲藁等からの高効率乳酸・コハク酸生産方法及び石膏系土壌改良材・建築用資材生産方法
JP2010188230A (ja) * 2009-02-16 2010-09-02 Nippon Sheet Glass Co Ltd バイオマス原料の処理方法
JP2011160753A (ja) * 2010-02-12 2011-08-25 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Is it true that bioplastics are environment-friendly?", NATIONAL GEOGRAPHIC, 29 May 2021 (2021-05-29), Retrieved from the Internet <URL:https://natgeo.nikkeibp.co.jp/atcl/news/18/111900500>
"Utilization of lees (e.g. shochu lees) generated in shochu manufacturing process", FOOD AND CONTAINER, vol. 57, November 2016 (2016-11-01)
See also references of EP4155000A4

Also Published As

Publication number Publication date
EP4155000A4 (en) 2023-12-06
JP2022188637A (ja) 2022-12-21
EP4155000A1 (en) 2023-03-29
JP7058822B1 (ja) 2022-04-25

Similar Documents

Publication Publication Date Title
JP6517142B2 (ja) 溶融処理された、ヤシ科に属する木の葉鞘に由来するポリマー組成物
WO2013141687A1 (en) Pulp composition, pulp article(s) and preparation process thereof
WO2013141686A1 (en) Pulp article(s) comprising protease and preparation process thereof
WO2007142161A1 (ja) 固形燃料及びその製造方法
WO2022259698A1 (ja) 生分解性プラスチック製品の製造方法及び製造システム
KR20020090679A (ko) 생분해성 재료 조성물과 이를 이용한 생분해성 재료제성형품 제조 방법
Rai et al. Agriculture waste to bioplastics: A perfect substitution of plastics
KR102058394B1 (ko) 친환경 바이오 필름 봉투의 제조방법 및 이로부터 수득된 필름 봉투
JP4264468B2 (ja) 生分解性樹脂組成物
KR20070102449A (ko) 음식물 쓰레기를 이용한 유기질 비료의 제조방법
JP2005023262A (ja) 生分解性プラスチック及びその製造方法
KR101513992B1 (ko) 음식물 쓰레기를 이용한 사료 및 퇴비 제조 시스템 및 제조방법
JP2002256081A (ja) 食品残渣炭混合生分解性プラスチック成形品
JP6404891B2 (ja) ビール粕を含有するバイオ複合プラスチック及びその製造方法
JP3898474B2 (ja) 動植物性廃棄物の資源化方法
KR20130042749A (ko) 친환경 천연재료를 이용한 생분해성 일회용 용기 및 그 제조 방법
KR100545045B1 (ko) 폐지를 이용한 생분해성 재료제 성형품 제조 방법
KR101169735B1 (ko) 왕겨, 쌀겨 및 생분해성 전분을 주성분으로 하는 친환경 육묘용 포트 및 그 제조 방법
JP2004276463A (ja) 器類
KR20130042748A (ko) 생분해성 일회용 용기 제작을 위한 친환경 천연재료를 이용한 조성물
KR100979734B1 (ko) 생분해성 조성물의 제조방법, 그리고 제조방법을 통해 제조된 생분해성 조성물을 이용한 용기의 제조방법
Funabashi et al. Method of producing biodegradable reference material and its biodegradability based on international standard evaluation method (ISO 14855-2)
CN102220024B (zh) 可降解性包装材料制备方法
JP3223161U (ja) 茸栽培用の容器または袋
TWI812330B (zh) 廚餘分解套組及廚餘處理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022819888

Country of ref document: EP

Effective date: 20221221

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE