WO2022258080A1 - 一种钢板带悬桥及其施工方法 - Google Patents

一种钢板带悬桥及其施工方法 Download PDF

Info

Publication number
WO2022258080A1
WO2022258080A1 PCT/CN2022/107546 CN2022107546W WO2022258080A1 WO 2022258080 A1 WO2022258080 A1 WO 2022258080A1 CN 2022107546 W CN2022107546 W CN 2022107546W WO 2022258080 A1 WO2022258080 A1 WO 2022258080A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
steel
steel plate
anchor
strip
Prior art date
Application number
PCT/CN2022/107546
Other languages
English (en)
French (fr)
Inventor
张义
董华
韩阳
江斌
曹正平
衡震
Original Assignee
中建三局第一建设工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建三局第一建设工程有限责任公司 filed Critical 中建三局第一建设工程有限责任公司
Publication of WO2022258080A1 publication Critical patent/WO2022258080A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the invention belongs to the technical field of construction, and in particular relates to a steel plate strip suspension bridge and a construction method thereof.
  • Suspension bridges also known as suspension bridges or suspension bridges, mainly include cables, suspension rods and bridge decks.
  • the cables are used as the main load-bearing components. Connect the deck.
  • suspension bridges include highway suspension bridges and landscape pedestrian suspension bridges.
  • rigid beams also known as stiffening beams.
  • Large-scale highway suspension bridges will directly use box girders as rigid girders to increase the stiffness of the bridge deck, but the corresponding structures will be more complex, with higher construction costs and larger volumes.
  • the landscape pedestrian suspension bridge usually does not set rigid beams or only a small number of rigid beams. Compared with highway suspension bridges, its structure is simpler and the construction cost is low. It increases the visual cumbersomeness and affects the viewing effect.
  • highway suspension bridges and landscape pedestrian suspension bridges have common disadvantages: low rigidity, which is prone to large deflection and vibration under load. Especially for landscape pedestrian suspension bridges, the vibration and disturbance are relatively large under load, and there are certain safety hazards.
  • the object of the present invention is to overcome the problems of large volume and complicated structure of the existing suspension bridge, and provide a steel plate suspension bridge, comprising:
  • bridge body comprising at least one steel strip
  • each conversion connection device includes an anchor connector and a steel plate belt connector, and the anchor connector is connected to the anchor cable device, The steel strip connector is connected to the end of the steel strip.
  • the bridge body further includes two first connecting pieces respectively connected to the two ends of the steel strip, and the steel strip connecting piece of each conversion connection device is connected to one first connecting piece.
  • the bridge body also includes a concrete prefabricated slab arranged on the upper surface of the steel plate belt.
  • each steel strip extends along the span direction of the bridge body, and there is a gap between at least two steel strips.
  • the plurality of steel strips can not only reduce the weight of the bridge body, but also disperse the vibration area of the bridge body.
  • the material of the steel strip is Q690D steel.
  • the anchor connector includes an anchor installation plate, which is used to connect with the anchor cable device;
  • the steel plate belt connector includes a web and a wing plate, and the web and the anchor installation plate connected, the web is connected to the wing plate, and the wing plate is used to be connected to the end of the steel strip.
  • the anchor cable device is connected through the anchor installation plate, so that the construction of the anchor cable device is more operable and more convenient.
  • anchor connector also includes:
  • An anchoring limiting plate is arranged correspondingly to the anchoring installation plate, the anchoring limiting plate is connected to the anchoring stiffening plate, the anchoring limiting plate is provided with a limiting hole, and the anchoring installation plate is provided with a penetrating holes, and the limiting holes are set corresponding to the piercing holes.
  • the anchoring stiffening plate improves the strength of the anchoring installation plate, reduces the deformation of the anchoring installation plate, and improves the connection reliability between the steel plate belt of the bridge body and the anchor cable device.
  • the anchor cable device is connected with the anchor installation plate after passing through the limit hole, and the limit hole plays a role in pre-positioning the anchor cable device, improving the installation accuracy of the anchor cable device, and ensuring that the force of each anchor cable device and the anchor installation plate is balanced.
  • steel strip connector also includes:
  • the connecting cover plate is set at a distance from the wing plate
  • connection cover plate disposed between the connection cover plate and the wing plate
  • a fastener is connected to the connection cover and the wing, and the fastener is used to fix the end of the steel strip between the connection cover and the wing.
  • the connecting cover plate can not only disperse the force exerted by the steel strip on the wing plate, but also limit the jumping or movement of the end of the steel strip along the direction perpendicular to its plate surface.
  • the wing plate connection is better.
  • the filling plate can not only limit the extension and displacement of the end of the steel strip along its length direction, but also relieve the pressure on the fasteners, so that the end of the steel strip can be reliably connected to the wing plate.
  • each conversion connection device further includes a first pullout-resistant member and/or a second pullout-resistant member, the first pullout-resistant member is arranged on the anchor connector and/or the steel strip connector, The second anti-pull member is arranged on the steel strip connecting member.
  • the transfer connection device can be effectively fixed on the cap of the bridge body, and the transfer of the force applied by the steel strip can be transferred while ensuring the connection stability of the conversion connection device itself. to the platform.
  • the conversion connection device is stably connected with the bridge abutment of the bridge body. The connection can reduce the impact of steel belt disturbance or vibration on the anchor cable device.
  • the beneficial effect of the steel plate belt suspension bridge of the present invention is that the steel plate belt replaces the cables, suspension rods and bridge decks of the existing suspension bridge, simplifies the structure of the suspension bridge body, and reduces the volume. Because there are no suspenders and cables above the steel belt, it is more aesthetic and ornamental than the existing landscape pedestrian suspension bridge. Compared with the existing highway suspension bridge, the amount of steel used is small, which reduces the construction cost and facilitates later maintenance. It is convenient and economical.
  • two conversion connection devices are used to effectively connect the anchor cable device and the end of the steel strip. The anchor cable device is not affected by the disturbance and vibration of the steel strip under load, which ensures the safety of the connection between the steel strip and the anchor cable device. and reliability, so that the bridge body is always safely and stably anchored on both banks.
  • the present invention also provides a construction method of a steel plate belt suspension bridge, comprising the following steps:
  • Step 1 Construction of the bridge body: Lay or hoist steel plate strips along the span direction of the bridge body to be constructed, and construct anchor cable devices on both sides of the bridge body to be constructed;
  • Step 2 Assemble two conversion connection devices: connect and fix the anchor connector and the steel strip connector of each conversion connection device;
  • Step 3 Connect the steel plate strip connector to the end of the steel plate strip, and connect the anchor connector to the anchor cable device.
  • the beneficial effects of the construction method of the steel plate suspension bridge of the present invention are: the steel plate belt is used as the bridge deck of the suspension bridge, the construction of cables and suspenders is no longer required, the construction process of the bridge body is simplified, the construction cost is reduced, and the construction efficiency is improved. efficiency.
  • a conversion connection device is used to connect the anchor cable device with the steel plate belt, so that the conversion connection device is used as a stress transition piece, the construction of the anchor cable device is more operable, the construction of the anchor cable device is more convenient, and the anchor cable device is not affected by the load of the steel plate belt. The impact of disturbance and vibration ensures the safety and reliability of the connection between the steel strip and the anchor cable device.
  • Fig. 1 is a front structural schematic diagram of a steel plate belt suspension bridge of the present invention.
  • Fig. 2 is a side view cross-sectional structural schematic diagram of the steel strip and the bridge deck of the steel strip suspension bridge in Fig. 1 .
  • Fig. 3 is a three-dimensional structural schematic diagram of the conversion and connection device of the steel plate belt suspension bridge in Fig. 1 .
  • FIG. 4 is a schematic perspective view of the conversion connection device in FIG. 3 with a second side plate removed.
  • Fig. 5 is a front structural schematic view of the conversion connecting device in Fig. 4 connected with the anchor cable device and the first connecting piece.
  • Fig. 6 is a top structural schematic view of the conversion connecting device in Fig. 3 connected with the anchor cable device and the first connecting piece.
  • FIG. 7 is a schematic top view of the conversion connection device in FIG. 6 after the second top plate, the wing plate and the connected first connecting piece are removed.
  • FIG. 8 is a front structural schematic view of the web of the conversion connection device in FIG. 5 .
  • Fig. 9 is a top structural schematic diagram of a row of anchoring chambers in Fig. 5 .
  • FIG. 10 is a schematic top view of the wing plate in FIG. 5 .
  • FIG. 11 is a schematic top view of the filler plate in FIG. 5 .
  • FIG. 12 is a schematic top view of the connection cover plate in FIG. 5 .
  • Fig. 13 is a schematic diagram of the tensioning sequence after the anchor cable device is installed in the conversion connection device of the steel plate suspension bridge of the present invention.
  • Fig. 14 is a schematic diagram of the stress of the calculation and analysis model of the conversion connection device of the steel belt suspension bridge of the present invention under load.
  • Fig. 15 is a schematic diagram of the displacement of the calculation and analysis model of the conversion connection device of the steel strip suspension bridge of the present invention under load.
  • Fig. 16 is a stress diagram of the steel belt suspension bridge of the present invention under the action of dead load and live load.
  • Fig. 17 is a stress diagram of the steel strip suspension bridge of the present invention under wind load.
  • Fig. 18 is a stress diagram of the steel strip suspension bridge of the present invention under temperature load.
  • a steel plate suspension bridge as shown in Figure 1 and Figure 2 including: bridge body, anchor cable device 2, conversion connection device, abutment 7, first cap 8, first bridge pile 9, second cap 10.
  • each conversion connection device includes an anchor connector 3 and a steel strip connector 4, the anchor connector 3 is connected to the anchor cable device 2, and the steel strip connector 4 is connected to the steel strip 1 end connection.
  • the bridge body includes a steel plate strip 1 , a first connector 1.1 and a prefabricated concrete slab 19 .
  • the two ends of the steel strip 1 are respectively connected with two first connecting pieces 1.1, and the steel strip connecting piece 4 of each conversion connecting device is connected with one first connecting piece 1.1.
  • the steel strip 1 is laid along the span direction of the steel strip suspension bridge to be constructed, and the upper surface of the steel strip 1 can be directly used as a bridge deck, or the upper surface of the steel strip 1 is additionally provided with a bridge deck.
  • the upper end surface of the steel plate strip 1 is laid with a concrete prefabricated slab 19 as a bridge deck.
  • there are two steel strips 1 and the two steel strips 1 are arranged with a distance therebetween. It can be understood that the number of steel strips can also be one or more than two, depending on actual cost requirements.
  • the material of the steel strip 1 is Q690D high-strength steel.
  • the first connecting piece 1.1 can be a separate structure connected to the steel strip 1, or it can be an anchoring area at the end of the steel strip 1.
  • the first connecting piece 1.1 is connected to the end of the steel strip 1. connectors.
  • two steel strips 1 are arranged in parallel and at intervals, and the ends of the two steel strips 1 are connected with a first connector 1.1, and are connected to the steel strip connector 4 through the first connector 1.1.
  • two spaced steel strips 1 are lighter in weight than a monolithic steel strip, and the vibration area of the bridge body is dispersed.
  • the first steel strip 1 is subjected to a force in the height direction
  • the amplitude of the second steel strip 1 in the height direction is relatively small
  • the amplitude of the bridge deck or deck is smaller than that of the first steel strip 1, ensuring the stability of the bridge deck or deck.
  • the precast concrete slab 19 and the steel strip 1 are filled with a rubber layer or laid with a rubber pad 12 or a cushion of other materials.
  • the precast concrete slab 19, the rubber pad 12 and the steel strip 1 are connected and fixed by mounting bolts 13 or other connecting structures.
  • railings 14 may also be provided on both sides of the prefabricated concrete slab 19 .
  • a handrail 15 may be provided on the railing 14 .
  • the anchor cable device 2 is an existing anchor device, for example, the anchor cable device 2 may be an anchor cable or an anchor rod or a cable rod assembly. After the steel strip 1 is laid along the span direction of the steel strip suspension bridge to be constructed, the position or size of the first connecting piece 1.1 of the steel strip 1 is determined according to the surrounding environment and the design of the steel strip suspension bridge, and construction is carried out on both sides of the steel strip suspension bridge.
  • the anchor cable device 2, the anchor cable device 2 can be anchored in the mountain rock, and can also be anchored in the pre-construction structure on both sides of the steel plate suspension bridge, the anchor cable device 2 and the first connecting piece 1.1 of the steel plate belt 1 pass through the conversion connection device connect.
  • the construction of the anchor cable device 2 in this embodiment adopts the existing construction method.
  • a first bridge pile 9 and a second bridge pile 11 are also provided below the steel plate belt suspension bridge, wherein the first bridge pile 9 is below the first connecting piece 1.1, and the second bridge pile 11 It is located below the steel strip 1.
  • a first cap 8 is fixed on the upper end of the first bridge pile 9
  • a second cap 10 is fixed on the upper end of the second bridge pile 11 .
  • the upper end of the first platform 8 is fixedly connected with an abutment 7 and a conversion connection device, and the conversion connection device is also fixedly connected with the abutment 7, and the conversion connection device is located on the side of the abutment 7 away from the steel plate strip 1, so that the conversion connection device and the abutment 7 are fixedly connected.
  • the conversion connection device has a horizontal displacement under the tension of the steel strip 1 .
  • the abutment 7 and the first cap 8 can be integrally cast and formed, and the construction method of the first bridge pile 9 and the second bridge pile 11 can adopt the prior art.
  • a diagonal brace and a connecting plate 16 are connected to the second platform 10 .
  • the braces may include brace steel struts 17 and brace heads 18 .
  • One end of the connecting plate 16 is fixedly connected to the second platform 10 , and the other end of the connecting plate 16 is fixedly connected to the first platform 8 .
  • the top of the brace head 18 is fixedly connected with the steel strip 1 for supporting the steel strip 1 .
  • the top of the brace steel pillar 17 is connected with the brace head 18 , and the end of the brace steel pillar 17 away from the brace head 18 is fixedly connected with the second platform 10 .
  • the diagonal bracing divides the steel strip 1 into main span and auxiliary span along its span direction to disperse and reduce the axial force, shear force and stress of the steel strip suspension bridge, wherein the length of the main span is longer than that of the auxiliary span Length, for example, the length of the steel plate suspension bridge in the present embodiment is 88.1 meters, the span of the main span section is 63.8 meters, and the span of the auxiliary span section is 24.3 meters.
  • the thickness of the steel strip 1 is 0.04 meters, and the steel strip 1 is Q690D high-strength steel.
  • the width of the concrete prefabricated slab 19 is preferably 2.7 meters, and the widths of the two steel strips 1 are the same, both being 0.75 meters.
  • Figure 16 is the stress diagram of the steel belt suspension bridge under dead load and live load
  • Figure 17 is the stress diagram of the steel belt suspension bridge under wind load
  • Figure 18 is the stress diagram of the steel belt suspension bridge under temperature load. It can be seen from Figure 16 to Figure 18 that the maximum stress under dead load is 123.1MPa; the maximum stress caused by crowd action (i.e.
  • the fatigue check of the welded part of the steel plate strip is carried out.
  • the maximum stress amplitude of the structure is 73.3MPa
  • the constant amplitude fatigue allowable stress is given by the formula
  • the calculation is 144MPa, which shows that the structure meets the fatigue requirements.
  • the conversion connection device includes an anchor connector 3 , a steel strip connector 4 and an anti-pull member.
  • the anchor connector 3 is used to connect the anchor cable device 2
  • the steel strip connector 4 is used to connect the first connector 1.1 of the steel strip 1
  • the anti-pull piece is used to install and fix the conversion connection device on the abutment 7 and the first cap 8, while ensuring the connection stability of the conversion connection device itself, the force applied by the steel strip 1 is transferred to the bearing platform, which can greatly reduce the impact of the steel strip 1 disturbance or vibration on the anchor cable device 2.
  • the anchor connector 3 includes an anchor mounting plate 3.1, an anchor limiting plate 3.2, an anchor stiffening plate 3.3, an anchor cavity 3.4, an anchor chamber 3.5, a first bottom plate 3.6, a first top plate 3.7, and two first side plates 3.8.
  • the steel strip connector 4 includes a web 4.1, a wing plate 4.2, a second top plate 4.3, a second bottom plate 4.4, two second side plates 4.5, a web stiffener 4.6, a first connecting bolt 4.7, a second connecting bolt 4.8, Connect cover plate 4.9 and fill plate 4.10.
  • the anti-pull piece includes a first anti-pull piece 5 and a second anti-pull piece 6 .
  • the first base plate 3.6 is set horizontally
  • the bottom of the anchoring mounting plate 3.1 is welded and fixed to the first base plate 3.6
  • the anchoring mounting plate 3.1 is set obliquely.
  • the inclination angle of the anchoring mounting plate 3.1 and the steel strip Corresponding to the setting angle of the anchor cable device 2 of the suspended bridge, the anchor installation plate 3.1 is perpendicular to the anchor cable device 2 as much as possible.
  • the center of the anchor mounting plate 3.1 is welded and fixed to the web plate 4.1.
  • the anchoring limiting plate 3.2 is set parallel to the anchoring mounting plate 3.1, and the distance between the anchoring limiting plate 3.2 is set on the side of the anchoring mounting plate 3.1 facing away from the web 4.1, and the bottom of the anchoring limiting plate 3.2 is welded and fixed to the first bottom plate 3.6.
  • the anchoring limiting plate 3.2 is provided with a limiting hole 3.2.1 for the anchor cable device 2 to pass through to limit the radial displacement of the anchoring cable device 2, and the anchoring mounting plate 3.1 is provided with a piercing hole, and the limiting hole 3.2.1 Corresponding to the piercing hole, when the anchor cable device 2 is installed, it passes through the limiting hole 3.2.1 and the piercing hole in sequence.
  • the first top plate 3.7 is installed obliquely, one end of the first top plate 3.7 is welded and fixed to the top of the anchor mounting plate 3.1, and the other end of the first top plate 3.7 is welded and fixed to the top of the anchor limit plate 3.2.
  • the first top plate 3.7 Perpendicular to the anchor mounting plate 3.1 and the anchor limiting plate 3.2.
  • Two first side plates 3.8 are erected, one of the first side plates 3.8 is welded to the same side of the anchor mounting plate 3.1 and the anchor limit plate 3.2, and the other first side plate 3.8 is welded to the anchor mounting plate 3.1 and The other side of the same side of the anchor limiting plate 3.2 is welded and fixed.
  • the first bottom plate 3.6, the first top plate 3.7, the anchor mounting plate 3.1, the anchor limit plate 3.2 and the two first side plates 3.8 form a fully enclosed frame structure.
  • the first bottom plate 3.6, the first top plate 3.7, The anchor installation plate 3.1 and the anchor limit plate 3.2 form a semi-closed frame structure.
  • the inner cavity of the frame structure is formed with an anchoring cavity 3.4.
  • the anchor stiffening plate 3.3 is set in the anchor cavity 3.4 or the anchor stiffening plate 3.3 is set between the anchor mounting plate 3.1 and the anchor limiting plate 3.2, the anchor stiffening plate 3.3 is perpendicular to the anchor mounting plate 3.1 and the anchor limiting plate 3.2, and the anchor stiffening plate 3.3 is welded and fixed with the anchor limit plate 3.2 and the anchor installation plate 3.1.
  • anchoring stiffening plates 3.3 are arranged in parallel and spaced along the height direction of the anchoring installation plate 3.1, and two adjacent anchoring stiffening plates 3.3 divide the anchoring cavity 3.4 into an anchoring chamber 3.5 with a smaller space.
  • the corresponding limit hole 3.2.1 and the piercing hole communicate with the same anchoring chamber 3.5, the installed anchor cable device 2 passes through the anchoring chamber 3.5, and the strength of the anchoring installation plate 3.1 corresponding to the anchoring chamber 3.5 is higher, so that the anchoring Cable device 2 is connected more reliably.
  • the 24 anchor cable devices 2 of this embodiment should be installed and constructed according to the standard construction sequence of prestressed anchor cables, wherein the tensioning sequence of the anchor cable devices 2 is from bottom to top and from inside to outside. The sequence is separately stretched sequentially.
  • the numbers 1-24 corresponding to the 24 anchor cable devices 2 in FIG. 13 are the tensioning sequence of the anchor cable devices 2 .
  • the anchoring chamber 3.5 installed with the anchoring device 2 is provided with 3 rows, and the anchoring device 2 corresponding to the most downward anchoring chamber 3.5 is installed first, and the last Among the 8 downward anchor cable devices 2, first install the anchor cable device 2 at the middle position on the inner side, and then install the outer anchor cable device 2. Install the 8 anchor cable devices 2 corresponding to the anchor chamber 3.5 in the previous row in the order to the outside, and finally install the anchor cable device 2 corresponding to the anchor chamber 3.5 in the upper row.
  • the tensioning sequence of the anchor cable device 2 is also tensioned one by one according to the installation sequence of the above-mentioned anchor cable device.
  • the limit hole 3.2.1 can realize the pre-positioning of the anchor cable device 2, improve the installation accuracy of the anchor cable device 2, and ensure that each anchor cable The device 2 and the anchor mounting plate 3.1 are balanced in force.
  • the overall rigidity of the anchor connector 3 is improved, and the double fixation of the anchor cable device 2 is realized under the action of the anchor installation plate 3.1 and the anchor limit plate 3.2, ensuring that the anchor cable device 2 connection reliability and connection stability.
  • the web 4.1 is erected and perpendicular to the anchor mounting plate 3.1, and the web 4.1 has an inclined front end face, which is welded to the center of the anchor mounting plate 3.1 fixed.
  • the web 4.1 also has a horizontal bottom end surface, which is used for welding and fixing with the second bottom plate 4.4, and the front end of the second bottom plate 4.4 is welded and fixed with the first bottom plate 3.6.
  • the web 4.1 also has a horizontal top surface for welding to the horizontal wing 4.2.
  • An inclined top end surface is also provided between the horizontal top end surface of the web 4.1 and the inclined front end surface, and the inclined top end surface is welded with an inclined second top plate 4.3, and the front end of the second top plate 4.3 is connected to the anchor mounting plate 3.1.
  • the top is welded and fixed, and the rear end of the second top plate 4.3 is welded and fixed with the front end of the wing plate 4.2.
  • the second top plate 4.3 can be spliced by multiple steel plates. When installing, the second top plate 4.3 can finally complete the welding construction.
  • the two second side plates 4.5 are parallel to the first side plate 3.8, and the distance between the two second side plates 4.5 is smaller than the distance between the two first side plates 3.8.
  • One of the second side plates 4.5 is welded and fixed to the side of the same side of the wing plate 4.2, the second top plate 4.3 and the second bottom plate 4.4, and the second side plate 4.5 is also welded and fixed to the surface of the anchor mounting plate 3.1.
  • One second side plate 4.5 is welded and fixed to the other side of the same side of the wing plate 4.2, the second top plate 4.3 and the second bottom plate 4.4, and the other second side plate 4.5 is also welded to the surface of the anchor mounting plate 3.1 fixed.
  • the wing plate 4.2, the second top plate 4.3, the anchor mounting plate 3.1, the second bottom plate 4.4 and the second side plate 4.5 form a semi-enclosed space, and the end of the semi-enclosed space away from the anchor mounting plate 3.1 is an open end.
  • the second anti-pull piece 6 is arranged at the opening end, and the second anti-pull piece 6 is welded with the second side plate 4.5 and the second bottom plate 4.4 to seal the semi-enclosed space into a fully enclosed space.
  • the anchoring chamber 3.5 communicates with the semi-enclosed space or the fully enclosed space through a part of the through hole of the anchoring installation plate 3.1.
  • a web stiffener 4.6 is welded and fixed on the opposite surface of the two second side plates 4.5 and the surface of the web 4.1, that is, the web stiffener 4.6 is arranged in a fully enclosed space, and the web The plate stiffener 4.6 is only welded to the web 4.1 or the second side plate 4.5.
  • the steel strip connector 4 further includes a fastener, and the fastener includes a first connecting bolt 4.7 and a second connecting bolt 4.8.
  • the connecting cover plate 4.9 and the wing plate 4.2 keep a distance to form a clamping channel, and a part of the first connecting piece 1.1 of the steel strip 1 is arranged in the clamping channel.
  • a filler plate 4.10 is also provided in the clamping channel. The filler plate 4.10 can partially protrude beyond the clamping channel.
  • the filler plate 4.10 is welded and fixed to the wing plate 4.2.
  • the first connecting bolt 4.7 sequentially connects and fixes the connecting cover plate 4.9, the first connecting member 1.1 and the wing plate 4.2, wherein the wing plate 4.2 is provided with a threaded hole 4.11 for the first connecting bolt 4.7 to pass through.
  • the second connecting bolt 4.8 sequentially connects and fixes the connecting cover plate 4.9, the filling plate 4.10 and the wing plate 4.2.
  • the connecting cover plate 4.9 can not only disperse the force exerted by the first connecting piece 1.1 of the steel strip 1 on the wing plate 4.2 through the first connecting bolt 4.7, but also limit the axial jump or movement of the first connecting piece 1.1 along the first connecting bolt 4.7. Moving, the connection between the first connecting piece 1.1 and the wing plate 4.2 is better.
  • the filler plate 4.10 can not only limit the extension and displacement of the first connecting member 1.1 along its length direction, but also absorb the radial extrusion force on the first connecting bolt 4.7, so that the first connecting member 1.1 and the wing plate 4.2 can be reliably connected.
  • the first pullout-resistant member 5 includes a first pullout-resistant steel plate 5.1, a pullout-resistant end plate 5.2 and a first pullout-resistant stud 5.3, and the first pullout-resistant steel plate 5.1 is welded and fixed to the second bottom plate 4.4 , and the first pullout-resistant steel plate 5.1 is perpendicular to the second bottom plate 4.4, the bottom of the first pullout-resistant steel plate 5.1 is welded with a pullout-resistant end plate 5.2, the first pullout-resistant steel plate 5.1 is erected, and the upper edge of the first pullout-resistant steel plate 5.1 There are two horizontal rows of first pullout-resistant studs 5.3 vertically, and the first pullout-resistant studs 5.3 are perpendicular to the first pullout-resistant steel plate 5.1.
  • a plurality of first pullout-resistant components 5 are arranged in an array on the second bottom plate 4.4.
  • the second bottom plate 4.4 is provided with a plurality of positioning grooves 4.4.1 in an array, and the top of the first pull-out steel plate 5.1 passes through the positioning grooves 4.4.1 and is welded and fixed to the second bottom plate 4.4.
  • the positioning groove 4.4.1 Through the function of the positioning groove 4.4.1, the installation positions of the second bottom plate 4.4 and the first pull-out steel plate 5.1 can be monitored, so as to ensure the installation accuracy of the steel plate strip connector 4 and balance the stress on the conversion connection device.
  • the second pullout-resistant member 6 includes a second pullout-resistant steel plate 6.1 and a second pullout-resistant stud 6.2, the second pullout-resistant steel plate 6.1 is erected, and the second pullout-resistant steel plate 6.1 is welded to the steel plate On the open end of the semi-enclosed space with the connector 4 away from the anchoring installation plate 3.1, the second pullout-resistant steel plate 6.1 seals the semi-enclosed space into a fully enclosed space.
  • the second pullout-resistant studs 6.2 are arranged perpendicular to the second pullout-resistant steel plate 6.1, and two rows of second pullout-resistant studs 6.2 are also arranged on the second pullout-resistant steel plate 6.1.
  • the second anti-pull peg 6.2 is connected with the abutment 7 .
  • the second pullout-resistant steel plate 6.1 can not only improve the overall rigidity of the steel strip connector 4, but also under the action of the second pullout-resistant bolt 6.2, the steel strip connector 4 can be stably connected to the abutment 7 of the suspension bridge, especially When the steel strip 1 has a certain disturbance or vibration under load, the effective connection between the second pullout member 6 and the abutment 7 can greatly reduce the influence of the steel strip 1 disturbance or vibration on the anchor cable device 2 .
  • the conversion connection device in this embodiment is made of Q420C or Q460C, with an ultimate tensile strength of 490-675 MPa, an elastic modulus of 2.06 ⁇ 10 5 MPa, a Poisson's ratio of 0.3, and a density of 7850 kg/m3.
  • Midas FEA v3.6.0 finite element analysis software, combined with "Code for Design of Steel Structures" and other relevant specifications, carry out finite element analysis and calculation on the conversion connection device of this embodiment, and establish a linear elastic model, wherein the yield criterion in the analysis is von Mises Yield criterion, set the boundary condition as rigid connection, and apply a tensile force of 12000 kN along the horizontal direction of the steel plate strip 1 of the suspension bridge.
  • the stress calculation results of the conversion connection device are shown in Figure 14.
  • the maximum Mises equivalent stress of the conversion connection device is 125.5 MPa. That is, the area at A in Fig. 14, since the conversion connection device of this embodiment is made of Q420C material with a yield strength of 420MPa, the maximum Mises equivalent stress of the conversion connection device is smaller than its yield strength, so the structure of the conversion connection device meets the requirements.
  • a tensile force of 12000 kN is applied along the horizontal direction of the steel plate strip 1 of the suspension bridge.
  • the displacement calculation results of the conversion connection device are shown in Figure 15.
  • the displacement value of the conversion connection device increases gradually from bottom to top, and the maximum displacement value of 1.958 mm is Plate 4.2.
  • the corresponding displacement values of the conversion connection device in Fig. 15 under load are divided into five regions B, C, D, E and F, and the deformation of the conversion connection device is represented by B, C, D
  • the order of , E, and F gradually increases, and the area corresponding to F is the wing 4.2. Since the displacement values corresponding to all areas of the conversion connection device including the wing plate 4.2 are relatively small, the deformation amount of the conversion connection device is within a reasonable deformation range.
  • the steel plate suspension bridge is installed in the mountain as a landscape suspension bridge as an example.
  • the construction method of the steel plate suspension bridge includes the following steps:
  • Step 1 Construction of the steel plate suspension bridge foundation: According to the span of the steel plate suspension bridge to be constructed and the analysis results of the finite element analysis software, determine the type of the anchor cable device 2 and the abutment 7, the first cap 8, and the first bridge pile 9. The construction position and size of the steel plate belt suspension bridge foundation such as the second cap 10 and the second bridge pile 11. First carry out the pouring construction of the first bridge pile 9 and the second bridge pile 11, then carry out the pouring construction of the first bridge pile 8 on the first bridge pile 9, and at the same time carry out the second bridge pile 11 on the second bridge pile 10 pouring construction.
  • the pre-embedded construction of the first uplift member 5 can be carried out after the position of the first uplift member 5 is determined by measuring and setting out, and the abutment 7 can also be carried out on the first cap 8
  • the pouring construction, and the pre-embedded construction of the second pullout member 6 are carried out simultaneously.
  • the construction of the diagonal brace and the connecting plate 16 is carried out. It should be noted that the setting position of the diagonal brace 18 is set in advance according to the analysis results of the finite element analysis software, and according to the design of the diagonal brace 18 Determine the position and height of the second bridge pile 11 and the length and angle of the diagonally braced steel pillar 17.
  • Step 2 Construction of the bridge body: Lay or hoist the steel belt 1 along the span direction of the steel belt suspension bridge to be constructed, hoist and adjust the position of the steel belt 1, so that the first connector 1.1 of the steel belt 1 is hoisted together to be close to the proposed construction conversion The location of the connection device.
  • Step 3 Construction anchor cable device: construct the anchor cable device on both sides of the bridge body to be constructed, make one end of the anchor cable device anchored in the mountain rocks on both banks, and make the other end of the anchor cable device close to the position of the conversion connection device to be constructed .
  • Step 4 Assemble two conversion connection devices: connect and fix the anchor connector 3 and the steel strip connector 4 of each conversion connection device. Specifically, according to the construction position of the first pullout-resistant member 5, install the second bottom plate 4.4, align the positioning groove 4.4.1 on the second bottom plate 4.4 with the first pullout-resistant steel plate 5.1 of the first pullout-resistant member 5, and make the The first pullout-resistant steel plate 5.1 passes through the positioning groove 4.4.1, and the second bottom plate 4.4 is welded and fixed to the first pullout-resistant steel plate 5.1. Weld and fix the first bottom plate 3.6 and the second bottom plate 4.4. The welding and fixing of the remaining parts of the anchor connector 3 and the steel strip connector 4 are completed sequentially from bottom to top.
  • Step 5 During the assembling process of the conversion connection device in the above step 4, the construction step of connecting the anchor connector 3 with the anchor cable device 2 is also included. Specifically, the anchor cable device 2 is connected to the anchor installation plate 3.1 after passing through the limiting hole 3.2.1, and then the anchor cable device 2 is arranged from bottom to top, from inside to The outer sequence is separately tensioned in sequence, and the specific tensioning construction of the anchor cable device 2 is not specifically limited in this embodiment, and the construction of the anchor cable device 2 should be carried out in accordance with the corresponding construction standards.
  • the welding construction of the second top plate 4.3 is carried out, so that the wing plate 4.2, the second top plate 4.3, the anchor installation plate 3.1, the second bottom plate 4.4, the second side plate 4.5 and the second pullout steel plate 6.1 are enclosed Form a fully enclosed space.
  • Step 6 During the assembling process of the conversion connection device in the above step 4, a construction step of connecting the steel strip connector 4 to the end of the steel strip 1 is also included. It specifically includes: adjusting the position of the steel strip 1 so that the first connecting piece 1.1 is in the clamping channel between the connecting cover plate 4.9 and the wing plate 4.2, or hoisting the first connecting piece 1.1 to the wing plate after hoisting the steel strip 1 4.2 Install the connecting cover plate 4.9 to form a clamping channel and place the first connecting piece 1.1 in the clamping channel. Set the filling plate 4.10 in the clamping channel, and connect and fix the connecting cover plate 4.9, the first connecting piece 1.1 and the wing plate 4.2 in sequence through the first connecting bolt 4.7. The connecting cover plate 4.9, the filling plate 4.10 and the wing plate 4.2 are connected and fixed in sequence through the second connecting bolt 4.8, and the filling plate 4.10 and the wing plate 4.2 are welded and fixed.
  • Step 7 construction of the bridge deck: Lay a layer of rubber pad 12 on the steel plate strip 1, then lay a concrete prefabricated slab 19 on the rubber pad 12 as the bridge deck, and install the concrete precast slab 19, rubber pad 12 and steel plate by installing bolts 13 Belt 1 connection is fixed.
  • Step 8 install railings 14, install railings 14 on both sides of the concrete prefabricated slab 19, and install handrails 15 on the railings 14, and the handrails 15 can also be prefabricated on the railings 14 when the railings 14 leave the factory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本申请涉及建筑技术领域,提供一种钢板带悬桥及其施工方法,钢板带悬桥包括桥体及两个转换连接装置;桥体包括钢板带;每个转换连接装置包括锚固连接件及钢板带连接件,锚固连接件与锚索装置连接,钢板带连接件与钢板带的端部连接。钢板带悬桥施工步骤如下:步骤1、施工桥体,沿拟施工桥体的跨度方向铺设或吊装钢板带,在拟施工桥体的两岸施工锚索装置;步骤2、组装两个转换连接装置;步骤3、将钢板带连接件与钢板带的端部连接,将锚固连接件与锚索装置连接。本申请的有益效果是:简化了悬桥的结构,缩小了体积,更具美感和观赏性,用钢量小,降低了施工成本,后期维护方便。

Description

一种钢板带悬桥及其施工方法 技术领域
本发明属于建筑技术领域,具体涉及一种钢板带悬桥及其施工方法。
背景技术
悬索桥,又称吊桥或悬桥,主要包括缆索、吊杆和桥面,缆索作为主要承重构件,缆索的两端通过锚索装置锚固于两岸,缆索上安装有多个吊杆,并通过吊杆连接桥面。根据使用环境的不同,悬索桥又包括公路悬索桥和景观步行悬桥。其中,公路悬索桥为了避免在车辆驶过时,桥面随着缆索一起变形,一般均设有刚性梁(又称加劲梁),桥面铺在刚性梁上,刚性梁通过吊杆吊在缆索上;而大型公路悬索桥会直接采用箱型梁作为刚性梁以提升桥面刚度,但对应的结构也会更复杂,施工成本更高,体积更大。尤其是使用的构件(比如吊杆)较多,后期维修不便,维护成本较高。景观步行悬桥由于对桥面抗变形要求相对较低,通常不设置刚性梁或仅设置少量刚性梁,其结构相对于公路悬索桥而言更简单,施工成本低,但由于存在大量的吊杆,增加了视觉上的累赘感,影响观赏效果。另外,公路悬索桥和景观步行悬桥存在共同缺点:刚度小,在荷载作用下容易产生较大的挠度和振动。尤其是景观步行悬桥,在荷载作用下振动和扰度均较大,存在一定的安全隐患。
发明内容
本发明的目的在于克服现有悬桥体积大,结构复杂的问题,提供一种钢板带悬桥,包括:
桥体;所述桥体包括至少一条钢板带;及
两个转换连接装置,所述两个转换连接装置分别设置于所述桥体的两端,每个转换连接装置包括锚固连接件及钢板带连接件,所述锚固连接件与锚索装置连接,所述钢板带连接件与所述钢板带的端部连接。
进一步,所述桥体还包括与所述钢板带的两端分别连接的两个第一连接件,所述每个转换连接装置的钢板带连接件与一个第一连接件连接。
进一步,所述桥体还包括设置于所述钢板带上表面的混凝土预制板。
进一步,所述钢板带的数量为至少两条,每条钢板带沿着桥体的跨度方向延伸,至少两条钢板带之间存在空隙。
上述进一步方案的有益效果是:多条钢板带不仅可减轻桥体的重量,而且可分散桥体的振动区域。
进一步,所述钢板带的材料为Q690D钢。
进一步,所述锚固连接件包括锚固安装板,所述锚固安装板用于与所述锚索装置连接;所述钢板带连接件包括腹板和翼板,所述腹板与所述锚固安装板连接,所述腹板与所述翼板 连接,所述翼板用于与所述钢板带的端部连接。
上述进一步方案的有益效果是:通过锚固安装板连接锚索装置,使锚索装置施工可操作性强,施工更方便。
进一步,所述锚固连接件还包括:
锚固加劲板,与所述锚固安装板连接;及
锚固限位板,与所述锚固安装板对应设置,所述锚固限位板与所述锚固加劲板连接,所述锚固限位板上设置有限位孔,所述锚固安装板上设置有穿设孔,所述限位孔与所述穿设孔对应设置。
上述进一步方案的有益效果是:锚固加劲板提高了锚固安装板的强度,降低了锚固安装板的变形量,提高了桥体的钢板带与锚索装置的连接可靠性。锚索装置穿过限位孔后与锚固安装板连接,限位孔对锚索装置起预定位作用,提高锚索装置的安装精度,保证各锚索装置及锚固安装板受力均衡。
进一步,所述钢板带连接件还包括:
连接盖板,与所述翼板间距设置;
填板,设置于所述连接盖板与所述翼板之间;及
紧固件,与所述连接盖板和所述翼板连接,所述紧固件用于将所述钢板带的端部固定于所述连接盖板与所述翼板之间。
上述进一步方案的有益效果是:连接盖板不仅可分散钢板带施加在翼板上的力,而且可限制钢板带的端部沿垂直于其板面方向跳动或窜动,钢板带的端部与翼板连接效果更好。通过填板不仅可限制钢板带的端部沿其长度方向的延展位移,而且也可以减缓紧固件受到的压力,使钢板带的端部与翼板连接可靠。
进一步,所述每个转换连接装置还包括第一抗拔件和/或第二抗拔件,所述第一抗拔件设置在所述锚固连接件和/或所述钢板带连接件上,所述第二抗拔件设置在所述钢板带连接件上。
上述进一步方案的有益效果是:通过第一抗拔件的作用,使转换连接装置可有效固定在桥体的承台上,并保证转换连接装置自身连接稳定性的同时将钢板带施加的力过渡至承台上。通过第二抗拔件的作用,使转换连接装置与桥体的桥台稳定连接,当桥体的钢板带在荷载作用下出现一定扰度或振动时,第二抗拔件与桥体的有效连接可降低钢板带扰度或振动对锚索装置的影响。
本发明钢板带悬桥的有益效果是:通过钢板带替代现有悬桥的缆索、吊杆和桥面,简化了悬桥桥体的结构,缩小了体积。由于钢板带上方不存在吊杆和缆索,相比现有景观步行悬 桥而言,更具美感和观赏性,相比现有公路悬索桥而言,用钢量小,降低了施工成本,后期维护方便,经济效益好。另外,采用两个转换连接装置将锚索装置和钢板带端部有效连接,锚索装置不受钢板带在荷载作用下扰度和振动的影响,保证了钢板带与锚索装置的连接安全性和可靠性,使桥体始终安全稳定的锚固于两岸。
本发明还提供一种钢板带悬桥的施工方法,包括如下步骤:
步骤1、施工桥体:沿拟施工桥体的跨度方向铺设或吊装钢板带,在拟施工桥体的两岸施工锚索装置;
步骤2、组装两个转换连接装置:将每个转换连接装置的锚固连接件和钢板带连接件连接固定;
步骤3、将所述钢板带连接件与所述钢板带的端部连接,将所述锚固连接件与所述锚索装置连接。
本发明钢板带悬桥的施工方法的有益效果是:将钢板带作为悬桥的桥面,不再需要进行缆索和吊杆的施工,简化了桥体施工流程,降低了施工成本,提高了施工效率。采用转换连接装置将锚索装置与钢板带连接,使转换连接装置作为受力过渡件,锚索装置施工可操作性强,锚索装置施工更方便,而且锚索装置不受钢板带在荷载作用下扰度和振动的影响,保证了钢板带与锚索装置的连接安全性和可靠性。
附图说明
图1为本发明钢板带悬桥的主视结构示意图。
图2为图1中钢板带悬桥的钢板带及桥面板的侧视剖面结构示意图。
图3为图1中钢板带悬桥的转换连接装置的立体结构示意图。
图4为图3中转换连接装置的一个第二侧板去掉后的立体结构示意图。
图5为图4中转换连接装置连接有锚索装置和第一连接件的主视结构示意图。
图6为图3中转换连接装置连接有锚索装置和第一连接件的俯视结构示意图。
图7为图6中转换连接装置去掉第二顶板、翼板和连接的第一连接件后的俯视结构示意图。
图8为图5中转换连接装置的腹板的主视结构示意图。
图9为图5中一行锚固室的俯视结构示意图。
图10为图5中翼板的俯视结构示意图。
图11为图5中填板的俯视结构示意图。
图12为图5中连接盖板的俯视结构示意图。
图13为本发明钢板带悬桥的转换连接装置安装锚索装置后的张拉顺序示意图。
图14为本发明钢板带悬桥的转换连接装置的计算分析模型受荷载作用的应力示意图。
图15为本发明钢板带悬桥的转换连接装置的计算分析模型受荷载作用的位移示意图。
图16为本发明钢板带悬桥恒载、活载作用下的应力图。
图17为本发明钢板带悬桥风载作用下的应力图。
图18为本发明钢板带悬桥温度荷载作用下的应力图。
图中,1-钢板带;1.1-第一连接件;2-锚索装置;3-锚固连接件;3.1-锚固安装板;3.2-锚固限位板;3.2.1-限位孔;3.3-锚固加劲板;3.4-锚固腔;3.5-锚固室;3.6-第一底板;3.7-第一顶板;3.8-第一侧板;4-钢板带连接件;4.1-腹板;4.2-翼板;4.3-第二顶板;4.4-第二底板;4.4.1-定位槽;4.5-第二侧板;4.6-腹板加劲板;4.7-第一连接螺栓;4.8-第二连接螺栓;4.9-连接盖板;4.10-填板;4.11-螺纹孔;5-第一抗拔件;5.1-第一抗拔钢板;5.2-抗拔端板;5.3-第一抗拔栓钉;6-第二抗拔件;6.1-第二抗拔钢板;6.2-第二抗拔栓钉;7-桥台;8-第一承台;9-第一桥桩;10-第二承台;11-第二桥桩;12-橡胶垫;13-安装螺栓;14-栏杆;15-扶手;16-连接板;17-斜撑钢支柱;18-斜撑头;19-混凝土预制板。
具体实施方式
以下结合附图1至18和具体实施例对本发明作进一步的详细描述。
如图1和图2所示的一种钢板带悬桥,包括:桥体、锚索装置2、转换连接装置、桥台7、第一承台8、第一桥桩9、第二承台10、第二桥桩11、橡胶垫12及安装螺栓13。根据如图1所示的钢板带悬桥建立有限元分析模型,按照设计规范的永久荷载、可变作用、地震作用等进行荷载组合,最终确定钢板带悬桥的各部分设计及构造要求。
两个转换连接装置分别设置于桥体的两端,每个转换连接装置包括锚固连接件3及钢板带连接件4,锚固连接件3与锚索装置2连接,钢板带连接件4与钢板带1的端部连接。
其中,桥体包括钢板带1、第一连接件1.1和混凝土预制板19。钢板带1的两端分别连接有两个第一连接件1.1,每个转换连接装置的钢板带连接件4与一个第一连接件1.1连接。
具体的:钢板带1沿拟施工钢板带悬桥的跨度方向铺设,钢板带1的上表面可以直接作为桥面,或者钢板带1的上表面另外设有桥面板。在本实施例中,钢板带1的上端面铺设有混凝土预制板19作为桥面板。在本实施例中,钢板带1的数量为两条,两条钢板带1之间间隔一段距离设置。可以理解的是,钢板带的数量也可以为一条或者多于两条,根据实际的成本需求考虑。在本实施例中,钢板带1的材质选用Q690D高强度钢。
第一连接件1.1可以是与钢板带1连接的单独结构,也可以是钢板带1的端部的一段锚固区域,本实施例中第一连接件1.1为与钢板带1的端部相连接的连接件。如图6所示,两条钢板带1相平行且间隔设置,两条钢板带1的端部连接有第一连接件1.1,并通过第一连接 件1.1与钢板带连接件4连接。对于同样宽度的桥体,两条间隔的钢板带1相比整块式钢板带而言,桥体重量更轻,桥体振动区域分散,比如,第一条钢板带1受到高度方向的作用力发生振动时,第二条钢板带1的在高度方向上的振幅较小,最终使桥面或桥面板的振幅小于第一条钢板带1的振幅,保证桥面或桥面板的平稳。
混凝土预制板19与钢板带1之间填充有橡胶层或铺设有橡胶垫12或其他材质的垫层,混凝土预制板19、橡胶垫12及钢板带1通过安装螺栓13或其他连接结构连接固定。为了提高安全性,混凝土预制板19的两侧还可设置有栏杆14。栏杆14上可设置有扶手15。
锚索装置2为现有锚固装置,比如,锚索装置2可以是锚索或锚杆或索杆组件。钢板带1沿拟施工钢板带悬桥的跨度方向铺设后,根据周边环境及钢板带悬桥的设计,确定钢板带1的第一连接件1.1位置或尺寸,并在钢板带悬桥的两岸施工锚索装置2,锚索装置2可以锚固在山体岩石中,也可锚固在钢板带悬桥两岸的先期施工的结构中,锚索装置2与钢板带1的第一连接件1.1通过转换连接装置连接。本实施例中的锚索装置2的施工采用现有施工方法。
为了使钢板带悬桥结构更稳定,钢板带悬桥的下方还设有第一桥桩9和第二桥桩11,其中第一桥桩9处于第一连接件1.1下方,第二桥桩11处于钢板带1下方。第一桥桩9的上端固定有第一承台8,第二桥桩11的上端固定有第二承台10。第一承台8的上端固定连接有桥台7和转换连接装置,且转换连接装置还与桥台7固定连接,转换连接装置处于桥台7远离钢板带1的一侧,从而转换连接装置与第一连接件1.1连接后,至少部分第一连接件1.1处于桥台7的上端,桥台7为该部分第一连接件1.1提供有效的支撑点,并且桥台7可稳固转换连接装置,避免转换连接装置在钢板带1的拉力作用下出现水平位移。桥台7和第一承台8可一体浇筑成型,第一桥桩9和第二桥桩11的施工方式可采用现有技术。
第二承台10上连接有斜撑件和连接板16。斜撑件可包括斜撑钢支柱17和斜撑头18。连接板16的一端与第二承台10固定连接,连接板16的另一端与第一承台8固定连接。斜撑头18的顶部与钢板带1固定连接,用于支撑钢板带1。斜撑钢支柱17的顶部与斜撑头18连接,斜撑钢支柱17远离斜撑头18的一端与第二承台10固定连接。斜撑件将钢板带1沿其跨度方向分为主跨段和副跨段,以分散和降低钢板带悬桥的轴力、剪力和应力,其中,主跨段的长度长于副跨段的长度,比如,本实施例中钢板带悬桥的长度为88.1米,主跨段的跨度为63.8米,副跨段的跨度为24.3米。钢板带1的厚度均为0.04米,钢板带1为Q690D高强度钢材。本实施例中混凝土预制板19的宽度优选为2.7米,两条钢板带1的宽度相同,均为0.75米。结合图16至图18所示,采用Midas/Civil建立钢板带悬桥的有限元模型,对钢板带悬桥的结构进行强度、刚度、稳定分析,计算时考虑几何非线性的影响。其中,图16为钢板带悬桥恒载、活载作用下的应力图,图17为钢板带悬桥风载作用下的应力图,图18为钢板带悬桥温 度荷载作用下的应力图。由图16至图18可知,恒载作用下最大应力为123.1MPa;人群作用(即活载)产生的最大应力为95.30MPa;风载作用引起的最大应力为57.9MPa;结构升温和降温分别导致钢板带1产生-64.1MPa和36.6MPa的应力。斜撑头18处的钢板带1在施工时采用机械弯曲成型,弯曲半径为17m,会在钢板带1内形成初始弯曲应力。计入该项应力后,恒载工况下钢板带1在斜撑头18处的应力总计为265.73MPa,最大包络值状态下斜撑头18处应力总计为296.50MPa,所有应力均低于Q690D钢板带1的设计值,且具有一定的富余量。根据《钢结构设计规范》对钢板带焊接部位进行疲劳验算,在人群动荷载作用下,结构的最大应力幅值为73.3MPa,常幅疲劳容许应力由公式
Figure PCTCN2022107546-appb-000001
计算为144MPa,可知结构满足疲劳的要求。
结合图3至图12所示,转换连接装置包括锚固连接件3、钢板带连接件4和抗拔件。锚固连接件3用于连接锚索装置2,钢板带连接件4用于连接钢板带1的第一连接件1.1,抗拔件用于将转换连接装置安装固定于桥台7和第一承台8上,保证转换连接装置自身连接稳定性的同时将钢板带1施加的力过渡至承台上,可大大降低钢板带1扰度或振动对锚索装置2的影响。
锚固连接件3包括锚固安装板3.1、锚固限位板3.2、锚固加劲板3.3、锚固腔3.4、锚固室3.5、第一底板3.6、第一顶板3.7、两个第一侧板3.8。
钢板带连接件4包括腹板4.1、翼板4.2、第二顶板4.3、第二底板4.4、两个第二侧板4.5、腹板加劲板4.6、第一连接螺栓4.7、第二连接螺栓4.8、连接盖板4.9、填板4.10。
抗拔件包括第一抗拔件5和第二抗拔件6。
具体的,第一底板3.6水平设置,锚固安装板3.1的底部与第一底板3.6焊接固定,锚固安装板3.1倾斜设置,结合图1和图3所示,锚固安装板3.1的倾斜角度与钢板带悬桥的锚索装置2的设定角度对应,锚固安装板3.1尽量与锚索装置2垂直。锚固安装板3.1中心与腹板4.1焊接固定。锚固限位板3.2平行于锚固安装板3.1设置,且锚固限位板3.2间距设于锚固安装板3.1背对腹板4.1的一侧,锚固限位板3.2的底部与第一底板3.6焊接固定,锚固限位板3.2上设有用于锚索装置2穿过以限制锚索装置2的径向位移的限位孔3.2.1,锚固安装板3.1上设置有穿设孔,限位孔3.2.1与穿设孔对应设置,锚索装置2安装时,依次穿过限位孔3.2.1和穿设孔。第一顶板3.7倾斜设置,第一顶板3.7的一端与锚固安装板3.1的顶部焊接固定,第一顶板3.7的另一端与锚固限位板3.2的顶部焊接固定,本实施例中,第一顶板3.7垂 直于锚固安装板3.1和锚固限位板3.2。两个第一侧板3.8竖立设置,其中一个第一侧板3.8与锚固安装板3.1和锚固限位板3.2的同一侧的侧部焊接固定,另一个第一侧板3.8与锚固安装板3.1和锚固限位板3.2的另一个同一侧的侧部焊接固定。
第一底板3.6、第一顶板3.7、锚固安装板3.1、锚固限位板3.2及两个第一侧板3.8合围形成全封闭的框架结构,当然,也可由第一底板3.6、第一顶板3.7、锚固安装板3.1和锚固限位板3.2合围形成半封闭的框架结构。框架结构的内腔形成有锚固腔3.4。锚固加劲板3.3设于锚固腔3.4内或锚固加劲板3.3设置于锚固安装板3.1和锚固限位板3.2之间,锚固加劲板3.3垂直于锚固安装板3.1和锚固限位板3.2,锚固加劲板3.3与锚固限位板3.2和锚固安装板3.1焊接固定。
如图5所示,六个锚固加劲板3.3沿锚固安装板3.1高度方向平行间隔设置,相邻的两个锚固加劲板3.3将锚固腔3.4分隔为空间更小的锚固室3.5。相对应的限位孔3.2.1和穿设孔与同一个锚固室3.5连通,安装的锚索装置2穿过锚固室3.5,锚固安装板3.1对应锚固室3.5的位置的强度更高,从而锚索装置2连接更可靠。
如图13所示,本实施例的24个锚索装置2应该按照预应力锚索的标准施工顺序进行安装施工,其中,锚索装置2的张拉顺序按照由下至上,由内至外的顺序依次单独进行张拉,图13中在24个锚索装置2处对应的编号1-24即锚索装置2的张拉顺序。
结合如图5、图6和图9所示,本实施例中安装有锚索装置2的锚固室3.5设有3行,先安装最下行的锚固室3.5对应的锚索装置2,且该最下行的8个锚索装置2中,先安装内侧中间位置的锚索装置2,再安装外侧的锚索装置2,待该最下行的8个锚索装置2全部安装完成后,同样按照由内至外的顺序再安装上一行锚固室3.5对应的8个锚索装置2,最后再安装最上行的锚固室3.5对应的锚索装置2。锚索装置2的张拉顺序也按照上述锚索装置的安装顺序逐一的进行张拉。通过将锚索装置2有序的连接,可使锚索装置2与锚固连接件3的紧固效果最佳,各个锚索装置2受力均匀。
由于锚索装置2穿过限位孔3.2.1后与锚固安装板3.1连接,限位孔3.2.1可实现锚索装置2的预定位,提高锚索装置2的安装精度,保证各锚索装置2及锚固安装板3.1受力均衡。通过锚固室3.5和锚固腔3.4的作用,提高了锚固连接件3的整体刚度,并且在锚固安装板3.1和锚固限位板3.2的作用下实现锚索装置2的双重固定,保证锚索装置2的连接可靠性和连接稳定性。
结合如图3、图5和图8所示,腹板4.1竖立设置并与锚固安装板3.1相垂直,腹板4.1具有一个倾斜的前端面,该倾斜的前端面与锚固安装板3.1的中心焊接固定。腹板4.1还具有一个水平的底端面,用于与第二底板4.4焊接固定,第二底板4.4的前端与第一底板3.6焊接 固定。腹板4.1还具有一个水平的顶端面,用于与水平的翼板4.2焊接固定。腹板4.1的水平的顶端面与倾斜的前端面之间还设有倾斜的顶端面,该倾斜的顶端面焊接有倾斜的第二顶板4.3,且第二顶板4.3的前端与锚固安装板3.1的顶端焊接固定,第二顶板4.3的后端与翼板4.2的前端焊接固定,第二顶板4.3可以由多块钢板拼接而成,安装时,第二顶板4.3可最后完成焊接施工。两个第二侧板4.5均与第一侧板3.8平行,两个第二侧板4.5的间距小于两个第一侧板3.8的间距。其中一个第二侧板4.5与翼板4.2、第二顶板4.3及第二底板4.4的同一侧的侧部焊接固定,且该第二侧板4.5还与锚固安装板3.1的板面焊接固定,另一个第二侧板4.5与翼板4.2、第二顶板4.3及第二底板4.4的另一个同一侧的侧部焊接固定,且该另一个第二侧板4.5也与锚固安装板3.1的板面焊接固定。翼板4.2、第二顶板4.3、锚固安装板3.1、第二底板4.4及第二侧板4.5合围形成半封闭空间,该半封闭空间远离锚固安装板3.1的一端为开口端。第二抗拔件6设于该开口端,第二抗拔件6与第二侧板4.5及第二底板4.4焊接将该半封闭空间封堵为全封闭空间。锚固室3.5通过锚固安装板3.1的部分穿设孔与该半封闭空间或该全封闭空间连通。
如图7所示,两个第二侧板4.5的相向板面及腹板4.1的板面上均焊接固定有腹板加劲板4.6,即腹板加劲板4.6设于全封闭空间内,且腹板加劲板4.6仅与腹板4.1或第二侧板4.5焊接固定。
如图5和图6所示,钢板带连接件4还包括紧固件,紧固件包括第一连接螺栓4.7和第二连接螺栓4.8。连接盖板4.9与翼板4.2保持间距以形成夹持通道,钢板带1的第一连接件1.1一部分设于该夹持通道内。当该夹持通道未被第一连接件1.1填充满时,在该夹持通道内还设有填板4.10。填板4.10可部分伸出至夹持通道以外。填板4.10与翼板4.2焊接固定。第一连接螺栓4.7依次将连接盖板4.9、第一连接件1.1及翼板4.2连接固定,其中,翼板4.2上设有用于第一连接螺栓4.7穿过的螺纹孔4.11。第二连接螺栓4.8依次将连接盖板4.9、填板4.10及翼板4.2连接固定。
连接盖板4.9不仅可分散钢板带1的第一连接件1.1通过第一连接螺栓4.7施加在翼板4.2上的力,而且可限制第一连接件1.1沿第一连接螺栓4.7轴向跳动或窜动,第一连接件1.1与翼板4.2连接效果更好。通过填板4.10不仅可限制第一连接件1.1沿其长度方向的延展位移,而且也可以吸收第一连接螺栓4.7受到的径向挤压力,使第一连接件1.1与翼板4.2连接可靠。
如图3至图5所示,第一抗拔件5包括第一抗拔钢板5.1、抗拔端板5.2及第一抗拔栓钉5.3,第一抗拔钢板5.1与第二底板4.4焊接固定,且第一抗拔钢板5.1与第二底板4.4相垂直,第一抗拔钢板5.1的底部焊接有抗拔端板5.2,第一抗拔钢板5.1竖立设置,且第一抗拔钢板5.1上沿竖向设有两列水平的第一抗拔栓钉5.3,第一抗拔栓钉5.3与第一抗拔钢板5.1垂直。 本实施例中,第二底板4.4上呈阵列设置有多个第一抗拔件5。第二底板4.4上呈阵列设有多个定位槽4.4.1,第一抗拔钢板5.1的顶部穿过定位槽4.4.1后与第二底板4.4焊接固定。通过定位槽4.4.1的作用,可监控第二底板4.4和第一抗拔钢板5.1的安装位置,以保证钢板带连接件4的安装精度,使转换连接装置受力均衡。
结合如图5和图7所示,第二抗拔件6包括第二抗拔钢板6.1及第二抗拔栓钉6.2,第二抗拔钢板6.1竖立设置,第二抗拔钢板6.1焊接于钢板带连接件4的半封闭空间远离锚固安装板3.1的开口端上,第二抗拔钢板6.1将该半封闭空间封堵为全封闭空间。第二抗拔栓钉6.2垂直于第二抗拔钢板6.1设置,且第二抗拔钢板6.1上也设置有两列第二抗拔栓钉6.2。第二抗拔栓钉6.2与桥台7连接。通过第二抗拔钢板6.1不仅可提高钢板带连接件4的整体刚度,而且在第二抗拔栓钉6.2的作用下,钢板带连接件4可与悬桥的桥台7稳定连接,尤其是钢板带1在荷载作用下出现一定扰度或振动时,第二抗拔件6与桥台7的有效连接可大大降低钢板带1扰度或振动对锚索装置2的影响。
本实施例的转换连接装置的材质为Q420C或Q460C,极限抗拉强度为490—675Mpa,弹性模量为2.06×10 5MPa,泊松比0.3,密度为7850kg/m3。运用Midas FEA(v3.6.0)有限元分析软件,结合《钢结构设计规范》等相关规范对本实施例的转换连接装置进行有限元分析计算,建立线性弹性模型,其中,分析中屈服准则选用von Mises屈服准则,设置边界条件为刚接,沿悬桥的钢板带1水平方向施加12000kN的拉力,转换连接装置的应力计算结果如图14所示,转换连接装置的最大Mises等效应力为125.5MPa,即图14中的A处区域,由于本实施例的转换连接装置采用Q420C材质的屈服强度为420MPa,转换连接装置的最大Mises等效应力小于其屈服强度,因此转换连接装置的结构满足要求。
同样,沿悬桥的钢板带1水平方向施加12000kN的拉力,转换连接装置的位移计算结果如图15所示,转换连接装置的位移值由下至上逐渐增大,其中最大位移值1.958mm位于翼板4.2处。为了便于理解,本实施例中将图15中转换连接装置在荷载作用下对应的位移值分为B、C、D、E和F五个区域,转换连接装置的变形量以B、C、D、E、F的顺序逐渐增大,其中,F对应的区域即为翼板4.2处。由于转换连接装置包含翼板4.2在内的所有区域对应的位移值均较小,因此转换连接装置的变形量处于合理变形范围内。
本实施例以钢板带悬桥设置在山体中作为景观悬桥使用为例。钢板带悬桥的施工方法包括如下步骤:
步骤1、施工钢板带悬桥基础:根据拟施工钢板带悬桥的跨度及有限元分析软件的分析结果,确定锚索装置2的类型及桥台7、第一承台8、第一桥桩9、第二承台10、第二桥桩11等钢板带悬桥基础的施工位置和尺寸。先进行第一桥桩9和第二桥桩11的浇筑施工,再 在第一桥桩9上进行第一承台8的浇筑施工,同时可在第二桥桩11上进行第二承台10的浇筑施工。第一承台8浇筑施工时,通过测量放线,确定第一抗拔件5位置后可进行第一抗拔件5的预埋施工,同时还可在第一承台8上进行桥台7的浇筑施工,并同步进行第二抗拔件6的预埋施工。在第二承台10上进行斜撑件和连接板16的施工,需要说明的是,斜撑头18的设置位置根据有限元分析软件的分析结果提前设定,并根据斜撑头18的设定位置确定第二桥桩11的位置和高度以及斜撑钢支柱17的长度和角度。
步骤2、施工桥体:沿拟施工钢板带悬桥的跨度方向铺设或吊装钢板带1,吊装并调整钢板带1的位置,使钢板带1的第一连接件1.1一同吊装至靠近拟施工转换连接装置的位置。
步骤3、施工锚索装置:在拟施工桥体的两岸施工锚索装置,使锚索装置的一端锚固于两岸的山体岩石中,并使锚索装置的另一端靠近拟施工转换连接装置的位置。
步骤4、组装两个转换连接装置:将每个转换连接装置的锚固连接件3和钢板带连接件4连接固定。具体的,根据第一抗拔件5的施工位置,安装第二底板4.4,使第二底板4.4上的定位槽4.4.1与第一抗拔件5的第一抗拔钢板5.1对齐,并使第一抗拔钢板5.1穿过定位槽4.4.1,将第二底板4.4与第一抗拔钢板5.1焊接固定。将第一底板3.6与第二底板4.4焊接固定。再由下至上依次完成锚固连接件3和钢板带连接件4剩余部件的焊接固定。
步骤5、上述步骤4进行转换连接装置的组装过程中,还包括锚固连接件3与锚索装置2连接的施工步骤。具体的,锚索装置2穿过限位孔3.2.1后与锚固安装板3.1连接,再以如图13所示的1-24的编号顺序对锚索装置2按由下至上,由内至外的顺序依次单独进行张拉,锚索装置2的具体张拉施工本实施例不进行具体限定,应按照相应的施工标准进行锚索装置2的施工。锚索装置2完成施工后,进行第二顶板4.3的焊接施工,使翼板4.2、第二顶板4.3、锚固安装板3.1、第二底板4.4、第二侧板4.5及第二抗拔钢板6.1合围形成全封闭空间。
步骤6、上述步骤4进行转换连接装置的组装过程中,还包括将钢板带连接件4与钢板带1的端部连接的施工步骤。具体包括:调整钢板带1的位置,使第一连接件1.1处于连接盖板4.9与翼板4.2之间的夹持通道内,或者吊装钢板带1后先将第一连接件1.1吊装至翼板4.2上后再安装连接盖板4.9形成夹持通道并使第一连接件1.1处于夹持通道内。将填板4.10设于夹持通道内,通过第一连接螺栓4.7依次将连接盖板4.9、第一连接件1.1及翼板4.2连接固定。通过第二连接螺栓4.8依次将连接盖板4.9、填板4.10及翼板4.2连接固定,将填板4.10与翼板4.2焊接固定。
步骤7、施工桥面板:在钢板带1上铺设一层橡胶垫12,再在橡胶垫12上铺设混凝土预制板19作为桥面板,并通过安装螺栓13将混凝土预制板19、橡胶垫12及钢板带1连接固定。
步骤8、安装栏杆14,在混凝土预制板19的两侧安装栏杆14,并在栏杆14上安装扶手15,扶手15也可以在栏杆14出厂时预制在栏杆14上。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,同样也应视为本发明的保护范围。

Claims (10)

  1. 一种钢板带悬桥,其特征在于,包括:
    桥体;所述桥体包括至少一条钢板带;及
    两个转换连接装置,所述两个转换连接装置分别设置于所述桥体的两端,每个转换连接装置包括锚固连接件及钢板带连接件,所述锚固连接件与锚索装置连接,所述钢板带连接件与所述钢板带的端部连接。
  2. 根据权利要求1所述的钢板带悬桥,其特征在于,所述桥体还包括与所述钢板带的两端分别连接的两个第一连接件,所述每个转换连接装置的钢板带连接件与一个第一连接件连接。
  3. 根据权利要求2所述的钢板带悬桥,其特征在于,所述桥体还包括设置于所述钢板带上表面的混凝土预制板。
  4. 根据权利要求2所述的钢板带悬桥,其特征在于,所述钢板带的数量为至少两条,每条钢板带沿着桥体的跨度方向延伸,至少两条钢板带之间存在空隙。
  5. 根据权利要求1所述的钢板带悬桥,其特征在于,所述钢板带的材料为Q690D钢。
  6. 根据权利要求1至5中任一项所述的钢板带悬桥,其特征在于,
    所述锚固连接件包括锚固安装板,所述锚固安装板用于与所述锚索装置连接;
    所述钢板带连接件包括腹板和翼板,所述腹板与所述锚固安装板连接,所述腹板与所述翼板连接,所述翼板用于与所述钢板带的端部连接。
  7. 根据权利要求6所述的钢板带悬桥,其特征在于,所述锚固连接件还包括:
    锚固加劲板,与所述锚固安装板连接;及
    锚固限位板,与所述锚固安装板对应设置,所述锚固限位板与所述锚固加劲板连接,所述锚固限位板上设置有限位孔,所述锚固安装板上设置有穿设孔,所述限位孔与所述穿设孔对应设置。
  8. 根据权利要求6所述的钢板带悬桥,其特征在于,所述钢板带连接件还包括:
    连接盖板,与所述翼板间距设置;
    填板,设置于所述连接盖板与所述翼板之间;及
    紧固件,与所述连接盖板和所述翼板连接,所述紧固件用于将所述钢板带的端部固定于所述连接盖板与所述翼板之间。
  9. 根据权利要求6所述的钢板带悬桥,其特征在于,所述每个转换连接装置还包括第一抗拔件和/或第二抗拔件,所述第一抗拔件设置在所述锚固连接件和/或所述钢板带连接件上,所述第二抗拔件设置在所述钢板带连接件上。
  10. 一种钢板带悬桥的施工方法,其特征在于,包括如下步骤:
    施工桥体:沿拟施工桥体的跨度方向铺设或吊装钢板带,在拟施工桥体的两岸施工锚索装置;
    组装两个转换连接装置:将每个转换连接装置的锚固连接件和钢板带连接件连接固定;
    将所述钢板带连接件与所述钢板带的端部连接,将所述锚固连接件与所述锚索装置连接。
PCT/CN2022/107546 2021-06-07 2022-07-22 一种钢板带悬桥及其施工方法 WO2022258080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110634490.0 2021-06-07
CN202110634490.0A CN113389134B (zh) 2021-06-07 2021-06-07 一种钢板带悬桥及其施工方法

Publications (1)

Publication Number Publication Date
WO2022258080A1 true WO2022258080A1 (zh) 2022-12-15

Family

ID=77618641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107546 WO2022258080A1 (zh) 2021-06-07 2022-07-22 一种钢板带悬桥及其施工方法

Country Status (2)

Country Link
CN (1) CN113389134B (zh)
WO (1) WO2022258080A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113389134B (zh) * 2021-06-07 2022-06-07 中建三局第一建设工程有限责任公司 一种钢板带悬桥及其施工方法
CN114775403B (zh) * 2022-03-16 2024-02-06 林同棪国际工程咨询(中国)有限公司 碳纤维板悬带桥
CN114855586B (zh) * 2022-04-30 2023-07-14 中建三局第一建设工程有限责任公司 钢板带悬桥结构、施工胎架的线形确定方法及施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415005B (en) * 2004-06-08 2006-05-03 Thomas John Upstone Suspension bridge cables
CN101029472A (zh) * 2007-03-21 2007-09-05 浙江省舟山连岛工程建设指挥部 索面斜拉桥的塔柱及其施工方法
CN102912721A (zh) * 2012-11-21 2013-02-06 中铁第四勘察设计院集团有限公司 桥梁钢箱主梁双挑式索梁锚固结构
CN112832144A (zh) * 2021-01-08 2021-05-25 重庆交通大学工程设计研究院有限公司 人行悬索桥加固结构及其施工工艺
CN113389134A (zh) * 2021-06-07 2021-09-14 中建三局第一建设工程有限责任公司 一种钢板带悬桥及其施工方法
CN113389141A (zh) * 2021-06-07 2021-09-14 中建三局第一建设工程有限责任公司 转换连接装置及其施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3823964A1 (de) * 1988-07-15 1990-02-22 Bilfinger Berger Vorspanntech Verfahren zur erneuerung des korrosionsschutzes von zuggliedern von bruecken und gleichartig verspannten bauwerken sowie vorrichung zur durchfuehrung des verfahrens
CN209669675U (zh) * 2019-02-22 2019-11-22 深圳市市政设计研究院有限公司福建分公司 一种半刚性悬带拱桥

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415005B (en) * 2004-06-08 2006-05-03 Thomas John Upstone Suspension bridge cables
CN101029472A (zh) * 2007-03-21 2007-09-05 浙江省舟山连岛工程建设指挥部 索面斜拉桥的塔柱及其施工方法
CN102912721A (zh) * 2012-11-21 2013-02-06 中铁第四勘察设计院集团有限公司 桥梁钢箱主梁双挑式索梁锚固结构
CN112832144A (zh) * 2021-01-08 2021-05-25 重庆交通大学工程设计研究院有限公司 人行悬索桥加固结构及其施工工艺
CN113389134A (zh) * 2021-06-07 2021-09-14 中建三局第一建设工程有限责任公司 一种钢板带悬桥及其施工方法
CN113389141A (zh) * 2021-06-07 2021-09-14 中建三局第一建设工程有限责任公司 转换连接装置及其施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "China's first suspension bridge", 6 May 2020 (2020-05-06), pages 1 - 18, XP093014251, Retrieved from the Internet <URL:https://new.qq.com/rain/a/20200506A06P1E00?pc> [retrieved on 20221014] *

Also Published As

Publication number Publication date
CN113389134B (zh) 2022-06-07
CN113389134A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2022258080A1 (zh) 一种钢板带悬桥及其施工方法
KR100671429B1 (ko) 전단벽 수평지지 구조
WO2006038620A1 (ja) 脚柱の接合部構造および接合方法
CN112761253A (zh) 一种钢绞线单跨通长布置的全装配式自复位框架结构
CN108412083A (zh) 一种装配式自复位钢框架-钢板剪力墙结构
JP4957295B2 (ja) 制震橋脚構造
CN108385506B (zh) 索塔与斜塔斜拉桥
CN112095495A (zh) 桥梁托换支撑结构及施工方法
KR102403925B1 (ko) 가설교량 및 이의 시공방법
KR100949828B1 (ko) 층고절감형 철골보 및 이를 이용한 철골-콘크리트 합성보
CN219793664U (zh) 一种v型墩施工排架体系
JPH09316892A (ja) 杭基礎補強構造
CN210140764U (zh) 一种拉索加劲的双折线形桥跨组件
KR102159429B1 (ko) 단면강성 증대용 새들이 장착된 가설교량 및 이의 시공 방법
CN113389141B (zh) 转换连接装置及其施工方法
CN109914695A (zh) 基于变截面装配式型钢混凝土抗震组合柱
KR20060003972A (ko) 외적 포스트텐션 방법을 이용한 보 및 거더 보강방법 및그에 사용되는 장치
CN211037909U (zh) 无梁楼板加固结构
CN212404849U (zh) 一种连续梁桥的临时支墩锚固体系
CN212104108U (zh) 一种可回收装配式预应力悬索基坑支撑件
CN114658002A (zh) 一种外置预应力钢支撑支护***及其施工方法
KR100890004B1 (ko) 활성사재와 비활성사재를 주형과 지주에 강결연결한 사판재교량 및 이의 시공방법
JP2012117364A (ja) 制震橋脚構造
KR102444554B1 (ko) 프리스트레스 띠장 및 이의 시공방법
CN216379542U (zh) 深厚砂层基坑自稳式双排围护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819676

Country of ref document: EP

Kind code of ref document: A1