WO2022257478A1 - 脉冲钻进装置 - Google Patents

脉冲钻进装置 Download PDF

Info

Publication number
WO2022257478A1
WO2022257478A1 PCT/CN2022/073480 CN2022073480W WO2022257478A1 WO 2022257478 A1 WO2022257478 A1 WO 2022257478A1 CN 2022073480 W CN2022073480 W CN 2022073480W WO 2022257478 A1 WO2022257478 A1 WO 2022257478A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
drilling device
rods
discharge
drill bit
Prior art date
Application number
PCT/CN2022/073480
Other languages
English (en)
French (fr)
Inventor
周鹏
钱阳
马宁
Original Assignee
北京三一智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三一智造科技有限公司 filed Critical 北京三一智造科技有限公司
Priority to EP22819085.6A priority Critical patent/EP4311910A1/en
Publication of WO2022257478A1 publication Critical patent/WO2022257478A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/18Other methods or devices for dislodging with or without loading by electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • E21B7/15Drilling by use of heat, e.g. flame drilling of electrically generated heat
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere

Definitions

  • the present application relates to the technical field of drilling equipment, in particular to a pulse drilling device.
  • Pulse discharge ore crushing is a new crushing technology developed in the past few decades, which uses the mechanical effects of shock waves, jets or plasma channels generated by pulse discharge to destroy ore. There are no flying stones and no harmful substances in the crushing process, and the discharge process is easy to control.
  • the currently used pulse drilling devices all belong to the form of single charge and discharge, which cannot really realize the function of continuous discharge drilling, and the drilling and crushing efficiency is low.
  • This application provides a pulse drilling device, which is used to solve the problem that the pulse drilling device in the prior art cannot continuously charge and discharge and has low drilling efficiency, so as to realize the continuous charging and discharging of the pulse drilling device and improve the drilling efficiency Effect.
  • a pulse drilling device provided according to the present application includes: multiple drill rods, drill bits, energy storage capacitors and discharge switches.
  • each of the drill rods is correspondingly connected with the energy storage capacitor, the energy storage capacitor can charge the drill rod connected to it, the drill bit is connected with the drill rod, and the discharge switch is connected with the drill rod.
  • the drill rods are connected to control the discharge of the drill rods to the drill bit and break rocks, and a plurality of the drill rods can realize continuous and alternate charging and discharging.
  • the drill bit includes an integrated drill bit.
  • Each of the drill rods is connected to the integrated drill bit.
  • the drill bit includes a plurality of split drill bits.
  • Each of the drill rods is equipped with one split drill bit connected thereto.
  • the drill bit is detachably connected to the drill rod through a drill bit connector.
  • each of the drill rods is correspondingly equipped with a discharge switch to control the working state of each of the drill rods.
  • the pulse drilling device further includes a control unit.
  • the control unit is electrically connected to each of the discharge switches, so as to control the discharge time and discharge sequence of each of the drill rods by controlling the working state of each of the discharge switches.
  • an insulating layer is provided between the low-voltage end and the high-voltage end at the connection port between the drill pipe and the drill bit connector.
  • At least one energy storage capacitor is connected to each of the drill rods, each of the energy storage capacitors is connected to a high-voltage power supply, and the high-voltage power supply is connected to the control The unit is electrically connected.
  • the pulse drilling device further includes a casing.
  • Each of the energy storage capacitors and each of the drill rods are installed in the housing.
  • a slag discharge channel is provided in the casing.
  • a plurality of drill rods are arranged in a circular array inside the casing with the center point of the slag discharge channel as the center point of the array.
  • the energy storage capacitors are correspondingly connected to each of the drill rods, and the energy storage capacitors can charge the drill rods connected thereto.
  • the drill bit is connected to the drill rod
  • the discharge switch is connected to the drill rod to control the discharge of the drill rod to the drill bit and break the rock, and a plurality of the drill rods can realize continuous alternate charging and discharging. discharge.
  • the pulse drilling device is provided with a plurality of drill rods, and each of the drill rods is correspondingly configured and connected with the energy storage capacitor.
  • the discharge switch can correspondingly control the charging state of each of the drill rods.
  • the rest of the drill rods are in a charged state.
  • the drill pipe in the discharge state turns to the charge state after the electric energy is exhausted, and at the same time, the drill pipe in the fully charged state is continuously discharged.
  • multiple drill rods can be continuously and alternately charged and discharged, thereby greatly improving drilling efficiency.
  • Fig. 1 is a schematic structural view of the pulse drilling device provided by the present application.
  • Fig. 2 is the structural schematic diagram of the impulse drilling device provided with the integrated drill bit provided by the present application;
  • Fig. 3 is a schematic diagram of the working state of the pulse drilling device equipped with an integrated drill bit
  • Fig. 4 is the structural schematic diagram of the pulse drilling device provided with the split drill bit provided by the present application.
  • Fig. 5 is a schematic diagram of the working state of the pulse drilling device equipped with a split drill bit
  • 600 shell; 700: slag discharge channel.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • the first feature may be in direct contact with the first feature or the first feature and the second feature may pass through the middle of the second feature.
  • Media indirect contact Moreover, “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a pulse drilling device provided by an embodiment of the present application will be described below with reference to FIGS. 1 to 5 . It should be understood that the following descriptions are only exemplary embodiments of the present application, and do not constitute any special limitation to the present application.
  • the embodiment of the present application provides a pulse drilling device, as shown in FIG. 1 , FIG. 2 and FIG. 4 , the pulse drilling device includes: a plurality of drill rods 100 , a drill bit, an energy storage capacitor 300 and a discharge switch 400 .
  • each drill pipe 100 is correspondingly connected with an energy storage capacitor 300 .
  • the energy storage capacitor 300 can charge the drill pipe 100 connected thereto.
  • the drill bit is connected with the drill pipe 100, and the discharge switch 400 is connected with the drill pipe 100 to control the discharge of the drill pipe 100 to the drill bit and break the rock. Also, multiple drill pipes can be continuously and alternately charged and discharged.
  • the pulse drilling device is provided with a plurality of drill rods 100, and each drill rod 100 is correspondingly equipped with an energy storage capacitor 300 connected thereto.
  • the discharge switch 400 can control the charging state of each drill pipe 100 accordingly.
  • the rest of the drill rods 100 are in the charge state.
  • the drill pipe 100 in the discharge state is turned into a charge state after the electric energy is exhausted, and at the same time, the drill pipe 100 in the fully charged state is continuously discharged.
  • multiple drill pipes 100 can be continuously and alternately charged and discharged, thereby greatly improving drilling efficiency.
  • the drill rod 100 includes a first drill rod 101 , a second drill rod 102 , a third drill rod 103 and a fourth drill rod 104 .
  • the first drill rod 101 , the second drill rod 102 , the third drill rod 103 and the fourth drill rod 104 are correspondingly configured and connected with an energy storage capacitor 300 .
  • the discharge switch 400 first controls the first drill pipe 101 to discharge to the drill bit for rock breaking, then the second drill pipe 102 , the third drill pipe 103 and the fourth drill pipe 104 are all in a charged state.
  • the discharge switch 400 can control any one of the second drill pipe 102 , the third drill pipe 103 and the fourth drill pipe 104 to discharge to the drill bit for rock breaking.
  • the energy storage capacitor 300 charges the first drill pipe 101 .
  • the cycle reciprocates according to this rule, so that the first drill rod 101 , the second drill rod 102 , the third drill rod 103 and the fourth drill rod 104 can realize continuous and alternate charging and discharging, thereby greatly improving the drilling efficiency.
  • the drill bit includes a one-piece drill bit 201 .
  • Each drill rod 100 is connected with an integrated drill bit 201 .
  • the pulse drilling device includes an integrated drill bit 201 .
  • a plurality of drill rods 100 are all connected to the integrated drill bit 201 .
  • Any drill pipe 100 can be discharged to the integrated drill bit 201 for rock breaking.
  • the pulse drilling device equipped with the integrated drill bit 201 can realize the continuous drilling work under the condition of small diameter and the same energy.
  • the drill bit includes a plurality of split drill bits 202 .
  • a split drill bit 202 is configured and connected to each drill rod 100 .
  • the pulse drilling device includes a plurality of split drill bits 202 .
  • the number of split drill bits 202 is equal to the number of drill pipes 100 . That is to say, each drill rod 100 is equipped with a split drill bit 202 connected thereto. Each drill pipe 100 can be discharged to the corresponding split drill bit 202 connected thereto to break rock.
  • the pulse drilling device installed with the split drill bit 202 can realize continuous drilling work with small energy and large diameter.
  • the drill bit is detachably connected to the drill rod 100 through the drill bit connector 500 .
  • the pulse drilling device can be adapted to continuous drilling work under different working conditions, which greatly improves the flexibility and versatility of the pulse drilling device.
  • each drill rod 100 is correspondingly equipped with a discharge switch 400 to control the working state of each drill rod 100 .
  • the first drill pipe 101 is configured and connected with a first discharge switch.
  • the second drill pipe 102 is configured and connected with a second discharge switch.
  • the third drill pipe 103 is configured and connected with a third discharge switch.
  • the fourth drill pipe 104 is configured and connected with a fourth discharge switch.
  • the first discharge switch, the third discharge switch and the fourth discharge switch are in the cut-off state, the second discharge switch is in the conduction state, and the second drill pipe 102 is discharged to the drill bit for crushing rock, and the rest of the drill pipe is charged.
  • an insulating layer is provided between the low voltage end and the high voltage end at the connection port of the drill pipe 100 and the drill bit connector 500 .
  • the insulating layer is used to isolate the connection between the high-voltage electrode drill bit and the low-voltage electrode drill bit and the shell, so as to prevent the leakage of electric energy and cause safety problems.
  • the pulse drilling device further includes a control unit.
  • the control unit is electrically connected to each discharge switch 400 to control the discharge time and sequence of each drill pipe 100 by controlling the working state of each discharge switch 400 .
  • At least one energy storage capacitor 300 is configured and connected to each drill pipe 100 .
  • Each energy storage capacitor 300 is connected to a high voltage power supply.
  • the high voltage power supply is electrically connected with the control unit.
  • the pulse drilling device further includes a control unit.
  • the control unit is electrically connected with the first discharge switch, the second discharge switch, the third discharge switch and the fourth discharge switch.
  • Each drill pipe 100 can be equipped with a plurality of energy storage capacitors 300, and each energy storage capacitor 300 is connected to a high voltage power supply.
  • the high-voltage power supply can convert conventional 220V commercial power or 380V industrial power into high-voltage direct current, and dump it into the energy storage capacitor 300 for the first drill pipe 101, the second drill pipe 102, the third drill pipe 103 and the fourth drill pipe 104. Charge.
  • the control system can control the high-voltage power supply to charge the energy storage capacitors 300 corresponding to the first drill rod 101 , the second drill rod 102 , the third drill rod 103 and the fourth drill rod 104 .
  • control system can also set a certain discharge time and a certain discharge sequence.
  • the control system may set the discharge sequence as the first drill rod 101 , the second drill rod 102 , the third drill rod 103 and the fourth drill rod 104 .
  • the discharge time for each drill pipe 100 is 30 minutes.
  • the control system controls the first discharge switch to be in the on state, and the second discharge switch, the third discharge switch and the fourth discharge switch are all in the off state.
  • the first drill pipe 101 is discharged to the drill bit for crushing work.
  • the control system controls the high-voltage power supply to charge the second drill rod 102 , the third drill rod 103 and the fourth drill rod 104 .
  • the control system controls the first discharge switch, the third discharge switch and the fourth discharge switch to be in an off state, and the second discharge switch is in an on state.
  • the second drill rod 102 is discharged to the drill bit for crushing work.
  • the control system controls the high-voltage power supply to charge the first drill rod 101 , the third drill rod 103 and the fourth drill rod 104 .
  • the first discharge switch, the second discharge switch and the fourth discharge switch are in an off state, and the third discharge switch is in an on state.
  • the third drill pipe 103 is discharged to the drill bit for crushing work.
  • the control system controls the high-voltage power supply to charge the first drill rod 101 , the second drill rod 102 and the fourth drill rod 104 .
  • the third drill pipe 103 is discharged for 30 minutes, the first discharge switch, the second discharge switch and the third discharge switch are in the off state, and the fourth discharge switch is in the on state.
  • the fourth drill rod 104 is discharged to the drill bit for crushing work.
  • the control system controls the high-voltage power supply to charge the first drill rod 101 , the second drill rod 102 and the third drill rod 103 . According to this rule, the next cycle of continuous charging and discharging will be carried out.
  • At least one energy storage capacitor 300 is configured and connected to each drill pipe 100 .
  • the energy storage capacitor 300 connected to each drill pipe 100 can be adjusted according to actual needs. All storage capacitors can be connected to the same high voltage power supply.
  • the pulse drilling device further includes a casing 600 .
  • Each energy storage capacitor 300 and each drill pipe 100 are installed in the casing 600 .
  • a slag discharge channel 700 is provided in the casing 600 .
  • a plurality of drill pipes 100 are arranged in a circular array inside the casing 600 with the center point of the slag discharge channel 700 as the center point of the array.
  • the slag discharge channel 700 is located at the center of a plurality of drill pipes 100 . It is used to press the mud, flush out the slag of the broken rock, and realize positive circulation slag discharge. Alternatively, the slag is sucked out from the slag discharge channel 700 to realize reverse circulation slag discharge.
  • the structure of the pulse drilling device is simple, compact and easy to operate. Compared with the traditional mechanical crushing method, its crushing efficiency is greatly improved, and the working cost is lower. At the same time, the device can be applied to drilling work under different working conditions, and has high flexibility and versatility. In addition, compared with the existing pulse drilling device, this device can truly realize continuous charging and continuous discharging, and then realize continuous drilling work, and its drilling work efficiency is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)

Abstract

一种脉冲钻进装置,包括:多个钻杆(100)、钻头、储能电容(300)和放电开关(400)。各钻杆上均对应连接有储能电容,储能电容能够为与其相连的钻杆充电,钻头与钻杆连接,放电开关与钻杆连接,以控制钻杆放电至钻头并破碎岩石,并且,多个钻杆能够实现连续交替充电和放电。放电开关能够相应控制各钻杆的充电状态。其中一个钻杆处于放电状态时,其余钻杆均处于充电状态。处于放电状态的钻杆的电能耗尽后转为充电状态,同时使得满电状态的钻杆进行连续放电。由此,多个钻杆能够实现连续交替充电和放电,进而极大提升了钻进效率。

Description

脉冲钻进装置
相关申请的交叉引用
本申请要求于2021年6月11日提交的申请号为202110653591.2,名称为“脉冲钻进装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及钻进设备技术领域,尤其涉及一种脉冲钻进装置。
背景技术
脉冲放电破碎矿石是过去几十年发展起来的一种破碎新技术,利用脉冲放电产生的冲击波、射流或等离子体通道的力学效应对矿石产生破坏作用。破碎的过程无飞石、无有害物质产生,且放电过程易于控制。
但是,目前所采用的脉冲钻进装置都属于单次充放电形式,并不能真正实现连续放电钻进的功能,钻进破碎效率较低。
发明内容
本申请提供一种脉冲钻进装置,用以解决现有技术中的脉冲钻进装置不能连续进行充放电且钻进效率较低的问题,实现使脉冲钻进装置连续充放电并提升钻进效率的效果。
根据本申请提供的一种脉冲钻进装置,包括:多个钻杆、钻头、储能电容和放电开关。
其中,各所述钻杆上均对应连接有所述储能电容,所述储能电容能够为与其相连的所述钻杆充电,所述钻头与所述钻杆连接,所述放电开关与所述钻杆连接,以控制所述钻杆放电至所述钻头并破碎岩石,并且,多个所述钻杆能够实现连续交替充电和放电。
根据本申请提供的一种脉冲钻进装置,所述钻头包括一体式钻头。各所述钻杆均与所述一体式钻头连接。
根据本申请提供的一种脉冲钻进装置,所述钻头包括多个分体式钻头。 各所述钻杆上均配置连接有一个所述分体式钻头。
根据本申请提供的一种脉冲钻进装置,所述钻头通过钻头连接件与所述钻杆可拆卸连接。
根据本申请提供的一种脉冲钻进装置,每个所述钻杆均相应配置有一个所述放电开关,以控制各所述钻杆的工作状态。
根据本申请提供的一种脉冲钻进装置,所述脉冲钻进装置还包括控制单元。所述控制单元与各所述放电开关均电性连接,以通过控制各所述放电开关的工作状态来控制各所述钻杆的放电时间和放电顺序。
根据本申请提供的一种脉冲钻进装置,所述钻杆与所述钻头连接件的连接端口处的低压端与高压端之间设有绝缘层。
根据本申请提供的一种脉冲钻进装置,每个所述钻杆上至少配置连接有一个所述储能电容,各所述储能电容均与高压电源连接,所述高压电源与所述控制单元电性连接。
根据本申请提供的一种脉冲钻进装置,所述脉冲钻进装置还包括壳体。各所述储能电容和各所述钻杆均安装于所述壳体内。
根据本申请提供的一种脉冲钻进装置,所述壳体内设有排渣通道。多个所述钻杆以所述排渣通道的中心点为阵列中心点环形阵列在所述壳体的内部。
在本申请提供的脉冲钻进装置中,各所述钻杆上均对应连接有所述储能电容,所述储能电容能够为与其相连的所述钻杆充电。所述钻头与所述钻杆连接,所述放电开关与所述钻杆连接,以控制所述钻杆放电至所述钻头并破碎岩石,并且,多个所述钻杆能够实现连续交替充电和放电。
与现有技术相比,该脉冲钻进装置设有多个所述钻杆,各所述钻杆均相应配置连接有所述储能电容。所述放电开关能够相应控制各所述钻杆的充电状态。其中一个所述钻杆处于放电状态时,其余所述钻杆均处于充电状态。处于放电状态的钻杆的电能耗尽后转为充电状态,同时使得满电状态的钻杆进行连续放电。由此,多个钻杆能够实现连续交替充电和放电,进而极大提升了钻进效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的脉冲钻进装置的结构示意图;
图2是本申请提供的安装有一体式钻头的脉冲钻进装置的结构示意图;
图3是安装有一体式钻头的脉冲钻进装置的工作状态示意图;
图4是本申请提供的安装有分体式钻头的脉冲钻进装置的结构示意图;
图5是安装有分体式钻头的脉冲钻进装置的工作状态示意图;
附图标记:
100:钻杆;                       101:第一钻杆;
102:第二钻杆;                   103:第三钻杆;
104:第四钻杆;                   201:一体式钻头;
202:分体式钻头;                 300:储能电容;
400:放电开关;                   500:钻头连接件;
600:壳体;                       700:排渣通道。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例用于说明本申请,但不能用来限制本申请的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征 “上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图5对本申请实施例提供的一种脉冲钻进装置进行描述。应当理解的是,以下所述仅是本申请的示意性实施方式,并不对本申请构成任何特别限定。
本申请的实施例提供了一种脉冲钻进装置,如图1、图2和图4所示,该脉冲钻进装置包括:多个钻杆100、钻头、储能电容300和放电开关400。
其中,各钻杆100上均对应连接有储能电容300。储能电容300能够为与其相连的钻杆100充电。钻头与钻杆100连接,放电开关400与钻杆100连接,以控制钻杆100放电至钻头并破碎岩石。并且,多个钻杆能够实现连续交替充电和放电。
与现有技术相比,该脉冲钻进装置设有多个钻杆100,各钻杆100均相应配置连接有储能电容300。放电开关400能够相应控制各钻杆100的充电状态。其中一个钻杆100处于放电状态时,其余钻杆100均处于充电状态。 处于放电状态的钻杆100的电能耗尽后转为充电状态,同时使得满电状态的钻杆100进行连续放电。由此,多个钻杆100能够实现连续交替充电和放电,进而极大提升了钻进效率。
例如,在本申请的一个实施例中,如图1所示,钻杆100包括第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104。第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104均相应地配置连接有储能电容300。假设放电开关400首先控制第一钻杆101放电至钻头进行破碎岩石,则第二钻杆102、第三钻杆103和第四钻杆104均处于充电状态。当第一钻杆101的电能耗尽时,放电开关400可以控制第二钻杆102、第三钻杆103和第四钻杆104中的任意一个钻杆100放电至钻头进行破碎岩石。同时,储能电容300为第一钻杆101进行充电。以此规律循环往复,由此,第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104能够实现连续交替充电和放电,进而极大提升了钻进效率。
此处应当说明的是,上述实施例仅是本申请的一个示意性实施例,并不能对本申请构成任何限定。钻杆100的数量可以根据实际需求自行确定。
例如,在本申请的一个实施例中,钻头包括一体式钻头201。各钻杆100均与一体式钻头201连接。
如图2和图3所示,该脉冲钻进装置包括一个一体式钻头201。多个钻杆100均与该一体式钻头201连接。任意钻杆100均可放电至该一体式钻头201进行破碎岩石。安装有一体式钻头201的脉冲钻进装置能够实现小直径同等能量条件下的持续钻进工作。
又例如,在本申请的一个实施例中,钻头包括多个分体式钻头202。各钻杆100上均配置连接有一个分体式钻头202。
如图4和图5所示,该脉冲钻进装置包括多个分体式钻头202。分体式钻头202的数量与钻杆100的数量相等。也就是说,每个钻杆100上均配置连接有分体式钻头202。各钻杆100能够放电至与其连接的相应的分体式钻头202上进行破碎岩石。安装有分体式钻头202的脉冲钻进装置能够实现小能量大直径的持续钻进工作。
在本申请的一个实施例中,钻头通过钻头连接件500与钻杆100可拆卸连接。
根据以上描述的实施例可知,通过更换钻头的种类,使得该脉冲钻进装置能够适用于不同工况下的持续钻进工作,极大提升了该脉冲钻进装置的灵活性和通用性。
在本申请的一个实施例中,每个钻杆100均相应配置有一个放电开关400,以控制各钻杆100的工作状态。
例如,第一钻杆101配置连接有第一放电开关。第二钻杆102配置连接有第二放电开关。第三钻杆103配置连接有第三放电开关。第四钻杆104配置连接有第四放电开关。当需要第一钻杆101进行放电时,第一放电开关处于导通状态,第一钻杆101放电至钻头进行破碎岩石。此时,第二放电开关、第三放电开关和第四放电开关均处于截止状态,第二钻杆102、第三钻杆103和第四钻杆104均处于充电状态。当第一钻杆101的电能耗尽时,使得第一放电开关、第三放电开关和第四放电开关处于截止状态,第二放电开关处于导通状态,第二钻杆102放电至钻头进行破碎岩石,其余钻杆均处于充电状态。
在本申请的一个实施例中,钻杆100与钻头连接件500的连接端口处的低压端与高压端之间设有绝缘层。绝缘层用于隔绝高压电极钻头与低压电极钻头及外壳连接,防止电能泄露,引起安全问题。
在本申请的一个实施例中,脉冲钻进装置还包括控制单元。控制单元与各放电开关400均电性连接,以通过控制各放电开关400的工作状态来控制各钻杆100的放电时间和放电顺序。
进一步,在本申请的一个实施例中,每个钻杆100上至少配置连接有一个储能电容300。各储能电容300均与高压电源连接。高压电源与控制单元电性连接。结合上述实施例具体来讲,该脉冲钻进装置还包括控制单元。控制单元与第一放电开关、第二放电开关、第三放电开关和第四放电开关均电性连接。每个钻杆100上均可以配置有多个储能电容300,各储能电容300均与高压电源连接。高压电源能够将常规220V市电或380V工业电转化为高压直流电,转储到储能电容300中以为第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104进行充电。控制***能够控制高压电源为第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104相对应的储能电容300充电。
同时,控制***还可以设定一定的放电时间和一定的放电顺序。例如, 控制***可以设定放电顺序依次为第一钻杆101、第二钻杆102、第三钻杆103和第四钻杆104。每个钻杆100的放电时间为30min。
开始时,控制***控制第一放电开关处于导通状态,第二放电开关、第三放电开关和第四放电开关均处于截止状态。此时,第一钻杆101放电至钻头进行破碎工作。同时,控制***控制高压电源为第二钻杆102、第三钻杆103和第四钻杆104进行充电。第一钻杆101放电30min后,控制***控制第一放电开关、第三放电开关和第四放电开关处于截止状态,第二放电开关处于导通状态。此时,第二钻杆102放电至钻头进行破碎工作。同时,控制***控制高压电源为第一钻杆101、第三钻杆103和第四钻杆104进行充电。第二钻杆102放电30min后,第一放电开关、第二放电开关和第四放电开关处于截止状态,第三放电开关处于导通状态。此时,第三钻杆103放电至钻头进行破碎工作。同时,控制***控制高压电源为第一钻杆101、第二钻杆102和第四钻杆104进行充电。第三钻杆103放电30min后,第一放电开关、第二放电开关和第三放电开关处于截止状态,第四放电开关处于导通状态。此时,第四钻杆104放电至钻头进行破碎工作。同时,控制***控制高压电源为第一钻杆101、第二钻杆102和第三钻杆103进行充电。由此规律,进行下一循环连续充电和放电工作。
此处应当理解的是,每根钻杆100上至少配置连接有一个储能电容300。每根钻杆100上所配置连接的储能电容300可以根据实际需求自行调整。所有储能电容可以与同一个高压电源连接。
在本申请的一个实施例中,脉冲钻进装置还包括壳体600。各储能电容300和各钻杆100均安装于壳体600内。
进一步,在本申请的一个实施例中,如图1至图5所示,壳体600内设有排渣通道700。多个钻杆100以排渣通道700的中心点为阵列中心点环形阵列在壳体600的内部。
如图1所示,排渣通道700位于多个钻杆100的中心位置。用于打压泥浆,冲出破碎岩石的碎渣,实现正循环排渣。或者从排渣通道700将碎渣吸出,实现反循环排渣。
根据以上描述的实施例可知,该脉冲钻进装置的结构简单、紧凑,易于操作。相较于传统机械破碎方式,其破碎效率大幅提升,且工作成本较低。 同时,该装置能够适用于不同工况下的钻进工作,具有较高的灵活性和通用性。另外,与现有的脉冲钻进装置相比较,该装置能够真正实现连续充电和连续放电,进而实现连续钻进工作,其钻进工作效率极大提升。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种脉冲钻进装置,其特征在于,包括:多个钻杆、钻头、储能电容和放电开关,
    其中,各所述钻杆上均对应连接有所述储能电容,所述储能电容能够为与其相连的所述钻杆充电,所述钻头与所述钻杆连接,所述放电开关与所述钻杆连接,以控制所述钻杆放电至所述钻头并破碎岩石,并且,多个所述钻杆能够实现连续交替充电和放电。
  2. 根据权利要求1所述的脉冲钻进装置,其特征在于,所述钻头包括一体式钻头,各所述钻杆均与所述一体式钻头连接。
  3. 根据权利要求1所述的脉冲钻进装置,其特征在于,所述钻头包括多个分体式钻头,各所述钻杆上均配置连接有一个所述分体式钻头。
  4. 根据权利要求2或3所述的脉冲钻进装置,其特征在于,所述钻头通过钻头连接件与所述钻杆可拆卸连接。
  5. 根据权利要求1所述的脉冲钻进装置,其特征在于,每个所述钻杆均相应配置有一个所述放电开关,以控制各所述钻杆的工作状态。
  6. 根据权利要求5所述的脉冲钻进装置,其特征在于,所述脉冲钻进装置还包括控制单元,所述控制单元与各所述放电开关均电性连接,以通过控制各所述放电开关的工作状态来控制各所述钻杆的放电时间和放电顺序。
  7. 根据权利要求4所述的脉冲钻进装置,其特征在于,所述钻杆与所述钻头连接件的连接端口处的低压端与高压端之间设有绝缘层。
  8. 根据权利要求6所述的脉冲钻进装置,其特征在于,每个所述钻杆上至少配置连接有一个所述储能电容,各所述储能电容均与高压电源连接,所述高压电源与所述控制单元电性连接。
  9. 根据权利要求8所述的脉冲钻进装置,其特征在于,所述脉冲钻进装置还包括壳体,各所述储能电容和各所述钻杆均安装于所述壳体内。
  10. 根据权利要求9所述的脉冲钻进装置,其特征在于,所述壳体内设有排渣通道,多个所述钻杆以所述排渣通道的中心点为阵列中心点环形阵列在所述壳体的内部。
PCT/CN2022/073480 2021-06-11 2022-01-24 脉冲钻进装置 WO2022257478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22819085.6A EP4311910A1 (en) 2021-06-11 2022-01-24 Pulse drilling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110653591.2 2021-06-11
CN202110653591.2A CN113323661B (zh) 2021-06-11 2021-06-11 脉冲钻进装置

Publications (1)

Publication Number Publication Date
WO2022257478A1 true WO2022257478A1 (zh) 2022-12-15

Family

ID=77420629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073480 WO2022257478A1 (zh) 2021-06-11 2022-01-24 脉冲钻进装置

Country Status (3)

Country Link
EP (1) EP4311910A1 (zh)
CN (1) CN113323661B (zh)
WO (1) WO2022257478A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323661B (zh) * 2021-06-11 2022-11-04 北京三一智造科技有限公司 脉冲钻进装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA851047A (en) * 1970-09-08 Byron Jackson Inc. Orienting tool for slant hole drilling
CN102493768A (zh) * 2011-12-02 2012-06-13 东北石油大学 高频脉冲射流共振钻井装置及其钻井方法
CN103266853A (zh) * 2013-05-16 2013-08-28 中国船舶重工集团公司第七一〇研究所 基于单脉冲磁矩测量的钻杆定向方法及装置
CN106703682A (zh) * 2017-03-17 2017-05-24 吉林大学 一种等离子体液动动力旋转钻具
CN111894445A (zh) * 2020-08-07 2020-11-06 中国铁建重工集团股份有限公司 一种多孔排钻
CN112227954A (zh) * 2020-11-04 2021-01-15 北京三一智造科技有限公司 一种等离子体桩基设备的钻杆及等离子体桩基设备
CN112922575A (zh) * 2021-02-04 2021-06-08 中国矿业大学 一种电脉冲定向割缝-水压***一体化煤层增透的方法
CN113323661A (zh) * 2021-06-11 2021-08-31 北京三一智造科技有限公司 脉冲钻进装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI941689A (fi) * 1994-04-13 1995-10-14 Doofor Oy Menetelmä ja poralaite poranterään välitettävän iskupulssin muodon sovittamiseksi
CN102733754B (zh) * 2012-06-28 2014-05-21 浙江大学 一种脉冲等离子体钻机***
CN212079203U (zh) * 2020-01-13 2020-12-04 中国地质大学(武汉) 一种高压电脉冲钻头及破岩实验装置
CN112240164A (zh) * 2020-11-04 2021-01-19 北京三一智造科技有限公司 一种等离子体脉冲破岩桩机
CN112227955A (zh) * 2020-11-04 2021-01-15 北京三一智造科技有限公司 脉冲破岩钻头及脉冲破岩钻机
CN112855015A (zh) * 2021-01-27 2021-05-28 张庆豫 一种高压电脉冲辅助破岩钻井***及方法
CN112901065A (zh) * 2021-04-07 2021-06-04 北京三一智造科技有限公司 高压电弧破岩的电解质循环***及循环方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA851047A (en) * 1970-09-08 Byron Jackson Inc. Orienting tool for slant hole drilling
CN102493768A (zh) * 2011-12-02 2012-06-13 东北石油大学 高频脉冲射流共振钻井装置及其钻井方法
CN103266853A (zh) * 2013-05-16 2013-08-28 中国船舶重工集团公司第七一〇研究所 基于单脉冲磁矩测量的钻杆定向方法及装置
CN106703682A (zh) * 2017-03-17 2017-05-24 吉林大学 一种等离子体液动动力旋转钻具
CN111894445A (zh) * 2020-08-07 2020-11-06 中国铁建重工集团股份有限公司 一种多孔排钻
CN112227954A (zh) * 2020-11-04 2021-01-15 北京三一智造科技有限公司 一种等离子体桩基设备的钻杆及等离子体桩基设备
CN112922575A (zh) * 2021-02-04 2021-06-08 中国矿业大学 一种电脉冲定向割缝-水压***一体化煤层增透的方法
CN113323661A (zh) * 2021-06-11 2021-08-31 北京三一智造科技有限公司 脉冲钻进装置

Also Published As

Publication number Publication date
CN113323661B (zh) 2022-11-04
CN113323661A (zh) 2021-08-31
EP4311910A1 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
CN104984807B (zh) 一种用于连续放电破碎矿石的装置及其破碎矿石的方法
US9700893B2 (en) Virtual electrode mineral particle disintegrator
US9010458B2 (en) Pressure pulse fracturing system
AU2005277008B2 (en) Pulsed electric rock drilling, fracturing, and crushing methods and apparatus
WO2022257478A1 (zh) 脉冲钻进装置
WO2010027866A2 (en) Pulsed electric rock drilling apparatus with non-rotating bit and directional control
CN108757010A (zh) 干式可控冲击波煤层增透器
JP2000248873A (ja) プラズマ破岩用電力衝撃セル
KR20000010478A (ko) 모세관 전극 방전 플라스마 디스플레이 패널 장치 및 그 제조방법
CN104113314A (zh) 一种激光触发真空开关及开关***
CN108871130B (zh) 一种可实现孔壁密封的等离子体***岩石机械装置
CN108598868A (zh) 一种用于气体火花开关的电极结构及设计方法
CN113187398B (zh) 新型磁力连续脉冲等离子钻头及钻井方法
CN105680261B (zh) 一种二氧化碳致裂器用连接器
CN102005322B (zh) 开关电器灭弧室
CN208124974U (zh) 一种充装头、二氧化碳致裂器和二氧化碳致裂器组
CN113494282A (zh) 一种应用于油井解堵的激波发射器及油井解堵***
CN201369310Y (zh) 射频外触发气体放电开关
CN1053254C (zh) 用于油井解堵的井下放电器
CN102394472B (zh) 一种火花间隙的单一主间隙
CN203967513U (zh) 一种防止电火花烧蚀损伤电极材质的装置
CN109127063A (zh) 液压预紧胀裂电极
CN109372514A (zh) 基于高压脉冲放电-机械联合破岩的新型竖井钻机
CN219220297U (zh) 钻头电极及钻头
CN105845123A (zh) 一种大功率水下等离子体强声源的放电电极头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022819085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022819085

Country of ref document: EP

Effective date: 20231027

NENP Non-entry into the national phase

Ref country code: DE