WO2022257214A1 - 一种关断设备的控制方法、装置及关断设备 - Google Patents

一种关断设备的控制方法、装置及关断设备 Download PDF

Info

Publication number
WO2022257214A1
WO2022257214A1 PCT/CN2021/105162 CN2021105162W WO2022257214A1 WO 2022257214 A1 WO2022257214 A1 WO 2022257214A1 CN 2021105162 W CN2021105162 W CN 2021105162W WO 2022257214 A1 WO2022257214 A1 WO 2022257214A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
voltage
switch
control
bus
Prior art date
Application number
PCT/CN2021/105162
Other languages
English (en)
French (fr)
Inventor
罗宇浩
周懂明
沈飞
朱璇
卢啸
苗国伟
李文伟
Original Assignee
浙江英达威芯电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江英达威芯电子有限公司 filed Critical 浙江英达威芯电子有限公司
Publication of WO2022257214A1 publication Critical patent/WO2022257214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the field of safety protection of photovoltaic power generation systems, in particular to a control method and device for shutting down equipment and shutting down equipment.
  • a common photovoltaic system includes multiple series-connected photovoltaic module groups, and the series-connected photovoltaic module groups are connected to the inverter through the DC bus.
  • the inverter converts the DC high-voltage power output by multiple photovoltaic module groups into AC high-voltage power for integration into the grid.
  • each photovoltaic module group includes N photovoltaic modules, N is a positive integer, and the N photovoltaic modules are connected in series.
  • the inverter in order to ensure the safety of the power supply of the photovoltaic system, the inverter is usually equipped with anti-arc protection. Specifically, when the arc is detected, the inverter is controlled to stop working, but after the inverter stops working, many The DC bus connected to the output end of each photovoltaic module group will still output DC high voltage, which may cause personal danger or fire accidents.
  • a shutdown device is provided at the output end of each photovoltaic module group, and each shutdown device is connected in series to realize the series connection of each photovoltaic module group.
  • each shutdown device is controlled.
  • the equipment is disconnected to avoid the output of DC high voltage on the DC bus and avoid personal danger and fire accidents.
  • the bus capacitance on the DC bus after the shutdown device is disconnected, the DC high voltage may still exist on the DC bus, which may still cause personal danger or fire accidents.
  • the object of the present invention is to provide a control method and device for shutting down equipment and shutting down equipment.
  • no heartbeat signal is continuously sent and no heartbeat signal is received.
  • N main switch tubes are turned off, and the corresponding N side switches The switching tube of the road is turned on so that the N photovoltaic modules do not output DC to the bus, and the release circuit is controlled to release the voltage on the bus to the ground, so that the voltage on the bus decreases rapidly, avoiding the High-voltage direct current leads to personal danger and safety accidents, which improves the safety and reliability of photovoltaic systems.
  • the present invention provides a control method for shutting down equipment, which is applied to the processor in the shutting down equipment.
  • the shutting down equipment includes N main switch tubes and release circuit;
  • the first terminal of the first main switching tube is the positive output terminal of the shutdown device
  • the second terminal of the i-th main switching tube is connected to the positive output terminal of the i-th photovoltaic module
  • the first terminal of the i+1-th main switch connected to the output negative terminal of the i-th photovoltaic module
  • the output negative terminal of the Nth photovoltaic module is the output negative terminal of the shutdown device
  • the control terminal of the release circuit is connected to the first output terminal of the processor , the input end of the release circuit is connected to the bus bar, the output end of the release circuit is grounded, N ⁇ i ⁇ 1, and N and i are both integers;
  • control methods include:
  • the method further includes:
  • the release circuit includes a switch circuit, the first end of the switch circuit is connected to the bus bar, the second end of the switch circuit is grounded, and the control end of the switch circuit is the control end of the release circuit ;
  • Controlling the opening of the release circuit to release the voltage on the bus includes:
  • the positive power terminal of the processor is connected to the positive output terminal of the first photovoltaic module, and the negative power terminal of the processor is connected to the negative output terminal of the i-th photovoltaic module;
  • the shutdown device further includes N bypass switch tubes corresponding to the N photovoltaic modules one by one, and the first end of the bypass switch tube is connected to the second end of the main switch tube corresponding to itself , the second end of the bypass switch tube is connected to the output negative end of the photovoltaic module corresponding to itself;
  • the bypass switch tube is a crystal field effect transistor MOS tube, and the MOS tube includes a body diode;
  • the method further includes:
  • the processor after judging whether the power supply voltage of the processor is lower than the undervoltage protection voltage, it also includes:
  • the main switching tube corresponding to the photovoltaic component with abnormal operation is controlled to be turned off and the corresponding bypass switch is turned on.
  • the shutdown device further includes a first controllable switch, the control end of the first controllable switch is connected to the second output end of the processor, and the first end of the first controllable switch is connected to the second output end of the processor.
  • the power output terminal of the processor is connected, and the second terminal of the first controllable switch is connected with the low-voltage device in the shutdown device;
  • the main switching transistor is a MOS transistor, and the MOS transistor includes a body diode;
  • the present invention also provides a control device for shutting down equipment, including:
  • the processor is configured to realize the steps of the above-mentioned method for controlling the shutdown device when executing the computer program.
  • the present invention also provides a shut-off device, including the control device for the shut-off device described above, N main switch tubes corresponding to the N photovoltaic modules one-to-one, and a release circuit;
  • the first terminal of the first main switching tube is the positive output terminal of the shutdown device
  • the second terminal of the i-th main switching tube is connected to the positive output terminal of the i-th photovoltaic module
  • the first terminal of the i+1-th main switch connected to the output negative terminal of the i-th photovoltaic module
  • the output negative terminal of the Nth photovoltaic module is the output negative terminal of the shutdown device
  • the control terminal of the release circuit is connected to the first output terminal of the processor , the input end of the release circuit is connected to the bus bar, the output end of the release circuit is grounded, N ⁇ i ⁇ 1, and N and i are both integers;
  • the releasing circuit is used to release the voltage on the bus after the N main switching transistors are turned off.
  • the release circuit includes a second controllable switch and a third controllable switch
  • the control terminal of the second controllable switch is the control terminal of the release circuit
  • the second end of the second controllable switch is connected to the control end of the third controllable switch
  • the first end of the third controllable switch is connected to the bus bar
  • the third The second terminal of the controllable switch is grounded.
  • N is 1
  • the release circuit includes a reference voltage module and a fourth controllable switch, the output terminal of the reference voltage module is connected to the control terminal of the fourth controllable switch, and the fourth controllable switch The first terminal of the fourth controllable switch is connected to the bus bar, and the second terminal of the fourth controllable switch is connected to the ground terminal of the processor.
  • the present application provides a control method and device for shutting down equipment, and shutting down equipment.
  • N main switch tubes After continuously receiving a heartbeat signal within a first preset time, N main switch tubes are turned on, and the corresponding N photovoltaic modules output direct current to the bus. , so that the inverter outputs alternating current into the grid; if no heartbeat signal is continuously received within the second preset time, the N main switches are turned off, and the corresponding N bypass switches are turned on, so that the N photovoltaic
  • the components do not output direct current to the bus, and control the release circuit to release the voltage on the bus to the ground, so that the voltage on the bus decreases rapidly, avoiding personal danger and safety accidents caused by the long-term presence of high-voltage direct current on the bus, and improving Safety and reliability of photovoltaic systems.
  • FIG. 1 is a schematic flow diagram of a control method for shutting down equipment provided by the present invention
  • Fig. 2 is the specific implementation circuit diagram of the shutdown device corresponding to a photovoltaic module provided by the present invention
  • Fig. 3 is the specific implementation circuit diagram of the shutdown device corresponding to a photovoltaic module provided by the present invention
  • Fig. 4 is a control sequence diagram of a shutdown device corresponding to two photovoltaic modules provided by the present invention.
  • Fig. 5 is a control timing diagram of a release circuit provided by the present invention.
  • FIG. 6 is a schematic circuit diagram of a release circuit provided by the present invention.
  • FIG. 7 is a schematic circuit diagram of another release circuit provided by the present invention.
  • Fig. 8 is a control sequence diagram of another shutdown device corresponding to two photovoltaic modules provided by the present invention.
  • Fig. 9 is a control timing diagram of the first controllable switch provided by the present invention.
  • FIG. 10 is a control timing diagram for reverse flow current provided by the present invention.
  • Fig. 11 is a structural block diagram of a control device for shutting down equipment provided by the present invention.
  • the core of the present invention is to provide a control method and device for shutting down equipment and shutting down equipment.
  • N main switch tubes are turned off, and the corresponding N side switch tubes are turned off.
  • the switching tube of the road is turned on so that the N photovoltaic modules do not output DC to the bus, and the release circuit is controlled to release the voltage on the bus to the ground, so that the voltage on the bus decreases rapidly, avoiding the High-voltage direct current leads to personal danger and safety accidents, which improves the safety and reliability of photovoltaic systems.
  • Fig. 1 is a schematic flowchart of a control method for a shutdown device provided by the present invention. The control method is applied to a processor in the shutdown device. N main switch tubes and release circuits;
  • the first terminal of the first main switching tube is the output positive terminal of the shutdown device
  • the second terminal of the i-th main switching tube is connected to the output positive terminal of the i-th photovoltaic module
  • the first terminal of the i+1-th main switch is connected to the output positive terminal of the i-th main switch.
  • the output negative terminal of the i photovoltaic module is connected
  • the output negative terminal of the Nth photovoltaic module is the output negative terminal of the shutdown device
  • the control terminal of the release circuit is connected to the first output terminal of the processor
  • the input terminal of the release circuit is connected to the bus bar
  • the output terminal of the release circuit is grounded, N ⁇ i ⁇ 1, and both N and i are integers;
  • Control methods include:
  • the bus capacitance can store energy, so after the shutdown equipment is disconnected, the DC bus There may still be DC high voltage on the device, which may still cause personal danger or fire accident.
  • the design idea of this application is: after controlling the disconnection of each shut-off device, the voltage on the DC bus is controlled to drop rapidly, so as to speed up the voltage drop on the DC bus, thereby preventing the voltage on the bus from continuing It is at high voltage, reducing the possibility of personal danger or fire accidents.
  • the application sets a release circuit in the shutdown device with one end connected to the bus and one end connected to the ground. After each shutdown device is disconnected, the voltage on the bus is released to the ground by controlling the conduction of the release circuit. end. Specifically, the conduction of the control release circuit must be when the switching device is turned off after the photovoltaic module outputs DC power to the bus.
  • the control method in this application is: the system controller continues to send heartbeats within the first preset time signal, N main switch tubes are turned on, and the corresponding N photovoltaic modules output DC power to the bus, so that the inverter output AC power can be connected to the grid; the system controller does not send heartbeat signals continuously within the second preset time, and N The main switching tube is turned off, and the corresponding N bypass switching tubes are turned on, so that the N photovoltaic modules do not output direct current to the bus, and the release circuit is controlled to release the voltage stored on the bus to quickly release the voltage on the bus To the ground terminal, so that the voltage on the bus decreases rapidly, avoiding personal danger and safety accidents.
  • the setting of the first preset time and the second preset time in the control method in this application is to ensure the stability of the received heartbeat signal.
  • the heartbeat signal can be sent by the system controller, but not limited to, the system controller It can be to send a heartbeat signal to the processor based on user instructions, etc., so that the photovoltaic system can start to work normally. At this time, due to interference or other factors, the system controller may send a heartbeat signal by mistake or not in a short period of time. If the actions of the N main switch tubes or the N bypass switch tubes are directly controlled at this time, a malfunction may be caused, or frequent actions of the switch tubes may be caused, which may cause damage to the shutdown device. Therefore, in this application, the first preset time and the second preset time are set to ensure that the processor receives the heartbeat signal stably, or does not receive the heartbeat signal stably, so as to ensure the reliability of the system operation.
  • FIG. 2 is a specific implementation circuit diagram of a shutdown device corresponding to a photovoltaic module provided by the present invention
  • Fig. 3 is a specific realization circuit diagram of a shutdown device corresponding to a photovoltaic module provided by the present invention
  • FIG. 4 is a control sequence diagram of the shut-off device corresponding to two photovoltaic modules provided by the present invention.
  • the above shutdown device further includes a diode D1, a first capacitor C1 and a second capacitor C2;
  • the anode of the diode D1 is connected to the positive output terminal of the first photovoltaic module
  • the cathode of the diode D1 is respectively connected to the first terminal of the first capacitor C1 and the positive terminal of the power supply of the processor
  • the second terminal of the first capacitor C1 is connected to the positive terminal of the power supply of the processor respectively.
  • the output negative terminal of the first photovoltaic module is connected to the first terminal of the second capacitor C2
  • the first terminal of the second capacitor C2 is respectively connected to the power output terminal of the processor and the power supply terminal of the electric device in the shutdown device;
  • the processor is also used to convert the voltage of its own positive power supply terminal to supply power to the electric devices in the shutdown device.
  • the voltage output by the photovoltaic module charges the first capacitor C1 through the diode D1, and the voltage of the first capacitor C1 is the power supply voltage of the processor.
  • the power supply at the power output terminal of the processor supplies power to the second capacitor C2, and the voltage at the first terminal of the second capacitor C2 can supply power to other electric devices.
  • the first capacitor C1 can supply power to the processor for a period of time, so that the processor is not powered on.
  • the second capacitor C2 can also ensure that the electrical equipment powered by it can work normally for a period of time.
  • the processor is used to step down its own power supply voltage to supply power to low-voltage equipment. Therefore, the corresponding first capacitor C1 is a capacitor with a large capacity and a relatively large packaging volume and cost, such as the first capacitor
  • the voltage of the first section of C1 is 100 volts
  • the capacity of the second capacitor C2 and the corresponding packaging volume and cost are relatively large and relatively small, for example, the voltage of the first terminal of the second capacitor C2 is about 20 volts.
  • the power of the second capacitor C2 mainly comes from the first capacitor C1, that is, the capacitor stored in the first capacitor C1 not only supplies power to the processor, but also provides power to the processor.
  • the electrical equipment connected to the output terminal supplies power.
  • the capacity of the second capacitor C2 slightly larger (for example, increase the voltage of the first terminal of the second capacitor C2 to 25 volts), and the capacity of the first capacitor C1 is slightly smaller (for example, make the first The voltage at the first end of the capacitor C1 is reduced to 80V), so that the second capacitor C2 stores more energy and takes less energy from the first capacitor C1, and the capacity of the first capacitor C1 can be set smaller, corresponding to The packaging volume and cost of the first capacitor C1 and the second capacitor C2 can be greatly reduced.
  • the processor in this application may be one processor, or may include two separate processors, for example, when the processor includes a first processor U1 and a second processor U2,
  • Vin2+ is the voltage output by the first photovoltaic module
  • VIN is the power supply voltage of the processor, specifically the voltage of the first processor U1
  • the power supply voltage, that is, the capacitance at the first end of the first capacitor C1, and V2 is the power supply voltage output by the processor, specifically the power supply voltage of the second processor U2, that is, the voltage at the first end of the second capacitor C2
  • IN_EN is an internal logic signal
  • Transmitter_ON is a heartbeat signal
  • Trans_SET is an enable signal sent by the second processor U2 to the first processor U1 after receiving the heartbeat signal.
  • the first processor U1 is specifically used for After receiving the turn-on signal, the two main switch tubes are controlled to be turned on, and after the turn-on signal is not received, the two main switch tubes are controlled to be turned off, and the two bypass switch tubes are controlled to be turned on, and the release circuit is controlled to be turned on.
  • controlling the conduction of N main switch tubes includes:
  • g1 and g3 in FIG. 4 are control signals of the main switch tubes M1 and M3 respectively, wherein M1 and M3 are turned on when the control signal is at a high level.
  • the second processor U2 when the system controller continues to send a heartbeat signal within T3 (the first preset time), the second processor U2 sends a high level signal to the first processor U1, so that the first processor U1 controls M3 to be turned on first, and after T4 (peak shift time), controls M1 to be turned on. It is also possible to control the conduction of M1 first, and then control the conduction of M3 after T4, which is not specifically limited in this application.
  • the second processor U2 When the system controller does not send a heartbeat signal continuously within T2 (the second preset time), the second processor U2 sends a low-level signal to the first processor U1, so that the first processor U1 controls M1 and M3 to turn off broken.
  • the N main switching tubes are disconnected so that the N photovoltaic modules do not output direct current to the bus, and the voltage stored on the bus is released by controlling the release circuit, so as to quickly release the voltage on the bus to the ground terminal , so that the voltage on the bus decreases rapidly, avoiding personal danger and safety accidents.
  • the N main switch tubes after controlling the N main switch tubes to be turned off, it also includes:
  • the N main switching tubes After controlling the N main switching tubes to be turned off in the present application, it is also judged whether the voltage on the bus is greater than the preset voltage. If the bus voltage is greater than the preset voltage, it is considered that the bus voltage is released through the release circuit. It may cause damage to the release circuit. At this time, first let the bus consume by itself or the inverter at the back end connected to the bus consumes part of the bus voltage; The safety of the circuit does not pose a threat. At this time, the release circuit is turned on to quickly release the bus voltage to the ground terminal, so as to reduce the voltage on the bus as soon as possible.
  • FIG. 5 is a control timing diagram of a release circuit provided by the present invention, wherein Vout is the bus voltage, and Vth0 is the preset voltage.
  • Vout is the bus voltage
  • Vth0 is the preset voltage.
  • the control release circuit is turned on. It can be concluded from the figure that the logic of the control release circuit in this application It is determined by the control signal (g3) corresponding to the main switching tube (M3) that is turned on first and the signal feedback (Vt) of the bus voltage.
  • the release circuit includes a switch circuit, the first end of the switch circuit is connected to the bus bar, the second end of the switch circuit is grounded, and the control end of the switch circuit is the control end of the release circuit;
  • the control release circuit is turned on to release the voltage on the bus, including:
  • the conduction between the first end and the second end of the control switch circuit is used to release the voltage on the bus.
  • this embodiment aims to provide a specific implementation of the release circuit, wherein the release circuit can be, but not limited to, a switch circuit.
  • the on or off of the release circuit is controlled, specifically ground, when conducting between the first end and the second end of the switch circuit, the release circuit is in the open state, and the bus is connected to the ground through the switch circuit, so as to release the voltage on the bus to the ground to reduce the voltage on the bus as soon as possible. voltage to avoid DC high voltage on the bus.
  • the release circuit is in a closed state.
  • release circuit may be, but not limited to, a switch circuit, or other circuits that quickly reduce the voltage on the bus, and this application does not make any special limitations here.
  • FIG. 6 is a schematic circuit diagram of a release circuit provided by the present invention.
  • the release circuit includes a second controllable switch Q2 and a third controllable switch Q3, the control terminal of the second controllable switch Q2 is the control terminal of the release circuit, the first control terminal of the second controllable switch Q2 terminal is connected to the power module, the second terminal of the second controllable switch Q2 is connected to the control terminal of the third controllable switch Q3, the first terminal of the third controllable switch Q3 is connected to the bus bar, and the second terminal of the third controllable switch Q3 Both ends are grounded.
  • This embodiment aims to provide a specific implementation of the release circuit, wherein, when the release circuit is controlled to be turned on, the output control signal makes the first end and the second end of the third controllable switch Q3 conduct.
  • the second controllable switch Q2 may be, but not limited to, a PNP (positive-negative-positive, positive-negative-positive) triode
  • the third controllable switch Q3 may be, but not limited to, an NPN (negative-positive-negative, Negative - Positive - Negative) triode.
  • the release circuit further includes a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor and a voltage regulator tube;
  • the first terminal of the first resistor is connected to the first terminal of the fourth resistor and serves as the control terminal of the switch circuit, and the second terminal of the first resistor is connected to the control terminal of the second controllable switch Q2.
  • the second end of the fourth resistor is connected to the first end of the second controllable switch Q2, and the first end of the second resistor is connected to the second end of the second controllable switch Q2.
  • the second end of the second resistor is respectively connected to the first end of the Zener tube, the first end of the third resistor and the first end of the fifth resistor, the first end of the third resistor
  • the two terminals are respectively connected to the second terminal of the regulator tube, the first terminal of the sixth resistor and the ground terminal, and the second terminal of the fifth resistor is connected to the control terminal of the third controllable switch Q3 , the second end of the sixth resistor is connected to the second end of the third controllable switch Q3.
  • the regulator tube is used to ensure that the control terminal of the third controllable switch Q3 can have a stable control voltage.
  • the base voltage of the third controllable switch Q3 is raised through the resistance of the sixth resistor, thereby achieving stable constant current source control; at the same time, the problem that the temperature affects the magnification of the third controllable switch Q3 and Ube on the release current is solved .
  • FIG. 7 is a schematic circuit diagram of another release circuit provided by the present invention.
  • N is 1
  • the release circuit includes a reference voltage module and a fourth controllable switch Q4, the output terminal of the reference voltage module is connected to the control terminal of the fourth controllable switch Q4, and the fourth controllable switch Q4
  • the first terminal of the fourth controllable switch Q4 is connected to the bus bar, and the second terminal of the fourth controllable switch Q4 is connected to the ground terminal of the processor.
  • the fourth controllable switch Q4 can be but not limited to be an NPN triode.
  • the reference voltage module may include, but is not limited to, an eighth resistor and a ninth resistor, wherein the first end of the eighth resistor is grounded, the second end of the eighth resistor is connected to the first end of the ninth resistor, and is used as the output of the reference voltage module terminal, and the second terminal of the ninth resistor is connected to the output terminal of the power module.
  • the output terminal of the power module may be but not limited to be the first terminal of the second capacitor.
  • the release circuit further includes a seventh resistor and a tenth resistor, wherein the first end of the seventh resistor is connected to the output end of the reference voltage module, and the second end of the seventh resistor is connected to the control end of the fourth controllable switch Q4
  • the tenth resistor is set between the drop-in unit of the fourth controllable switch Q4 and the ground terminal of the processor.
  • the function of the tenth resistor is the same as that of the sixth resistor in the corresponding circuit.
  • the switch circuit in this embodiment can quickly connect the busbar to the ground terminal when it is turned on, so as to reduce the voltage on the busbar as soon as possible, and can realize the function of the above-mentioned release circuit, and the implementation method is simple and reliable.
  • the positive power supply terminal of the processor is connected to the positive output terminal of the first photovoltaic module, and the negative power supply terminal of the processor is connected to the negative output terminal of the i-th photovoltaic module;
  • the shutdown device also includes N bypass switch tubes corresponding to the N photovoltaic modules one by one, the first end of the bypass switch tube is connected to the second end of the main switch tube corresponding to itself, and the second end of the bypass switch tube is The terminal is connected to the output negative terminal of the photovoltaic module corresponding to itself;
  • the bypass switch tube is a MOS (Metal-Oxide-Semiconductor Field-Effect Transistor) tube, and the MOS tube includes a body diode;
  • MOS Metal-Oxide-Semiconductor Field-Effect Transistor
  • bypass switches are controlled to be closed.
  • the power supply voltage of the processor is the direct current output by several photovoltaic modules in the corresponding photovoltaic module group.
  • the processor is powered, and the DC power is output to the bus through the corresponding main switch tube.
  • the conduction of the N main switch tubes may reduce the power supply voltage of the processor, which may reach the undervoltage protection voltage of the processor, causing the processor to work abnormally, which may lead to unreliable operation of the control shutdown device .
  • this application also sets up N bypass switch tubes corresponding to the photovoltaic modules one by one. If the processor voltage of one of the shut-off devices is not turn on the switching tubes of the main switching tubes, and control the closing of the N main switching tubes, so that the N bypass switching tubes can short-circuit them. Output to the busbar to ensure the normal operation of the photovoltaic system.
  • the control method in this embodiment is: after controlling the N main switch tubes to be turned on, it is determined whether to turn on the bypass switch tube by judging the power supply voltage and the bypass current of the processor.
  • the corresponding N switch tubes are controlled to be disconnected, and when the current of the bypass switch tube is continuously greater than the preset current within the third preset time, the control The corresponding N bypass switch tubes are closed, so that the N bypass switch tubes separate the photovoltaic module group composed of N photovoltaic modules from multiple series-connected photovoltaic module groups, so that other photovoltaic module groups can output normally.
  • DC to DC cables to ensure the normal operation of the photovoltaic system.
  • the judging method in this embodiment is to judge that the bypass current continues to be greater than the preset current within the third preset time. Misoperation.
  • the bypass switch tube in this embodiment can be, but not limited to, a MOS tube. When the MOS tube is not turned on, the bypass current can flow through the body diode in the MOS tube, but when the bypass current is too large, it may As a result, the body diode heats up seriously, which may damage the MOS tube. Therefore, when the bypass current is large, the bypass switch tube is controlled to be turned on.
  • FIG. 8 is a control timing diagram of another shutdown device corresponding to two photovoltaic modules provided by the present invention.
  • Bypass_C in Figure 8 is the bypass current
  • Ith_1 is the preset current
  • IN3 is the internal logic signal
  • g1, g2, g3 and g4 are the control signals of M1, M2, M3 and M4 respectively, where M1, M2, M3 and M4 are turned on when the control signal is at high level. It can be seen from Fig.
  • the level state of g4 is determined by the logic of IN3 and g3
  • the level state of g2 is determined by the level logic of IN3 and g1.
  • the N bypass switches are controlled to turn on the N photovoltaic modules connected to the shutdown device. It is separated from multiple series-connected photovoltaic module groups connected to the inverter, so that the photovoltaic module groups corresponding to other shutdown devices can output DC voltage to the inverter normally, so that the inverter can output alternating current normally to Incorporating into the grid improves the reliability of the photovoltaic system.
  • the method of this embodiment is: when entering the bypass mode (when N bypass switches are turned on and N main switches are turned off) the first After four preset times, exit the bypass mode, and then control the main switch to turn on, and the bypass switch to turn off. If the power supply voltage of the processor is normal at this time, the entire shutdown device will enter the normal working mode, otherwise it will re-enter the bypass mode. road mode. That is, in this embodiment, it is determined whether to control the shutdown device to exit the bypass mode in an intermittent manner.
  • the sequence of controlling the disconnection of the N bypass switches is the same as the sequence of turning on the N main switches with peak shifting.
  • the present application controls the conduction of the N main switch tubes at peak shifts, so that the voltage or current gradually increases and avoids damage to the photovoltaic system.
  • the application does not specifically limit the peak-staggered turn-on time of the main switch.
  • the delay of T8 time is to consider that the voltage of VIN drops when M1 is turned on, and when it drops to the undervoltage protection voltage of the processor, g1 is controlled as The low level turns off M1, so that the input voltage Vin 2+ rises, restarts the opening process, and turns on the bypass switch.
  • the turn-off time of the bypass switch tube is Td2 hours earlier than the time of the corresponding main switch tube that is turned on next time, which is also It can be other times, and this application does not make any special limitation here.
  • the method of this embodiment can detect whether the processor resumes normal operation, and when it is working normally, control the photovoltaic module group corresponding to the shutdown device to output DC normally, and control it to enter the bypass mode when it is still abnormal.
  • the processor after judging whether the power supply voltage of the processor is lower than the undervoltage protection voltage, it also includes:
  • the main switching tube corresponding to the photovoltaic component working abnormally is controlled to be disconnected and the corresponding bypass switching tube is turned on.
  • the photovoltaic modules when the photovoltaic modules output direct current to the bus through the corresponding main switching tube, the working information of each photovoltaic module is also obtained, and it is judged whether the corresponding photovoltaic modules are abnormal, and if abnormal, control
  • the corresponding bypass switch is turned on to short-circuit the abnormal photovoltaic module and the main switch, and then separated from the photovoltaic module group corresponding to the shutdown device, so that other photovoltaic modules in the photovoltaic module group can pass through the conductive
  • the bypass switch tube outputs direct current normally.
  • obtaining the working information of the photovoltaic module may include but is not limited to obtaining the output voltage and/or operating current of the photovoltaic module, when the output voltage is within a preset voltage range and/or the output current is within a preset current range , indicating that the corresponding photovoltaic module is working normally, and when it is no longer in the corresponding range, it indicates that the corresponding photovoltaic module is working abnormally.
  • the abnormally working photovoltaic module can be separated from the photovoltaic module group corresponding to the shutdown device, so that other photovoltaic modules in the photovoltaic module group can output voltage to the DC bus normally, so as to ensure the photovoltaic system normal work.
  • the shutdown device further includes a first controllable switch Q1, the control terminal of the first controllable switch Q1 is connected to the second output terminal of the processor, and the first terminal of the first controllable switch Q1 is connected to the second output terminal of the processor.
  • the power supply output terminal of the processor is connected, and the second terminal of the first controllable switch Q1 is connected with the low-voltage device in the shutdown device;
  • the conduction between the first terminal and the second terminal of the first controllable switch Q1 is controlled, so that the processor supplies power to the low-voltage equipment through the first controllable switch Q1.
  • the off-device is in the shutdown mode, there may also be a power-consuming device that needs to be powered, for example, a power-consuming device that needs to be detected.
  • the control processor converts its own power supply voltage to output voltage to supply power for other electrical equipment, so as to ensure the normal operation of the system.
  • FIG. 9 is a control timing diagram of the first controllable switch provided by the present invention, wherein Voff_g is the control signal of the first controllable switch Q1.
  • the corresponding first The controllable switch Q1 is a switch that is turned on at a high level (such as NMOS), that is, when Voff_g is at a high level, the first controllable switch Q1 is turned on, Vout outputs the voltage Voff, and when Voff_g is at a low level, the first controllable switch Q1 disconnect.
  • Figure 5c shows that the logic of Voff_g is realized by the logic combination of Voff, Vt, IN3 and Trans_set. When the main switch is turned off and Voff needs to be output, Voff_g is high level, which can reduce the power consumption of the shutdown device. and avoid damage.
  • the main switch tube is a MOS tube, and the MOS tube includes a body diode;
  • the output terminals of multiple shutdown devices are connected in parallel.
  • the main switch tube is a MOS tube
  • the backflow current will charge the photovoltaic module with low voltage through the body diode on the MOS tube, which will generate power consumption and heat generation. If the backflow current is large, the corresponding The MOS tube is easily damaged.
  • the present application controls the main switch tube MOS tube to be turned on when the backflow current is large, that is, when the backflow current is greater than the preset backflow current, so that the backflow current is input to the photovoltaic module through the MOS tube, thereby reducing the The power consumption of the MOS tube improves the ability of sinking current.
  • FIG. 10 is a control timing diagram for the reverse flow current provided by the present invention.
  • Figure 10 is a monostable design using Ith3 and Ith4 to control the logic control of the reverse flow current.
  • Ith3 and Ith4 When the reverse flow current increases to higher than Ith3, g1 and g3 become high and turn on the main switch.
  • g1 and g3 become low level to disconnect the main switch tube.
  • the power consumption of the MOS tube can be reduced through the above-mentioned implementation method, and damage to the MOS tube due to severe heat generation or excessive loss can be avoided.
  • Fig. 11 is a structural block diagram of a control device for shutting down equipment provided by the present invention, the device includes:
  • Memory 111 used to store computer programs
  • the processor 112 is configured to realize the steps of the above-mentioned method for controlling the shutdown device when executing the computer program.
  • the present application also provides a control device for shutting down equipment.
  • a control device for shutting down equipment please refer to the above-mentioned embodiments, and the present application will not repeat them here.
  • a shutdown device including the above-mentioned control device for the shutdown device, N main switch tubes corresponding to N photovoltaic modules one-to-one, and a release circuit;
  • the first terminal of the first main switching tube is the output positive terminal of the shutdown device
  • the second terminal of the i-th main switching tube is connected to the output positive terminal of the i-th photovoltaic module
  • the first terminal of the i+1-th main switch is connected to the output positive terminal of the i-th main switch.
  • the output negative terminal of the i photovoltaic module is connected
  • the output negative terminal of the Nth photovoltaic module is the output negative terminal of the shutdown device
  • the control terminal of the release circuit is connected to the first output terminal of the processor
  • the input terminal of the release circuit is connected to the bus bar
  • the output terminal of the release circuit is grounded, N ⁇ i ⁇ 1, and both N and i are integers;
  • the release circuit is used to release the voltage on the bus after the N main switch tubes are disconnected.
  • the present application also provides a shutdown device.
  • the shutdown device provided in the present application, please refer to the above embodiments, and the present application will not repeat it here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种关断设备的控制方法、装置及关断设备,在第一预设时间内持续接收到心跳信号,N个主开关管导通,对应的N个光伏组件输出直流电至母线,以使逆变器输出交流电并入电网;在第二预设时间内持续没有接收到心跳信号,N个主开关管断开,对应的N个旁路开关管导通,以使N个光伏组件不输出直流电至母线上,并控制释放电路将母线上的电压释放至地端,从而使母线上的电压快速减小,避免由于母线上长时间存在高压直流电导致人身危险及安全事故,提高了光伏***的安全性及可靠性。

Description

一种关断设备的控制方法、装置及关断设备
本申请要求于2021年06月11日提交至中国专利局、申请号为202110656872.3、发明名称为“一种关断设备的控制方法、装置及关断设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏发电***安全保护领域,特别是涉及一种关断设备的控制方法、装置及关断设备。
背景技术
由于太阳能的可再生性和清洁性,光伏并网发电技术得以迅猛发展,通常的光伏***中包括多个串联的光伏组件组,并将串联后的光伏组件组通过直流母线接入逆变器,以使逆变器将多个光伏组件组输出的直流高压电转换为交流高压电以并入电网。其中,每个光伏组件组包括N个光伏组件,N为正整数,且N个光伏组件之间相互串联。
现有技术中,为了保证光伏***供电的安全性,通常逆变器会设置有防电弧保护,具体地,在检测到电弧时控制逆变器停止工作,但是在逆变器停止工作之后,多个光伏组件组的输出端连接的直流母线上依旧会输出直流高压电,可能会导致人身危险或者火灾事故。
为解决上述技术问题,现有技术中在每个光伏组件组的输出端设置了关断设备,各关断设备串联连接以实现各光伏组件组的串联连接,在出现电弧时,控制各关断设备断开,以避免直流母线上输出直流高压电,避免导致人身危险和火灾事故。但是由于直流母线上存在母线电容,在关断设备断开之后,直流母线上可能会依然存在直流高压电,仍然可能会造成人身危险或火灾事故。
综上,提供一种关断设备的控制方法,以可靠地实现减小直流母线上的直流高压电是现有技术中急需解决的问题。
发明内容
本发明的目的是提供一种关断设备的控制方法、装置及关断设备,在第二预设时间内持续不发送没有接收到心跳信号,N个主开关管断开,对应的N个旁路开关管导通,以使N个光伏组件不输出直流电至母线上,并控制释放电路将母线上的电压释放至地端,从而使母线上的电压快速减小,避免由于母线上长时间存在高压直流电导致人身危险及安全事故,提高了光伏***的安全性及可靠性。
为解决上述技术问题,本发明提供了一种关断设备的控制方法,应用于关断设备中的处理器,所述关断设备包括与N个光伏组件一一对应的N个主开关管及释放电路;
第一主开关管的第一端为所述关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与所述第i光伏组件的输出负端连接,第N光伏组件的输出负端为所述关断设备的输出负端,所述释放电路的控制端与所述处理器的第一输出端连接,所述释放电路的输入端与母线连接,所述释放电路的输出端接地,N≥i≥1,且N和i均为整数;
所述控制方法包括:
判断是否在第一预设时间内持续接收到心跳信号;
若在所述第一预设时间内持续接收到所述心跳信号,则控制N个所述主开关管导通,并判断是否在第二预设时间内持续没有接收到所述心跳信号;
若在所述第二预设时间内持续没有接收到所述心跳信号,则控制N个所述主开关管断开,及控制所述释放电路开启,以释放所述母线上的电压。
优选地,控制N个所述主开关管关断之后,还包括:
获取所述母线上的母线电压;
判断所述母线电压是否大于预设电压;
若否,则进入控制所述释放电路开启,以释放所述母线上的电压的步骤。
优选地,所述释放电路包括开关电路,所述开关电路的第一端与所述母线连接,所述开关电路的第二端接地,所述开关电路的控制端为所述释放电路的控制端;
控制所述释放电路开启,以释放所述母线上的电压,包括:
控制所述开关电路的第一端与第二端之间导通,以释放所述母线上的电压。
优选地,所述处理器的电源正端与所述第一光伏组件的输出正端连接,所述处理器的电源负端与所述第i光伏组件的输出负端连接;
所述关断设备还包括与N个所述光伏组件一一对应的N个旁路开关管,所述旁路开关管的第一端与和自身对应的所述主开关管的第二端连接,所述旁路开关管的第二端与和自身对应的所述光伏组件的输出负端连接;
所述旁路开关管为晶体场效应管MOS管,所述MOS管包括体二极管;
控制N个主开关管导通之后,还包括:
判断所述处理器的供电电压是否小于欠压保护电压;
若所述供电电压小于所述欠压保护电压,则控制N个所述主开关管断开,并判断所述旁路开关管上的旁路电流是否在第三预设时间内持续大于预设电流;
若所述旁路电流在所述第三预设时间内持续大于所述预设电流,则控制N个所述旁路开关管闭合。
优选地,控制N个所述旁路开关管闭合之后,还包括:
判断N个所述旁路开关管闭合的时间是否达到第四预设时间;
若是,则控制N个所述旁路开关管断开,并进入控制N个所述主开关管导通的步骤。
优选地,判断所述处理器的供电电压是否小于欠压保护电压之后,还包括:
若供电电压不小于自身的欠压保护电压,则获取N个所述光伏组件的工作信息;
基于所述工作信息判断N个所述光伏组件是否存在工作异常的光伏组件;
若存在工作异常的光伏组件,则控制与工作异常的所述光伏组件对应的所述主开关管断开及对应的所述旁路开关管导通。
优选地,所述关断设备还包括第一可控开关,所述第一可控开关的控制端与所述处理器的第二输出端连接,所述第一可控开关的第一端与所述处理器的电源输出端连接,所述第一可控开关的第二端与所述关断设备中的低压设备连接;
控制N个所述主开关管断开之后,还包括:
控制所述第一可控开关的第一端与第二端之间导通,以使所述处理器通过所述第一可控开关为所述低压设备供电。
优选地,所述主开关管为MOS管,所述MOS管包括体二极管;
控制N个主开关管导通之后,还包括:
获取N个所述主开关管上的倒灌电流;
判断各所述倒灌电流大于预设倒灌电流;
若是,则控制所述倒灌电流大于所述预设倒灌电流的主开关管导通,以将所述倒灌电流通过所述主开关管倒灌至对应的光伏组件。
为解决上述技术问题,本发明还提供了一种关断设备的控制装置,包括:
存储器,用于存储计算机程序;
处理器,用于在执行所述计算机程序时,实现上述所述的关断设备的控制方法的步骤。
为解决上述技术问题,本发明还提供了一种关断设备,包括上述所述的关断设备的控制装置、与N个光伏组件一一对应的N个主开关管及释放电路;
第一主开关管的第一端为所述关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与所述第i光伏组件的输出负端连接,第N光伏组件的输出负端为所述关断设备的输出负端,所述释放电路的控制端与所述处理器的第一输出端连接,所述释放电路的输入端与母线连接,所述释放电路的输出端接地,N≥i≥1,且N和i均为整数;
所述释放电路用于在N个所述主开关管断开后,释放所述母线上的电压。
优选地,所述释放电路包括第二可控开关及第三可控开关,所述第二可控开关的控制端为所述释放电路的控制端,所述第二可控开关的第一端与电源模块连接,所述第二可控开关的第二端与所述第三可控开关的控制端连接,所述第三可控开关的第一端与所述母线连接,所述第三可控开关的第二端接地。
优选地,N为1,所述释放电路包括基准电压模块及第四可控开关,所述基准电压模块的输出端与所述第四可控开关的控制端连接,所述第四可控开关的第一端与所述母线连接,所述第四可控开关的第二端与所述处理器的地端连接。
本申请提供了一种关断设备的控制方法、装置及关断设备,在第一预设时间内持续接收到心跳信号,N个主开关管导通,对应的N个光伏组件输出直流电至母线,以使逆变器输出交流电并入电网;在第二预设时间内持续没有接收到心跳信号,N个主开关管断开,对应的N个旁路开关管导通,以使N个光伏组件不输出直流电至母线上,并控制释放电路将母线上的电压释放至地端,从而使母线上的电压快速减小,避免由于母线上长时间存在高压直流电导致人身危险及安全事故,提高了光伏***的安全性及可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种关断设备的控制方法的流程示意图;
图2为本发明提供的对应一个光伏组件的关断设备的具体实现电路图;
图3为本发明提供的对应一个光伏组件的关断设备的具体实现电路图;
图4为本发明提供的一种对应两个光伏组件的关断设备的控制时序图;
图5为本发明提供的一种释放电路的控制时序图;
图6为本发明提供的一种释放电路的电路示意图;
图7为本发明提供的另一种释放电路的电路示意图;
图8为本发明提供的另一种对应两个光伏组件的关断设备的控制时序图;
图9为本发明提供的第一可控开关的控制时序图;
图10为本发明提供的对于倒灌电流的控制时序图;
图11为本发明提供的一种关断设备的控制装置的结构框图。
具体实施方式
本发明的核心是提供一种关断设备的控制方法、装置及关断设备,在第二预设时间内持续不发送没有接收到心跳信号,N个主开关管断开,对应的N个旁路开关管导通,以使N个光伏组件不输出直流电至母线上,并控制释放电路将母线上的电压释放至地端,从而使母线上的电压快速减小,避免由于母线上长时间存在高压直流电导致人身危险及安全事故,提高了光伏***的安全性及可靠性。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明提供的一种关断设备的控制方法的流程示意图,该控制方法应用于关断设备中的处理器,关断设备包括与N个光伏组件一一对应的N个主开关管及释放电路;
第一主开关管的第一端为关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与第i光伏组件的输出负端连接,第N光伏组件的输出负端为关断设备的输出负端,释放 电路的控制端与处理器的第一输出端连接,释放电路的输入端与母线连接,释放电路的输出端接地,N≥i≥1,且N和i均为整数;
控制方法包括:
S11:判断是否在第一预设时间内持续接收到心跳信号;
S12:若在第一预设时间内持续接收到心跳信号,则控制N个主开关管导通,并判断是否在第二预设时间内持续没有接收到心跳信号;
S13:若在第二预设时间内持续没有接收到心跳信号,则控制N个主开关管断开,及控制释放电路开启,以释放母线上的电压。
考虑到在直流母线上存在母线电容时,即使控制各关断设备断开,以避免直流母线上输出直流高压电之后,由于母线电容可以储存能量,从而在关断设备断开之后,直流母线上可能会依然存在直流高压电,仍然可能会造成人身危险或火灾事故。
为解决上述技术问题,本申请的设计思路为:在控制各关断设备断开之后,控制直流母线上的电压快速下降,以加快直流母线上的电压下降的速度,进而避免母线上的电压持续处于带有高电压,减小造成人身危险或者火灾事故的可能性。
基于此,本申请在关断设备中设置了一端与母线连接,一端与地端连接的释放电路,在各关断设备断开之后,通过控制释放电路导通以将母线上的电压释放至地端。具体地,控制释放电路导通一定是在光伏组件向母线上输出直流电之后断开关断设备的时候,因此,本申请中的控制方法为:在***控制器第一预设时间内持续发送心跳信号,N个主开关管导通,对应的N个光伏组件输出直流电至母线,以使逆变器输出交流电并入电网;***控制器在第二预设时间内持续不发送心跳信号,N个主开关管断开,对应的N个旁路开关管导通,以使N个光伏组件不输出直流电至母线上,并控制释放电路将母线上储存的电压释放,以快速将母线上的电压释放至地端,从而使母线上的电压快速减小,避免导致人身危险及安全事故。
其中,本申请中的控制方法中的设置有第一预设时间和第二预设时间均为了保证接收到的心跳信号的稳定性,心跳信号可以但不限于为***控制器发送,***控制器可以是基于用户指令等方式向处理器发送心跳信号, 以使光伏***开始正常工作,此时因为可能会存在由于干扰或者其他因素,导致***控制器在短时间内误发或者没有发送心跳信号,若此时直接控制N个主开关管或者N个旁路开关管动作,可能会导致误动作,或者导致开关管频繁动作,可能会导致关断设备的损坏。因此,本申请中设置了第一预设时间和第二预设时间,以保证处理器是稳定接收到的心跳信号,或者稳定没有接收到心跳信号,以保证***工作的可靠性。
请参照图2、图3及图4,图2为本发明提供的对应一个光伏组件的关断设备的具体实现电路图,图3为本发明提供的对应一个光伏组件的关断设备的具体实现电路图,图4为本发明提供的对应两个光伏组件的关断设备的控制时序图。
为方便描述,接下来的实施例均以关断设备对应两个光伏组件进行说明。
作为一种优选的实施例,上述关断设备还包括二极管D1、第一电容C1及第二电容C2;
其中,二极管D1的阳极与第一光伏组件的输出正端连接,二极管D1的阴极分别与第一电容C1的第一端及处理器的电源正端连接,第一电容C1的第二端分别与第一光伏组件的输出负端及第二电容C2的第一端连接,第二电容C2的第一端分别与处理器的电源输出端及关断设备中的用电设备的电源端连接;
处理器还用于将自身的电源正端的电压进行转换以为关断设备中的用电设备供电。
具体地,光伏组件输出的电压通过二极管D1给第一电容C1充电,第一电容C1的电压为处理器的供电电压。同样的,处理器的电源输出端的电源为第二电容C2供电,第二电容C2的第一端的电压可以为其他的用电设备供电。
此外,在光伏组件不输出电压时,由于电容本身具有储能的能力,即使光伏组件不输出电压,第一电容C1在一段时间内也是可以为处理器供电,以使处理器不断电,同样的,第二电容C2也可以保证其供电的用电设备在一段时间内可以正常工作。
一般情况下,处理器用于将自身的供电电压作降压处理以为低压设备供电,因此,对应的第一电容C1为容量较大且对应的封装体积和成本均比较大的电容,例如第一电容C1的第一段的电压为百十伏的电压,第二电容C2的容量及对应的封装体积和成本均比较大相对较小,例如第二电容C2的第一端的电压为20伏左右。此时,由于在光伏组件不输出电压时,第二电容C2的电源主要来源于第一电容C1,也即是第一电容C1中储存的电容不仅为处理器供电,还为与处理器的电源输出端连接的用电设备供电。此时,我们可以相适应的使第二电容C2的容量稍大(例如使第二电容C2的第一端的电压增大为25伏),第一电容C1的容量稍小(例如使第一电容C1的第一端的电压减小为80V),这样第二电容C2储存的能量较多,从第一电容C1处取的能量较少,第一电容C1的容量设置的可以小一点,对应的可以大大减小第一电容C1与第二电容C2的封装体积及成本。
此外,在上述实施例的基础上:本申请中的处理器可以是一个处理器,也可以包括两个分离的处理器,例如在处理器包括第一处理器U1及第二处理器U2时,在关断设备对应的光伏组件数目为2时,如图3及图4所示,其中,Vin2+为第一光伏组件输出的电压,VIN为处理器的供电电压,具体为第一处理器U1的供电电压,也即是第一电容C1的第一端的电容,V2为处理器输出的供电电压,具体为第二处理器U2的供电电压,也即是第二电容C2的第一端的电压,IN_EN为内部逻辑信号,Transmitter_ON为心跳信号,Trans_SET为第二处理器U2在接收到心跳信号后向第一处理器U1发送的开启信号,此时,对应的,第一处理器U1具体用于在接收到开启信号后控制2个主开关管导通,在未接收到开启信号后,控制2个主开关管关断,并控制2个旁路开关管导通,及控制释放电路开启。
作为一种优选地实施例,控制N个主开关管导通,包括:
控制N个主开关管错峰导通。
其中,图4中的g1和g3分别为主开关管M1和M3的控制信号,其中,M1和M3在控制信号为高电平时导通。从图4可以看出,在***控制器在T3(第一预设时间)内持续发送心跳信号时,第二处理器U2向第一处理器U1发送高电平信号,以使第一处理器U1控制M3先导通,并在 T4(错峰时间)后,控制M1导通。也可以是先控制M1导通,然后在T4之后控制M3导通,本申请在此不做特别的限定。在***控制器在T2(第二预设时间)内持续不发送心跳信号时,第二处理器U2向第一处理器U1发送低电平信号,以使第一处理器U1控制M1和M3关断。
综上,本申请在N个主开关管断开,以使N个光伏组件不输出直流电至母线上,通过控制释放电路将母线上储存的电压释放,以快速将母线上的电压释放至地端,从而使母线上的电压快速减小,避免导致人身危险及安全事故。
在上述实施例的基础上:
作为一种优选的实施例,控制N个主开关管关断之后,还包括:
获取母线上的母线电压;
判断母线电压是否大于预设电压;
若否,则进入控制释放电路开启,以释放母线上的电压的步骤。
考虑到母线上可能会设置直流电容或者母线电容,在控制多个关断设备断开之后,也即是对应的N个主开关管关断之后,虽然光伏组件不会继续输出直流电至母线上,但若母线上设置有母线电容,母线电容中存储至高压直流电,若直接将母线电容中存储的高压直流电通过释放电路释放,可能会导致输入至释放电路的电压过大,从而使释放电路发热严重,进而可能会使释放电路损坏。
为解决上述技术问题,本申请中控制N个主开关管关断之后,还判断母线上的电压是否大于预设电压,若母线电压大于预设电压,则认为将此母线电压通过释放电路释放时可能会导致释放电路损坏,此时,先让母线自行消耗或者与母线连接的后端的逆变器消耗一部分母线电压;在检测到母线电压不大于预设电压时,判定此时的母线电压对释放电路的安全性不造成威胁,此时,将释放电路开启,以将母线电压快速释放至地端,以尽快降低母线上的电压。
具体地,请参照图5,图5为本发明提供的一种释放电路的控制时序图,其中,Vout为母线电压,Vth0为预设电压,在关断设备断开,也即是 2个主开关管断开之后,母线上的电压一般大于预设电压,此时先任其自行消耗,在其小于Vth0的时,控制释放电路导通,由图中可以得出,本申请控制释放电路的逻辑为先导通的主开关管(M3)对应的控制信号(g3)和母线电压的信号反馈(Vt)决定的。
综上,通过本实施例中的方式,在保证使用释放电路尽快将母线上的电压释放的同时,进一步保证释放电路的安全性,保证释放电路不被损坏。
作为一种优选的实施例,释放电路包括开关电路,开关电路的第一端与母线连接,开关电路的第二端接地,开关电路的控制端为释放电路的控制端;
控制释放电路开启,以释放母线上的电压,包括:
控制开关电路的第一端与第二端之间导通,以释放母线上的电压。
具体地,本实施例旨在提供一种释放电路的具体实现方式,其中,释放电路可以但不限于为开关电路,通过控制开关电路的导通和关断,控制释放电路的开启或关闭,具体地,在开关电路的第一端与第二端之间导通时,释放电路为开启状态,母线通过开关电路与地端连接,从而将母线上的电压释放至地端,以尽快降低母线上的电压,避免母线上出现直流高压电。在开关电路的第一端与第二端之间截止时,释放电路为关闭状态。
当然,释放电路的具体实现方式可以但不限于为开关电路,也可以是其他快速降低母线上电压的电路,本申请在此不做特别的限定。
请参照图6,图6为本发明提供的一种释放电路的电路示意图。
作为一种优选的实施例,释放电路包括第二可控开关Q2及第三可控开关Q3,第二可控开关Q2的控制端为释放电路的控制端,第二可控开关Q2的第一端与电源模块连接,第二可控开关Q2的第二端与第三可控开关Q3的控制端连接,第三可控开关Q3的第一端与母线连接,第三可控开关Q3的第二端接地。
本实施例旨在提供一种释放电路的具体实现方式,其中,在控制释放电路开启时,输出的控制信号使第三可控开关Q3的第一端与第二端之间导通。
具体地,在第二可控开关Q2可以但不限于为PNP(positive-negative-positive,正极-负极-正极)三极管,第三可控开关Q3可以但不限于为NPN(negative-positive-negative,负极-正极-负极)三极管。
作为一种优选的实施例,所述释放电路还包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻及稳压管;
所述第一电阻的第一端与所述第四电阻的第一端连接并作为所述开关电路的控制端,所述第一电阻的第二端与所述第二可控开关Q2的控制端连接,所述第四电阻的第二端与所述第二可控开关Q2的第一端连接,所述第二电阻的第一端与所述第二可控开关Q2的第二端连接,所述第二电阻的第二端分别与所述稳压管的第一端、所述第三电阻的第一端及所述第五电阻的第一端连接,所述第三电阻的第二端分别与所述稳压管的第二端、所述第六电阻的第一端及地端连接,所述第五电阻的第二端与所述第三可控开关Q3的控制端连接,所述第六电阻的第二端与所述第三可控开关Q3的第二端连接。
其中,稳压管用于保证第三可控开关Q3的控制端可以有稳定的控制电压。同时通过第六电阻的阻值抬升了第三可控开关Q3的基极电压,从而达到稳定的恒流源控制;同时解决了温度对第三可控开关Q3放大倍数和Ube影响释放电流的问题。
请参照图7,图7为本发明提供的另一种释放电路的电路示意图。
作为一种优选的实施例,N为1,释放电路包括基准电压模块及第四可控开关Q4,基准电压模块的输出端与第四可控开关Q4的控制端连接,第四可控开关Q4的第一端与母线连接,第四可控开关Q4的第二端与处理器的地端连接。
其中,第四可控开关Q4管可以但不限于为NPN三极管。基准电压模块可以但不限于包括第八电阻及第九电阻,其中第八电阻的第一端接地,第八电阻的第二端与第九电阻的第一端连接,并作为基准电压模块的输出端,第九电阻的第二端与电源模块的输出端连接。电源模块的输出端可以但不限于为第二电容的第一端。
N为1时,释放电路还包括第七电阻和第十电阻,其中第七电阻的第一端与基准电压模块的输出端连接,第七电阻第二端与第四可控开关Q4的控制端连接,第十电阻设置于第四可控开关Q4的跌入单与处理器的地端之间。其中,第十电阻的作用与第六电阻在对应的电路中起的作用相同。
综上,本实施例中的开关电路在导通时可以快速的将母线与地端连接,以尽快降低母线上的电压,可以实现上述释放电路的功能,且实现方式简单可靠。
作为一种优选的实施例,处理器的电源正端与第一光伏组件的输出正端连接,处理器的电源负端与第i光伏组件的输出负端连接;
关断设备还包括与N个光伏组件一一对应的N个旁路开关管,旁路开关管的第一端与和自身对应的主开关管的第二端连接,旁路开关管的第二端与和自身对应的光伏组件的输出负端连接;
旁路开关管为MOS(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)管,MOS管包括体二极管;
控制N个主开关管导通之后,还包括:
判断处理器的供电电压是否小于欠压保护电压;
若供电电压小于欠压保护电压,则控制N个主开关管断开,并判断旁路开关管上的旁路电流是否在第三预设时间内持续大于预设电流;
若旁路电流在第三预设时间内持续大于预设电流,则控制N个旁路开关管闭合。
考虑到多个光伏组件组之间通过关断设备串联之后输出直流电,然后逆变器将直流电转换为交流电并入电网,若其中某个关断设备出现故障,则导致所有的光伏组件无法输出直流电至直流电缆上,此时导致整个光伏***无法将交流电并入电网。
具体地,处理器的供电电压为对应的光伏组件组中的几个光伏组件输出的直流电,在控制N个主开关管开通后,此时,几个光伏组件输出的直流电不仅为关断设备中的处理器供电,还会通过对应的主开关管将直流电输出至母线上。此时,N个主开关管的导通可能会使处理器的供电电压降低,可能会达到处理器的欠压保护电压,造成处理器工作不正常,则可能 会导致控制关断设备工作不可靠。
为解决上述技术问题,本申请还设置了N个与光伏组件一一对应的旁路开关管,若其中某个关断设备的处理器电压不正常时,控制与关断设备对应的N个旁路开关管导通,并控制N个主开关管关闭,以使N个旁路开关管将其短路,其他可以正常使用的关断设备对应的光伏组件组可以通过N个旁路开关管将直流电输出至母线上,进而保证光伏***的正常工作。具体地,本实施例中的控制方式为:在控制N个主开关管到导通之后,通过判断处理器的供电电压及旁路电流的情况,判定是否开通旁路开关管。具体地,在处理器的供电电压小于自身的欠压保护电压时,控制对应的N个开关管断开,且旁路开关管的电流在第三预设时间内持续大于预设电流时,控制对应的N个旁路开关管闭合,以使N个旁路开关管将N个光伏组件组成的光伏组件组从多个串联的光伏组件组中分离出来,以使其他的光伏组件组可以正常输出直流电至直流电缆上,以保证光伏***的正常运行。
需要说明的是,本实施例中的判断方式为判断旁路电流在第三预设时间内持续大于预设电流的目的是为了进一步保证关断设备工作的可靠性,避免出现误判断进而导致的误动作。此外,本实施例中的旁路开关管可以但不限于为MOS管,在MOS管没有导通时,旁路电流可以通过MOS管内的体二极管流过,但是旁路电流过大时,可能会导致体二极管发热严重,进而可能会损坏MOS管,因此在旁路电流较大时,控制旁路开关管导通。
在N为2时,请参照图8,图8为本发明提供的另一种对应两个光伏组件的关断设备的控制时序图。其中,图8中的Bypass_C为旁路电流,Ith_1为预设电流,IN3为内部逻辑信号,g1、g2、g3和g4分别为M1、M2、M3和M4的控制信号,其中,M1、M2、M3和M4在控制信号为高电平时导通。从图8可以看出,在旁路电流大于预设电流Td3(第三预设时间)时,IN3为高电平,若对应的主开关管为关断的状态,则对应的旁路开关管导通,具体地,g4的电平状态是由IN3和g3的逻辑确定的,g2的电平状态是由IN3和g1的电平逻辑确定的。
综上,在关断设备上电异常,也即关断设备的供电电压小于自身的欠压保护电压时,控制N个旁路开关管导通,以将与关断设备连接的N个光伏组件从与逆变器连接的多个串联的光伏组件组中分离出去,以使其他的关断设备对应的光伏组件组可以正常输出直流电压至逆变器,从而使逆变器可以正常输出交流电以并入电网,提高了光伏***的可靠性。
作为一种优选的实施例,控制N个旁路开关管闭合之后,还包括:
判断N个旁路开关管闭合的时间是否达到第四预设时间;
若是,则控制N个旁路开关管断开,并进入控制N个主开关管导通的步骤。
在控制旁路开关管导通之后,为了使处理器的供电电压回升,以达到可以使处理器正常工作的电压。且为了能够了解处理器的供电电压是否恢复至正常工作的供电电压,本实施例的方式为:在进入旁路模式(N个旁路开关管导通,N个主开关管关断时)第四预设时间后,退出旁路模式,进而控制主开关管导通,旁路开关管关断,若此时,处理器供电电压正常,则整个关断设备进入正常工作模式,否则重新进入旁路模式。也即,本实施例通过间歇式的方式判定是否控制关断设备退出旁路模式。
作为一种优选的实施例,在控制N个主开关管错峰导通的基础上;
控制N个旁路开关管断开,包括:
控制N个旁路开关管断开的顺序与N个主开关管错峰导通的顺序相同。
具体地,为了避免直通损坏,若N个主开关管同时导通,在母线上的电压及各主开关管上的电流会忽然增大,此时,可能会由于电压突变或电流突变,造成对光伏***的损害。
为解决上述技术问题,本申请在控制N个主开关管导通时,控制N个主开关管错峰导通,以使电压或电流逐渐增大,避免对光伏***造成损害,其中对于N个主开关管错峰导通的时间本申请在此不做特别的限定。对应的控制N个旁路开关管错峰断开。
具体地,N为2时,也即,一个关断设备对应两个光伏组件、两个主开关管及两个旁路开关管时,若本申请中的主开关管及旁路开关管为 NMOS管时,如图3及图4及图8所示,从图8可以看出,在旁路电流大于预设电流Td3(第三预设时间)时,IN3为高电平,若对应的主开关管为关断的状态,则对应的旁路开关管导通,具体地,g4的电平状态是由IN3和g3的逻辑确定的,g2的电平状态是由IN3和g1的电平逻辑确定的。此外由图8可以看出,M3比M1早导通T4(错峰时间),对应的旁路开关管M4比M2早关断T4时间。
此外,为了维持处理器的供电电压VIN,同时使得g1的控制持续T8时间,T8时间的延时是考虑M1在开通时VIN电压下降,下降到处理器的欠压保护电压的时候,控制g1为低电平关断M1,使得输入电压Vin 2+上升,重新开始开启过程,进行旁路开关管的开通。
在采用间歇式启动的方式时,旁路开关管中错峰关断时,关断的旁路开关管关断的时间相对比下一次导通的对应的主开关管的时间提前Td2小时,也可以是其他的时间,本申请在此不做特别的限定。
综上,本实施例的方式可以检测处理器是否恢复正常工作,并在其正常工作时,控制关断设备对应的光伏组件组正常输出直流电,在其仍旧异常时,控制其进入旁路模式。
作为一种优选的实施例,判断处理器的供电电压是否小于欠压保护电压之后,还包括:
若供电电压不小于自身的欠压保护电压,则获取N个光伏组件的工作信息;
基于工作信息判断N个光伏组件是否存在工作异常的光伏组件;
若存在工作异常的光伏组件,则控制与工作异常的光伏组件对应的主开关管断开及对应的旁路开关管导通。
考虑到关断设备对应的光伏组件中可能会存在遮挡等短板问题时可能会导致该组件输出的电压及电流异常,进而影响整个光伏***的工作。
为解决上述技术问题,本申请中在光伏组件通过对应的主开关管输出直流电至母线上时,还获取各光伏组件的工作信息,并根据其判断对应的光伏组件是否异常,若异常,则控制对应的旁路开关管导通,以将异常的光伏组件及主开关管短路,进而从关断设备对应的光伏组件组中分离出来, 以使光伏组件组中的其他光伏组件可以通过导通的旁路开关管正常输出直流电。
具体的,获取光伏组件的工作信息可以但不限于包括获取光伏组件的输出电压和/或工作电流,在其输出电压在预设的电压范围内和/或输出电流在预设的电流范围内时,表示对应的光伏组件工作正常,在其不再对应的范围内时,表示对应的光伏组件工作异常。
综上,通过上述实现方式可以将工作异常的光伏组件从该关断设备对应的光伏组件组中分离出来,以使光伏组件组中的其他光伏组件可以正常输出电压至直流母线,以保证光伏***的正常工作。
作为一种优选的实施例,关断设备还包括第一可控开关Q1,第一可控开关Q1的控制端与处理器的第二输出端连接,第一可控开关Q1的第一端与处理器的电源输出端连接,第一可控开关Q1的第二端与关断设备中的低压设备连接;
控制N个主开关管断开之后,还包括:
控制第一可控开关Q1的第一端与第二端之间导通,以使处理器通过第一可控开关Q1为低压设备供电。
考虑到关断设备在关断模式下,还可能有用电设备需要供电,例如需要检测的用电设备。此时控制处理器对自身的供电电压进行转换以输出电压为其他的用电设备供电,保证***的正常运行。
具体地,请参照图3和9,图9为本发明提供的第一可控开关的控制时序图,其中,Voff_g是第一可控开关Q1的控制信号,具体地,此时对应的第一可控开关Q1为高电平控制导通的开关,(例如NMOS等),也即Voff_g高电平时第一可控开关Q1导通,Vout输出电压Voff,Voff_g低电平时第一可控开关Q1断开。图5c中显示了Voff_g的逻辑是由Voff、Vt、IN3和Trans_set逻辑组合实现,在主开关管关断和需要输出Voff的时候Voff_g才是高电平,进而可以减小关断设备的功耗和避免损坏。
作为一种优选的实施例,主开关管为MOS管,MOS管包括体二极管;
控制N个主开关管导通之后,还包括:
获取N个主开关管上的倒灌电流;
判断各倒灌电流大于预设倒灌电流;
若是,则控制倒灌电流大于预设倒灌电流的主开关管导通,以将倒灌电流通过主开关管倒灌至对应的光伏组件。
考虑到整个供电***中可能和存在光伏组件组之间并联的情况,这样多个关断设备的输出端并联,若存在光伏***失配(如并联的光伏组件组输出的电压不相同时),存在输出电压高的光伏组件组可能会输出电流倒灌至输出电压低的光伏组件组。在主开关管为MOS管时,若主开关管关断,则倒灌电流会通过MOS管上的体二极管给电压低的光伏组件充电,会产生功耗和发热,若倒灌电流较大时,对应的MOS管容易损坏。
为解决上述技术问题,本申请在倒灌电流较大,也即倒灌电流大于预设倒灌电流时,控制主开关管MOS管导通,以使倒灌电流通过MOS管输入至光伏组件,进而可以能降低MOS管功耗,提倒灌电流能力。
具体地,请参照图10,图10为本发明提供的对于倒灌电流的控制时序图。图10中为用Ith3和Ith4来控制倒灌电流逻辑控制的单稳态设计,倒灌电流增加到高于Ith3的时候,g1和g3变成高电平开通主开关管。倒灌电流下降到低于Ith4的时候,g1和g3变成低电平断开主开关管。
综上,通过上述实现方式可以能降低MOS管功耗,避免MOS管因发热严重或损耗过大损坏。
此外,需要说明的是,本申请中的所有的逻辑控制不仅可以使用软件算法实现,也可以通过与或门等硬件的形式实现,本申请在此不做特别的限定。
请参照图11,图11为本发明提供的一种关断设备的控制装置的结构框图,该装置包括:
存储器111,用于存储计算机程序;
处理器112,用于在执行计算机程序时,实现上述的关断设备的控制方法的步骤。
为解决上述技术问题,本申请还提供了一种关断设备的控制装置,对于本申请提供的关断设备的控制装置的介绍请参照上述实施例,本申请在此不再赘述。
一种关断设备,包括上述的关断设备的控制装置、与N个光伏组件一一对应的N个主开关管及释放电路;
第一主开关管的第一端为关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与第i光伏组件的输出负端连接,第N光伏组件的输出负端为关断设备的输出负端,释放电路的控制端与处理器的第一输出端连接,释放电路的输入端与母线连接,释放电路的输出端接地,N≥i≥1,且N和i均为整数;
释放电路用于在N个主开关管断开后,释放母线上的电压。
为解决上述技术问题,本申请还提供了一种关断设备,对于本申请提供的关断设备的介绍请参照上述实施例,本申请在此不再赘述。
需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种关断设备的控制方法,其特征在于,应用于关断设备中的处理器,所述关断设备包括与N个光伏组件一一对应的N个主开关管及释放电路;
    第一主开关管的第一端为所述关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与所述第i光伏组件的输出负端连接,第N光伏组件的输出负端为所述关断设备的输出负端,所述释放电路的控制端与所述处理器的第一输出端连接,所述释放电路的输入端与母线连接,所述释放电路的输出端接地,N≥i≥1,且N和i均为整数;
    所述控制方法包括:
    判断是否在第一预设时间内持续接收到心跳信号;
    若在所述第一预设时间内持续接收到所述心跳信号,则控制N个所述主开关管导通,并判断是否在第二预设时间内持续没有接收到所述心跳信号;
    若在所述第二预设时间内持续没有接收到所述心跳信号,则控制N个所述主开关管断开,及控制所述释放电路开启,以释放所述母线上的电压。
  2. 如权利要求1所述的关断设备的控制方法,其特征在于,控制N个所述主开关管关断之后,还包括:
    获取所述母线上的母线电压;
    判断所述母线电压是否大于预设电压;
    若否,则进入控制所述释放电路开启,以释放所述母线上的电压的步骤。
  3. 如权利要求1所述的关断设备的控制方法,其特征在于,所述释放电路包括开关电路,所述开关电路的第一端与所述母线连接,所述开关电路的第二端接地,所述开关电路的控制端为所述释放电路的控制端;
    控制所述释放电路开启,以释放所述母线上的电压,包括:
    控制所述开关电路的第一端与第二端之间导通,以释放所述母线上的电压。
  4. 如权利要求1所述的关断设备的控制方法,其特征在于,所述处理器的电源正端与所述第一光伏组件的输出正端连接,所述处理器的电源负端与所述第i光伏组件的输出负端连接;
    所述关断设备还包括与N个所述光伏组件一一对应的N个旁路开关管,所述旁路开关管的第一端与和自身对应的所述主开关管的第二端连接,所述旁路开关管的第二端与和自身对应的所述光伏组件的输出负端连接;
    所述旁路开关管为晶体场效应管MOS管,所述MOS管包括体二极管;
    控制N个主开关管导通之后,还包括:
    判断所述处理器的供电电压是否小于欠压保护电压;
    若所述供电电压小于所述欠压保护电压,则控制N个所述主开关管断开,并判断所述旁路开关管上的旁路电流是否在第三预设时间内持续大于预设电流;
    若所述旁路电流在所述第三预设时间内持续大于所述预设电流,则控制N个所述旁路开关管闭合。
  5. 如权利要求4所述的关断设备的控制方法,其特征在于,控制N个所述旁路开关管闭合之后,还包括:
    判断N个所述旁路开关管闭合的时间是否达到第四预设时间;
    若是,则控制N个所述旁路开关管断开,并进入控制N个所述主开关管导通的步骤。
  6. 如权利要求4所述的关断设备的控制方法,其特征在于,判断所述处理器的供电电压是否小于欠压保护电压之后,还包括:
    若供电电压不小于自身的欠压保护电压,则获取N个所述光伏组件的工作信息;
    基于所述工作信息判断N个所述光伏组件是否存在工作异常的光伏组件;
    若存在工作异常的光伏组件,则控制与工作异常的所述光伏组件对应的所述主开关管断开及对应的所述旁路开关管导通。
  7. 如权利要求1-6任一项所述的关断设备的控制方法,其特征在于,所述关断设备还包括第一可控开关,所述第一可控开关的控制端与所述处 理器的第二输出端连接,所述第一可控开关的第一端与所述处理器的电源输出端连接,所述第一可控开关的第二端与所述关断设备中的低压设备连接;
    控制N个所述主开关管断开之后,还包括:
    控制所述第一可控开关的第一端与第二端之间导通,以使所述处理器通过所述第一可控开关为所述低压设备供电。
  8. 如权利要求1-6任一项所述的关断设备的控制方法,其特征在于,所述主开关管为MOS管,所述MOS管包括体二极管;
    控制N个主开关管导通之后,还包括:
    获取N个所述主开关管上的倒灌电流;
    判断各所述倒灌电流大于预设倒灌电流;
    若是,则控制所述倒灌电流大于所述预设倒灌电流的主开关管导通,以将所述倒灌电流通过所述主开关管倒灌至对应的光伏组件。
  9. 一种关断设备的控制装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于在执行所述计算机程序时,实现如权利要求1-8任一项所述的关断设备的控制方法的步骤。
  10. 一种关断设备,其特征在于,包括如权利要求9所述的关断设备的控制装置、与N个光伏组件一一对应的N个主开关管及释放电路;
    第一主开关管的第一端为所述关断设备的输出正端,第i主开关管的第二端与第i光伏组件的输出正端连接,第i+1主开关的第一端与所述第i光伏组件的输出负端连接,第N光伏组件的输出负端为所述关断设备的输出负端,所述释放电路的控制端与所述处理器的第一输出端连接,所述释放电路的输入端与母线连接,所述释放电路的输出端接地,N≥i≥1,且N和i均为整数;
    所述释放电路用于在N个所述主开关管断开后,释放所述母线上的电压。
  11. 如权利要求10所述的关断设备,其特征在于,所述释放电路包括第二可控开关及第三可控开关,所述第二可控开关的控制端为所述释放电 路的控制端,所述第二可控开关的第一端与电源模块连接,所述第二可控开关的第二端与所述第三可控开关的控制端连接,所述第三可控开关的第一端与所述母线连接,所述第三可控开关的第二端接地。
  12. 如权利要求10所述的关断设备,其特征在于,N为1,所述释放电路包括基准电压模块及第四可控开关,所述基准电压模块的输出端与所述第四可控开关的控制端连接,所述第四可控开关的第一端与所述母线连接,所述第四可控开关的第二端与所述处理器的地端连接。
PCT/CN2021/105162 2021-06-11 2021-07-08 一种关断设备的控制方法、装置及关断设备 WO2022257214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110656872.3 2021-06-11
CN202110656872.3A CN113489052A (zh) 2021-06-11 2021-06-11 一种关断设备的控制方法、装置及关断设备

Publications (1)

Publication Number Publication Date
WO2022257214A1 true WO2022257214A1 (zh) 2022-12-15

Family

ID=77934850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105162 WO2022257214A1 (zh) 2021-06-11 2021-07-08 一种关断设备的控制方法、装置及关断设备

Country Status (2)

Country Link
CN (1) CN113489052A (zh)
WO (1) WO2022257214A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117411160A (zh) * 2023-12-14 2024-01-16 江苏天合清特电气有限公司 储能供电***、方法及储能***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473259A (zh) * 2021-06-11 2022-12-13 浙江英达威芯电子有限公司 一种关断器的控制方法、装置及关断器
CN114527377A (zh) * 2022-01-10 2022-05-24 浙江英达威芯电子有限公司 一种关断器检测与控制方法和检测仪
CN114336622A (zh) * 2022-02-22 2022-04-12 浙江英达威芯电子有限公司 一种关断器控制方法、***、装置及关断控制器
CN114421884A (zh) * 2022-03-03 2022-04-29 浙江英达威芯电子有限公司 一种光伏太阳能组件及其开关方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602504A (zh) * 2017-02-28 2017-04-26 阳光电源股份有限公司 一种光伏快速关断装置及光伏***
CN108832893A (zh) * 2018-06-20 2018-11-16 阳光电源股份有限公司 光伏组件关断装置、关断控制方法及智能组件
CN110729964A (zh) * 2018-07-17 2020-01-24 浙江英达威芯电子有限公司 一种光伏***及其光伏组件
CN110855170A (zh) * 2019-12-16 2020-02-28 深圳古瑞瓦特新能源股份有限公司 光伏逆变器及电容放电电路
CN111585307A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种光伏快速关断***的启动方法、应用装置和***
CN111934352A (zh) * 2020-10-09 2020-11-13 浙江英达威芯电子有限公司 光伏***及其关断器件的控制方法、开关控制装置
WO2021003728A1 (zh) * 2019-07-11 2021-01-14 华为技术有限公司 一种应用于光伏发电***的变换器、方法及***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207543025U (zh) * 2017-11-13 2018-06-26 丰郅(上海)新能源科技有限公司 可控制光伏组件被接入或旁路的串联式光伏发电***
CN109088431B (zh) * 2018-08-30 2020-05-22 海宁昱能电子有限公司 一种光伏组件的关断设备、方法及光伏***
CN110429580B (zh) * 2019-09-06 2022-07-05 浙江英达威芯电子有限公司 一种组件关断器及其防倒灌方法、光伏***
CN112751354B (zh) * 2019-10-29 2023-04-07 阳光新能源开发股份有限公司 光伏离网制氢***、控制方法及控制器
CN213151926U (zh) * 2020-07-10 2021-05-07 北京动力源科技股份有限公司 一种放电电路及光伏逆变器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602504A (zh) * 2017-02-28 2017-04-26 阳光电源股份有限公司 一种光伏快速关断装置及光伏***
CN108832893A (zh) * 2018-06-20 2018-11-16 阳光电源股份有限公司 光伏组件关断装置、关断控制方法及智能组件
CN110729964A (zh) * 2018-07-17 2020-01-24 浙江英达威芯电子有限公司 一种光伏***及其光伏组件
WO2021003728A1 (zh) * 2019-07-11 2021-01-14 华为技术有限公司 一种应用于光伏发电***的变换器、方法及***
CN110855170A (zh) * 2019-12-16 2020-02-28 深圳古瑞瓦特新能源股份有限公司 光伏逆变器及电容放电电路
CN111585307A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种光伏快速关断***的启动方法、应用装置和***
CN111934352A (zh) * 2020-10-09 2020-11-13 浙江英达威芯电子有限公司 光伏***及其关断器件的控制方法、开关控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117411160A (zh) * 2023-12-14 2024-01-16 江苏天合清特电气有限公司 储能供电***、方法及储能***
CN117411160B (zh) * 2023-12-14 2024-04-16 江苏天合清特电气有限公司 储能供电***、方法及储能***

Also Published As

Publication number Publication date
CN113489052A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2022257214A1 (zh) 一种关断设备的控制方法、装置及关断设备
CN109088431B (zh) 一种光伏组件的关断设备、方法及光伏***
CN109638786B (zh) 一种光伏组件关断保护电路及组件关断器
CN111697809B (zh) 一种开关电源及其控制方法
CN104062914A (zh) 电子装置
CN210405079U (zh) 一种保护电路及电源输入模块
CN112868153B (zh) 一种应用于光伏发电***的变换器、方法及***
CN109980690B (zh) 一种组件关断器的控制方法及组件关断器
JP5767302B2 (ja) バッテリー管理装置のバッテリー管理回路
CN109164746A (zh) 一种下电时序控制电路及电源电路
CN113296028B (zh) 直流负载故障检测电路及具有其的家电设备
WO2022257215A1 (zh) 一种关断器的控制方法、装置及关断器
AU2022243295A1 (en) Photovoltaic assembly shutoff device, inverter, and photovoltaic quick shutoff system and starting method therefor
US11217993B2 (en) Conversion system with high voltage side and low voltage side
CN112018839B (zh) 一种负载检测电路
CN111399617B (zh) 供电控制装置和电子设备
CN210640719U (zh) 充放电电路、电源管理设备及用电***
CN209014942U (zh) 一种下电时序控制电路及电源电路
CN110061692B (zh) 针对串联式光伏组件的关断***及其重新启动的方法
CN112491270A (zh) 一种升压电路及其装置和***
CN202111676U (zh) 一种实现设备重启的***及电路装置
CN111030287A (zh) Ups不间断电源***
CN110460029A (zh) 一种供配电***
CN214204923U (zh) 一种光伏逆变器的输入保护装置及光伏逆变器***
CN216774369U (zh) 备用电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18568820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944718

Country of ref document: EP

Kind code of ref document: A1