WO2022255186A1 - Chemicall agent, method for regenerating substrate with film, method for producing substrate with film, and method for producing reflective mask blank - Google Patents

Chemicall agent, method for regenerating substrate with film, method for producing substrate with film, and method for producing reflective mask blank Download PDF

Info

Publication number
WO2022255186A1
WO2022255186A1 PCT/JP2022/021397 JP2022021397W WO2022255186A1 WO 2022255186 A1 WO2022255186 A1 WO 2022255186A1 JP 2022021397 W JP2022021397 W JP 2022021397W WO 2022255186 A1 WO2022255186 A1 WO 2022255186A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
multilayer reflective
acid
coated substrate
Prior art date
Application number
PCT/JP2022/021397
Other languages
French (fr)
Japanese (ja)
Inventor
広朗 伊藤
一希 谷津
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2023525753A priority Critical patent/JPWO2022255186A1/ja
Publication of WO2022255186A1 publication Critical patent/WO2022255186A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a chemical solution, a method for regenerating a substrate with a film, a method for manufacturing a substrate with a film, and a method for manufacturing a reflective mask blank.
  • EUVL Extreme Ultraviolet
  • EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of approximately 0.2 nm to 100 nm. At present, EUV with a wavelength of about 13.5 nm is mainly considered.
  • a reflective mask is obtained by forming an aperture pattern in an absorbing film of a reflective mask blank.
  • a reflective mask blank includes a substrate such as a glass substrate, a multilayer reflective film formed on the substrate, and an absorbing film formed on the multilayer reflective film.
  • inspections such as surface defect inspections and in-film defect inspections are performed on the film-coated substrate for each process so that unevenness does not exist in the vicinity of the opening pattern. If a defect of unacceptable size is found as a result of the inspection, the defect is removed by cleaning or the like. On the other hand, if there is a defect that cannot be removed by cleaning or the like, at least the multilayer reflective film is peeled off and the substrate is regenerated or discarded as a defective product.
  • Patent Document 1 discloses a method for recycling a substrate with a multilayer film on which a multilayer film having a multilayer reflective film is formed.
  • the substrate with the multilayer film is brought into contact with a chemical solution comprising an aqueous solution containing at least one selected from sodium hydroxide, potassium hydroxide and ammonia, and hydrogen peroxide to peel off the multilayer film from the substrate. to play.
  • Patent Document 1 has the problem that the processing time is long when the film is peeled off from the film-coated substrate, and the substrate damage on the peeled surface is still large.
  • An object of one aspect of the present invention is to shorten the processing time for peeling off a film from a film-coated substrate. Another object of the present invention is to suppress substrate damage on the peeled surface.
  • the present invention is the following [1] to [12].
  • a film-coated substrate having a film having a multilayer reflective film containing silicon and molybdenum on one surface of a glass substrate was treated with a pH adjuster, metaperiodic acid, metaperiodate, and orthoperiodic acid. and at least one oxidizing agent selected from the group consisting of acid, orthoperiodate, permanganic acid, permanganate, and N-methylmorpholine N-oxide, to bring the glass substrate into contact with a chemical solution.
  • a method for reclaiming a film-coated substrate, wherein at least the multilayer reflective film is peeled off from the glass substrate, and the surface of the glass substrate on which the multilayer reflective film was formed is reclaimed.
  • a multilayer reflective film containing at least silicon and molybdenum is formed on one surface of the glass substrate recycled by the method for recycling a film-coated substrate according to any one of [8] to [11].
  • a method of manufacturing a film-coated substrate comprising:
  • [13] Forming a multilayer reflective film containing silicon and molybdenum on one surface of the glass substrate recycled by the method for recycling a film-coated substrate according to any one of [8] to [11]; , forming a protective film containing ruthenium or rhodium on the multilayer reflective film; and selecting from the group consisting of ruthenium, tantalum, chromium, iridium, boron, niobium, rhenium and palladium on the protective film Forming an absorption film containing at least one, and containing at least one selected from the group consisting of chromium, tantalum and boron on the surface of the glass substrate opposite to the surface on which the reflective multilayer film is formed. and forming a conductive film to form a reflective mask blank.
  • FIG. 1 is a flow chart showing a method for manufacturing a reflective mask blank according to one embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a substrate. 3 is a plan view of the substrate of FIG. 2;
  • FIG. 4 is a cross-sectional view showing an example of a reflective mask blank.
  • FIG. 5 is a cross-sectional view showing an example of a reflective mask.
  • FIG. 6 is a diagram showing results of a reference experiment.
  • the method for manufacturing a reflective mask blank has steps S1 to S7.
  • Substrate 2 includes a first major surface 21 and a second major surface 22 facing away from first major surface 21 .
  • the first main surface 21 is rectangular.
  • a rectangular shape includes a shape with chamfered corners. Rectangles also include squares.
  • the second major surface 22 faces away from the first major surface 21 .
  • the second main surface 22 is also rectangular like the first main surface 21 .
  • the substrate 2 also includes four end surfaces 23 , four first chamfered surfaces 24 and four second chamfered surfaces 25 .
  • the end surface 23 is perpendicular to the first major surface 21 and the second major surface 22 .
  • a first chamfered surface 24 is formed at the boundary between the first main surface 21 and the end surface 23 .
  • a second chamfered surface 25 is formed at the boundary between the second main surface 22 and the end surface 23 .
  • the first chamfered surface 24 and the second chamfered surface 25 are so-called C-chamfered surfaces in the present embodiment, they may be R-chamfered surfaces.
  • the substrate 2 is, for example, a glass substrate.
  • the glass of the substrate 2 is preferably silica glass containing titanium oxide (TiO 2 ).
  • Silica glass has a smaller coefficient of linear expansion than general soda-lime glass, and its dimensional change due to temperature change is small.
  • the quartz glass may contain 80% to 95% silicon oxide (SiO 2 ) and 4% to 17% TiO 2 . When the TiO 2 content is 4% to 17%, the linear expansion coefficient is substantially zero near room temperature, and almost no dimensional change occurs near room temperature.
  • Quartz glass may contain third components and impurities other than SiO 2 and TiO 2 . As such quartz glass, for example, Corning's ULE (registered trademark) 7973 series may be used.
  • the size of the substrate 2 in plan view is, for example, 152 mm long and 152 mm wide.
  • the longitudinal and lateral dimensions may be 152 mm or greater.
  • the substrate 2 has a central region 27 and a peripheral region 28 on the first main surface 21 .
  • the central region 27 is a square region of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral region 28 surrounding the central region 27, and is processed to a desired flatness in steps S1 to S4, This is the quality assurance area.
  • the quality assurance area may have vertical and horizontal dimensions of 142 mm or greater.
  • Four sides of the central region 27 are parallel to the four end faces 23 .
  • the center of central region 27 coincides with the center of first major surface 21 .
  • the second main surface 22 of the substrate 2 also has a central region and a peripheral region, like the first main surface 21 .
  • the central region of the second main surface 22 is a square region of 142 mm long and 142 mm wide, similar to the central region of the first main surface 21, and is processed to a desired flatness by steps S1 to S4 in FIG. It is a quality assurance area.
  • the quality assurance area may have vertical and horizontal dimensions of 142 mm or greater.
  • step S1 the first main surface 21 and the second main surface 22 of the substrate 2 are polished.
  • the first main surface 21 and the second main surface 22 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown).
  • step S ⁇ b>1 the substrate 2 is polished while supplying polishing slurry between the polishing pad and the substrate 2 .
  • the polishing pad for example, a urethane-based polishing pad, a non-woven fabric-based polishing pad, or a suede-based polishing pad is used.
  • the polishing slurry contains an abrasive and a dispersion medium.
  • the abrasive is, for example, cerium oxide particles.
  • the dispersion medium is, for example, water or an organic solvent.
  • the first main surface 21 and the second main surface 22 may be polished multiple times with abrasives of different materials or grain sizes.
  • the abrasive used in step S1 is not limited to cerium oxide particles.
  • the abrasive used in step S1 may be silicon oxide particles, aluminum oxide particles, zirconium oxide particles, titanium oxide particles, diamond particles, silicon carbide particles, or the like.
  • step S2 the surface shapes of the first main surface 21 and the second main surface 22 of the substrate 2 are measured.
  • a non-contact type measuring instrument such as a laser interference type is used so as not to damage the surface.
  • the measuring machine measures the surface shape of the central region 27 of the first major surface 21 and the central region of the second major surface 22 .
  • step S3 referring to the measurement results in step S2, the first main surface 21 and the second main surface 22 of the substrate 2 are locally processed to improve the flatness.
  • the first main surface 21 and the second main surface 22 are locally machined in order.
  • the order is not particularly limited and may be either one first.
  • the local processing method is, for example, the GCIB (Gas Cluster Ion Beam) method or the PCVM (Plasma Chemical Vaporization Machining) method.
  • the local processing method may be a magnetic fluid polishing method, a rotary polishing tool polishing method, a catalyst-based etching method, or the like. If the flatness after step S1 is sufficient, the local processing in step S3 may be omitted.
  • step S4 finish polishing of the first main surface 21 and the second main surface 22 of the substrate 2 is performed.
  • the first main surface 21 and the second main surface 22 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown).
  • step S ⁇ b>4 the substrate 2 is polished while supplying polishing slurry between the polishing pad and the substrate 2 .
  • the polishing slurry contains an abrasive.
  • Abrasives are, for example, colloidal silica particles.
  • Conductive film 5 is a metal nitride or metal boride containing at least one element selected from the group consisting of chromium (Cr), tantalum (Ta), titanium (Ti), zirconium (Zr) and niobium (Nb). It is preferably formed with Specific examples of such a conductive film 5 include a CrN film, a TaN film, a TaB film, a CrTaN film, a TiN film and a ZrN film. Conductive film 5 may contain at least one selected from the group consisting of chromium, tantalum and boron.
  • the multilayer reflective film 3 shown in FIG. 4 is formed in the central region of the second main surface 22 of the substrate 2.
  • the multilayer reflective film 3 reflects EUV light.
  • the multilayer reflective film 3 is formed by alternately laminating high refractive index layers and low refractive index layers, for example.
  • the high refractive index layer is made of silicon (Si), for example, and the low refractive index layer is made of molybdenum (Mo), for example.
  • a sputtering method such as an ion beam sputtering method or a magnetron sputtering method is used.
  • the absorbing film 4 shown in FIG. 4 is formed on the multilayer reflective film 3 formed in step S6.
  • the absorption film 4 absorbs EUV.
  • the absorption film 4 is made of a single metal, alloy, nitride, oxide, oxynitride, or the like containing at least one element selected from Ta, Cr, and palladium (Pd), for example.
  • a method for forming the absorbing film 4 for example, an ion beam sputtering method or a sputtering method is used.
  • Absorption film 4 may contain at least one selected from the group consisting of ruthenium, tantalum, chromium, iridium, boron, niobium, rhenium, and palladium.
  • Absorption film 4 may contain at least one selected from the group consisting of ruthenium, tantalum, niobium and boron.
  • steps S6 and S7 are performed after step S5 in this embodiment, they may be performed before step S5.
  • the reflective mask blank 1 shown in FIG. 4 has a first major surface 11 and a second major surface 12 facing away from the first major surface 11, and a light beam extending from the first major surface 11 side to the second major surface 12 side. , a conductive film 5, a substrate 2, a multilayer reflective film 3, and an absorption film 4 in this order.
  • the reflective mask blank 1 has a central region and a peripheral region on the first main surface 11 like the substrate 2 .
  • the central area is a square area of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral area surrounding the central area, and is a quality assurance area.
  • the reflective mask blank 1 also has a central region and a peripheral region on the second main surface 12 as well as the substrate 2 .
  • the central area is a square area of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral area surrounding the central area, and is a quality assurance area.
  • the quality assurance area may have vertical and horizontal dimensions of 142 mm or greater.
  • the reflective mask blank 1 may include another film in addition to the conductive film 5, the substrate 2, the multilayer reflective film 3, and the absorbing film 4.
  • the reflective mask blank 1 may further include a protective film.
  • a protective film is formed between the multilayer reflective film 3 and the absorbing film 4 .
  • the protective film protects the multilayer reflective film 3 from being etched when the absorbing film 4 is etched to form the opening pattern 41 in the absorbing film 4 .
  • the protective film is made of, for example, ruthenium (Ru), Si, or TiO2 .
  • the protective film may contain ruthenium or rhodium.
  • a sputtering method is used as a method for forming the protective film.
  • the reflective mask blank 1 may further include a low-reflection film.
  • a low reflection film is formed on the absorption film 4 .
  • an opening pattern 41 is formed in both the low reflection film and the absorption film 4 .
  • the low-reflection film is used for inspection of the opening pattern 41 and has a lower reflection characteristic than the absorption film 4 with respect to inspection light.
  • the low-reflection film is made of, for example, tantalum oxynitride (TaON) or tantalum oxide (TaO).
  • TaON tantalum oxynitride
  • TaO tantalum oxide
  • the reflective mask is obtained by forming an opening pattern 41 in the absorbing film 4.
  • a photolithographic method and an etching method are used to form the opening pattern 41 . Therefore, the reflective mask blank 1 may include the resist film used to form the opening pattern 41 .
  • the film-coated substrate is inspected for surface defects in each process so that unevenness does not exist in the vicinity of the opening pattern 41 .
  • the defect is removed by cleaning.
  • at least the multilayer reflective film 3 is peeled off and the second main surface 22 of the substrate 2 is regenerated or discarded as a defective product.
  • the film-coated substrate means the substrate 2 on which at least the multilayer reflective film 3 is formed, which is obtained after step S6 in FIG.
  • the conductive film 5 may not be formed on the substrate 2 when steps S6 to S7 are performed before step S5. That is, the film-coated substrate includes a substrate 2 on which the multilayer reflective film 3 is formed, a substrate 2 on which the multilayer reflective film 3 and the absorption film 4 are formed, a substrate 2 on which the conductive film 5 and the multilayer reflective film 3 are formed, A substrate 2 (reflective mask blank 1) on which a conductive film 5, a multilayer reflective film 3, and an absorbing film 4 are formed.
  • the film-coated substrate may include other films besides the conductive film 5, the multilayer reflective film 3, and the absorbing film 4, and may include, for example, the protective film and the low-reflection film described above.
  • the film-coated substrate may be a reflective mask with opening patterns 41 formed thereon.
  • the film-coated substrate is brought into contact with a chemical solution in order to peel off at least the multilayer reflective film 3 from the substrate 2 of the film-coated substrate and regenerate the second main surface 22 of the substrate 2 .
  • the film-coated substrate includes another film on the multilayer reflective film 3, that film must also be peeled off at the same time.
  • the film-coated substrate includes the conductive film 5, it is preferable to peel off the conductive film 5 at the same time as the multilayer reflective film 3.
  • the conductive film 5 may be peeled off by another method such as using a chemical solution different from the chemical solution.
  • the method of bringing the film-coated substrate into contact with the chemical solution is not particularly limited, but for example, a method of immersing the film-coated substrate in a chemical solution stored in a treatment tank (hereinafter referred to as an immersion method), or a method of applying the chemical solution to the surface of the film-coated substrate.
  • a spray method is used.
  • the immersion method is more preferable from the viewpoint of productivity and cost.
  • it is easy to repeatedly use the chemical solution. It is preferable to replace the chemical solution whose performance has deteriorated.
  • the processing time is set to be longer than the time (hereinafter referred to as T3 ) required for peeling off the multilayer reflective film 3 from the film-coated substrate 2 .
  • T3 the time required for peeling off the multilayer reflective film 3 from the film-coated substrate 2 .
  • T5 the time required for peeling the conductive film 5
  • the temperature at which the film-coated substrate and the chemical are brought into contact is 20°C to 150°C, preferably 40°C to 100°C. If the temperature is 20° C. or higher, the treatment time can be sufficiently shortened. Also, if the temperature is 150° C. or lower, the substrate 2 is less likely to be excessively damaged by the chemical solution.
  • the recycled substrate 2 is subjected again to at least steps S6 to S7 of FIG. 1 to produce a reflective mask blank 1.
  • steps S1 to S5 may be performed as necessary.
  • the film may be formed after performing local polishing or finish polishing in order to obtain the desired flatness.
  • a chemical solution contains a solvent and an additive.
  • Additives include at least a pH adjuster and an oxidizing agent, and may further include optional additives.
  • Optional additives are, for example, specific metals or chelating agents.
  • the solvent is water or an organic solvent, preferably water. Distilled water, ion-exchanged water, and ultrapure water are preferable as water.
  • the pH adjuster is an organic base or an inorganic base, preferably an inorganic base. If the pH adjuster is an inorganic base, the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Ta.
  • Inorganic bases further include, for example, hydroxides of alkali metals or alkaline earth metals. Among these, sodium hydroxide (NaOH), potassium hydroxide (KOH) or rubidium hydroxide (RbOH) is preferable from the viewpoint of basicity and water solubility, NaOH or KOH is more preferable from the viewpoint of cost, and T5 KOH is more preferable because it can be shortened.
  • the concentration of the pH adjuster is adjusted within a range such that the pH of the chemical solution becomes a desired value.
  • the pH of the chemical solution is 10-16, preferably 12-15, more preferably 13-15. If the pH is 10 or more, T3 can be sufficiently shortened when the multilayer reflective film 3 contains Si and Mo. Moreover, if the pH is 16 or less, when the reflective mask blank 1 has a protective film containing Ru, the protective film can be peeled off in a sufficiently short time.
  • the oxidizing agent is included for the purpose of exfoliating at least the multilayer reflective film 3 . Therefore, the oxidizing agent has an oxidation-reduction potential higher than that of at least the components forming the multilayer reflective film 3 .
  • the standard electrode potential of the oxidizing agent is preferably 0.8V to 2.0V . consisting of periodate, orthoperiodic acid (H 5 IO 6 ), orthoperiodate, permanganate (HMnO 4 ), permanganate, and N-methylmorpholine N-oxide (abbreviation: NMO) At least one selected from the group.
  • metaperiodic acid, metaperiodate, orthoperiodic acid, orthoperiodate, permanganic acid, or permanganate is preferable because T3 can be shortened.
  • Metaperiodic acid, metaperiodate, orthoperiodic acid, or orthoperiodate is more preferred because it exhibits high activity even at pH 10 to 16 and the by-product is water-soluble.
  • Permanganic acid or permanganate is also preferable from the point that the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Cr.
  • T5 can be shortened when the film-coated substrate has the conductive film 5 containing Ta.
  • the concentration of the oxidizing agent is 0.1 ppm to 40%, preferably 0.1% to 10%, more preferably 0.1% to 2% relative to the chemical solution. If the concentration of the oxidizing agent is 0.1 ppm or more, the multilayer reflective film 3 can be peeled off. In addition, if the concentration of the oxidizing agent is 40% or less, there is little risk of precipitation of sparingly soluble by-products.
  • Optional additives are, for example, specific metals or chelating agents.
  • the specific metals are at least one selected from the group consisting of metals having a higher redox potential than that of Cr(VI) and ions thereof.
  • Specific examples of such metals include Ru and cerium (Ce).
  • the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Cr.
  • the Ru ions or Ce ions may be added when the chemical solution is prepared, or may be eluted from a peeled film (for example, a protective film containing Ru).
  • Ru or Ru ions added to the chemical solution are oxidized to Ru(VII) or Ru(VIII) by the oxidizing agent in the chemical solution to become RuO 4 ⁇ or RuO 4 .
  • Ru oxide ions oxidize Cr contained in the conductive film 5 to form water-soluble CrO 4 2 ⁇ , thereby peeling off the conductive film 5 containing Cr.
  • the concentration of the specific metals is 0.0001 to 10 equivalents, preferably 0.001 to 1 equivalent, more preferably 0.01 to 0.1 equivalents relative to the oxidizing agent.
  • concentration of the specific metals is 0.0001 equivalent or more, peeling of the conductive film 5 containing Cr proceeds sufficiently. Also, if the concentration of the specific metals is 10 equivalents or less, substrate damage can be sufficiently suppressed.
  • the chelating agent is an aminocarboxylic acid-based chelating agent, a hydroxy acid-based chelating agent, or a phosphonic acid-based chelating agent.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid (abbreviation: EDTA), triethylenetetraminehexaacetic acid (abbreviation: TTHA), nitrilotrismethylene phosphonic acid (abbreviation: NTPO) or N,N-bis(2-hydroxy Ethyl)glycine (abbreviation: Bicine) can be mentioned.
  • Hydroxyacid chelating agents include, for example, tartaric acid.
  • phosphonic acid-based chelating agents include hydroxyethylidene diphosphonic acid (abbreviation: HEDP) and phosphonoacetic acid.
  • EDTA or phosphonoacetic acid is more preferable from the viewpoint of shortening the processing time, and TTHA is more preferable from the viewpoint of less damage to the substrate 2 .
  • the concentration of the chelating agent is 0.01% to 10%, preferably 0.1% to 5%, more preferably 0.5% to 2% relative to the drug solution. If the concentration of the chelating agent is 0.01% or more, the treatment time can be significantly shortened. In addition, if the concentration of the chelating agent is 10% or less, there is little risk of precipitation of sparingly soluble by-products.
  • the above additives are mixed with a solvent to prepare a chemical solution. At this time, the additive is selected so that it is soluble in the solvent and does not deposit sparingly soluble by-products.
  • One or more types of each of the pH adjuster and the oxidizing agent are included.
  • the specific metals may not be contained, or one or more kinds may be contained.
  • a chelating agent may be absent or may be included in one or more types.
  • Examples 1 to 23 are examples, and Examples 24 and 25 are comparative examples.
  • Conductive film 5 was formed by sputtering on first main surface 21 of substrate 2 made of quartz glass containing TiO 2 .
  • the conductive film 5 was a CrN film or a film containing Ta as a main component (denoted as Ta-based in Table 1).
  • the multilayer reflective film 3 was formed on the second main surface 22 of the substrate 2 by ion beam sputtering.
  • the multilayer reflective film 3 was formed by alternately laminating Si films of about 4 nm and Mo films of about 3 nm for 40 cycles, and finally laminating Si films of about 4 nm.
  • a protective film made of Ru was formed to a thickness of about 2.5 nm by sputtering. As described above, a film-coated substrate was obtained. A small piece having a side length of about 10 mm was cut out from this film-coated substrate and used as a test piece.
  • this container was placed on a hot plate with a stirrer function and heated for about 30 minutes to keep it at a predetermined temperature. Subsequently, the test piece was put into a container and immersed in the chemical solution for up to 600 minutes while being stirred, and then the test piece was taken out. However, when peeling of all the multilayer reflective film 3 and the conductive film 5 was confirmed, the test piece was taken out at that time. Detachment of the multilayer reflective film 3 or the conductive film 5 was visually confirmed before taking out the test piece, and after taking out the test piece, the film components were determined using a fluorescent X-ray analysis (manufactured by Rigaku: ZSX Primus II). I checked again to make sure it wasn't there. Incidentally, when the multilayer reflective film 3 was peeled off, the protective film was also peeled off at the same time.
  • a fluorescent X-ray analysis manufactured by Rigaku: ZSX Primus II
  • NaOH NaOH was used in Example 1
  • KOH was used in Examples 2 to 25 at a predetermined concentration.
  • RuCl 3 was added in Examples 6 and 7, and Ru powder was added in Example 8 in a predetermined equivalent amount to the oxidizing agent.
  • Example 9 As a chelating agent, 0.1% of EDTA was added in Example 9, TTHA in Example 10, NTPO in Example 11, Bicine in Example 12, tartaric acid in Example 13, and phosphonoacetic acid in Example 14, respectively.
  • the pH of the chemical solutions of Examples 1 to 25 was measured using a portable pH/ORP/ion meter (manufactured by Horiba Advanced Techno Co., Ltd.: D-73).
  • T3 can be shortened by using KOH as a pH adjuster than by using NaOH.
  • Example 3 From the comparison between Example 3 and Examples 6 to 8, when Ru or Ru ions are added as specific metals, not only the multilayer reflective film 3 but also the conductive film 5 made of CrN can be peeled off while suppressing damage to the substrate. It became clear.
  • Example 2 A comparison of Example 2 with Examples 9-14 reveals that the addition of a chelating agent can shorten T3 .
  • Example 24 when the oxidizing agent was H 2 O 2 as in Example 24, the multilayer reflective film 3 could not be peeled off even after 600 minutes. Further, as in Example 25, when the chelating agent was added to the chemical solution of Example 24, the multilayer reflective film 3 could be peeled off, but the time required for peeling was longer than in Examples 1 to 22. In addition, Example 23 was equivalent to Example 25 in T3 , but was superior in terms of substrate damage.
  • a multilayer reflective film 3 was formed by a sputtering method on the second main surface 22 of the substrate 2 made of quartz glass containing TiO 2 .
  • the multilayer reflective film 3 was formed by alternately laminating Si films of about 4 nm and Mo films of about 3 nm for 40 cycles, and finally laminating Si films of about 4 nm.
  • a protective film made of Ru was formed to a thickness of about 2.5 nm by sputtering. As described above, a film-coated substrate was obtained.
  • reaction vessel filled with 1 L (liter) of chemical solution using 22.4% KOH as a pH adjuster and 1% NaIO 4 as an oxidizing agent was kept at 60-65°C, and then the reaction vessel was The film-coated substrate was added while stirring. When peeling of the multilayer reflective film 3 was visually confirmed, the film-coated substrate was taken out, and another film-coated substrate prepared in the same manner was newly introduced. This was repeated 8 times in succession.
  • FIG. 6 shows the results of the above reference experiment. As shown in FIG. 1, T3 tended to increase slightly as the number of film-coated substrates increased, but the change was not such that the chemical solution had to be replaced. This suggests that the chemical solution according to the present invention can be sufficiently repeatedly used.
  • REFERENCE SIGNS LIST 1 reflective mask blank 2 substrate 3 multilayer reflective film 4 absorbing film 5 conductive film 41 aperture pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

A chemical agent according to one embodiment of the present invention contains a pH adjusting agent and at least one oxidant that is selected from the group consisting of metaperiodic acid, a metaperiodate salt, orthoperiodic acid, an orthoperiodate salt, permanganic acid, a permanganate salt and N-methylmorpholine N-oxide.

Description

薬液、膜付き基板の再生方法、膜付き基板の製造方法、および反射型マスクブランクの製造方法Chemical solution, method for regenerating substrate with film, method for manufacturing substrate with film, and method for manufacturing reflective mask blank
 本発明は、薬液、膜付き基板の再生方法、膜付き基板の製造方法、および反射型マスクブランクの製造方法に関する。 The present invention relates to a chemical solution, a method for regenerating a substrate with a film, a method for manufacturing a substrate with a film, and a method for manufacturing a reflective mask blank.
 近年、半導体デバイスの微細化に伴い、極端紫外線(Extreme Ultra-Violet:EUV)を用いた露光技術であるEUVリソグラフィー(EUVL)が開発されている。EUVとは、軟X線および真空紫外線を含み、具体的には波長が0.2nm~100nm程度の光のことである。現時点では、13.5nm程度の波長のEUVが主に検討されている。 In recent years, with the miniaturization of semiconductor devices, EUV lithography (EUVL), which is an exposure technology using Extreme Ultraviolet (EUV), has been developed. EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of approximately 0.2 nm to 100 nm. At present, EUV with a wavelength of about 13.5 nm is mainly considered.
 EUVLでは、反射型マスクの開口パターンを半導体基板に転写する。反射型マスクは、反射型マスクブランクの吸収膜に開口パターンを形成することで得られる。反射型マスクブランクは、ガラス基板などの基板と、基板の上に形成される多層反射膜と、多層反射膜の上に形成される吸収膜と、を含む。 In EUVL, the opening pattern of the reflective mask is transferred to the semiconductor substrate. A reflective mask is obtained by forming an aperture pattern in an absorbing film of a reflective mask blank. A reflective mask blank includes a substrate such as a glass substrate, a multilayer reflective film formed on the substrate, and an absorbing film formed on the multilayer reflective film.
 ところで、反射型マスクにおいて、開口パターンの近傍に凹凸が存在すると、転写されるパターンの位置精度やコントラストが悪化し問題となる。凹凸は、傷や異物などの欠陥により生じる。 By the way, in a reflective mask, if unevenness exists in the vicinity of the opening pattern, the positional accuracy and contrast of the pattern to be transferred deteriorate, resulting in a problem. The unevenness is caused by defects such as scratches and foreign matter.
 従って、開口パターンの近傍に凹凸が存在することのないよう、膜付き基板に対し、工程ごとに表面欠陥検査や膜中欠陥検査などの検査を実施する。検査の結果、許容できないサイズの欠陥が発見されたときは、洗浄等により欠陥を除去する。一方で、洗浄等によっても除去できない欠陥がある場合は、少なくとも多層反射膜を剥離して基板を再生するか、または不良品として破棄する。 Therefore, inspections such as surface defect inspections and in-film defect inspections are performed on the film-coated substrate for each process so that unevenness does not exist in the vicinity of the opening pattern. If a defect of unacceptable size is found as a result of the inspection, the defect is removed by cleaning or the like. On the other hand, if there is a defect that cannot be removed by cleaning or the like, at least the multilayer reflective film is peeled off and the substrate is regenerated or discarded as a defective product.
 特許文献1には、多層反射膜を有する多層膜が基板上に形成された多層膜付き基板の再生方法が開示されている。この再生方法では、水酸化ナトリウム、水酸化カリウムおよびアンモニアから選択される少なくとも1つと過酸化水素とを含む水溶液からなる薬液に、多層膜付基板を接触させて基板から多層膜を剥離し、基板を再生する。 Patent Document 1 discloses a method for recycling a substrate with a multilayer film on which a multilayer film having a multilayer reflective film is formed. In this regeneration method, the substrate with the multilayer film is brought into contact with a chemical solution comprising an aqueous solution containing at least one selected from sodium hydroxide, potassium hydroxide and ammonia, and hydrogen peroxide to peel off the multilayer film from the substrate. to play.
日本国特開2017-181733号公報Japanese Patent Application Laid-Open No. 2017-181733
 しかしながら、特許文献1に記載の方法では、膜付き基板の基板から膜を剥離する際の処理時間が長く、また、剥離された面の基板ダメージが依然として大きいという問題があった。 However, the method described in Patent Document 1 has the problem that the processing time is long when the film is peeled off from the film-coated substrate, and the substrate damage on the peeled surface is still large.
 本発明の一態様は、膜付き基板の基板から膜を剥離する際の処理時間を短縮することを目的とする。また、剥離された面の基板ダメージを抑制することを目的とする。 An object of one aspect of the present invention is to shorten the processing time for peeling off a film from a film-coated substrate. Another object of the present invention is to suppress substrate damage on the peeled surface.
 本発明は、以下の[1]~[12]である。 The present invention is the following [1] to [12].
 [1] ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を有する膜が形成された膜付き基板の前記ガラス基板から、少なくとも前記多層反射膜を剥離するために用いられる薬液であって、pH調整剤と、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸、オルト過ヨウ素酸塩、過マンガン酸、過マンガン酸塩、およびN-メチルモルホリンN-オキシドからなる群から選択される少なくとも1つの酸化剤と、を含む、薬液。 [1] A chemical solution used for peeling at least the multilayer reflective film from the glass substrate of the film-coated substrate having a film having a multilayer reflective film containing silicon and molybdenum formed on one surface of the glass substrate. and a pH adjusting agent from the group consisting of metaperiodic acid, metaperiodate, orthoperiodic acid, orthoperiodate, permanganate, permanganate, and N-methylmorpholine N-oxide and at least one selected oxidizing agent.
 [2] pHが10以上16以下である、[1]に記載の薬液。 [2] The chemical solution according to [1], which has a pH of 10 or more and 16 or less.
 [3] 前記pH調整剤は、水酸化ナトリウムまたは水酸化カリウムである、[1]に記載の薬液。 [3] The chemical solution according to [1], wherein the pH adjuster is sodium hydroxide or potassium hydroxide.
 [4] 前記酸化剤は、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸またはオルト過ヨウ素酸塩である、[1]に記載の薬液。 [4] The chemical solution according to [1], wherein the oxidizing agent is metaperiodic acid, metaperiodate, orthoperiodic acid, or orthoperiodate.
 [5] 前記酸化剤は、過マンガン酸または過マンガン酸塩である、[1]に記載の薬液。 [5] The chemical solution according to [1], wherein the oxidizing agent is permanganic acid or permanganate.
 [6] クロム(VI)の酸化還元電位よりも高い酸化還元電位を有する金属およびそのイオンからなる群から選択される少なくとも1つを、前記酸化剤に対して0.0001モル当量~10モル当量さらに含む、[1]に記載の薬液。 [6] Adding at least one selected from the group consisting of metals having a redox potential higher than that of chromium (VI) and ions thereof in an amount of 0.0001 to 10 molar equivalents relative to the oxidizing agent The chemical solution according to [1], further comprising:
 [7] キレート剤としてアミノカルボン酸系キレート剤、ヒドロキシ酸系キレート剤またはホスホン酸系キレート剤をさらに含む、[1]に記載の薬液。 [7] The drug solution according to [1], further comprising an aminocarboxylic acid-based chelating agent, a hydroxy acid-based chelating agent, or a phosphonic acid-based chelating agent as a chelating agent.
 [8] ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を有する膜が形成された膜付き基板を、pH調整剤と、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸、オルト過ヨウ素酸塩、過マンガン酸、過マンガン酸塩、およびN-メチルモルホリンN-オキシドからなる群から選択される少なくとも1つの酸化剤と、を含む薬液に接触させて、前記ガラス基板から少なくとも前記多層反射膜を剥離し、前記ガラス基板の前記多層反射膜が形成されていた面を再生することを特徴とする、膜付き基板の再生方法。 [8] A film-coated substrate having a film having a multilayer reflective film containing silicon and molybdenum on one surface of a glass substrate was treated with a pH adjuster, metaperiodic acid, metaperiodate, and orthoperiodic acid. and at least one oxidizing agent selected from the group consisting of acid, orthoperiodate, permanganic acid, permanganate, and N-methylmorpholine N-oxide, to bring the glass substrate into contact with a chemical solution. A method for reclaiming a film-coated substrate, wherein at least the multilayer reflective film is peeled off from the glass substrate, and the surface of the glass substrate on which the multilayer reflective film was formed is reclaimed.
 [9] 前記膜付き基板は、前記多層反射膜の上に、ルテニウムを含有する保護膜を有する、[8]に記載の膜付き基板の再生方法。 [9] The method for recycling a film-coated substrate according to [8], wherein the film-coated substrate has a protective film containing ruthenium on the multilayer reflective film.
 [10] 前記膜付き基板は、前記多層反射膜の上に、ルテニウム、タンタル、ニオブおよびホウ素からなる群から選択される少なくとも1つを含有する吸収膜を有する、[8]に記載の膜付き基板の再生方法。 [10] The film-coated substrate according to [8], wherein the film-coated substrate has an absorption film containing at least one selected from the group consisting of ruthenium, tantalum, niobium and boron on the multilayer reflective film. Substrate regeneration method.
 [11] 前記膜付き基板は、前記多層反射膜が形成された面とは反対の面に、クロムまたはタンタルを含有する導電膜を有する、[8]に記載の膜付き基板の再生方法。 [11] The method for recycling a film-coated substrate according to [8], wherein the film-coated substrate has a conductive film containing chromium or tantalum on the surface opposite to the surface on which the multilayer reflective film is formed.
 [12] [8]~[11]のいずれか1つに記載の膜付き基板の再生方法により再生された前記ガラス基板の一方の面に、少なくとも、ケイ素およびモリブデンを含有する多層反射膜を形成することを含む、膜付き基板の製造方法。 [12] A multilayer reflective film containing at least silicon and molybdenum is formed on one surface of the glass substrate recycled by the method for recycling a film-coated substrate according to any one of [8] to [11]. A method of manufacturing a film-coated substrate, comprising:
 [13] [8]~[11]のいずれか1つに記載の膜付き基板の再生方法により再生された前記ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を形成することと、前記多層反射膜の上にルテニウムまたはロジウムを含有する保護膜を形成することと、前記保護膜の上にルテニウム、タンタル、クロム、イリジウム、ホウ素、ニオブ、レニウムおよびパラジウムからなる群から選択される少なくとも1つを含有する吸収膜を形成することと、前記ガラス基板の前記反射多層膜が形成された面とは反対の面にクロム、タンタルおよびホウ素からなる群から選択される少なくとも1つを含有する導電膜を形成することと、を含む、反射型マスクブランクの製造方法。 [13] Forming a multilayer reflective film containing silicon and molybdenum on one surface of the glass substrate recycled by the method for recycling a film-coated substrate according to any one of [8] to [11]; , forming a protective film containing ruthenium or rhodium on the multilayer reflective film; and selecting from the group consisting of ruthenium, tantalum, chromium, iridium, boron, niobium, rhenium and palladium on the protective film Forming an absorption film containing at least one, and containing at least one selected from the group consisting of chromium, tantalum and boron on the surface of the glass substrate opposite to the surface on which the reflective multilayer film is formed. and forming a conductive film to form a reflective mask blank.
図1は、一実施形態に係る反射型マスクブランクの製造方法を示すフローチャートである。FIG. 1 is a flow chart showing a method for manufacturing a reflective mask blank according to one embodiment. 図2は、基板の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a substrate. 図3は、図2の基板の平面図である。3 is a plan view of the substrate of FIG. 2; FIG. 図4は、反射型マスクブランクの一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a reflective mask blank. 図5は、反射型マスクの一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a reflective mask. 図6は、参考実験の結果を示す図である。FIG. 6 is a diagram showing results of a reference experiment.
 以下、本発明の実施するための形態(以下、単に本実施形態という。)について、図面を参照して説明する。図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。なお、図面の寸法比率は図示の比率に限られるものではない。また、明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。前記下限値及び前記上限値は、四捨五入の範囲を含む。さらに、「%」、「ppm」および「ppb」は、質量分率を表すものとし、「当量」はモル当量を表すものとする。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as this embodiment) will be described with reference to the drawings. In the drawings, the positional relationships such as top, bottom, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. Note that the dimensional ratios in the drawings are not limited to the illustrated ratios. In the specification, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits. The lower limit value and the upper limit value include the rounding range. Furthermore, "%", "ppm" and "ppb" shall denote mass fractions and "equivalents" shall denote molar equivalents.
 (反射型マスクブランクの製造方法)
 図1に示すように、反射型マスクブランクの製造方法は、ステップS1~S7を有する。反射型マスクブランクの製造には、例えば図2及び図3に示す基板2を用いる。基板2は、第1主表面21と、第1主表面21とは反対向きの第2主表面22とを含む。第1主表面21は、矩形状である。本明細書において、矩形状とは、角に面取加工を施した形状を含む。また、矩形は、正方形を含む。第2主表面22は、第1主表面21とは反対向きである。第2主表面22も、第1主表面21と同様に、矩形状である。
(Manufacturing method of reflective mask blank)
As shown in FIG. 1, the method for manufacturing a reflective mask blank has steps S1 to S7. A substrate 2 shown in FIGS. 2 and 3, for example, is used for manufacturing a reflective mask blank. Substrate 2 includes a first major surface 21 and a second major surface 22 facing away from first major surface 21 . The first main surface 21 is rectangular. In this specification, a rectangular shape includes a shape with chamfered corners. Rectangles also include squares. The second major surface 22 faces away from the first major surface 21 . The second main surface 22 is also rectangular like the first main surface 21 .
 また、基板2は、4つの端面23と、4つの第1面取面24と、4つの第2面取面25とを含む。端面23は、第1主表面21及び第2主表面22に対して垂直である。第1面取面24は、第1主表面21と端面23の境界に形成される。第2面取面25は、第2主表面22と端面23の境界に形成される。第1面取面24及び第2面取面25は、本実施形態では、いわゆるC面取面であるが、R面取面であってもよい。 The substrate 2 also includes four end surfaces 23 , four first chamfered surfaces 24 and four second chamfered surfaces 25 . The end surface 23 is perpendicular to the first major surface 21 and the second major surface 22 . A first chamfered surface 24 is formed at the boundary between the first main surface 21 and the end surface 23 . A second chamfered surface 25 is formed at the boundary between the second main surface 22 and the end surface 23 . Although the first chamfered surface 24 and the second chamfered surface 25 are so-called C-chamfered surfaces in the present embodiment, they may be R-chamfered surfaces.
 基板2は、例えばガラス基板である。基板2のガラスは、酸化チタン(TiO)を含有する石英ガラスが好ましい。石英ガラスは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による寸法変化が小さい。石英ガラスは、酸化ケイ素(SiO)を80%~95%、TiOを4%~17%含んでよい。TiO含有量が4%~17%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。石英ガラスは、SiOおよびTiO以外の第三成分や不純物を含んでもよい。このような石英ガラスとして、例えば、Corning社のULE(登録商標)7973シリーズを用いてもよい。 The substrate 2 is, for example, a glass substrate. The glass of the substrate 2 is preferably silica glass containing titanium oxide (TiO 2 ). Silica glass has a smaller coefficient of linear expansion than general soda-lime glass, and its dimensional change due to temperature change is small. The quartz glass may contain 80% to 95% silicon oxide (SiO 2 ) and 4% to 17% TiO 2 . When the TiO 2 content is 4% to 17%, the linear expansion coefficient is substantially zero near room temperature, and almost no dimensional change occurs near room temperature. Quartz glass may contain third components and impurities other than SiO 2 and TiO 2 . As such quartz glass, for example, Corning's ULE (registered trademark) 7973 series may be used.
 平面視にて基板2のサイズは、例えば縦152mm、横152mmである。縦寸法及び横寸法は、152mm以上であってもよい。 The size of the substrate 2 in plan view is, for example, 152 mm long and 152 mm wide. The longitudinal and lateral dimensions may be 152 mm or greater.
 基板2は、第1主表面21に中央領域27と周縁領域28とを有する。中央領域27は、その中央領域27を取り囲む矩形枠状の周縁領域28を除く、縦142mm、横142mmの正方形の領域であり、ステップS1~S4によって所望の平坦度に加工される領域であり、品質保証領域である。品質保証領域は、縦寸法及び横寸法が142mm以上であってもよい。中央領域27の4つの辺は、4つの端面23に平行である。中央領域27の中心は、第1主表面21の中心に一致する。 The substrate 2 has a central region 27 and a peripheral region 28 on the first main surface 21 . The central region 27 is a square region of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral region 28 surrounding the central region 27, and is processed to a desired flatness in steps S1 to S4, This is the quality assurance area. The quality assurance area may have vertical and horizontal dimensions of 142 mm or greater. Four sides of the central region 27 are parallel to the four end faces 23 . The center of central region 27 coincides with the center of first major surface 21 .
 なお、図示しないが、基板2の第2主表面22も、第1主表面21と同様に、中央領域と、周縁領域とを有する。第2主表面22の中央領域は、第1主表面21の中央領域と同様に、縦142mm、横142mmの正方形の領域であって、図1のステップS1~S4によって所望の平坦度に加工される領域であり、品質保証領域である。品質保証領域は、縦寸法及び横寸法が142mm以上であってもよい。 Although not shown, the second main surface 22 of the substrate 2 also has a central region and a peripheral region, like the first main surface 21 . The central region of the second main surface 22 is a square region of 142 mm long and 142 mm wide, similar to the central region of the first main surface 21, and is processed to a desired flatness by steps S1 to S4 in FIG. It is a quality assurance area. The quality assurance area may have vertical and horizontal dimensions of 142 mm or greater.
 まず、ステップS1では、基板2の第1主表面21及び第2主表面22を研磨する。第1主表面21及び第2主表面22は、本実施形態では不図示の両面研磨機で同時に研磨されるが、不図示の片面研磨機で順番に研磨されてもよい。ステップS1では、研磨パッドと基板2の間に研磨スラリーを供給しながら、基板2を研磨する。 First, in step S1, the first main surface 21 and the second main surface 22 of the substrate 2 are polished. The first main surface 21 and the second main surface 22 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown). In step S<b>1 , the substrate 2 is polished while supplying polishing slurry between the polishing pad and the substrate 2 .
 研磨パッドとしては、例えばウレタン系研磨パッド、不織布系研磨パッド、またはスウェード系研磨パッドなどが用いられる。研磨スラリーは、研磨剤と分散媒とを含む。研磨剤は、例えば酸化セリウム粒子である。分散媒は、例えば水または有機溶剤である。第1主表面21及び第2主表面22は、異なる材質または粒度の研磨剤で、複数回研磨されてもよい。 As the polishing pad, for example, a urethane-based polishing pad, a non-woven fabric-based polishing pad, or a suede-based polishing pad is used. The polishing slurry contains an abrasive and a dispersion medium. The abrasive is, for example, cerium oxide particles. The dispersion medium is, for example, water or an organic solvent. The first main surface 21 and the second main surface 22 may be polished multiple times with abrasives of different materials or grain sizes.
 なお、ステップS1で用いられる研磨剤は、酸化セリウム粒子には限定されない。例えば、ステップS1で用いられる研磨剤は、酸化シリコン粒子、酸化アルミニウム粒子、酸化ジルコニウム粒子、酸化チタン粒子、ダイヤモンド粒子、または炭化珪素粒子などであってもよい。 The abrasive used in step S1 is not limited to cerium oxide particles. For example, the abrasive used in step S1 may be silicon oxide particles, aluminum oxide particles, zirconium oxide particles, titanium oxide particles, diamond particles, silicon carbide particles, or the like.
 次に、ステップS2では、基板2の第1主表面21及び第2主表面22の表面形状を測定する。表面形状の測定には、例えば、表面が傷付かないように、レーザー干渉式などの非接触式の測定機が用いられる。測定機は、第1主表面21の中央領域27、及び第2主表面22の中央領域の表面形状を測定する。 Next, in step S2, the surface shapes of the first main surface 21 and the second main surface 22 of the substrate 2 are measured. For surface shape measurement, for example, a non-contact type measuring instrument such as a laser interference type is used so as not to damage the surface. The measuring machine measures the surface shape of the central region 27 of the first major surface 21 and the central region of the second major surface 22 .
 次に、ステップS3では、ステップS2の測定結果を参照し、平坦度を向上すべく、基板2の第1主表面21および第2主表面22を局所加工する。第1主表面21と第2主表面22は、順番に局所加工される。その順番は、どちらが先でもよく、特に限定されない。局所加工の方法は、例えばGCIB(Gas Cluster Ion Beam)法、またはPCVM(Plasma Chemical Vaporization Machining)法である。局所加工の方法は、磁性流体による研磨法、回転研磨ツールによる研磨法、または触媒基準エッチング法等であってもよい。なお、ステップS1後の平坦度が十分であれば、ステップS3の局所加工はしなくてもよい。 Next, in step S3, referring to the measurement results in step S2, the first main surface 21 and the second main surface 22 of the substrate 2 are locally processed to improve the flatness. The first main surface 21 and the second main surface 22 are locally machined in order. The order is not particularly limited and may be either one first. The local processing method is, for example, the GCIB (Gas Cluster Ion Beam) method or the PCVM (Plasma Chemical Vaporization Machining) method. The local processing method may be a magnetic fluid polishing method, a rotary polishing tool polishing method, a catalyst-based etching method, or the like. If the flatness after step S1 is sufficient, the local processing in step S3 may be omitted.
 次に、ステップS4では、基板2の第1主表面21及び第2主表面22の仕上げ研磨を行う。第1主表面21及び第2主表面22は、本実施形態では不図示の両面研磨機で同時に研磨されるが、不図示の片面研磨機で順番に研磨されてもよい。ステップS4では、研磨パッドと基板2の間に研磨スラリーを供給しながら、基板2を研磨する。研磨スラリーは、研磨剤を含む。研磨剤は、例えばコロイダルシリカ粒子である。 Next, in step S4, finish polishing of the first main surface 21 and the second main surface 22 of the substrate 2 is performed. The first main surface 21 and the second main surface 22 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown). In step S<b>4 , the substrate 2 is polished while supplying polishing slurry between the polishing pad and the substrate 2 . The polishing slurry contains an abrasive. Abrasives are, for example, colloidal silica particles.
 次に、ステップS5では、基板2の第1主表面21の中央領域27に、図4に示す導電膜5を形成する。導電膜5は、反射型マスクを露光装置の静電チャックに吸着するのに用いられる。導電膜5は、クロム(Cr),タンタル(Ta),チタン(Ti),ジルコニウム(Zr)およびニオブ(Nb)からなる群より選ばれた1種以上の元素を含む金属窒化物または金属ホウ化物で形成されることが好ましい。このような導電膜5の具体例としては、CrN膜、TaN膜、TaB膜、CrTaN膜、TiN膜およびZrN膜が例示される。導電膜5は、クロム、タンタルおよびホウ素からなる群から選択される少なくとも1つを含有してもよい。 Next, in step S5, the conductive film 5 shown in FIG. 4 is formed in the central region 27 of the first main surface 21 of the substrate 2. The conductive film 5 is used to attract the reflective mask to the electrostatic chuck of the exposure apparatus. Conductive film 5 is a metal nitride or metal boride containing at least one element selected from the group consisting of chromium (Cr), tantalum (Ta), titanium (Ti), zirconium (Zr) and niobium (Nb). It is preferably formed with Specific examples of such a conductive film 5 include a CrN film, a TaN film, a TaB film, a CrTaN film, a TiN film and a ZrN film. Conductive film 5 may contain at least one selected from the group consisting of chromium, tantalum and boron.
 次に、ステップS6では、基板2の第2主表面22の中央領域に、図4に示す多層反射膜3を形成する。多層反射膜3は、EUV光を反射する。多層反射膜3は、例えば高屈折率層と低屈折率層とを交互に積層したものである。高屈折率層は例えばケイ素(Si)で形成され、低屈折率層は例えばモリブデン(Mo)で形成される。多層反射膜3の成膜方法としては、例えばイオンビームスパッタリング法、マグネトロンスパッタリング法などのスパッタリング法が用いられる。 Next, in step S6, the multilayer reflective film 3 shown in FIG. 4 is formed in the central region of the second main surface 22 of the substrate 2. The multilayer reflective film 3 reflects EUV light. The multilayer reflective film 3 is formed by alternately laminating high refractive index layers and low refractive index layers, for example. The high refractive index layer is made of silicon (Si), for example, and the low refractive index layer is made of molybdenum (Mo), for example. As a method for forming the multilayer reflective film 3, for example, a sputtering method such as an ion beam sputtering method or a magnetron sputtering method is used.
 最後に、ステップS7では、ステップS6で形成された多層反射膜3の上に、図4に示す吸収膜4を形成する。吸収膜4は、EUVを吸収する。吸収膜4は、例えばTa、Cr、パラジウム(Pd)から選ばれる少なくとも1つの元素を含む単金属、合金、窒化物、酸化物、酸窒化物などで形成される。吸収膜4の成膜方法としては、例えばイオンビームスパッタリング法、スパッタリング法が用いられる。吸収膜4は、ルテニウム、タンタル、クロム、イリジウム、ホウ素、ニオブ、レニウム、およびパラジウムからなる群から選択される少なくとも1つを含有してもよい。吸収膜4は、ルテニウム、タンタル、ニオブおよびホウ素からなる群から選択される少なくとも1つを含有してもよい。 Finally, in step S7, the absorbing film 4 shown in FIG. 4 is formed on the multilayer reflective film 3 formed in step S6. The absorption film 4 absorbs EUV. The absorption film 4 is made of a single metal, alloy, nitride, oxide, oxynitride, or the like containing at least one element selected from Ta, Cr, and palladium (Pd), for example. As a method for forming the absorbing film 4, for example, an ion beam sputtering method or a sputtering method is used. Absorption film 4 may contain at least one selected from the group consisting of ruthenium, tantalum, chromium, iridium, boron, niobium, rhenium, and palladium. Absorption film 4 may contain at least one selected from the group consisting of ruthenium, tantalum, niobium and boron.
 なお、ステップS6~S7は、本実施形態ではステップS5の後に実施されるが、ステップS5の前に実施されてもよい。 Although steps S6 and S7 are performed after step S5 in this embodiment, they may be performed before step S5.
 上記ステップS1~S7により、図4に示す反射型マスクブランク1が得られる。反射型マスクブランク1は、第1主表面11と、第1主表面11とは反対向きの第2主表面12とを有し、第1主表面11の側から第2主表面12の側に、導電膜5と、基板2と、多層反射膜3と、吸収膜4とをこの順番で有する。 Through the above steps S1 to S7, the reflective mask blank 1 shown in FIG. 4 is obtained. The reflective mask blank 1 has a first major surface 11 and a second major surface 12 facing away from the first major surface 11, and a light beam extending from the first major surface 11 side to the second major surface 12 side. , a conductive film 5, a substrate 2, a multilayer reflective film 3, and an absorption film 4 in this order.
 反射型マスクブランク1は、図示しないが、基板2と同様に、第1主表面11に中央領域と周縁領域とを有する。中央領域は、その中央領域を取り囲む矩形枠状の周縁領域を除く、縦142mm、横142mmの正方形の領域であり、品質保証領域である。また、反射型マスクブランク1は、基板2と同様に、第2主表面12にも中央領域と周縁領域とを有する。中央領域は、その中央領域を取り囲む矩形枠状の周縁領域を除く、縦142mm、横142mmの正方形の領域であり、品質保証領域である。品質保証領域は、縦寸法及び横寸法が142mm以上であってもよい。 Although not shown, the reflective mask blank 1 has a central region and a peripheral region on the first main surface 11 like the substrate 2 . The central area is a square area of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral area surrounding the central area, and is a quality assurance area. The reflective mask blank 1 also has a central region and a peripheral region on the second main surface 12 as well as the substrate 2 . The central area is a square area of 142 mm long and 142 mm wide, excluding a rectangular frame-shaped peripheral area surrounding the central area, and is a quality assurance area. The quality assurance area may have vertical and horizontal dimensions of 142 mm or greater.
 なお、反射型マスクブランク1は、導電膜5と、基板2と、多層反射膜3と、吸収膜4とに加えて、別の膜を含んでもよい。 The reflective mask blank 1 may include another film in addition to the conductive film 5, the substrate 2, the multilayer reflective film 3, and the absorbing film 4.
 例えば、反射型マスクブランク1は、更に、保護膜を含んでもよい。保護膜は、多層反射膜3と吸収膜4との間に形成される。保護膜は、吸収膜4に開口パターン41を形成すべく吸収膜4をエッチングする際に、多層反射膜3がエッチングされないように、多層反射膜3を保護する。保護膜は、例えばルテニウム(Ru)、Si、またはTiOなどで形成される。保護膜は、ルテニウムまたはロジウムを含有してもよい。保護膜の成膜方法としては、例えばスパッタリング法が用いられる。 For example, the reflective mask blank 1 may further include a protective film. A protective film is formed between the multilayer reflective film 3 and the absorbing film 4 . The protective film protects the multilayer reflective film 3 from being etched when the absorbing film 4 is etched to form the opening pattern 41 in the absorbing film 4 . The protective film is made of, for example, ruthenium (Ru), Si, or TiO2 . The protective film may contain ruthenium or rhodium. As a method for forming the protective film, for example, a sputtering method is used.
 また、反射型マスクブランク1は、更に、低反射膜を含んでもよい。低反射膜は、吸収膜4上に形成される。その後、低反射膜と吸収膜4の両方に、開口パターン41が形成される。低反射膜は、開口パターン41の検査に用いられ、検査光に対して吸収膜4よりも低反射特性を有する。低反射膜は、例えば酸窒化タンタル(TaON)または酸化タンタル(TaO)などで形成される。低反射膜の成膜方法としては、例えばスパッタリング法が用いられる。 In addition, the reflective mask blank 1 may further include a low-reflection film. A low reflection film is formed on the absorption film 4 . After that, an opening pattern 41 is formed in both the low reflection film and the absorption film 4 . The low-reflection film is used for inspection of the opening pattern 41 and has a lower reflection characteristic than the absorption film 4 with respect to inspection light. The low-reflection film is made of, for example, tantalum oxynitride (TaON) or tantalum oxide (TaO). As a method for forming the low-reflection film, for example, a sputtering method is used.
 図5に示すように、反射型マスクは、吸収膜4に開口パターン41を形成して得られる。開口パターン41の形成には、フォトリソグラフィ法およびエッチング法が用いられる。従って、開口パターン41の形成に用いられるレジスト膜が、反射型マスクブランク1に含まれてもよい。 As shown in FIG. 5, the reflective mask is obtained by forming an opening pattern 41 in the absorbing film 4. As shown in FIG. A photolithographic method and an etching method are used to form the opening pattern 41 . Therefore, the reflective mask blank 1 may include the resist film used to form the opening pattern 41 .
 (膜付き基板の再生方法)
 ところで、反射型マスクにおいて、開口パターン41の近傍に凹凸が存在すると、転写されるパターンの位置精度やコントラストが悪化し問題となる。凹凸は、傷や異物などの欠陥により生じる。
(Method for Regenerating Film-Coated Substrate)
By the way, in the reflective mask, if unevenness exists in the vicinity of the opening pattern 41, the positional accuracy and contrast of the pattern to be transferred deteriorate, resulting in a problem. The unevenness is caused by defects such as scratches and foreign matter.
 従って、開口パターン41の近傍に凹凸が存在することのないよう、膜付き基板に対し、工程ごとに表面欠陥検査を実施する。表面欠陥検査の結果、許容できないサイズの欠陥が発見されたときは、洗浄により欠陥を除去する。一方で、洗浄によっても除去できない欠陥がある場合は、少なくとも多層反射膜3を剥離して、基板2の第2主表面22を再生するか、または不良品として破棄する。 Therefore, the film-coated substrate is inspected for surface defects in each process so that unevenness does not exist in the vicinity of the opening pattern 41 . As a result of the surface defect inspection, if a defect of an unacceptable size is found, the defect is removed by cleaning. On the other hand, if there is a defect that cannot be removed even by cleaning, at least the multilayer reflective film 3 is peeled off and the second main surface 22 of the substrate 2 is regenerated or discarded as a defective product.
 ここで、膜付き基板とは、図1のステップS6以降に得られる、少なくとも多層反射膜3が形成された基板2を意味する。なお、ステップS6~S7がステップS5の前に実施される場合は、基板2に導電膜5が形成されていなくてもよい。すなわち、膜付き基板は、多層反射膜3が形成された基板2、多層反射膜3と吸収膜4とが形成された基板2、導電膜5と多層反射膜3とが形成された基板2、導電膜5と多層反射膜3と吸収膜4とが形成された基板2(反射型マスクブランク1)などである。また、膜付き基板は、導電膜5、多層反射膜3および吸収膜4以外にも別の膜を含んでもよく、例えば、上述した保護膜や低反射膜を含んでもよい。さらに、膜付き基板は、開口パターン41が形成された反射型マスクであってもよい。 Here, the film-coated substrate means the substrate 2 on which at least the multilayer reflective film 3 is formed, which is obtained after step S6 in FIG. Note that the conductive film 5 may not be formed on the substrate 2 when steps S6 to S7 are performed before step S5. That is, the film-coated substrate includes a substrate 2 on which the multilayer reflective film 3 is formed, a substrate 2 on which the multilayer reflective film 3 and the absorption film 4 are formed, a substrate 2 on which the conductive film 5 and the multilayer reflective film 3 are formed, A substrate 2 (reflective mask blank 1) on which a conductive film 5, a multilayer reflective film 3, and an absorbing film 4 are formed. In addition, the film-coated substrate may include other films besides the conductive film 5, the multilayer reflective film 3, and the absorbing film 4, and may include, for example, the protective film and the low-reflection film described above. Furthermore, the film-coated substrate may be a reflective mask with opening patterns 41 formed thereon.
 本実施形態では、膜付き基板の基板2から少なくとも多層反射膜3を剥離して、基板2の第2主表面22を再生するために、膜付き基板を薬液と接触させる。このとき、膜付き基板が多層反射膜3の上に他の膜を含む場合は、その膜をも同時に剥離する必要がある。また、膜付き基板が導電膜5を含む場合は、多層反射膜3と同時に導電膜5をも剥離することが好ましいが、同時に導電膜5をも剥離することができないときは、本発明に係る薬液とは異なる薬液を用いる等、別の方法によって導電膜5を剥離してもよい。 In this embodiment, the film-coated substrate is brought into contact with a chemical solution in order to peel off at least the multilayer reflective film 3 from the substrate 2 of the film-coated substrate and regenerate the second main surface 22 of the substrate 2 . At this time, if the film-coated substrate includes another film on the multilayer reflective film 3, that film must also be peeled off at the same time. When the film-coated substrate includes the conductive film 5, it is preferable to peel off the conductive film 5 at the same time as the multilayer reflective film 3. The conductive film 5 may be peeled off by another method such as using a chemical solution different from the chemical solution.
 膜付き基板を薬液と接触させる方法としては、特に限定されないが、例えば処理槽に溜めた薬液に膜付き基板を浸漬する方法(以下、浸漬法という。)、または膜付き基板の表面に薬液を噴き付ける方法が用いられる。これらの方法のうち、浸漬法は、生産性やコストの観点からより好ましい。浸漬法の場合は、薬液を繰り返し使用することが容易である。性能が低下した薬液は、交換されることが好ましい。 The method of bringing the film-coated substrate into contact with the chemical solution is not particularly limited, but for example, a method of immersing the film-coated substrate in a chemical solution stored in a treatment tank (hereinafter referred to as an immersion method), or a method of applying the chemical solution to the surface of the film-coated substrate. A spray method is used. Among these methods, the immersion method is more preferable from the viewpoint of productivity and cost. In the case of the immersion method, it is easy to repeatedly use the chemical solution. It is preferable to replace the chemical solution whose performance has deteriorated.
 膜付き基板と薬液を接触させる際の処理時間は、生産性の観点から、短ければ短いほど好ましい。処理時間は、膜付き基板の基板2から多層反射膜3を剥離するのに要する時間(以下、Tという。)よりも長く設定される。薬液によって多層反射膜3と同時に導電膜5をも剥離することができる場合は、処理時間は、Tおよび導電膜5を剥離するのに要する時間(以下、Tという。)のうちいずれか長い方よりも長く設定される。TおよびTはいずれも、短ければ短いほど、処理時間が短くなるので好ましい。 From the viewpoint of productivity, the shorter the processing time when the film-coated substrate is brought into contact with the chemical solution, the better. The processing time is set to be longer than the time (hereinafter referred to as T3 ) required for peeling off the multilayer reflective film 3 from the film-coated substrate 2 . When the conductive film 5 can be peeled off at the same time as the multilayer reflective film 3 by the chemical solution, the processing time is either T3 or the time required for peeling the conductive film 5 (hereinafter referred to as T5 ). It is set longer than the longer one. For both T3 and T5 , the shorter the better, the shorter the treatment time.
 膜付き基板と薬液を接触させる際の温度は、20℃~150℃であり、40℃~100℃が好ましい。温度が20℃以上であれば、処理時間を十分に短くすることができる。また、温度が150℃以下であれば、薬液により基板2が過度にダメージを受ける恐れが少ない。 The temperature at which the film-coated substrate and the chemical are brought into contact is 20°C to 150°C, preferably 40°C to 100°C. If the temperature is 20° C. or higher, the treatment time can be sufficiently shortened. Also, if the temperature is 150° C. or lower, the substrate 2 is less likely to be excessively damaged by the chemical solution.
 再生された基板2は、少なくとも図1のステップS6~S7に再び供され、反射型マスクブランク1が製造される。このとき、基板2の状態により、必要に応じてステップS1~S5を実施してもよい。例えば、全ての膜が剥離された基板2において、平坦度が十分でない場合は、所望の平坦度とするために、局所研磨や仕上げ研磨を実施した後に、膜を形成してもよい。 The recycled substrate 2 is subjected again to at least steps S6 to S7 of FIG. 1 to produce a reflective mask blank 1. At this time, depending on the state of the substrate 2, steps S1 to S5 may be performed as necessary. For example, if the flatness of the substrate 2 from which all the films have been removed is not sufficient, the film may be formed after performing local polishing or finish polishing in order to obtain the desired flatness.
 また、以上のように基板2を再生して反射型マスクブランク1を製造したときに、洗浄によっても除去できない欠陥が再度発生した場合は、そのような欠陥が発生しなくなるまで、以上の操作を繰り返し行ってもよい。 Further, when the substrate 2 is recycled to manufacture the reflective mask blank 1 as described above, if a defect that cannot be removed by cleaning occurs again, the above operations are repeated until such a defect no longer occurs. You can repeat.
 (薬液)
 続いて、本実施形態に係る薬液について、詳細に説明する。
(Chemical solution)
Next, the chemical solution according to this embodiment will be described in detail.
 薬液は、溶媒と添加剤とを含む。添加剤は、少なくともpH調整剤および酸化剤を含み、さらに任意添加物を含んでもよい。任意添加物とは、例えば特定金属類またはキレート剤である。 A chemical solution contains a solvent and an additive. Additives include at least a pH adjuster and an oxidizing agent, and may further include optional additives. Optional additives are, for example, specific metals or chelating agents.
 溶媒は、水または有機溶媒であり、水が好ましい。水としては、蒸留水、イオン交換水、超純水が好ましい。 The solvent is water or an organic solvent, preferably water. Distilled water, ion-exchanged water, and ultrapure water are preferable as water.
 pH調整剤は、有機塩基または無機塩基であり、無機塩基が好ましい。pH調整剤が無機塩基であれば、膜付き基板がTaを含む導電膜5を有する場合に導電膜5を剥離することができる。さらに、無機塩基としては、例えば、アルカリ金属またはアルカリ土類金属の水酸化物が挙げられる。これらの中でも、塩基性度および水溶性の観点から水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)または水酸化ルビジウム(RbOH)が好ましく、コストの観点からNaOHまたはKOHがより好ましく、Tを短縮することができる点からKOHがさらに好ましい。 The pH adjuster is an organic base or an inorganic base, preferably an inorganic base. If the pH adjuster is an inorganic base, the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Ta. Inorganic bases further include, for example, hydroxides of alkali metals or alkaline earth metals. Among these, sodium hydroxide (NaOH), potassium hydroxide (KOH) or rubidium hydroxide (RbOH) is preferable from the viewpoint of basicity and water solubility, NaOH or KOH is more preferable from the viewpoint of cost, and T5 KOH is more preferable because it can be shortened.
 pH調整剤の濃度は、薬液のpHが所望の値となるような範囲に調整される。薬液のpHは、10~16であり、12~15が好ましく、13~15がより好ましい。pHが10以上であれば、多層反射膜3がSiおよびMoを含む場合に、Tを十分に短くすることができる。また、pHが16以下であれば、反射型マスクブランク1がRuを含む保護膜を有する場合に、保護膜を十分に短い時間で剥離することができる。 The concentration of the pH adjuster is adjusted within a range such that the pH of the chemical solution becomes a desired value. The pH of the chemical solution is 10-16, preferably 12-15, more preferably 13-15. If the pH is 10 or more, T3 can be sufficiently shortened when the multilayer reflective film 3 contains Si and Mo. Moreover, if the pH is 16 or less, when the reflective mask blank 1 has a protective film containing Ru, the protective film can be peeled off in a sufficiently short time.
 酸化剤は、少なくとも多層反射膜3を剥離する目的で含まれる。従って、酸化剤は、少なくとも多層反射膜3を構成する成分の酸化還元電位よりも高い酸化還元電位を有する。例えば、多層反射膜3がSiおよびMoを含むときは、酸化剤の標準電極電位が0.8V~2.0Vであることが好ましく、具体的には、メタ過ヨウ素酸(HIO)、メタ過ヨウ素酸塩、オルト過ヨウ素酸(HIO)、オルト過ヨウ素酸塩、過マンガン酸(HMnO)、過マンガン酸塩、およびN-メチルモルホリンN-オキシド(略:NMO)からなる群から選択される少なくとも1つである。 The oxidizing agent is included for the purpose of exfoliating at least the multilayer reflective film 3 . Therefore, the oxidizing agent has an oxidation-reduction potential higher than that of at least the components forming the multilayer reflective film 3 . For example, when the multilayer reflective film 3 contains Si and Mo, the standard electrode potential of the oxidizing agent is preferably 0.8V to 2.0V . consisting of periodate, orthoperiodic acid (H 5 IO 6 ), orthoperiodate, permanganate (HMnO 4 ), permanganate, and N-methylmorpholine N-oxide (abbreviation: NMO) At least one selected from the group.
 上記の酸化剤の中でも、Tを短縮することができる点からメタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸、オルト過ヨウ素酸塩、過マンガン酸または過マンガン酸塩が好ましく、pH10~16においても高い活性を示し、かつ副生成物が水溶性であることから、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸またはオルト過ヨウ素酸塩がより好ましい。また、膜付き基板がCrを含む導電膜5を有する場合には導電膜5を剥離できる点から、過マンガン酸または過マンガン酸塩も好ましい。 Among the above oxidizing agents, metaperiodic acid, metaperiodate, orthoperiodic acid, orthoperiodate, permanganic acid, or permanganate is preferable because T3 can be shortened. Metaperiodic acid, metaperiodate, orthoperiodic acid, or orthoperiodate is more preferred because it exhibits high activity even at pH 10 to 16 and the by-product is water-soluble. Permanganic acid or permanganate is also preferable from the point that the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Cr.
 また、薬液が酸化剤を含むとき、膜付き基板がTaを含む導電膜5を有する場合にTを短縮することができる。 Further, when the chemical solution contains an oxidizing agent, T5 can be shortened when the film-coated substrate has the conductive film 5 containing Ta.
 酸化剤の濃度は、薬液に対して0.1ppm~40%であり、好ましくは0.1%~10%であり、より好ましくは0.1%~2%である。酸化剤の濃度が0.1ppm以上であれば、多層反射膜3を剥離することができる。また、酸化剤の濃度が40%以下であれば、難溶性の副生成物が析出する恐れが小さい。 The concentration of the oxidizing agent is 0.1 ppm to 40%, preferably 0.1% to 10%, more preferably 0.1% to 2% relative to the chemical solution. If the concentration of the oxidizing agent is 0.1 ppm or more, the multilayer reflective film 3 can be peeled off. In addition, if the concentration of the oxidizing agent is 40% or less, there is little risk of precipitation of sparingly soluble by-products.
 任意添加物は、例えば特定金属類またはキレート剤である。 Optional additives are, for example, specific metals or chelating agents.
 特定金属類とは、Cr(VI)の酸化還元電位よりも高い酸化還元電位を有する金属およびそのイオンからなる群から選択される少なくとも1つである。このような金属の具体例としては、Ruまたはセリウム(Ce)が挙げられる。薬液が特定金属類を含むとき、膜付き基板がCrを含む導電膜5を有する場合に導電膜5を剥離できる。なお、RuイオンまたはCeイオンは、薬液を調製する際に加えられてもよく、剥離された膜(例えば、Ruを含む保護膜)から溶出したものであってもよい。 The specific metals are at least one selected from the group consisting of metals having a higher redox potential than that of Cr(VI) and ions thereof. Specific examples of such metals include Ru and cerium (Ce). When the chemical solution contains specific metals, the conductive film 5 can be peeled off when the film-coated substrate has the conductive film 5 containing Cr. Note that the Ru ions or Ce ions may be added when the chemical solution is prepared, or may be eluted from a peeled film (for example, a protective film containing Ru).
 以下に、特定金属類により、Crを含む導電膜5が剥離されるメカニズムを、Ruを例にして説明する。薬液中に添加されたRuまたはRuイオンは、薬液中の酸化剤によりRu(VII)またはRu(VIII)まで酸化され、RuO またはRuOの状態となる。これらのRu酸化物イオンが、導電膜5に含まれるCrを酸化し、水溶性のCrO 2-とすることで、Crを含む導電膜5が剥離される。 The mechanism by which the conductive film 5 containing Cr is peeled off by specific metals will be described below using Ru as an example. Ru or Ru ions added to the chemical solution are oxidized to Ru(VII) or Ru(VIII) by the oxidizing agent in the chemical solution to become RuO 4 or RuO 4 . These Ru oxide ions oxidize Cr contained in the conductive film 5 to form water-soluble CrO 4 2− , thereby peeling off the conductive film 5 containing Cr.
 特定金属類の濃度は、酸化剤に対して0.0001当量~10当量であり、好ましくは0.001当量~1当量であり、より好ましくは0.01当量~0.1当量である。特定金属類の濃度が0.0001当量以上であれば、Crを含む導電膜5の剥離が十分に進行する。また、特定金属類の濃度が10当量以下であれば、基板ダメージを十分に抑制することができる。 The concentration of the specific metals is 0.0001 to 10 equivalents, preferably 0.001 to 1 equivalent, more preferably 0.01 to 0.1 equivalents relative to the oxidizing agent. When the concentration of the specific metals is 0.0001 equivalent or more, peeling of the conductive film 5 containing Cr proceeds sufficiently. Also, if the concentration of the specific metals is 10 equivalents or less, substrate damage can be sufficiently suppressed.
 キレート剤は、アミノカルボン酸系キレート剤、ヒドロキシ酸系キレート剤またはホスホン酸系キレート剤である。アミノカルボン酸系キレート剤としては、例えばエチレンジアミン四酢酸(略:EDTA)、トリエチレンテトラミン六酢酸(略:TTHA)、ニトリロトリスメチレンホスホン酸(略:NTPO)またはN,N-ビス(2-ヒドロキシエチル)グリシン(略:Bicine)が挙げられる。ヒドロキシ酸キレート剤は、例えば酒石酸が挙げられる。ホスホン酸系キレート剤としては、例えばヒドロキシエチリデンジホスホン酸(略:HEDP)またはホスホノ酢酸が挙げられる。薬液が上記のキレート剤を含むとき、処理時間を短縮することができる。 The chelating agent is an aminocarboxylic acid-based chelating agent, a hydroxy acid-based chelating agent, or a phosphonic acid-based chelating agent. Examples of aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid (abbreviation: EDTA), triethylenetetraminehexaacetic acid (abbreviation: TTHA), nitrilotrismethylene phosphonic acid (abbreviation: NTPO) or N,N-bis(2-hydroxy Ethyl)glycine (abbreviation: Bicine) can be mentioned. Hydroxyacid chelating agents include, for example, tartaric acid. Examples of phosphonic acid-based chelating agents include hydroxyethylidene diphosphonic acid (abbreviation: HEDP) and phosphonoacetic acid. When the chemical solution contains the chelating agent, the treatment time can be shortened.
 上記のキレート剤の中でも、処理時間がより短縮される点からEDTAまたはホスホノ酢酸が、基板2へのダメージの少なさの観点からTTHAが、より好ましい。 Among the above chelating agents, EDTA or phosphonoacetic acid is more preferable from the viewpoint of shortening the processing time, and TTHA is more preferable from the viewpoint of less damage to the substrate 2 .
 キレート剤の濃度は、薬液に対して0.01%~10%であり、好ましくは0.1%~5%であり、より好ましくは0.5%~2%である。キレート剤の濃度が0.01%以上であれば、処理時間を有意に短縮することができる。また、キレート剤の濃度が10%以下であれば、難溶性の副生成物が析出する恐れが小さい。 The concentration of the chelating agent is 0.01% to 10%, preferably 0.1% to 5%, more preferably 0.5% to 2% relative to the drug solution. If the concentration of the chelating agent is 0.01% or more, the treatment time can be significantly shortened. In addition, if the concentration of the chelating agent is 10% or less, there is little risk of precipitation of sparingly soluble by-products.
 以上の添加剤を溶媒と混合し、薬液を調製する。このとき、添加剤は、溶媒に溶け、かつ難溶性の副生成物が析出しないように選択される。pH調整剤および酸化剤は、それぞれ1種類以上含まれる。特定金属類は、含まれなくてもよく、1種類以上含まれてもよい。キレート剤は、含まれなくてもよく、1種類以上含まれてもよい。 The above additives are mixed with a solvent to prepare a chemical solution. At this time, the additive is selected so that it is soluble in the solvent and does not deposit sparingly soluble by-products. One or more types of each of the pH adjuster and the oxidizing agent are included. The specific metals may not be contained, or one or more kinds may be contained. A chelating agent may be absent or may be included in one or more types.
 次に、表1を参照して、実験データについて説明する。なお、表1において、例1~23は実施例であり、例24および25は比較例である。 Next, the experimental data will be described with reference to Table 1. In Table 1, Examples 1 to 23 are examples, and Examples 24 and 25 are comparative examples.
Figure JPOXMLDOC01-appb-T000001
 (実験方法)
 TiOを含有する石英ガラスからなる基板2の第1主表面21に、スパッタリング法により導電膜5を形成した。導電膜5は、CrN膜またはTaを主成分とする膜(表1中、Ta系と表記する。)であった。続いて、基板2の第2主表面22に、イオンビームスパッタリング法により多層反射膜3を形成した。多層反射膜3は、約4nmのSi膜と約3nmのMo膜とを交互に40周期積層した後、最後に約4nmのSi膜を積層したものであった。続いて、多層反射膜3の上に、スパッタリング法によりRuからなる保護膜を約2.5nm形成した。以上により、膜付き基板を得た。この膜付き基板から、1辺の長さが約10mmの小片を切り出し、試験片とした。
Figure JPOXMLDOC01-appb-T000001
(experimental method)
Conductive film 5 was formed by sputtering on first main surface 21 of substrate 2 made of quartz glass containing TiO 2 . The conductive film 5 was a CrN film or a film containing Ta as a main component (denoted as Ta-based in Table 1). Subsequently, the multilayer reflective film 3 was formed on the second main surface 22 of the substrate 2 by ion beam sputtering. The multilayer reflective film 3 was formed by alternately laminating Si films of about 4 nm and Mo films of about 3 nm for 40 cycles, and finally laminating Si films of about 4 nm. Subsequently, on the multilayer reflective film 3, a protective film made of Ru was formed to a thickness of about 2.5 nm by sputtering. As described above, a film-coated substrate was obtained. A small piece having a side length of about 10 mm was cut out from this film-coated substrate and used as a test piece.
 次に、薬液を調製し、容器に満たした後、この容器をスターラー機能付きホットプレートに設置し、約30分間加熱して所定の温度に保たれるようにした。続いて、容器に試験片を投入し、薬液を攪拌しながら最大で600分浸漬し、その後試験片を取り出した。ただし、多層反射膜3および導電膜5の全ての剥離が確認された場合は、その時点で試験片を取り出した。多層反射膜3または導電膜5の剥離は、試験片を取り出す前は目視にて確認し、試験片を取り出した後にも、蛍光X線分析(リガク社製:ZSX PrimusII)を用いて膜成分が残存していないことを再度確認した。なお、多層反射膜3が剥離されたときは、保護膜も同時に剥離されていた。 Next, after preparing the chemical solution and filling it in a container, this container was placed on a hot plate with a stirrer function and heated for about 30 minutes to keep it at a predetermined temperature. Subsequently, the test piece was put into a container and immersed in the chemical solution for up to 600 minutes while being stirred, and then the test piece was taken out. However, when peeling of all the multilayer reflective film 3 and the conductive film 5 was confirmed, the test piece was taken out at that time. Detachment of the multilayer reflective film 3 or the conductive film 5 was visually confirmed before taking out the test piece, and after taking out the test piece, the film components were determined using a fluorescent X-ray analysis (manufactured by Rigaku: ZSX Primus II). I checked again to make sure it wasn't there. Incidentally, when the multilayer reflective film 3 was peeled off, the protective film was also peeled off at the same time.
 (薬液)
 溶媒として、超純水を用いた。
(Chemical solution)
Ultrapure water was used as a solvent.
 pH調整剤として、例1ではNaOHを、例2~25ではKOHをそれぞれ所定の濃度として用いた。 As a pH adjuster, NaOH was used in Example 1, and KOH was used in Examples 2 to 25 at a predetermined concentration.
 酸化剤として、例1~14、18および19ではメタ過ヨウ素酸ナトリウム(NaIO)を、例15~17および20ではHIOを、例21および22では過マンガン酸カリウム(KMnO)を、例23ではNMOを、例24および25では過酸化水素(H)をそれぞれ所定の濃度として用いた。 As the oxidizing agent, sodium metaperiodate (NaIO 4 ) in Examples 1-14, 18 and 19, H 5 IO 6 in Examples 15-17 and 20, and potassium permanganate (KMnO 4 ) in Examples 21 and 22. , NMO in Example 23, and hydrogen peroxide (H 2 O 2 ) in Examples 24 and 25, respectively, at given concentrations.
 特定金属類として、例6および7ではRuClを、例8ではRu粉末を、それぞれ酸化剤に対して所定の当量だけ添加した。 As specific metals, RuCl 3 was added in Examples 6 and 7, and Ru powder was added in Example 8 in a predetermined equivalent amount to the oxidizing agent.
 キレート剤として、例9ではEDTAを、例10ではTTHAを、例11ではNTPOを、例12ではBicineを、例13では酒石酸を、例14ではホスホノ酢酸をそれぞれ0.1%添加した。 As a chelating agent, 0.1% of EDTA was added in Example 9, TTHA in Example 10, NTPO in Example 11, Bicine in Example 12, tartaric acid in Example 13, and phosphonoacetic acid in Example 14, respectively.
 なお、例1~25の薬液のpHは、ポータブル型pH・ORP・イオンメータ(堀場アドバンストテクノ社製:D-73)を用いて測定した。 The pH of the chemical solutions of Examples 1 to 25 was measured using a portable pH/ORP/ion meter (manufactured by Horiba Advanced Techno Co., Ltd.: D-73).
 (実験結果)
 表1中、容器に試験片を投入してから多層反射膜3の剥離を目視で確認するまでの時間(T)が30分以内のときを「A」、30分超45分以下のときを「B」、45分超60分以下のときを「C」、60分超120分以下のときを「D」、120分超600分未満のときを「E」とし、また、600分時点で剥離していなかったときを「×」と表すこととする。なお、多層反射膜3が剥離されたときは、保護膜も同時に剥離されていたので、保護膜の剥離に要した時間は評価していない。
(Experimental result)
In Table 1, "A" indicates that the time (T 3 ) from placing the test piece in the container to visually confirming peeling of the multilayer reflective film 3 is within 30 minutes, and "A" is more than 30 minutes and 45 minutes or less. "B" when more than 45 minutes and 60 minutes or less, "C" when more than 60 minutes and 120 minutes or less, "E" when more than 120 minutes and less than 600 minutes, and at 600 minutes When there was no peeling in , it is represented as "x". When the multilayer reflective film 3 was peeled off, the protective film was also peeled off at the same time, so the time required for peeling off the protective film was not evaluated.
 表1中、容器に試験片を投入してから導電膜5の剥離を目視で確認するまでの時間(T)については、Tと同様に評価した。 In Table 1, the time (T 5 ) from when the test piece was put into the container until the peeling of the conductive film 5 was visually confirmed was evaluated in the same manner as T 3 .
 また、表1中、原子間力顕微鏡(Bruker社製:Dimension Icon)によって測定した、基板2の第2主表面22の二乗平均粗さ(RMS)が実験後に0.15nm以下であったときを「◎」、0.15nm超0.5nm以下であったときを「○」と表すことで、基板ダメージを評価した。RMSが0.5nm以下であれば、基板2を再生した後に再研磨する際の工程負荷を十分に軽減することができる。 Also, in Table 1, when the root-mean-square roughness (RMS) of the second main surface 22 of the substrate 2 measured by an atomic force microscope (manufactured by Bruker: Dimension Icon) was 0.15 nm or less after the experiment. Substrate damage was evaluated by expressing “⊚” and “◯” when the thickness was more than 0.15 nm and 0.5 nm or less. If the RMS is 0.5 nm or less, it is possible to sufficiently reduce the process load when the substrate 2 is re-polished after being recycled.
 例1~23の結果が示すように、本発明に係る薬液により、少なくとも多層反射膜3を剥離することができた。 As shown by the results of Examples 1 to 23, at least the multilayer reflective film 3 could be peeled off with the chemical solution according to the present invention.
 例1および例2より、pH調整剤としてKOHを用いた方が、NaOHの場合よりもTを短縮できることが明らかとなった。 From Examples 1 and 2, it became clear that T3 can be shortened by using KOH as a pH adjuster than by using NaOH.
 例3と例6~8との比較より、特定金属類としてRuまたはRuイオンを添加すると、基板ダメージを抑制したまま、多層反射膜3に加えて、CrNからなる導電膜5をも剥離できることが明らかとなった。 From the comparison between Example 3 and Examples 6 to 8, when Ru or Ru ions are added as specific metals, not only the multilayer reflective film 3 but also the conductive film 5 made of CrN can be peeled off while suppressing damage to the substrate. It became clear.
 例2と例9~例14との比較により、キレート剤を添加すると、Tを短縮できることが明らかとなった。 A comparison of Example 2 with Examples 9-14 reveals that the addition of a chelating agent can shorten T3 .
 一方で、例24のように、酸化剤がHであるときは、600分経過しても多層反射膜3を剥離することができなかった。また、例25のように、例24の薬液にキレート剤を加えると多層反射膜3を剥離することができたものの、例1~例22に比較して剥離に要した時間が長かった。また、例23は、例25と比較してTは同等であったが、基板ダメージの点で優れていた。 On the other hand, when the oxidizing agent was H 2 O 2 as in Example 24, the multilayer reflective film 3 could not be peeled off even after 600 minutes. Further, as in Example 25, when the chelating agent was added to the chemical solution of Example 24, the multilayer reflective film 3 could be peeled off, but the time required for peeling was longer than in Examples 1 to 22. In addition, Example 23 was equivalent to Example 25 in T3 , but was superior in terms of substrate damage.
 また、ルテニウム系、タンタル系、ニオブ系またはホウ素系の吸収膜を成膜したSiウエハの試験片についても上記実験方法にて膜の剥離を試みたところ、これらの吸収膜についても剥離できることが明らかとなった。ガラス基板上の多層反射膜の最上層はケイ素を含有する膜であるため、この結果から、ガラス基板上に形成された多層反射膜上の、ルテニウム系、タンタル系、ニオブ系またはホウ素系の吸収膜も剥離できることがわかった。 In addition, when an attempt was made to remove the film from a Si wafer test piece with a ruthenium-, tantalum-, niobium-, or boron-based absorbing film by the above-described experimental method, it was found that these absorbing films could also be peeled off. became. Since the top layer of the multilayer reflective film on the glass substrate is a silicon-containing film, this result suggests that the ruthenium-, tantalum-, niobium-, or boron-based absorption on the multilayer reflective film formed on the glass substrate. It was found that the film can also be peeled off.
 (参考実験)
 TiOを含有する石英ガラスからなる基板2の第2主表面22に、スパッタリング法により多層反射膜3を形成した。多層反射膜3は、約4nmのSi膜と約3nmのMo膜とを交互に40周期積層した後、最後に約4nmのSi膜を積層したものであった。続いて、多層反射膜3の上に、スパッタリング法によりRuからなる保護膜を約2.5nm形成した。以上により、膜付き基板を得た。
(reference experiment)
A multilayer reflective film 3 was formed by a sputtering method on the second main surface 22 of the substrate 2 made of quartz glass containing TiO 2 . The multilayer reflective film 3 was formed by alternately laminating Si films of about 4 nm and Mo films of about 3 nm for 40 cycles, and finally laminating Si films of about 4 nm. Subsequently, on the multilayer reflective film 3, a protective film made of Ru was formed to a thickness of about 2.5 nm by sputtering. As described above, a film-coated substrate was obtained.
 次に、pH調整剤として22.4%のKOH、酸化剤として1%のNaIOを用いた薬液1L(リットル)で満たされた反応槽を、60~65℃に保った後、反応槽を攪拌させながら上記の膜付き基板を投入した。多層反射膜3の剥離を目視で確認した時点で膜付き基板を取り出し、同様に作製した別の膜付き基板を新たに投入した。これを連続で8回行った。 Next, the reaction vessel filled with 1 L (liter) of chemical solution using 22.4% KOH as a pH adjuster and 1% NaIO 4 as an oxidizing agent was kept at 60-65°C, and then the reaction vessel was The film-coated substrate was added while stirring. When peeling of the multilayer reflective film 3 was visually confirmed, the film-coated substrate was taken out, and another film-coated substrate prepared in the same manner was newly introduced. This was repeated 8 times in succession.
 以上の参考実験の結果を図6に示す。図1より、膜付き基板の投入回数が増えるほど、Tはわずかに増加する傾向が見られたが、薬液を交換しなければいけないほどの変化ではなかった。このことから、本発明に係る薬液は、十分に繰り返し使用できることが示唆された。 FIG. 6 shows the results of the above reference experiment. As shown in FIG. 1, T3 tended to increase slightly as the number of film-coated substrates increased, but the change was not such that the chemical solution had to be replaced. This suggests that the chemical solution according to the present invention can be sufficiently repeatedly used.
 以上、本発明に係る薬液、膜付き基板の再生方法、膜付き基板の製造方法、および反射型マスクブランクの製造方法について説明したが、本発明は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 The chemical solution, the method for regenerating a substrate with a film, the method for manufacturing a substrate with a film, and the method for manufacturing a reflective mask blank according to the present invention have been described above, but the present invention is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 本出願は、2021年6月4日に日本国特許庁に出願した特願2021-094724号に基づく優先権を主張するものであり、特願2021-094724号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-094724 filed with the Japan Patent Office on June 4, 2021, and the entire contents of Japanese Patent Application No. 2021-094724 are incorporated into this application. .
1  反射型マスクブランク
2  基板
3  多層反射膜
4  吸収膜
5  導電膜
41 開口パターン
REFERENCE SIGNS LIST 1 reflective mask blank 2 substrate 3 multilayer reflective film 4 absorbing film 5 conductive film 41 aperture pattern

Claims (13)

  1.  ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を有する膜が形成された膜付き基板のガラス基板から、少なくとも前記多層反射膜を剥離するために用いられる薬液であって、
     pH調整剤と、
     メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸、オルト過ヨウ素酸塩、過マンガン酸、過マンガン酸塩、およびN-メチルモルホリンN-オキシドからなる群から選択される少なくとも1つの酸化剤と、を含む、薬液。
    A chemical solution used for peeling at least the multilayer reflective film from a glass substrate of a film-coated substrate having a film having a multilayer reflective film containing silicon and molybdenum formed on one surface of the glass substrate,
    a pH adjuster;
    at least one oxidation selected from the group consisting of metaperiodic acid, metaperiodate, orthoperiodic acid, orthoperiodate, permanganate, permanganate, and N-methylmorpholine N-oxide A drug solution, including an agent.
  2.  pHが10以上16以下である、請求項1に記載の薬液。 The chemical solution according to claim 1, which has a pH of 10 or more and 16 or less.
  3.  前記pH調整剤は、水酸化ナトリウムまたは水酸化カリウムである、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the pH adjuster is sodium hydroxide or potassium hydroxide.
  4.  前記酸化剤は、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸またはオルト過ヨウ素酸塩である、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the oxidizing agent is metaperiodic acid, metaperiodate, orthoperiodic acid, or orthoperiodate.
  5.  前記酸化剤は、過マンガン酸または過マンガン酸塩である、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the oxidizing agent is permanganic acid or permanganate.
  6.  クロム(VI)の酸化還元電位よりも高い酸化還元電位を有する金属およびそのイオンからなる群から選択される少なくとも1つを、前記酸化剤に対して0.0001モル当量~10モル当量さらに含む、請求項1に記載の薬液。 0.0001 molar equivalents to 10 molar equivalents of at least one selected from the group consisting of metals having a redox potential higher than that of chromium (VI) and ions thereof, with respect to the oxidizing agent; The chemical solution according to claim 1.
  7.  キレート剤としてアミノカルボン酸系キレート剤、ヒドロキシ酸系キレート剤またはホスホン酸系キレート剤をさらに含む、請求項1に記載の薬液。 The drug solution according to claim 1, further comprising an aminocarboxylic acid-based chelating agent, a hydroxy acid-based chelating agent, or a phosphonic acid-based chelating agent as a chelating agent.
  8.  ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を有する膜が形成された膜付き基板を、pH調整剤と、メタ過ヨウ素酸、メタ過ヨウ素酸塩、オルト過ヨウ素酸、オルト過ヨウ素酸塩、過マンガン酸、過マンガン酸塩、およびN-メチルモルホリンN-オキシドからなる群から選択される少なくとも1つの酸化剤と、を含む薬液に接触させて、前記ガラス基板から少なくとも前記多層反射膜を剥離し、前記ガラス基板の前記多層反射膜が形成されていた面を再生することを特徴とする、膜付き基板の再生方法。 A film-coated substrate having a film having a multilayer reflective film containing silicon and molybdenum on one surface of a glass substrate was treated with a pH adjuster, metaperiodic acid, metaperiodate, orthoperiodic acid, and orthoperiodic acid. and at least one oxidizing agent selected from the group consisting of periodate, permanganic acid, permanganate, and N-methylmorpholine N-oxide to remove at least the A method for regenerating a film-coated substrate, comprising peeling off the multilayer reflective film and regenerating the surface of the glass substrate on which the multilayer reflective film was formed.
  9.  前記膜付き基板は、前記多層反射膜の上に、ルテニウムを含有する保護膜を有する、請求項8に記載の膜付き基板の再生方法。 The method for recycling a film-coated substrate according to claim 8, wherein the film-coated substrate has a protective film containing ruthenium on the multilayer reflective film.
  10.  前記膜付き基板は、前記多層反射膜の上に、ルテニウム、タンタル、ニオブおよびホウ素からなる群から選択される少なくとも1つを含有する吸収膜を有する、請求項8に記載の膜付き基板の再生方法。 9. The regeneration of a film-coated substrate according to claim 8, wherein said film-coated substrate has an absorbing film containing at least one selected from the group consisting of ruthenium, tantalum, niobium and boron on said multilayer reflective film. Method.
  11.  前記膜付き基板は、前記多層反射膜が形成された面とは反対の面に、クロムまたはタンタルを含有する導電膜を有する、請求項8に記載の膜付き基板の再生方法。 The method for recycling a film-coated substrate according to claim 8, wherein the film-coated substrate has a conductive film containing chromium or tantalum on the surface opposite to the surface on which the multilayer reflective film is formed.
  12.  請求項8~11のいずれか1項に記載の膜付き基板の再生方法により再生された前記ガラス基板の一方の面に、少なくとも、ケイ素およびモリブデンを含有する多層反射膜を形成することを含む、膜付き基板の製造方法。 Forming a multilayer reflective film containing at least silicon and molybdenum on one surface of the glass substrate regenerated by the method for regenerating a film-coated substrate according to any one of claims 8 to 11, A method for manufacturing a substrate with a film.
  13.  請求項8~11のいずれか1項に記載の膜付き基板の再生方法により再生された前記ガラス基板の一方の面にケイ素およびモリブデンを含有する多層反射膜を形成することと、
     前記多層反射膜の上にルテニウムまたはロジウムを含有する保護膜を形成することと、
     前記保護膜の上にルテニウム、タンタル、クロム、イリジウム、ホウ素、ニオブ、レニウムおよびパラジウムからなる群から選択される少なくとも1つを含有する吸収膜を形成することと、
     前記ガラス基板の前記多層反射膜が形成された面とは反対の面にクロム、タンタルおよびホウ素からなる群から選択される少なくとも1つを含有する導電膜を形成することと、
    を含む、反射型マスクブランクの製造方法。
    forming a multilayer reflective film containing silicon and molybdenum on one surface of the glass substrate recycled by the method for recycling a film-coated substrate according to any one of claims 8 to 11;
    forming a protective film containing ruthenium or rhodium on the multilayer reflective film;
    forming an absorbing film containing at least one selected from the group consisting of ruthenium, tantalum, chromium, iridium, boron, niobium, rhenium and palladium on the protective film;
    forming a conductive film containing at least one selected from the group consisting of chromium, tantalum and boron on the surface of the glass substrate opposite to the surface on which the multilayer reflective film is formed;
    A method of manufacturing a reflective mask blank, comprising:
PCT/JP2022/021397 2021-06-04 2022-05-25 Chemicall agent, method for regenerating substrate with film, method for producing substrate with film, and method for producing reflective mask blank WO2022255186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525753A JPWO2022255186A1 (en) 2021-06-04 2022-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021094724 2021-06-04
JP2021-094724 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255186A1 true WO2022255186A1 (en) 2022-12-08

Family

ID=84323134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021397 WO2022255186A1 (en) 2021-06-04 2022-05-25 Chemicall agent, method for regenerating substrate with film, method for producing substrate with film, and method for producing reflective mask blank

Country Status (2)

Country Link
JP (1) JPWO2022255186A1 (en)
WO (1) WO2022255186A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189174A (en) * 2006-01-16 2007-07-26 Nikon Corp Multilayer-film reflector, method for regenerating same, and exposure apparatus
JP2011127221A (en) * 2009-11-18 2011-06-30 Hoya Corp Method for regenerating substrate, method for producing mask blank, method for producing multilayer reflection film-fitted substrate and method for producing reflection type mask blank
JP2013174012A (en) * 2012-02-02 2013-09-05 Sematech Inc Coating of shield surface in deposition system
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189174A (en) * 2006-01-16 2007-07-26 Nikon Corp Multilayer-film reflector, method for regenerating same, and exposure apparatus
JP2011127221A (en) * 2009-11-18 2011-06-30 Hoya Corp Method for regenerating substrate, method for producing mask blank, method for producing multilayer reflection film-fitted substrate and method for producing reflection type mask blank
JP2013174012A (en) * 2012-02-02 2013-09-05 Sematech Inc Coating of shield surface in deposition system
JP2017181733A (en) * 2016-03-30 2017-10-05 Hoya株式会社 Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Also Published As

Publication number Publication date
JPWO2022255186A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US10295900B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
US10620527B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
US10025176B2 (en) Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, method of manufacturing mask blank substrate, method of manufacturing substrate with reflective film and method of manufacturing semiconductor device
JP5090633B2 (en) Glass substrate polishing method
JP5317092B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
US20140230848A1 (en) Method of cleaning substrate
JP2011240483A (en) Polishing method for glass substrate, and glass substrate
JP2005333124A (en) Low expansion glass substrate for reflection type mask and reflection type mask
US9507254B2 (en) Method of manufacturing substrate with a multilayer reflective film, method of manufacturing a reflective mask blank, substrate with a multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing a semiconductor device
JP4941472B2 (en) Method for removing foreign matter from substrate surface
JP2004098278A (en) Processes for production of glass substrate for mask blank, mask blank, transfer mask, semiconductor device, glass substrate for mask blank, mask blank and transfer mask
JP2019086802A (en) Reflective mask blank and reflective mask
WO2022255186A1 (en) Chemicall agent, method for regenerating substrate with film, method for producing substrate with film, and method for producing reflective mask blank
JP6716316B2 (en) Method for reclaiming substrate with multilayer film, method for producing substrate with multilayer reflective film, and method for producing reflective mask blank
JP2013214095A (en) Method for producing substrate for mask blank, method for producing substrate with multilayer reflective film, method for producing reflective mask blank, and method for producing reflective mask
JP2024076739A (en) Glass substrate for reflective mask blank and method for producing same
JP5306644B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of reflecting mask blank, and manufacturing method of reflecting mask
JP2005191352A (en) Method for reproducing substrate with multilayer reflection film of (w2-w1)/w3 as water absorption coefficient, method for producing substrate with multilayer reflection film and method for manufacturing reflection type mask blank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525753

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815936

Country of ref document: EP

Kind code of ref document: A1