WO2022254803A1 - Physical quantity detection device - Google Patents

Physical quantity detection device Download PDF

Info

Publication number
WO2022254803A1
WO2022254803A1 PCT/JP2022/005443 JP2022005443W WO2022254803A1 WO 2022254803 A1 WO2022254803 A1 WO 2022254803A1 JP 2022005443 W JP2022005443 W JP 2022005443W WO 2022254803 A1 WO2022254803 A1 WO 2022254803A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
detection device
quantity detection
housing
passage
Prior art date
Application number
PCT/JP2022/005443
Other languages
French (fr)
Japanese (ja)
Inventor
暁 上ノ段
望 八文字
瑞紀 伊集院
崇裕 三木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202280027424.XA priority Critical patent/CN117120811A/en
Priority to JP2023525384A priority patent/JPWO2022254803A1/ja
Publication of WO2022254803A1 publication Critical patent/WO2022254803A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present disclosure relates to a physical quantity detection device.
  • a physical quantity detection device that detects the physical quantity of the intake air of an internal combustion engine has been known for some time.
  • a conventional physical quantity detection device described in Patent Document 1 includes a housing that protrudes and is arranged in a main passage through which a gas to be measured flows, a cover that forms a sub passage in cooperation with the housing, and a cover that is housed in the housing. and a sensor element supported by the support and arranged in the sub-passage.
  • the housing has an adhesive groove in which adhesive is applied to adhere the cover.
  • the glue groove has a first glue groove and a second glue groove.
  • the first adhesive groove extends along the proximal end of the housing and extends along the projecting direction of the housing from the proximal end of the housing to a position on the distal side of the housing relative to the support. of adhesive is applied.
  • a second adhesive channel extends along the secondary passageway and is coated with a second adhesive.
  • This conventional physical quantity detection device is characterized in that the first adhesive has a higher Young's modulus than the second adhesive, and the second adhesive has a higher thixotropy than the first adhesive (Patent Reference 1, Abstract, etc.). According to this conventional physical quantity detection device, even when an epoxy adhesive having a low viscosity is used to improve the rigidity of the main body, the sealing property can be improved, and both the rigidity improvement and the sealing property improvement can be achieved.
  • the housing of the physical quantity detection device has, for example, a circuit chamber that accommodates a circuit board.
  • a circuit board On one side of the circuit board, for example, a chip package, a pressure sensor, a humidity sensor, and circuit components are mounted and sealed with a silicone-based sealing member (Patent Document 1, paragraphs 0059 to 0062 ).
  • the other side of the circuit board is fully encapsulated, for example, by epoxy resin that is cast into the circuit chamber of the housing.
  • the coefficient of linear expansion of the resin material forming the housing is different from the coefficient of linear expansion of the casting material such as epoxy resin that is cast into the circuit chamber of the housing.
  • the thermal stress due to the expansion or contraction of the housing and the casting material due to the temperature rise or fall concentrates on a part of the casting material, which may reduce the reliability of the physical quantity detection device.
  • the present disclosure provides a physical quantity detection device capable of relieving thermal stress acting on a casting material cast into a housing and improving reliability.
  • One aspect of the present disclosure includes a housing installed in a main passage through which a gas to be measured flows, a sub-passage provided in the housing to take in part of the gas to be measured from the main passage, and a sub-passage taken into the sub-passage.
  • a sensor unit for detecting a physical quantity of the gas to be measured a circuit board on which the sensor unit is attached; and an inner wall surface of the housing surrounding at least a part of the circuit board. and a casting material that is cast in the circuit chamber to seal the back surface of the circuit board, wherein the housing is attached to the inner wall surface defining the circuit chamber. It has a stress relaxation wall that constitutes at least part of the included non-flat portion, and the stress relaxation wall has a thickness that allows it to elastically deform according to the difference in thermal expansion between the casting material and the housing. It is a physical quantity detection device that
  • FIG. 1 is a system diagram showing an embodiment of a physical quantity detection device according to the present disclosure
  • FIG. FIG. 2 is a front view of the physical quantity detection device of FIG. 1
  • FIG. 3 is a front view of the physical quantity detection device of FIG. 2 before casting a casting material.
  • FIG. 2 is a rear view of the physical quantity detection device of FIG. 1 before the cover is attached;
  • FIG. 2 is a left side view of the physical quantity detection device of FIG. 1;
  • FIG. 2 is a right side view of the physical quantity detection device of FIG. 1; VII-VII cross-sectional view of the physical quantity detection device of FIG. VIII-VIII cross-sectional view of the physical quantity detection device of FIG.
  • FIG. 2 is a front view showing Modification 1 of the physical quantity detection device of FIG.
  • FIG. 2 is a front view showing Modification 2 of the physical quantity detection device of FIG. 1 ;
  • FIG. 11 is a front view showing Modification 3 of the physical quantity detection device of FIG. 1 ;
  • the front view which shows the modification 4 of the physical quantity detection apparatus of FIG. The front view which shows the modification 5 of the physical quantity detection apparatus of FIG.
  • the front view which shows the modification 6 of the physical quantity detection apparatus of FIG. The front view which shows the modification 7 of the physical quantity detection apparatus of FIG.
  • FIG. 1 is a system diagram showing one embodiment of the physical quantity detection device according to the present disclosure.
  • the physical quantity detection device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1 .
  • the internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity detection device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. there is
  • the physical quantity detection device 100 is inserted into the main passage 22 through a mounting hole provided in the passage wall of the intake body, which is the main passage 22, and fixed to the passage wall of the main passage 22, thereby detecting the gas to be measured. 2 is installed in the main passage 22 through which the intake air flows.
  • the physical quantity detection device 100 takes in a part of the measured gas 2 that is taken in through the air cleaner 21 and flows through the main passage 22 , detects the physical quantity of the taken in measured gas 2 , and outputs it to the control device 4 .
  • the physical quantity detection device 100 moves, for example, from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas to be measured 2 flowing through the main passage 22, toward the inside in the radial direction of the main passage 22. Protruding. That is, the direction in which the physical quantity detection device 100 protrudes from the main passage 22 is, for example, the direction perpendicular to the center line 22a of the main passage 22 .
  • the throttle valve 25 is built in, for example, a throttle body 23 arranged upstream of the intake manifold 24 in the flow direction of the gas 2 to be measured.
  • the control device 4 changes the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, for example, to control the flow rate of the intake air flowing into the combustion chamber within the cylinder 11 of the internal combustion engine 10 .
  • a throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4 .
  • the idle air control valve 27 controls the amount of air bypassing the throttle valve 25 .
  • the internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17.
  • the intake air passes through the intake manifold 24 , the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber inside the cylinder 11 via the intake valve 15 .
  • the control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the measured gas 2 input from the physical quantity detection device 100 to inject fuel into the intake air.
  • the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and led to the combustion chamber in the form of an air-fuel mixture.
  • the control device 4 explosively combusts the air-fuel mixture in the combustion chamber by spark ignition of the spark plug 13 to cause the internal combustion engine 10 to generate mechanical energy.
  • the rotation angle sensor 17 detects information about the positions and states of the piston 12, the intake valve 15, and the exhaust valve 16, as well as the rotation speed of the internal combustion engine 10, and outputs the information to the control device 4.
  • the gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged as the exhaust gas 3 from the exhaust pipe to the outside of the vehicle.
  • the oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the result to the control device 4 .
  • the control device 4 controls each part of the internal combustion engine control system 1 based on the physical quantity of the intake air as the measured gas 2 flowing through the main passage 22 detected by the physical quantity detection device 100, for example, the flow rate, temperature, humidity, pressure, etc. to control. Specifically, when the controller 4 controls the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, the flow rate of the intake air as the measured gas 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on the flow rate of the gas 2 to be measured detected by the physical quantity detection device 100, for example. Thereby, the mechanical energy generated by the internal combustion engine 10 is controlled.
  • the control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 100, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13 .
  • control device 4 further determines the fuel based on the temperature of the gas 2 to be measured, the state of change in the degree of opening of the throttle valve 25, the state of change in the rotation speed of the internal combustion engine 10, and the state of the air-fuel ratio of the exhaust gas 3. It finely controls the supply amount and ignition timing.
  • the control device 4 further controls the amount of air bypassing the throttle valve 25 when the internal combustion engine 10 is idling, using an idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 when the engine is idling.
  • the fuel supply amount and ignition timing which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 100 as a main parameter. Therefore, improving the detection accuracy of the physical quantity detection device 100, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
  • the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high.
  • a vehicle equipped with the physical quantity detection device 100 is used in an environment with large changes in temperature and humidity. It is desirable that the physical quantity detection device 100 is also designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
  • the physical quantity detection device 100 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity detection device 100 through the intake pipe. Since the physical quantity detection device 100 detects the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
  • the physical quantity detection device 100 of the present embodiment will be described in more detail below with reference to FIGS. 2 to 8.
  • FIG. 1 the X-axis parallel to the projection direction of the physical quantity detection device 100 in the main passage 22 shown in FIG. 1, the Y-axis parallel to the center line 22a of the main passage 22, A Cartesian coordinate system consisting of the Z-axis parallel to the direction is shown.
  • the measured gas 2 flows along the center line 22a (Y-axis) of the main passage 22.
  • FIG. 2 is a front view of the physical quantity detection device 100 of FIG.
  • FIG. 3 is a front view showing a state in which the gasket 111c and the casting material 110a of the physical quantity detection device 100 of FIG. 2 are removed.
  • 4, 5, and 6 are a rear view, a left side view, and a right side view, respectively, of physical quantity detection device 100 of FIG.
  • FIG. 7 is a cross-sectional view of the physical quantity detection device 100 taken along line VII-VII in FIG.
  • FIG. 8 is a vertical cross-sectional view of the physical quantity detection device 100 taken along line VIII-VIII in FIG. Note that the rear view of FIG. 4 shows a state in which the cover 120 of the physical quantity detection device 100 shown in FIGS. 5 and 6 is removed.
  • the housing 110 is manufactured, for example, by injection molding a synthetic resin material, and arranged in the main passage 22 through which the gas 2 to be measured flows.
  • the cover 120 is, for example, a plate-like member made of metal or synthetic resin.
  • a synthetic resin molded product can be used for the cover 120 .
  • the housing 110 and the cover 120 constitute a housing of the physical quantity detection device 100 .
  • Housing 110 has, for example, flange 111 , connector 112 , and measuring section 113 .
  • the flange 111 has a generally rectangular plate-like shape and has a pair of fixing portions 111a at diagonal corners.
  • the fixed portion 111a has a cylindrical through-hole 111b in the central portion that penetrates the flange 111 and allows a fixing screw to pass therethrough.
  • the measuring section 113 is inserted into the mounting hole provided in the main passage 22 .
  • the fixing screw inserted through the through hole 111 b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22 .
  • the physical quantity detection device 100 is fixed to the main passage 22, which is the intake body.
  • the connector 112 protrudes from the flange 111, is arranged outside the main passage 22, which is the intake body, and is connected to an external device. As shown in FIG. 6, inside the connector 112, a plurality of external terminals 112a and correction terminals 112b are provided. External terminals 112 a include, for example, output terminals for physical quantities such as flow rate and temperature, which are measurement results of physical quantity detection device 100 , and power terminals for supplying DC power for operating physical quantity detection device 100 .
  • the correction terminal 112b is used to measure the physical quantity after the physical quantity detection device 100 is manufactured, obtain the correction value for each physical quantity detection device 100, and store the correction value in the internal memory of the physical quantity detection device 100. In subsequent physical quantity measurement by the physical quantity detection device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
  • the measuring portion 113 extends from a flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to protrude inward in the radial direction of the main passage 22 orthogonal to the center line 22a. .
  • the measurement unit 113 has a generally rectangular parallelepiped flat square shape.
  • the measuring part 113 has a length in the projecting direction (X-axis direction) of the measuring part 113 in the main passage 22, and a width in the main flow direction (Y-axis direction) of the gas 2 to be measured in the main passage 22.
  • the measuring part 113 has a thickness in the projecting direction (X-axis direction) and in the direction (Z-axis direction) orthogonal to the main flow direction (Y-axis direction) of the gas 2 to be measured. In this way, the measuring part 113 has a flat shape along the main flow direction of the gas 2 to be measured, so that the fluid resistance to the gas 2 to be measured can be reduced.
  • the measurement unit 113 has a front surface 113a, a rear surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e.
  • the front surface 113a and the rear surface 113b are larger in area than the other surfaces of the measurement unit 113, and are generally parallel to the projecting direction of the measurement unit 113 (X-axis direction) and the center line 22a of the main passage 22 (Y-axis direction).
  • the side surface 113c on the upstream side and the side surface 113d on the downstream side have an elongated shape with an area smaller than that of the front surface 113a and the rear surface 113b, and are substantially perpendicular to the center line 22a (Y-axis direction) of the main passage 22.
  • the lower surface 113e has a smaller area than the other surfaces of the measuring section 113, is generally parallel to the center line 22a (Y-axis direction) of the main passage 22, and is generally orthogonal to the projecting direction (X-axis direction) of the measuring section 113. .
  • the measurement unit 113 has a sub-passage entrance 114 on the upstream side surface 113c, and has a first outlet 115 and a second outlet 116 on the downstream side surface 113d.
  • the auxiliary passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring section 113 on the tip side of the center of the measuring section 113 in the projecting direction (X-axis direction).
  • the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114 . Therefore, the physical quantity detection device 100 can suppress deterioration in measurement accuracy due to the heat of the internal combustion engine 10 .
  • the external terminals 112a of the connector 112 shown in FIG. 6 are connected to pads of the circuit board 140 via bonding wires 143, for example, as shown in FIG.
  • the circuit board 140 has a protection circuit 144 mounted on the back surface 140b to which the bonding wires 143 are connected, for example. Protection circuit 144 stabilizes the voltage in the circuit and removes noise.
  • These bonding wires 143 and protection circuit 144 are covered and sealed with a casting material 110a, as shown in FIG.
  • the casting material 110 a is cast into the circuit chamber 118 and seals the back surface 140 b of the circuit board 140 .
  • the casting material 110a for example, an epoxy-based sealing material having higher rigidity than silicone gel or a silicone-based sealing material can be used.
  • the coefficient of linear expansion of the casting material 110a and the coefficient of linear expansion of the housing 110 are preferably the same, but actually they are not the same and are different.
  • the linear expansion coefficient of the casting material 110a is, for example, about 4.5 [10 -5 /K] to about 6.5 [10 -5 / K].
  • the coefficient of linear expansion of housing 110 is, for example, from about 6.0 [ ⁇ 10 ⁇ 5 /K] to about 9.5 [ ⁇ 10 ⁇ 5 /K]. That is, the coefficient of linear expansion of the casting material 110a may be smaller than the coefficient of linear expansion of the housing 110, for example.
  • the housing 110 has, as shown in FIG. 4, a recessed secondary passage groove 117 and a recessed circuit chamber 118 on the back surface 113b side of the measuring section 113.
  • the sub-passage groove 117 forms a sub-passage 130 together with the cover 120 by closing the opening with the cover 120 .
  • the sub-passage 130 is provided in the housing 110, takes in part of the gas 2 to be measured from the main passage 22, and makes a detour.
  • the measured gas 2 flowing through the main passage 22 is taken into the sub-passage 130 from the sub-passage inlet 114 opening at the side surface 113c on the upstream side of the measuring section 113, as shown in FIGS. 4 and 5, for example.
  • the sub-passage groove 117 has a first sub-passage groove 117a and a second sub-passage groove 117b.
  • the first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring section 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring section 113. 22a (Y-axis direction).
  • the first sub-passage groove 117a forms a first sub-passage 131 with the cover 120, for example, as shown in FIG.
  • the first sub-passage 131 returns the measured gas 2 taken in from the sub-passage inlet 114 to the main passage 22 through the first outlet 115 .
  • the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring portion 113. . Further, the second sub-passage groove 117b curves in a U-shape so as to be folded back in the opposite direction and extends toward the tip portion of the measuring portion 113 along the projecting direction (X-axis direction) of the measuring portion 113 .
  • the second sub-passage groove 117b is curved in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring portion 113, and is a second outlet that opens on the side surface 113d on the downstream side of the measuring portion 113. 116.
  • second subpassage groove 117 b forms second subpassage 132 with cover 120 by closing the opening with cover 120 .
  • Sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132 .
  • the circuit chamber 118 is provided in a concave shape on the front face 113a and the back face 113b of the measurement section 113 on the base end side of the measurement section 113 connected to the flange 111 .
  • the circuit chamber 118 is located on the base end side of the measuring section 113 relative to the first sub-passage groove 117a of the sub-passage groove 117, and is the second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22. It is provided adjacent to the upstream side of the groove 117b.
  • the circuit chamber 118 is defined by an inner wall surface 119 of the housing 110 surrounding at least a portion of the circuit board 140 to accommodate the circuit board 140, as shown in FIGS.
  • the inner wall surface 119 of the housing 110 surrounds part of the circuit board 140 on the side of the front face 113a of the measurement unit 113 so that part of the back surface 140b of the circuit board 140 is exposed.
  • the inner wall surface 119 of the housing 110 surrounds the entire circuit board 140 so that the substantially entire surface 140a of the circuit board 140 is exposed.
  • the inner wall surface 119 of the housing 110 includes a planar portion 119a and a non-flat portion 119b, as shown in FIGS.
  • the planar portion 119 a is a portion of the inner wall surface 119 of the housing 110 that extends linearly when viewed from the thickness direction (Z direction) of the housing 110 of the physical quantity detection device 100 .
  • the non-flat portion 119 b is a non-linear portion of the inner wall surface 119 of the housing 110 when viewed from the thickness direction (Z direction) of the housing 110 of the physical quantity detection device 100 .
  • the non-planar portion 119b of the inner wall surface 119 of the housing 110 is, for example, a curved or arcuate portion that connects the planar portions 119a and 119a.
  • the housing 110 has a stress relaxation wall 119c that constitutes at least part of the non-flat portion 119b included in the inner wall surface 119 that defines the circuit chamber 118.
  • the stress relieving wall 119c is the proximal end portion of the measuring portion 113 connected to the flange 111, among the plurality of non-planar portions 119b included in the inner wall surface 119 that defines the circuit chamber 118. are provided along the entirety of the non-flat portions 119b at both ends of the flat portion 119a.
  • the stress relaxation wall 119c has a thickness T that allows elastic deformation following the difference in thermal expansion between the casting material 110a and the housing 110.
  • This thickness T can be calculated, for example, based on the amount of thermal expansion of the casting material 110 a and the housing 110 and the Young's modulus of the material of the housing 110 .
  • the thickness T of the stress relaxation wall 119c is preferably as thin as possible within the range where the housing 110 can be molded. More specifically, in the example shown in FIG. 3, the thickness T of the stress relieving wall 119c has a lower limit of 0.8 [mm] to 1.0 [mm], and a thickness of 1.5 [mm] to Up to 2.0 [mm] can be made the upper limit.
  • the housing 110 has a stress relaxation groove 119d provided outside the circuit chamber 118 along at least a portion of the non-planar portion 119b of the inner wall surface 119 defining the circuit chamber 118.
  • the depth D1 from one side of the housing 110 in which the opening of the stress relief groove 119d is formed is the housing
  • the depth D2 of the circuit chamber 118 from the same one side of the circuit board 140 to the back surface 140b of the circuit board 140 is shallower.
  • the depth D1 of the stress relief groove 119d may be deeper than the depth D2 of the circuit chamber 118.
  • the stress relaxation wall 119c may be formed, for example, between the inner wall surface 119 that defines the circuit chamber 118 and the sub-passage 130 . More specifically, as shown in FIG. 4, in the sub-passage groove 117 forming the sub-passage 130, the circuit board 140 is placed between the wall surface of the second sub-passage groove 117b and the inner wall surface 119 of the circuit chamber 118. A stress relieving wall 119c extending to the back surface 140b side of may be formed.
  • the stress relief wall 119c is formed, for example, between the inner wall surface 119 defining the circuit chamber 118 and the stress relief groove 119d.
  • the inner wall surface 119 of the housing 110 defining the circuit chamber 118 includes a planar portion 119a provided at the base end of the measuring portion 113 fixed to the passage wall of the main passage 22. I'm in.
  • a flat portion 119 a at the base end portion of the measuring portion 113 extends, for example, in the width direction (Y-axis direction) of the measuring portion 113 of the housing 110 .
  • the stress relieving groove 119d is provided along at least the non-flat portion 119b that is continuous with the flat portion 119a at the proximal end portion of the measuring portion 113. As shown in FIG.
  • the measuring portion 113 of the housing 110 has a flat plate shape whose width direction is the direction of the center line 22a of the main passage 22 (the Y-axis direction).
  • the inner wall surface 119 defining one side of the circuit chamber 118 in the width direction (Y-axis direction) is located on the inner side in the width direction as the flange 111 side portion is closer to the passage wall of the main passage 22. ing.
  • the measuring portion 113 has a thickness from the side surface 113c on one side in the width direction (Y-axis direction) of the measuring portion 113 to the stress relaxation groove 119d in a portion closer to the flange 111 side of the passage wall of the main passage 22. It has increased
  • the housing 110 is formed, for example, between a plurality of stress relief grooves 119d provided along the inner wall surface 119 defining the circuit chamber 118 and the adjacent stress relief grooves 119d of the plurality of stress relief grooves 119d. and a reinforcing rib 119e.
  • the chip package 150 is arranged in the base end portion 150b arranged in the circuit chamber 118 and provided with the connection terminals 153, and in the second sub-passage 132 of the sub-passage 130. and a distal end 150a having a flow sensor.
  • the chip package 150 has a configuration in which, for example, a flow rate sensor (not shown) and an electronic component 152 shown in FIG. 8 are integrally sealed by thermosetting resin transfer molding. Chip package 150 drives the flow sensor, for example, by means of electronics 152 .
  • the electronic component 152 is, for example, an LSI, is connected to the flow sensor via a lead frame 154, and drives the flow sensor.
  • the flow sensor is, for example, a thermal flow sensor, and as shown in FIG. 145 is measured.
  • Measurement passage 132a is formed, for example, in second sub-passage groove 117b of sub-passage groove 117, that is, second sub-passage 132 of sub-passage 130, as shown in FIGS.
  • connection terminals 153 of the chip package 150 are mounted on the circuit board 140 .
  • Connection terminal 153 is connected to electronic component 152 via lead frame 154, for example.
  • the connection terminal 153 is mounted on the circuit board 140 via a bonding material such as solder, for example.
  • the connection terminal 153 is sealed with a curable sealing material 141, as shown in FIG.
  • a silicone-based sealing material can be used as the curable sealing material 141 .
  • At least one of a temperature sensor 160, a pressure sensor 170, and a humidity sensor 180 is mounted on the circuit board 140, as shown in FIG. 4, in addition to the chip package 150 having a flow sensor.
  • These flow rate sensor, temperature sensor 160 , pressure sensor 170 , and humidity sensor 180 are sensor units that detect the physical quantity of the gas 2 to be measured taken into the secondary passage 130 of the physical quantity detection device 100 .
  • the sensor section of the physical quantity detection device 100 including the flow rate sensor, temperature sensor 160, pressure sensor 170, and humidity sensor 180 is attached to the surface 140a of the circuit board 140 and mounted on the circuit board 140.
  • the circuit board 140 does not need to include all the sensor units of the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 in addition to the flow rate sensor, and any one of the sensor units can be omitted. be.
  • the temperature sensor 160 is, for example, a chip-type temperature sensor mounted on the circuit board 140 .
  • temperature sensor 160 is located at the tip of extension 142 of circuit board 140 that extends toward the tip of measurement section 113 in the projection direction (X-axis direction) of measurement section 113. are placed.
  • the temperature sensor 160 is arranged in the temperature measurement passage 190 of the measurement section 113 and measures the temperature of the gas 2 to be measured taken into the temperature measurement passage 190 from the main passage 22 .
  • the temperature measurement passage 190 has an entrance on the side surface 113c on the upstream side of the measurement unit 113, and as shown in FIGS. have an exit.
  • the temperature measurement passage 190 takes in the gas to be measured 2 flowing through the main passage 22 from an inlet opening on the upstream side surface 113c of the measuring unit 113, and passes through an outlet opening on the front surface 113a and the rear surface 113b of the measuring unit 113. 22.
  • Such a configuration can improve the heat dissipation of the temperature sensor 160 .
  • the pressure sensor 170 is mounted on the surface 140a of the circuit board 140 and arranged in the circuit chamber 118.
  • the circuit chamber 118 communicates with the folded portion of the second sub-passage groove 117 b that curves in a U shape near the flange 111 , that is, the folded portion of the second sub-passage 132 . This makes it possible to measure the pressure of the gas 2 to be measured taken into the secondary passage 130 by the pressure sensor 170 arranged in the circuit chamber 118 .
  • the humidity sensor 180 is mounted on the surface 140 a of the circuit board 140 and arranged in a partitioned area on the tip side of the measuring section 113 relative to the circuit chamber 118 .
  • This partitioned area communicates with, for example, the second sub-passage 132 of the sub-passage 130 .
  • the humidity sensor 180 detects the humidity of the gas 2 to be measured taken into the secondary passage 130 .
  • the physical quantity detection device 100 of this embodiment includes the housing 110, the sub-passage 130, the sensor section, the circuit board 140, the circuit chamber 118, and the casting material 110a.
  • the housing 110 is installed in the main passage 22 through which the gas 2 to be measured flows.
  • the sub-passage 130 is provided in the housing 110 and takes in part of the gas 2 to be measured from the main passage 22 .
  • the sensor section detects the physical quantity of the gas 2 to be measured taken into the secondary passage 130 .
  • the circuit board 140 has a sensor section attached to its surface 140a.
  • Circuit chamber 118 is defined by inner wall surface 119 of housing 110 surrounding at least a portion of circuit board 140 to accommodate circuit board 140 .
  • the casting material 110 a is cast into the circuit chamber 118 to seal the back surface 140 b of the circuit board 140 .
  • the housing 110 has a stress relaxation wall 119c forming at least a portion of the non-flat portion 119b included in the inner wall surface 119 defining the circuit chamber 118. As shown in FIG.
  • the stress relaxation wall 119c has a thickness T that allows it to elastically deform according to the difference in thermal expansion between the casting material 110a and the housing 110. As shown in FIG.
  • the physical quantity detection device 100 of the present embodiment is installed in the main passage 22 which is a part of the intake passage of the internal combustion engine 10, and the air is taken into the intake passage via the air cleaner 21 and flows through the main passage 22. Part of the intake air as the gas 2 to be measured can be taken into the secondary passage 130 of the housing 110 . Furthermore, the physical quantity detection device 100 detects the physical quantity such as the flow rate, temperature, pressure, or humidity of the gas 2 to be measured taken into the sub-passage 130 through the flow rate sensor, temperature sensor 160, pressure sensor 170, or humidity sensor of the chip package 150. It can be detected by a sensor unit such as 180 and output to the control device 4 .
  • the casting material 110a is cast into the circuit chamber 118 that accommodates the circuit board 140, and the circuit board 140 is sealed by sealing the front surface 140a of the circuit board 140 to which the sensor part is attached and the back surface 140b opposite to the circuit board 140. Corrosion of attached parts and entry of water droplets into the circuit chamber 118 are prevented.
  • the physical quantity detection device 100 detects that a part of the casting material 110a adjacent to the non-flat portion 119b of the inner wall surface 119 that defines the circuit chamber 118 is exposed to the housing 110 and the casting material 110a. Thermal stress due to the difference in thermal expansion of the mold member 110a tends to concentrate. However, in the physical quantity detection device 100 of the present embodiment, the stress relaxation wall 119c that constitutes at least a part of the non-flat portion 119b of the inner wall surface 119 that defines the circuit chamber 118 is affected by the difference in thermal expansion between the casting material 110a and the housing 110. It has a thickness T that can be elastically deformed.
  • the stress relaxation wall 119c elastically deforms following the difference in thermal expansion between the casting material 110a and the housing 110, resulting in the casting adjacent to the non-flat portion 119b. Reliability of the casting material 110a can be improved by suppressing concentration of thermal stress on a part of the molding material 110a.
  • the housing 110 includes a stress relaxation groove 119d provided outside the circuit chamber 118 along at least a portion of the non-planar portion 119b of the inner wall surface 119 defining the circuit chamber 118. have.
  • the stress relieving wall 119c is formed between the inner wall surface 119 defining the circuit chamber 118 and the stress relieving groove 119d.
  • the position, width, depth, and length of the stress relaxation groove 119d formed on the outer side of the inner wall surface 119 forming the circuit chamber 118 can be adjusted. Height and length can be easily adjusted. Further, by forming the stress relief grooves 119d in the housing 110, it is possible not only to reduce the weight of the housing 110 and reduce the amount of material used, but also to suppress dents and recesses caused by molding shrinkage, that is, sink marks. .
  • the housing 110 has a measuring portion 113 that is fixed to the passage wall of the main passage 22 and protrudes radially inward of the main passage 22 .
  • An inner wall surface 119 defining a circuit chamber 118 of the housing 110 includes a flat portion 119 a provided at the base end portion of the measuring portion 113 fixed to the main passage 22 .
  • the stress relaxation groove 119 d is provided along a non-flat portion 119 b that is continuous with at least the flat portion 119 a provided at the proximal end portion of the measuring portion 113 .
  • the physical quantity detection device 100 of this embodiment can form the stress relaxation wall 119c along the non-planar portions 119b on both sides of the planar portion 119a at the base end portion of the measuring portion 113.
  • the base end portion of the measuring portion 113 fixed to the passage wall of the main passage 22 is the fixed end
  • the distal end portion of the measuring portion 113 located radially inside the main passage 22 is the free end. Therefore, the stress acting on the measuring section 113 due to the vibration of the housing 110 is higher at the proximal end than at the distal end of the measuring section 113 .
  • the stress relaxation wall 119c at the proximal end of the measuring portion 113 suppresses stress concentration on a portion of the casting material 110a adjacent to the non-flat portion 119b at the proximal end of the measuring portion 113, and the reliability of the casting material 110a is reduced. improves.
  • the measuring section 113 of the housing 110 has a plate-like shape with the center line 22a direction of the main passage 22 as the width direction (Y-axis direction).
  • the inner wall surface 119 defining one side of the circuit chamber 118 in the width direction (the Y-axis direction) of the measuring portion 113 becomes larger toward the flange 111 side portion closer to the passage wall of the main passage 22 .
  • the housing 110 includes a plurality of stress relief grooves 119d provided along the inner wall surface 119 defining the circuit chamber 118, and stress relieving grooves adjacent to the plurality of stress relief grooves 119d. and reinforcing ribs 119e formed between the relief grooves 119d.
  • the housing 110 is reinforced by the reinforcing ribs 119e, and the reduction in rigidity of the housing 110 due to the formation of the stress relaxation grooves 119d can be suppressed, and the reliability of the physical quantity detection device 100 can be improved.
  • the stress relaxation wall 119c formed between the inner wall surface 119 of the circuit chamber 118 and the stress relaxation groove 119d follows the difference in thermal expansion between the housing 110 and the casting material 110a and deforms more elastically. easier. Therefore, the concentration of thermal stress on a part of the casting material 110a adjacent to the non-flat portion 119b of the inner wall surface 119 of the circuit chamber 118 can be more effectively suppressed, and the reliability of the physical quantity detection device 100 can be further improved. can.
  • the stress relaxation wall 119c may be formed between the inner wall surface 119 that defines the circuit chamber 118 and the secondary passage 130 .
  • the secondary passage 130 of the housing 110 can be used as the stress relaxation groove 119d to reduce the thermal stress generated in the casting material 110a due to the difference in thermal expansion between the housing 110 and the casting material 110a. 100 reliability can be improved.
  • the physical quantity detection device 100 capable of alleviating the thermal stress acting on the casting material 110a cast into the housing 110 and improving the reliability.
  • the physical quantity detection device according to the present disclosure is not limited to the configuration of the physical quantity detection device 100 according to the above-described embodiment. Modifications 1 to 9 of the physical quantity detection device 100 according to the above embodiment will be described below with reference to FIGS. 9 to 17 .
  • FIG. 9 is a front view showing Modification 1 of the physical quantity detection device 100 according to the above embodiment. Note that FIG. 9 corresponds to FIG. 3 of the physical quantity detection device 100 according to the above-described embodiment, and shows a state in which the circuit board 140 is removed. In the physical quantity detection device 100 according to Modification 1, the stress relaxation wall 119c and the stress relaxation groove 119d are continuously provided so as to surround the circuit chamber 118 from three directions. It differs from the physical quantity detection device 100 according to the embodiment.
  • the stress relaxation wall 119c and the stress relaxation groove 119d surround the circuit chamber 118 of the housing 110 from the following three directions.
  • the first direction is the upstream side (Y-axis negative direction side) when the gas 2 to be measured flows forward.
  • the second direction is the base end side (outside in the radial direction of the main passage 22) in the projecting direction (X-axis direction) of the measuring portion 113 of the housing 110.
  • the third direction is the downstream side (Y-axis positive direction side) when the gas 2 to be measured flows forward.
  • Part of the stress relaxation wall 119c and the stress relaxation groove 119d surrounding the circuit chamber 118 from the first direction extends from the non-flat portion 119b on the distal end side of the measuring portion 113 to the non-flat portion 119b on the proximal side of the measuring portion 113. It extends continuously along the inner wall surface 119 of the circuit chamber 118 .
  • Part of the stress relaxation wall 119c and the stress relaxation groove 119d surrounding the circuit chamber 118 in the second direction extends from one end to the other end of the circuit chamber 118 in the width direction (Y-axis direction) of the measurement unit 113. It extends along the width direction.
  • Part of stress relaxation wall 119 c and stress relaxation groove 119 d surrounding circuit chamber 118 from the third direction extends from non-planar portion 119 b of circuit chamber 118 located on the base end side of measuring section 113 to second sub-passage 132 . It extends in the projecting direction (X-axis direction) of the measuring portion 113 to the non-flat portion 119b adjacent to the folded portion.
  • the stress relaxation wall 119c and the stress relaxation groove 119d are continuously provided so as to surround the circuit chamber 118 from the above three directions. It is possible to more effectively relax the thermal stress caused by the difference in thermal expansion between the
  • the stress relaxation groove 119d may have two or more different depths D1 in the circumferential direction of the inner wall surface 119 surrounding the circuit board 140 .
  • the easiness of elastic deformation of the stress relaxation wall 119c can be adjusted according to the position of the inner wall surface 119 in the circumferential direction. can be suppressed.
  • FIG. 10 is a front view showing Modification 2 of the physical quantity detection device 100 according to the above embodiment.
  • the stress relaxation groove 119d surrounding the circuit chamber 118 from three directions is divided by a plurality of reinforcing ribs 119e. is different from
  • the housing 110 is reinforced by the plurality of reinforcing ribs 119e, and the stress relaxation grooves 119d are formed to provide the housing 110 with the stress relaxation grooves 119d. It is possible to suppress a decrease in rigidity of the physical quantity detection device 110 and improve the reliability of the physical quantity detection device 100 .
  • FIG. 11 is a front view showing Modification 3 of the physical quantity detection device 100 according to the above embodiment.
  • the physical quantity detection device 100 according to the present modification is configured such that, in the stress relaxation groove 119d, it is located closest to the downstream side of the gas to be measured 2 (Y-axis positive direction side) and closest to the base end side of the measuring section 113 (X-axis negative direction side). ) extends toward the distal end side of the measuring section 113, which is different from the physical quantity detecting device 100 according to the above-described embodiment shown in FIG.
  • the stress relaxation groove 119d is connected to the recess 119f of the housing 110, and extends in the direction of the center line 22a of the main passage 22, that is, in the width direction (Y-axis direction) of the measuring section 113. Extended.
  • the depth D1 of the stress relief groove 119d and the depth of the recess 119f may be different.
  • the stress relaxation wall 119c formed between the stress relaxation groove 119d and the inner wall surface 119 of the circuit chamber 118 can be extended in the projecting direction (X-axis direction) of the measuring section 113. , the thermal stress generated in the casting material 110a can be more effectively relieved.
  • FIG. 12 is a front view showing Modification 4 of the physical quantity detection device 100 according to the above embodiment.
  • the portion of the inner wall surface 119 of the circuit chamber 118 that is located closer to the base end side (X-axis negative direction side) of the measurement unit 113 than the second sub-passage 132 is all arcuate. is different from the physical quantity detection device 100 according to the above-described embodiment in that it has a non-flat portion 119b.
  • the physical quantity detection device 100 according to this modified example can also achieve the same effect as the physical quantity detection device 100 according to the above-described embodiment.
  • the inner wall surface 119 defining the circuit chamber 118 includes only the non-flat portion 119b. good too.
  • the inner wall surface 119 that defines the circuit chamber 118 includes a plurality of flat portions 119a
  • the non-flat portion 119b includes a plurality of flat portions 119a, as in the case where the shape of the circuit chamber 118 is, for example, a triangle, a square, or another polygon. , a corner portion between adjacent flat portions 119a of a plurality of flat portions 119a. Even in such a case, the same effects as those of the physical quantity detection device 100 according to the above-described embodiment can be obtained.
  • FIG. 13 is a front view showing Modification 5 of the physical quantity detection device 100 according to the above embodiment.
  • the physical quantity detection device 100 according to this modification at least a part of the stress relaxation groove 119d is filled with the filler 110b made of the same material as the casting material 110a. It differs from the detection device 100 .
  • the inner wall surface 119 of the circuit chamber 118 has a flat portion 119a located closest to the base end side of the measuring portion 113 (X-axis negative direction side).
  • Two stress relief grooves 119d formed along the non-planar portion 119b are filled with the filler 110b.
  • the filling material 110b filled in the stress relaxation grooves 119d via the stress relaxation walls 119c in the portions of the casting material 110a adjacent to the non-flat parts 119b at both ends of the flat part 119a is injected. It thermally expands similarly to the molding material 110a. As a result, the thermal stress acting on the portions of the casting material 110a adjacent to the non-flat portions 119b at both ends of the flat portion 119a is relaxed, and the reliability of the physical quantity detection device 100 is improved.
  • FIG. 14 is a front view showing Modification 6 of the physical quantity detection device 100 according to the above embodiment.
  • a physical quantity detection device 100 according to this modification differs from the physical quantity detection device 100 according to the above-described embodiment in that an inner wall surface 119 defining a circuit chamber 118 has a projecting portion 119g.
  • the projecting portion 119g is located on the inner wall surface 119 of the circuit chamber 118, and is located closest to the base end side (X-axis negative direction side) of the measuring portion 113 with respect to the non-planar portions 119b at both ends of the flat portion 119a. It is provided on the flat portion 119a adjacent to the tip side (X-axis positive direction side).
  • the protruding portion 119g is provided at the end of the flat portion 119a adjacent to the non-flat portion 119b, and protrudes outside the circuit chamber 118 perpendicularly to the flat portion 119a. With such a configuration, thermal stress tends to concentrate on the casting material 110a in the vicinity of the projecting portion 119g. As a result, the concentration of thermal stress on the portion of the casting material 110a adjacent to the non-flat portion 119b is alleviated, and the reliability of the physical quantity detection device 100 can be improved.
  • FIG. 15 is a front view showing Modification 7 of the physical quantity detection device 100 according to the above embodiment.
  • a physical quantity detection device 100 according to this modification differs from the physical quantity detection device 100 according to the above-described embodiment in that an inner wall surface 119 defining a circuit chamber 118 has a recessed portion 119h.
  • 119 h of recessed parts are the parts which the inner wall surface 119 of the circuit chamber 118 recessed in the inner side of the circuit chamber 118 at circular arc shape.
  • a plurality of recesses 119h are provided in the inner wall surface 119 at intervals in the circumferential direction.
  • Such a configuration makes it easier for thermal stress to concentrate on the casting material 110a in the vicinity of each recessed portion 119h. As a result, the concentration of thermal stress on the casting material 110a is alleviated as a whole, and the reliability of the physical quantity detection device 100 can be improved.
  • FIG. 16 is an enlarged cross-sectional view showing Modification 8 of the physical quantity detection device 100 according to the above embodiment.
  • the stress relaxation groove 119d is provided in the measurement unit 113.
  • a relaxation groove 119d is provided.
  • the stress relief groove 119d has a depth in the projecting direction (X-axis direction) of the sub-passage 130. As shown in FIG. According to the physical quantity detection device 100 according to this modified example, it is possible to obtain the same effects as the physical quantity detection device 100 according to the above-described embodiment.
  • FIG. 17 is an enlarged cross-sectional view showing Modification 9 of the physical quantity detection device 100 according to the above embodiment.
  • the housing 110 includes a flange 111 fixed to the passage wall of the main passage 22 and a flange 111 connected to the flange 111. and a measuring portion 113 protruding radially inward of the main passage 22 .
  • the circuit chamber 118 is provided in the flange 111 .
  • the physical quantity detection device 100 according to this modified example can also achieve the same effect as the physical quantity detection device 100 according to the above-described embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The present disclosure provides a physical quantity detection device in which it is possible to relieve thermal stress acting on an injection material injected into the housing of the device and thereby improve the reliability of the device. The physical quantity detection device 100 comprises: a housing 110; a sub-passage that is provided to the housing 110; a sensor unit that detects a physical quantity of a gas to be measured which has been taken into the sub-passage; a circuit board that has the sensor unit attached to the front surface thereof; a circuit chamber that accommodates the circuit board; and an injection material 110a that is injected into the circuit chamber and seals the back surface of the circuit board. The housing 110 has a stress-relieving wall 119c that forms at least a portion of a non-planar surface section 119b included in an inner wall surface 119 demarcating the circuit chamber. The stress-relieving wall 119c has a thickness T that makes it possible for the stress-relieving wall 119c to elastically deform in accordance with the difference in thermal expansion between the injection material 110a and the housing 110.

Description

物理量検出装置physical quantity detector
 本開示は、物理量検出装置に関する。 The present disclosure relates to a physical quantity detection device.
 従来から内燃機関の吸入空気の物理量を検出する物理量検出装置が知られている。特許文献1に記載された従来の物理量検出装置は、被計測気体が流れる主通路に突出して配置されるハウジングと、そのハウジングとの協働により副通路を構成するカバーと、ハウジング内に収容される支持体と、その支持体に支持されて副通路に配置されるセンサ素子と、を備える。 A physical quantity detection device that detects the physical quantity of the intake air of an internal combustion engine has been known for some time. A conventional physical quantity detection device described in Patent Document 1 includes a housing that protrudes and is arranged in a main passage through which a gas to be measured flows, a cover that forms a sub passage in cooperation with the housing, and a cover that is housed in the housing. and a sensor element supported by the support and arranged in the sub-passage.
 ハウジングは、カバーを接着するための接着剤が塗布される接着剤用溝を有している。この接着剤用溝は、第1の接着剤用溝と、第2の接着剤用溝とを有している。第1の接着剤用溝は、ハウジングの基端に沿って延在し、かつハウジングの基端から支持体よりもハウジングの先端側の位置までハウジングの突出方向に沿って延在して第1の接着剤が塗布される。第2の接着剤用溝は、副通路に沿って延在して第2の接着剤が塗布される。 The housing has an adhesive groove in which adhesive is applied to adhere the cover. The glue groove has a first glue groove and a second glue groove. The first adhesive groove extends along the proximal end of the housing and extends along the projecting direction of the housing from the proximal end of the housing to a position on the distal side of the housing relative to the support. of adhesive is applied. A second adhesive channel extends along the secondary passageway and is coated with a second adhesive.
 この従来の物理量検出装置は、第1の接着剤が第2の接着剤よりもヤング率が高く、第2の接着剤が第1の接着剤よりもチクソ性が高いことを特徴とする(特許文献1、要約等)。この従来の物理量検出装置によれば、本体部の剛性を向上させるために粘性が低いエポキシ接着剤を用いる場合でも密閉性を向上させ、剛性向上と密閉性向上の両立を図ることができる。 This conventional physical quantity detection device is characterized in that the first adhesive has a higher Young's modulus than the second adhesive, and the second adhesive has a higher thixotropy than the first adhesive (Patent Reference 1, Abstract, etc.). According to this conventional physical quantity detection device, even when an epoxy adhesive having a low viscosity is used to improve the rigidity of the main body, the sealing property can be improved, and both the rigidity improvement and the sealing property improvement can be achieved.
国際公開第2020/202723号WO2020/202723
 物理量検出装置のハウジングは、たとえば、回路基板を収容する回路室を有している。回路基板の一方の面は、たとえば、チップパッケージ、圧力センサ、湿度センサ、および回路部品が実装され、シリコーン系の封止部材によって封止されている(特許文献1、第0059段落から第0062段落)。回路基板の他方の面は、たとえば、ハウジングの回路室に注型されたエポキシ樹脂によって全体が封止されている。 The housing of the physical quantity detection device has, for example, a circuit chamber that accommodates a circuit board. On one side of the circuit board, for example, a chip package, a pressure sensor, a humidity sensor, and circuit components are mounted and sealed with a silicone-based sealing member (Patent Document 1, paragraphs 0059 to 0062 ). The other side of the circuit board is fully encapsulated, for example, by epoxy resin that is cast into the circuit chamber of the housing.
 しかしながら、ハウジングを構成する樹脂材料の線膨張係数と、ハウジングの回路室に注型されるエポキシ樹脂などの注型材の線膨張係数とが相違する場合がある。この場合、ハウジングおよび注型材が、温度の上昇または低下に伴って膨張または収縮することによる熱応力が注型材の一部に集中し、物理量検出装置の信頼性を低下させるおそれがある。 However, there are cases where the coefficient of linear expansion of the resin material forming the housing is different from the coefficient of linear expansion of the casting material such as epoxy resin that is cast into the circuit chamber of the housing. In this case, the thermal stress due to the expansion or contraction of the housing and the casting material due to the temperature rise or fall concentrates on a part of the casting material, which may reduce the reliability of the physical quantity detection device.
 本開示は、ハウジングに注型される注型材に作用する熱応力を緩和させ、信頼性を向上させることが可能な物理量検出装置を提供する。 The present disclosure provides a physical quantity detection device capable of relieving thermal stress acting on a casting material cast into a housing and improving reliability.
 本開示の一態様は、被計測気体が流れる主通路に設置されるハウジングと、前記ハウジングに設けられて前記主通路から前記被計測気体の一部を取り込む副通路と、前記副通路に取り込まれた前記被計測気体の物理量を検出するセンサ部と、前記センサ部が表面に取り付けられた回路基板と、前記回路基板の少なくとも一部を囲む前記ハウジングの内壁面によって画定されて前記回路基板を収容する回路室と、前記回路室に注型されて前記回路基板の裏面を封止する注型材と、を備えた物理量検出装置であって、前記ハウジングは、前記回路室を画定する前記内壁面に含まれる非平面部の少なくとも一部を構成する応力緩和壁を有し、前記応力緩和壁は、前記注型材と前記ハウジングの熱膨張差に追従して弾性変形可能な厚さを有することを特徴とする物理量検出装置である。 One aspect of the present disclosure includes a housing installed in a main passage through which a gas to be measured flows, a sub-passage provided in the housing to take in part of the gas to be measured from the main passage, and a sub-passage taken into the sub-passage. a sensor unit for detecting a physical quantity of the gas to be measured; a circuit board on which the sensor unit is attached; and an inner wall surface of the housing surrounding at least a part of the circuit board. and a casting material that is cast in the circuit chamber to seal the back surface of the circuit board, wherein the housing is attached to the inner wall surface defining the circuit chamber. It has a stress relaxation wall that constitutes at least part of the included non-flat portion, and the stress relaxation wall has a thickness that allows it to elastically deform according to the difference in thermal expansion between the casting material and the housing. It is a physical quantity detection device that
 本開示の上記一態様によれば、ハウジングに注型される注型材に作用する熱応力を緩和させ、信頼性を向上させることが可能な物理量検出装置を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a physical quantity detection device capable of alleviating the thermal stress acting on the casting material cast into the housing and improving the reliability.
本開示に係る物理量検出装置の一実施形態を示すシステム図。1 is a system diagram showing an embodiment of a physical quantity detection device according to the present disclosure; FIG. 図1の物理量検出装置の正面図。FIG. 2 is a front view of the physical quantity detection device of FIG. 1; 図2の物理量検出装置の注型材を注型する前の正面図。FIG. 3 is a front view of the physical quantity detection device of FIG. 2 before casting a casting material. 図1の物理量検出装置のカバーを取り付ける前の背面図。FIG. 2 is a rear view of the physical quantity detection device of FIG. 1 before the cover is attached; 図1の物理量検出装置の左側面図。FIG. 2 is a left side view of the physical quantity detection device of FIG. 1; 図1の物理量検出装置の右側面図。FIG. 2 is a right side view of the physical quantity detection device of FIG. 1; 図2の物理量検出装置のVII-VII断面図。VII-VII cross-sectional view of the physical quantity detection device of FIG. 図2の物理量検出装置のVIII-VIII断面図。VIII-VIII cross-sectional view of the physical quantity detection device of FIG. 図1の物理量検出装置の変形例1を示す正面図。FIG. 2 is a front view showing Modification 1 of the physical quantity detection device of FIG. 1 ; 図1の物理量検出装置の変形例2を示す正面図。FIG. 2 is a front view showing Modification 2 of the physical quantity detection device of FIG. 1 ; 図1の物理量検出装置の変形例3を示す正面図。FIG. 11 is a front view showing Modification 3 of the physical quantity detection device of FIG. 1 ; 図1の物理量検出装置の変形例4を示す正面図。The front view which shows the modification 4 of the physical quantity detection apparatus of FIG. 図1の物理量検出装置の変形例5を示す正面図。The front view which shows the modification 5 of the physical quantity detection apparatus of FIG. 図1の物理量検出装置の変形例6を示す正面図。The front view which shows the modification 6 of the physical quantity detection apparatus of FIG. 図1の物理量検出装置の変形例7を示す正面図。The front view which shows the modification 7 of the physical quantity detection apparatus of FIG. 図1の物理量検出装置の変形例8を示す正面図。The front view which shows the modification 8 of the physical quantity detection apparatus of FIG. 図1の物理量検出装置の変形例9を示す正面図。The front view which shows the modification 9 of the physical quantity detection apparatus of FIG.
 以下、図面を参照して本開示に係る物理量検出装置の実施形態を説明する。 An embodiment of a physical quantity detection device according to the present disclosure will be described below with reference to the drawings.
 図1は、本開示に係る物理量検出装置の一実施形態を示すシステム図である。本実施形態の物理量検出装置100は、たとえば、電子燃料噴射方式の内燃機関制御システム1に使用される。内燃機関制御システム1は、たとえば、内燃機関10と、物理量検出装置100と、スロットルバルブ25と、スロットル角度センサ26と、アイドルエアコントロールバルブ27と、酸素センサ28と、制御装置4とを備えている。 FIG. 1 is a system diagram showing one embodiment of the physical quantity detection device according to the present disclosure. The physical quantity detection device 100 of the present embodiment is used, for example, in an electronic fuel injection type internal combustion engine control system 1 . The internal combustion engine control system 1 includes, for example, an internal combustion engine 10, a physical quantity detection device 100, a throttle valve 25, a throttle angle sensor 26, an idle air control valve 27, an oxygen sensor 28, and a control device 4. there is
 物理量検出装置100は、たとえば、主通路22である吸気ボディの通路壁に設けられた取り付け孔から主通路22の内部に挿入され、主通路22の通路壁に固定されることで、被計測気体2としての吸入空気が流れる主通路22に設置される。物理量検出装置100は、エアクリーナ21を通して取り込まれて主通路22を流れる被計測気体2の一部を取り込み、取り込んだ被計測気体2の物理量を検出して制御装置4へ出力する。 For example, the physical quantity detection device 100 is inserted into the main passage 22 through a mounting hole provided in the passage wall of the intake body, which is the main passage 22, and fixed to the passage wall of the main passage 22, thereby detecting the gas to be measured. 2 is installed in the main passage 22 through which the intake air flows. The physical quantity detection device 100 takes in a part of the measured gas 2 that is taken in through the air cleaner 21 and flows through the main passage 22 , detects the physical quantity of the taken in measured gas 2 , and outputs it to the control device 4 .
 物理量検出装置100は、たとえば、主通路22の通路壁から、主通路22を流れる被計測気体2の主流れ方向に沿う主通路22の中心線22aへ向けて、主通路22の径方向内側へ突出している。すなわち、主通路22における物理量検出装置100の突出方向は、たとえば、主通路22の中心線22aに直交する方向である。 The physical quantity detection device 100 moves, for example, from the passage wall of the main passage 22 toward the center line 22a of the main passage 22 along the main flow direction of the gas to be measured 2 flowing through the main passage 22, toward the inside in the radial direction of the main passage 22. Protruding. That is, the direction in which the physical quantity detection device 100 protrudes from the main passage 22 is, for example, the direction perpendicular to the center line 22a of the main passage 22 .
 スロットルバルブ25は、たとえば、被計測気体2の流れ方向において、吸気マニホールド24の上流側に配置されたスロットルボディ23に内蔵されている。制御装置4は、たとえば、アクセルペダルの操作量に基づいてスロットルバルブ25の開度を変化させ、内燃機関10のシリンダ11内の燃焼室へ流入する吸入空気の流量を制御する。スロットル角度センサ26は、スロットルバルブ25の開度を計測して制御装置4へ出力する。アイドルエアコントロールバルブ27は、スロットルバルブ25をバイパスする空気量を制御する。 The throttle valve 25 is built in, for example, a throttle body 23 arranged upstream of the intake manifold 24 in the flow direction of the gas 2 to be measured. The control device 4 changes the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, for example, to control the flow rate of the intake air flowing into the combustion chamber within the cylinder 11 of the internal combustion engine 10 . A throttle angle sensor 26 measures the opening degree of the throttle valve 25 and outputs it to the control device 4 . The idle air control valve 27 controls the amount of air bypassing the throttle valve 25 .
 内燃機関10は、たとえば、シリンダ11と、ピストン12と、点火プラグ13と、燃料噴射弁14と、吸気弁15と、排気弁16と、回転角度センサ17と、を備えている。内燃機関10のピストン12の動作に基づいてエアクリーナ21を通して取り込まれた吸入空気は、主通路22を流れ、スロットルボディ23においてスロットルバルブ25により流量が制御される。スロットルボディ23を通過した吸入空気は、吸気マニホールド24を通過し、さらに吸気ポートに設けられた燃料噴射弁14を通過して、吸気弁15を介してシリンダ11内の燃焼室へ流入する。 The internal combustion engine 10 includes, for example, a cylinder 11, a piston 12, a spark plug 13, a fuel injection valve 14, an intake valve 15, an exhaust valve 16, and a rotation angle sensor 17. Intake air taken in through an air cleaner 21 based on the movement of the piston 12 of the internal combustion engine 10 flows through the main passage 22 and the flow rate is controlled by the throttle valve 25 in the throttle body 23 . After passing through the throttle body 23 , the intake air passes through the intake manifold 24 , the fuel injection valve 14 provided in the intake port, and flows into the combustion chamber inside the cylinder 11 via the intake valve 15 .
 制御装置4は、物理量検出装置100から入力された被計測気体2としての吸入空気の物理量に基づいて燃料噴射弁14を制御して、吸入空気へ燃料を噴射させる。これにより、吸気マニホールド24を通過した吸入空気は、燃料噴射弁14から噴射された燃料と混合され、混合気の状態で燃焼室へ導かれる。制御装置4は、点火プラグ13の火花着火により燃焼室内の混合気を爆発的に燃焼させ、内燃機関10に機械エネルギを発生させる。 The control device 4 controls the fuel injection valve 14 based on the physical quantity of the intake air as the measured gas 2 input from the physical quantity detection device 100 to inject fuel into the intake air. As a result, the intake air that has passed through the intake manifold 24 is mixed with the fuel injected from the fuel injection valve 14 and led to the combustion chamber in the form of an air-fuel mixture. The control device 4 explosively combusts the air-fuel mixture in the combustion chamber by spark ignition of the spark plug 13 to cause the internal combustion engine 10 to generate mechanical energy.
 回転角度センサ17は、ピストン12、吸気弁15、および排気弁16の位置や状態、さらに内燃機関10の回転速度に関する情報を検出して制御装置4へ出力する。燃焼により発生したガスは、シリンダ11の燃焼室から排気弁16を介して排気管へ排出され、排気ガス3として排気管から車外へ排出される。酸素センサ28は、排気管に設けられ、排気管を流れる排気ガス3の酸素濃度を計測して制御装置4へ出力する。 The rotation angle sensor 17 detects information about the positions and states of the piston 12, the intake valve 15, and the exhaust valve 16, as well as the rotation speed of the internal combustion engine 10, and outputs the information to the control device 4. The gas generated by combustion is discharged from the combustion chamber of the cylinder 11 to the exhaust pipe through the exhaust valve 16, and is discharged as the exhaust gas 3 from the exhaust pipe to the outside of the vehicle. The oxygen sensor 28 is provided in the exhaust pipe, measures the oxygen concentration of the exhaust gas 3 flowing through the exhaust pipe, and outputs the result to the control device 4 .
 制御装置4は、物理量検出装置100によって検出された主通路22を流れる被計測気体2としての吸入空気の物理量、たとえば、流量、温度、湿度、圧力などに基づいて、内燃機関制御システム1の各部を制御する。具体的には、制御装置4がアクセルペダルの操作量に基づいてスロットルバルブ25の開度を制御すると、主通路22を流れる被計測気体2としての吸入空気の流量が変化する。制御装置4は、たとえば物理量検出装置100によって検出された被計測気体2の流量に基づいて、燃料噴射弁14から噴射する燃料の供給量を制御する。これにより、内燃機関10が発生する機械エネルギが制御される。 The control device 4 controls each part of the internal combustion engine control system 1 based on the physical quantity of the intake air as the measured gas 2 flowing through the main passage 22 detected by the physical quantity detection device 100, for example, the flow rate, temperature, humidity, pressure, etc. to control. Specifically, when the controller 4 controls the opening of the throttle valve 25 based on the amount of operation of the accelerator pedal, the flow rate of the intake air as the measured gas 2 flowing through the main passage 22 changes. The control device 4 controls the supply amount of fuel injected from the fuel injection valve 14 based on the flow rate of the gas 2 to be measured detected by the physical quantity detection device 100, for example. Thereby, the mechanical energy generated by the internal combustion engine 10 is controlled.
 制御装置4は、物理量検出装置100の出力である吸入空気の物理量と、回転角度センサ17の出力に基づいて計測された内燃機関10の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これらの演算結果に基づいて、制御装置4は、燃料噴射弁14による燃料噴射量や、点火プラグ13の点火時期を制御する。 The control device 4 calculates the fuel injection amount and ignition timing based on the physical quantity of the intake air, which is the output of the physical quantity detection device 100, and the rotation speed of the internal combustion engine 10 measured based on the output of the rotation angle sensor 17. do. Based on these calculation results, the control device 4 controls the fuel injection amount by the fuel injection valve 14 and the ignition timing of the spark plug 13 .
 制御装置4は、実際には、さらに被計測気体2の温度、スロットルバルブ25の開度の変化状態、内燃機関10の回転速度の変化状態、排気ガス3の空燃比の状態に基づいて、燃料供給量や点火時期をきめ細かく制御している。制御装置4は、さらに内燃機関10のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関10の回転速度を制御する。 In practice, the control device 4 further determines the fuel based on the temperature of the gas 2 to be measured, the state of change in the degree of opening of the throttle valve 25, the state of change in the rotation speed of the internal combustion engine 10, and the state of the air-fuel ratio of the exhaust gas 3. It finely controls the supply amount and ignition timing. The control device 4 further controls the amount of air bypassing the throttle valve 25 when the internal combustion engine 10 is idling, using an idle air control valve 27, thereby controlling the rotation speed of the internal combustion engine 10 when the engine is idling.
 内燃機関10の主要な制御量である燃料供給量や点火時期は、いずれも物理量検出装置100の出力を主パラメータとして演算される。したがって、物理量検出装置100の検出精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。 The fuel supply amount and ignition timing, which are the main control amounts of the internal combustion engine 10, are both calculated using the output of the physical quantity detection device 100 as a main parameter. Therefore, improving the detection accuracy of the physical quantity detection device 100, suppressing changes over time, and improving reliability are important for improving vehicle control accuracy and ensuring reliability.
 特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量検出装置100により検出される吸入空気の物理量の検出精度の向上が極めて重要である。また、物理量検出装置100が高い信頼性を維持していることも大切である。 Especially in recent years, the demand for fuel efficiency of vehicles is very high, and the demand for exhaust gas purification is also very high. In order to meet these demands, it is extremely important to improve the detection accuracy of the physical quantity of intake air detected by the physical quantity detection device 100 . It is also important that the physical quantity detection device 100 maintains high reliability.
 物理量検出装置100が搭載される車両は、温度や湿度の変化が大きい環境で使用される。物理量検出装置100は、その使用環境における温度や湿度の変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。 A vehicle equipped with the physical quantity detection device 100 is used in an environment with large changes in temperature and humidity. It is desirable that the physical quantity detection device 100 is also designed to deal with changes in temperature and humidity in the environment in which it is used, as well as with respect to dust and contaminants.
 また、物理量検出装置100は、内燃機関からの発熱の影響を受ける吸気管に装着される。このため、内燃機関の発熱が吸気管を介して物理量検出装置100に伝わる。物理量検出装置100は、被計測気体2と熱伝達を行うことにより被計測気体2の流量を検出するので、外部からの熱の影響をできるだけ抑制することが重要である。 Also, the physical quantity detection device 100 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, the heat generated by the internal combustion engine is transmitted to the physical quantity detection device 100 through the intake pipe. Since the physical quantity detection device 100 detects the flow rate of the gas 2 to be measured by conducting heat transfer with the gas 2 to be measured, it is important to suppress the influence of heat from the outside as much as possible.
 以下、図2から図8を参照して、本実施形態の物理量検出装置100について、より詳細に説明する。なお、これらの各図では、図1に示す主通路22における物理量検出装置100の突出方向に平行なX軸、主通路22の中心線22aに平行なY軸、および物理量検出装置100の厚さ方向に平行なZ軸からなる直交座標系を示す。なお、以下の説明では、主通路22の中心線22a(Y軸)に沿って被計測気体2が流れるものとする。 The physical quantity detection device 100 of the present embodiment will be described in more detail below with reference to FIGS. 2 to 8. FIG. In each of these figures, the X-axis parallel to the projection direction of the physical quantity detection device 100 in the main passage 22 shown in FIG. 1, the Y-axis parallel to the center line 22a of the main passage 22, A Cartesian coordinate system consisting of the Z-axis parallel to the direction is shown. In the following description, it is assumed that the measured gas 2 flows along the center line 22a (Y-axis) of the main passage 22. As shown in FIG.
 図2は、図1の物理量検出装置100の正面図である。図3は、図2の物理量検出装置100のガスケット111cと注型材110aとを取り除いた状態を示す正面図である。図4、図5、および図6は、それぞれ、図1の物理量検出装置100の背面図、左側面図、および右側面図である。図7は、図2のVII-VII線に沿う物理量検出装置100の横断面図である。図8は、図2のVIII-VIII線に沿う物理量検出装置100の縦断面図である。なお、図4の背面図では、図5および図6に示す物理量検出装置100のカバー120を取り外した状態を示している。 FIG. 2 is a front view of the physical quantity detection device 100 of FIG. FIG. 3 is a front view showing a state in which the gasket 111c and the casting material 110a of the physical quantity detection device 100 of FIG. 2 are removed. 4, 5, and 6 are a rear view, a left side view, and a right side view, respectively, of physical quantity detection device 100 of FIG. FIG. 7 is a cross-sectional view of the physical quantity detection device 100 taken along line VII-VII in FIG. FIG. 8 is a vertical cross-sectional view of the physical quantity detection device 100 taken along line VIII-VIII in FIG. Note that the rear view of FIG. 4 shows a state in which the cover 120 of the physical quantity detection device 100 shown in FIGS. 5 and 6 is removed.
 ハウジング110は、たとえば、合成樹脂材料を射出成型することによって製造され、被計測気体2が流れる主通路22に配置される。カバー120は、たとえば、金属や合成樹脂を素材とする板状の部材である。カバー120は、たとえば、合成樹脂材料の成形品を使用することができる。ハウジング110とカバー120は、物理量検出装置100の筐体を構成する。ハウジング110は、たとえば、フランジ111と、コネクタ112と、計測部113とを有している。 The housing 110 is manufactured, for example, by injection molding a synthetic resin material, and arranged in the main passage 22 through which the gas 2 to be measured flows. The cover 120 is, for example, a plate-like member made of metal or synthetic resin. For the cover 120, for example, a synthetic resin molded product can be used. The housing 110 and the cover 120 constitute a housing of the physical quantity detection device 100 . Housing 110 has, for example, flange 111 , connector 112 , and measuring section 113 .
 フランジ111は、図7に示すように、おおむね矩形の板状の形状を有し、対角線上の角部に一対の固定部111aを有している。固定部111aは、中央部にフランジ111を貫通して、固定ねじを挿通させる円筒状の貫通孔111bを有している。物理量検出装置100を主通路22に固定するには、主通路22に設けられた取り付け孔に計測部113を挿入する。そして、フランジ111の貫通孔111bに挿通させた固定ねじを主通路22のねじ穴に螺入して、フランジ111を主通路22の通路壁に固定する。これにより、物理量検出装置100が吸気ボディである主通路22に固定される。 As shown in FIG. 7, the flange 111 has a generally rectangular plate-like shape and has a pair of fixing portions 111a at diagonal corners. The fixed portion 111a has a cylindrical through-hole 111b in the central portion that penetrates the flange 111 and allows a fixing screw to pass therethrough. To fix the physical quantity detection device 100 to the main passage 22 , the measuring section 113 is inserted into the mounting hole provided in the main passage 22 . Then, the fixing screw inserted through the through hole 111 b of the flange 111 is screwed into the screw hole of the main passage 22 to fix the flange 111 to the passage wall of the main passage 22 . As a result, the physical quantity detection device 100 is fixed to the main passage 22, which is the intake body.
 コネクタ112は、フランジ111から突出し、吸気ボディである主通路22の外部に配置され、外部機器に接続される。図6に示すように、コネクタ112の内部には、複数の外部端子112aと補正用端子112bが設けられている。外部端子112aは、たとえば、物理量検出装置100の計測結果である流量や温度などの物理量の出力端子と、物理量検出装置100を動作させる直流電力を供給するための電源端子とを含む。 The connector 112 protrudes from the flange 111, is arranged outside the main passage 22, which is the intake body, and is connected to an external device. As shown in FIG. 6, inside the connector 112, a plurality of external terminals 112a and correction terminals 112b are provided. External terminals 112 a include, for example, output terminals for physical quantities such as flow rate and temperature, which are measurement results of physical quantity detection device 100 , and power terminals for supplying DC power for operating physical quantity detection device 100 .
 補正用端子112bは、物理量検出装置100の製造後に物理量の計測を行い、それぞれの物理量検出装置100に対する補正値を求め、物理量検出装置100の内部のメモリに補正値を記憶するのに使用する。その後の物理量検出装置100による物理量の計測では、上記メモリに記憶された補正値に基づく補正データが使用され、補正用端子112bは使用されない。 The correction terminal 112b is used to measure the physical quantity after the physical quantity detection device 100 is manufactured, obtain the correction value for each physical quantity detection device 100, and store the correction value in the internal memory of the physical quantity detection device 100. In subsequent physical quantity measurement by the physical quantity detection device 100, the correction data based on the correction value stored in the memory is used, and the correction terminal 112b is not used.
 計測部113は、主通路22の通路壁に固定されるフランジ111から主通路22の中心線22aに向けて、中心線22aに直交する主通路22の径方向内側へ突出するように延びている。計測部113は、おおむね直方体形状の扁平な角形の形状を有している。計測部113は、主通路22における計測部113の突出方向(X軸方向)に長さを有し、主通路22における被計測気体2の主流れ方向(Y軸方向)に幅を有している。また、計測部113は、突出方向(X軸方向)および被計測気体2の主流れ方向(Y軸方向)に直交する方向(Z軸方向)に厚さを有している。このように、計測部113が被計測気体2の主流れ方向に沿う扁平な形状を有することで、被計測気体2に対する流体抵抗を低減することができる。 The measuring portion 113 extends from a flange 111 fixed to the passage wall of the main passage 22 toward the center line 22a of the main passage 22 so as to protrude inward in the radial direction of the main passage 22 orthogonal to the center line 22a. . The measurement unit 113 has a generally rectangular parallelepiped flat square shape. The measuring part 113 has a length in the projecting direction (X-axis direction) of the measuring part 113 in the main passage 22, and a width in the main flow direction (Y-axis direction) of the gas 2 to be measured in the main passage 22. there is Moreover, the measuring part 113 has a thickness in the projecting direction (X-axis direction) and in the direction (Z-axis direction) orthogonal to the main flow direction (Y-axis direction) of the gas 2 to be measured. In this way, the measuring part 113 has a flat shape along the main flow direction of the gas 2 to be measured, so that the fluid resistance to the gas 2 to be measured can be reduced.
 計測部113は、正面113a、背面113b、上流側の側面113c、下流側の側面113d、および下面113eを有している。正面113aと背面113bは、計測部113の他の面よりも面積が大きく、計測部113の突出方向(X軸方向)および主通路22の中心線22a(Y軸方向)におおむね平行である。上流側の側面113cと下流側の側面113dは、正面113aと背面113bよりも面積が小さい細長い形状を有し、主通路22の中心線22a(Y軸方向)におおむね直交している。下面113eは、計測部113の他の面よりも面積が小さく、主通路22の中心線22a(Y軸方向)におおむね平行で計測部113の突出方向(X軸方向)におおむね直交している。 The measurement unit 113 has a front surface 113a, a rear surface 113b, an upstream side surface 113c, a downstream side surface 113d, and a lower surface 113e. The front surface 113a and the rear surface 113b are larger in area than the other surfaces of the measurement unit 113, and are generally parallel to the projecting direction of the measurement unit 113 (X-axis direction) and the center line 22a of the main passage 22 (Y-axis direction). The side surface 113c on the upstream side and the side surface 113d on the downstream side have an elongated shape with an area smaller than that of the front surface 113a and the rear surface 113b, and are substantially perpendicular to the center line 22a (Y-axis direction) of the main passage 22. As shown in FIG. The lower surface 113e has a smaller area than the other surfaces of the measuring section 113, is generally parallel to the center line 22a (Y-axis direction) of the main passage 22, and is generally orthogonal to the projecting direction (X-axis direction) of the measuring section 113. .
 計測部113は、上流側の側面113cに副通路入口114を有し、下流側の側面113dに第1出口115および第2出口116を有している。副通路入口114、第1出口115、および、第2出口116は、計測部113の突出方向(X軸方向)における中央よりも先端側の計測部113の先端部に設けられている。これにより、主通路22の内壁面から離れた主通路22の中央部付近の被計測気体2を副通路入口114から取り込むことができる。そのため、物理量検出装置100は、内燃機関10の熱の影響による計測精度の低下を抑制できる。 The measurement unit 113 has a sub-passage entrance 114 on the upstream side surface 113c, and has a first outlet 115 and a second outlet 116 on the downstream side surface 113d. The auxiliary passage inlet 114, the first outlet 115, and the second outlet 116 are provided at the tip of the measuring section 113 on the tip side of the center of the measuring section 113 in the projecting direction (X-axis direction). As a result, the gas to be measured 2 near the central portion of the main passage 22 away from the inner wall surface of the main passage 22 can be taken in from the sub-passage inlet 114 . Therefore, the physical quantity detection device 100 can suppress deterioration in measurement accuracy due to the heat of the internal combustion engine 10 .
 図6に示すコネクタ112の外部端子112aは、たとえば図3に示すように、ボンディングワイヤ143を介して回路基板140のパッドに接続されている。回路基板140は、たとえば、ボンディングワイヤ143が接続される裏面140bに、保護回路144が実装されている。保護回路144は、回路内の電圧を安定させ、ノイズを除去する。これらボンディングワイヤ143および保護回路144は、図8に示すように、注型材110aによって覆われて封止される。 The external terminals 112a of the connector 112 shown in FIG. 6 are connected to pads of the circuit board 140 via bonding wires 143, for example, as shown in FIG. The circuit board 140 has a protection circuit 144 mounted on the back surface 140b to which the bonding wires 143 are connected, for example. Protection circuit 144 stabilizes the voltage in the circuit and removes noise. These bonding wires 143 and protection circuit 144 are covered and sealed with a casting material 110a, as shown in FIG.
 注型材110aは、回路室118に注型されて回路基板140の裏面140bを封止する。注型材110aとしては、たとえば、シリコーンゲルやシリコーン系封止材よりも剛性が高いエポキシ系封止材を使用することができる。注型材110aの線膨張係数と、ハウジング110の線膨張係数とは、一致していることが好ましいが、実際には同一ではなく、相違している。 The casting material 110 a is cast into the circuit chamber 118 and seals the back surface 140 b of the circuit board 140 . As the casting material 110a, for example, an epoxy-based sealing material having higher rigidity than silicone gel or a silicone-based sealing material can be used. The coefficient of linear expansion of the casting material 110a and the coefficient of linear expansion of the housing 110 are preferably the same, but actually they are not the same and are different.
 より具体的には、注型材110aの素材がエポキシ樹脂である場合、注型材110aの線膨張係数は、たとえば、約4.5[10-5/K]から約6.5[10-5/K]程度である。一方、ハウジング110の素材がポリブチレンテレフタレート(PBT)などのエンジニアリングプラスチックである場合、ハウジング110の線膨張係数は、たとえば、約6.0[×10-5/K]から約9.5[×10-5/K]程度である。すなわち、注型材110aの線膨張係数は、たとえば、ハウジング110の線膨張係数よりも小さくなる場合がある。 More specifically, when the material of the casting material 110a is an epoxy resin, the linear expansion coefficient of the casting material 110a is, for example, about 4.5 [10 -5 /K] to about 6.5 [10 -5 / K]. On the other hand, if the material of housing 110 is an engineering plastic such as polybutylene terephthalate (PBT), the coefficient of linear expansion of housing 110 is, for example, from about 6.0 [×10 −5 /K] to about 9.5 [× 10 −5 /K]. That is, the coefficient of linear expansion of the casting material 110a may be smaller than the coefficient of linear expansion of the housing 110, for example.
 ハウジング110は、図4に示すように、計測部113の背面113b側に、凹状の副通路溝117と、凹状の回路室118とを有している。図8に示すように、副通路溝117は、開口部がカバー120によって閉鎖されることで、カバー120とともに副通路130を形成する。副通路130は、ハウジング110に設けられ、主通路22から被計測気体2の一部を取り込んで迂回させる。主通路22を流れる被計測気体2は、たとえば、図4および図5に示すように、計測部113の上流側の側面113cに開口する副通路入口114から副通路130に取り込まれる。 The housing 110 has, as shown in FIG. 4, a recessed secondary passage groove 117 and a recessed circuit chamber 118 on the back surface 113b side of the measuring section 113. As shown in FIG. As shown in FIG. 8 , the sub-passage groove 117 forms a sub-passage 130 together with the cover 120 by closing the opening with the cover 120 . The sub-passage 130 is provided in the housing 110, takes in part of the gas 2 to be measured from the main passage 22, and makes a detour. The measured gas 2 flowing through the main passage 22 is taken into the sub-passage 130 from the sub-passage inlet 114 opening at the side surface 113c on the upstream side of the measuring section 113, as shown in FIGS. 4 and 5, for example.
 副通路溝117は、たとえば、図4に示すように、第1副通路溝117aと、第2副通路溝117bとを有している。第1副通路溝117aは、計測部113の上流側の側面113cに開口する副通路入口114から、計測部113の下流側の側面113dに開口する第1出口115まで、主通路22の中心線22a(Y軸方向)に沿って延びている。第1副通路溝117aは、たとえば、図8に示すように、カバー120との間に第1副通路131を形成する。第1副通路131は、副通路入口114から取り込んだ被計測気体2を、第1出口115から主通路22へ戻す。 For example, as shown in FIG. 4, the sub-passage groove 117 has a first sub-passage groove 117a and a second sub-passage groove 117b. The first sub-passage groove 117a extends from the sub-passage inlet 114 opening on the upstream side surface 113c of the measuring section 113 to the first outlet 115 opening on the downstream side surface 113d of the measuring section 113. 22a (Y-axis direction). The first sub-passage groove 117a forms a first sub-passage 131 with the cover 120, for example, as shown in FIG. The first sub-passage 131 returns the measured gas 2 taken in from the sub-passage inlet 114 to the main passage 22 through the first outlet 115 .
 第2副通路溝117bは、図4に示すように、第1副通路溝117aの途中から分岐して、計測部113の突出方向(X軸方向)に沿ってフランジ111へ向けて延びている。さらに、第2副通路溝117bは、反対方向へ折り返すようにU字状にカーブして計測部113の突出方向(X軸方向)に沿って計測部113の先端部へ向けて延びている。第2副通路溝117bは、計測部113の先端部で主通路22の中心線22a(Y軸方向)に沿う方向へカーブして、計測部113の下流側の側面113dに開口する第2出口116に接続されている。たとえば、図7に示すように、第2副通路溝117bは、開口部がカバー120によって閉鎖されることで、カバー120との間に第2副通路132を形成する。副通路130は、第1副通路131と第2副通路132とを含む。 As shown in FIG. 4, the second sub-passage groove 117b branches from the middle of the first sub-passage groove 117a and extends toward the flange 111 along the projecting direction (X-axis direction) of the measuring portion 113. . Further, the second sub-passage groove 117b curves in a U-shape so as to be folded back in the opposite direction and extends toward the tip portion of the measuring portion 113 along the projecting direction (X-axis direction) of the measuring portion 113 . The second sub-passage groove 117b is curved in the direction along the center line 22a (Y-axis direction) of the main passage 22 at the tip of the measuring portion 113, and is a second outlet that opens on the side surface 113d on the downstream side of the measuring portion 113. 116. For example, as shown in FIG. 7 , second subpassage groove 117 b forms second subpassage 132 with cover 120 by closing the opening with cover 120 . Sub-passage 130 includes a first sub-passage 131 and a second sub-passage 132 .
 回路室118は、フランジ111に接続された計測部113の基端側で、計測部113の正面113aおよび背面113bに、凹状に設けられている。回路室118は、副通路溝117の第1副通路溝117aよりも計測部113の基端側で、主通路22を流れる被計測気体2の主流れ方向(Y軸方向)における第2副通路溝117bの上流側に隣接して設けられている。 The circuit chamber 118 is provided in a concave shape on the front face 113a and the back face 113b of the measurement section 113 on the base end side of the measurement section 113 connected to the flange 111 . The circuit chamber 118 is located on the base end side of the measuring section 113 relative to the first sub-passage groove 117a of the sub-passage groove 117, and is the second sub-passage in the main flow direction (Y-axis direction) of the gas to be measured 2 flowing through the main passage 22. It is provided adjacent to the upstream side of the groove 117b.
 回路室118は、図3および図8に示すように、回路基板140の少なくとも一部を囲むハウジング110の内壁面119によって画定されて回路基板140を収容している。計測部113の正面113a側において、ハウジング110の内壁面119は、回路基板140の裏面140bの一部を露出させるように、回路基板140の一部を囲んでいる。一方、計測部113の背面113b側において、ハウジング110の内壁面119は、回路基板140の表面140aの略全体を露出させるように、回路基板140の全体を囲んでいる。 The circuit chamber 118 is defined by an inner wall surface 119 of the housing 110 surrounding at least a portion of the circuit board 140 to accommodate the circuit board 140, as shown in FIGS. The inner wall surface 119 of the housing 110 surrounds part of the circuit board 140 on the side of the front face 113a of the measurement unit 113 so that part of the back surface 140b of the circuit board 140 is exposed. On the other hand, on the back surface 113b side of the measurement unit 113, the inner wall surface 119 of the housing 110 surrounds the entire circuit board 140 so that the substantially entire surface 140a of the circuit board 140 is exposed.
 ハウジング110の内壁面119は、図2および図3に示すように、平面部119aと非平面部119bとを含む。平面部119aは、ハウジング110の内壁面119のうち、物理量検出装置100のハウジング110の厚さ方向(Z方向)から見て直線状に延びている部分である。非平面部119bは、ハウジング110の内壁面119のうち、物理量検出装置100のハウジング110の厚さ方向(Z方向)から見て非直線状の部分である。ハウジング110の内壁面119の非平面部119bは、たとえば、平面部119aと平面部119aとを接続する曲線状または円弧状の部分である。 The inner wall surface 119 of the housing 110 includes a planar portion 119a and a non-flat portion 119b, as shown in FIGS. The planar portion 119 a is a portion of the inner wall surface 119 of the housing 110 that extends linearly when viewed from the thickness direction (Z direction) of the housing 110 of the physical quantity detection device 100 . The non-flat portion 119 b is a non-linear portion of the inner wall surface 119 of the housing 110 when viewed from the thickness direction (Z direction) of the housing 110 of the physical quantity detection device 100 . The non-planar portion 119b of the inner wall surface 119 of the housing 110 is, for example, a curved or arcuate portion that connects the planar portions 119a and 119a.
 ハウジング110は、回路室118を画定する内壁面119に含まれる非平面部119bの少なくとも一部を構成する応力緩和壁119cを有している。図2および図3に示す例において、応力緩和壁119cは、回路室118を画定する内壁面119に含まれる複数の非平面部119bのうち、フランジ111に連結された計測部113の基端部に位置する平面部119aの両端の非平面部119bの全体に沿って設けられている。 The housing 110 has a stress relaxation wall 119c that constitutes at least part of the non-flat portion 119b included in the inner wall surface 119 that defines the circuit chamber 118. In the example shown in FIGS. 2 and 3, the stress relieving wall 119c is the proximal end portion of the measuring portion 113 connected to the flange 111, among the plurality of non-planar portions 119b included in the inner wall surface 119 that defines the circuit chamber 118. are provided along the entirety of the non-flat portions 119b at both ends of the flat portion 119a.
 応力緩和壁119cは、注型材110aとハウジング110の熱膨張差に追従して弾性変形可能な厚さTを有している。この厚さTは、たとえば、注型材110aとハウジング110の熱膨張量と、ハウジング110の素材のヤング率とに基づいて算出することが可能である。応力緩和壁119cの厚さTは、応力緩和壁119cの弾性変形を容易にする観点から、ハウジング110の成形が可能な範囲で、可能な限り薄いことが好ましい。より具体的には、図3に示す例において、応力緩和壁119cの厚さTは、たとえば、0.8[mm]から1.0[mm]までを下限とし、1.5[mm]から2.0[mm]までを上限とすることができる。 The stress relaxation wall 119c has a thickness T that allows elastic deformation following the difference in thermal expansion between the casting material 110a and the housing 110. This thickness T can be calculated, for example, based on the amount of thermal expansion of the casting material 110 a and the housing 110 and the Young's modulus of the material of the housing 110 . From the viewpoint of facilitating elastic deformation of the stress relaxation wall 119c, the thickness T of the stress relaxation wall 119c is preferably as thin as possible within the range where the housing 110 can be molded. More specifically, in the example shown in FIG. 3, the thickness T of the stress relieving wall 119c has a lower limit of 0.8 [mm] to 1.0 [mm], and a thickness of 1.5 [mm] to Up to 2.0 [mm] can be made the upper limit.
 ハウジング110は、回路室118を画定する内壁面119の非平面部119bの少なくとも一部に沿って回路室118の外側に設けられた応力緩和溝119dを有している。図7および図8に示す例において、応力緩和溝119dの開口が形成されたハウジング110の一側、すなわち、計測部113の正面113aから、応力緩和溝119dの底までの深さD1は、ハウジング110の同じ一側から回路基板140の裏面140bまで回路室118の深さD2よりも浅い。しかし、応力緩和溝119dの深さD1は、回路室118の深さD2よりも深くてもよい。 The housing 110 has a stress relaxation groove 119d provided outside the circuit chamber 118 along at least a portion of the non-planar portion 119b of the inner wall surface 119 defining the circuit chamber 118. In the example shown in FIGS. 7 and 8, the depth D1 from one side of the housing 110 in which the opening of the stress relief groove 119d is formed, that is, the front surface 113a of the measuring section 113 to the bottom of the stress relief groove 119d is the housing The depth D2 of the circuit chamber 118 from the same one side of the circuit board 140 to the back surface 140b of the circuit board 140 is shallower. However, the depth D1 of the stress relief groove 119d may be deeper than the depth D2 of the circuit chamber 118.
 また、応力緩和壁119cは、たとえば、回路室118を画定する内壁面119と副通路130との間に形成されていてもよい。より具体的には、図4に示すように、副通路130を形成する副通路溝117のうち、第2副通路溝117bの壁面と回路室118の内壁面119との間に、回路基板140の裏面140b側まで延びる応力緩和壁119cが形成されていてもよい。 Also, the stress relaxation wall 119c may be formed, for example, between the inner wall surface 119 that defines the circuit chamber 118 and the sub-passage 130 . More specifically, as shown in FIG. 4, in the sub-passage groove 117 forming the sub-passage 130, the circuit board 140 is placed between the wall surface of the second sub-passage groove 117b and the inner wall surface 119 of the circuit chamber 118. A stress relieving wall 119c extending to the back surface 140b side of may be formed.
 図3に示すように、応力緩和壁119cは、たとえば、回路室118を画定する内壁面119と応力緩和溝119dとの間に形成されている。図2および図3に示す例において、回路室118を画定するハウジング110の内壁面119は、主通路22の通路壁に固定された計測部113の基端部に設けられた平面部119aを含んでいる。計測部113の基端部の平面部119aは、たとえば、ハウジング110の計測部113の幅方向(Y軸方向)に延びている。そして、応力緩和溝119dは、少なくともその計測部113の基端部の平面部119aに連続する非平面部119bに沿って設けられている。 As shown in FIG. 3, the stress relief wall 119c is formed, for example, between the inner wall surface 119 defining the circuit chamber 118 and the stress relief groove 119d. In the example shown in FIGS. 2 and 3, the inner wall surface 119 of the housing 110 defining the circuit chamber 118 includes a planar portion 119a provided at the base end of the measuring portion 113 fixed to the passage wall of the main passage 22. I'm in. A flat portion 119 a at the base end portion of the measuring portion 113 extends, for example, in the width direction (Y-axis direction) of the measuring portion 113 of the housing 110 . The stress relieving groove 119d is provided along at least the non-flat portion 119b that is continuous with the flat portion 119a at the proximal end portion of the measuring portion 113. As shown in FIG.
 また、ハウジング110の計測部113は、図3に示すように、主通路22の中心線22a方向(Y軸方向)を幅方向とする平板状の形状を有している。そして、計測部113は、主通路22の通路壁に近いフランジ111側の部分ほど、幅方向(Y軸方向)における回路室118の一側を規定する内壁面119が幅方向の内側に位置している。これにより、計測部113は、主通路22の通路壁に近いフランジ111側の部分ほど、計測部113の幅方向(Y軸方向)の一側の側面113cから応力緩和溝119dまでの肉厚が増加している In addition, as shown in FIG. 3, the measuring portion 113 of the housing 110 has a flat plate shape whose width direction is the direction of the center line 22a of the main passage 22 (the Y-axis direction). In the measuring portion 113, the inner wall surface 119 defining one side of the circuit chamber 118 in the width direction (Y-axis direction) is located on the inner side in the width direction as the flange 111 side portion is closer to the passage wall of the main passage 22. ing. As a result, the measuring portion 113 has a thickness from the side surface 113c on one side in the width direction (Y-axis direction) of the measuring portion 113 to the stress relaxation groove 119d in a portion closer to the flange 111 side of the passage wall of the main passage 22. It has increased
 また、ハウジング110は、たとえば、回路室118を画定する内壁面119に沿って設けられた複数の応力緩和溝119dと、それら複数の応力緩和溝119dの隣り合う応力緩和溝119dの間に形成された補強リブ119eと、を有している。 Further, the housing 110 is formed, for example, between a plurality of stress relief grooves 119d provided along the inner wall surface 119 defining the circuit chamber 118 and the adjacent stress relief grooves 119d of the plurality of stress relief grooves 119d. and a reinforcing rib 119e.
 チップパッケージ150は、図4、図7および図8に示すように、回路室118に配置されて接続端子153が設けられた基端部150bと、副通路130の第2副通路132に配置されて流量センサが設けられた先端部150aと、を有している。チップパッケージ150は、たとえば、図示を省略する流量センサと、図8に示す電子部品152とが、熱硬化性樹脂のトランスファーモールドによって一体的に封止された構成を有している。チップパッケージ150は、たとえば、電子部品152によって、流量センサを駆動させる。 As shown in FIGS. 4, 7 and 8, the chip package 150 is arranged in the base end portion 150b arranged in the circuit chamber 118 and provided with the connection terminals 153, and in the second sub-passage 132 of the sub-passage 130. and a distal end 150a having a flow sensor. The chip package 150 has a configuration in which, for example, a flow rate sensor (not shown) and an electronic component 152 shown in FIG. 8 are integrally sealed by thermosetting resin transfer molding. Chip package 150 drives the flow sensor, for example, by means of electronics 152 .
 電子部品152は、たとえば、LSIであり、リードフレーム154を介して流量センサに接続され、流量センサを駆動させる。流量センサは、たとえば、熱式流量センサであり、図7に示すように、チップパッケージ150の先端部150aに設けられた凹溝の底面に露出し、この凹溝と回路基板140の延出部145との間に形成された計測通路132aを流れる被計測気体2の流量を計測する。計測通路132aは、たとえば、図4および図7に示すように、副通路溝117の第2副通路溝117b内、すなわち副通路130の第2副通路132内に形成される。 The electronic component 152 is, for example, an LSI, is connected to the flow sensor via a lead frame 154, and drives the flow sensor. The flow sensor is, for example, a thermal flow sensor, and as shown in FIG. 145 is measured. Measurement passage 132a is formed, for example, in second sub-passage groove 117b of sub-passage groove 117, that is, second sub-passage 132 of sub-passage 130, as shown in FIGS.
 図8に示すように、チップパッケージ150の接続端子153は、回路基板140に実装されている。接続端子153は、たとえば、リードフレーム154を介して電子部品152に接続されている。接続端子153は、たとえば、はんだ等の接合材を介して回路基板140に実装されている。接続端子153は、図4に示すように、硬化性封止材141によって封止されている。硬化性封止材141としては、たとえば、シリコーン系封止材を用いることができる。 As shown in FIG. 8, the connection terminals 153 of the chip package 150 are mounted on the circuit board 140 . Connection terminal 153 is connected to electronic component 152 via lead frame 154, for example. The connection terminal 153 is mounted on the circuit board 140 via a bonding material such as solder, for example. The connection terminal 153 is sealed with a curable sealing material 141, as shown in FIG. For example, a silicone-based sealing material can be used as the curable sealing material 141 .
 また、回路基板140には、流量センサを有するチップパッケージ150の他に、たとえば、図4に示すように、温度センサ160、圧力センサ170、および湿度センサ180の少なくとも一つが実装されている。これら流量センサ、温度センサ160、圧力センサ170、および湿度センサ180は、物理量検出装置100の副通路130に取り込まれた被計測気体2の物理量を検出するセンサ部である。 At least one of a temperature sensor 160, a pressure sensor 170, and a humidity sensor 180 is mounted on the circuit board 140, as shown in FIG. 4, in addition to the chip package 150 having a flow sensor. These flow rate sensor, temperature sensor 160 , pressure sensor 170 , and humidity sensor 180 are sensor units that detect the physical quantity of the gas 2 to be measured taken into the secondary passage 130 of the physical quantity detection device 100 .
 これら流量センサ、温度センサ160、圧力センサ170、および湿度センサ180を含む物理量検出装置100のセンサ部は、回路基板140の表面140aに取り付けられ、回路基板140に実装されている。なお、回路基板140は、流量センサの他に、温度センサ160、圧力センサ170、および湿度センサ180のすべてのセンサ部を備えている必要はなく、いずれかのセンサ部を省略することも可能である。 The sensor section of the physical quantity detection device 100 including the flow rate sensor, temperature sensor 160, pressure sensor 170, and humidity sensor 180 is attached to the surface 140a of the circuit board 140 and mounted on the circuit board 140. Note that the circuit board 140 does not need to include all the sensor units of the temperature sensor 160, the pressure sensor 170, and the humidity sensor 180 in addition to the flow rate sensor, and any one of the sensor units can be omitted. be.
 温度センサ160は、たとえば、回路基板140に実装されたチップ型の温度センサである。温度センサ160は、たとえば、図4および図5に示すように、計測部113の突出方向(X軸方向)において計測部113の先端へ向けて延びる回路基板140の延出部142の先端部に配置されている。温度センサ160は、計測部113の温度計測通路190に配置され、主通路22から温度計測通路190に取り込まれた被計測気体2の温度を測定する。 The temperature sensor 160 is, for example, a chip-type temperature sensor mounted on the circuit board 140 . For example, as shown in FIGS. 4 and 5, temperature sensor 160 is located at the tip of extension 142 of circuit board 140 that extends toward the tip of measurement section 113 in the projection direction (X-axis direction) of measurement section 113. are placed. The temperature sensor 160 is arranged in the temperature measurement passage 190 of the measurement section 113 and measures the temperature of the gas 2 to be measured taken into the temperature measurement passage 190 from the main passage 22 .
 温度計測通路190は、図5に示すように、計測部113の上流側の側面113cに入口を有し、図2および図4に示すように、計測部113の正面113aと背面113bの双方に出口を有している。温度計測通路190は、主通路22を流れる被計測気体2を、計測部113の上流側の側面113cに開口する入口から取り込んで、計測部113の正面113aおよび背面113bに開口する出口から主通路22へ排出する。このような構成により、温度センサ160の放熱性を向上させることができる。 As shown in FIG. 5, the temperature measurement passage 190 has an entrance on the side surface 113c on the upstream side of the measurement unit 113, and as shown in FIGS. have an exit. The temperature measurement passage 190 takes in the gas to be measured 2 flowing through the main passage 22 from an inlet opening on the upstream side surface 113c of the measuring unit 113, and passes through an outlet opening on the front surface 113a and the rear surface 113b of the measuring unit 113. 22. Such a configuration can improve the heat dissipation of the temperature sensor 160 .
 圧力センサ170は、たとえば、図4に示すように、回路基板140の表面140aに実装されて回路室118内に配置されている。回路室118は、フランジ111の近傍でU字状にカーブする第2副通路溝117bの折り返し部、すなわち第2副通路132の折り返し部に連通している。これにより、副通路130に取り込まれた被計測気体2の圧力を、回路室118に配置された圧力センサ170によって測定することが可能になる。 For example, as shown in FIG. 4, the pressure sensor 170 is mounted on the surface 140a of the circuit board 140 and arranged in the circuit chamber 118. The circuit chamber 118 communicates with the folded portion of the second sub-passage groove 117 b that curves in a U shape near the flange 111 , that is, the folded portion of the second sub-passage 132 . This makes it possible to measure the pressure of the gas 2 to be measured taken into the secondary passage 130 by the pressure sensor 170 arranged in the circuit chamber 118 .
 湿度センサ180は、たとえば、図4に示すように、回路基板140の表面140aに実装され、回路室118よりも計測部113の先端側の区画された領域に配置されている。この区画された領域は、たとえば、副通路130の第2副通路132に連通している。これにより、湿度センサ180は、副通路130に取り込まれた被計測気体2の湿度を検出する。 For example, as shown in FIG. 4 , the humidity sensor 180 is mounted on the surface 140 a of the circuit board 140 and arranged in a partitioned area on the tip side of the measuring section 113 relative to the circuit chamber 118 . This partitioned area communicates with, for example, the second sub-passage 132 of the sub-passage 130 . Thereby, the humidity sensor 180 detects the humidity of the gas 2 to be measured taken into the secondary passage 130 .
 以下、本実施形態の物理量検出装置100の作用について説明する。 The operation of the physical quantity detection device 100 of this embodiment will be described below.
 本実施形態の物理量検出装置100は、前述のように、ハウジング110と、副通路130と、センサ部と、回路基板140と、回路室118と、注型材110aと、備えている。ハウジング110は、被計測気体2が流れる主通路22に設置される。副通路130は、ハウジング110に設けられ、主通路22から被計測気体2の一部を取り込む。センサ部は、副通路130に取り込まれた被計測気体2の物理量を検出する。回路基板140は、その表面140aにセンサ部が取り付けられている。回路室118は、回路基板140の少なくとも一部を囲むハウジング110の内壁面119によって画定されて回路基板140を収容する。注型材110aは、回路室118に注型されて回路基板140の裏面140bを封止する。ハウジング110は、回路室118を画定する内壁面119に含まれる非平面部119bの少なくとも一部を構成する応力緩和壁119cを有している。応力緩和壁119cは、注型材110aとハウジング110の熱膨張差に追従して弾性変形可能な厚さTを有する。 As described above, the physical quantity detection device 100 of this embodiment includes the housing 110, the sub-passage 130, the sensor section, the circuit board 140, the circuit chamber 118, and the casting material 110a. The housing 110 is installed in the main passage 22 through which the gas 2 to be measured flows. The sub-passage 130 is provided in the housing 110 and takes in part of the gas 2 to be measured from the main passage 22 . The sensor section detects the physical quantity of the gas 2 to be measured taken into the secondary passage 130 . The circuit board 140 has a sensor section attached to its surface 140a. Circuit chamber 118 is defined by inner wall surface 119 of housing 110 surrounding at least a portion of circuit board 140 to accommodate circuit board 140 . The casting material 110 a is cast into the circuit chamber 118 to seal the back surface 140 b of the circuit board 140 . The housing 110 has a stress relaxation wall 119c forming at least a portion of the non-flat portion 119b included in the inner wall surface 119 defining the circuit chamber 118. As shown in FIG. The stress relaxation wall 119c has a thickness T that allows it to elastically deform according to the difference in thermal expansion between the casting material 110a and the housing 110. As shown in FIG.
 このような構成により、本実施形態の物理量検出装置100は、内燃機関10の吸気通路の一部である主通路22に設置され、エアクリーナ21を介して吸気通路に取り込まれて主通路22を流れる被計測気体2としての吸入空気の一部を、ハウジング110の副通路130に取り込むことができる。さらに、物理量検出装置100は、副通路130に取り込んだ被計測気体2の流量、温度、圧力、または湿度などの物理量を、チップパッケージ150の流量センサ、温度センサ160、圧力センサ170、または湿度センサ180などのセンサ部によって検出し、制御装置4へ出力することができる。また、回路基板140を収容する回路室118に注型材110aが注型され、センサ部が取り付けられた回路基板140の表面140aと反対側の裏面140bが封止されることで、回路基板140に取り付けられた部品の腐食や、回路室118への水滴の浸入が防止される。 With such a configuration, the physical quantity detection device 100 of the present embodiment is installed in the main passage 22 which is a part of the intake passage of the internal combustion engine 10, and the air is taken into the intake passage via the air cleaner 21 and flows through the main passage 22. Part of the intake air as the gas 2 to be measured can be taken into the secondary passage 130 of the housing 110 . Furthermore, the physical quantity detection device 100 detects the physical quantity such as the flow rate, temperature, pressure, or humidity of the gas 2 to be measured taken into the sub-passage 130 through the flow rate sensor, temperature sensor 160, pressure sensor 170, or humidity sensor of the chip package 150. It can be detected by a sensor unit such as 180 and output to the control device 4 . In addition, the casting material 110a is cast into the circuit chamber 118 that accommodates the circuit board 140, and the circuit board 140 is sealed by sealing the front surface 140a of the circuit board 140 to which the sensor part is attached and the back surface 140b opposite to the circuit board 140. Corrosion of attached parts and entry of water droplets into the circuit chamber 118 are prevented.
 また、物理量検出装置100は、ハウジング110および注型材110aの温度上昇または低下時に、回路室118を画定する内壁面119の非平面部119bに隣接する注型材110aの一部において、ハウジング110と注型材110aの熱膨張差による熱応力が集中しやすい。しかし、本実施形態の物理量検出装置100では、回路室118を画定する内壁面119の非平面部119bの少なくとも一部を構成する応力緩和壁119cが、注型材110aとハウジング110の熱膨張差に追従して弾性変形可能な厚さTを有している。そのため、ハウジング110および注型材110aの温度上昇時または温度低下時に、応力緩和壁119cが、注型材110aとハウジング110の熱膨張差に追従して弾性変形して、非平面部119bに隣接する注型材110aの一部に対する熱応力の集中を抑制することで、注型材110aの信頼性を向上させることができる。  In addition, when the temperature of the housing 110 and the casting material 110a rises or falls, the physical quantity detection device 100 detects that a part of the casting material 110a adjacent to the non-flat portion 119b of the inner wall surface 119 that defines the circuit chamber 118 is exposed to the housing 110 and the casting material 110a. Thermal stress due to the difference in thermal expansion of the mold member 110a tends to concentrate. However, in the physical quantity detection device 100 of the present embodiment, the stress relaxation wall 119c that constitutes at least a part of the non-flat portion 119b of the inner wall surface 119 that defines the circuit chamber 118 is affected by the difference in thermal expansion between the casting material 110a and the housing 110. It has a thickness T that can be elastically deformed. Therefore, when the temperature of the housing 110 and the casting material 110a rises or falls, the stress relaxation wall 119c elastically deforms following the difference in thermal expansion between the casting material 110a and the housing 110, resulting in the casting adjacent to the non-flat portion 119b. Reliability of the casting material 110a can be improved by suppressing concentration of thermal stress on a part of the molding material 110a. 
 また、本実施形態の物理量検出装置100において、ハウジング110は、回路室118を画定する内壁面119の非平面部119bの少なくとも一部に沿って回路室118の外側に設けられた応力緩和溝119dを有している。そして、応力緩和壁119cは、回路室118を画定する内壁面119と応力緩和溝119dとの間に形成されている。 In addition, in the physical quantity detection device 100 of the present embodiment, the housing 110 includes a stress relaxation groove 119d provided outside the circuit chamber 118 along at least a portion of the non-planar portion 119b of the inner wall surface 119 defining the circuit chamber 118. have. The stress relieving wall 119c is formed between the inner wall surface 119 defining the circuit chamber 118 and the stress relieving groove 119d.
 このような構成により、回路室118を構成する内壁面119の外側に形成する応力緩和溝119dの位置、幅、深さ、長さを調整することで、応力緩和壁119cの位置、厚さ、高さ、および長さを容易に調節することができる。また、ハウジング110に応力緩和溝119dを形成することで、ハウジング110の軽量化および材料使用量の削減が可能になるだけでなく、成形収縮によって生じるへこみや窪み、すなわちヒケを抑制することができる。 By adjusting the position, width, depth, and length of the stress relaxation groove 119d formed on the outer side of the inner wall surface 119 forming the circuit chamber 118, the position, thickness, and length of the stress relaxation wall 119c can be adjusted. Height and length can be easily adjusted. Further, by forming the stress relief grooves 119d in the housing 110, it is possible not only to reduce the weight of the housing 110 and reduce the amount of material used, but also to suppress dents and recesses caused by molding shrinkage, that is, sink marks. .
 また、本実施形態の物理量検出装置100において、ハウジング110は、主通路22の通路壁に固定されて主通路22の径方向内側へ突出する計測部113を有している。そして、ハウジング110の回路室118を画定する内壁面119は、主通路22に固定された計測部113の基端部に設けられた平面部119aを含んでいる。さらに、応力緩和溝119dは、少なくとも計測部113の基端部に設けられた平面部119aに連続する非平面部119bに沿って設けられている。 In addition, in the physical quantity detection device 100 of the present embodiment, the housing 110 has a measuring portion 113 that is fixed to the passage wall of the main passage 22 and protrudes radially inward of the main passage 22 . An inner wall surface 119 defining a circuit chamber 118 of the housing 110 includes a flat portion 119 a provided at the base end portion of the measuring portion 113 fixed to the main passage 22 . Furthermore, the stress relaxation groove 119 d is provided along a non-flat portion 119 b that is continuous with at least the flat portion 119 a provided at the proximal end portion of the measuring portion 113 .
 このような構成により、本実施形態の物理量検出装置100は、計測部113の基端部において、平面部119aの両側の非平面部119bに沿って、応力緩和壁119cを形成することができる。物理量検出装置100は、主通路22の通路壁に固定された計測部113の基端部が固定端となり、主通路22の径方向内側に位置する計測部113の先端部が自由端となる。そのため、ハウジング110の振動に起因して計測部113に作用する応力は、計測部113の先端部よりも基端部において高くなる。しかし、計測部113の基端部の応力緩和壁119cにより、計測部113の基端部の非平面部119bに隣接する注型材110aの一部に対する応力集中が抑制され、注型材110aの信頼性が向上する。 With such a configuration, the physical quantity detection device 100 of this embodiment can form the stress relaxation wall 119c along the non-planar portions 119b on both sides of the planar portion 119a at the base end portion of the measuring portion 113. In the physical quantity detection device 100, the base end portion of the measuring portion 113 fixed to the passage wall of the main passage 22 is the fixed end, and the distal end portion of the measuring portion 113 located radially inside the main passage 22 is the free end. Therefore, the stress acting on the measuring section 113 due to the vibration of the housing 110 is higher at the proximal end than at the distal end of the measuring section 113 . However, the stress relaxation wall 119c at the proximal end of the measuring portion 113 suppresses stress concentration on a portion of the casting material 110a adjacent to the non-flat portion 119b at the proximal end of the measuring portion 113, and the reliability of the casting material 110a is reduced. improves.
 また、本実施形態の物理量検出装置100において、ハウジング110の計測部113は、主通路22の中心線22a方向を幅方向(Y軸方向)とする平板状の形状を有している。また、計測部113は、図3に示すように、主通路22の通路壁に近いフランジ111側の部分ほど、幅方向(Y軸方向)における回路室118の一側を規定する内壁面119が幅方向の内側に位置することで、計測部113の幅方向の一側から応力緩和溝119dまでの肉厚が増加している。 In addition, in the physical quantity detection device 100 of the present embodiment, the measuring section 113 of the housing 110 has a plate-like shape with the center line 22a direction of the main passage 22 as the width direction (Y-axis direction). In addition, as shown in FIG. 3, the inner wall surface 119 defining one side of the circuit chamber 118 in the width direction (the Y-axis direction) of the measuring portion 113 becomes larger toward the flange 111 side portion closer to the passage wall of the main passage 22 . By being positioned on the inner side in the width direction, the thickness from one side of the measuring portion 113 in the width direction to the stress relaxation groove 119d is increased.
 このような構成により、ハウジング110の振動に起因して計測部113に作用する応力が比較的に高くなる計測部113の基端部において、計測部113の剛性を向上させることができる。これにより、ハウジング110の振動に起因して計測部113の基端部に作用する応力を低下させ、ハウジング110の振動に対する物理量検出装置100の信頼性を向上させることができる。 With such a configuration, it is possible to improve the rigidity of the measuring section 113 at the proximal end portion of the measuring section 113 where the stress acting on the measuring section 113 due to the vibration of the housing 110 is relatively high. As a result, the stress acting on the proximal end portion of the measuring section 113 due to the vibration of the housing 110 can be reduced, and the reliability of the physical quantity detection device 100 against the vibration of the housing 110 can be improved.
 また、本実施形態の物理量検出装置100において、ハウジング110は、回路室118を画定する内壁面119に沿って設けられた複数の応力緩和溝119dと、それら複数の応力緩和溝119dの隣り合う応力緩和溝119dの間に形成された補強リブ119eと、を有する。このような構成により、補強リブ119eによってハウジング110を補強して、応力緩和溝119dの形成によるハウジング110の剛性低下を抑制し、物理量検出装置100の信頼性を向上させることができる。 In addition, in the physical quantity detection device 100 of the present embodiment, the housing 110 includes a plurality of stress relief grooves 119d provided along the inner wall surface 119 defining the circuit chamber 118, and stress relieving grooves adjacent to the plurality of stress relief grooves 119d. and reinforcing ribs 119e formed between the relief grooves 119d. With such a configuration, the housing 110 is reinforced by the reinforcing ribs 119e, and the reduction in rigidity of the housing 110 due to the formation of the stress relaxation grooves 119d can be suppressed, and the reliability of the physical quantity detection device 100 can be improved.
 また、本実施形態の物理量検出装置100において、図7および図8に示す応力緩和溝119dの開口が形成されたハウジング110の一側から応力緩和溝119dの底までの深さD1は、ハウジング110の一側から回路基板140の裏面140bまで回路室118の深さD2よりも深くすることができる。 Further, in the physical quantity detection device 100 of the present embodiment, the depth D1 from one side of the housing 110 where the opening of the stress relaxation groove 119d shown in FIGS. From one side of the circuit board 140 to the back surface 140b of the circuit board 140, the depth D2 of the circuit chamber 118 can be made deeper.
 このような構成により、回路室118の内壁面119と応力緩和溝119dとの間に形成される応力緩和壁119cが、ハウジング110と注型材110aの熱膨張差に追従して、より弾性変形しやすくなる。そのため、回路室118の内壁面119の非平面部119bに隣接する注型材110aの一部に対する熱応力の集中をより効果的に抑制して、物理量検出装置100の信頼性をより向上させることができる。 With such a configuration, the stress relaxation wall 119c formed between the inner wall surface 119 of the circuit chamber 118 and the stress relaxation groove 119d follows the difference in thermal expansion between the housing 110 and the casting material 110a and deforms more elastically. easier. Therefore, the concentration of thermal stress on a part of the casting material 110a adjacent to the non-flat portion 119b of the inner wall surface 119 of the circuit chamber 118 can be more effectively suppressed, and the reliability of the physical quantity detection device 100 can be further improved. can.
 また、本実施形態の物理量検出装置100において、応力緩和壁119cは、回路室118を画定する内壁面119と副通路130との間に形成されていてもよい。このような構成により、ハウジング110の副通路130を応力緩和溝119dとして利用して、ハウジング110と注型材110aの熱膨張差によって注型材110aに生じる熱応力を低減することができ、物理量検出装置100の信頼性を向上させることができる。 Further, in the physical quantity detection device 100 of the present embodiment, the stress relaxation wall 119c may be formed between the inner wall surface 119 that defines the circuit chamber 118 and the secondary passage 130 . With such a configuration, the secondary passage 130 of the housing 110 can be used as the stress relaxation groove 119d to reduce the thermal stress generated in the casting material 110a due to the difference in thermal expansion between the housing 110 and the casting material 110a. 100 reliability can be improved.
 以上説明したように、本実施形態によれば、ハウジング110に注型される注型材110aに作用する熱応力を緩和させ、信頼性を向上させることが可能な物理量検出装置100を提供することができる。なお、本開示に係る物理量検出装置は、前述の実施形態に係る物理量検出装置100の構成に限定されない。以下、図9から図17を参照して、前述の実施形態に係る物理量検出装置100の変形例1から変形例9を説明する。 As described above, according to the present embodiment, it is possible to provide the physical quantity detection device 100 capable of alleviating the thermal stress acting on the casting material 110a cast into the housing 110 and improving the reliability. can. Note that the physical quantity detection device according to the present disclosure is not limited to the configuration of the physical quantity detection device 100 according to the above-described embodiment. Modifications 1 to 9 of the physical quantity detection device 100 according to the above embodiment will be described below with reference to FIGS. 9 to 17 .
 図9は、前述の実施形態に係る物理量検出装置100の変形例1を示す正面図である。なお、図9は、前述の実施形態に係る物理量検出装置100の図3に対応しており、さらに回路基板140を取り除いた状態を示している。この変形例1に係る物理量検出装置100は、応力緩和壁119cおよび応力緩和溝119dが、回路室118を3方向から囲むように連続的に設けられている点で、図3に示す前述の実施形態に係る物理量検出装置100と異なっている。 FIG. 9 is a front view showing Modification 1 of the physical quantity detection device 100 according to the above embodiment. Note that FIG. 9 corresponds to FIG. 3 of the physical quantity detection device 100 according to the above-described embodiment, and shows a state in which the circuit board 140 is removed. In the physical quantity detection device 100 according to Modification 1, the stress relaxation wall 119c and the stress relaxation groove 119d are continuously provided so as to surround the circuit chamber 118 from three directions. It differs from the physical quantity detection device 100 according to the embodiment.
 より具体的には、図9に示す変形例1の物理量検出装置100において、応力緩和壁119cおよび応力緩和溝119dは、ハウジング110の回路室118を、次の3方向から囲んでいる。第1の方向は、被計測気体2の順流時における上流側(Y軸負方向側)である。第2の方向は、ハウジング110の計測部113の突出方向(X軸方向)における基端側(主通路22の径方向外側)である。第3の方向は、被計測気体2の順流時の下流側(Y軸正方向側)である。 More specifically, in the physical quantity detection device 100 of Modification 1 shown in FIG. 9, the stress relaxation wall 119c and the stress relaxation groove 119d surround the circuit chamber 118 of the housing 110 from the following three directions. The first direction is the upstream side (Y-axis negative direction side) when the gas 2 to be measured flows forward. The second direction is the base end side (outside in the radial direction of the main passage 22) in the projecting direction (X-axis direction) of the measuring portion 113 of the housing 110. As shown in FIG. The third direction is the downstream side (Y-axis positive direction side) when the gas 2 to be measured flows forward.
 回路室118を第1の方向から囲む応力緩和壁119cおよび応力緩和溝119dの一部は、計測部113の先端側の非平面部119bから、計測部113の基端側の非平面部119bまで回路室118の内壁面119に沿って連続的に延びている。回路室118を第2の方向から囲む応力緩和壁119cおよび応力緩和溝119dの一部は、計測部113の幅方向(Y軸方向)における回路室118の一端から他端まで、計測部113の幅方向に沿って延びている。回路室118を第3の方向から囲む応力緩和壁119cおよび応力緩和溝119dの一部は、計測部113の基端側に位置する回路室118の非平面部119bから、第2副通路132の折り返し部分に隣接する非平面部119bまで、計測部113の突出方向(X軸方向)へ延びている。 Part of the stress relaxation wall 119c and the stress relaxation groove 119d surrounding the circuit chamber 118 from the first direction extends from the non-flat portion 119b on the distal end side of the measuring portion 113 to the non-flat portion 119b on the proximal side of the measuring portion 113. It extends continuously along the inner wall surface 119 of the circuit chamber 118 . Part of the stress relaxation wall 119c and the stress relaxation groove 119d surrounding the circuit chamber 118 in the second direction extends from one end to the other end of the circuit chamber 118 in the width direction (Y-axis direction) of the measurement unit 113. It extends along the width direction. Part of stress relaxation wall 119 c and stress relaxation groove 119 d surrounding circuit chamber 118 from the third direction extends from non-planar portion 119 b of circuit chamber 118 located on the base end side of measuring section 113 to second sub-passage 132 . It extends in the projecting direction (X-axis direction) of the measuring portion 113 to the non-flat portion 119b adjacent to the folded portion.
 本変形例に係る物理量検出装置100によれば、前述の実施形態に係る物理量検出装置100と同様の効果を奏することができる。また、本変形例に係る物理量検出装置100は、応力緩和壁119cおよび応力緩和溝119dが回路室118を上記3方向から囲むように連続的に設けられていることで、ハウジング110と注型材110aとの熱膨張差に起因する熱応力をより効果的に緩和することが可能になる。 According to the physical quantity detection device 100 according to this modified example, it is possible to achieve the same effects as the physical quantity detection device 100 according to the above-described embodiment. Further, in the physical quantity detection device 100 according to the present modification, the stress relaxation wall 119c and the stress relaxation groove 119d are continuously provided so as to surround the circuit chamber 118 from the above three directions. It is possible to more effectively relax the thermal stress caused by the difference in thermal expansion between the
 なお、本変形例に係る物理量検出装置100において、応力緩和溝119dは、回路基板140を囲む内壁面119の周方向において、2以上の異なる深さD1を有してもよい。このような構成により、内壁面119の周方向の位置に応じて、応力緩和壁119cの弾性変形の容易性を調節することができ、注型材110aに熱応力が集中するのをより効果的に抑制することができる。 In addition, in the physical quantity detection device 100 according to this modified example, the stress relaxation groove 119d may have two or more different depths D1 in the circumferential direction of the inner wall surface 119 surrounding the circuit board 140 . With such a configuration, the easiness of elastic deformation of the stress relaxation wall 119c can be adjusted according to the position of the inner wall surface 119 in the circumferential direction. can be suppressed.
 図10は、前述の実施形態に係る物理量検出装置100の変形例2を示す正面図である。本変形例に係る物理量検出装置100は、回路室118を3方向から囲む応力緩和溝119dが複数の補強リブ119eによって分割されている点で、図9に示す変形例1に係る物理量検出装置100と異なっている。本変形例に係る物理量検出装置100によれば、変形例1に係る物理量検出装置100と同様の効果に加え、複数の補強リブ119eによってハウジング110を補強して、応力緩和溝119dの形成によるハウジング110の剛性低下を抑制し、物理量検出装置100の信頼性を向上させることができる。 FIG. 10 is a front view showing Modification 2 of the physical quantity detection device 100 according to the above embodiment. In the physical quantity detection device 100 according to the present modification, the stress relaxation groove 119d surrounding the circuit chamber 118 from three directions is divided by a plurality of reinforcing ribs 119e. is different from According to the physical quantity detection device 100 according to the present modification, in addition to the same effects as the physical quantity detection device 100 according to the first modification, the housing 110 is reinforced by the plurality of reinforcing ribs 119e, and the stress relaxation grooves 119d are formed to provide the housing 110 with the stress relaxation grooves 119d. It is possible to suppress a decrease in rigidity of the physical quantity detection device 110 and improve the reliability of the physical quantity detection device 100 .
 図11は、前述の実施形態に係る物理量検出装置100の変形例3を示す正面図である。本変形例に係る物理量検出装置100は、応力緩和溝119dのうち、最も被計測気体2の下流側(Y軸正方向側)、かつ、最も計測部113の基端側(X軸負方向側)に設けられた応力緩和溝119dが、計測部113の先端側へ向けて延びている点で、図3に示す前述の実施形態に係る物理量検出装置100と異なっている。 FIG. 11 is a front view showing Modification 3 of the physical quantity detection device 100 according to the above embodiment. The physical quantity detection device 100 according to the present modification is configured such that, in the stress relaxation groove 119d, it is located closest to the downstream side of the gas to be measured 2 (Y-axis positive direction side) and closest to the base end side of the measuring section 113 (X-axis negative direction side). ) extends toward the distal end side of the measuring section 113, which is different from the physical quantity detecting device 100 according to the above-described embodiment shown in FIG.
 本変形例の物理量検出装置100において、上記の応力緩和溝119dは、ハウジング110の凹部119fと連結されて、主通路22の中心線22a方向、すなわち計測部113の幅方向(Y軸方向)に拡張されている。上記の応力緩和溝119dの深さD1と凹部119fの深さは、異なっていてもよい。このような構成により、上記の応力緩和溝119dと回路室118の内壁面119との間に形成される応力緩和壁119cを、計測部113の突出方向(X軸方向)に延長することができ、注型材110aに発生する熱応力をより効果的に緩和することができる。 In the physical quantity detection device 100 of this modified example, the stress relaxation groove 119d is connected to the recess 119f of the housing 110, and extends in the direction of the center line 22a of the main passage 22, that is, in the width direction (Y-axis direction) of the measuring section 113. Extended. The depth D1 of the stress relief groove 119d and the depth of the recess 119f may be different. With this configuration, the stress relaxation wall 119c formed between the stress relaxation groove 119d and the inner wall surface 119 of the circuit chamber 118 can be extended in the projecting direction (X-axis direction) of the measuring section 113. , the thermal stress generated in the casting material 110a can be more effectively relieved.
 図12は、前述の実施形態に係る物理量検出装置100の変形例4を示す正面図である。本変形例に係る物理量検出装置100は、回路室118の内壁面119のうち、第2副通路132よりも計測部113の基端側(X軸負方向側)に位置する部分がすべて円弧状の非平面部119bとなっている点で、前述の実施形態に係る物理量検出装置100と異なっている。本変形例に係る物理量検出装置100においても、前述の実施形態に係る物理量検出装置100と同様の効果を奏することができる。 FIG. 12 is a front view showing Modification 4 of the physical quantity detection device 100 according to the above embodiment. In the physical quantity detection device 100 according to the present modification, the portion of the inner wall surface 119 of the circuit chamber 118 that is located closer to the base end side (X-axis negative direction side) of the measurement unit 113 than the second sub-passage 132 is all arcuate. is different from the physical quantity detection device 100 according to the above-described embodiment in that it has a non-flat portion 119b. The physical quantity detection device 100 according to this modified example can also achieve the same effect as the physical quantity detection device 100 according to the above-described embodiment.
 なお、図12に示す回路室118の形状が、たとえば、円形、楕円形、その他の閉曲線である場合のように、回路室118を画定する内壁面119は、非平面部119bのみを含んでいてもよい。また、回路室118の形状が、たとえば、三角形、四角形、その他の多角形である場合のように、回路室118を画定する内壁面119は、複数の平面部119aを含み、非平面部119bは、複数の平面部119aの隣り合う平面部119aの間の角部であってもよい。このような場合でも、前述の実施形態に係る物理量検出装置100と同様の効果を奏することができる。 In addition, as in the case where the shape of the circuit chamber 118 shown in FIG. 12 is, for example, a circle, an ellipse, or another closed curve, the inner wall surface 119 defining the circuit chamber 118 includes only the non-flat portion 119b. good too. In addition, the inner wall surface 119 that defines the circuit chamber 118 includes a plurality of flat portions 119a, and the non-flat portion 119b includes a plurality of flat portions 119a, as in the case where the shape of the circuit chamber 118 is, for example, a triangle, a square, or another polygon. , a corner portion between adjacent flat portions 119a of a plurality of flat portions 119a. Even in such a case, the same effects as those of the physical quantity detection device 100 according to the above-described embodiment can be obtained.
 図13は、前述の実施形態に係る物理量検出装置100の変形例5を示す正面図である。本変形例に係る物理量検出装置100は、応力緩和溝119dの少なくとも一部に、注型材110aと同一の素材の充填材110bが充填されている点で、図10に示す変形例2に係る物理量検出装置100と異なっている。より具体的には、本変形例の物理量検出装置100は、回路室118の内壁面119のうち、最も計測部113の基端側(X軸負方向側)に位置する平面部119aの両端の非平面部119bに沿って形成された二つの応力緩和溝119dに充填材110bが充填されている。 FIG. 13 is a front view showing Modification 5 of the physical quantity detection device 100 according to the above embodiment. In the physical quantity detection device 100 according to this modification, at least a part of the stress relaxation groove 119d is filled with the filler 110b made of the same material as the casting material 110a. It differs from the detection device 100 . More specifically, in the physical quantity detection device 100 of the present modified example, the inner wall surface 119 of the circuit chamber 118 has a flat portion 119a located closest to the base end side of the measuring portion 113 (X-axis negative direction side). Two stress relief grooves 119d formed along the non-planar portion 119b are filled with the filler 110b.
 このような構成により、注型材110aのうち、上記平面部119aの両端の非平面部119bに隣接する部分において、応力緩和壁119cを介して応力緩和溝119dに充填された充填材110bが、注型材110aと同様に熱膨張する。その結果、注型材110aのうち、上記平面部119aの両端の非平面部119bに隣接する部分に作用する熱応力が緩和され、物理量検出装置100の信頼性が向上する。 With such a configuration, the filling material 110b filled in the stress relaxation grooves 119d via the stress relaxation walls 119c in the portions of the casting material 110a adjacent to the non-flat parts 119b at both ends of the flat part 119a is injected. It thermally expands similarly to the molding material 110a. As a result, the thermal stress acting on the portions of the casting material 110a adjacent to the non-flat portions 119b at both ends of the flat portion 119a is relaxed, and the reliability of the physical quantity detection device 100 is improved.
 図14は、前述の実施形態に係る物理量検出装置100の変形例6を示す正面図である。本変形例に係る物理量検出装置100は、回路室118を画定する内壁面119が突出部119gを有している点で、前述の実施形態に係る物理量検出装置100と異なっている。突出部119gは、回路室118の内壁面119のうち、最も計測部113の基端側(X軸負方向側)に位置する平面部119aの両端の非平面部119bに対し、計測部113の先端側(X軸正方向側)に隣接する平面部119aに設けられている。 FIG. 14 is a front view showing Modification 6 of the physical quantity detection device 100 according to the above embodiment. A physical quantity detection device 100 according to this modification differs from the physical quantity detection device 100 according to the above-described embodiment in that an inner wall surface 119 defining a circuit chamber 118 has a projecting portion 119g. The projecting portion 119g is located on the inner wall surface 119 of the circuit chamber 118, and is located closest to the base end side (X-axis negative direction side) of the measuring portion 113 with respect to the non-planar portions 119b at both ends of the flat portion 119a. It is provided on the flat portion 119a adjacent to the tip side (X-axis positive direction side).
 突出部119gは、上記平面部119aにおいて、上記非平面部119bに隣接する端部に設けられ、上記平面部119aに対して垂直に回路室118の外側へ突出している。このような構成により、突出部119gの近傍において、注型材110aに熱応力が集中しやすくなる。その結果、注型材110aの上記非平面部119bに隣接する部分に対する熱応力の集中が緩和され、物理量検出装置100の信頼性を向上させることができる。 The protruding portion 119g is provided at the end of the flat portion 119a adjacent to the non-flat portion 119b, and protrudes outside the circuit chamber 118 perpendicularly to the flat portion 119a. With such a configuration, thermal stress tends to concentrate on the casting material 110a in the vicinity of the projecting portion 119g. As a result, the concentration of thermal stress on the portion of the casting material 110a adjacent to the non-flat portion 119b is alleviated, and the reliability of the physical quantity detection device 100 can be improved.
 図15は、前述の実施形態に係る物理量検出装置100の変形例7を示す正面図である。本変形例に係る物理量検出装置100は、回路室118を画定する内壁面119が陥凹部119hを有している点で、前述の実施形態に係る物理量検出装置100と異なっている。陥凹部119hは、回路室118の内壁面119が、回路室118の内側に円弧状に陥凹した部分である。 FIG. 15 is a front view showing Modification 7 of the physical quantity detection device 100 according to the above embodiment. A physical quantity detection device 100 according to this modification differs from the physical quantity detection device 100 according to the above-described embodiment in that an inner wall surface 119 defining a circuit chamber 118 has a recessed portion 119h. 119 h of recessed parts are the parts which the inner wall surface 119 of the circuit chamber 118 recessed in the inner side of the circuit chamber 118 at circular arc shape.
 図15に示す例では、複数の陥凹部119hが、内壁面119の周方向に間隔をあけて設けられている。このような構成により、各々の陥凹部119hの近傍において、注型材110aに熱応力が集中しやすくなる。その結果、全体として注型材110aに対する熱応力の集中が緩和され、物理量検出装置100の信頼性を向上させることができる。 In the example shown in FIG. 15, a plurality of recesses 119h are provided in the inner wall surface 119 at intervals in the circumferential direction. Such a configuration makes it easier for thermal stress to concentrate on the casting material 110a in the vicinity of each recessed portion 119h. As a result, the concentration of thermal stress on the casting material 110a is alleviated as a whole, and the reliability of the physical quantity detection device 100 can be improved.
 図16は、前述の実施形態に係る物理量検出装置100の変形例8を示す断面拡大図である。前述の実施形態および変形例1から変形例7に係る物理量検出装置100では、応力緩和溝119dが計測部113に設けられていたが、本変形例に係る物理量検出装置100は、フランジ111に応力緩和溝119dが設けられている。この応力緩和溝119dは、副通路130の突出方向(X軸方向)に深さを有している。本変形例に係る物理量検出装置100によれば、前述の実施形態に係る物理量検出装置100と同様の効果を奏することができる。 FIG. 16 is an enlarged cross-sectional view showing Modification 8 of the physical quantity detection device 100 according to the above embodiment. In the physical quantity detection device 100 according to the above-described embodiment and modifications 1 to 7, the stress relaxation groove 119d is provided in the measurement unit 113. A relaxation groove 119d is provided. The stress relief groove 119d has a depth in the projecting direction (X-axis direction) of the sub-passage 130. As shown in FIG. According to the physical quantity detection device 100 according to this modified example, it is possible to obtain the same effects as the physical quantity detection device 100 according to the above-described embodiment.
 図17は、前述の実施形態に係る物理量検出装置100の変形例9を示す断面拡大図である。前述の実施形態に係る物理量検出装置100と同様に、本変形例に係る物理量検出装置100において、ハウジング110は、主通路22の通路壁に固定されるフランジ111と、そのフランジ111に連結されて主通路22の径方向内側へ突出する計測部113とを有している。また、本変形例の物理量検出装置100において、回路室118は、フランジ111に設けられている。本変形例に係る物理量検出装置100においても、前述の実施形態に係る物理量検出装置100と同様の効果を奏することができる。 FIG. 17 is an enlarged cross-sectional view showing Modification 9 of the physical quantity detection device 100 according to the above embodiment. As in the physical quantity detection device 100 according to the above-described embodiment, in the physical quantity detection device 100 according to this modification, the housing 110 includes a flange 111 fixed to the passage wall of the main passage 22 and a flange 111 connected to the flange 111. and a measuring portion 113 protruding radially inward of the main passage 22 . Further, in the physical quantity detection device 100 of this modified example, the circuit chamber 118 is provided in the flange 111 . The physical quantity detection device 100 according to this modified example can also achieve the same effect as the physical quantity detection device 100 according to the above-described embodiment.
 以上、図面を用いて本開示に係る物理量検出装置の実施形態およびその変形例を詳述してきたが、具体的な構成は上記実施形態およびその変形例に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 The embodiments and modifications thereof of the physical quantity detection device according to the present disclosure have been described in detail above with reference to the drawings, but the specific configuration is not limited to the above embodiments and modifications thereof. Even if there are design changes, etc. within a range that does not deviate from the gist, they are included in the present disclosure.
2    被計測気体
22   主通路
22a  中心線
100  物理量検出装置
110  ハウジング
110a 注型材
110b 充填材
111  フランジ
113  計測部
118  回路室
119  内壁面
119a 平面部
119b 非平面部
119c 応力緩和壁
119d 応力緩和溝
119e 補強リブ
130  副通路
150  チップパッケージ(センサ部)
160  温度センサ(センサ部)
170  圧力センサ(センサ部)
180  湿度センサ(センサ部)
140  回路基板
140a 表面
140b 裏面
D1   深さ
D2   深さ
T    厚さ
2 Gas to be measured 22 Main passage 22a Center line 100 Physical quantity detector 110 Housing 110a Casting material 110b Filling material 111 Flange 113 Measuring part 118 Circuit room 119 Inner wall surface 119a Flat part 119b Non-flat part 119c Stress relaxation wall 119d Stress relaxation groove 119e Reinforcement Rib 130 Secondary passage 150 Chip package (sensor section)
160 temperature sensor (sensor part)
170 pressure sensor (sensor part)
180 Humidity sensor (sensor part)
140 Circuit board 140a Front surface 140b Back surface D1 Depth D2 Depth T Thickness

Claims (12)

  1.  被計測気体が流れる主通路に設置されるハウジングと、
     前記ハウジングに設けられて前記主通路から前記被計測気体の一部を取り込む副通路と、
     前記副通路に取り込まれた前記被計測気体の物理量を検出するセンサ部と、
     前記センサ部が表面に取り付けられた回路基板と、
     前記回路基板の少なくとも一部を囲む前記ハウジングの内壁面によって画定されて前記回路基板を収容する回路室と、
     前記回路室に注型されて前記回路基板の裏面を封止する注型材と、
     を備えた物理量検出装置であって、
     前記ハウジングは、前記回路室を画定する前記内壁面に含まれる非平面部の少なくとも一部を構成する応力緩和壁を有し、
     前記応力緩和壁は、前記注型材と前記ハウジングの熱膨張差に追従して弾性変形可能な厚さを有することを特徴とする物理量検出装置。
    a housing installed in a main passage through which the gas to be measured flows;
    a sub-passage provided in the housing and taking in part of the gas to be measured from the main passage;
    a sensor unit that detects a physical quantity of the gas to be measured taken into the secondary passage;
    a circuit board on which the sensor unit is attached;
    a circuit chamber defined by an inner wall surface of the housing surrounding at least a portion of the circuit board and containing the circuit board;
    a casting material that is cast into the circuit chamber and seals the back surface of the circuit board;
    A physical quantity detection device comprising
    The housing has a stress relief wall that constitutes at least part of a non-flat portion included in the inner wall surface that defines the circuit chamber,
    The physical quantity detection device, wherein the stress relaxation wall has a thickness capable of being elastically deformed following a thermal expansion difference between the casting material and the housing.
  2.  前記ハウジングは、前記回路室を画定する前記内壁面の前記非平面部の少なくとも一部に沿って前記回路室の外側に設けられた応力緩和溝を有し、
     前記応力緩和壁は、前記回路室を画定する前記内壁面と前記応力緩和溝との間に形成されていることを特徴とする請求項1に記載の物理量検出装置。
    the housing has a stress relief groove provided outside the circuit chamber along at least a portion of the non-flat portion of the inner wall surface defining the circuit chamber;
    2. The physical quantity detection device according to claim 1, wherein the stress relaxation wall is formed between the inner wall surface defining the circuit chamber and the stress relaxation groove.
  3.  前記ハウジングは、前記主通路の通路壁に固定されて前記主通路の径方向内側へ突出する計測部を有し、
     前記回路室を画定する前記内壁面は、前記通路壁に固定された前記計測部の基端部に設けられた平面部を含み、
     前記応力緩和溝は、少なくとも前記平面部に連続する前記非平面部に沿って設けられていることを特徴とする請求項2に記載の物理量検出装置。
    The housing has a measuring portion that is fixed to a passage wall of the main passage and protrudes radially inward of the main passage,
    The inner wall surface defining the circuit chamber includes a flat portion provided at the base end portion of the measurement portion fixed to the passage wall,
    3. The physical quantity detection device according to claim 2, wherein the stress relaxation groove is provided along at least the non-flat portion continuous with the flat portion.
  4.  前記ハウジングの前記計測部は、前記主通路の中心線方向を幅方向とする平板状の形状を有し、
     前記計測部は、前記主通路の前記通路壁に近い部分ほど、前記幅方向における前記回路室の一側を規定する前記内壁面が前記幅方向の内側に位置することで前記計測部の前記幅方向の一側から前記応力緩和溝までの肉厚が増加していることを特徴とする請求項3に記載の物理量検出装置。
    the measuring portion of the housing has a flat plate-like shape whose width direction is the center line direction of the main passage;
    In the measuring portion, the inner wall surface defining one side of the circuit chamber in the width direction is located inside the width direction in a portion closer to the passage wall of the main passage. 4. The physical quantity detection device according to claim 3, wherein the thickness from one side in the direction to the stress relaxation groove increases.
  5.  前記ハウジングは、前記回路室を画定する前記内壁面に沿って設けられた複数の前記応力緩和溝と、該複数の前記応力緩和溝の隣り合う前記応力緩和溝の間に形成された補強リブと、を有することを特徴とする請求項2に記載の物理量検出装置。 The housing includes a plurality of stress relief grooves provided along the inner wall surface defining the circuit chamber, and reinforcing ribs formed between the stress relief grooves adjacent to each other in the plurality of stress relief grooves. 3. The physical quantity detection device according to claim 2, comprising:
  6.  前記応力緩和溝は、前記回路基板を囲む前記内壁面の周方向において、2以上の異なる深さを有することを特徴とする請求項2に記載の物理量検出装置。 The physical quantity detection device according to claim 2, wherein the stress relaxation groove has two or more different depths in the circumferential direction of the inner wall surface surrounding the circuit board.
  7.  前記応力緩和溝の開口が形成された前記ハウジングの一側から前記応力緩和溝の底までの深さは、前記ハウジングの前記一側から前記回路基板の前記裏面まで前記回路室の深さよりも深いことを特徴とする請求項2に記載の物理量検出装置。 The depth from the one side of the housing where the opening of the stress relief groove is formed to the bottom of the stress relief groove is greater than the depth of the circuit chamber from the one side of the housing to the rear surface of the circuit board. 3. The physical quantity detection device according to claim 2, wherein:
  8.  前記応力緩和壁は、前記回路室を画定する前記内壁面と前記副通路との間に形成されていることを特徴とする請求項1に記載の物理量検出装置。 The physical quantity detection device according to claim 1, wherein the stress relaxation wall is formed between the inner wall surface defining the circuit chamber and the secondary passage.
  9.  前記ハウジングは、前記主通路の通路壁に固定されるフランジと、該フランジに連結されて前記主通路の径方向内側へ突出する計測部とを有し、
     前記回路室は、前記フランジに設けられていることを特徴とする請求項1に記載の物理量検出装置。
    The housing has a flange fixed to a passage wall of the main passage, and a measuring portion connected to the flange and protruding radially inward of the main passage,
    2. The physical quantity detection device according to claim 1, wherein the circuit chamber is provided in the flange.
  10.  前記回路室を画定する前記内壁面は、前記非平面部のみを含むことを特徴とする請求項1に記載の物理量検出装置。 The physical quantity detection device according to claim 1, wherein the inner wall surface defining the circuit chamber includes only the non-flat portion.
  11.  前記回路室を画定する前記内壁面は、複数の平面部を含み、
     前記非平面部は、前記複数の平面部の隣り合う平面部の間の角部であることを特徴とする請求項1に記載の物理量検出装置。
    The inner wall surface defining the circuit chamber includes a plurality of planar portions,
    2. The physical quantity detection device according to claim 1, wherein the non-flat portion is a corner portion between adjacent flat portions of the plurality of flat portions.
  12.  前記応力緩和溝の少なくとも一部に、前記注型材と同一の素材の充填材が充填されていることを特徴とする請求項2に記載の物理量検出装置。 The physical quantity detection device according to claim 2, wherein at least part of the stress relaxation groove is filled with a filler made of the same material as the casting material.
PCT/JP2022/005443 2021-06-02 2022-02-10 Physical quantity detection device WO2022254803A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280027424.XA CN117120811A (en) 2021-06-02 2022-02-10 Physical quantity detecting device
JP2023525384A JPWO2022254803A1 (en) 2021-06-02 2022-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-092868 2021-06-02
JP2021092868 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022254803A1 true WO2022254803A1 (en) 2022-12-08

Family

ID=84324142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005443 WO2022254803A1 (en) 2021-06-02 2022-02-10 Physical quantity detection device

Country Status (3)

Country Link
JP (1) JPWO2022254803A1 (en)
CN (1) CN117120811A (en)
WO (1) WO2022254803A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090413A (en) * 2014-11-06 2016-05-23 日立オートモティブシステムズ株式会社 Thermal type air flow meter
JP2016194465A (en) * 2015-04-01 2016-11-17 日立オートモティブシステムズ株式会社 Physical quantity detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090413A (en) * 2014-11-06 2016-05-23 日立オートモティブシステムズ株式会社 Thermal type air flow meter
JP2016194465A (en) * 2015-04-01 2016-11-17 日立オートモティブシステムズ株式会社 Physical quantity detector

Also Published As

Publication number Publication date
JPWO2022254803A1 (en) 2022-12-08
CN117120811A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6771111B2 (en) Physical quantity detector
WO2013187229A1 (en) Thermal flow meter
JP6118150B2 (en) Thermal flow meter
CN112236652A (en) Physical quantity detecting device
WO2022254803A1 (en) Physical quantity detection device
JP2016194465A (en) Physical quantity detector
JP2021067510A (en) Physical quantity detection device
JP6995020B2 (en) Physical quantity detector
JPWO2019064886A1 (en) Physical quantity detector
JP6964559B2 (en) Manufacturing method of physical quantity detector
WO2020003809A1 (en) Physical quantity detector
WO2022264498A1 (en) Physical quantity detection device
JP7356957B2 (en) Physical quantity detection device
JPWO2020110820A1 (en) Physical quantity measuring device
WO2022064771A1 (en) Physical quantity measurement device
WO2020202723A1 (en) Physical quantity detection device
JP6884926B2 (en) Physical quantity detector
JP7164282B2 (en) Air flow measuring device
JP6775629B2 (en) Physical quantity detection element
JPWO2019064933A1 (en) Physical quantity detector
JP7511685B2 (en) Physical quantity detection device
JP2019207173A (en) Circuit package and flow rate measuring device
WO2018225351A1 (en) Physical quantity detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525384

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815562

Country of ref document: EP

Kind code of ref document: A1