WO2022254779A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2022254779A1
WO2022254779A1 PCT/JP2022/002793 JP2022002793W WO2022254779A1 WO 2022254779 A1 WO2022254779 A1 WO 2022254779A1 JP 2022002793 W JP2022002793 W JP 2022002793W WO 2022254779 A1 WO2022254779 A1 WO 2022254779A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
sensor
voltage
movable member
generation unit
Prior art date
Application number
PCT/JP2022/002793
Other languages
French (fr)
Japanese (ja)
Inventor
優作 清水
雅明 野田
泰明 亀山
清仁 丸尾
悠佑 長田
康平 橘田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022254779A1 publication Critical patent/WO2022254779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present disclosure relates to sensors. More particularly, the present disclosure relates to sensors that operate on electrical power generated in response to movement of a moveable member.
  • Patent Literature 1 includes a cylinder body, a piston member attached to the cylinder body so as to be able to advance and retreat, a position detection mechanism capable of detecting the position of the piston member, and an interlocking rod that advances and retreats in conjunction with the piston member.
  • a conventional hydraulic cylinder is disclosed.
  • the position detection mechanism includes a forward position detection switch that detects that the detected part provided on the interlocking rod has moved to the forward setting position, and a backward position detection switch that detects that the detected part has moved to the backward limit position. and have.
  • the sensor includes a movable member, a return spring, a power generation unit, a battery, and a transmission unit.
  • the movable member is movable between a first position and a second position located below the first position.
  • the return spring applies an upward return force to the movable member.
  • the power generation unit generates power by moving the movable member.
  • the transmitting unit transmits radio signals.
  • the power generation unit includes a first power generation section and a second power generation section. Each of the first power generation section and the second power generation section generates power by bending according to the movement of the movable member. As the movable member moves from the first position to the second position, the first power generating section generates a first voltage.
  • the second power generating section After the movable member that has moved to the second position receives the restoring force of the return spring and moves to an intermediate position between the second position and the first position, the movable member moves from the intermediate position to the By moving to the second position, the second power generating section generates a second voltage.
  • the first voltage is a voltage equal to or higher than an activation voltage required to activate the transmission unit
  • the second voltage is a voltage lower than the activation voltage.
  • the transmission unit receives power from the power generation unit and transmits a first signal when the power generation unit generates the first voltage, and transmits a first signal when the power generation unit generates the second voltage. It receives power from the battery and transmits the second signal.
  • This sensor can reduce the possibility of damage.
  • FIG. 1 is a cross-sectional view of the sensor of one embodiment of the present disclosure when it returns slightly from the ON state.
  • FIG. 2 is a schematic block diagram of the same sensor.
  • 3 is a cross-sectional view of the B1 portion of the sensor in FIG. 1.
  • FIG. 4 is a cross-sectional view of the same sensor in the OFF state.
  • FIG. 5 is a cross-sectional view of the same sensor just before switching from an off state to an on state.
  • FIG. 6 is a cross-sectional view of the same sensor in the ON state.
  • FIG. 7 is a cross-sectional view of the same sensor when the movable member is pushed to the limit position.
  • FIG. 8 is an external perspective view of the same sensor held by a stopper member.
  • FIG. 9 is a perspective view of a state in which the same sensor and stopper member are separated.
  • FIG. 10 is a perspective view of the same sensor attached to a cylinder that drives the slide table.
  • FIG. 11 is a plan view of the same sensor attached to a cylinder.
  • FIG. 12 is a plan view of the first return state of the same cylinder.
  • FIG. 13 is a plan view of the second return state of the same cylinder.
  • FIG. 14 is an enlarged plan view of a main part of the same cylinder.
  • FIG. 15 is a perspective view of the cylinder of Application 1 as seen from the rear right.
  • FIG. 16 is a perspective view of the cylinder of Application 1 as seen from the rear left.
  • 17 is a front view of the closed state of the cylinder of Application Example 1.
  • FIG. 15 is a perspective view of the cylinder of Application 1 as seen from the rear right.
  • FIG. 16 is a perspective view of the cylinder of Application 1 as seen from the rear left.
  • 17
  • FIG. 18 is a front view of an open state of the cylinder of Application Example 1.
  • FIG. 19 is a front view of the first return state of the cylinder of Application Example 1.
  • FIG. 20 is a front view of the second return state of the cylinder of Application Example 1.
  • FIG. 21 is a perspective view of a cylinder of application example 2.
  • FIG. 22 is a perspective view of the cylinder of Application Example 2 with the rim plate removed.
  • 23 is a front view of the closed state of the link mechanism of the cylinder of Application Example 2.
  • FIG. 24 is a perspective view of the closed state of the link mechanism of the cylinder of Application Example 2.
  • FIG. 25 is a front view of the open state of the link mechanism of the cylinder of Application Example 2.
  • FIG. 26 is a perspective view of the open state of the link mechanism of the cylinder of Application Example 2.
  • FIG. 27 is a front view of an intermediate state showing the link mechanism of the cylinder of Application Example 2.
  • the movable member 13 is movable between a position PT1 (position in the OFF state shown in FIG. 4) and a position PT2 (position in the ON state shown in FIG. 6) located below the position PT1.
  • the return spring 14 applies a return force in the upward direction Du to the movable member 13 .
  • the power generation unit 20 generates power as the movable member 13 moves.
  • the transmission unit 33 transmits radio signals.
  • the power generation unit 20 includes a power generation section 21 and a power generation section 22 .
  • the power generation section 21 and the power generation section 22 each generate power by bending according to the movement of the movable member 13 .
  • the power generating section 21 By moving the movable member 13 from the position PT1 to the position PT2, the power generating section 21 generates the first voltage.
  • the power generating section 22 After the movable member 13 moved to the position PT2 receives the restoring force of the return spring 14 and moves to the intermediate position PT3 (the position shown in FIG. 1) between the positions PT2 and PT1, the movable member 13 returns to the intermediate position PT3. to the position PT2, the power generating section 22 generates the second voltage.
  • the first voltage is a voltage equal to or higher than the activation voltage necessary for activating the transmission unit 33, and the second voltage is a voltage less than the activation voltage.
  • the transmission unit 33 receives power from the power generation unit 20 and transmits the first signal.
  • the transmission unit 33 receives power from the battery 30 and transmits the second signal when the power generation unit 20 generates the second voltage.
  • the startup voltage is the lower limit value of the voltage range in which the transmission unit 33 can perform the transmission operation of transmitting the wireless signal.
  • the starting voltage is the lower limit of the operating voltage range of the IC for wireless communication.
  • the transmission unit 33 of the sensor A1 can be activated by being supplied with the first voltage from the power generation section 21 and can transmit the first signal when the movable member 13 moves in the downward direction Dd from the position PT1 to the position PT2. Further, when the movable member 13 moves from the position PT2 to the intermediate position PT3 by the restoring force of the return spring 14 and then moves from the intermediate position PT3 to the position PT2, the second voltage generated by the power generating section 22 is less than the starting voltage. , the sending unit 33 cannot be activated. In this case, the transmission unit 33 is triggered by the generation of the second voltage by the power generation unit 20 and receives power from the battery 30 to transmit the second signal. Even if there is, the transmitting unit 33 can transmit the second signal.
  • the transmission unit 33 can transmit the first signal and the second signal without receiving power supply from the outside, the sensor A1 does not need wires for power supply and signal transmission. If a wire for power supply and signal transmission is connected to the sensor A1, disconnection of the wire may occur, but the sensor A1 of this embodiment does not require a wire for power supply and signal transmission. As such, the likelihood of damage can be reduced. Moreover, since the sensor A1 of this embodiment does not require electric wires for power supply and signal transmission, there is an advantage that the degree of freedom of the installation position of the sensor A1 is improved.
  • the forward position detection switch and the reverse position detection switch provided in the conventional fluid pressure cylinder described above are each composed of a limit switch, and the position detection mechanism is connected to the limit switch with an electric wire.
  • a fluid pressure cylinder is used, for example, as a manipulator of a robot, there is a possibility that the movement of the manipulator may damage the wires connected to the position detection mechanism by rubbing against parts such as the manipulator.
  • the sensor A1 of this embodiment does not require wires for power supply and signal transmission, so it is possible to reduce the possibility of damage to the wires.
  • the sensor A1 has a power generation unit 20 that performs so-called environmental power generation (energy harvesting).
  • the movable member 13 receives the restoring force of the return spring 14 and the like and moves to the position PT1 as shown in FIG.
  • the first voltage generated by the power generation unit 20 (specifically, the power generation section 21) causes the transmission unit to 33 activates and transmits the first signal.
  • the senor A1 is applied to, for example, the cylinder SY1 (see FIGS. 10 to 14) that reciprocates the slide table 905, and is used to detect the position of the slide table 905.
  • An operation member 906 that moves together with the slide table 905 is fixed to the slide table 905 .
  • Sensors A1 are attached to cylinder SY1 at both ends 1906 and 2906 of movement range W906 of operating member 906, respectively.
  • Two sensors A1 attached to cylinder SY1 include sensor A11 that detects movement of actuating member 906 to end 1906 and sensor A12 that detects movement of actuating member 906 to end 2906.
  • the sensor A1 has a housing 10 that houses the movable member 13, the return spring 14, the power generation unit 20, the battery 30, the transmission unit 33, and the like.
  • the direction in which the return spring 14 pushes the movable member 13 is the upward direction Du, and the upward direction Du, the downward direction Dd, and the leftward direction indicated by arrows in FIGS. Dl and the right direction Dr are defined as the upward direction, downward direction, left direction and right direction of the sensor A1, respectively, and the forward direction Df and the rearward direction Db indicated by arrows in FIG. 8 are respectively defined as the forward direction and the rearward direction of the sensor A1. do.
  • the right direction Dr and the left direction Dl cross the upward direction Du and the downward direction Dd.
  • the forward direction Df and the backward direction Db cross the upward direction Du, the downward direction Dd, the right direction Dr, and the left direction Dl.
  • the right direction Dr and the left direction Dl are perpendicular to the upward direction Du and the downward direction Dd.
  • the forward direction Df and the rearward direction Db are perpendicular to the upward direction Du, the downward direction Dd, the right direction Dr and the left direction Dl.
  • these directions are defined for convenience of explanation, and do not define directions when the sensor A1 is actually used.
  • the housing 10 includes a base 11 made of metal material or synthetic resin, and a cover 12 made of synthetic resin or the like.
  • the base 11 is formed in the shape of a rectangular parallelepiped whose height dimension is smaller than the dimensions of the long and short sides of the bottom surface.
  • the cover 12 is formed in a box shape having an opening on the entire lower surface.
  • a base 11 is attached to the cover 12 so as to close the opening on the bottom surface.
  • the inside of the housing 10 accommodates components such as the movable member 13, the return spring 14, the power generation unit 20, the circuit board 25, and the movable block 40. ing. Components such as a battery 30 and a transmission unit 33 are mounted on the circuit board 25 .
  • the movable member 13 has a columnar operating portion 131 that is pushed downward Dd by the operating member 906 .
  • the operation unit 131 is inserted from below into a through hole 121 (see FIG. 1) provided in the upper surface of the cover 12 and exposed to the outside of the housing 10 through the through hole 121 .
  • the movable member 13 is provided with a through hole 132 into which the pole 111 protruding from the base 11 in the upward direction Du is inserted.
  • a return spring 14 such as a coil spring is inserted in the pole 111 .
  • the movable member 13 is attached to the base 11 with the pole 111 inserted into the through hole 132 , and the return spring 14 is arranged between the movable member 13 and the base 11 .
  • the movable member 13 is guided by the pole 111 so as to be movable in the upward direction Du and the downward direction Dd between the positions PT1 and PT2.
  • an axis AX1 is defined along the direction in which the movable member 13 moves (the upward direction Du or the downward direction Dd). That is, the movable member 13 can move in the upward direction Du and the downward direction Dd along the axis AX1 between the positions PT1 and PT2.
  • the movable member 13 is pushed in the upward direction Du by the return spring 14, and the movable member 13 is positioned at the upper end of the movement range, that is, at the position PT1 in a state where the force in the downward direction Dd is not applied to the operating portion 131. .
  • a protective cover 16 made of, for example, elastic synthetic resin is attached to a portion of the movable member 13 exposed from the through-hole 121 (that is, the operation portion 131). This reduces the possibility of water, dust, or the like entering the interior of the housing 10 through the gap between the operation portion 131 and the through hole 121 .
  • the power generation unit 20 includes a power generation section 21 and a power generation section 22 . Moreover, the power generation unit 20 further includes a power generation section 23 .
  • the power generation unit 21 and the power generation unit 22 have a common configuration.
  • Each of the power generation section 21 and the power generation section 22 has a vibrating body 241 , a piezoelectric element 242 and a weight 243 .
  • the power generation section 21 and the power generation section 22 are held by a base 15 fixed to the upper surface of the base 11 .
  • the base 15 includes a plate-like stopper piece 151 arranged along the upper surface of the base 11 , a connecting piece 152 projecting from the left end of the stopper piece 151 in the upward direction Du, and arranged parallel to the stopper piece 151 . and a stopper piece 153 whose left end is connected to the connecting piece 152 .
  • the pair of stopper pieces 151 and 153 and the connecting piece 152 are each made of a soft magnetic material, and the shape of the base 15 as viewed from the side is C-shaped as a whole.
  • the power generating section 21 is held between the connecting piece 152 and the upper stopper piece 153, and the power generating section 22 is held between the connecting piece 152 and the lower stopper piece 151.
  • the vibrating body 241 is formed in a rectangular plate shape from a soft magnetic plate material having elasticity, for example, a stainless steel plate. A left end of the vibrating body 241 is fixed to the base 15 , and the vibrating body 241 projects rightward from the base 15 .
  • a weight 243 is attached to the right end of the vibrating body 241 .
  • the weight 243 is made of, for example, a soft magnetic material and has a plate shape.
  • a weight 243 is attached to the lower surface of the vibrating body 241 in the power generating section 21
  • a weight 243 is attached to the upper surface of the vibrating body 241 in the power generating section 22 .
  • One piezoelectric element 242 is provided on each of the upper and lower surfaces of the vibrating body 241 .
  • the piezoelectric element 242 bends together with the vibrating body 241 when the right end of the vibrating body 241 bends in the upward direction Du or the downward direction Dd, and generates a voltage corresponding to the amount of bending. That is, the power generation section 22 includes the piezoelectric element 242 that bends as the movable member 13 moves.
  • the material of the piezoelectric element 242 is preferably piezoelectric ceramics such as lead zirconate titanate (Pb(Zr.Ti)O3).
  • the material forming the piezoelectric element 242 may be piezoelectric ceramics such as lead titanate (PbTiO3), lead metaniobate (PbNb2O6), bismuth titanate (Bi4Ti3O12). Since the power generation unit 22 generates power using the piezoelectric element 242, it is possible to reduce the possibility of malfunction of the sensor A1 even in an environment where electromagnetic noise exists, such as a site where spot welding is performed.
  • PbTiO3 lead titanate
  • PbNb2O6 lead metaniobate
  • Bi4Ti3O12 bismuth titanate
  • the right end portions of the weights 243 included in the power generation section 21 and the power generation section 22 are inserted into the through holes 154 provided in the stopper pieces 151 and 153, respectively, and the right end portions of the weights 243 are aligned with the rims of the through holes 154.
  • the amount of deflection of the vibrating body 241 is limited by the contact.
  • the power generation unit 23 has a core (iron core) 231 , a coil 232 and a movable block 40 .
  • the core 231 is formed in a columnar shape from a soft magnetic material such as pure iron or magnetic stainless steel, and is fixed to the right side surface of the connecting piece 152 using screws or the like.
  • the core 231 protrudes in the right direction Dr from the right side surface of the connecting piece 152 .
  • a coil 232 is attached to the core 231 .
  • the coil 232 is formed in a cylindrical shape by winding a wire (enameled wire) around a coil bobbin, and the core 231 is inserted into a hole of the coil bobbin.
  • the coil 232 may be a bobbinless coil in which an electric wire whose conductor is covered with a self-bonding insulator is spirally wound.
  • the movable block 40 has a permanent magnet 41, a pair of yokes 42, and a holder 43, as shown in FIGS.
  • the permanent magnet 41 is, for example, a rectangular parallelepiped neodymium magnet. However, the permanent magnet 41 may be a magnet other than a neodymium magnet, such as a samarium-cobalt magnet.
  • the permanent magnet 41 is magnetized in the vertical direction, for example, the upper part is the N pole and the lower part is the S pole.
  • Each of the pair of yokes 42 is made of a soft magnetic material and formed into a flat plate shape.
  • a pair of yokes 42 are arranged one each on the upper surface and the lower surface of the permanent magnet 41 .
  • Each of the pair of yokes 42 has a yoke piece 421 and a yoke piece 422 .
  • the yoke piece 421 is formed in a rectangular flat plate shape.
  • the yoke piece 421 is arranged along the top or bottom surface of the permanent magnet 41 .
  • the yoke piece 422 is formed in a rectangular flat plate shape.
  • the yoke piece 422 protrudes from the left end of the yoke piece 421 in the thickness direction (vertical direction) of the yoke piece 421 .
  • the holder 43 is made of a non-magnetic material such as aluminum or synthetic resin.
  • the holder 43 holds the permanent magnet 41 and the pair of yokes 42 .
  • the holder 43 holds the permanent magnet 41 and the pair of yokes 42 such that the permanent magnet 41 is sandwiched between the yoke pieces 421 of the pair of yokes 42 .
  • the yoke pieces 422 of the pair of yokes 42 are arranged on the left side of the permanent magnet 41 and face each other while being spaced apart.
  • the permanent magnet 41 and the pair of yokes 42 held by the holder 43 are arranged between the vibrating body 241 of the power generating section 21 and the vibrating body 241 of the power generating section 22 .
  • a groove 44 is provided on the front side surface of the holder 43 , and an intermediate portion of the wire spring 45 is inserted into this groove 44 .
  • the wire spring 45 is a filigree spring. Specifically, the wire spring 45 is made of a wire-shaped material and has a substantially G shape when viewed from below.
  • the wire spring 45 is arranged to surround the movable block 40 and the base 15 , the end 145 of the wire spring 45 is inserted into the hole 133 of the movable member 13 from the front side, and the end 245 of the wire spring 45 is inserted into the holder 43 . It is inserted into a hole provided on the rear side surface.
  • An intermediate portion of the wire spring 45 is passed through the groove 44 of the holder 43 and the groove 155 on the left side surface of the connecting piece 152 .
  • a magnetic path is formed by the path of the permanent magnet 41 , the upper yoke 42 , the core 231 , the connecting piece 152 , the power generating section 22 , the lower yoke 42 and the permanent magnet 41 .
  • the movable member 13 receives the restoring force of the return spring 14 and the like and moves upward Du.
  • the holder 43 is pushed upward Du by the wire spring 45 whose end 145 is held by the movable member 13, and the holder 43 moves upward Du.
  • the movable member 13 moves to the position PT1
  • the upper yoke 42 held by the holder 43 comes into contact with the weight 243 of the power generating section 21, and the yoke piece 422 of the lower yoke 42 moves toward the core 231.
  • a magnetic path is formed by the path of the permanent magnet 41 , the upper yoke 42 , the power generating section 21 , the connecting piece 152 , the core 231 , the lower yoke 42 and the permanent magnet 41 .
  • the power generation unit 23 generates power by changing the magnetic flux linking the coil 232 according to the downward or upward movement of the holder 43 .
  • the power generation unit 23 includes the permanent magnet 41 that moves in accordance with the movement of the movable member 13, and the coil 232 that generates power using a change in magnetic flux caused by the movement of the permanent magnet 14. It can also generate electricity.
  • Components such as a battery 30, a power supply circuit 31 (see FIG. 2), a transmission unit 33 and its antenna, a control circuit 34 (see FIG. 2), and a switch 32 (see FIG. 2) are mounted on the circuit board 25. .
  • the circuit board 25 is arranged on the stopper piece 153, for example.
  • the switch 32 is, for example, a normally-off MOSFET, and is connected between the battery 30 and the transmission unit 33.
  • the switch 32 is turned on/off by the control circuit 34 .
  • the power supply circuit 31 is electrically connected to the power generation unit 20 .
  • the power supply circuit 31 is configured to convert the power (AC power) generated by the power generation unit 20 into DC power.
  • the power supply circuit 31 has a rectifier circuit, a smoothing capacitor, a voltage regulator, and the like. DC power converted by the power supply circuit 31 is supplied to the transmission unit 33 .
  • the battery 30 is, for example, a primary battery.
  • the battery 30 is not limited to a primary battery, and may be a rechargeable secondary battery or a power storage device such as a capacitor.
  • the battery 30 may be a storage element that stores the electrical energy generated by the power generation unit 20, and has the advantage of eliminating the need to replace the battery 30 compared to the case where the battery 30 is a primary battery.
  • the transmission unit 33 transmits the first signal or the second signal by radio signals by being supplied with DC power from the power supply circuit 31 or the battery 30 .
  • the radio signal is, for example, a radio signal conforming to the Bluetooth (registered trademark) standard, and particularly preferably a radio signal conforming to the Bluetooth (registered trademark) Low Energy standard.
  • the output voltage of the power generation unit 20 (power generation section 21, power generation section 22, and power generation section 23) is input to the control circuit 34.
  • the control circuit 34 includes, for example, a low-voltage microcomputer, and controls the switch 32 to be off when the power generation output of the power generation unit 20 is a first voltage equal to or higher than the starting voltage of the transmission unit 33 .
  • the transmission unit 33 receives power from the power generation unit 20 and transmits the first signal by radio signal.
  • the control circuit 34 turns on the switch 32 when the power generation output of the power generation unit 20 is a second voltage lower than the starting voltage of the transmission unit 33 .
  • the transmitting unit 33 is powered by the battery 30 and transmits the second signal by radio signal.
  • control circuit 34 determines whether or not the output voltage of the power generation unit 20 is equal to or higher than the starting voltage based on the output voltages of the power generation units 21 and 22 and the output voltage of the power generation unit 23. 32 may be controlled on/off. Specifically, when the power generation unit 21 and the power generation unit 22 are generating power and the output voltage of the power generation unit 23 is less than a predetermined threshold voltage, the control circuit 34 controls the output voltage of the power generation unit 20 to be the same as that of the transmission unit. 33, the switch 32 is turned on. As a result, when the power generation unit 21 and the power generation unit 22 are generating power and the power generation output of the power generation unit 23 is equal to or higher than the threshold voltage, the switch 32 is turned off. That is, when the power output of the power generating unit 20 is equal to or higher than the starting voltage, the switch 32 is turned off, so that the power is not supplied from the battery 30 to the transmitting unit 33, and consumption of the battery 30 is suppressed.
  • Stopper member The two sensors A1 regulate the amount of downward movement of the movable member 13 by regulating the movement range W906 in which the movement member 906 moves.
  • Two stopper members 50 are attached.
  • the stopper member 50 holds the housing 10 in contact with a part of the housing 10 of the sensor A1 (for example, the lower surface and the right side surface of the base 11).
  • the two stopper members 50 include a stopper member 50A attached to the sensor A11 and a stopper member 50B attached to the sensor A12.
  • the stopper member 50 includes a plate-shaped mounting base 51 on which the base 11 of the sensor A1 is placed, a support 52 projecting from the right end of the mounting base 51 in the upward direction Du, and a holding portion projecting from the upper end of the support 52 in the left direction Dl. 53 and .
  • the stopper member 50 is made of, for example, a metal material.
  • a circular recess 55 is provided on the right side of the upper surface of the mounting base 51 .
  • a through hole 56 is formed in the bottom surface of the recess 55 so as to penetrate the mounting base 51 from the upper surface to the lower surface.
  • a threaded portion 63 of an adjusting bolt 61 is inserted into the through hole 56 from above, and a head portion 62 of the adjusting bolt 61 is arranged in the recess 55 (see FIG. 4).
  • two through holes 57 are provided on the left side of the upper surface of the mounting base 51 so as to penetrate the mounting base 51 from the upper surface to the lower surface (see FIG. 9).
  • the fixing screw passed through the through-hole 57 from below is screwed into the threaded hole of the base 11.
  • a stopper member 50 is fixed to the base 11 .
  • the depth dimension of the recess 55 is set to be slightly larger than the thickness dimension of the head 62, and the adjustment bolt 61 is held between the base 11 and the stopper member 50 in a rotatable state.
  • the adjustment bolt 61 is screwed into a bolt hole 76 provided in a mounting member 70 (see FIGS. 10 and 11) for mounting the sensor A1 and stopper member 50 to the cylinder SY1.
  • a mounting member 70 for mounting the sensor A1 and stopper member 50 to the cylinder SY1.
  • the holding portion 53 is provided with a through hole 54 into which the upper portion of the movable member 13 is inserted.
  • a contact portion 58 of the stopper member 50 is provided with a through hole 54 into which the operating portion 131 is inserted.
  • the ring-shaped holding portion 53 surrounds the movable member 13. Therefore, when the sensor A1 is attached to the cylinder SY1, the sensor A1 provided on the cylinder SY1 Cables of instruments and the like are less likely to be caught between the operating member 906 of the cylinder SY1 and the sensor A1, and damage to the sensor A1 is less likely to occur.
  • the holding portion 53 being “annular” is not limited to enclosing the entire circumference of the movable member 13, and may be partially cut off, and the shape of the holding portion 53 when viewed from above is a C shape. may be
  • the upper surface of the holding portion 53 becomes the contact portion 58 that contacts the operating member 906 of the cylinder SY1.
  • the movable member 13 of the sensor A1 is pushed in the downward direction Dd by the operating member 906 of the cylinder SY1.
  • Stopper member 50 determines position PT2 by coming into contact with operating member 906 when operating member 906 moves downward Dd.
  • the movable member 13 is positioned at the position PT2 when the stopper member 50 is in contact with the operating member 906.
  • the stopper member 50 limits the movement of the operating member 906 in the downward direction Dd so that the movable member 13 does not move below the position PT2.
  • the contact portion 58 of the stopper member 50 that contacts the operating member 906 is above the upper end of the movable member 13 existing at the limit position PT4, the movable member 13 is not pushed to the limit position PT4. , the sensor A1 is less likely to be damaged.
  • the stopper member 50 holding the sensor A1 is attached to the cylinder SY1 using the attachment member 70. Therefore, by adjusting the position of the stopper member 50 with respect to the cylinder SY1 using the position adjusting mechanism 60, the position of the sensor A1 with respect to the cylinder SY1 can be adjusted at the same time. Therefore, it is not necessary to adjust the position of the stopper member 50 with respect to the cylinder SY1 and the position adjustment of the sensor A1 with respect to the cylinder SY1 separately, thereby reducing the labor for the position adjustment.
  • the position adjusting mechanism 60 is arranged along the central axis AX3 of the cylindrical portion of the operating portion 131 (see FIG.
  • the positioning of the position adjusting mechanism 60 along the central axis AX3 of the cylindrical portion of the operation unit 131 means that the central axis of the adjusting bolt 61 of the position adjusting mechanism 60 is parallel to the central axis AX3.
  • the central axis of the adjusting bolt 61 and the central axis AX3 are not limited to being overlapped.
  • the intersection angle between the central axis of the adjusting bolt 61 of the position adjusting mechanism 60 and the central axis AX3 should be 45 degrees or less.
  • the distance between the central axis of the adjusting bolt 61 and the central axis AX3 in the plane orthogonal to the central axis of the adjusting bolt 61 is within the allowable dimension due to manufacturing error or the like.
  • two objects are not limited to being completely parallel, but may include a state in which they intersect at an angle of about several degrees.
  • the fact that two objects are orthogonal to each other is not limited to the fact that the two objects intersect at an angle of 90 degrees, but may include a state in which the angle of intersection of the two is deviated from 90 degrees by several degrees. .
  • the stopper member 50 is in contact with a part of the sensor A1 (for example, the lower surface and the right side surface of the base 11), the impact when the operating member 906 of the cylinder SY1 hits the contact portion 58 of the stopper member 50 is applied to the stopper. It becomes easier to transmit to the sensor A1 via the member 50. - ⁇ Therefore, the vibration body 241 of the power generation section 21, in which the weight 243 is not in contact with the yoke 42, is likely to vibrate due to the impact when the operating member 906 hits the contact portion 58, and the power generation output of the power generation section 21 increases. There are also advantages.
  • the stopper member 50 is provided with openings for exposing the front, left, and rear side surfaces of the housing 10 of the sensor A1 and the left half of the upper surface. E2 (see FIG. 8).
  • the transmission part E2 may be realized by a member made of synthetic resin having transparency to electromagnetic waves.
  • FIG. 10 to 14 the direction along the X axis is defined as up and down, the direction along the Y axis is defined as left and right, and the direction along the Z axis is defined as front and back.
  • these directions are only examples, and are not meant to limit the directions during use of the cylinder SY1.
  • the arrows indicating each direction in the drawings are only shown for explanation and are not substantial.
  • the cylinder SY1 is used to receive fluid pressure (for example, air pressure) to reciprocate the slide table 905 along the X axis.
  • the slide table 905 reciprocates between a stop position 1905 and a stop position 2905 on the X-axis.
  • a stop position 1905 is the position of the lower end of the movement range W905 in which the slide table 905 reciprocates (the position indicated by the solid line in FIG. 11), and a stop position 2905 is the position of the upper end of the movement range W905 of the slide table 905 (the 11).
  • the slide table 905 is attached to the front surface of the main body 900 of the cylinder SY1 so as to be movable along the X axis.
  • a body 900 of the cylinder SY1 is provided with a cylinder chamber that houses a piston.
  • the cylinder chamber is divided into a rod-side first air chamber and a head-side second air chamber with the piston interposed therebetween, and air pipes 902 and 903 are connected to the first and second air chambers, respectively.
  • Two rods 901 protrude downward from the bottom surface of the piston.
  • the two rods 901 are passed through two through holes provided in the lower portion of the main body 900 and are exposed to the outside of the main body 900 .
  • the lower ends of the two rods 901 are connected to a slide table 905, and the slide table 905 moves upward and downward in conjunction with the piston.
  • Two stopper members 50 that limit the movement range of the slide table 905 are attached to the cylinder SY1.
  • the lower end of the movement range W905 of the slide table 905 is restricted to the stop position 1905 by the stopper member 50A.
  • the upper end of the movement range of the slide table 905 is restricted to the stop position 2905 by the stopper member 50B.
  • a sensor A11 that detects that the slide table 905 has moved to the stop position 1905 and a sensor A12 that detects that the slide table 905 has moved to the stop position 2905 are attached to the cylinder SY1.
  • the sensor A11 and the stopper member 50A are attached to the cylinder SY1 using the attachment member 70A
  • the sensor A12 and the stopper member 50B are attached to the cylinder SY1 using the attachment member 70B.
  • the mounting member 70A and the mounting member 70B are formed in a substantially symmetrical shape with respect to a plane orthogonal to the X-axis, except for the mounting portion to the cylinder SY1.
  • the attachment member 70A for attaching the stopper member 50A and the sensor A11 to the cylinder SY1 at the stop position 1905 will be described, and the description of the attachment member 70B will be omitted.
  • the mounting member 70A is made of, for example, a metal material. As shown in FIG. 10, the mounting member 70A includes a rectangular plate-shaped bottom plate portion 71 facing the lower surface of the sensor A11, a vertical piece 72 projecting upward from the rear end of the bottom plate portion 71, and the bottom plate portion 71 and a vertical piece 73 projecting upward from the right end of the .
  • the bottom plate portion 71 is provided with bolt holes 76 passing through the bottom plate portion 71 along the X-axis at positions corresponding to the through holes 56 of the stopper member 50 .
  • a threaded portion is formed on the inner peripheral surface of the bolt hole 76 , and the adjustment bolt 61 inserted into the through hole 56 of the stopper member 50 is screwed into the bolt hole 76 .
  • the screwing amount of the adjustment bolt 61 By adjusting the screwing amount of the adjustment bolt 61, the stopper member 50 and the sensor A1 held by the stopper member 50 move along the X-axis.
  • the position of the adjusting bolt 61 is fixed by tightening the nut 64 on the threaded portion 63 of the adjusting bolt 61 .
  • the stopper member 50 holding the sensor A11 is arranged at a position where the operation member 906 contacts the contact portion 58 while the slide table 905 is moved to the stop position 1905 .
  • the mounting member 70A is provided with an opening that exposes the front and left side surfaces of the housing 10 of the sensor A1 and the left half of the top surface. See Figure 10).
  • the transmission part E1 may be implemented by a cover made of synthetic resin that is transparent to electromagnetic waves. Since the transmission part E2 and the transmission part E1 are arranged so that at least a part thereof overlaps, the attenuation of the wireless signal (radio wave signal) transmitted from the transmission unit 33 of the sensor A1 can be suppressed.
  • the mounting member 70A is provided with a fixed piece 74 (see FIG. 12) projecting upward from the upper end of the vertical piece 73 .
  • the fixed piece 74 is provided with a through-hole passing through the fixed piece 74 along the Y-axis.
  • the mounting member 70A is fixed to the main body 900 by placing the fixing piece 74 on the left side of the main body 900 of the cylinder SY1 and screwing the bolt through the through hole into the bolt hole provided in the main body 900 .
  • the mounting member 70B is provided with a fixing piece 75 projecting rightward from the right side surface of the vertical piece 73 .
  • the fixed piece 75 is provided with a through-hole passing through the fixed piece 75 along the X-axis.
  • the mounting member 70B is fixed to the main body 900 by placing the fixing piece 75 on the upper surface of the main body 900 of the cylinder SY1 and screwing the bolt through the through hole into the bolt hole provided in the main body 900. As shown in FIG.
  • the method of mounting the sensor A12 and the stopper member 50B using the mounting member 70B is the same as the mounting method using the mounting member 70A, so the description thereof will be omitted.
  • Two sensors A1 are attached to cylinder SY1 in order to detect that slide table 905 has moved to stop position 1905 and stop position 2905, respectively. It is not essential that two sensors A1 are attached. Of the sensors A11 and A12, only the sensor A11 for detecting that the slide table 905 has moved to the stop position 1905 may be attached to the cylinder SY1. Only the sensor A12 for detection may be attached.
  • FIG. 1 Two sensors A11 and A12 are attached to the cylinder SY1. Since the two sensors A11 and A12 have the same configuration, they detect the movement of the slide table 905 to the stop position 1905. Only the operation of the sensor A11 to be performed will be described.
  • the upper yoke 42 is in contact with the weight 243 of the power generation unit 21 , and the magnetic field passing through the upper yoke 42 , the weight 243 of the power generation unit 21 , the vibrating body 241 , the base 15 , the core 231 and the lower yoke 42 is generated. A path is formed. As a result, the end portion (weight 243 ) of the power generating section 21 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 . In this state, since the magnetic flux interlinking with the coil 232 does not change, the power generation output of the power generation section 23 is also zero. That is, when the slide table 905 is stopped at the stop position 2905, the power generation output of the power generation unit 20 is zero, and the transmission unit 33 does not transmit radio signals.
  • FIG. 1 When the operating portion 131 is pushed downward by the operating member 906 , the movable member 13 moves downward, and the movable block 40 moves downward according to the movement of the movable member 13 . At this time, the vibrating body 241 and the piezoelectric element 242 of the power generating section 21 attracted to the movable block 40 bend downward, and the piezoelectric element 242 generates a voltage corresponding to the amount of bending.
  • the weight 243 of the power generation unit 21 is separated from the upper yoke 42, the magnetic flux interlinking with the coil 232 is rapidly reduced, and the power generation unit 23 generates voltage. Further, when the movable member 13 moves to the position PT1, the core 231 contacts the upper yoke 42, and the lower yoke 42 contacts the weight 243 of the power generation section 22, as shown in FIG. Thereby, a magnetic path passing through the upper yoke 42 , the core 231 , the connecting piece 152 , the vibrating body 241 and the weight 243 of the power generating section 22 , and the upper yoke 42 is formed.
  • the weight 243 of the power generation unit 22 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 .
  • the magnetic flux interlinking with the coil 232 changes during that time, so the power generating section 23 generates power output according to the change in the magnetic flux.
  • the power generation sections 22 and 23 output the first voltage exceeding the starting voltage, and the transmission unit 33 is supplied from the power generation unit 20.
  • a first signal transmitted from the transmission unit 33 is received by an external host system R1 (see FIG. 2).
  • the host system R1 has a communication function of receiving wireless communication from the transmission unit 33.
  • FIG. The host system R1 can detect that the slide table 905 has moved to the stop position 1905 based on the first signal received from the sensor A11.
  • the movable block 40 is also stopped when the movable member 13 is stopped at the position PT2, the magnetic flux linking the coil 232 does not change, and the power generation output of the power generation section 23 becomes zero. As a result, the transmission of radio signals from the transmission unit 33 is also stopped.
  • the vibrating body 241 and the piezoelectric element 242 of the power generating section 22 attracted to the movable block 40 bend upward, and the piezoelectric element 242 generates a voltage corresponding to the amount of bending.
  • the magnetic flux interlinking with the coil 232 is rapidly reduced, and the power generation section 23 generates voltage.
  • the movable member 13 moves to the position PT2
  • the core 231 contacts the lower yoke 42 and the upper yoke 42 contacts the weight 243 of the power generation section 21, as shown in FIG.
  • a magnetic path passing through the upper yoke 42 , the weight 243 and the vibrating body 241 of the power generating section 21 , the connecting piece 152 , the core 231 and the lower yoke 42 is formed.
  • the weight 243 of the power generation unit 21 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 .
  • the magnetic flux interlinking the coil 232 changes during that time, so the power generating section 23 generates power output according to the change in magnetic flux.
  • the host system R1 can detect that the slide table 905 has moved from the stop position 1905 toward the stop position 2905 by receiving the first signal transmitted from the transmission unit 33 of the sensor A11.
  • the motion member 906 comes into contact with the contact portion 58 of the stopper member 50B, and upward movement is restricted by the stopper member 50B. As a result, the slide table 905 stops at the stop position 2905 . Further, when the operation member 906 pushes the operating portion 131 of the sensor A12 upward, the power generation unit 20 generates the first voltage and the transmission unit 33 transmits the first signal. The power generation operation of the sensor A12 at this time is the same as the power generation operation of the sensor A11 described in "(2.4.1) Operation when moving from the stop position 2905 to the stop position 1905".
  • the external host system R1 detects that the slide table 905 is positioned at the stop position 2905 by receiving the first signal transmitted from the transmission unit 33 of the sensor A12.
  • the power generation output of the power generation unit 20 is activated. It becomes the 1st voltage more than a voltage.
  • the power generation required distance is, for example, the amount of movement of the movable member 13 when the power generation output of the power generation unit 20 becomes the starting voltage of the transmission unit 33 .
  • the power generation required distance is the amount of movement when the power generation output generated by the piezoelectric element 242 of the power generation unit 22 is flexed so as to be greater than or equal to the first voltage.
  • the power generation required distance is, for example, the distance that the movable member 13 moves from the position of the movable member 13 to the position PT2 when the movable block 40 moves upward to the position where the core 231 is separated from the upper yoke 42. may If the movable block 40 has moved upward to the position where the core 231 is separated from the upper yoke 42, the magnetic flux passing through the coil 232 will be changes and the power generation unit 23 generates power, the power generation unit 22 and the power generation unit 23 can generate the first voltage exceeding the starting voltage.
  • FIG. 12 shows the first return state, which is the state when the amount of upward movement of the movable member 13 while the pressure source is stopped is greater than or equal to the power generation required distance.
  • the action member 906 since the action member 906 is separated from the operation portion 131, the movable member 13 has moved to the position PT1. Since the amount of movement of the movable member 13 during the movement of the slide table 905 from the first return state to the initial stop state is equal to or greater than the power generation required distance, the power generation output of the power generation unit 20 becomes the first voltage equal to or greater than the starting voltage. Control circuit 34 keeps switch 32 off.
  • the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 . That is, since the power generation output of the power generation unit 20 is equal to or higher than the activation voltage of the transmission unit 33, the transmission unit 33 receives power supply from the power generation unit 20, is activated, and transmits the first signal. Host system R1 detects that slide table 905 is positioned at stop position 1905 by receiving the first signal from sensor A11.
  • FIG. 13 shows the second return state, which is the state when the amount of upward movement of the movable member 13 while the pressure source is stopped is less than the required distance for power generation. Since the amount of movement of the movable member 13 until the slide table 905 moves from the second return state to the initial stop state is less than the power generation required distance, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. .
  • FIG. 1 shows the state of the sensor A11 (sensor A1) in the second return state.
  • the movable block 40 moves in accordance with the movement of the movable member 13 until the slide table 905 returns from the second return state to the initial stop state. Even if it moves downward, the magnetic flux passing through the coil 232 does not change, and the power generation output of the power generation section 23 becomes zero.
  • the piezoelectric element 242 of the power generation section 22 is slightly bent, the power generation section 22 generates a second voltage lower than the starting voltage during the period until the slide table 905 returns from the second return state to the initial stop state. .
  • control circuit 34 is triggered by the generation of the second voltage by the power generation unit 20, and controls the switch 32 to turn on. to send.
  • the host system R1 detects that the slide table 905 is positioned at the stop position 1905 by receiving the second signal transmitted from the transmission unit 33 of the sensor A11.
  • the power generation unit 22 is bent along the axis AX2 (see FIG. 1) due to the downward movement of the movable member 13.
  • the axis AX1 is along the axis AX2, so that the power generation output generated by the power generation unit 22 can be increased according to the movement of the movable member 13.
  • FIG. 1 the expression that the axis AX1 is along the axis AX2 preferably means that the axis AX1 and the axis AX2 are parallel. and the direction in which the axis AX2 extends is preferably 45 degrees or less.
  • the first signal and the second signal are preferably the same signal, and the host system R1 can detect that the slide table 905 is positioned at the stop position 1905 by receiving the second signal.
  • the second signal is not necessarily the same signal as the first signal, and the second signal may be a signal containing information different from that of the first signal.
  • the second signal may include information that the power generation unit 20 has generated the second voltage, and since the host system R1 has received the second signal, the slide table 905 stops after the pressure source is restarted. Movement to position 1905 can be detected.
  • the position of the slide table 905 may be displaced by receiving the restoring force of the return spring 14 or the like as described above. have a nature.
  • the sensor A12 A power generation unit 20 generates a first voltage. Therefore, the transmission unit 33 of the sensor A12 can receive power from the power generation unit 20 and transmit the first signal.
  • the slide table 905 When the slide table 905 receives the restoring force of the return spring 14 and moves to the second return state, the pressure source is restarted and the slide table 905 moves to the stop position 2905 before stopping. Since the unit 20 generates the second voltage, the transmission unit 33 cannot be activated by the power output of the power generation unit 20 . In this case, the control circuit 34 of the sensor A 12 turns on the switch 32 because the power output of the power generation unit 20 is the second voltage. A second signal can be transmitted.
  • Cylinder SY1 is a cylinder for driving slide table 905, but sensor A1 can also be applied to cylinders other than cylinder SY1 for driving slide table 905. be. Variations of cylinders to which the sensor A1 is applied will be described below.
  • the above sensor A1 may be applied to the cylinder that drives the parallel hand.
  • mounting methods for mounting the sensor A1 on the cylinder that drives the parallel hand there are an external mounting method as shown in FIGS. 15 to 20 and a built-in method as shown in FIGS.
  • Application Example 1 in which the sensor A1 is externally attached to the cylinder that drives the parallel hand, and Application Example 2 in which the sensor A1 is built into the cylinder that drives the parallel hand will be described below.
  • FIG. 15 An application example 1 in which the sensor A1 is externally attached to the cylinder SY2 that drives the parallel hand will be described with reference to FIGS. 15 to 20.
  • FIG. 15 In the description of the cylinder SY2 of Application Example 1, in FIG. 15, the direction along the X-axis is defined as up and down, the direction along the Y-axis is defined as left and right, and the direction along the Z-axis is defined as front and back. However, these directions are defined for convenience of explanation, and do not define directions when the sensor A1 and cylinder SY2 are actually used.
  • Cylinder SY2 has a rectangular parallelepiped main body 910 .
  • a pair of claws 911 are arranged on the upper surface of the main body 910 .
  • a pair of claws 911 are provided movably along the Y-axis.
  • a cylinder chamber is provided inside the main body 910 in which a piston is arranged so as to be able to reciprocate.
  • the cylinder chamber is divided into a rod-side first air chamber and a head-side second air chamber with the piston interposed therebetween, and air pipes 912 and 913 are connected to the first and second air chambers, respectively.
  • a rod is connected to the piston, and when the rod reciprocates together with the piston, the reciprocating motion of the rod is transmitted to the pair of pawls 911 via the link mechanism.
  • the pair of claws 911 moves to the closed position (position shown in FIGS. 15 to 17) where the distance between the two is minimum, or to the open position (position shown in FIG. 18) where the distance between the two is maximum. .
  • Two sensors A1 and two stopper members 50 are attached to the cylinder SY2 using two attachment members 80.
  • the two sensors A1 include a sensor A21 that detects movement of the pair of claws 911 to the closed position and a sensor A22 that detects movement of the pair of claws 911 to the open position.
  • the two stopper members 50 are attached to the sensor A21 and attached to the stopper member 50A for restricting the movement range of the pair of claws 911 in the closing direction, and attached to the sensor A22 to limit the movement of the pair of claws 911 in the opening direction. and a stopper member 50B that limits the range.
  • the two mounting members 80 include a mounting member 80A for mounting the sensor A21 and the stopper member 50A on the right side surface of the main body 910, and a mounting member 80B for mounting the sensor A22 and the stopper member 50B on the left side surface of the main body 910.
  • the sensor A21 and the sensor A22 have the same configuration as the sensor A1 described above, so the description of the configuration of the sensor A21 and the sensor A22 is omitted. Also, since the stopper member 50A and the stopper member 50B have the same configuration as the stopper member 50 described above, description of the configuration of the stopper member 50A and the stopper member 50B is omitted.
  • the mounting member 80A includes a fixing piece 81A that is attached to the right side surface of the main body 910 using, for example, a fixing screw, a projecting piece 82A that projects rightward from the lower end of the fixing piece 81A, and a rightward projecting piece 82A that projects rightward from the upper front end of the fixing piece 81A. and a link support piece 83A protruding into.
  • the projecting piece 82A is provided with a bolt hole into which the adjusting bolt 61 is screwed.
  • the sensor A21 held by the stopper member 50A is fixed to the mounting member 80A by screwing the adjusting bolt 61 into the bolt hole of the protruding piece 82A and tightening the nut 64 on the adjusting bolt 61 after adjusting the amount of screwing ( See Figure 17).
  • the mounting member 80A has an opening that exposes the side surface of the cover 12 of the sensor A21, and this opening serves as a transmitting portion E5 that transmits electromagnetic waves. Since the transmitting portion E5 of the mounting member 80A partially overlaps the transmitting portion E2 (see FIG. 8) provided on the stopper member 50A, attenuation of the radio signal transmitted from the sensor A21 is suppressed.
  • the transmission part E5 may be realized by a member made of synthetic resin.
  • the mounting member 80B includes a fixed piece 81B attached to the left side surface of the main body 910 using, for example, a fixing screw, a projecting piece 82B projecting leftward from the lower end of the fixed piece 81B, and a rear end of the upper portion of the fixed piece 81B. and a link support piece 83B projecting leftward.
  • the projecting piece 82B is provided with a bolt hole into which the threaded portion 63 of the adjusting bolt 61 is screwed.
  • the sensor A22 held by the stopper member 50B is fixed to the mounting member 80B by screwing the adjusting bolt 61 into the bolt hole of the protruding piece 82B and tightening the nut 64 on the adjusting bolt 61 after adjusting the amount of screwing ( See Figure 17).
  • the mounting member 80B has an opening that exposes the side surface of the cover 12 of the sensor A22, and this opening serves as a transmitting portion E5 that transmits electromagnetic waves. Since the transmitting portion E5 of the mounting member 80B partially overlaps with the transmitting portion E2 (see FIG. 8) provided on the stopper member 50B, attenuation of the radio signal transmitted from the sensor A22 is suppressed.
  • the transmission part E5 may be realized by a member made of synthetic resin.
  • the cylinder SY2 has a link mechanism 810 that converts the lateral movement of the right claw 911 into vertical movement and transmits it to the sensor A21, and a link mechanism 810 that converts the horizontal movement of the left claw 911 into vertical movement and transmits it to the sensor A22. and a link mechanism 820 for transmitting.
  • the link mechanism 810 includes a connecting portion 811, a driving link 812, an intermediate link 813, and a driven link 814 that is an operating member.
  • the connecting part 811 is fixed to the base of the claw 911 on the right side with a screw or the like.
  • the drive link 812 and the intermediate link 813 are each formed in a rectangular plate shape.
  • Drive link 812 is provided with three holes along its long side.
  • the intermediate link 813 is provided with two holes along its long side.
  • a pin P11 provided in the connecting portion 811 is inserted into the hole of the end 1812 of the driving link 812, and the driving link 812 can rotate about the pin P11.
  • a first end of pin P12 is inserted into the center hole of drive link 812 .
  • the second end of the pin P12 is inserted into the hole of the end 1813 of the intermediate link 813, and the drive link 812 and the intermediate link 813 are rotatable around the pin P12.
  • a pin P13 fixed to the top of the driven link 814 is inserted into the hole of the end 2812 of the drive link 812, and the drive link 812 can rotate about the pin P12.
  • a pin P14 fixed to the link support piece 83A is inserted into the hole of the end 2813 of the intermediate link 813, and the intermediate link 813 can rotate about the pin P14.
  • the pin P14 is inserted into an elongated hole 816 provided in the driven link 814 so as to pass through the driven link 814 in the front-rear direction below the hole through which the pin P13 is inserted.
  • the elongated hole 816 is formed in a shape whose vertical dimension is longer than its horizontal dimension, and the driven link 814 can move along the X-axis while being guided by the pin P14.
  • a rectangular push operation portion 815 for pushing the operation portion 131 of the movable member 13 is provided below the driven link 814 .
  • the link mechanism 820 includes a connecting portion 821, a driving link 822, an intermediate link 823, and a driven link 824 that is an operating member.
  • the connecting part 821 is fixed to the base of the claw 911 on the left side with a screw or the like.
  • the drive link 822 and the intermediate link 823 are each formed in a rectangular plate shape.
  • Drive link 822 is provided with three holes along its long side.
  • the intermediate link 823 is provided with two holes along its long side.
  • a pin P21 provided in the connecting portion 821 is inserted into the hole of the end 1822 of the driving link 822, and the driving link 822 can rotate around the pin P21.
  • a first end of the pin P22 is inserted into the center hole of the drive link 822 .
  • the second end of the pin P22 is inserted into the hole of the end 1823 of the intermediate link 823, and the drive link 822 and the intermediate link 823 are rotatable around the pin P22.
  • a pin P23 fixed to the lower portion of the driven link 824 is inserted into the hole of the end 2822 of the drive link 822, and the drive link 822 can rotate about the pin P23.
  • a pin P24 fixed to the link support piece 83B is inserted into the hole of the end 2823 of the intermediate link 823, and the intermediate link 823 can rotate about the pin P24.
  • the pin P24 is inserted into an elongated hole 826 provided in the driven link 824. As shown in FIG.
  • the long hole 826 is provided above the pin P23 so as to pass through the driven link 824 in the front-rear direction.
  • the elongated hole 826 is formed in a shape whose vertical dimension is longer than its horizontal dimension, and the driven link 824 can move along the X-axis while being guided by the pin P24. Further, a rectangular push operation portion 825 for pushing the operation portion 131 of the movable member 13 is provided below the driven link 824 .
  • 15 to 17 show the state in which the pair of claws 911 are moved to the closed position.
  • the rod moves downward together with the piston, thereby moving the pair of claws 911 to the closed position.
  • the driving link 812 of the link mechanism 810 rotates clockwise about the pin P11, and the intermediate link 813 rotates counterclockwise about the pin P12, while the driven link 814 rotates. moves downward.
  • the push operation portion 815 pushes the operation portion 131 of the movable member 13 downward.
  • the drive link 822 of the link mechanism 820 rotates clockwise about the pin P21, and the intermediate link 823 rotates counterclockwise about the pin P22.
  • Link 824 moves upward.
  • the push operation portion 825 is separated from the operation portion 131 of the movable member 13 .
  • the power generation unit 20 of the sensor A21 generates the first voltage
  • the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on the signal, it can be detected that the pair of claws 911 has moved to the closed position.
  • the rod moves upward together with the piston, thereby moving the pair of claws 911 from the closed position to the open position (see FIG. 18).
  • the drive link 812 of the link mechanism 810 rotates counterclockwise about the pin P11, and the intermediate link 813 rotates clockwise about the pin P12. moves upwards.
  • the push operation portion 815 is separated from the operation portion 131 of the movable member 13 .
  • the pressure source (for example, the pneumatic pump) of the cylinder SY2 is extended due to the stoppage of operation due to a holiday or the like. If the time is stopped, there is a possibility that the pressures of the first air chamber and the second air chamber will decrease due to air leakage from piping or the like.
  • the movable member 13 of the sensor A22 receives the restoring force of the return spring 14 and the like and moves upward. After that, when the operation is restarted and the pressure source of the cylinder SY2 is restarted, air is supplied from the pressure source and the cylinder SY2 returns to the open position which is the position before the operation is stopped.
  • the power generation unit 20 generates and outputs a first voltage equal to or higher than the starting voltage.
  • FIG. 19 shows the first return state, which is the state when the amount of upward movement of the movable member 13 of the sensor A22 while the pressure source is stopped is greater than or equal to the power generation required distance. Since the amount of movement of the movable member 13 until the pair of claws 911 moves from the first return state to the initial stop state is greater than or equal to the power generation required distance, the power generation output of the power generation unit 20 becomes the first voltage equal to or greater than the starting voltage. , the control circuit 34 keeps the switch 32 off. At this time, the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 .
  • the transmission unit 33 receives power supply from the power generation unit 20, starts up, and transmits the first signal.
  • the host system R1 detects that the pair of claws 911 are positioned at the open position by receiving the first signal transmitted from the transmission unit 33 of the sensor A22.
  • FIG. 20 shows the second return state, which is the state when the upward movement amount of the movable member 13 of the sensor A22 while the pressure source is stopped is less than the power generation required distance. Since the amount of movement of the movable member 13 until the pair of pawls 911 move from the second return state to the initial stop state is less than the required distance for power generation, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. , the power generation output of the power generation unit 20 cannot activate the transmission unit 33 . At this time, since the power output of the power generation unit 20 is the second voltage, the control circuit 34 of the sensor A 22 turns on the switch 32, so that the transmission unit 33 is activated by the power supplied from the battery 30. Send a second signal. The host system R1 detects that the pair of claws 911 is positioned at the open position by receiving the second signal transmitted from the transmission unit 33 of the sensor A22.
  • the generator unit 20 of sensor A21 when the pair of pawls 911 receive the restoring force of the return spring 14 or the like and move to the position of the first return state, when the pressure source is restarted and the pair of pawls 911 move to the closed position before stopping,
  • the generator unit 20 of sensor A21 generates a first voltage. Therefore, the transmission unit 33 of the sensor A21 can receive power from the power generation unit 20 and transmit the first signal.
  • the transmission unit 33 cannot be activated by the power generation output of the power generation unit 20 .
  • the control circuit 34 of the sensor A 21 turns on the switch 32 because the power output of the power generation unit 20 is the second voltage. A second signal can be transmitted.
  • Two sensors A1 are attached to the cylinder SY2 described in Application Example 1 in order to detect the movement of the pair of claws 911 to the closed position and the open position, respectively.
  • Cylinder SY2 may be provided with only sensor A21 for detecting that the pair of claws 911 has moved to the closed position, or only sensor A22 for detecting that the pair of claws 911 has moved to the open position. may have been
  • FIG. 21 An application example 2 in which the sensor A1 is built in the cylinder SY3 that drives the parallel hand will be described with reference to FIGS. 21 to 27.
  • FIG. 21 In the explanation of the cylinder SY3 of Application Example 2, in FIG. 21, the direction along the X axis is defined as up and down, the direction along the Y axis is defined as left and right, and the direction along the Z axis is defined as front and back.
  • these directions are defined for convenience of explanation, and do not define directions when the sensor A1 and cylinder SY3 are actually used.
  • Cylinder SY3 has a rectangular parallelepiped main body 920 .
  • a rail member 921 holding a pair of claws 922 is attached to the upper portion of the main body 920 .
  • a rail groove 923 into which bases of a pair of claws 922 are inserted is provided on the upper surface of the rail member 921 .
  • Rail groove 923 extends along the Y-axis. The pair of claws 922 are held by the rail member 921 so as to be able to move in parallel along the Y-axis.
  • a cylinder chamber in which a piston 950 (see FIG. 23) is arranged so as to be movable along the X-axis.
  • the piston 950 is provided with a rod 951 protruding upward.
  • the cylinder chamber is divided into a first air chamber on the rod 951 side and a second air chamber on the head side with the piston 950 interposed therebetween, and an air pipe is connected to each of the first air chamber and the second air chamber.
  • the piston 950 and rod 951 move upward.
  • the piston 950 and the rod 951 move downward.
  • the reciprocating motion of the rod 951 is transmitted to the pair of claws 922 via the link mechanism 830 and the link mechanism 840, respectively.
  • the pair of pawls 922 are placed in the closed position (position shown in FIGS. 23 and 24) where the distance between the two is minimum and the open position (position shown in FIGS. 25 and 26) where the distance between the two is maximum (position shown in FIGS. 25 and 26).
  • Two sensors A1 are attached to the cylinder SY3 using two attachment members.
  • the two sensors A1 include a sensor A21 that detects movement of the pair of claws 922 to the closed position and a sensor A22 that detects movement of the pair of claws 922 to the open position.
  • the two mounting members also include a mounting member 930 for mounting the sensor A21 to the cylinder SY3 and a mounting member 940 for mounting the sensor A22 to the cylinder SY3.
  • the mounting member 930 has a function of a stopper member that limits the pushing amount of the movable member 13 of the sensor A21.
  • the mounting member 940 has the function of a stopper member that limits the pushing amount of the movable member 13 of the sensor A22.
  • the sensor A21 and the sensor A22 have the same configuration as the sensor A1 described above, so the description of the configuration of the sensor A21 and the sensor A22 is omitted.
  • the mounting member 930 has a base portion 931 arranged with the upper surface of the sensor A21 in contact with the lower surface, and a prism-shaped columnar portion 932 protruding downward from the left side of the lower surface of the base portion 931 .
  • the sensor A21 is arranged on the mounting member 930 with the upper surface of the housing 10 in contact with the lower surface of the base portion 931 and the left side surface of the housing 10 in contact with the right side surface of the columnar portion 932 .
  • the sensor A21 is fixed to the mounting member 930 by fastening the base 11 to the columnar portion 932 with a fixing bolt 934 .
  • the mounting member 930 has a shim plate 933 sandwiched between it and the lower surface of the main body 920 , and the fixing bolt 935 is passed through the through-hole passing through the columnar portion 932 along the X axis, and the fixing bolt 935 is screwed to the main body 920 . It is attached to the main body 920 by inserting it.
  • the shim plate 933 realizes the position adjustment mechanism, but the position adjustment mechanism may be realized by a feed screw or the like that moves the sensor A21 and the mounting member 930 along the X axis.
  • a rectangular through-hole 937 (see FIGS. 24 and 26) is provided on the upper surface of the mounting member 930 at a portion facing the operating portion 131 of the movable member 13 of the sensor A21.
  • the link mechanism 830 has a plunger 835, which is an operating member that drives the operating portion 131 of the movable member 13. The lower end of the plunger 835 is inserted through the through hole 937 into the mounting member 930, and the movable member of the sensor A21 is inserted. 13 is opposed to the operation unit 131 .
  • the side surface of the cover 12 of the sensor A21 is exposed. That is, since the mounting member 930 is provided with the transmitting portion E3 (see FIG. 21) that transmits electromagnetic waves, attenuation of the wireless signal transmitted from the transmitting unit 33 of the sensor A21 can be suppressed.
  • the transmitting portion E3 is realized by an opening that exposes the side surface of the cover 12, it may be realized by a synthetic resin member or the like having transparency to electromagnetic waves.
  • the mounting member 940 has a base portion 941 arranged with the upper surface of the sensor A 22 in contact with the lower surface, and a prism-shaped columnar portion 942 protruding downward from the right side of the lower surface of the base portion 941 .
  • the sensor A22 is arranged on the mounting member 940 with the upper surface of the housing 10 in contact with the lower surface of the base portion 941 and the right side surface of the housing 10 in contact with the left side surface of the columnar portion 942 .
  • the sensors A22 and A21 are arranged side by side along the Z axis (see FIG. 21).
  • the sensor A22 is fixed to the mounting member 940 by fastening the base 11 to the columnar portion 942 with a fixing bolt 944 .
  • the mounting member 940 has a shim plate 943 sandwiched between it and the lower surface of the main body 920 , and the fixing bolt 945 is passed through the through-hole passing through the columnar portion 942 along the X-axis, and the fixing bolt 945 is screwed to the main body 920 . It is attached to the main body 920 by inserting it. As a result, the sensor A22 is attached to the main body 920 of the cylinder SY3 via the attachment member 940. As shown in FIG.
  • the shim plate 943 realizes the position adjustment mechanism, but the position adjustment mechanism may be realized by a feed screw or the like that moves the sensor A22 and the mounting member 940 along the X axis.
  • a rectangular through-hole 947 (see FIGS. 24 and 26) is provided at a portion facing the operating portion 131 of the movable member 13 of the sensor A22.
  • the link mechanism 840 has a plunger 845 that is an operating member that drives the operating portion 131 of the movable member 13. The lower end of the plunger 845 is inserted through the through hole 947 into the mounting member 940, and the movable member of the sensor A22 is inserted. 13 is opposed to the operation unit 131 .
  • the side surface of the cover 12 of the sensor A22 is exposed. That is, since the mounting member 940 is provided with the transmitting portion E4 (see FIG. 21) that transmits electromagnetic waves, attenuation of the wireless signal transmitted from the transmitting unit 33 of the sensor A22 can be suppressed.
  • the transmitting portion E4 is realized by an opening that exposes the side surface of the cover 12, it may be realized by a synthetic resin member or the like having transparency to electromagnetic waves.
  • the cylinder SY3 includes a link mechanism 830 and a link mechanism 840.
  • the link mechanism 830 converts the lateral movement of the right claw 922 into vertical movement and transmits it to the sensor A21.
  • Link mechanism 830 includes link arm 831 , intermediate link 834 , and plunger 835 .
  • the link arm 831 integrally includes a horizontal piece 831B arranged along the Y-axis and a vertical piece 831A projecting downward from the right end of the horizontal piece 831B, and is formed in a substantially L shape.
  • the horizontal piece 831B is provided with a hole near the center of the left and right width, and a pin P31 fixed to the main body 920 is inserted into this hole.
  • the horizontal piece 831B is supported by the main body 920 so as to be rotatable around the pin P31.
  • a groove 833 is provided at the left end of the horizontal piece 831B.
  • a slit 952 is provided at the upper end of the rod 951 and a pin 953 is provided inside the slit 952 .
  • the left end of the lateral piece 831B is inserted into the slit 952 of the rod 951, and the pin 953 is inserted into the groove 833.
  • a driving piece 832 protrudes upward from the vicinity of the center of the lateral width of the horizontal piece 831B, and is inserted into a groove provided below the claw 922 on the right side.
  • a first end of the pin P32 is inserted into a hole provided at the bottom of the vertical piece 831A.
  • the second end of the pin P32 is inserted into the hole provided at the end 1834 of the intermediate link 834, and the vertical piece 831A and the intermediate link 834 are connected in a rotatable state about the pin P32.
  • a first end of the pin P33 is inserted into a hole provided at the end 2834 of the intermediate link 834, and a second end of the pin P33 is inserted into a hole provided at the upper end of the plunger 835.
  • the plunger 835 is arranged in the main body 920 so as to be movable along the X-axis (up and down) by a guide provided inside the main body 920 .
  • a push operation portion 836 for pushing the operation portion 131 of the movable member 13 included in the sensor A21 is provided at the lower end of the plunger 835 .
  • An intermediate portion of the plunger 835 is provided with a stepped portion 837 that contacts stopper pieces 936 and 946 projecting upward from the mounting member 930 and the mounting member 940 when the plunger 835 moves downward.
  • the stopper pieces 936 and 946 contact the stepped portion 837 of the plunger 835, which is the operating member, to limit the downward movement of the plunger 835 so that the movable member 13 does not move below the position PT2. do.
  • the upper ends of the stopper pieces 936 and 946 are contact portions that come into contact with the stepped portion 837 of the plunger 835, which is the operating member.
  • the link mechanism 840 converts the lateral movement of the left claw 922 into vertical movement and transmits it to the sensor A22.
  • the link mechanism 840 includes a link arm 841, an intermediate link 844, and a plunger 845 as an operating member.
  • the link arm 841 is formed in a rectangular plate shape. A hole is provided in the link arm 841 near the center of the left and right width, and a pin P41 fixed to the main body 920 is inserted into this hole. supported by A groove 843 is provided at the right end of the link arm 841 . The right end of the link arm 841 is inserted into the slit 952 of the rod 951 and the pin 953 is inserted into the groove 843 .
  • a drive piece 842 protrudes upward from the vicinity of the center of the left and right width of the link arm 841 and is inserted into a groove provided below the left claw 922 . A first end of the pin P42 is inserted into a hole provided at the left end of the link arm 841 .
  • the second end of the pin P42 is inserted into the hole provided in the end 1844 of the intermediate link 844, and the link arm 841 and the intermediate link 844 are connected in a rotatable state about the pin P42.
  • a first end of the pin P43 is inserted into a hole provided at the end 2844 of the intermediate link 844, and a second end of the pin P43 is inserted into a hole provided at the upper end of the plunger 845.
  • the plunger 845 is arranged in the main body 920 so as to be movable along the X-axis (up and down) by a guide provided inside the main body 920 .
  • a push operation portion 846 for pushing the operation portion 131 of the movable member 13 included in the sensor A22 is provided at the lower end of the plunger 845 .
  • An intermediate portion of the plunger 845 is provided with a stepped portion 847 that comes into contact with stopper pieces 936 and 946 projecting upward from the mounting member 930 and the mounting member 940, respectively, when the plunger 845 moves downward.
  • the power generation unit 20 of the sensor A21 generates the first voltage
  • the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on this, it can be detected that the pair of claws 922 has moved to the closed position. Further, when the link arm 841 rotates clockwise about the pin P41, the plunger 845 is pulled upward by the intermediate link 844, and the push operation portion 846 of the plunger 845 is separated from the operation portion 131 of the movable member 13 of the sensor A22. state.
  • the rod 951 moves upward together with the piston 950, the link arm 831 rotates clockwise about the pin P31, and the link arm 841 rotates about the pin P41. It rotates counterclockwise, and the driving pieces 832 and 842 move the pair of claws 922 to the open position (see FIGS. 25 and 26). Further, when the link arm 831 rotates clockwise about the pin P31, the plunger 835 is pulled upward by the intermediate link 834, and the push operation portion 836 of the plunger 835 is separated from the operation portion 131 of the sensor A21.
  • the plunger 845 is pushed downward via the intermediate link 844, and the push operation portion 846 of the plunger 845 pushes the operation portion 131 of the sensor A22 downward. state.
  • the stepped portion 847 of the plunger 845 comes into contact with the stopper pieces 936 and 946, the downward movement of the plunger 845 is restricted, and the position of the claw 922 at this time is the open position.
  • the power generation unit 20 of the sensor A22 generates the first voltage
  • the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on this, it can be detected that the pair of claws 922 has moved to the open position.
  • the power generation output of the power generation unit 20 is the first voltage equal to or higher than the starting voltage.
  • the pair of claws 922 move from the first return state to the initial stop state.
  • the amount of movement of the movable member 13 of the sensor A22 is greater than or equal to the power generation required distance.
  • the power generation output of the power generation unit 20 of the sensor A22 becomes the first voltage equal to or higher than the starting voltage, and the control circuit 34 keeps the switch 32 off.
  • the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 .
  • the transmission unit 33 receives power supply from the power generation unit 20, is activated, and transmits the first signal.
  • the host system R1 detects that the pair of claws 922 is positioned at the open position by receiving the first signal transmitted from the transmission unit 33 of the sensor A22.
  • FIG. 27 shows a state (hereinafter referred to as a second return state) when the amount of upward movement of the movable member 13 while the pressure source is stopped is less than the required distance for power generation. Since the amount of movement of the movable member 13 until the pair of claws 922 return from the second return state to the initial stop state is less than the distance required for power generation, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. , the power generation output of the power generation unit 20 cannot activate the transmission unit 33 .
  • the control circuit 34 turns on the switch 32 with the generation of the second voltage by the power generation unit 20 as a trigger, the transmission unit 33 is activated by the power supplied from the battery 30, and transmits the second signal. Send.
  • the host system R1 detects that the pair of claws 922 is positioned at the open position by receiving the second signal transmitted from the transmission unit 33 of the sensor A22.
  • the pair of pawls 922 receives the restoring force of the return spring 14 or the like and moves to the position of the first return state
  • the pressure source is restarted and the pair of pawls 922 moves to the closed position before stopping
  • the generator unit 20 of sensor A22 generates a first voltage. Therefore, the transmitting unit 33 of the sensor A22 can receive power from the power generation unit 20 and transmit the first signal.
  • the control circuit 34 of the sensor A 22 is triggered by the generation of the second voltage by the power generation unit 20, and controls the switch 32 to turn on. A second signal can be transmitted.
  • Two sensors A1 are attached to the cylinder SY3 described in Application Example 2 in order to detect the movement of the pair of claws 922 to the closed position and the open position, respectively.
  • the sensors A21 and A21 only the sensor A21 for detecting that the pair of claws 922 has moved to the closed position may be attached to the cylinder SY3, or the sensor that detects that the pair of claws 922 have moved to the open position may be attached. Only the sensor A22 for detection may be attached.
  • the power generation unit 20 includes the power generation section 21, the power generation section 22, and the power generation section 23.
  • the power generation unit 20 does not necessarily include the power generation section 23, and the power generation section 23 can be omitted as appropriate. is.
  • the senor A1 is applied to the pneumatically operated cylinders SY1 to SY3, but it may be applied to a hydraulically operated cylinder or an electrically operated cylinder.
  • “greater than” may be “greater than”. That is, in the comparison of two values, whether or not the two values are equal can be arbitrarily changed depending on the setting of the reference value, etc., so there is no technical difference between “greater than” and “greater than”. Similarly, “less than” may be “less than”.
  • the sensor (A1) of the first aspect includes the movable member (13), the return spring (14), the power generation unit (20), the battery (30), and the transmission unit (33). , provided.
  • the movable member (13) is movable between a first position (PT1) and a second position (PT2) located below the first position (PT1).
  • a return spring (14) applies an upward (Du) return force to the movable member (13).
  • the power generation unit (20) generates power by moving the movable member (13).
  • a transmitting unit (33) transmits radio signals.
  • the power generation unit (20) includes a first power generation section (21) and a second power generation section (22).
  • Each of the first power generation section (21) and the second power generation section (22) generates power by bending according to the movement of the movable member (13).
  • the first power generation section (21) By moving the movable member (13) from the first position (PT1) to the second position (PT2), the first power generation section (21) generates the first voltage.
  • the movable member (13) moved to the second position (PT2) receives the restoring force of the return spring (14) and moves to an intermediate position (PT3) between the second position (PT2) and the first position (PT1). After that, the movable member (13) moves from the intermediate position (PT3) to the second position (PT2), whereby the second power generating section (22) generates the second voltage.
  • the first voltage is a voltage equal to or higher than the activation voltage required to activate the transmitting unit (33), and the second voltage is a voltage less than the activation voltage.
  • the transmission unit (33) receives power from the power generation unit (20) and transmits the first signal when the power generation unit (20) generates the first voltage, and the power generation unit (20) generates the second voltage. If so, it receives power from the battery (30) and transmits the second signal.
  • the transmission unit (33) can transmit the first signal and the second signal without receiving power supply from the outside, wires for power supply and signal transmission become unnecessary. If a wire for power supply and signal transmission is connected to the sensor (A1), disconnection of the wire may occur, but the sensor (A1) does not require a wire for power supply and signal transmission. As such, the likelihood of damage can be reduced.
  • the battery (30) includes a storage element that stores electrical energy generated by the power generation unit (20).
  • the power generation unit (20) further includes a third power generation section (23).
  • the third power generation section (23) has a permanent magnet (41) that moves in accordance with the movement of the movable member (13), and a coil (232) that generates power from changes in magnetic flux caused by the movement of the permanent magnet (41). .
  • the second power generation section (22) includes a piezoelectric element (242) that bends due to movement of the movable member (13).
  • the first signal and the second signal are the same signal.
  • the transmitting unit (33) can transmit the same signal when receiving power from the power generation unit (20) and when receiving power from the battery (30).
  • the sensor (A1) of the sixth aspect in any one of the first to fifth aspects, further comprises a housing (10) and a stopper member (50) holding the housing (10).
  • a housing (10) accommodates a movable member (13), a return spring (14), a power generation unit (20), a battery (30) and a transmission unit (33).
  • the movable member (13) is moved downward Dd by the operating members (906, 814, 824, 835, 845) of cylinders (SY1 to SY3) having operating members (906, 814, 824, 835, 845) that perform reciprocating motion.
  • the movable member (13) is located at the second position (PT2) when the stopper member (50) is in contact with the operating member (906, 814, 824, 835, 845).
  • the stopper member (50) limits downward movement of the action members (906, 814, 824, 835, 845) so that the movable member (13) does not move below the second position (PT2).
  • the possibility of the movable member (13) moving below the second position (PT2) can be reduced.
  • the senor (A1) of the seventh aspect is such that the contact portion (58) of the stopper member (50, 936, 946) that contacts the action member (906, 814, 824, 835, 845) is A position adjusting mechanism (60) for moving up and down with respect to the cylinders (SY1 to SY3) is further provided.
  • the positions of the stopper member (50) and the sensor (A1) with respect to the cylinders (SY1 to SY3) can be adjusted at once using the position adjusting mechanism (60).
  • the movable member (13) is a columnar operation part ( 131).
  • a contact portion (58) of the stopper member (50) is provided with a through-hole (54) into which the operating portion (131) is inserted.
  • the position adjusting mechanism (60) is arranged along the columnar central axis (AX3) of the operation part (131).
  • the operating part (131) is inserted into the through hole (54) of the stopper member (50), the movable member (13) and the operating members (906, 814, 824, 835, 845) It becomes difficult for a cable or the like to enter between them, and the possibility of damage to the sensor (A1) due to the pinching of the cable or the like can be reduced.
  • the position adjustment mechanism (60) is arranged along the cylindrical central axis (AX3) of the operation part (131), the action members (906, 814, 824, 835, 845) are aligned with the movable member (13). ), the possibility that a bending moment is generated in the position adjustment mechanism (60) via the sensor (A1) and the stopper member (50) can be reduced.
  • the sensor (A1) of the ninth aspect in any one of the sixth to eighth aspects, further comprises an attachment member (70) for attaching the stopper member (50) to the cylinders (SY1 to SY3).
  • the mounting member (70) includes a first transmitting portion (E1) that transmits electromagnetic waves
  • the stopper member (50) includes a second transmitting portion (E2) that transmits electromagnetic waves.
  • the first transmission section (E1) and the second transmission section (E2) are arranged so as to overlap at least partially.
  • Attenuation of the transmission signal can be suppressed when the transmission unit (33) transmits the transmission signal as a radio signal.
  • the configurations according to the second to tenth aspects are not essential configurations for the sensor (A1), and can be omitted as appropriate.

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Push-Button Switches (AREA)

Abstract

First and second electricity generating portions generate electricity by flexing in accordance with movement of a movable member. The first electricity generating portion generates a first voltage as a result of the movable member moving from a first position to a second position. The movable member that has moved to the second position is subjected to a returning force of a return spring and is moved to an intermediate position, after which the movable member moves from the intermediate position to the second position, as a result of which the second electricity generating portion generates a second voltage. The first voltage is a voltage at least equal to an activation voltage required to activate a transmission unit, and the second voltage is less than the activation voltage. If an electricity generating unit generates the first voltage, the transmission unit receives an electric power supply from the electricity generating unit and transmits a first signal, and if the electricity generating unit generates the second voltage, the transmission unit receives an electric power supply from a battery and transmits a second signal.

Description

センサsensor
 本開示は、センサに関する。より詳細には、本開示は、可動部材の移動に応じて発生した電力で動作するセンサに関する。 The present disclosure relates to sensors. More particularly, the present disclosure relates to sensors that operate on electrical power generated in response to movement of a moveable member.
 特許文献1は、シリンダ本体と、シリンダ本体に進退自在に装備されたピストン部材と、ピストン部材の位置を検出可能な位置検出機構と、ピストン部材と連動して進退する連動ロッドと、を備えた従来の流体圧シリンダを開示する。位置検出機構は、連動ロッドに設けられた被検出部が前進側設定位置に移動したことを検出する前進位置検出スイッチと、被検出部が後退限位置に移動したことを検出する後退位置検出スイッチと、を備えている。 Patent Literature 1 includes a cylinder body, a piston member attached to the cylinder body so as to be able to advance and retreat, a position detection mechanism capable of detecting the position of the piston member, and an interlocking rod that advances and retreats in conjunction with the piston member. A conventional hydraulic cylinder is disclosed. The position detection mechanism includes a forward position detection switch that detects that the detected part provided on the interlocking rod has moved to the forward setting position, and a backward position detection switch that detects that the detected part has moved to the backward limit position. and have.
実用新案登録第3197029号公報Utility Model Registration No. 3197029
 センサは、可動部材と、復帰ばねと、発電ユニットと、電池と、送信ユニットと、を備える。前記可動部材は、第1位置と前記第1位置の下方に位置する第2位置との間で移動可能である。前記復帰ばねは、前記可動部材に上方向の復帰力を加える。前記発電ユニットは、前記可動部材が移動することによって発電する。前記送信ユニットは無線信号を送信する。前記発電ユニットは、第1発電部及び第2発電部を含む。前記第1発電部及び前記第2発電部は、それぞれ、前記可動部材の移動に応じて撓むことで発電する。前記可動部材が前記第1位置から前記第2位置へと移動することにより、前記第1発電部が第1電圧を発生する。前記第2位置まで移動した前記可動部材が前記復帰ばねの復帰力を受けて前記第2位置と前記第1位置との間の中間位置まで移動した後で、前記可動部材が前記中間位置から前記第2位置に移動することにより、前記第2発電部が第2電圧を発生する。前記第1電圧は、前記送信ユニットが起動するのに必要な起動電圧以上の電圧であり、前記第2電圧は、前記起動電圧未満の電圧である。前記送信ユニットは、前記発電ユニットが前記第1電圧を発生した場合は、前記発電ユニットから電力供給を受けて第1信号を送信し、前記発電ユニットが前記第2電圧を発生した場合は、前記電池から電力供給を受けて第2信号を送信する。 The sensor includes a movable member, a return spring, a power generation unit, a battery, and a transmission unit. The movable member is movable between a first position and a second position located below the first position. The return spring applies an upward return force to the movable member. The power generation unit generates power by moving the movable member. The transmitting unit transmits radio signals. The power generation unit includes a first power generation section and a second power generation section. Each of the first power generation section and the second power generation section generates power by bending according to the movement of the movable member. As the movable member moves from the first position to the second position, the first power generating section generates a first voltage. After the movable member that has moved to the second position receives the restoring force of the return spring and moves to an intermediate position between the second position and the first position, the movable member moves from the intermediate position to the By moving to the second position, the second power generating section generates a second voltage. The first voltage is a voltage equal to or higher than an activation voltage required to activate the transmission unit, and the second voltage is a voltage lower than the activation voltage. The transmission unit receives power from the power generation unit and transmits a first signal when the power generation unit generates the first voltage, and transmits a first signal when the power generation unit generates the second voltage. It receives power from the battery and transmits the second signal.
 このセンサは、損傷の可能性を低減することができる。 This sensor can reduce the possibility of damage.
図1は、本開示の一実施形態のセンサがオン状態から僅かに復帰したときの断面図である。FIG. 1 is a cross-sectional view of the sensor of one embodiment of the present disclosure when it returns slightly from the ON state. 図2は、同上のセンサの概略的なブロック図である。FIG. 2 is a schematic block diagram of the same sensor. 図3は、図1におけるセンサのB1部の断面図である。3 is a cross-sectional view of the B1 portion of the sensor in FIG. 1. FIG. 図4は、同上のセンサのオフ状態での断面図である。FIG. 4 is a cross-sectional view of the same sensor in the OFF state. 図5は、同上のセンサのオフ状態からオン状態に切り替わる直前の断面図である。FIG. 5 is a cross-sectional view of the same sensor just before switching from an off state to an on state. 図6は、同上のセンサのオン状態の断面図である。FIG. 6 is a cross-sectional view of the same sensor in the ON state. 図7は、同上のセンサにおいて可動部材が限界位置まで押されたときの断面図である。FIG. 7 is a cross-sectional view of the same sensor when the movable member is pushed to the limit position. 図8は、同上のセンサがストッパ部材に保持された状態の外観斜視図である。FIG. 8 is an external perspective view of the same sensor held by a stopper member. 図9は、同上のセンサとストッパ部材とを分離した状態の斜視図である。FIG. 9 is a perspective view of a state in which the same sensor and stopper member are separated. 図10は、同上のセンサがスライドテーブルを駆動するシリンダに取り付けられた状態の斜視図である。FIG. 10 is a perspective view of the same sensor attached to a cylinder that drives the slide table. 図11は、同上のセンサがシリンダに取り付けられた状態の平面図である。FIG. 11 is a plan view of the same sensor attached to a cylinder. 図12は、同上のシリンダの第1復帰状態の平面図である。FIG. 12 is a plan view of the first return state of the same cylinder. 図13は、同上のシリンダの第2復帰状態の平面図である。FIG. 13 is a plan view of the second return state of the same cylinder. 図14は、同上のシリンダの要部を拡大した平面図である。FIG. 14 is an enlarged plan view of a main part of the same cylinder. 図15は、適用例1のシリンダを右後方から見た斜視図である。FIG. 15 is a perspective view of the cylinder of Application 1 as seen from the rear right. 図16は、適用例1のシリンダを左後方から見た斜視図である。FIG. 16 is a perspective view of the cylinder of Application 1 as seen from the rear left. 図17は、適用例1のシリンダの閉状態の正面図である。17 is a front view of the closed state of the cylinder of Application Example 1. FIG. 図18は、適用例1のシリンダの開状態の正面図である。18 is a front view of an open state of the cylinder of Application Example 1. FIG. 図19は、適用例1のシリンダの第1復帰状態の正面図である。FIG. 19 is a front view of the first return state of the cylinder of Application Example 1. FIG. 図20は、適用例1のシリンダの第2復帰状態の正面図である。FIG. 20 is a front view of the second return state of the cylinder of Application Example 1. FIG. 図21は、適用例2のシリンダの斜視図である。21 is a perspective view of a cylinder of application example 2. FIG. 図22は、適用例2のシリンダのリム板が外された状態の斜視図である。FIG. 22 is a perspective view of the cylinder of Application Example 2 with the rim plate removed. 図23は、適用例2のシリンダのリンク機構を示す閉状態の正面図である。23 is a front view of the closed state of the link mechanism of the cylinder of Application Example 2. FIG. 図24は、適用例2のシリンダのリンク機構を示す閉状態の斜視図である。24 is a perspective view of the closed state of the link mechanism of the cylinder of Application Example 2. FIG. 図25は、適用例2のシリンダのリンク機構を示す開状態の正面図である。25 is a front view of the open state of the link mechanism of the cylinder of Application Example 2. FIG. 図26は、適用例2のシリンダのリンク機構を示す開状態の斜視図である。26 is a perspective view of the open state of the link mechanism of the cylinder of Application Example 2. FIG. 図27は、適用例2のシリンダのリンク機構を示す中間状態の正面図である。27 is a front view of an intermediate state showing the link mechanism of the cylinder of Application Example 2. FIG.
 本開示の実施形態に係るセンサについて、図面を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさ及び厚さのそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 A sensor according to an embodiment of the present disclosure will be described in detail with reference to the drawings. However, each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio. Note that the configurations described in the following embodiments are merely examples of the present disclosure. The present disclosure is not limited to the following embodiments, and various modifications can be made according to design and the like as long as the effects of the present disclosure can be achieved.
 (1)本開示の実施形態に係るセンサの概要
 本開示の実施形態に係るセンサA1は、図1に示すように、可動部材13と、復帰ばね14と、発電ユニット20と、電池30と、送信ユニット33(図2参照)と、を備える。
(1) Overview of Sensor According to Embodiment of Present Disclosure Sensor A1 according to the embodiment of the present disclosure, as shown in FIG. and a transmission unit 33 (see FIG. 2).
 可動部材13は、位置PT1(図4に示すオフ状態での位置)と、位置PT1の下方に位置する位置PT2(図6に示すオン状態での位置)との間で移動可能である。 The movable member 13 is movable between a position PT1 (position in the OFF state shown in FIG. 4) and a position PT2 (position in the ON state shown in FIG. 6) located below the position PT1.
 復帰ばね14は、可動部材13に上方向Duの復帰力を加える。 The return spring 14 applies a return force in the upward direction Du to the movable member 13 .
 発電ユニット20は、可動部材13が移動することによって発電する。 The power generation unit 20 generates power as the movable member 13 moves.
 送信ユニット33は、無線信号を送信する。 The transmission unit 33 transmits radio signals.
 発電ユニット20は、発電部21及び発電部22を含む。 The power generation unit 20 includes a power generation section 21 and a power generation section 22 .
 発電部21及び発電部22は、それぞれ、可動部材13の移動に応じて撓むことで発電する。 The power generation section 21 and the power generation section 22 each generate power by bending according to the movement of the movable member 13 .
 可動部材13が位置PT1から位置PT2へと移動することにより、発電部21が第1電圧を発生する。 By moving the movable member 13 from the position PT1 to the position PT2, the power generating section 21 generates the first voltage.
 位置PT2まで移動した可動部材13が復帰ばね14の復帰力を受けて位置PT2と位置PT1との間の中間位置PT3(図1に示す位置)まで移動した後で、可動部材13が中間位置PT3から位置PT2に移動することにより、発電部22が第2電圧を発生する。 After the movable member 13 moved to the position PT2 receives the restoring force of the return spring 14 and moves to the intermediate position PT3 (the position shown in FIG. 1) between the positions PT2 and PT1, the movable member 13 returns to the intermediate position PT3. to the position PT2, the power generating section 22 generates the second voltage.
 第1電圧は、送信ユニット33が起動するのに必要な起動電圧以上の電圧であり、第2電圧は、起動電圧未満の電圧である。 The first voltage is a voltage equal to or higher than the activation voltage necessary for activating the transmission unit 33, and the second voltage is a voltage less than the activation voltage.
 送信ユニット33は、発電ユニット20が第1電圧を発生した場合は、発電ユニット20から電力供給を受けて第1信号を送信する。送信ユニット33は、発電ユニット20が第2電圧を発生した場合は、電池30から電力供給を受けて第2信号を送信する。 When the power generation unit 20 generates the first voltage, the transmission unit 33 receives power from the power generation unit 20 and transmits the first signal. The transmission unit 33 receives power from the battery 30 and transmits the second signal when the power generation unit 20 generates the second voltage.
 ここで、起動電圧とは、送信ユニット33が無線信号を送信する送信動作を実行可能な電圧範囲の下限値である。例えば、送信ユニット33が無線通信用のICを含む場合、起動電圧は、無線通信用のICの動作電圧範囲の下限値となる。 Here, the startup voltage is the lower limit value of the voltage range in which the transmission unit 33 can perform the transmission operation of transmitting the wireless signal. For example, when the transmission unit 33 includes an IC for wireless communication, the starting voltage is the lower limit of the operating voltage range of the IC for wireless communication.
 センサA1の送信ユニット33は、可動部材13が位置PT1から位置PT2へと下方向Ddに移動するときには発電部21から第1電圧を供給されて起動し、第1信号を送信することができる。また、可動部材13が復帰ばね14の復帰力によって位置PT2から中間位置PT3に移動した後に中間位置PT3から位置PT2まで移動する場合、発電部22が発生する第2電圧は起動電圧未満であるため、送信ユニット33は起動できない。この場合、送信ユニット33は、発電ユニット20が第2電圧を発生したことをトリガとして電池30から電力供給を受けて第2信号を送信するので、第2電圧が送信ユニット33の起動電圧未満であっても、送信ユニット33が第2信号を送信することができる。よって、センサA1では外部から電力供給を受けることなく、送信ユニット33が第1信号及び第2信号を送信できるので、電力供給及び信号送信のための電線が不要になる。センサA1に電力供給及び信号送信のための電線が接続されている場合は電線の断線等が発生する可能性があるが、本実施形態のセンサA1は電力供給及び信号送信のための電線が不要であるから、損傷の可能性を低減することができる。また、本実施形態のセンサA1は電力供給及び信号送信のための電線が不要であるから、センサA1の設置位置の自由度が向上するという利点もある。 The transmission unit 33 of the sensor A1 can be activated by being supplied with the first voltage from the power generation section 21 and can transmit the first signal when the movable member 13 moves in the downward direction Dd from the position PT1 to the position PT2. Further, when the movable member 13 moves from the position PT2 to the intermediate position PT3 by the restoring force of the return spring 14 and then moves from the intermediate position PT3 to the position PT2, the second voltage generated by the power generating section 22 is less than the starting voltage. , the sending unit 33 cannot be activated. In this case, the transmission unit 33 is triggered by the generation of the second voltage by the power generation unit 20 and receives power from the battery 30 to transmit the second signal. Even if there is, the transmitting unit 33 can transmit the second signal. Therefore, since the transmission unit 33 can transmit the first signal and the second signal without receiving power supply from the outside, the sensor A1 does not need wires for power supply and signal transmission. If a wire for power supply and signal transmission is connected to the sensor A1, disconnection of the wire may occur, but the sensor A1 of this embodiment does not require a wire for power supply and signal transmission. As such, the likelihood of damage can be reduced. Moreover, since the sensor A1 of this embodiment does not require electric wires for power supply and signal transmission, there is an advantage that the degree of freedom of the installation position of the sensor A1 is improved.
 前述の従来の流体圧シリンダが備える前進位置検出スイッチ及び後退位置検出スイッチはそれぞれリミットスイッチで構成されており、位置検出機構には、リミットスイッチへの電線が接続されている。流体圧シリンダが、例えばロボットのマニピュレータに用いられる場合、マニピュレータの動きによって位置検出機構に接続された電線がマニピュレータ等の部品と擦れて損傷する可能性がある。 The forward position detection switch and the reverse position detection switch provided in the conventional fluid pressure cylinder described above are each composed of a limit switch, and the position detection mechanism is connected to the limit switch with an electric wire. When a fluid pressure cylinder is used, for example, as a manipulator of a robot, there is a possibility that the movement of the manipulator may damage the wires connected to the position detection mechanism by rubbing against parts such as the manipulator.
 対して、本実施形態のセンサA1は電力供給及び信号送信のための電線が不要であるから、電線の損傷の可能性を低減することができる。 On the other hand, the sensor A1 of this embodiment does not require wires for power supply and signal transmission, so it is possible to reduce the possibility of damage to the wires.
 (2)実施形態に係るセンサの詳細
 実施形態に係るセンサA1は、いわゆる環境発電(エナジーハーベスティング)を行う発電ユニット20を有している。可動部材13に下方向Ddの力が加えられていない場合、可動部材13は、図4に示すように、復帰ばね14の復帰力等を受けて位置PT1に移動している。ここで、可動部材13に下方向Ddの力が加えられて可動部材13が位置PT1から位置PT2に移動すると、発電ユニット20(具体的には発電部21)が発生した第1電圧により送信ユニット33が起動して第1信号を送信する。
(2) Details of Sensor According to Embodiment The sensor A1 according to the embodiment has a power generation unit 20 that performs so-called environmental power generation (energy harvesting). When the force in the downward direction Dd is not applied to the movable member 13, the movable member 13 receives the restoring force of the return spring 14 and the like and moves to the position PT1 as shown in FIG. Here, when the downward force Dd is applied to the movable member 13 and the movable member 13 moves from the position PT1 to the position PT2, the first voltage generated by the power generation unit 20 (specifically, the power generation section 21) causes the transmission unit to 33 activates and transmits the first signal.
 本実施形態では、センサA1は、例えば、スライドテーブル905を往復動作させるシリンダSY1(図10~図14参照)に適用され、スライドテーブル905の位置を検出するために使用される。スライドテーブル905には、スライドテーブル905と一緒に移動する動作部材906が固定されている。シリンダSY1には、動作部材906の移動範囲W906の両端1906、2906に1つずつセンサA1が取り付けられている。シリンダSY1に取り付けられた2つのセンサA1は、動作部材906が端1906に移動したことを検知するセンサA11と、動作部材906が端2906に移動したことを検知するセンサA12と、を含む。センサA11の可動部材13が、端1906に移動してきた動作部材906によって押されると、発電ユニット20が発電し、発電ユニット20から電力供給を受けて送信ユニット33が無線信号を送信する。また、センサA12の可動部材13が、端2906に移動してきた動作部材906によって押されると、発電ユニット20が発電し、発電ユニット20から電力供給を受けて送信ユニット33が無線信号を送信する。なお、シリンダSY1については、「(2.3)シリンダ及び取付部材」において、より詳細に説明する。 In this embodiment, the sensor A1 is applied to, for example, the cylinder SY1 (see FIGS. 10 to 14) that reciprocates the slide table 905, and is used to detect the position of the slide table 905. An operation member 906 that moves together with the slide table 905 is fixed to the slide table 905 . Sensors A1 are attached to cylinder SY1 at both ends 1906 and 2906 of movement range W906 of operating member 906, respectively. Two sensors A1 attached to cylinder SY1 include sensor A11 that detects movement of actuating member 906 to end 1906 and sensor A12 that detects movement of actuating member 906 to end 2906. When the movable member 13 of the sensor A11 is pushed by the operating member 906 that has moved to the end 1906, the power generation unit 20 generates power, receives power supply from the power generation unit 20, and the transmission unit 33 transmits a wireless signal. Further, when the movable member 13 of the sensor A12 is pushed by the operation member 906 that has moved to the end 2906, the power generation unit 20 generates power, receives power supply from the power generation unit 20, and the transmission unit 33 transmits a wireless signal. Cylinder SY1 will be described in more detail in "(2.3) Cylinder and mounting member".
 (2.1)センサの構成
 センサA1は、可動部材13、復帰ばね14、発電ユニット20、電池30、及び送信ユニット33等を収容する筐体10を有している。なお、センサA1の説明においては、特に断りのない限り、復帰ばね14が可動部材13を押す方向を上方向Duとして、図1及び図8に矢印で示す上方向Duと下方向Ddと左方向Dlと右方向DrをセンサA1の上方向と下方向と左方向と右方向とそれぞれ規定し、図8に矢印で示す前方向Dfと後方向DbをセンサA1の前方向と後方向とそれぞれ規定する。右方向Drと左方向Dlとは、上方向Duと下方向Ddとに交差する。前方向Dfと後方向Dbとは、上方向Duと下方向Ddと右方向Drと左方向Dlとに交差する。実施の形態では、右方向Drと左方向Dlとは、上方向Duと下方向Ddとに直角である。前方向Dfと後方向Dbとは、上方向Duと下方向Ddと右方向Drと左方向Dlとに直角である。ただし、これらの方向は、説明のために便宜上規定した方向であり、センサA1が実際に使用される際の方向を規定するものではない。
(2.1) Sensor Configuration The sensor A1 has a housing 10 that houses the movable member 13, the return spring 14, the power generation unit 20, the battery 30, the transmission unit 33, and the like. In the description of the sensor A1, unless otherwise specified, the direction in which the return spring 14 pushes the movable member 13 is the upward direction Du, and the upward direction Du, the downward direction Dd, and the leftward direction indicated by arrows in FIGS. Dl and the right direction Dr are defined as the upward direction, downward direction, left direction and right direction of the sensor A1, respectively, and the forward direction Df and the rearward direction Db indicated by arrows in FIG. 8 are respectively defined as the forward direction and the rearward direction of the sensor A1. do. The right direction Dr and the left direction Dl cross the upward direction Du and the downward direction Dd. The forward direction Df and the backward direction Db cross the upward direction Du, the downward direction Dd, the right direction Dr, and the left direction Dl. In the embodiment, the right direction Dr and the left direction Dl are perpendicular to the upward direction Du and the downward direction Dd. The forward direction Df and the rearward direction Db are perpendicular to the upward direction Du, the downward direction Dd, the right direction Dr and the left direction Dl. However, these directions are defined for convenience of explanation, and do not define directions when the sensor A1 is actually used.
 筐体10は、金属材料又は合成樹脂によって形成されたベース11と、合成樹脂等によって形成されたカバー12とを含む。 The housing 10 includes a base 11 made of metal material or synthetic resin, and a cover 12 made of synthetic resin or the like.
 ベース11は、底面の長辺及び短辺の寸法に比べて、高さの寸法が小さい直方体状に形成されている。 The base 11 is formed in the shape of a rectangular parallelepiped whose height dimension is smaller than the dimensions of the long and short sides of the bottom surface.
 カバー12は、下面の全体に開口部を有する箱型に形成されている。カバー12には、下面の開口部を塞ぐようにベース11が取り付けられている。 The cover 12 is formed in a box shape having an opening on the entire lower surface. A base 11 is attached to the cover 12 so as to close the opening on the bottom surface.
 筐体10の内部には、図1、図2、図4~図7に示すように、可動部材13、復帰ばね14、発電ユニット20、回路基板25、及び可動ブロック40等の部品が収容されている。回路基板25には、電池30及び送信ユニット33等の部品が実装されている。 As shown in FIGS. 1, 2, and 4 to 7, the inside of the housing 10 accommodates components such as the movable member 13, the return spring 14, the power generation unit 20, the circuit board 25, and the movable block 40. ing. Components such as a battery 30 and a transmission unit 33 are mounted on the circuit board 25 .
 可動部材13は、動作部材906によって下方向Ddに押される円柱状の操作部131を有している。操作部131は、カバー12の上面に設けられた貫通孔121(図1参照)に下側から挿入され、貫通孔121を通して筐体10の外部に露出する。可動部材13には、ベース11から上方向Duに突出するポール111が挿入される貫通孔132が設けられている。ポール111には、例えばコイルばねのような復帰ばね14が挿入されている。可動部材13は、貫通孔132にポール111が挿入された状態でベース11に取り付けられており、可動部材13とベース11との間に復帰ばね14が配置されている。可動部材13は、ポール111にガイドされることによって、位置PT1と位置PT2との間で上方向Duと下方向Ddに移動可能となっている。以下では、可動部材13が移動する方向(上方向Du又は下方向Dd)に沿った軸AX1を定義する。つまり、可動部材13は、位置PT1と位置PT2との間で軸AX1に沿って上方向Duと下方向Ddに移動可能である。可動部材13は復帰ばね14によって上方向Duに押されており、操作部131に下方向Ddの力が加わっていない状態では、可動部材13は移動範囲の上端、つまり位置PT1に位置している。 The movable member 13 has a columnar operating portion 131 that is pushed downward Dd by the operating member 906 . The operation unit 131 is inserted from below into a through hole 121 (see FIG. 1) provided in the upper surface of the cover 12 and exposed to the outside of the housing 10 through the through hole 121 . The movable member 13 is provided with a through hole 132 into which the pole 111 protruding from the base 11 in the upward direction Du is inserted. A return spring 14 such as a coil spring is inserted in the pole 111 . The movable member 13 is attached to the base 11 with the pole 111 inserted into the through hole 132 , and the return spring 14 is arranged between the movable member 13 and the base 11 . The movable member 13 is guided by the pole 111 so as to be movable in the upward direction Du and the downward direction Dd between the positions PT1 and PT2. Below, an axis AX1 is defined along the direction in which the movable member 13 moves (the upward direction Du or the downward direction Dd). That is, the movable member 13 can move in the upward direction Du and the downward direction Dd along the axis AX1 between the positions PT1 and PT2. The movable member 13 is pushed in the upward direction Du by the return spring 14, and the movable member 13 is positioned at the upper end of the movement range, that is, at the position PT1 in a state where the force in the downward direction Dd is not applied to the operating portion 131. .
 また、可動部材13において貫通孔121から露出する部位(つまり操作部131)には、例えば弾性を有する合成樹脂で形成された保護カバー16が取り付けられている。これにより、操作部131と貫通孔121との間の隙間から筐体10の内部に水又は塵埃等が入り込む可能性を低減している。 A protective cover 16 made of, for example, elastic synthetic resin is attached to a portion of the movable member 13 exposed from the through-hole 121 (that is, the operation portion 131). This reduces the possibility of water, dust, or the like entering the interior of the housing 10 through the gap between the operation portion 131 and the through hole 121 .
 発電ユニット20は、発電部21と、発電部22と、を含む。また、発電ユニット20は、発電部23を更に含んでいる。 The power generation unit 20 includes a power generation section 21 and a power generation section 22 . Moreover, the power generation unit 20 further includes a power generation section 23 .
 発電部21及び発電部22は共通の構成を有している。発電部21及び発電部22の各々は、振動体241と、圧電素子242と、おもり243とを有している。 The power generation unit 21 and the power generation unit 22 have a common configuration. Each of the power generation section 21 and the power generation section 22 has a vibrating body 241 , a piezoelectric element 242 and a weight 243 .
 発電部21及び発電部22は、ベース11の上面に固定された基台15に保持されている。 The power generation section 21 and the power generation section 22 are held by a base 15 fixed to the upper surface of the base 11 .
 基台15は、ベース11の上面に沿って配置される板状のストッパ片151と、ストッパ片151の左側の端部から上方向Duに突出する連結片152と、ストッパ片151と平行に配置されて、左側の端部が連結片152に連結されるストッパ片153と、を備える。一対のストッパ片151,153と連結片152とはそれぞれ軟磁性材料により形成されており、基台15の側面視の形状は全体としてC型に形成されている。 The base 15 includes a plate-like stopper piece 151 arranged along the upper surface of the base 11 , a connecting piece 152 projecting from the left end of the stopper piece 151 in the upward direction Du, and arranged parallel to the stopper piece 151 . and a stopper piece 153 whose left end is connected to the connecting piece 152 . The pair of stopper pieces 151 and 153 and the connecting piece 152 are each made of a soft magnetic material, and the shape of the base 15 as viewed from the side is C-shaped as a whole.
 発電部21は、連結片152と上側のストッパ片153との間に保持され、発電部22は、連結片152と下側のストッパ片151との間に保持される。 The power generating section 21 is held between the connecting piece 152 and the upper stopper piece 153, and the power generating section 22 is held between the connecting piece 152 and the lower stopper piece 151.
 振動体241は、弾性を有する軟磁性体の板材、例えば、ステンレス鋼板によって矩形板状に形成されている。振動体241の左端は基台15に固定されており、振動体241は基台15から右方向に向かって突出している。 The vibrating body 241 is formed in a rectangular plate shape from a soft magnetic plate material having elasticity, for example, a stainless steel plate. A left end of the vibrating body 241 is fixed to the base 15 , and the vibrating body 241 projects rightward from the base 15 .
 振動体241の右端にはおもり243が取り付けられている。おもり243は、例えば軟磁性材料によって板状に形成されている。発電部21では振動体241の下面におもり243が取り付けられており、発電部22では振動体241の上面におもり243が取り付けられている。 A weight 243 is attached to the right end of the vibrating body 241 . The weight 243 is made of, for example, a soft magnetic material and has a plate shape. A weight 243 is attached to the lower surface of the vibrating body 241 in the power generating section 21 , and a weight 243 is attached to the upper surface of the vibrating body 241 in the power generating section 22 .
 圧電素子242は、振動体241の上面及び下面に1つずつ設けられている。圧電素子242は、振動体241の右端が上方向Du又は下方向Ddに撓むことによって振動体241と共に撓み、撓み量に応じた電圧を発生する。つまり、発電部22は、可動部材13の移動によって撓む圧電素子242を含んでいる。圧電素子242の材料は、圧電セラミックス、例えば、チタン酸ジルコン酸鉛(Pb(Zr・Ti)O3)が好適である。ただし、圧電素子242を形成する材料は、チタン酸鉛(PbTiO3)、メタニオブ酸鉛(PbNb2O6)、チタン酸ビスマス(Bi4Ti3O12)などの圧電セラミックスであっても構わない。発電部22は圧電素子242を用いて発電を行うので、スポット溶接が行われる現場等、電磁ノイズが存在する環境下でも、センサA1の誤動作が発生する可能性を低減できる。 One piezoelectric element 242 is provided on each of the upper and lower surfaces of the vibrating body 241 . The piezoelectric element 242 bends together with the vibrating body 241 when the right end of the vibrating body 241 bends in the upward direction Du or the downward direction Dd, and generates a voltage corresponding to the amount of bending. That is, the power generation section 22 includes the piezoelectric element 242 that bends as the movable member 13 moves. The material of the piezoelectric element 242 is preferably piezoelectric ceramics such as lead zirconate titanate (Pb(Zr.Ti)O3). However, the material forming the piezoelectric element 242 may be piezoelectric ceramics such as lead titanate (PbTiO3), lead metaniobate (PbNb2O6), bismuth titanate (Bi4Ti3O12). Since the power generation unit 22 generates power using the piezoelectric element 242, it is possible to reduce the possibility of malfunction of the sensor A1 even in an environment where electromagnetic noise exists, such as a site where spot welding is performed.
 なお、発電部21及び発電部22がそれぞれ備えるおもり243の右端部分は、ストッパ片151,153にそれぞれ設けられた貫通孔154に挿入されており、おもり243の右端部分が貫通孔154の孔縁に当たることで振動体241の撓み量が制限されている。 The right end portions of the weights 243 included in the power generation section 21 and the power generation section 22 are inserted into the through holes 154 provided in the stopper pieces 151 and 153, respectively, and the right end portions of the weights 243 are aligned with the rims of the through holes 154. The amount of deflection of the vibrating body 241 is limited by the contact.
 発電部23は、コア(鉄心)231、コイル232、及び可動ブロック40を有する。 The power generation unit 23 has a core (iron core) 231 , a coil 232 and a movable block 40 .
 コア231は、純鉄又は磁性ステンレス鋼などの軟磁性材料によって円柱状に形成されており、連結片152の右側面にねじ等を用いて固定されている。コア231は連結片152の右側面から右方向Drに突出している。 The core 231 is formed in a columnar shape from a soft magnetic material such as pure iron or magnetic stainless steel, and is fixed to the right side surface of the connecting piece 152 using screws or the like. The core 231 protrudes in the right direction Dr from the right side surface of the connecting piece 152 .
 コア231には、コイル232が取り付けられている。コイル232は、コイルボビンに巻線(エナメル線)が巻回されて円筒状に形成されており、コイルボビンの孔にコア231が挿入されている。なお、コイル232は、自己融着性を有する絶縁体で導体を被覆した電線が、螺旋状に巻回されたボビンレスのコイルであっても構わない。 A coil 232 is attached to the core 231 . The coil 232 is formed in a cylindrical shape by winding a wire (enameled wire) around a coil bobbin, and the core 231 is inserted into a hole of the coil bobbin. The coil 232 may be a bobbinless coil in which an electric wire whose conductor is covered with a self-bonding insulator is spirally wound.
 可動ブロック40は、図1及び図3に示すように、永久磁石41と、一対のヨーク42と、ホルダ43とを有している。 The movable block 40 has a permanent magnet 41, a pair of yokes 42, and a holder 43, as shown in FIGS.
 永久磁石41は、例えば、直方体状のネオジム磁石である。ただし、永久磁石41は、ネオジム磁石以外の磁石、例えば、サマリウムコバルト磁石などであっても構わない。永久磁石41は上下方向に着磁されており、例えば、上部がN極となり、下部がS極となっている。 The permanent magnet 41 is, for example, a rectangular parallelepiped neodymium magnet. However, the permanent magnet 41 may be a magnet other than a neodymium magnet, such as a samarium-cobalt magnet. The permanent magnet 41 is magnetized in the vertical direction, for example, the upper part is the N pole and the lower part is the S pole.
 一対のヨーク42は、それぞれ軟磁性材料によって平板状に形成されている。一対のヨーク42は永久磁石41の上面及び下面に一つずつ配置されている。一対のヨーク42の各々は、ヨーク片421と、ヨーク片422と、を有している。ヨーク片421は、四角形の平板状に形成されている。ヨーク片421は永久磁石41の上面又は下面に沿って配置される。ヨーク片422は、矩形の平板状に形成されている。ヨーク片422は、ヨーク片421の左端からヨーク片421の厚み方向(上下方向)に突出している。 Each of the pair of yokes 42 is made of a soft magnetic material and formed into a flat plate shape. A pair of yokes 42 are arranged one each on the upper surface and the lower surface of the permanent magnet 41 . Each of the pair of yokes 42 has a yoke piece 421 and a yoke piece 422 . The yoke piece 421 is formed in a rectangular flat plate shape. The yoke piece 421 is arranged along the top or bottom surface of the permanent magnet 41 . The yoke piece 422 is formed in a rectangular flat plate shape. The yoke piece 422 protrudes from the left end of the yoke piece 421 in the thickness direction (vertical direction) of the yoke piece 421 .
 ホルダ43は、非磁性材料、例えば、アルミニウム又は合成樹脂によって形成されている。ホルダ43は、永久磁石41と、一対のヨーク42と、を保持する。ホルダ43は、一対のヨーク42のヨーク片421で永久磁石41を上下から挟むようにして、永久磁石41と一対のヨーク42を保持する。永久磁石41と一対のヨーク42とがホルダ43に保持された状態では、一対のヨーク42のヨーク片422は、永久磁石41の左側に配置され、互いに離間した状態で対向している。 The holder 43 is made of a non-magnetic material such as aluminum or synthetic resin. The holder 43 holds the permanent magnet 41 and the pair of yokes 42 . The holder 43 holds the permanent magnet 41 and the pair of yokes 42 such that the permanent magnet 41 is sandwiched between the yoke pieces 421 of the pair of yokes 42 . When the permanent magnet 41 and the pair of yokes 42 are held by the holder 43, the yoke pieces 422 of the pair of yokes 42 are arranged on the left side of the permanent magnet 41 and face each other while being spaced apart.
 ここで、ホルダ43に保持された永久磁石41及び一対のヨーク42は、発電部21の振動体241と、発電部22の振動体241との間に配置される。 Here, the permanent magnet 41 and the pair of yokes 42 held by the holder 43 are arranged between the vibrating body 241 of the power generating section 21 and the vibrating body 241 of the power generating section 22 .
 ホルダ43の前側の側面には溝44が設けられており、この溝44に線ばね45の中間部位が挿入される。線ばね45は線細工ばねである。具体的には、線ばね45は、線状の材料により、下から見た形状が略G形に形成されている。線ばね45は、可動ブロック40及び基台15の周りを囲むように配置され、線ばね45の端145は前側から可動部材13の孔133に挿入され、線ばね45の端245はホルダ43の後側の側面に設けられた孔に挿入されている。線ばね45の中間部位は、ホルダ43の溝44と、連結片152の左側面の溝155とに通されている。 A groove 44 is provided on the front side surface of the holder 43 , and an intermediate portion of the wire spring 45 is inserted into this groove 44 . The wire spring 45 is a filigree spring. Specifically, the wire spring 45 is made of a wire-shaped material and has a substantially G shape when viewed from below. The wire spring 45 is arranged to surround the movable block 40 and the base 15 , the end 145 of the wire spring 45 is inserted into the hole 133 of the movable member 13 from the front side, and the end 245 of the wire spring 45 is inserted into the holder 43 . It is inserted into a hole provided on the rear side surface. An intermediate portion of the wire spring 45 is passed through the groove 44 of the holder 43 and the groove 155 on the left side surface of the connecting piece 152 .
 ここで、操作部131に下方向Ddの力が加えられて、可動部材13が位置PT1から下方向Ddに移動すると、可動部材13に端145が保持された線ばね45によってホルダ43が下方向Ddに押され、ホルダ43が下方向Ddに移動する。図6に示すように、可動部材13が位置PT2まで移動すると、ホルダ43に保持された下側のヨーク42が発電部22のおもり243に接触し、上側のヨーク42のヨーク片422がコア231の先端に接触する。このとき、永久磁石41、上側のヨーク42、コア231、連結片152、発電部22、下側のヨーク42、及び永久磁石41の経路で磁路が形成される。 Here, when a downward force Dd is applied to the operating portion 131 to move the movable member 13 from the position PT1 in the downward direction Dd, the holder 43 is moved downward by the wire spring 45 whose end 145 is held by the movable member 13. Pushed by Dd, the holder 43 moves downward Dd. As shown in FIG. 6 , when the movable member 13 moves to the position PT2, the lower yoke 42 held by the holder 43 contacts the weight 243 of the power generating section 22, and the yoke piece 422 of the upper yoke 42 moves toward the core 231. the tip of the At this time, a magnetic path is formed by the path of the permanent magnet 41 , the upper yoke 42 , the core 231 , the connecting piece 152 , the power generating section 22 , the lower yoke 42 and the permanent magnet 41 .
 その後、操作部131を下方向Ddに押す力がなくなると、可動部材13が復帰ばね14の復帰力等を受けて上方向Duに移動する。可動部材13が上方向Duに移動すると、可動部材13に端145が保持された線ばね45によってホルダ43が上方向Duに押されて、ホルダ43が上方向Duに移動する。図4に示すように、可動部材13が位置PT1まで移動すると、ホルダ43に保持された上側のヨーク42が発電部21のおもり243に接触し、下側のヨーク42のヨーク片422がコア231の先端に接触する。このとき、永久磁石41、上側のヨーク42、発電部21、連結片152、コア231、下側のヨーク42、及び永久磁石41の経路で磁路が形成される。 After that, when the force pushing the operation part 131 downward Dd disappears, the movable member 13 receives the restoring force of the return spring 14 and the like and moves upward Du. When the movable member 13 moves upward Du, the holder 43 is pushed upward Du by the wire spring 45 whose end 145 is held by the movable member 13, and the holder 43 moves upward Du. As shown in FIG. 4, when the movable member 13 moves to the position PT1, the upper yoke 42 held by the holder 43 comes into contact with the weight 243 of the power generating section 21, and the yoke piece 422 of the lower yoke 42 moves toward the core 231. the tip of the At this time, a magnetic path is formed by the path of the permanent magnet 41 , the upper yoke 42 , the power generating section 21 , the connecting piece 152 , the core 231 , the lower yoke 42 and the permanent magnet 41 .
 発電部23は、ホルダ43の下側又は上側への移動に応じてコイル232を鎖交する磁束が変化することによって発電する。上述のように、発電部23は、可動部材13の移動に応じて移動する永久磁石41と、永久磁石14の移動による磁束の変化で発電するコイル232と、を有しており、電磁誘導による発電も行うことができる。 The power generation unit 23 generates power by changing the magnetic flux linking the coil 232 according to the downward or upward movement of the holder 43 . As described above, the power generation unit 23 includes the permanent magnet 41 that moves in accordance with the movement of the movable member 13, and the coil 232 that generates power using a change in magnetic flux caused by the movement of the permanent magnet 14. It can also generate electricity.
 回路基板25には、電池30、電源回路31(図2参照)、送信ユニット33とそのアンテナ、制御回路34(図2参照)、及びスイッチ32(図2参照)等の部品が実装されている。回路基板25は、例えば、ストッパ片153の上に配置されている。 Components such as a battery 30, a power supply circuit 31 (see FIG. 2), a transmission unit 33 and its antenna, a control circuit 34 (see FIG. 2), and a switch 32 (see FIG. 2) are mounted on the circuit board 25. . The circuit board 25 is arranged on the stopper piece 153, for example.
 スイッチ32は、例えばノーマリオフ型のMOSFETであり、電池30と送信ユニット33との間に接続されている。スイッチ32は制御回路34によってオン/オフが切り替えられる。 The switch 32 is, for example, a normally-off MOSFET, and is connected between the battery 30 and the transmission unit 33. The switch 32 is turned on/off by the control circuit 34 .
 電源回路31は、発電ユニット20に電気的に接続される。電源回路31は、発電ユニット20で発電される電力(交流電力)を直流電力に変換するように構成される。例えば、電源回路31は、整流回路、平滑コンデンサ及び電圧レギュレータなどを有する。電源回路31で変換された直流電力が送信ユニット33に供給される。 The power supply circuit 31 is electrically connected to the power generation unit 20 . The power supply circuit 31 is configured to convert the power (AC power) generated by the power generation unit 20 into DC power. For example, the power supply circuit 31 has a rectifier circuit, a smoothing capacitor, a voltage regulator, and the like. DC power converted by the power supply circuit 31 is supplied to the transmission unit 33 .
 電池30は例えば一次電池である。なお、電池30は、一次電池に限定されず、充電が可能な二次電池、キャパシタ等の蓄電素子でもよい。電池30は、発電ユニット20が発生した電気エネルギを蓄える蓄電素子でもよく、電池30が一次電池である場合に比べて電池30の交換が不要になるという利点がある。 The battery 30 is, for example, a primary battery. The battery 30 is not limited to a primary battery, and may be a rechargeable secondary battery or a power storage device such as a capacitor. The battery 30 may be a storage element that stores the electrical energy generated by the power generation unit 20, and has the advantage of eliminating the need to replace the battery 30 compared to the case where the battery 30 is a primary battery.
 送信ユニット33は、電源回路31又は電池30から直流電力が供給されることで無線信号により第1信号又は第2信号を送信する。無線信号は、例えばBluetooth(登録商標)の規格に準拠した無線信号であり、特に、Bluetooth(登録商標) Low Energyの規格に準拠した無線信号であることが好ましい。 The transmission unit 33 transmits the first signal or the second signal by radio signals by being supplied with DC power from the power supply circuit 31 or the battery 30 . The radio signal is, for example, a radio signal conforming to the Bluetooth (registered trademark) standard, and particularly preferably a radio signal conforming to the Bluetooth (registered trademark) Low Energy standard.
 制御回路34には、発電ユニット20(発電部21、発電部22、及び発電部23)の出力電圧が入力されている。制御回路34は、例えば低電圧動作のマイクロコンピュータを含み、発電ユニット20の発電出力が送信ユニット33の起動電圧以上の第1電圧であれば、スイッチ32をオフに制御する。スイッチ32がオフの場合、送信ユニット33は発電ユニット20から電力供給を受けて無線信号により第1信号を送信する。また、制御回路34は、発電ユニット20の発電出力が送信ユニット33の起動電圧未満の第2電圧であれば、スイッチ32をオンに制御する。スイッチ32がオンの場合、送信ユニット33は電池30から電力供給を受けて無線信号により第2信号を送信する。 The output voltage of the power generation unit 20 (power generation section 21, power generation section 22, and power generation section 23) is input to the control circuit 34. The control circuit 34 includes, for example, a low-voltage microcomputer, and controls the switch 32 to be off when the power generation output of the power generation unit 20 is a first voltage equal to or higher than the starting voltage of the transmission unit 33 . When the switch 32 is off, the transmission unit 33 receives power from the power generation unit 20 and transmits the first signal by radio signal. Further, the control circuit 34 turns on the switch 32 when the power generation output of the power generation unit 20 is a second voltage lower than the starting voltage of the transmission unit 33 . When the switch 32 is on, the transmitting unit 33 is powered by the battery 30 and transmits the second signal by radio signal.
 なお、制御回路34は、発電部21及び発電部22の出力電圧と、発電部23の出力電圧とに基づいて、発電ユニット20の出力電圧が起動電圧以上であるか否かを判断し、スイッチ32のオン/オフを制御してもよい。具体的には、制御回路34は、発電部21及び発電部22が発電している状態で、発電部23の出力電圧が所定の閾値電圧未満であれば、発電ユニット20の出力電圧が送信ユニット33の起動電圧未満であると判断して、スイッチ32をオンにする。これにより、発電部21及び発電部22が発電している状態で、発電部23の発電出力も閾値電圧以上であれば、スイッチ32はオフになる。つまり、発電ユニット20の発電出力が起動電圧以上であれば、スイッチ32はオフになるので、電池30から送信ユニット33に電力供給が行われることはなく、電池30の消耗が抑制される。 Note that the control circuit 34 determines whether or not the output voltage of the power generation unit 20 is equal to or higher than the starting voltage based on the output voltages of the power generation units 21 and 22 and the output voltage of the power generation unit 23. 32 may be controlled on/off. Specifically, when the power generation unit 21 and the power generation unit 22 are generating power and the output voltage of the power generation unit 23 is less than a predetermined threshold voltage, the control circuit 34 controls the output voltage of the power generation unit 20 to be the same as that of the transmission unit. 33, the switch 32 is turned on. As a result, when the power generation unit 21 and the power generation unit 22 are generating power and the power generation output of the power generation unit 23 is equal to or higher than the threshold voltage, the switch 32 is turned off. That is, when the power output of the power generating unit 20 is equal to or higher than the starting voltage, the switch 32 is turned off, so that the power is not supplied from the battery 30 to the transmitting unit 33, and consumption of the battery 30 is suppressed.
 (2.2)ストッパ部材
 2つのセンサA1には、動作部材906の動作する動作範囲すなわち動作部材906が移動する移動範囲W906を規制することにより可動部材13の下側への移動量を規制する2つのストッパ部材50が取り付けられる。ストッパ部材50は、センサA1の筐体10の一部(例えばベース11の下面及び右側面)と接触した状態で、筐体10を保持している。なお、2つのストッパ部材50は、センサA11に取り付けられるストッパ部材50Aと、センサA12に取り付けられるストッパ部材50Bと、を含む。
(2.2) Stopper member The two sensors A1 regulate the amount of downward movement of the movable member 13 by regulating the movement range W906 in which the movement member 906 moves. Two stopper members 50 are attached. The stopper member 50 holds the housing 10 in contact with a part of the housing 10 of the sensor A1 (for example, the lower surface and the right side surface of the base 11). The two stopper members 50 include a stopper member 50A attached to the sensor A11 and a stopper member 50B attached to the sensor A12.
 ストッパ部材50は、センサA1のベース11が載せられる板状の取付台51と、取付台51の右端から上方向Duに突出する支柱52と、支柱52の上端から左方向Dlに突出する保持部53と、を有している。ストッパ部材50は、例えば金属材料により形成されている。 The stopper member 50 includes a plate-shaped mounting base 51 on which the base 11 of the sensor A1 is placed, a support 52 projecting from the right end of the mounting base 51 in the upward direction Du, and a holding portion projecting from the upper end of the support 52 in the left direction Dl. 53 and . The stopper member 50 is made of, for example, a metal material.
 取付台51の上面の右側には円形の凹部55が設けられている。凹部55の底面には、取付台51を上面から下面まで貫通する貫通孔56が設けられている。貫通孔56には調整ボルト61のねじ部63が上側から挿入され、凹部55に調整ボルト61の頭部62が配置される(図4参照)。 A circular recess 55 is provided on the right side of the upper surface of the mounting base 51 . A through hole 56 is formed in the bottom surface of the recess 55 so as to penetrate the mounting base 51 from the upper surface to the lower surface. A threaded portion 63 of an adjusting bolt 61 is inserted into the through hole 56 from above, and a head portion 62 of the adjusting bolt 61 is arranged in the recess 55 (see FIG. 4).
 また、取付台51の上面の左側には、取付台51を上面から下面まで貫通する2つの貫通孔57が設けられている(図9参照)。 Also, two through holes 57 are provided on the left side of the upper surface of the mounting base 51 so as to penetrate the mounting base 51 from the upper surface to the lower surface (see FIG. 9).
 調整ボルト61のねじ部63が貫通孔56に挿入され、凹部55に頭部62が配置された状態で、貫通孔57に下面から通した固定ねじをベース11のねじ穴にネジ込むことで、ストッパ部材50がベース11に固定される。凹部55の深さ寸法は、頭部62の厚み寸法よりも僅かに大きい寸法に設定されており、調整ボルト61は回転可能な状態でベース11とストッパ部材50との間に保持される。 With the threaded portion 63 of the adjustment bolt 61 inserted into the through-hole 56 and the head 62 placed in the recess 55, the fixing screw passed through the through-hole 57 from below is screwed into the threaded hole of the base 11. A stopper member 50 is fixed to the base 11 . The depth dimension of the recess 55 is set to be slightly larger than the thickness dimension of the head 62, and the adjustment bolt 61 is held between the base 11 and the stopper member 50 in a rotatable state.
 調整ボルト61は、センサA1及びストッパ部材50をシリンダSY1に取り付けるための取付部材70(図10及び図11参照)に設けられたボルト孔76にネジ込まれる。調整ボルト61のねじ込み量を調整することで、X軸においてシリンダSY1に対するセンサA1及びストッパ部材50の位置が調整することができる。つまり、調整ボルト61等で、動作部材906と接触するストッパ部材50の接触部位58をシリンダSY1に対して上下に移動させる位置調整機構60が実現される。なお、本実施形態では2つのセンサA1及び2つのストッパ部材50が2つの取付部材70を用いてシリンダSY1に取り付けられる。2つの取付部材70は、センサA11及びストッパ部材50AをシリンダSY1に取り付けるための取付部材70Aと、センサA12及びストッパ部材50BをシリンダSY1に取り付けるための取付部材70Bと、を含む。 The adjustment bolt 61 is screwed into a bolt hole 76 provided in a mounting member 70 (see FIGS. 10 and 11) for mounting the sensor A1 and stopper member 50 to the cylinder SY1. By adjusting the screwing amount of the adjustment bolt 61, the positions of the sensor A1 and the stopper member 50 with respect to the cylinder SY1 on the X axis can be adjusted. In other words, the position adjusting mechanism 60 is realized in which the contact portion 58 of the stopper member 50 that contacts the operating member 906 is vertically moved with respect to the cylinder SY1 by the adjusting bolt 61 or the like. In this embodiment, the two sensors A1 and the two stopper members 50 are attached to the cylinder SY1 using two attachment members 70. As shown in FIG. The two mounting members 70 include a mounting member 70A for mounting the sensor A11 and the stopper member 50A to the cylinder SY1, and a mounting member 70B for mounting the sensor A12 and the stopper member 50B to the cylinder SY1.
 保持部53には、可動部材13の上部が挿入される貫通孔54が設けられている。ストッパ部材50の接触部位58には、操作部131が挿入される貫通孔54が設けられている。操作部131が貫通孔54に挿入されることによって、環状の保持部53で可動部材13の周りが囲まれているので、センサA1がシリンダSY1に取り付けられた場合に、シリンダSY1に設けられた計器類のケーブル等が、シリンダSY1の動作部材906とセンサA1との間に挟まれにくくなり、センサA1の破損等が発生しにくくなる。なお、保持部53が「環状」であるとは、可動部材13の全周を囲んでいるものに限定されず、一部が途切れていてもよく、保持部53の上面視の形状はC型であってもよい。 The holding portion 53 is provided with a through hole 54 into which the upper portion of the movable member 13 is inserted. A contact portion 58 of the stopper member 50 is provided with a through hole 54 into which the operating portion 131 is inserted. By inserting the operating portion 131 into the through hole 54, the ring-shaped holding portion 53 surrounds the movable member 13. Therefore, when the sensor A1 is attached to the cylinder SY1, the sensor A1 provided on the cylinder SY1 Cables of instruments and the like are less likely to be caught between the operating member 906 of the cylinder SY1 and the sensor A1, and damage to the sensor A1 is less likely to occur. It should be noted that the holding portion 53 being “annular” is not limited to enclosing the entire circumference of the movable member 13, and may be partially cut off, and the shape of the holding portion 53 when viewed from above is a C shape. may be
 ここで、保持部53の上面が、シリンダSY1が有する動作部材906と接触する接触部位58となる。センサA1の可動部材13は、シリンダSY1の動作部材906によって下方向Ddに押されるのであるが、可動部材13が下方向Ddに移動する場合の限界の位置が限界位置PT4(図1及び図7参照)である。ストッパ部材50は、動作部材906が下方向Ddに移動したときに動作部材906と接触することによって位置PT2を決定する。言い換えれば、可動部材13は、ストッパ部材50が動作部材906と接触しているときに、位置PT2に位置している。ストッパ部材50は、可動部材13が位置PT2よりも下方に移動しないように、動作部材906の下方向Ddへの移動を制限している。ここで、ストッパ部材50において、動作部材906と接触する接触部位58は、限界位置PT4に存在する可動部材13の上端よりも上側にあるので、可動部材13が限界位置PT4まで押されることがなく、センサA1が破損しにくくなる。 Here, the upper surface of the holding portion 53 becomes the contact portion 58 that contacts the operating member 906 of the cylinder SY1. The movable member 13 of the sensor A1 is pushed in the downward direction Dd by the operating member 906 of the cylinder SY1. ). Stopper member 50 determines position PT2 by coming into contact with operating member 906 when operating member 906 moves downward Dd. In other words, the movable member 13 is positioned at the position PT2 when the stopper member 50 is in contact with the operating member 906. As shown in FIG. The stopper member 50 limits the movement of the operating member 906 in the downward direction Dd so that the movable member 13 does not move below the position PT2. Here, since the contact portion 58 of the stopper member 50 that contacts the operating member 906 is above the upper end of the movable member 13 existing at the limit position PT4, the movable member 13 is not pushed to the limit position PT4. , the sensor A1 is less likely to be damaged.
 本実施形態では、センサA1を保持したストッパ部材50が取付部材70を用いてシリンダSY1に取り付けられる。したがって、位置調整機構60を用いてシリンダSY1に対してストッパ部材50の位置を調整すれば、シリンダSY1に対するセンサA1の位置も同時に調整できる。よって、シリンダSY1に対するストッパ部材50の位置調整と、シリンダSY1に対するセンサA1の位置調整を別々に行う必要がなく、位置調整の手間を削減できる。また、位置調整機構60は操作部131の円柱状の部位の中心軸AX3に沿って配置されているので(図11参照)、動作部材906が可動部材13の操作部131に接触した場合に、センサA1及びストッパ部材50を介して位置調整機構60に曲げモーメントが発生する可能性を低減できる。なお、位置調整機構60が操作部131の円柱状の部位の中心軸AX3に沿って配置されるとは、位置調整機構60の調整ボルト61の中心軸と中心軸AX3とが平行な状態で、調整ボルト61の中心軸と中心軸AX3とが重なっていることに限定されない。位置調整機構60の調整ボルト61の中心軸と中心軸AX3との交差角が45度以下であればよい。また調整ボルト61の中心軸と直交する面において、調整ボルト61の中心軸と中心軸AX3との間の距離が、製造誤差等に起因する許容寸法以下に収まっていればよい。また、本実施形態において、2つの物体が沿っているとは、両者が完全に平行であることに限定されず、数度程度の角度で交差している状態を含み得る。また、2つの物体が直交しているとは、両者が厳密に90度の角度で交差していることに限定されず、両者の交差角が90度から数度程度ずれている状態を含み得る。 In this embodiment, the stopper member 50 holding the sensor A1 is attached to the cylinder SY1 using the attachment member 70. Therefore, by adjusting the position of the stopper member 50 with respect to the cylinder SY1 using the position adjusting mechanism 60, the position of the sensor A1 with respect to the cylinder SY1 can be adjusted at the same time. Therefore, it is not necessary to adjust the position of the stopper member 50 with respect to the cylinder SY1 and the position adjustment of the sensor A1 with respect to the cylinder SY1 separately, thereby reducing the labor for the position adjustment. In addition, since the position adjusting mechanism 60 is arranged along the central axis AX3 of the cylindrical portion of the operating portion 131 (see FIG. 11), when the operating member 906 contacts the operating portion 131 of the movable member 13, The possibility that a bending moment is generated in the position adjustment mechanism 60 via the sensor A1 and the stopper member 50 can be reduced. Note that the positioning of the position adjusting mechanism 60 along the central axis AX3 of the cylindrical portion of the operation unit 131 means that the central axis of the adjusting bolt 61 of the position adjusting mechanism 60 is parallel to the central axis AX3. The central axis of the adjusting bolt 61 and the central axis AX3 are not limited to being overlapped. The intersection angle between the central axis of the adjusting bolt 61 of the position adjusting mechanism 60 and the central axis AX3 should be 45 degrees or less. Further, it is sufficient that the distance between the central axis of the adjusting bolt 61 and the central axis AX3 in the plane orthogonal to the central axis of the adjusting bolt 61 is within the allowable dimension due to manufacturing error or the like. Moreover, in this embodiment, two objects are not limited to being completely parallel, but may include a state in which they intersect at an angle of about several degrees. In addition, the fact that two objects are orthogonal to each other is not limited to the fact that the two objects intersect at an angle of 90 degrees, but may include a state in which the angle of intersection of the two is deviated from 90 degrees by several degrees. .
 また、ストッパ部材50はセンサA1の一部(例えばベース11の下面及び右側面)と接触しているので、ストッパ部材50の接触部位58にシリンダSY1の動作部材906が当たったときの衝撃がストッパ部材50を介してセンサA1に伝わりやすくなる。よって、接触部位58に動作部材906が当たったときの衝撃で、おもり243がヨーク42に接触していない発電部21の振動体241が振動しやすくなり、発電部21の発電出力が大きくなるという利点もある。 In addition, since the stopper member 50 is in contact with a part of the sensor A1 (for example, the lower surface and the right side surface of the base 11), the impact when the operating member 906 of the cylinder SY1 hits the contact portion 58 of the stopper member 50 is applied to the stopper. It becomes easier to transmit to the sensor A1 via the member 50. - 特許庁Therefore, the vibration body 241 of the power generation section 21, in which the weight 243 is not in contact with the yoke 42, is likely to vibrate due to the impact when the operating member 906 hits the contact portion 58, and the power generation output of the power generation section 21 increases. There are also advantages.
 また、ストッパ部材50には、センサA1の筐体10の前側、左側、及び後側の側面と、上面の左半分とを露出させる開口が設けられており、この開口が電磁波を透過する透過部E2となっている(図8参照)。なお、透過部E2は、電磁波に対して透過性を有する合成樹脂製の部材で実現されていてもよい。 In addition, the stopper member 50 is provided with openings for exposing the front, left, and rear side surfaces of the housing 10 of the sensor A1 and the left half of the upper surface. E2 (see FIG. 8). In addition, the transmission part E2 may be realized by a member made of synthetic resin having transparency to electromagnetic waves.
 (2.3)シリンダ及び取付部材
 次に、センサA1が取り付けられるシリンダSY1について図10~図14を参照して説明する。なお、シリンダSY1についての説明では、図10~図14においてX軸に沿う方向を上下、Y軸に沿う方向を左右、Z軸に沿う方向を前後と規定する。ただし、これらの方向は一例であり、シリンダSY1の使用時の方向を限定する趣旨ではない。また、図面中の各方向を示す矢印は説明のために表記しているに過ぎず、実体を伴わない。
(2.3) Cylinder and Mounting Member Next, the cylinder SY1 to which the sensor A1 is mounted will be described with reference to FIGS. 10 to 14. FIG. 10 to 14, the direction along the X axis is defined as up and down, the direction along the Y axis is defined as left and right, and the direction along the Z axis is defined as front and back. However, these directions are only examples, and are not meant to limit the directions during use of the cylinder SY1. Also, the arrows indicating each direction in the drawings are only shown for explanation and are not substantial.
 シリンダSY1は、流体圧(例えば空気圧)を受けて、スライドテーブル905をX軸に沿って往復動作させるために用いられる。スライドテーブル905は、X軸上の停止位置1905と停止位置2905との間で往復動作を行う。停止位置1905は、スライドテーブル905が往復動作を行う移動範囲W905の下端の位置(図11に実線で示す位置)であり、停止位置2905は、スライドテーブル905の移動範囲W905の上端の位置(図11に点線で示す位置)である。 The cylinder SY1 is used to receive fluid pressure (for example, air pressure) to reciprocate the slide table 905 along the X axis. The slide table 905 reciprocates between a stop position 1905 and a stop position 2905 on the X-axis. A stop position 1905 is the position of the lower end of the movement range W905 in which the slide table 905 reciprocates (the position indicated by the solid line in FIG. 11), and a stop position 2905 is the position of the upper end of the movement range W905 of the slide table 905 (the 11).
 スライドテーブル905は、シリンダSY1の本体900の前面に、X軸に沿って移動可能な状態で取り付けられている。 The slide table 905 is attached to the front surface of the main body 900 of the cylinder SY1 so as to be movable along the X axis.
 シリンダSY1の本体900には、ピストンを収容するシリンダ室が設けられている。シリンダ室は、ピストンを挟んでロッド側の第1空気室とヘッド側の第2空気室とに分けられ、第1空気室及び第2空気室のそれぞれにエア配管902,903が繋がっている。ピストンの下面からは2本のロッド901が下向きに突出している。2本のロッド901は、本体900の下部に設けられた2つの貫通孔にそれぞれ通され、本体900の外部に露出している。2本のロッド901の下端はスライドテーブル905に連結されており、スライドテーブル905はピストンと連動して上向きと下向きに移動する。 A body 900 of the cylinder SY1 is provided with a cylinder chamber that houses a piston. The cylinder chamber is divided into a rod-side first air chamber and a head-side second air chamber with the piston interposed therebetween, and air pipes 902 and 903 are connected to the first and second air chambers, respectively. Two rods 901 protrude downward from the bottom surface of the piston. The two rods 901 are passed through two through holes provided in the lower portion of the main body 900 and are exposed to the outside of the main body 900 . The lower ends of the two rods 901 are connected to a slide table 905, and the slide table 905 moves upward and downward in conjunction with the piston.
 シリンダSY1には、スライドテーブル905の移動範囲を制限する2つのストッパ部材50(ストッパ部材50A及びストッパ部材50B)が取り付けられている。スライドテーブル905の移動範囲W905の下端は、ストッパ部材50Aによって停止位置1905に制限されている。また、スライドテーブル905の移動範囲の上端は、ストッパ部材50Bによって停止位置2905に制限されている。 Two stopper members 50 (stopper member 50A and stopper member 50B) that limit the movement range of the slide table 905 are attached to the cylinder SY1. The lower end of the movement range W905 of the slide table 905 is restricted to the stop position 1905 by the stopper member 50A. Also, the upper end of the movement range of the slide table 905 is restricted to the stop position 2905 by the stopper member 50B.
 また、シリンダSY1には、スライドテーブル905が停止位置1905に移動したことを検知するセンサA11と、スライドテーブル905が停止位置2905に移動したことを検知するセンサA12と、が取り付けられている。 Further, a sensor A11 that detects that the slide table 905 has moved to the stop position 1905 and a sensor A12 that detects that the slide table 905 has moved to the stop position 2905 are attached to the cylinder SY1.
 ここで、センサA11及びストッパ部材50Aは取付部材70Aを用いてシリンダSY1に取り付けられ、センサA12及びストッパ部材50Bは取付部材70Bを用いてシリンダSY1に取り付けられている。取付部材70Aと取付部材70Bとは、シリンダSY1への取付部分を除いて、X軸と直交する平面に対してほぼ対称な形状に形成されている。以下では、停止位置1905においてストッパ部材50A及びセンサA11をシリンダSY1に取り付ける取付部材70Aについて説明し、取付部材70Bについては説明を省略する。 Here, the sensor A11 and the stopper member 50A are attached to the cylinder SY1 using the attachment member 70A, and the sensor A12 and the stopper member 50B are attached to the cylinder SY1 using the attachment member 70B. The mounting member 70A and the mounting member 70B are formed in a substantially symmetrical shape with respect to a plane orthogonal to the X-axis, except for the mounting portion to the cylinder SY1. Below, the attachment member 70A for attaching the stopper member 50A and the sensor A11 to the cylinder SY1 at the stop position 1905 will be described, and the description of the attachment member 70B will be omitted.
 取付部材70Aは、例えば金属材料により形成されている。取付部材70Aは、図10に示すように、センサA11の下面と対向する矩形板状の底板部71と、底板部71の後側の端部から上向きに突出する縦片72と、底板部71の右側の端部から上向きに突出する縦片73と、を備えている。 The mounting member 70A is made of, for example, a metal material. As shown in FIG. 10, the mounting member 70A includes a rectangular plate-shaped bottom plate portion 71 facing the lower surface of the sensor A11, a vertical piece 72 projecting upward from the rear end of the bottom plate portion 71, and the bottom plate portion 71 and a vertical piece 73 projecting upward from the right end of the .
 底板部71には、X軸に沿って底板部71を貫通するボルト孔76が、ストッパ部材50の貫通孔56に対応する位置に設けられている。ボルト孔76の内周面にはねじ部が形成されており、ストッパ部材50の貫通孔56に挿入された調整ボルト61がボルト孔76にネジ込まれる。調整ボルト61のねじ込み量を調整することで、ストッパ部材50及びストッパ部材50に保持されたセンサA1がX軸に沿って移動する。調整ボルト61のねじ込み量を調整した後に、調整ボルト61のねじ部63にナット64を締め付けることで、調整ボルト61の位置が固定される。これにより、センサA11を保持したストッパ部材50は、スライドテーブル905が停止位置1905に移動した状態で、動作部材906が接触部位58に接触する位置に配置される。 The bottom plate portion 71 is provided with bolt holes 76 passing through the bottom plate portion 71 along the X-axis at positions corresponding to the through holes 56 of the stopper member 50 . A threaded portion is formed on the inner peripheral surface of the bolt hole 76 , and the adjustment bolt 61 inserted into the through hole 56 of the stopper member 50 is screwed into the bolt hole 76 . By adjusting the screwing amount of the adjustment bolt 61, the stopper member 50 and the sensor A1 held by the stopper member 50 move along the X-axis. After adjusting the screwing amount of the adjusting bolt 61 , the position of the adjusting bolt 61 is fixed by tightening the nut 64 on the threaded portion 63 of the adjusting bolt 61 . As a result, the stopper member 50 holding the sensor A11 is arranged at a position where the operation member 906 contacts the contact portion 58 while the slide table 905 is moved to the stop position 1905 .
 取付部材70Aには、センサA1の筐体10の前側及び左側の側面と、上面の左半分とを露出させる開口が設けられており、この開口が電磁波を透過する透過部E1となっている(図10参照)。透過部E1は、電磁波に対して透過性を有する合成樹脂製のカバーで実現されていてもよい。透過部E2と透過部E1とは少なくとも一部が重なるように配置されているので、センサA1の送信ユニット33から送信される無線信号(電波信号)の減衰を抑制できる。 The mounting member 70A is provided with an opening that exposes the front and left side surfaces of the housing 10 of the sensor A1 and the left half of the top surface. See Figure 10). The transmission part E1 may be implemented by a cover made of synthetic resin that is transparent to electromagnetic waves. Since the transmission part E2 and the transmission part E1 are arranged so that at least a part thereof overlaps, the attenuation of the wireless signal (radio wave signal) transmitted from the transmission unit 33 of the sensor A1 can be suppressed.
 取付部材70A及び取付部材70BのシリンダSY1への取付部分について説明する。取付部材70Aでは、縦片73の上端から上向きに突出する固定片74(図12参照)が設けられている。固定片74には、Y軸に沿って固定片74を貫通する貫通孔が設けられている。取付部材70Aは、シリンダSY1の本体900の左側面に固定片74を重ね、貫通孔に通したボルトを本体900に設けられたボルト穴にネジ込むことによって、本体900に固定される。 The attachment portion of the attachment member 70A and the attachment member 70B to the cylinder SY1 will be described. The mounting member 70A is provided with a fixed piece 74 (see FIG. 12) projecting upward from the upper end of the vertical piece 73 . The fixed piece 74 is provided with a through-hole passing through the fixed piece 74 along the Y-axis. The mounting member 70A is fixed to the main body 900 by placing the fixing piece 74 on the left side of the main body 900 of the cylinder SY1 and screwing the bolt through the through hole into the bolt hole provided in the main body 900 .
 また、取付部材70Bでは、縦片73の右側の側面から右向きに突出する固定片75が設けられている。固定片75には、X軸に沿って固定片75を貫通する貫通孔が設けられている。取付部材70Bは、シリンダSY1の本体900の上面に固定片75を重ね、貫通孔に通したボルトを本体900に設けられたボルト穴にネジ込むことによって、本体900に固定される。 In addition, the mounting member 70B is provided with a fixing piece 75 projecting rightward from the right side surface of the vertical piece 73 . The fixed piece 75 is provided with a through-hole passing through the fixed piece 75 along the X-axis. The mounting member 70B is fixed to the main body 900 by placing the fixing piece 75 on the upper surface of the main body 900 of the cylinder SY1 and screwing the bolt through the through hole into the bolt hole provided in the main body 900. As shown in FIG.
 なお、取付部材70Bを用いたセンサA12及びストッパ部材50Bの取付方法は、取付部材70Aを用いた取付方法と同様であるので、その説明は省略する。 The method of mounting the sensor A12 and the stopper member 50B using the mounting member 70B is the same as the mounting method using the mounting member 70A, so the description thereof will be omitted.
 なお、シリンダSY1には、スライドテーブル905が停止位置1905及び停止位置2905に移動したことをそれぞれ検知するために、2つのセンサA1(センサA11及びセンサA12)が取り付けられているが、シリンダSY1に2つのセンサA1が取り付けられることは必須ではない。シリンダSY1には、センサA11、A12のうち、スライドテーブル905が停止位置1905に移動したことを検知するセンサA11のみが取り付けられていてもよいし、スライドテーブル905が停止位置2905に移動したことを検知するセンサA12のみが取り付けられていてもよい。 Two sensors A1 (sensor A11 and sensor A12) are attached to cylinder SY1 in order to detect that slide table 905 has moved to stop position 1905 and stop position 2905, respectively. It is not essential that two sensors A1 are attached. Of the sensors A11 and A12, only the sensor A11 for detecting that the slide table 905 has moved to the stop position 1905 may be attached to the cylinder SY1. Only the sensor A12 for detection may be attached.
 (2.4)動作
 次に、本実施形態のセンサA1及びシリンダSY1の動作を図1、図4~図7、図10~図14に基づいて説明する。なお、シリンダSY1には2つのセンサA11及びセンサA12が取り付けられているが、2つのセンサA11及びセンサA12は同様の構成を有しているので、スライドテーブル905の停止位置1905への移動を検出するセンサA11の動作のみを説明する。
(2.4) Operation Next, the operation of the sensor A1 and the cylinder SY1 of this embodiment will be described with reference to FIGS. 1, 4 to 7, and 10 to 14. FIG. Two sensors A11 and A12 are attached to the cylinder SY1. Since the two sensors A11 and A12 have the same configuration, they detect the movement of the slide table 905 to the stop position 1905. Only the operation of the sensor A11 to be performed will be described.
 (2.4.1)停止位置2905から停止位置1905へ移動するときの動作
 スライドテーブル905が停止位置2905で停止している状態では、センサA11の可動部材13は、図4に示すように、復帰ばね14のばね力を受けて位置PT1に移動している。この状態では、発電部21の圧電素子242、及び、発電部22の圧電素子242に撓みが発生しておらず、発電部21及び発電部22の発電出力はゼロである。可動部材13が位置PT1に移動した状態では、可動ブロック40が可動部材13の移動に連動して上向きに移動しており、コア231が下側のヨーク42に接触している。また、発電部21のおもり243に上側のヨーク42が接触しており、上側のヨーク42、発電部21のおもり243及び振動体241、基台15、コア231及び下側のヨーク42を通る磁路が形成される。その結果、永久磁石41の磁気吸引力によって発電部21の端部(おもり243)が可動ブロック40に吸着されている。この状態では、コイル232に鎖交する磁束が変化しないため、発電部23の発電出力もゼロである。つまり、スライドテーブル905が停止位置2905で停止している状態では、発電ユニット20の発電出力はゼロであり、送信ユニット33は無線信号の送信を行っていない。
(2.4.1) Operation when Moving from Stop Position 2905 to Stop Position 1905 When the slide table 905 is stopped at the stop position 2905, the movable member 13 of the sensor A11 moves as shown in FIG. It receives the spring force of the return spring 14 and moves to the position PT1. In this state, the piezoelectric element 242 of the power generation section 21 and the piezoelectric element 242 of the power generation section 22 are not bent, and the power generation output of the power generation section 21 and the power generation section 22 is zero. When the movable member 13 has moved to the position PT1, the movable block 40 moves upward in conjunction with the movement of the movable member 13, and the core 231 is in contact with the yoke 42 on the lower side. In addition, the upper yoke 42 is in contact with the weight 243 of the power generation unit 21 , and the magnetic field passing through the upper yoke 42 , the weight 243 of the power generation unit 21 , the vibrating body 241 , the base 15 , the core 231 and the lower yoke 42 is generated. A path is formed. As a result, the end portion (weight 243 ) of the power generating section 21 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 . In this state, since the magnetic flux interlinking with the coil 232 does not change, the power generation output of the power generation section 23 is also zero. That is, when the slide table 905 is stopped at the stop position 2905, the power generation output of the power generation unit 20 is zero, and the transmission unit 33 does not transmit radio signals.
 スライドテーブル905が停止位置2905で停止している状態で、エア配管903を介して第1空気室にエアが導入され、第2空気室のエアがエア配管902を介して外に流れると、ピストンは第1空気室と第2空気室との圧力差によって下向きに移動する。動作部材906は、ピストンの下向きへの移動に連動して下向きに移動する。図10及び図11に示すように、スライドテーブル905が停止位置1905まで移動すると、動作部材906がストッパ部材50Aの接触部位58と接触し、下向きへの移動がストッパ部材50Aによって規制される。これにより、スライドテーブル905は停止位置1905で停止する。また、動作部材906がセンサA11の操作部131を下向きに押し込むことによって、発電ユニット20が第1電圧を発生し、送信ユニット33が第1信号を送信する。 When the slide table 905 is stopped at the stop position 2905, air is introduced into the first air chamber through the air pipe 903, and air in the second air chamber flows out through the air pipe 902. moves downward due to the pressure difference between the first and second air chambers. The operating member 906 moves downward in conjunction with the downward movement of the piston. As shown in FIGS. 10 and 11, when the slide table 905 moves to the stop position 1905, the motion member 906 comes into contact with the contact portion 58 of the stopper member 50A and its downward movement is restricted by the stopper member 50A. As a result, the slide table 905 stops at the stop position 1905 . Further, when the operation member 906 pushes the operating portion 131 of the sensor A11 downward, the power generation unit 20 generates the first voltage and the transmission unit 33 transmits the first signal.
 ここで、センサA11の発電動作を図5及び図6に基づいて説明する。動作部材906によって操作部131が下向きに押されると、可動部材13が下向きに移動し、可動部材13の移動に応じて可動ブロック40が下向きに移動する。このとき、可動ブロック40に吸着された発電部21の振動体241及び圧電素子242が下向きに撓み、圧電素子242は撓み量に応じた電圧を発生する。そして、発電部21のおもり243の右端部分が、ストッパ片153の貫通孔154の下側縁に当たった時点で、振動体241の撓みが規制され、可動ブロック40が更に下向きに移動すると、おもり243が上側のヨーク42から開放される。このとき、発電部21の振動体241が振動を開始し、振動体241の振動に応じて圧電素子242が電圧を発生する。 Here, the power generation operation of the sensor A11 will be explained based on FIGS. 5 and 6. FIG. When the operating portion 131 is pushed downward by the operating member 906 , the movable member 13 moves downward, and the movable block 40 moves downward according to the movement of the movable member 13 . At this time, the vibrating body 241 and the piezoelectric element 242 of the power generating section 21 attracted to the movable block 40 bend downward, and the piezoelectric element 242 generates a voltage corresponding to the amount of bending. When the right end portion of the weight 243 of the power generating section 21 hits the lower edge of the through hole 154 of the stopper piece 153, the bending of the vibrating body 241 is restricted, and when the movable block 40 moves further downward, the weight 243 are released from the upper yoke 42 . At this time, the vibrating body 241 of the power generating section 21 starts to vibrate, and the piezoelectric element 242 generates voltage according to the vibration of the vibrating body 241 .
 また、発電部21のおもり243が上側のヨーク42から離れると、コイル232に鎖交する磁束が急激に減少し、発電部23が電圧を発生する。また、可動部材13が位置PT1に移動すると、図6に示すように、コア231が上側のヨーク42に接触し、下側のヨーク42が発電部22のおもり243に接触する。これにより、上側のヨーク42、コア231、連結片152、発電部22の振動体241及びおもり243、上側のヨーク42を通る磁路が形成される。その結果、永久磁石41の磁気吸引力によって発電部22のおもり243が可動ブロック40に吸着される。このように、可動部材13が位置PT1から位置PT2まで移動すると、その間にコイル232に鎖交する磁束が変化するので、発電部23が、磁束の変化に応じた発電出力を発生する。 Further, when the weight 243 of the power generation unit 21 is separated from the upper yoke 42, the magnetic flux interlinking with the coil 232 is rapidly reduced, and the power generation unit 23 generates voltage. Further, when the movable member 13 moves to the position PT1, the core 231 contacts the upper yoke 42, and the lower yoke 42 contacts the weight 243 of the power generation section 22, as shown in FIG. Thereby, a magnetic path passing through the upper yoke 42 , the core 231 , the connecting piece 152 , the vibrating body 241 and the weight 243 of the power generating section 22 , and the upper yoke 42 is formed. As a result, the weight 243 of the power generation unit 22 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 . In this way, when the movable member 13 moves from the position PT1 to the position PT2, the magnetic flux interlinking with the coil 232 changes during that time, so the power generating section 23 generates power output according to the change in the magnetic flux.
 したがって、可動部材13が位置PT1から位置PT2に移動するまでの間に、発電部22及び発電部23が、起動電圧を超える第1電圧を出力し、送信ユニット33は、発電ユニット20から供給される電力で第1信号を送信する。送信ユニット33から送信される第1信号は外部の上位システムR1(図2参照)によって受信される。上位システムR1は、送信ユニット33からの無線通信を受信する通信機能を有している。上位システムR1は、センサA11から受信した第1信号に基づいて、スライドテーブル905が停止位置1905に移動したことを検知できる。 Therefore, while the movable member 13 moves from the position PT1 to the position PT2, the power generation sections 22 and 23 output the first voltage exceeding the starting voltage, and the transmission unit 33 is supplied from the power generation unit 20. transmit the first signal at a power A first signal transmitted from the transmission unit 33 is received by an external host system R1 (see FIG. 2). The host system R1 has a communication function of receiving wireless communication from the transmission unit 33. FIG. The host system R1 can detect that the slide table 905 has moved to the stop position 1905 based on the first signal received from the sensor A11.
 可動部材13が位置PT2に移動した状態では、発電部21の圧電素子242の撓み量、及び、発電部22の圧電素子242の撓み量がそれぞれゼロになり、発電部21及び発電部22の発電出力はゼロになる。また、可動部材13が位置PT2で停止した状態では可動ブロック40も停止しているので、コイル232を鎖交する磁束は変化せず、発電部23の発電出力はゼロになる。これにより、送信ユニット33からの無線信号の送信も停止する。 When the movable member 13 has moved to the position PT2, the amount of deflection of the piezoelectric element 242 of the power generation section 21 and the amount of deflection of the piezoelectric element 242 of the power generation section 22 become zero, and the power generation sections 21 and 22 generate power. output will be zero. Further, since the movable block 40 is also stopped when the movable member 13 is stopped at the position PT2, the magnetic flux linking the coil 232 does not change, and the power generation output of the power generation section 23 becomes zero. As a result, the transmission of radio signals from the transmission unit 33 is also stopped.
 (2.4.2)停止位置1905から停止位置2905へ移動するときの動作
 スライドテーブル905が停止位置1905で停止している状態で、エア配管902を介して第2空気室にエアが導入され、第1空気室のエアがエア配管903を介して外に流れると、ピストンは第1空気室と第2空気室との圧力差によって上向きに移動する。動作部材906は、ピストンの上向きへの移動に連動して上向きに移動する。
(2.4.2) Operation when Moving from Stop Position 1905 to Stop Position 2905 With the slide table 905 stopped at the stop position 1905, air is introduced into the second air chamber via the air pipe 902. , when the air in the first air chamber flows out through the air pipe 903, the piston moves upward due to the pressure difference between the first and second air chambers. The operating member 906 moves upward in conjunction with the upward movement of the piston.
 動作部材906が上向きに移動すると、動作部材906が操作部131を下向きに押す力がなくなり、可動部材13が復帰ばね14の復帰力等を受けて上向きに移動する。このとき、図1に示すように、可動ブロック40に吸着された発電部22の振動体241及び圧電素子242が上向きに撓み、圧電素子242は撓み量に応じた電圧を発生する。そして、発電部22のおもり243の右端部分が、ストッパ片153の貫通孔154の上側縁に当たった時点で、振動体241の撓みが規制され、可動ブロック40が更に上向きに移動すると、おもり243が下側のヨーク42から開放される。このとき、発電部22の振動体241が振動を開始し、振動体241の振動に応じて圧電素子242が電圧を発生する。 When the operating member 906 moves upward, the force of the operating member 906 that pushes the operating portion 131 downward disappears, and the movable member 13 receives the restoring force of the return spring 14 and the like and moves upward. At this time, as shown in FIG. 1, the vibrating body 241 and the piezoelectric element 242 of the power generating section 22 attracted to the movable block 40 bend upward, and the piezoelectric element 242 generates a voltage corresponding to the amount of bending. When the right end portion of the weight 243 of the power generating section 22 hits the upper edge of the through hole 154 of the stopper piece 153, the bending of the vibrating body 241 is restricted, and when the movable block 40 moves further upward, the weight 243 is released from the lower yoke 42. At this time, the vibrating body 241 of the power generation section 22 starts to vibrate, and the piezoelectric element 242 generates voltage according to the vibration of the vibrating body 241 .
 また、発電部22のおもり243が下側のヨーク42から離れると、コイル232に鎖交する磁束が急激に減少し、発電部23が電圧を発生する。また、可動部材13が位置PT2に移動すると、図4に示すように、コア231が下側のヨーク42に接触し、上側のヨーク42が発電部21のおもり243に接触する。これにより、上側のヨーク42、発電部21のおもり243及び振動体241、連結片152、コア231、及び下側のヨーク42を通る磁路が形成される。その結果、永久磁石41の磁気吸引力によって発電部21のおもり243が可動ブロック40に吸着される。このように、可動部材13が位置PT2から位置PT1まで移動すると、その間にコイル232に鎖交する磁束が変化するので、発電部23が、磁束の変化に応じた発電出力を発生する。 Further, when the weight 243 of the power generation section 22 is separated from the lower yoke 42, the magnetic flux interlinking with the coil 232 is rapidly reduced, and the power generation section 23 generates voltage. Further, when the movable member 13 moves to the position PT2, the core 231 contacts the lower yoke 42 and the upper yoke 42 contacts the weight 243 of the power generation section 21, as shown in FIG. As a result, a magnetic path passing through the upper yoke 42 , the weight 243 and the vibrating body 241 of the power generating section 21 , the connecting piece 152 , the core 231 and the lower yoke 42 is formed. As a result, the weight 243 of the power generation unit 21 is attracted to the movable block 40 by the magnetic attraction force of the permanent magnet 41 . In this way, when the movable member 13 moves from the position PT2 to the position PT1, the magnetic flux interlinking the coil 232 changes during that time, so the power generating section 23 generates power output according to the change in magnetic flux.
 したがって、可動部材13が位置PT2から位置PT1に移動するまでの間に、発電部21及び発電部23が、起動電圧を超える第1電圧を出力し、センサA11の送信ユニット33は、発電ユニット20から供給される電力で第1信号を送信する。このとき、上位システムR1は、センサA11の送信ユニット33から送信される第1信号を受信することによって、スライドテーブル905が停止位置1905から停止位置2905に向かって移動したことを検知できる。 Therefore, while the movable member 13 moves from the position PT2 to the position PT1, the power generation section 21 and the power generation section 23 output the first voltage exceeding the starting voltage, and the transmission unit 33 of the sensor A11 moves to the power generation unit 20 transmit the first signal with power supplied from the . At this time, the host system R1 can detect that the slide table 905 has moved from the stop position 1905 toward the stop position 2905 by receiving the first signal transmitted from the transmission unit 33 of the sensor A11.
 また、スライドテーブル905が停止位置2905まで移動すると、動作部材906がストッパ部材50Bの接触部位58と接触し、上向きへの移動がストッパ部材50Bによって規制される。これにより、スライドテーブル905は停止位置2905で停止する。また、動作部材906がセンサA12の操作部131を上向きに押し込むことによって、発電ユニット20が第1電圧を発生し、送信ユニット33が第1信号を送信する。このときのセンサA12の発電動作は、「(2.4.1)停止位置2905から停止位置1905へ移動するときの動作」で説明したセンサA11の発電動作と同様である。外部の上位システムR1は、センサA12の送信ユニット33から送信される第1信号を受信することによって、スライドテーブル905が停止位置2905に位置していることを検知する。 Further, when the slide table 905 moves to the stop position 2905, the motion member 906 comes into contact with the contact portion 58 of the stopper member 50B, and upward movement is restricted by the stopper member 50B. As a result, the slide table 905 stops at the stop position 2905 . Further, when the operation member 906 pushes the operating portion 131 of the sensor A12 upward, the power generation unit 20 generates the first voltage and the transmission unit 33 transmits the first signal. The power generation operation of the sensor A12 at this time is the same as the power generation operation of the sensor A11 described in "(2.4.1) Operation when moving from the stop position 2905 to the stop position 1905". The external host system R1 detects that the slide table 905 is positioned at the stop position 2905 by receiving the first signal transmitted from the transmission unit 33 of the sensor A12.
 (2.4.3)停止位置1905でシリンダの圧力源が停止した後に再起動したときの動作
 図10及び図11に示すように、スライドテーブル905が停止位置1905で停止している状態である初期停止状態で、休日等による操業停止でシリンダSY1の圧力源(例えば空圧ポンプ等)が長時間停止すると、配管等でのエアのリークによって第1空気室及び第2空気室の圧力が低下する可能性がある。第1空気室及び第2空気室の圧力が低下すると、可動部材13が復帰ばね14の復帰力等を受けて上向きに移動する。その後、操業が再開してシリンダSY1の圧力源が再起動すると、圧力源からエアが供給されてシリンダSY1が、スライドテーブル905を操業停止前の位置である停止位置1905に復帰させる。
(2.4.3) Operation when the cylinder pressure source is restarted after stopping at the stop position 1905 As shown in FIGS. 10 and 11, the slide table 905 is stopped at the stop position 1905. In the initial shutdown state, if the pressure source for cylinder SY1 (for example, an air pressure pump) is stopped for a long time due to an operation stop due to a holiday, etc., the pressure in the first and second air chambers will drop due to air leaks from piping, etc. there's a possibility that. When the pressure in the first air chamber and the second air chamber decreases, the movable member 13 receives the restoring force of the return spring 14 and the like and moves upward. Thereafter, when operation resumes and the pressure source of cylinder SY1 is restarted, air is supplied from the pressure source and cylinder SY1 returns slide table 905 to stop position 1905, which is the position before operation was stopped.
 ここで、圧力源が再起動してからスライドテーブル905が停止位置1905に復帰するまでに可動部材13が移動する移動量が所定の発電必要距離以上であれば、発電ユニット20の発電出力は起動電圧以上の第1電圧となる。発電必要距離は、例えば、発電ユニット20の発電出力が、送信ユニット33の起動電圧となるときの可動部材13の移動量である。具体的には、発電必要距離は、発電部22の圧電素子242が発生する発電出力が、第1電圧以上となるような撓み量が発生するときの移動量である。なお、発電必要距離は、例えば、コア231が上側のヨーク42から離れる位置まで可動ブロック40が上向きに移動しているときの可動部材13の位置から位置PT2まで可動部材13が移動する距離であってもよい。コア231が上側のヨーク42から離れる位置まで可動ブロック40が上向きに移動していれば、圧力源が再起動してからスライドテーブル905が停止位置1905に復帰するまでに、コイル232を通過する磁束が変化して発電部23が発電するので、発電部22及び発電部23によって起動電圧を超える第1電圧を発生することができる。 Here, if the amount of movement of the movable member 13 from when the pressure source is restarted until the slide table 905 returns to the stop position 1905 is greater than or equal to the predetermined power generation required distance, the power generation output of the power generation unit 20 is activated. It becomes the 1st voltage more than a voltage. The power generation required distance is, for example, the amount of movement of the movable member 13 when the power generation output of the power generation unit 20 becomes the starting voltage of the transmission unit 33 . Specifically, the power generation required distance is the amount of movement when the power generation output generated by the piezoelectric element 242 of the power generation unit 22 is flexed so as to be greater than or equal to the first voltage. The power generation required distance is, for example, the distance that the movable member 13 moves from the position of the movable member 13 to the position PT2 when the movable block 40 moves upward to the position where the core 231 is separated from the upper yoke 42. may If the movable block 40 has moved upward to the position where the core 231 is separated from the upper yoke 42, the magnetic flux passing through the coil 232 will be changes and the power generation unit 23 generates power, the power generation unit 22 and the power generation unit 23 can generate the first voltage exceeding the starting voltage.
 図12は、圧力源の停止中に可動部材13が上向きに移動した移動量が発電必要距離以上であるときの状態である第1復帰状態を示している。なお、図12の例では、動作部材906が操作部131から離れているので、可動部材13は位置PT1まで移動している。スライドテーブル905が第1復帰状態から初期停止状態に移動するまでに可動部材13が移動する移動量は発電必要距離以上になるので、発電ユニット20の発電出力が起動電圧以上の第1電圧となり、制御回路34はスイッチ32のオフを維持する。このとき、電源回路31が発電ユニット20の発電出力を、起動電圧以上の電圧値の直流電圧に変換して送信ユニット33に供給する。すなわち、発電ユニット20の発電出力は送信ユニット33の起動電圧以上であるので、送信ユニット33は、発電ユニット20から電力供給を受けて起動し、第1信号を送信する。上位システムR1は、センサA11からの第1信号を受信することによって、スライドテーブル905が停止位置1905に位置していることを検知する。 FIG. 12 shows the first return state, which is the state when the amount of upward movement of the movable member 13 while the pressure source is stopped is greater than or equal to the power generation required distance. In the example of FIG. 12, since the action member 906 is separated from the operation portion 131, the movable member 13 has moved to the position PT1. Since the amount of movement of the movable member 13 during the movement of the slide table 905 from the first return state to the initial stop state is equal to or greater than the power generation required distance, the power generation output of the power generation unit 20 becomes the first voltage equal to or greater than the starting voltage. Control circuit 34 keeps switch 32 off. At this time, the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 . That is, since the power generation output of the power generation unit 20 is equal to or higher than the activation voltage of the transmission unit 33, the transmission unit 33 receives power supply from the power generation unit 20, is activated, and transmits the first signal. Host system R1 detects that slide table 905 is positioned at stop position 1905 by receiving the first signal from sensor A11.
 一方、図13は、圧力源の停止中に可動部材13が上向きに移動した移動量が発電必要距離未満であるときの状態である第2復帰状態を示している。スライドテーブル905が第2復帰状態から初期停止状態に移動するまでに可動部材13が移動する移動量は発電必要距離未満であるので、発電ユニット20の発電出力は起動電圧未満の第2電圧となる。 On the other hand, FIG. 13 shows the second return state, which is the state when the amount of upward movement of the movable member 13 while the pressure source is stopped is less than the required distance for power generation. Since the amount of movement of the movable member 13 until the slide table 905 moves from the second return state to the initial stop state is less than the power generation required distance, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. .
 図1は、第2復帰状態におけるセンサA11(センサA1)の状態を示している。この状態では、コア231は上側のヨーク42に接触しているので、スライドテーブル905が第2復帰状態から初期停止状態に復帰するまでの間に、可動部材13の移動に応じて可動ブロック40が下向きに移動しても、コイル232を通過する磁束は変化せず、発電部23の発電出力はゼロとなる。一方、発電部22の圧電素子242は僅かに撓んでいるため、スライドテーブル905が第2復帰状態から初期停止状態に復帰するまでの間に発電部22が起動電圧未満の第2電圧を発生する。このとき、制御回路34は、発電ユニット20が第2電圧を発生したことをトリガとして、スイッチ32をオンに制御するので、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信する。上位システムR1は、センサA11の送信ユニット33から送信される第2信号を受信することによって、スライドテーブル905が停止位置1905に位置していることを検知する。 FIG. 1 shows the state of the sensor A11 (sensor A1) in the second return state. In this state, since the core 231 is in contact with the upper yoke 42, the movable block 40 moves in accordance with the movement of the movable member 13 until the slide table 905 returns from the second return state to the initial stop state. Even if it moves downward, the magnetic flux passing through the coil 232 does not change, and the power generation output of the power generation section 23 becomes zero. On the other hand, since the piezoelectric element 242 of the power generation section 22 is slightly bent, the power generation section 22 generates a second voltage lower than the starting voltage during the period until the slide table 905 returns from the second return state to the initial stop state. . At this time, the control circuit 34 is triggered by the generation of the second voltage by the power generation unit 20, and controls the switch 32 to turn on. to send. The host system R1 detects that the slide table 905 is positioned at the stop position 1905 by receiving the second signal transmitted from the transmission unit 33 of the sensor A11.
 なお、スライドテーブル905が第2復帰状態から初期停止状態に復帰するまでの間に、発電部22は、可動部材13が下向きに移動することによって軸AX2(図1参照)に沿って撓んでおり、軸AX1は軸AX2に沿っているので、可動部材13の移動に応じて発電部22が発生する発電出力を大きくできる。ここで、軸AX1が軸AX2に沿っているとは、好ましくは軸AX1と軸AX2とが平行であるが、軸AX1と軸AX2とが平行であることに限定されず、軸AX1の延びる方向と軸AX2が伸びる方向とが成す角度が45度以下であることが好ましい。 It should be noted that while the slide table 905 returns from the second return state to the initial stop state, the power generation unit 22 is bent along the axis AX2 (see FIG. 1) due to the downward movement of the movable member 13. , the axis AX1 is along the axis AX2, so that the power generation output generated by the power generation unit 22 can be increased according to the movement of the movable member 13. FIG. Here, the expression that the axis AX1 is along the axis AX2 preferably means that the axis AX1 and the axis AX2 are parallel. and the direction in which the axis AX2 extends is preferably 45 degrees or less.
 ここにおいて、第1信号と第2信号とは同じ信号でもあることが好ましく、上位システムR1は、第2信号を受信することでスライドテーブル905が停止位置1905に位置していることを検知できる。なお、第2信号が第1信号と同じ信号であることは必須ではなく、第2信号は、第1信号と異なる情報を含む信号でもよい。例えば、第2信号は、発電ユニット20が第2電圧を発生したとの情報を含んでもよく、上位システムR1は、第2信号を受信したことから、圧力源が再起動後にスライドテーブル905が停止位置1905に移動したことを検知できる。 Here, the first signal and the second signal are preferably the same signal, and the host system R1 can detect that the slide table 905 is positioned at the stop position 1905 by receiving the second signal. Note that the second signal is not necessarily the same signal as the first signal, and the second signal may be a signal containing information different from that of the first signal. For example, the second signal may include information that the power generation unit 20 has generated the second voltage, and since the host system R1 has received the second signal, the slide table 905 stops after the pressure source is restarted. Movement to position 1905 can be detected.
 なお、スライドテーブル905が停止位置2905で停止している状態でシリンダSY1の圧力源が長時間停止すると、上述と同様に、復帰ばね14の復帰力等を受けてスライドテーブル905の位置がずれる可能性がある。ここで、スライドテーブル905が復帰ばね14の復帰力等を受けて第1復帰状態に移動した場合、圧力源が再起動してスライドテーブル905が停止前の停止位置2905に移動すると、センサA12の発電ユニット20が第1電圧を発生する。したがって、センサA12の送信ユニット33は発電ユニット20から電力供給を受けて第1信号を送信できる。また、スライドテーブル905が復帰ばね14の復帰力等を受けて第2復帰状態に移動した場合、圧力源が再起動してスライドテーブル905が停止前の停止位置2905に移動すると、センサA12の発電ユニット20は第2電圧を発生するため、送信ユニット33は発電ユニット20の発電出力では起動できない。この場合、センサA12の制御回路34は、発電ユニット20の発電出力が第2電圧であることから、スイッチ32をオンに制御するので、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信することができる。 If the pressure source of the cylinder SY1 is stopped for a long time while the slide table 905 is stopped at the stop position 2905, the position of the slide table 905 may be displaced by receiving the restoring force of the return spring 14 or the like as described above. have a nature. Here, when the slide table 905 receives the restoring force of the return spring 14 and the like and moves to the first return state, when the pressure source is restarted and the slide table 905 moves to the stop position 2905 before stopping, the sensor A12 A power generation unit 20 generates a first voltage. Therefore, the transmission unit 33 of the sensor A12 can receive power from the power generation unit 20 and transmit the first signal. When the slide table 905 receives the restoring force of the return spring 14 and moves to the second return state, the pressure source is restarted and the slide table 905 moves to the stop position 2905 before stopping. Since the unit 20 generates the second voltage, the transmission unit 33 cannot be activated by the power output of the power generation unit 20 . In this case, the control circuit 34 of the sensor A 12 turns on the switch 32 because the power output of the power generation unit 20 is the second voltage. A second signal can be transmitted.
 (3)センサが適用されるシリンダのバリエーション
 上記のシリンダSY1は、スライドテーブル905を駆動するためのシリンダであるが、センサA1は、スライドテーブル905を駆動するシリンダSY1以外のシリンダにも適用可能である。以下、センサA1が適用されるシリンダのバリエーションを説明する。
(3) Variation of Cylinders to which Sensors are Applied Cylinder SY1 is a cylinder for driving slide table 905, but sensor A1 can also be applied to cylinders other than cylinder SY1 for driving slide table 905. be. Variations of cylinders to which the sensor A1 is applied will be described below.
 上記のセンサA1は、平行ハンドを駆動するシリンダに適用されてもよい。平行ハンドを駆動するシリンダにセンサA1を取り付ける取付方式としては、図15~図20に示すような外付け方式と、図21~図27に示すような内蔵方式とがある。以下では、平行ハンドを駆動するシリンダにセンサA1を外付けした適用例1と、平行ハンドを駆動するシリンダにセンサA1を内蔵した適用例2と、についてそれぞれ説明する。 The above sensor A1 may be applied to the cylinder that drives the parallel hand. As mounting methods for mounting the sensor A1 on the cylinder that drives the parallel hand, there are an external mounting method as shown in FIGS. 15 to 20 and a built-in method as shown in FIGS. Application Example 1 in which the sensor A1 is externally attached to the cylinder that drives the parallel hand, and Application Example 2 in which the sensor A1 is built into the cylinder that drives the parallel hand will be described below.
 (3.1)適用例1
 平行ハンドを駆動するシリンダSY2にセンサA1を外付けした適用例1について図15~図20を参照して説明する。なお、適用例1のシリンダSY2の説明では、図15において、X軸に沿う方向を上下、Y軸に沿う方向を左右、Z軸に沿う方向を前後と規定する。ただし、これらの方向は、説明のために便宜上規定した方向であり、センサA1及びシリンダSY2が実際に使用される際の方向を規定するものではない。
(3.1) Application example 1
An application example 1 in which the sensor A1 is externally attached to the cylinder SY2 that drives the parallel hand will be described with reference to FIGS. 15 to 20. FIG. In the description of the cylinder SY2 of Application Example 1, in FIG. 15, the direction along the X-axis is defined as up and down, the direction along the Y-axis is defined as left and right, and the direction along the Z-axis is defined as front and back. However, these directions are defined for convenience of explanation, and do not define directions when the sensor A1 and cylinder SY2 are actually used.
 (3.1.1)適用例1の構成
 シリンダSY2は、直方体状の本体910を有している。本体910の上面には一対の爪911が配置されている。一対の爪911はY軸に沿って移動可能に設けられている。本体910の内部には、ピストンが往復運動可能な状態で配置されたシリンダ室が設けられている。シリンダ室は、ピストンを挟んでロッド側の第1空気室とヘッド側の第2空気室とに分けられ、第1空気室及び第2空気室のそれぞれにエア配管912,913が繋がっている。ピストンにはロッドが連結されており、ピストンと共にロッドが往復運動を行うと、ロッドの往復動作がリンク機構を介して一対の爪911に伝達される。これにより、一対の爪911は、両者の間隔が最小となる閉位置(図15~図17に示す位置)、又は、両者の間隔が最大となる開位置(図18に示す位置)に移動する。
(3.1.1) Configuration of Application Example 1 Cylinder SY2 has a rectangular parallelepiped main body 910 . A pair of claws 911 are arranged on the upper surface of the main body 910 . A pair of claws 911 are provided movably along the Y-axis. Inside the main body 910, a cylinder chamber is provided in which a piston is arranged so as to be able to reciprocate. The cylinder chamber is divided into a rod-side first air chamber and a head-side second air chamber with the piston interposed therebetween, and air pipes 912 and 913 are connected to the first and second air chambers, respectively. A rod is connected to the piston, and when the rod reciprocates together with the piston, the reciprocating motion of the rod is transmitted to the pair of pawls 911 via the link mechanism. As a result, the pair of claws 911 moves to the closed position (position shown in FIGS. 15 to 17) where the distance between the two is minimum, or to the open position (position shown in FIG. 18) where the distance between the two is maximum. .
 シリンダSY2には、2つのセンサA1と2つのストッパ部材50とが、2つの取付部材80を用いて取り付けられている。 Two sensors A1 and two stopper members 50 are attached to the cylinder SY2 using two attachment members 80.
 2つのセンサA1は、一対の爪911が閉位置に移動したことを検知するセンサA21と、一対の爪911が開位置に移動したことを検知するセンサA22と、を含む。2つのストッパ部材50は、センサA21に取り付けられて、一対の爪911の閉方向への移動範囲を規制するストッパ部材50Aと、センサA22に取り付けられて、一対の爪911の開方向への移動範囲を規制するストッパ部材50Bと、を含む。2つの取付部材80は、センサA21及びストッパ部材50Aを本体910の右側面に取り付けるための取付部材80Aと、センサA22及びストッパ部材50Bを本体910の左側面に取り付けるための取付部材80Bと、を含む。なお、センサA21及びセンサA22は、上述したセンサA1と同様の構成を有しているので、センサA21及びセンサA22の構成についての説明は省略する。また、ストッパ部材50A及びストッパ部材50Bは、上述したストッパ部材50と同様の構成を有しているので、ストッパ部材50A及びストッパ部材50Bの構成についての説明は省略する。 The two sensors A1 include a sensor A21 that detects movement of the pair of claws 911 to the closed position and a sensor A22 that detects movement of the pair of claws 911 to the open position. The two stopper members 50 are attached to the sensor A21 and attached to the stopper member 50A for restricting the movement range of the pair of claws 911 in the closing direction, and attached to the sensor A22 to limit the movement of the pair of claws 911 in the opening direction. and a stopper member 50B that limits the range. The two mounting members 80 include a mounting member 80A for mounting the sensor A21 and the stopper member 50A on the right side surface of the main body 910, and a mounting member 80B for mounting the sensor A22 and the stopper member 50B on the left side surface of the main body 910. include. Note that the sensor A21 and the sensor A22 have the same configuration as the sensor A1 described above, so the description of the configuration of the sensor A21 and the sensor A22 is omitted. Also, since the stopper member 50A and the stopper member 50B have the same configuration as the stopper member 50 described above, description of the configuration of the stopper member 50A and the stopper member 50B is omitted.
 取付部材80Aは、本体910の右側の側面に例えば固定ねじを用いて取り付けられる固定片81Aと、固定片81Aの下端部から右向きに突出する突出片82Aと、固定片81Aの上部の前端から右向きに突出するリンク支持片83Aと、を備える。突出片82Aには調整ボルト61がねじ込まれるボルト孔が設けられている。ストッパ部材50Aに保持されたセンサA21は、調整ボルト61を突出片82Aのボルト孔にねじ込み、ねじ込み量を調整した状態で調整ボルト61にナット64を締め付けることによって、取付部材80Aに固定される(図17参照)。なお、取付部材80Aは、センサA21のカバー12の側面を露出させる開口を有しており、この開口が電磁波を透過する透過部E5となっている。取付部材80Aの透過部E5は、ストッパ部材50Aに設けられた透過部E2(図8参照)と一部が重なっているので、センサA21から送信される電波信号の減衰が抑制される。なお、透過部E5は合成樹脂製の部材で実現されていてもよい。 The mounting member 80A includes a fixing piece 81A that is attached to the right side surface of the main body 910 using, for example, a fixing screw, a projecting piece 82A that projects rightward from the lower end of the fixing piece 81A, and a rightward projecting piece 82A that projects rightward from the upper front end of the fixing piece 81A. and a link support piece 83A protruding into. The projecting piece 82A is provided with a bolt hole into which the adjusting bolt 61 is screwed. The sensor A21 held by the stopper member 50A is fixed to the mounting member 80A by screwing the adjusting bolt 61 into the bolt hole of the protruding piece 82A and tightening the nut 64 on the adjusting bolt 61 after adjusting the amount of screwing ( See Figure 17). The mounting member 80A has an opening that exposes the side surface of the cover 12 of the sensor A21, and this opening serves as a transmitting portion E5 that transmits electromagnetic waves. Since the transmitting portion E5 of the mounting member 80A partially overlaps the transmitting portion E2 (see FIG. 8) provided on the stopper member 50A, attenuation of the radio signal transmitted from the sensor A21 is suppressed. In addition, the transmission part E5 may be realized by a member made of synthetic resin.
 取付部材80Bは、本体910の左側の側面に例えば固定ねじを用いて取り付けられる固定片81Bと、固定片81Bの下端部から左向きに突出する突出片82Bと、固定片81Bの上部の後端から左向きに突出するリンク支持片83Bと、を備える。突出片82Bには調整ボルト61のねじ部63がネジ込まれるボルト孔が設けられている。ストッパ部材50Bに保持されたセンサA22は、調整ボルト61を突出片82Bのボルト孔にねじ込み、ねじ込み量を調整した状態で調整ボルト61にナット64を締め付けることによって、取付部材80Bに固定される(図17参照)。また、取付部材80Bは、センサA22のカバー12の側面を露出させる開口を有しており、この開口が電磁波を透過する透過部E5となっている。取付部材80Bの透過部E5は、ストッパ部材50Bに設けられた透過部E2(図8参照)と一部が重なっているので、センサA22から送信される電波信号の減衰が抑制される。なお、透過部E5は合成樹脂製の部材で実現されていてもよい。 The mounting member 80B includes a fixed piece 81B attached to the left side surface of the main body 910 using, for example, a fixing screw, a projecting piece 82B projecting leftward from the lower end of the fixed piece 81B, and a rear end of the upper portion of the fixed piece 81B. and a link support piece 83B projecting leftward. The projecting piece 82B is provided with a bolt hole into which the threaded portion 63 of the adjusting bolt 61 is screwed. The sensor A22 held by the stopper member 50B is fixed to the mounting member 80B by screwing the adjusting bolt 61 into the bolt hole of the protruding piece 82B and tightening the nut 64 on the adjusting bolt 61 after adjusting the amount of screwing ( See Figure 17). Further, the mounting member 80B has an opening that exposes the side surface of the cover 12 of the sensor A22, and this opening serves as a transmitting portion E5 that transmits electromagnetic waves. Since the transmitting portion E5 of the mounting member 80B partially overlaps with the transmitting portion E2 (see FIG. 8) provided on the stopper member 50B, attenuation of the radio signal transmitted from the sensor A22 is suppressed. In addition, the transmission part E5 may be realized by a member made of synthetic resin.
 また、シリンダSY2は、右側の爪911の左右の動きを上下の動きに変換してセンサA21に伝えるリンク機構810と、左側の爪911の左右の動きを上下の動きに変換してセンサA22に伝えるリンク機構820と、を備えている。 In addition, the cylinder SY2 has a link mechanism 810 that converts the lateral movement of the right claw 911 into vertical movement and transmits it to the sensor A21, and a link mechanism 810 that converts the horizontal movement of the left claw 911 into vertical movement and transmits it to the sensor A22. and a link mechanism 820 for transmitting.
 リンク機構810は、連結部811と、駆動リンク812と、中間リンク813と、動作部材である従動リンク814と、を備えている。 The link mechanism 810 includes a connecting portion 811, a driving link 812, an intermediate link 813, and a driven link 814 that is an operating member.
 連結部811は、右側の爪911の基部にねじ等で固定されている。 The connecting part 811 is fixed to the base of the claw 911 on the right side with a screw or the like.
 駆動リンク812及び中間リンク813は、それぞれ、矩形板状に形成されている。駆動リンク812には、長辺に沿って3つの孔が設けられている。中間リンク813には長辺に沿って2つの孔が設けられている。駆動リンク812の端1812の孔には連結部811に設けられたピンP11が挿入されており、駆動リンク812はピンP11を中心に回転可能である。駆動リンク812の中央の孔にはピンP12の第1端が挿入されている。中間リンク813の端1813の孔にはピンP12の第2端が挿入されており、駆動リンク812及び中間リンク813はピンP12を中心に回転可能である。駆動リンク812の端2812の孔には、従動リンク814の上部に固定されたピンP13が挿入されており、駆動リンク812はピンP12を中心に回転可能である。また、中間リンク813の端2813の孔には、リンク支持片83Aに固定されたピンP14が挿入されており、中間リンク813はピンP14を中心に回転可能である。ピンP14は、従動リンク814において、ピンP13が挿入される孔よりも下側に、従動リンク814を前後に貫通するように設けられた長孔816に挿入されている。長孔816は左右の寸法に比べて上下の寸法が長い形状に形成されており、ピンP14にガイドされた状態で従動リンク814がX軸に沿って移動可能となっている。また、従動リンク814の下部には、可動部材13の操作部131を押すための矩形状の押操作部815が設けられている。 The drive link 812 and the intermediate link 813 are each formed in a rectangular plate shape. Drive link 812 is provided with three holes along its long side. The intermediate link 813 is provided with two holes along its long side. A pin P11 provided in the connecting portion 811 is inserted into the hole of the end 1812 of the driving link 812, and the driving link 812 can rotate about the pin P11. A first end of pin P12 is inserted into the center hole of drive link 812 . The second end of the pin P12 is inserted into the hole of the end 1813 of the intermediate link 813, and the drive link 812 and the intermediate link 813 are rotatable around the pin P12. A pin P13 fixed to the top of the driven link 814 is inserted into the hole of the end 2812 of the drive link 812, and the drive link 812 can rotate about the pin P12. A pin P14 fixed to the link support piece 83A is inserted into the hole of the end 2813 of the intermediate link 813, and the intermediate link 813 can rotate about the pin P14. The pin P14 is inserted into an elongated hole 816 provided in the driven link 814 so as to pass through the driven link 814 in the front-rear direction below the hole through which the pin P13 is inserted. The elongated hole 816 is formed in a shape whose vertical dimension is longer than its horizontal dimension, and the driven link 814 can move along the X-axis while being guided by the pin P14. Further, a rectangular push operation portion 815 for pushing the operation portion 131 of the movable member 13 is provided below the driven link 814 .
 リンク機構820は、連結部821と、駆動リンク822と、中間リンク823と、動作部材である従動リンク824と、を備えている。 The link mechanism 820 includes a connecting portion 821, a driving link 822, an intermediate link 823, and a driven link 824 that is an operating member.
 連結部821は、左側の爪911の基部にねじ等で固定されている。 The connecting part 821 is fixed to the base of the claw 911 on the left side with a screw or the like.
 駆動リンク822及び中間リンク823は、それぞれ、矩形板状に形成されている。駆動リンク822には、長辺に沿って3つの孔が設けられている。中間リンク823には長辺に沿って2つの孔が設けられている。駆動リンク822の端1822の孔には連結部821に設けられたピンP21が挿入されており、駆動リンク822はピンP21を中心に回転可能である。駆動リンク822の中央の孔にはピンP22の第1端が挿入されている。中間リンク823の端1823の孔にはピンP22の第2端が挿入されており、駆動リンク822及び中間リンク823はピンP22を中心に回転可能である。駆動リンク822の端2822の孔には、従動リンク824の下部に固定されたピンP23が挿入されており、駆動リンク822はピンP23を中心に回転可能である。また、中間リンク823の端2823の孔には、リンク支持片83Bに固定されたピンP24が挿入されており、中間リンク823はピンP24を中心に回転可能である。ピンP24は、従動リンク824に設けられた長孔826に挿入されている。長孔826は、ピンP23よりも上側に、従動リンク824を前後に貫通するように設けられている。長孔826は左右の寸法に比べて上下の寸法が長い形状に形成されており、ピンP24にガイドされた状態で従動リンク824がX軸に沿って移動可能となっている。また、従動リンク824の下部には、可動部材13の操作部131を押すための矩形状の押操作部825が設けられている。 The drive link 822 and the intermediate link 823 are each formed in a rectangular plate shape. Drive link 822 is provided with three holes along its long side. The intermediate link 823 is provided with two holes along its long side. A pin P21 provided in the connecting portion 821 is inserted into the hole of the end 1822 of the driving link 822, and the driving link 822 can rotate around the pin P21. A first end of the pin P22 is inserted into the center hole of the drive link 822 . The second end of the pin P22 is inserted into the hole of the end 1823 of the intermediate link 823, and the drive link 822 and the intermediate link 823 are rotatable around the pin P22. A pin P23 fixed to the lower portion of the driven link 824 is inserted into the hole of the end 2822 of the drive link 822, and the drive link 822 can rotate about the pin P23. A pin P24 fixed to the link support piece 83B is inserted into the hole of the end 2823 of the intermediate link 823, and the intermediate link 823 can rotate about the pin P24. The pin P24 is inserted into an elongated hole 826 provided in the driven link 824. As shown in FIG. The long hole 826 is provided above the pin P23 so as to pass through the driven link 824 in the front-rear direction. The elongated hole 826 is formed in a shape whose vertical dimension is longer than its horizontal dimension, and the driven link 824 can move along the X-axis while being guided by the pin P24. Further, a rectangular push operation portion 825 for pushing the operation portion 131 of the movable member 13 is provided below the driven link 824 .
 (3.1.2)適用例1の動作
 以下に、適用例1のシリンダSY2の動作を説明する。
(3.1.2) Operation of Application Example 1 The operation of cylinder SY2 of Application Example 1 will be described below.
 図15~図17は一対の爪911が閉位置に移動している状態を示している。第1空気室にエアが供給されると、ピストンと共にロッドが下向きに移動することで、一対の爪911が閉位置に移動する。一対の爪911が閉位置に移動すると、リンク機構810の駆動リンク812がピンP11を中心に右回りに回転するとともに、中間リンク813がピンP12を中心に左回りに回転しながら、従動リンク814が下向きに移動する。これにより、押操作部815が可動部材13の操作部131を下向きに押した状態となる。また、一対の爪911が閉位置に移動すると、リンク機構820の駆動リンク822がピンP21を中心に右回りに回転するとともに、中間リンク823がピンP22を中心に左回りに回転しながら、従動リンク824が上向きに移動する。これにより、押操作部825が可動部材13の操作部131から離れた状態となる。このとき、センサA21の発電ユニット20が第1電圧を発生し、送信ユニット33が発電ユニット20から電圧供給を受けて第1信号を送信するので、上位システムR1はセンサA21から送信された第1信号に基づいて、一対の爪911が閉位置に移動したことを検知できる。 15 to 17 show the state in which the pair of claws 911 are moved to the closed position. When air is supplied to the first air chamber, the rod moves downward together with the piston, thereby moving the pair of claws 911 to the closed position. When the pair of pawls 911 move to the closed position, the driving link 812 of the link mechanism 810 rotates clockwise about the pin P11, and the intermediate link 813 rotates counterclockwise about the pin P12, while the driven link 814 rotates. moves downward. As a result, the push operation portion 815 pushes the operation portion 131 of the movable member 13 downward. Further, when the pair of claws 911 move to the closed position, the drive link 822 of the link mechanism 820 rotates clockwise about the pin P21, and the intermediate link 823 rotates counterclockwise about the pin P22. Link 824 moves upward. As a result, the push operation portion 825 is separated from the operation portion 131 of the movable member 13 . At this time, the power generation unit 20 of the sensor A21 generates the first voltage, and the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on the signal, it can be detected that the pair of claws 911 has moved to the closed position.
 また、第2空気室にエアが供給されると、ピストンと共にロッドが上向きに移動することで、一対の爪911が閉位置から開位置に移動する(図18参照)。一対の爪911が開位置に移動すると、リンク機構810の駆動リンク812がピンP11を中心に左回りに回転するとともに、中間リンク813がピンP12を中心に右回りに回転しながら、従動リンク814が上向きに移動する。これにより、押操作部815が可動部材13の操作部131から離れた状態となる。また、一対の爪911が開位置に移動すると、リンク機構820の駆動リンク822がピンP21を中心に左回りに回転するとともに、中間リンク823がピンP22を中心に右回りに回転しながら、従動リンク824が下向きに移動する。これにより、押操作部825によって可動部材13の操作部131が下向きに押された状態となる。このとき、センサA22の発電ユニット20が第1電圧を発生し、送信ユニット33が発電ユニット20から電圧供給を受けて第1信号を送信するので、上位システムR1はセンサA22から送信された第1信号に基づいて、一対の爪911が閉位置に移動したことを検知できる。 Also, when air is supplied to the second air chamber, the rod moves upward together with the piston, thereby moving the pair of claws 911 from the closed position to the open position (see FIG. 18). When the pair of pawls 911 moves to the open position, the drive link 812 of the link mechanism 810 rotates counterclockwise about the pin P11, and the intermediate link 813 rotates clockwise about the pin P12. moves upwards. As a result, the push operation portion 815 is separated from the operation portion 131 of the movable member 13 . When the pair of claws 911 move to the open position, the driving link 822 of the link mechanism 820 rotates counterclockwise about the pin P21, and the intermediate link 823 rotates clockwise about the pin P22, thereby causing the driven link 823 to rotate clockwise. Link 824 moves downward. As a result, the operation portion 131 of the movable member 13 is pushed downward by the push operation portion 825 . At this time, the power generation unit 20 of the sensor A22 generates the first voltage, and the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on the signal, it can be detected that the pair of claws 911 has moved to the closed position.
 図18に示すように、シリンダSY2の一対の爪911が開位置で停止している状態である初期停止状態で、休日等による操業停止でシリンダSY2の圧力源(例えば空圧ポンプ等)が長時間停止すると、配管等でのエアのリークによって第1空気室及び第2空気室の圧力が低下する可能性がある。第1空気室及び第2空気室の圧力が低下すると、センサA22の可動部材13が復帰ばね14の復帰力等を受けて上向きに移動する。その後、操業が再開してシリンダSY2の圧力源が再起動すると、圧力源からエアが供給されてシリンダSY2が、操業停止前の位置である開状態の位置に復帰する。 As shown in FIG. 18, in the initial stop state in which the pair of claws 911 of the cylinder SY2 are stopped at the open position, the pressure source (for example, the pneumatic pump) of the cylinder SY2 is extended due to the stoppage of operation due to a holiday or the like. If the time is stopped, there is a possibility that the pressures of the first air chamber and the second air chamber will decrease due to air leakage from piping or the like. When the pressure in the first air chamber and the second air chamber decreases, the movable member 13 of the sensor A22 receives the restoring force of the return spring 14 and the like and moves upward. After that, when the operation is restarted and the pressure source of the cylinder SY2 is restarted, air is supplied from the pressure source and the cylinder SY2 returns to the open position which is the position before the operation is stopped.
 ここで、圧力源が再起動してから一対の爪911が開状態の位置に復帰するまでにセンサA22の可動部材13が移動する移動量が所定の発電必要距離以上であれば、発電ユニット20が発電して出力する電圧は起動電圧以上の第1電圧となる。 Here, if the amount of movement of the movable member 13 of the sensor A 22 from when the pressure source is restarted until the pair of claws 911 return to the open position is greater than or equal to the predetermined power generation required distance, the power generation unit 20 generates and outputs a first voltage equal to or higher than the starting voltage.
 図19は、圧力源の停止中にセンサA22の可動部材13が上向きに移動した移動量が発電必要距離以上であるときの状態である第1復帰状態を示している。一対の爪911が第1復帰状態から初期停止状態に移動するまでに可動部材13が移動する移動量は発電必要距離以上になるので、発電ユニット20の発電出力が起動電圧以上の第1電圧となり、制御回路34はスイッチ32のオフを維持する。このとき、電源回路31が発電ユニット20の発電出力を、起動電圧以上の電圧値の直流電圧に変換して送信ユニット33に供給する。すなわち、センサA22の発電ユニット20の発電出力は送信ユニット33の起動電圧以上であるので、送信ユニット33は、発電ユニット20から電力の供給を受けて起動し、第1信号を送信する。上位システムR1は、センサA22の送信ユニット33から送信される第1信号を受信することによって、一対の爪911が開位置に位置していることを検知する。 FIG. 19 shows the first return state, which is the state when the amount of upward movement of the movable member 13 of the sensor A22 while the pressure source is stopped is greater than or equal to the power generation required distance. Since the amount of movement of the movable member 13 until the pair of claws 911 moves from the first return state to the initial stop state is greater than or equal to the power generation required distance, the power generation output of the power generation unit 20 becomes the first voltage equal to or greater than the starting voltage. , the control circuit 34 keeps the switch 32 off. At this time, the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 . That is, since the power generation output of the power generation unit 20 of the sensor A22 is equal to or higher than the starting voltage of the transmission unit 33, the transmission unit 33 receives power supply from the power generation unit 20, starts up, and transmits the first signal. The host system R1 detects that the pair of claws 911 are positioned at the open position by receiving the first signal transmitted from the transmission unit 33 of the sensor A22.
 一方、図20は、圧力源の停止中にセンサA22の可動部材13が上向きに移動した移動量が発電必要距離未満であるときの状態である第2復帰状態を示している。一対の爪911が第2復帰状態から初期停止状態に移動するまでに可動部材13が移動する移動量は発電必要距離未満であるので、発電ユニット20の発電出力は起動電圧未満の第2電圧となり、発電ユニット20の発電出力では送信ユニット33が起動できない。このとき、センサA22の制御回路34は、発電ユニット20の発電出力が第2電圧であることから、スイッチ32をオンに制御するので、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信する。上位システムR1は、センサA22の送信ユニット33から送信される第2信号を受信することによって、一対の爪911が開位置に位置していることを検知する。 On the other hand, FIG. 20 shows the second return state, which is the state when the upward movement amount of the movable member 13 of the sensor A22 while the pressure source is stopped is less than the power generation required distance. Since the amount of movement of the movable member 13 until the pair of pawls 911 move from the second return state to the initial stop state is less than the required distance for power generation, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. , the power generation output of the power generation unit 20 cannot activate the transmission unit 33 . At this time, since the power output of the power generation unit 20 is the second voltage, the control circuit 34 of the sensor A 22 turns on the switch 32, so that the transmission unit 33 is activated by the power supplied from the battery 30. Send a second signal. The host system R1 detects that the pair of claws 911 is positioned at the open position by receiving the second signal transmitted from the transmission unit 33 of the sensor A22.
 なお、シリンダSY2の一対の爪911が閉位置で停止している状態でシリンダSY2の圧力源が長時間停止すると、上述と同様に、復帰ばね14の復帰力等を受けて一対の爪911の位置がずれる可能性がある。 If the pressure source of the cylinder SY2 is stopped for a long time while the pair of claws 911 of the cylinder SY2 are stopped at the closed position, the pair of claws 911 will be disengaged by the restoring force of the return spring 14, etc., as described above. Position may shift.
 ここで、一対の爪911が復帰ばね14の復帰力等を受けて第1復帰状態の位置に移動した場合、圧力源が再起動して一対の爪911が停止前の閉位置に移動すると、センサA21の発電ユニット20が第1電圧を発生する。したがって、センサA21の送信ユニット33は発電ユニット20から電力供給を受けて第1信号を送信できる。 Here, when the pair of pawls 911 receive the restoring force of the return spring 14 or the like and move to the position of the first return state, when the pressure source is restarted and the pair of pawls 911 move to the closed position before stopping, The generator unit 20 of sensor A21 generates a first voltage. Therefore, the transmission unit 33 of the sensor A21 can receive power from the power generation unit 20 and transmit the first signal.
 また、一対の爪911が復帰ばね14の復帰力等を受けて第2復帰状態の位置に移動した場合、圧力源が再起動して一対の爪911が停止前の閉位置に移動すると、センサA21の発電ユニット20は第2電圧を発生するため、送信ユニット33は発電ユニット20の発電出力では起動できない。この場合、センサA21の制御回路34は、発電ユニット20の発電出力が第2電圧であることから、スイッチ32をオンに制御するので、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信することができる。 Further, when the pair of pawls 911 receive the restoring force of the return spring 14 and the like and move to the position of the second return state, when the pressure source is restarted and the pair of pawls 911 move to the closed position before stopping, the sensor Since the power generation unit 20 of A21 generates the second voltage, the transmission unit 33 cannot be activated by the power generation output of the power generation unit 20 . In this case, the control circuit 34 of the sensor A 21 turns on the switch 32 because the power output of the power generation unit 20 is the second voltage. A second signal can be transmitted.
 なお、適用例1で説明したシリンダSY2には、一対の爪911が閉位置及び開位置に移動したことをそれぞれ検知するために、2つのセンサA1(センサA21及びセンサA22)が取り付けられているが、シリンダSY2に2つのセンサA1が取り付けられることは必須ではない。シリンダSY2には、一対の爪911が閉位置に移動したことを検知するセンサA21のみが取り付けられていてもよいし、一対の爪911が開位置に移動したことを検知するセンサA22のみが取り付けられていてもよい。 Two sensors A1 (sensor A21 and sensor A22) are attached to the cylinder SY2 described in Application Example 1 in order to detect the movement of the pair of claws 911 to the closed position and the open position, respectively. However, it is not essential that two sensors A1 are attached to cylinder SY2. Cylinder SY2 may be provided with only sensor A21 for detecting that the pair of claws 911 has moved to the closed position, or only sensor A22 for detecting that the pair of claws 911 has moved to the open position. may have been
 (3.2)適用例2
 平行ハンドを駆動するシリンダSY3にセンサA1を内蔵した適用例2について、図21~図27を参照して説明する。なお、適用例2のシリンダSY3の説明では、図21において、X軸に沿う方向を上下、Y軸に沿う方向を左右、Z軸に沿う方向を前後と規定する。ただし、これらの方向は、説明のために便宜上規定した方向であり、センサA1及びシリンダSY3が実際に使用される際の方向を規定するものではない。
(3.2) Application example 2
An application example 2 in which the sensor A1 is built in the cylinder SY3 that drives the parallel hand will be described with reference to FIGS. 21 to 27. FIG. In the explanation of the cylinder SY3 of Application Example 2, in FIG. 21, the direction along the X axis is defined as up and down, the direction along the Y axis is defined as left and right, and the direction along the Z axis is defined as front and back. However, these directions are defined for convenience of explanation, and do not define directions when the sensor A1 and cylinder SY3 are actually used.
 (3.2.1)適用例2の構成
 シリンダSY3は、直方体状の本体920を有している。本体920の上部には、一対の爪922を保持するレール部材921が取り付けられている。レール部材921の上面には、一対の爪922の基部が挿入されるレール溝923が設けられている。レール溝923はY軸に沿って伸びている。一対の爪922は、Y軸に沿って平行移動可能な状態でレール部材921に保持されている。
(3.2.1) Configuration of Application Example 2 Cylinder SY3 has a rectangular parallelepiped main body 920 . A rail member 921 holding a pair of claws 922 is attached to the upper portion of the main body 920 . A rail groove 923 into which bases of a pair of claws 922 are inserted is provided on the upper surface of the rail member 921 . Rail groove 923 extends along the Y-axis. The pair of claws 922 are held by the rail member 921 so as to be able to move in parallel along the Y-axis.
 本体920の内部には、ピストン950(図23参照)がX軸に沿って移動可能な状態で配置されたシリンダ室が設けられている。ピストン950には上向きに突出するロッド951が設けられている。シリンダ室は、ピストン950を挟んでロッド951側の第1空気室とヘッド側の第2空気室とに分けられ、第1空気室及び第2空気室のそれぞれにエア配管が繋がっている。圧力源からエア配管を介して第2空気室にエアが供給されると、ピストン950及びロッド951が上向きに移動する。また、圧力源からエア配管を介して第1空気室にエアが供給されると、ピストン950及びロッド951が下向きに移動する。ロッド951の往復動作はリンク機構830及びリンク機構840を介して一対の爪922にそれぞれ伝達される。これにより、一対の爪922は、両者の間隔が最小となる閉位置(図23及び図24に示す位置)、と両者の間隔が最大となる開位置(図25及び図26に示す位置)に移動する。 Inside the main body 920, there is provided a cylinder chamber in which a piston 950 (see FIG. 23) is arranged so as to be movable along the X-axis. The piston 950 is provided with a rod 951 protruding upward. The cylinder chamber is divided into a first air chamber on the rod 951 side and a second air chamber on the head side with the piston 950 interposed therebetween, and an air pipe is connected to each of the first air chamber and the second air chamber. When air is supplied from the pressure source to the second air chamber through the air pipe, the piston 950 and rod 951 move upward. Also, when air is supplied from the pressure source to the first air chamber through the air pipe, the piston 950 and the rod 951 move downward. The reciprocating motion of the rod 951 is transmitted to the pair of claws 922 via the link mechanism 830 and the link mechanism 840, respectively. As a result, the pair of pawls 922 are placed in the closed position (position shown in FIGS. 23 and 24) where the distance between the two is minimum and the open position (position shown in FIGS. 25 and 26) where the distance between the two is maximum (position shown in FIGS. 25 and 26). Moving.
 シリンダSY3には、2つのセンサA1が2つの取付部材を用いて取り付けられている。ここで、2つのセンサA1は、一対の爪922が閉位置に移動したことを検知するセンサA21と、一対の爪922が開位置に移動したことを検知するセンサA22と、を含む。また、2つの取付部材は、センサA21をシリンダSY3に取り付けるための取付部材930と、センサA22をシリンダSY3に取り付けるための取付部材940と、を含んでいる。ここで、取付部材930は、センサA21が有する可動部材13の押し込み量を制限するストッパ部材の機能を有している。同様に、取付部材940は、センサA22が有する可動部材13の押し込み量を制限するストッパ部材の機能を有している。なお、センサA21及びセンサA22は、上述したセンサA1と同様の構成を有しているので、センサA21及びセンサA22の構成についての説明は省略する。 Two sensors A1 are attached to the cylinder SY3 using two attachment members. Here, the two sensors A1 include a sensor A21 that detects movement of the pair of claws 922 to the closed position and a sensor A22 that detects movement of the pair of claws 922 to the open position. The two mounting members also include a mounting member 930 for mounting the sensor A21 to the cylinder SY3 and a mounting member 940 for mounting the sensor A22 to the cylinder SY3. Here, the mounting member 930 has a function of a stopper member that limits the pushing amount of the movable member 13 of the sensor A21. Similarly, the mounting member 940 has the function of a stopper member that limits the pushing amount of the movable member 13 of the sensor A22. Note that the sensor A21 and the sensor A22 have the same configuration as the sensor A1 described above, so the description of the configuration of the sensor A21 and the sensor A22 is omitted.
 取付部材930は、下面にセンサA21の上面が接した状態で配置されるベース部931と、ベース部931の下面の左側から下向きに突出する角柱状の柱状部932と、を有している。 The mounting member 930 has a base portion 931 arranged with the upper surface of the sensor A21 in contact with the lower surface, and a prism-shaped columnar portion 932 protruding downward from the left side of the lower surface of the base portion 931 .
 センサA21は、筐体10の上面がベース部931の下面に接触し、筐体10の左側の側面が柱状部932の右側の側面に接触した状態で取付部材930に配置される。センサA21は、ベース11を固定ボルト934で柱状部932に締結することによって、取付部材930に固定される。取付部材930は、本体920の下面との間にシム板933を挟んだ状態で、柱状部932をX軸に沿って貫通する貫通孔に固定ボルト935を通し、固定ボルト935を本体920にネジ込むことによって、本体920に取り付けられる。これにより、センサA21が取付部材930を介してシリンダSY3の本体920に取り付けられる。ここで、所望の高さ寸法のシム板933を本体920と取付部材930との間に配置することで、センサA21の可動部材13の位置及びストッパ部材として機能する取付部材930の位置をX軸に沿って調整することができる。なお、適用例2では、シム板933により位置調整機構が実現されているが、センサA21及び取付部材930をX軸に沿って移動させる送りねじ等で位置調整機構が実現されてもよい。 The sensor A21 is arranged on the mounting member 930 with the upper surface of the housing 10 in contact with the lower surface of the base portion 931 and the left side surface of the housing 10 in contact with the right side surface of the columnar portion 932 . The sensor A21 is fixed to the mounting member 930 by fastening the base 11 to the columnar portion 932 with a fixing bolt 934 . The mounting member 930 has a shim plate 933 sandwiched between it and the lower surface of the main body 920 , and the fixing bolt 935 is passed through the through-hole passing through the columnar portion 932 along the X axis, and the fixing bolt 935 is screwed to the main body 920 . It is attached to the main body 920 by inserting it. As a result, the sensor A21 is attached to the main body 920 of the cylinder SY3 via the attachment member 930. As shown in FIG. Here, by placing a shim plate 933 having a desired height dimension between the main body 920 and the mounting member 930, the position of the movable member 13 of the sensor A21 and the position of the mounting member 930 functioning as a stopper member can be adjusted to the X axis. can be adjusted accordingly. In Application Example 2, the shim plate 933 realizes the position adjustment mechanism, but the position adjustment mechanism may be realized by a feed screw or the like that moves the sensor A21 and the mounting member 930 along the X axis.
 また、取付部材930の上面には、センサA21が備える可動部材13の操作部131と対向する部位に角孔状の貫通孔937(図24及び図26参照)が設けられている。リンク機構830は、可動部材13の操作部131を駆動する動作部材であるプランジャ835を有しており、プランジャ835の下端は貫通孔937を通して取付部材930の内部に挿入され、センサA21の可動部材13の操作部131と対向している。 Further, a rectangular through-hole 937 (see FIGS. 24 and 26) is provided on the upper surface of the mounting member 930 at a portion facing the operating portion 131 of the movable member 13 of the sensor A21. The link mechanism 830 has a plunger 835, which is an operating member that drives the operating portion 131 of the movable member 13. The lower end of the plunger 835 is inserted through the through hole 937 into the mounting member 930, and the movable member of the sensor A21 is inserted. 13 is opposed to the operation unit 131 .
 取付部材930にセンサA21が取り付けられた状態では、センサA21のカバー12の側面が露出している。つまり、取付部材930には、電磁波を透過する透過部E3(図21参照)が設けられているので、センサA21の送信ユニット33から送信される無線信号の減衰を抑制できる。なお、透過部E3は、カバー12の側面を露出させる開口で実現されているが、電磁波に対して透過性を有する合成樹脂製の部材等で実現されてもよい。 When the sensor A21 is attached to the attachment member 930, the side surface of the cover 12 of the sensor A21 is exposed. That is, since the mounting member 930 is provided with the transmitting portion E3 (see FIG. 21) that transmits electromagnetic waves, attenuation of the wireless signal transmitted from the transmitting unit 33 of the sensor A21 can be suppressed. Although the transmitting portion E3 is realized by an opening that exposes the side surface of the cover 12, it may be realized by a synthetic resin member or the like having transparency to electromagnetic waves.
 取付部材940は、下面にセンサA22の上面が接した状態で配置されるベース部941と、ベース部941の下面の右側から下向きに突出する角柱状の柱状部942と、を有している。 The mounting member 940 has a base portion 941 arranged with the upper surface of the sensor A 22 in contact with the lower surface, and a prism-shaped columnar portion 942 protruding downward from the right side of the lower surface of the base portion 941 .
 センサA22は、筐体10の上面がベース部941の下面に接触し、筐体10の右側の側面が柱状部942の左側の側面に接触した状態で取付部材940に配置される。なお、センサA22とセンサA21とはZ軸に沿って並ぶように配置されている(図21参照)。センサA22は、ベース11を固定ボルト944で柱状部942に締結することによって、取付部材940に固定される。取付部材940は、本体920の下面との間にシム板943を挟んだ状態で、柱状部942をX軸に沿って貫通する貫通孔に固定ボルト945を通し、固定ボルト945を本体920にネジ込むことによって、本体920に取り付けられる。これにより、センサA22が取付部材940を介してシリンダSY3の本体920に取り付けられる。ここで、所望の高さ寸法のシム板943を本体920と取付部材940との間に配置することで、センサA22の可動部材13の位置及びストッパ部材として機能する取付部材940の位置をX軸に沿って調整することができる。なお、適用例2では、シム板943により位置調整機構が実現されているが、センサA22及び取付部材940をX軸に沿って移動させる送りねじ等で位置調整機構が実現されてもよい。 The sensor A22 is arranged on the mounting member 940 with the upper surface of the housing 10 in contact with the lower surface of the base portion 941 and the right side surface of the housing 10 in contact with the left side surface of the columnar portion 942 . The sensors A22 and A21 are arranged side by side along the Z axis (see FIG. 21). The sensor A22 is fixed to the mounting member 940 by fastening the base 11 to the columnar portion 942 with a fixing bolt 944 . The mounting member 940 has a shim plate 943 sandwiched between it and the lower surface of the main body 920 , and the fixing bolt 945 is passed through the through-hole passing through the columnar portion 942 along the X-axis, and the fixing bolt 945 is screwed to the main body 920 . It is attached to the main body 920 by inserting it. As a result, the sensor A22 is attached to the main body 920 of the cylinder SY3 via the attachment member 940. As shown in FIG. By arranging a shim plate 943 having a desired height dimension between the main body 920 and the mounting member 940, the position of the movable member 13 of the sensor A22 and the position of the mounting member 940 functioning as a stopper member can be adjusted to the X axis. can be adjusted accordingly. In Application Example 2, the shim plate 943 realizes the position adjustment mechanism, but the position adjustment mechanism may be realized by a feed screw or the like that moves the sensor A22 and the mounting member 940 along the X axis.
 また、取付部材940の上面には、センサA22が備える可動部材13の操作部131と対向する部位に角孔状の貫通孔947(図24及び図26参照)が設けられている。リンク機構840は、可動部材13の操作部131を駆動する動作部材であるプランジャ845を有しており、プランジャ845の下端は貫通孔947を通して取付部材940の内部に挿入され、センサA22の可動部材13の操作部131と対向している。 In addition, on the upper surface of the mounting member 940, a rectangular through-hole 947 (see FIGS. 24 and 26) is provided at a portion facing the operating portion 131 of the movable member 13 of the sensor A22. The link mechanism 840 has a plunger 845 that is an operating member that drives the operating portion 131 of the movable member 13. The lower end of the plunger 845 is inserted through the through hole 947 into the mounting member 940, and the movable member of the sensor A22 is inserted. 13 is opposed to the operation unit 131 .
 取付部材940にセンサA22が取り付けられた状態では、センサA22のカバー12の側面が露出している。つまり、取付部材940には、電磁波を透過する透過部E4(図21参照)が設けられているので、センサA22の送信ユニット33から送信される無線信号の減衰を抑制できる。なお、透過部E4は、カバー12の側面を露出させる開口で実現されているが、電磁波に対して透過性を有する合成樹脂製の部材等で実現されてもよい。 When the sensor A22 is attached to the attachment member 940, the side surface of the cover 12 of the sensor A22 is exposed. That is, since the mounting member 940 is provided with the transmitting portion E4 (see FIG. 21) that transmits electromagnetic waves, attenuation of the wireless signal transmitted from the transmitting unit 33 of the sensor A22 can be suppressed. Although the transmitting portion E4 is realized by an opening that exposes the side surface of the cover 12, it may be realized by a synthetic resin member or the like having transparency to electromagnetic waves.
 また、シリンダSY3は、リンク機構830と、リンク機構840と、を備えている。 In addition, the cylinder SY3 includes a link mechanism 830 and a link mechanism 840.
 リンク機構830は、右側の爪922の左右の動きを上下の動きに変換してセンサA21に伝える。リンク機構830は、リンクアーム831と、中間リンク834と、プランジャ835とを備える。 The link mechanism 830 converts the lateral movement of the right claw 922 into vertical movement and transmits it to the sensor A21. Link mechanism 830 includes link arm 831 , intermediate link 834 , and plunger 835 .
 リンクアーム831は、Y軸に沿って配置される横片831Bと、横片831Bの右端から下向きに突出する縦片831Aと、を一体に備え、略L形に形成されている。横片831Bには左右の幅の中央付近に孔が設けられ、この孔に本体920に固定されたピンP31が挿入されている。横片831Bは、ピンP31を中心に回転可能な状態で本体920に支持されている。横片831Bの左側の端部には溝833が設けられている。ロッド951の上端にはスリット952が設けられ、スリット952の内部にはピン953が設けられている。横片831Bの左側の端部はロッド951のスリット952に挿入され、溝833にピン953が挿入されている。また、横片831Bの左右の幅の中央付近からは駆動片832が上向きに突出しており、この駆動片832は右側の爪922の下部に設けられた溝内に挿入されている。また、縦片831Aの下部に設けられた孔にはピンP32の第1端が挿入されている。 The link arm 831 integrally includes a horizontal piece 831B arranged along the Y-axis and a vertical piece 831A projecting downward from the right end of the horizontal piece 831B, and is formed in a substantially L shape. The horizontal piece 831B is provided with a hole near the center of the left and right width, and a pin P31 fixed to the main body 920 is inserted into this hole. The horizontal piece 831B is supported by the main body 920 so as to be rotatable around the pin P31. A groove 833 is provided at the left end of the horizontal piece 831B. A slit 952 is provided at the upper end of the rod 951 and a pin 953 is provided inside the slit 952 . The left end of the lateral piece 831B is inserted into the slit 952 of the rod 951, and the pin 953 is inserted into the groove 833. A driving piece 832 protrudes upward from the vicinity of the center of the lateral width of the horizontal piece 831B, and is inserted into a groove provided below the claw 922 on the right side. A first end of the pin P32 is inserted into a hole provided at the bottom of the vertical piece 831A.
 中間リンク834の端1834に設けられた孔にはピンP32の第2端が挿入されており、縦片831Aと中間リンク834とはピンP32を中心に回転可能な状態で連結されている。また、中間リンク834の端2834に設けられた孔にはピンP33の第1端が挿入され、プランジャ835の上端部に設けられた孔にはピンP33の第2端が挿入されている。プランジャ835は、本体920の内部に設けられたガイド部によってX軸(上下)に沿って移動可能な状態で本体920に配置されている。プランジャ835の下端には、センサA21が備える可動部材13の操作部131を押すための押操作部836が設けられている。プランジャ835の中間部には、プランジャ835が下向きに移動したときに、取付部材930及び取付部材940からそれぞれ上向きに突出するストッパ片936,946と接触する段差部837が設けられている。ここにおいて、ストッパ片936,946が、動作部材であるプランジャ835の段差部837と接触することで、可動部材13が位置PT2よりも下方に移動しないように、プランジャ835の下方への移動を制限する。なお、ストッパ片936,946の上端が、動作部材であるプランジャ835の段差部837と接触する接触部位となる。 The second end of the pin P32 is inserted into the hole provided at the end 1834 of the intermediate link 834, and the vertical piece 831A and the intermediate link 834 are connected in a rotatable state about the pin P32. A first end of the pin P33 is inserted into a hole provided at the end 2834 of the intermediate link 834, and a second end of the pin P33 is inserted into a hole provided at the upper end of the plunger 835. The plunger 835 is arranged in the main body 920 so as to be movable along the X-axis (up and down) by a guide provided inside the main body 920 . A push operation portion 836 for pushing the operation portion 131 of the movable member 13 included in the sensor A21 is provided at the lower end of the plunger 835 . An intermediate portion of the plunger 835 is provided with a stepped portion 837 that contacts stopper pieces 936 and 946 projecting upward from the mounting member 930 and the mounting member 940 when the plunger 835 moves downward. Here, the stopper pieces 936 and 946 contact the stepped portion 837 of the plunger 835, which is the operating member, to limit the downward movement of the plunger 835 so that the movable member 13 does not move below the position PT2. do. Note that the upper ends of the stopper pieces 936 and 946 are contact portions that come into contact with the stepped portion 837 of the plunger 835, which is the operating member.
 リンク機構840は、左側の爪922の左右の動きを上下の動きに変換してセンサA22に伝える。リンク機構840は、リンクアーム841と、中間リンク844と、動作部材であるプランジャ845とを備える。 The link mechanism 840 converts the lateral movement of the left claw 922 into vertical movement and transmits it to the sensor A22. The link mechanism 840 includes a link arm 841, an intermediate link 844, and a plunger 845 as an operating member.
 リンクアーム841は矩形板状に形成されている。リンクアーム841には左右の幅の中央付近に孔が設けられ、この孔に本体920に固定されたピンP41が挿入されており、リンクアーム841はピンP41を中心に回転可能な状態で本体920に支持されている。リンクアーム841の右側の端部には溝843が設けられている。リンクアーム841の右側の端部はロッド951のスリット952に挿入され、溝843にピン953が挿入されている。また、リンクアーム841の左右の幅の中央付近からは駆動片842が上向きに突出しており、この駆動片842は左側の爪922の下部に設けられた溝内に挿入されている。また、リンクアーム841の左側の端部に設けられた孔にはピンP42の第1端が挿入されている。 The link arm 841 is formed in a rectangular plate shape. A hole is provided in the link arm 841 near the center of the left and right width, and a pin P41 fixed to the main body 920 is inserted into this hole. supported by A groove 843 is provided at the right end of the link arm 841 . The right end of the link arm 841 is inserted into the slit 952 of the rod 951 and the pin 953 is inserted into the groove 843 . A drive piece 842 protrudes upward from the vicinity of the center of the left and right width of the link arm 841 and is inserted into a groove provided below the left claw 922 . A first end of the pin P42 is inserted into a hole provided at the left end of the link arm 841 .
 中間リンク844の端1844に設けられた孔にはピンP42の第2端が挿入されており、リンクアーム841と中間リンク844とはピンP42を中心に回転可能な状態で連結されている。また、中間リンク844の端2844に設けられた孔にはピンP43の第1端が挿入され、プランジャ845の上端部に設けられた孔にはピンP43の第2端が挿入されている。プランジャ845は、本体920の内部に設けられたガイド部によってX軸(上下)に沿って移動可能な状態で本体920に配置されている。プランジャ845の下端には、センサA22が備える可動部材13の操作部131を押すための押操作部846が設けられている。プランジャ845の中間部には、プランジャ845が下向きに移動したときに、取付部材930及び取付部材940からそれぞれ上向きに突出するストッパ片936,946と接触する段差部847が設けられている。 The second end of the pin P42 is inserted into the hole provided in the end 1844 of the intermediate link 844, and the link arm 841 and the intermediate link 844 are connected in a rotatable state about the pin P42. A first end of the pin P43 is inserted into a hole provided at the end 2844 of the intermediate link 844, and a second end of the pin P43 is inserted into a hole provided at the upper end of the plunger 845. The plunger 845 is arranged in the main body 920 so as to be movable along the X-axis (up and down) by a guide provided inside the main body 920 . A push operation portion 846 for pushing the operation portion 131 of the movable member 13 included in the sensor A22 is provided at the lower end of the plunger 845 . An intermediate portion of the plunger 845 is provided with a stepped portion 847 that comes into contact with stopper pieces 936 and 946 projecting upward from the mounting member 930 and the mounting member 940, respectively, when the plunger 845 moves downward.
 (3.2.2)適用例2の動作
 以下に、適用例2のシリンダSY3の動作を説明する。
(3.2.2) Operation of Application Example 2 The operation of cylinder SY3 of Application Example 2 will be described below.
 図23及び図24は一対の爪922が閉位置に移動している状態を示している。第1空気室にエアが供給されると、ピストン950と共にロッド951が下向きに移動し、リンクアーム831がピンP31を中心に左回りに回転するとともに、リンクアーム841がピンP41を中心に右回りに回転し、駆動片832,842によって一対の爪922が閉位置に移動させられる。また、リンクアーム831がピンP31を中心に左回りに回転すると、中間リンク834を介してプランジャ835が下向きに押され、プランジャ835の押操作部836によってセンサA21の操作部131が下向きに押された状態となる。プランジャ835の段差部837がストッパ片936,946と接触することによって、プランジャ835の下方への移動が制限され、このときの爪922の位置が閉位置となる。このとき、センサA21の発電ユニット20が第1電圧を発生し、送信ユニット33が発電ユニット20から電圧供給を受けて第1信号を送信するので、上位システムR1はセンサA21からの第1信号に基づいて、一対の爪922が閉位置に移動したことを検知できる。また、リンクアーム841がピンP41を中心に右回りに回転すると、中間リンク844によってプランジャ845が上向きに引き上げられ、プランジャ845の押操作部846がセンサA22の可動部材13の操作部131から離れた状態となる。 23 and 24 show a state in which the pair of claws 922 are moved to the closed position. When air is supplied to the first air chamber, the rod 951 moves downward together with the piston 950, the link arm 831 rotates counterclockwise about the pin P31, and the link arm 841 rotates clockwise about the pin P41. , and the driving pieces 832 and 842 move the pair of claws 922 to the closed position. Further, when the link arm 831 rotates counterclockwise around the pin P31, the plunger 835 is pushed downward via the intermediate link 834, and the push operation portion 836 of the plunger 835 pushes the operation portion 131 of the sensor A21 downward. state. When the stepped portion 837 of the plunger 835 comes into contact with the stopper pieces 936 and 946, the downward movement of the plunger 835 is restricted, and the position of the claw 922 at this time is the closed position. At this time, the power generation unit 20 of the sensor A21 generates the first voltage, and the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on this, it can be detected that the pair of claws 922 has moved to the closed position. Further, when the link arm 841 rotates clockwise about the pin P41, the plunger 845 is pulled upward by the intermediate link 844, and the push operation portion 846 of the plunger 845 is separated from the operation portion 131 of the movable member 13 of the sensor A22. state.
 また、第2空気室にエアが供給されると、ピストン950と共にロッド951が上向きに移動し、リンクアーム831がピンP31を中心に右回りに回転するとともに、リンクアーム841がピンP41を中心に左回りに回転し、駆動片832,842によって一対の爪922が開位置(図25及び図26参照)に移動させられる。また、リンクアーム831がピンP31を中心に右回りに回転すると、中間リンク834によってプランジャ835が上向きに引き上げられ、プランジャ835の押操作部836がセンサA21の操作部131から離れた状態となる。また、リンクアーム841がピンP41を中心に左回りに回転すると、中間リンク844を介してプランジャ845が下向きに押され、プランジャ845の押操作部846によってセンサA22の操作部131が下向きに押された状態となる。プランジャ845の段差部847がストッパ片936,946と接触することによって、プランジャ845の下方への移動が制限され、このときの爪922の位置が開位置となる。このとき、センサA22の発電ユニット20が第1電圧を発生し、送信ユニット33が発電ユニット20から電圧供給を受けて第1信号を送信するので、上位システムR1はセンサA22からの第1信号に基づいて、一対の爪922が開位置に移動したことを検知できる。 Further, when air is supplied to the second air chamber, the rod 951 moves upward together with the piston 950, the link arm 831 rotates clockwise about the pin P31, and the link arm 841 rotates about the pin P41. It rotates counterclockwise, and the driving pieces 832 and 842 move the pair of claws 922 to the open position (see FIGS. 25 and 26). Further, when the link arm 831 rotates clockwise about the pin P31, the plunger 835 is pulled upward by the intermediate link 834, and the push operation portion 836 of the plunger 835 is separated from the operation portion 131 of the sensor A21. Further, when the link arm 841 rotates counterclockwise around the pin P41, the plunger 845 is pushed downward via the intermediate link 844, and the push operation portion 846 of the plunger 845 pushes the operation portion 131 of the sensor A22 downward. state. When the stepped portion 847 of the plunger 845 comes into contact with the stopper pieces 936 and 946, the downward movement of the plunger 845 is restricted, and the position of the claw 922 at this time is the open position. At this time, the power generation unit 20 of the sensor A22 generates the first voltage, and the transmission unit 33 receives the voltage supply from the power generation unit 20 and transmits the first signal. Based on this, it can be detected that the pair of claws 922 has moved to the open position.
 図25及び図26に示すように、シリンダSY3の一対の爪922が開位置で停止している状態である初期停止状態で、休日等による操業停止でシリンダSY3の圧力源(例えば空圧ポンプ等)が長時間停止すると、配管等でのエアのリークによって第1空気室及び第2空気室の圧力が低下する可能性がある。第1空気室及び第2空気室の圧力が低下すると、センサA22の可動部材13が復帰ばね14の復帰力等を受けて上向きに移動する。その後、操業が再開してシリンダSY3の圧力源が再起動すると、圧力源からエアが供給されてシリンダSY3が、操業停止前の位置である開位置に移動する。 As shown in FIGS. 25 and 26, in the initial stop state in which the pair of claws 922 of the cylinder SY3 are stopped at the open position, the pressure source (for example, an air pressure pump, etc.) of the cylinder SY3 is ) stops for a long time, there is a possibility that the pressures of the first air chamber and the second air chamber will decrease due to air leakage from piping or the like. When the pressure in the first air chamber and the second air chamber decreases, the movable member 13 of the sensor A22 receives the restoring force of the return spring 14 and the like and moves upward. Thereafter, when operation resumes and the pressure source for cylinder SY3 is restarted, air is supplied from the pressure source and cylinder SY3 moves to the open position, which is the position before the operation was stopped.
 ここで、圧力源が再起動してから一対の爪922が開状態の位置に復帰するまでに可動部材13が移動する移動量が所定の発電必要距離以上であれば、発電ユニット20の発電出力は起動電圧以上の第1電圧となる。 Here, if the amount of movement of the movable member 13 after the pressure source is restarted until the pair of pawls 922 return to the open position is greater than or equal to the predetermined power generation required distance, the power generation output of the power generation unit 20 is is the first voltage equal to or higher than the starting voltage.
 圧力源の停止中に可動部材13が上向きに移動した移動量が発電必要距離以上である状態である第1復帰状態では、一対の爪922が第1復帰状態から初期停止状態に移動するまでにセンサA22の可動部材13が移動する移動量は発電必要距離以上になる。この場合、センサA22の発電ユニット20の発電出力が起動電圧以上の第1電圧となり、制御回路34はスイッチ32のオフを維持する。このとき、電源回路31が発電ユニット20の発電出力を、起動電圧以上の電圧値の直流電圧に変換して送信ユニット33に供給する。発電ユニット20の発電出力は送信ユニット33の起動電圧以上であるので、送信ユニット33は、発電ユニット20から電力の供給を受けて起動し、第1信号を送信する。上位システムR1は、センサA22の送信ユニット33から送信される第1信号を受信することによって、一対の爪922が開位置に位置していることを検知する。 In the first return state, in which the amount of upward movement of the movable member 13 while the pressure source is stopped is equal to or greater than the power generation required distance, the pair of claws 922 move from the first return state to the initial stop state. The amount of movement of the movable member 13 of the sensor A22 is greater than or equal to the power generation required distance. In this case, the power generation output of the power generation unit 20 of the sensor A22 becomes the first voltage equal to or higher than the starting voltage, and the control circuit 34 keeps the switch 32 off. At this time, the power supply circuit 31 converts the power output of the power generation unit 20 into a DC voltage having a voltage value equal to or higher than the starting voltage, and supplies the DC voltage to the transmission unit 33 . Since the power generation output of the power generation unit 20 is equal to or higher than the activation voltage of the transmission unit 33, the transmission unit 33 receives power supply from the power generation unit 20, is activated, and transmits the first signal. The host system R1 detects that the pair of claws 922 is positioned at the open position by receiving the first signal transmitted from the transmission unit 33 of the sensor A22.
 一方、図27は、圧力源の停止中に可動部材13が上向きに移動した移動量が発電必要距離未満であるときの状態(以下、第2復帰状態と言う。)を示している。一対の爪922が第2復帰状態から初期停止状態に復帰するまでに可動部材13が移動する移動量は発電必要距離未満であるので、発電ユニット20の発電出力は起動電圧未満の第2電圧となり、発電ユニット20の発電出力では送信ユニット33が起動できない。このとき、制御回路34は、発電ユニット20が第2電圧を発生したことをトリガとして、スイッチ32をオンに制御し、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信する。上位システムR1は、センサA22の送信ユニット33から送信される第2信号を受信することによって、一対の爪922が開位置に位置していることを検知する。 On the other hand, FIG. 27 shows a state (hereinafter referred to as a second return state) when the amount of upward movement of the movable member 13 while the pressure source is stopped is less than the required distance for power generation. Since the amount of movement of the movable member 13 until the pair of claws 922 return from the second return state to the initial stop state is less than the distance required for power generation, the power generation output of the power generation unit 20 becomes the second voltage less than the starting voltage. , the power generation output of the power generation unit 20 cannot activate the transmission unit 33 . At this time, the control circuit 34 turns on the switch 32 with the generation of the second voltage by the power generation unit 20 as a trigger, the transmission unit 33 is activated by the power supplied from the battery 30, and transmits the second signal. Send. The host system R1 detects that the pair of claws 922 is positioned at the open position by receiving the second signal transmitted from the transmission unit 33 of the sensor A22.
 なお、シリンダSY3の一対の爪922が閉位置で停止している状態でシリンダSY3の圧力源が長時間停止すると、上述と同様に、復帰ばね14の復帰力等を受けて一対の爪922の位置がずれる可能性がある。 If the pressure source of the cylinder SY3 is stopped for a long time while the pair of claws 922 of the cylinder SY3 are stopped at the closed position, the pair of claws 922 will be displaced by receiving the restoring force of the return spring 14, etc., in the same manner as described above. Position may shift.
 ここで、一対の爪922が復帰ばね14の復帰力等を受けて第1復帰状態の位置に移動した場合、圧力源が再起動して一対の爪922が停止前の閉位置に移動すると、センサA22の発電ユニット20が第1電圧を発生する。したがって、センサA22の送信ユニット33は発電ユニット20から電力供給を受けて第1信号を送信できる。 Here, when the pair of pawls 922 receives the restoring force of the return spring 14 or the like and moves to the position of the first return state, when the pressure source is restarted and the pair of pawls 922 moves to the closed position before stopping, The generator unit 20 of sensor A22 generates a first voltage. Therefore, the transmitting unit 33 of the sensor A22 can receive power from the power generation unit 20 and transmit the first signal.
 また、一対の爪922が復帰ばね14の復帰力等を受けて第2復帰状態の位置に移動した場合、圧力源が再起動して一対の爪922が停止前の閉位置に移動すると、センサA22の発電ユニット20は第2電圧を発生するため、送信ユニット33は発電ユニット20の発電出力では起動できない。この場合、センサA22の制御回路34は、発電ユニット20が第2電圧を発生したことをトリガとして、スイッチ32をオンに制御するので、送信ユニット33は電池30から供給される電力で起動し、第2信号を送信することができる。 Further, when the pair of pawls 922 receives the restoring force of the return spring 14 or the like and moves to the position of the second return state, when the pressure source is restarted and the pair of pawls 922 moves to the closed position before stopping, the sensor Since the power generation unit 20 of A22 generates the second voltage, the transmission unit 33 cannot be activated by the power generation output of the power generation unit 20 . In this case, the control circuit 34 of the sensor A 22 is triggered by the generation of the second voltage by the power generation unit 20, and controls the switch 32 to turn on. A second signal can be transmitted.
 なお、適用例2で説明したシリンダSY3には、一対の爪922が閉位置及び開位置に移動したことをそれぞれ検知するために、2つのセンサA1(センサA21及びセンサA22)が取り付けられているが、シリンダSY3に2つのセンサA1が取り付けられることは必須ではない。シリンダSY3には、センサA21、A21のうち、一対の爪922が閉位置に移動したことを検知するセンサA21のみが取り付けられていてもよいし、一対の爪922が開位置に移動したことを検知するセンサA22のみが取り付けられていてもよい。 Two sensors A1 (sensor A21 and sensor A22) are attached to the cylinder SY3 described in Application Example 2 in order to detect the movement of the pair of claws 922 to the closed position and the open position, respectively. However, it is not essential that two sensors A1 are attached to cylinder SY3. Of the sensors A21 and A21, only the sensor A21 for detecting that the pair of claws 922 has moved to the closed position may be attached to the cylinder SY3, or the sensor that detects that the pair of claws 922 have moved to the open position may be attached. Only the sensor A22 for detection may be attached.
 (4)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(4) Modifications The above-described embodiment is merely one of various embodiments of the present disclosure. The above-described embodiment can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved.
 上記の実施形態では、発電ユニット20が発電部21と発電部22と発電部23とを備えているが、発電ユニット20が発電部23を含むことは必須ではなく、発電部23は適宜省略可能である。 In the above embodiment, the power generation unit 20 includes the power generation section 21, the power generation section 22, and the power generation section 23. However, the power generation unit 20 does not necessarily include the power generation section 23, and the power generation section 23 can be omitted as appropriate. is.
 上記の実施形態では、センサA1が、空圧で動作するシリンダSY1~SY3に適用されているが、油圧で動作するシリンダ、又は電動で動作するシリンダに適用されてもよい。 In the above embodiment, the sensor A1 is applied to the pneumatically operated cylinders SY1 to SY3, but it may be applied to a hydraulically operated cylinder or an electrically operated cylinder.
 上記の実施形態において、発電ユニット20の発電出力と起動電圧との比較等の2値の比較において、「以上」としているところは「より大きい」であってもよい。つまり、2値の比較において、2値が等しい場合を含むか否かは、基準値等の設定次第で任意に変更できるので、「以上」か「より大きい」かに技術上の差異はない。同様に、「未満」としているところは「以下」であってもよい。 In the above embodiment, in a binary comparison such as a comparison between the power generation output of the power generation unit 20 and the starting voltage, "greater than" may be "greater than". That is, in the comparison of two values, whether or not the two values are equal can be arbitrarily changed depending on the setting of the reference value, etc., so there is no technical difference between "greater than" and "greater than". Similarly, "less than" may be "less than".
 (まとめ)
 以上説明したように、第1の態様のセンサ(A1)は、可動部材(13)と、復帰ばね(14)と、発電ユニット(20)と、電池(30)と、送信ユニット(33)と、を備える。可動部材(13)は、第1位置(PT1)と、第1位置(PT1)の下方に位置する第2位置(PT2)との間で移動可能である。復帰ばね(14)は、可動部材(13)に上方向(Du)の復帰力を加える。発電ユニット(20)は、可動部材(13)が移動することによって発電する。送信ユニット(33)は無線信号を送信する。発電ユニット(20)は、第1発電部(21)及び第2発電部(22)を含む。第1発電部(21)及び第2発電部(22)は、それぞれ、可動部材(13)の移動に応じて撓むことで発電する。可動部材(13)が第1位置(PT1)から第2位置(PT2)へと移動することにより、第1発電部(21)が第1電圧を発生する。第2位置(PT2)まで移動した可動部材(13)が復帰ばね(14)の復帰力を受けて第2位置(PT2)と第1位置(PT1)との間の中間位置(PT3)まで移動した後で、可動部材(13)が中間位置(PT3)から第2位置(PT2)に移動することにより、第2発電部(22)が第2電圧を発生する。第1電圧は、送信ユニット(33)が起動するのに必要な起動電圧以上の電圧であり、第2電圧は、起動電圧未満の電圧である。送信ユニット(33)は、発電ユニット(20)が第1電圧を発生した場合は、発電ユニット(20)から電力供給を受けて第1信号を送信し、発電ユニット(20)が第2電圧を発生した場合は、電池(30)から電力供給を受けて第2信号を送信する。
(summary)
As described above, the sensor (A1) of the first aspect includes the movable member (13), the return spring (14), the power generation unit (20), the battery (30), and the transmission unit (33). , provided. The movable member (13) is movable between a first position (PT1) and a second position (PT2) located below the first position (PT1). A return spring (14) applies an upward (Du) return force to the movable member (13). The power generation unit (20) generates power by moving the movable member (13). A transmitting unit (33) transmits radio signals. The power generation unit (20) includes a first power generation section (21) and a second power generation section (22). Each of the first power generation section (21) and the second power generation section (22) generates power by bending according to the movement of the movable member (13). By moving the movable member (13) from the first position (PT1) to the second position (PT2), the first power generation section (21) generates the first voltage. The movable member (13) moved to the second position (PT2) receives the restoring force of the return spring (14) and moves to an intermediate position (PT3) between the second position (PT2) and the first position (PT1). After that, the movable member (13) moves from the intermediate position (PT3) to the second position (PT2), whereby the second power generating section (22) generates the second voltage. The first voltage is a voltage equal to or higher than the activation voltage required to activate the transmitting unit (33), and the second voltage is a voltage less than the activation voltage. The transmission unit (33) receives power from the power generation unit (20) and transmits the first signal when the power generation unit (20) generates the first voltage, and the power generation unit (20) generates the second voltage. If so, it receives power from the battery (30) and transmits the second signal.
 この態様によれば、外部から電力供給を受けることなく、送信ユニット(33)が第1信号及び第2信号を送信できるので、電力供給及び信号送信のための電線が不要になる。センサ(A1)に電力供給及び信号送信のための電線が接続されている場合は電線の断線等が発生する可能性があるが、センサ(A1)は電力供給及び信号送信のための電線が不要であるから、損傷の可能性を低減することができる。 According to this aspect, since the transmission unit (33) can transmit the first signal and the second signal without receiving power supply from the outside, wires for power supply and signal transmission become unnecessary. If a wire for power supply and signal transmission is connected to the sensor (A1), disconnection of the wire may occur, but the sensor (A1) does not require a wire for power supply and signal transmission. As such, the likelihood of damage can be reduced.
 第2の態様のセンサ(A1)では、第1の態様において、電池(30)は、発電ユニット(20)が発生した電気エネルギを蓄える蓄電素子を含む。 In the sensor (A1) of the second aspect, in the first aspect, the battery (30) includes a storage element that stores electrical energy generated by the power generation unit (20).
 この態様によれば、電池(30)が一次電池で実現される場合に比べて、電池(30)の交換が不要になるという利点がある。 According to this aspect, there is an advantage that replacement of the battery (30) becomes unnecessary compared to the case where the battery (30) is realized by a primary battery.
 第3の態様のセンサ(A1)では、第1又は第2の態様において、発電ユニット(20)は、第3発電部(23)を更に含む。第3発電部(23)は、可動部材(13)の移動に応じて移動する永久磁石(41)と、永久磁石(41)の移動による磁束の変化で発電するコイル(232)と、を有する。 In the sensor (A1) of the third aspect, in the first or second aspect, the power generation unit (20) further includes a third power generation section (23). The third power generation section (23) has a permanent magnet (41) that moves in accordance with the movement of the movable member (13), and a coil (232) that generates power from changes in magnetic flux caused by the movement of the permanent magnet (41). .
 この態様によれば、第3発電部(23)を更に備えることで、動作部材(906,814,824,835,845)が可動部材(13)に接触した際の発電出力を大きくできる。 According to this aspect, by further including the third power generation section (23), it is possible to increase the power generation output when the motion members (906, 814, 824, 835, 845) come into contact with the movable member (13).
 第4の態様のセンサ(A1)では、第1~第3のいずれかの態様において、第2発電部(22)は、可動部材(13)の移動によって撓む圧電素子(242)を含む。 In the sensor (A1) of the fourth aspect, in any one of the first to third aspects, the second power generation section (22) includes a piezoelectric element (242) that bends due to movement of the movable member (13).
 この態様によれば、外部に電磁ノイズの発生源が存在する場合でも、電磁ノイズによる誤動作を低減できる。 According to this aspect, even if there is an external source of electromagnetic noise, malfunction due to electromagnetic noise can be reduced.
 第5の態様のセンサ(A1)では、第1~第4のいずれかの態様において、第1信号と第2信号とが同じ信号である。 In the sensor (A1) of the fifth aspect, in any one of the first to fourth aspects, the first signal and the second signal are the same signal.
 この態様によれば、送信ユニット(33)は発電ユニット(20)から電力供給を受ける場合も電池(30)から電力供給を受ける場合も同じ信号を送信することができる。 According to this aspect, the transmitting unit (33) can transmit the same signal when receiving power from the power generation unit (20) and when receiving power from the battery (30).
 第6の態様のセンサ(A1)は、第1~第5のいずれかの態様において、筐体(10)と、筐体(10)を保持するストッパ部材(50)と、を更に備える。筐体(10)は、可動部材(13)と復帰ばね(14)と発電ユニット(20)と電池(30)と送信ユニット(33)とを収容する。可動部材(13)は、往復動作を行う動作部材(906,814,824,835,845)を有するシリンダ(SY1~SY3)の動作部材(906,814,824,835,845)によって下方向Ddに押される。可動部材(13)は、ストッパ部材(50)が動作部材(906,814,824,835,845)と接触しているときに第2位置(PT2)に位置する。ストッパ部材(50)は、可動部材(13)が第2位置(PT2)よりも下方に移動しないように、動作部材(906,814,824,835,845)の下方への移動を制限する。 The sensor (A1) of the sixth aspect, in any one of the first to fifth aspects, further comprises a housing (10) and a stopper member (50) holding the housing (10). A housing (10) accommodates a movable member (13), a return spring (14), a power generation unit (20), a battery (30) and a transmission unit (33). The movable member (13) is moved downward Dd by the operating members (906, 814, 824, 835, 845) of cylinders (SY1 to SY3) having operating members (906, 814, 824, 835, 845) that perform reciprocating motion. pushed by The movable member (13) is located at the second position (PT2) when the stopper member (50) is in contact with the operating member (906, 814, 824, 835, 845). The stopper member (50) limits downward movement of the action members (906, 814, 824, 835, 845) so that the movable member (13) does not move below the second position (PT2).
 この態様によれば、可動部材(13)が第2位置(PT2)よりも下方に移動する可能性を低減できる。 According to this aspect, the possibility of the movable member (13) moving below the second position (PT2) can be reduced.
 第7の態様のセンサ(A1)は、第6の態様において、動作部材(906,814,824,835,845)と接触するストッパ部材(50,936,946)の接触部位(58)を、シリンダ(SY1~SY3)に対して上下に移動させる位置調整機構(60)を更に備える。 In the sixth aspect, the sensor (A1) of the seventh aspect is such that the contact portion (58) of the stopper member (50, 936, 946) that contacts the action member (906, 814, 824, 835, 845) is A position adjusting mechanism (60) for moving up and down with respect to the cylinders (SY1 to SY3) is further provided.
 この態様によれば、シリンダ(SY1~SY3)に対するストッパ部材(50)及びセンサ(A1)の位置を位置調整機構(60)を用いて一度に調整することができる。 According to this aspect, the positions of the stopper member (50) and the sensor (A1) with respect to the cylinders (SY1 to SY3) can be adjusted at once using the position adjusting mechanism (60).
 第8の態様のセンサ(A1)では、第7の態様において、可動部材(13)は、動作部材(906,814,824,835,845)によって下方向Ddに押される円柱状の操作部(131)を有する。ストッパ部材(50)の接触部位(58)には、操作部(131)が挿入される貫通孔(54)が設けられている。位置調整機構(60)は、操作部(131)の円柱状の中心軸(AX3)に沿って配置される。 In the sensor (A1) of the eighth aspect, in the seventh aspect, the movable member (13) is a columnar operation part ( 131). A contact portion (58) of the stopper member (50) is provided with a through-hole (54) into which the operating portion (131) is inserted. The position adjusting mechanism (60) is arranged along the columnar central axis (AX3) of the operation part (131).
 この態様によれば、操作部(131)がストッパ部材(50)の貫通孔(54)に挿入されているので、可動部材(13)と動作部材(906,814,824,835,845)との間にケーブル等が入りにくくなり、ケーブル等の挟み込みによってセンサ(A1)が破損する可能性を低減できる。また、位置調整機構(60)は、操作部(131)の円柱状の中心軸(AX3)に沿って配置されるので、動作部材(906,814,824,835,845)が可動部材(13)に接触した場合に、センサ(A1)及びストッパ部材(50)を介して位置調整機構(60)に曲げモーメントが発生する可能性を低減できる。 According to this aspect, since the operating part (131) is inserted into the through hole (54) of the stopper member (50), the movable member (13) and the operating members (906, 814, 824, 835, 845) It becomes difficult for a cable or the like to enter between them, and the possibility of damage to the sensor (A1) due to the pinching of the cable or the like can be reduced. In addition, since the position adjustment mechanism (60) is arranged along the cylindrical central axis (AX3) of the operation part (131), the action members (906, 814, 824, 835, 845) are aligned with the movable member (13). ), the possibility that a bending moment is generated in the position adjustment mechanism (60) via the sensor (A1) and the stopper member (50) can be reduced.
 第9の態様のセンサ(A1)は、第6~第8のいずれかの態様において、ストッパ部材(50)をシリンダ(SY1~SY3)に取り付けるための取付部材(70)を更に備える。取付部材(70)は、電磁波を透過する第1透過部(E1)を含み、ストッパ部材(50)は、電磁波を透過する第2透過部(E2)を含む。第1透過部(E1)と第2透過部(E2)とは、少なくとも一部が重なるように配置されている。 The sensor (A1) of the ninth aspect, in any one of the sixth to eighth aspects, further comprises an attachment member (70) for attaching the stopper member (50) to the cylinders (SY1 to SY3). The mounting member (70) includes a first transmitting portion (E1) that transmits electromagnetic waves, and the stopper member (50) includes a second transmitting portion (E2) that transmits electromagnetic waves. The first transmission section (E1) and the second transmission section (E2) are arranged so as to overlap at least partially.
 この態様によれば、送信ユニット(33)が電波信号により送信信号を送信する場合に、送信信号の減衰を抑制することができる。 According to this aspect, attenuation of the transmission signal can be suppressed when the transmission unit (33) transmits the transmission signal as a radio signal.
 第2~第10の態様に係る構成については、センサ(A1)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to tenth aspects are not essential configurations for the sensor (A1), and can be omitted as appropriate.
1  センサ
10  筐体
13  可動部材
20  発電ユニット
21  発電部(第1発電部)
22  発電部(第2発電部)
23  発電部(第3発電部)
30  電池
33  送信ユニット
41  永久磁石
50  ストッパ部材
53  保持部
58  接触部位
60  位置調整機構
70  取付部材
232  コイル
242  圧電素子
814,824  従動リンク(動作部材)
835,845  プランジャ(動作部材)
906  動作部材
A1  センサ
AX1  軸(第1軸)
AX2  軸(第2軸)
AX3  中心軸
E1  第1透過部
E2  第2透過部
PT1  位置(第1位置)
PT2  位置(第2位置)
PT3  中間位置
PT4  限界位置
SY1~SY3  シリンダ
1 sensor 10 housing 13 movable member 20 power generation unit 21 power generation section (first power generation section)
22 power generation unit (second power generation unit)
23 Power Generation Department (3rd Power Generation Department)
30 Battery 33 Transmission Unit 41 Permanent Magnet 50 Stopper Member 53 Holding Part 58 Contact Part 60 Position Adjustment Mechanism 70 Mounting Member 232 Coil 242 Piezoelectric Elements 814, 824 Driven Link (Operating Member)
835, 845 plunger (operating member)
906 motion member A1 sensor AX1 axis (first axis)
AX2 axis (second axis)
AX3 Central axis E1 First transmission part E2 Second transmission part PT1 Position (first position)
PT2 position (second position)
PT3 Intermediate position PT4 Limit positions SY1 to SY3 Cylinder

Claims (9)

  1.  第1位置と前記第1位置の下方に位置する第2位置との間で移動可能な可動部材と、
     前記可動部材に上方向の復帰力を加える復帰ばねと、
     前記可動部材が移動することによって発電する発電ユニットと、
     電池と、
     無線信号を送信する送信ユニットと、を備え、
     前記発電ユニットは、第1発電部及び第2発電部を含み、
     前記第1発電部及び前記第2発電部は、それぞれ、前記可動部材の移動に応じて撓むことで発電し、
     前記可動部材が前記第1位置から前記第2位置へと移動することにより、前記第1発電部が第1電圧を発生し、
     前記第2位置まで移動した前記可動部材が前記復帰ばねの復帰力を受けて前記第2位置と前記第1位置との間の中間位置まで移動した後で、前記可動部材が前記中間位置から前記第2位置に移動することにより、前記第2発電部が第2電圧を発生し、
     前記第1電圧は、前記送信ユニットが起動するのに必要な起動電圧以上の電圧であり、
     前記第2電圧は、前記起動電圧未満の電圧であり、
     前記送信ユニットは、
      前記発電ユニットが前記第1電圧を発生した場合は、前記発電ユニットから電力供給を受けて第1信号を送信し、
      前記発電ユニットが前記第2電圧を発生した場合は、前記電池から電力供給を受けて第2信号を送信する、
     センサ。
    a movable member movable between a first position and a second position located below the first position;
    a return spring that applies an upward return force to the movable member;
    a power generation unit that generates power by moving the movable member;
    a battery;
    a transmitting unit for transmitting radio signals;
    The power generation unit includes a first power generation section and a second power generation section,
    each of the first power generation unit and the second power generation unit generates power by bending according to the movement of the movable member;
    When the movable member moves from the first position to the second position, the first power generation section generates a first voltage,
    After the movable member that has moved to the second position receives the restoring force of the return spring and moves to an intermediate position between the second position and the first position, the movable member moves from the intermediate position to the By moving to the second position, the second power generation unit generates a second voltage,
    the first voltage is a voltage equal to or higher than a start-up voltage required to start the transmission unit;
    The second voltage is a voltage less than the startup voltage,
    The transmitting unit is
    receiving power from the power generation unit and transmitting a first signal when the power generation unit generates the first voltage;
    When the power generation unit generates the second voltage, it receives power from the battery and transmits a second signal.
    sensor.
  2.  前記電池は、前記発電ユニットが発生した電気エネルギを蓄える蓄電素子を含む、
     請求項1記載のセンサ。
    the battery includes a storage element that stores electrical energy generated by the power generation unit;
    2. The sensor of claim 1.
  3.  前記発電ユニットは、第3発電部を更に含み、
     前記第3発電部は、
      前記可動部材の移動に応じて移動する永久磁石と、
      前記永久磁石の移動による磁束の変化で発電するコイルと、を有する、
     請求項1又は2記載のセンサ。
    The power generation unit further includes a third power generation section,
    The third power generation unit is
    a permanent magnet that moves according to the movement of the movable member;
    and a coil that generates power by a change in magnetic flux due to movement of the permanent magnet,
    3. A sensor according to claim 1 or 2.
  4.  前記第2発電部は、前記可動部材の移動によって撓む圧電素子を含む、
     請求項1~3のいずれか1項に記載のセンサ。
    The second power generation unit includes a piezoelectric element that bends due to movement of the movable member,
    The sensor according to any one of claims 1-3.
  5.  前記第1信号と前記第2信号とが同じ信号である、
     請求項1~4のいずれか1項に記載のセンサ。
    wherein the first signal and the second signal are the same signal;
    The sensor according to any one of claims 1-4.
  6.  前記可動部材と前記復帰ばねと前記発電ユニットと前記電池と前記送信ユニットとを収容する筐体と、
     前記筐体を保持するストッパ部材と、を更に備え、
     前記可動部材は、往復動作を行う動作部材を有するシリンダの前記動作部材によって下方向に押され、
     前記可動部材は、前記ストッパ部材が前記動作部材と接触しているときに、前記第2位置に位置し、
     前記ストッパ部材は、前記可動部材が前記第2位置よりも下方に移動しないように、前記動作部材の下方への移動を制限する、
     請求項1~5のいずれか1項に記載のセンサ。
    a housing that houses the movable member, the return spring, the power generation unit, the battery, and the transmission unit;
    further comprising a stopper member that holds the housing,
    said movable member being pushed downward by said actuating member of a cylinder having a actuating member for reciprocating motion;
    the movable member is positioned at the second position when the stopper member is in contact with the operating member;
    the stopper member restricts downward movement of the action member so that the movable member does not move below the second position;
    The sensor according to any one of claims 1-5.
  7.  前記動作部材と接触する前記ストッパ部材の接触部位を前記シリンダに対して上下に移動させる位置調整機構を更に備える、
     請求項6に記載のセンサ。
    further comprising a position adjustment mechanism for vertically moving a contact portion of the stopper member that contacts the operating member with respect to the cylinder;
    A sensor according to claim 6 .
  8.  前記可動部材は、前記動作部材によって下方向に押される円柱状の操作部を有し、
     前記ストッパ部材の前記接触部位には、前記操作部が挿入される貫通孔が設けられており、
     前記位置調整機構は、前記操作部の前記円柱状の中心軸に沿って配置される、
     請求項7に記載のセンサ。
    The movable member has a columnar operating portion that is pushed downward by the action member,
    The contact portion of the stopper member is provided with a through hole into which the operation portion is inserted,
    The position adjustment mechanism is arranged along the cylindrical central axis of the operation unit,
    A sensor according to claim 7 .
  9.  前記ストッパ部材を前記シリンダに取り付けるための取付部材を更に備え、
     前記取付部材は、電磁波を透過する第1透過部を含み、
     前記ストッパ部材は、電磁波を透過する第2透過部を含み、
     前記第1透過部と前記第2透過部とは、少なくとも一部が重なるように配置されている、
     請求項6~8のいずれか1項に記載のセンサ。
    further comprising a mounting member for mounting the stopper member to the cylinder;
    The mounting member includes a first transmitting portion that transmits electromagnetic waves,
    The stopper member includes a second transmitting portion that transmits electromagnetic waves,
    The first transmission part and the second transmission part are arranged so that at least a part thereof overlaps,
    The sensor according to any one of claims 6-8.
PCT/JP2022/002793 2021-05-31 2022-01-26 Sensor WO2022254779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091928A JP2022184215A (en) 2021-05-31 2021-05-31 sensor
JP2021-091928 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022254779A1 true WO2022254779A1 (en) 2022-12-08

Family

ID=84324083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002793 WO2022254779A1 (en) 2021-05-31 2022-01-26 Sensor

Country Status (2)

Country Link
JP (1) JP2022184215A (en)
WO (1) WO2022254779A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522360A (en) * 2009-03-05 2011-07-28 チャン・ホ・キム Standby power cutoff device and control method thereof
WO2018230359A1 (en) * 2017-06-14 2018-12-20 パナソニックIpマネジメント株式会社 Power generation switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522360A (en) * 2009-03-05 2011-07-28 チャン・ホ・キム Standby power cutoff device and control method thereof
WO2018230359A1 (en) * 2017-06-14 2018-12-20 パナソニックIpマネジメント株式会社 Power generation switch

Also Published As

Publication number Publication date
JP2022184215A (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US5575309A (en) Solenoid actuator
JP2010273453A5 (en)
US10217554B2 (en) Bistable electromagnetic actuator device
CN109378151B (en) Miniature self-locking electromagnet
US11569436B2 (en) Actuator device and method for operating an actuator device
WO2021075252A1 (en) Power generation device and input device
WO2022254779A1 (en) Sensor
CA2781025C (en) Magnetic actuator
US5239277A (en) Electromagnetic solenoid actuator
JP2015510245A (en) Magnetic trigger type proximity switch
WO2019181359A1 (en) Electromagnetic relay
KR20150088043A (en) Electronic actuator
CN110557000B (en) Vibration generator device and ringing device
CN200959268Y (en) Magnetic-retaining solenoid with signal feedback
CN115378219A (en) Branch vibration power generation device
KR102322879B1 (en) Vibration generator and vibration damping system using the same
CN112562962B (en) Push type electromagnet structure for high-speed production line
JP5782900B2 (en) Vibration generator
CN202513091U (en) Electromagnetic switch device
CN202367756U (en) Electromagnetic chuck mechanical arm
WO2020215380A1 (en) Electromagnetic switch device
KR102230962B1 (en) Actuator
JP2016078152A (en) Gripping device
JPH0555029A (en) Bidirectional actuator
WO2023277094A1 (en) Vibration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815539

Country of ref document: EP

Kind code of ref document: A1