WO2022254763A1 - Turbine device, and electricity generating device - Google Patents

Turbine device, and electricity generating device Download PDF

Info

Publication number
WO2022254763A1
WO2022254763A1 PCT/JP2021/047445 JP2021047445W WO2022254763A1 WO 2022254763 A1 WO2022254763 A1 WO 2022254763A1 JP 2021047445 W JP2021047445 W JP 2021047445W WO 2022254763 A1 WO2022254763 A1 WO 2022254763A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
opening
axis
flow path
openings
Prior art date
Application number
PCT/JP2021/047445
Other languages
French (fr)
Japanese (ja)
Inventor
伸幸 谷口
Original Assignee
伸幸 谷口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸幸 谷口 filed Critical 伸幸 谷口
Publication of WO2022254763A1 publication Critical patent/WO2022254763A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a turbine device and a power generation device.
  • Patent Documents 1 and 2 describe a turbine device that rotates a turbine with fluid energy.
  • the device described in Patent Document 1 is a horizontal axis wind turbine that rotates a propeller-type turbine by receiving horizontal wind.
  • the device described in Patent Literature 2 includes one intake port for introducing wind from the circumferential direction of the turbine and one exhaust port for discharging the wind that enters from the intake port and rotates the turbine.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turbine device and a power generation device that can efficiently convert fluid energy into rotational power of a turbine.
  • a turbine device includes: a turbine having a plurality of blades and rotatable about an axis; A plurality of outwardly facing first openings, each having a second opening facing the turbine and having a smaller opening area than the first opening, arranged along a circumferential direction about the axis. a flow channel; a partition section that partitions adjacent flow path sections among the plurality of flow path sections, Each of the plurality of flow passage portions is configured such that each of the second openings is arranged in the rotational direction relative to the axis so that fluid flowing from each of the first openings to the second openings rotates the turbine in the same rotational direction.
  • the partition has a pair of walls, the pair of walls are open at their inner ends facing the turbine and are closed at their outer ends;
  • the plurality of first openings corresponding to the plurality of flow passage portions may be arranged over the entire circumference of the turbine device.
  • the plurality of blades are provided at regular intervals along the circumferential direction, and each has a main surface portion that mainly receives the fluid and an overhanging portion that protrudes from the outer edge of the main surface portion. good.
  • the turbine may be of a vertical axis type in which the axis extends in the vertical direction.
  • the power generator according to the second aspect of the present invention includes: the turbine device; and a generator that generates power based on the rotation of the turbine.
  • fluid energy can be efficiently converted into turbine rotational power.
  • FIG. 2 is a cross-sectional view of the turbine device according to the same embodiment taken along the line AA shown in FIG. 1;
  • FIG. 2 is a cross-sectional view taken along line BB shown in FIG. 1 of the blade according to the embodiment;
  • a power generation device 1 shown in FIG. 1 is for wind power generation, and includes a turbine device 2 having a turbine 10 and a power generator 3 that generates power based on the rotation of the turbine 10 .
  • the turbine device 2 is shown in a side view, and the generator 3 is schematically shown.
  • the turbine device 2 includes a turbine 10, a substrate 20, a top plate 21, an accommodation chamber 30, a plurality of flow passages 40, and a plurality of partitions 50. .
  • the turbine 10 is rotatable around an axis AX and includes a rotating portion 11 and a plurality of blades 12 .
  • the rotating portion 11 is formed in a cylindrical shape along the axis AX.
  • the rotating portion 11 is rotatably supported on the substrate 20 and the top plate 21 via bearings (not shown) about the axis AX.
  • each of the plurality of blades 12 has a base end fixed to the rotating portion 11 and a tip end extending radially about the axis AX.
  • the plurality of blades 12 are provided at regular intervals along the circumferential direction around the axis AX.
  • the turbine 10 is provided with four blades 12 . A detailed shape of the blade 12 will be described later.
  • the substrate 20 and the top plate 21 face each other with a gap in the direction in which the axis AX extends.
  • the substrate 20 and the top plate 21 each have a square shape and are arranged parallel to each other.
  • a plurality of flow paths 40 and a plurality of partitions 50 are positioned between the substrate 20 and the top plate 21 .
  • the accommodation chamber 30 is a space surrounded by a plurality of flow passages 40 and a plurality of partitions 50, and accommodates the turbine 10 therein.
  • the plurality of flow passages 40 are provided along the circumferential direction around the axis AX, and each is a duct-shaped portion that guides the wind (fluid) that has flowed in from the outside to the turbine 10 .
  • Each of the plurality of flow path portions 40 has a first opening H ⁇ b>1 facing the outside of the turbine device 2 (more specifically, the outside in the lateral direction) and a second opening H ⁇ b>2 facing the turbine 10 . That is, one channel portion 40 has one first opening H1 and one second opening H2.
  • Each of the plurality of flow path portions 40 communicates with the storage chamber 30 via the second opening H2.
  • the first openings H ⁇ b>1 facing the outside of the turbine device 2 are provided corresponding to each side of the square substrate 20 . That is, the plurality of first openings H1 corresponding to the plurality of flow path portions 40 are arranged over the entire circumference of the turbine device 2 .
  • the total width of the four first openings H1 is substantially equal to the entire circumference of the turbine device 2. More specifically, the total length of the total width of the four first openings H1 and the total thickness of the outer peripheral ends of the four partitions 50 as described later is the length of the entire circumference of the turbine device 2. It is.
  • the second opening H2 has a smaller opening area than the first opening H1.
  • the opening area of each of the first opening H1 and the second opening H2 can be regarded as a cross section through which air (fluid) flows in the flow path section 40 .
  • the cross-sectional area at the first opening H1 is A 1
  • the wind speed (flow velocity) is U 1
  • the cross-sectional area at the second opening H2 is A 2
  • the wind speed (flow velocity) is U 2 .
  • U 2 A 1 /A 2 ⁇ U 1 holds.
  • the flow velocity of the fluid that enters the flow path portion 40 through the first opening H1 and travels toward the turbine 10 through the second opening H2 is (A 1 /A 2 ) times faster than when it passes through the first opening H1.
  • the opening area of each of the first opening H1 and the second opening H2 is arbitrary as long as the condition A 1 >A 2 is satisfied. is set to If the opening area of the second opening H2 is set to 1/3 of the opening area of the first opening H1, the wind reaching the turbine 10 through the flow path portion 40 can be accelerated three times.
  • the turbine 10 can be sufficiently rotated even at a wind speed of about s. This is a great advantage over conventional windmills for wind power generation, which require a relatively large wind speed.
  • the second opening H2 of the flow path portion 40 is located at a position biased in the rotational direction D of the turbine 10 relative to the axis AX, and as shown in FIG. is provided at a position facing an arbitrary blade 12 among the plurality of blades 12 .
  • the rotational direction D of the turbine 10 in this embodiment is counterclockwise as shown in FIG. 2 and rightward when the turbine device 2 is viewed from the side as shown in FIG.
  • each of the plurality of flow passage portions 40 rotates each of the second openings H2 relative to the axis AX so that the fluid flowing from each of the first openings H1 to the second openings H2 rotates the turbine 10 in the same rotation direction D. It is provided at a position biased in the direction D and facing an arbitrary blade 12 among the plurality of blades 12 in the process of rotating the turbine 10 .
  • the partition part 50 partitions the adjacent flow path parts 40 . Therefore, in this embodiment, four partition portions 50 are provided, which is the same number as the flow channel portions 40 . In addition, one channel portion 40 is formed by a portion surrounded by the partition portion 50, the substrate 20 and the top plate 21 which are adjacent to each other.
  • the partitioning portions 50 adjacent to each other across a predetermined flow path portion 40 among the plurality of flow path portions 40 are referred to as a first partitioning portion 51 and a second partitioning portion 52 .
  • the predetermined flow path portion 40 has the first opening H1 facing the 6 o'clock direction in FIG.
  • the surfaces 51a and 52a of the first partition portion 51 and the second partition portion 52 facing the predetermined flow path portion 40 are gradually curved from the first opening H1 toward the second opening H2 in the predetermined flow path portion 40. It has a curved surface. That is, the surfaces 51a and 52a that define the widthwise shape of the flow path portion 40 have such curved surfaces, so that the fluid can be efficiently guided from the first opening H1 to the second opening H2.
  • Each of the multiple partitions 50 has a pair of walls 61 and 62 .
  • the wall portion 61 is positioned more biased in the rotation direction D than the wall portion 62 .
  • the pair of walls 61 , 62 are open at their inner ends facing the turbine 10 and closed at their outer ends.
  • An escape room 60 is formed.
  • the outer ends of the pair of walls 61 and 62 forming one partition 50 reach the corners of the square substrate 20 .
  • the surface 51 a of the first partitioning portion 51 described above is configured by the wall surface of the wall portion 61 of the first partitioning portion 51 .
  • the surface 52 a of the second partition 52 is configured by the wall surface of the wall 62 of the second partition 52 .
  • the shapes of the plurality of flow passages 40 and the plurality of partitions 50 in the turbine device 2 described above have four-fold (four-phase) rotational symmetry about the axis AX.
  • the blade 12 has a main surface portion 120 that mainly receives the fluid, and a protruding portion 121 that protrudes from the outer edge of the main surface portion 120 .
  • the main surface portion 120 is formed in the shape of a rectangular flat plate, and has a main surface facing any second opening H2 in the course of rotation of the turbine 10 . That is, in this embodiment, the main surface is a flat surface. Also, the normal to the main surface is perpendicular to the axis AX.
  • the protruding portion 121 includes a first portion 121a connected to the upper end of the principal surface portion 120, a second portion 121b connected to the lower end of the principal surface portion 120, and a tip (axis line) of the principal surface portion 120. and a third portion 121c connected to the radially outer end centered at AX).
  • the protruding portion 121 protrudes from the main surface portion 120 in the direction opposite to the rotation direction D.
  • the protruding portion 121 formed in this way allows the fluid that hits the outer edge of the blade 12 to be collected on the main surface portion 120 .
  • the inclination of the projecting portion 121 with respect to the main surface portion 120 is arbitrary, and may be appropriately set through at least one of theoretical calculation and experiment.
  • Each of the plurality of blades 12 has the main surface portion 120 and the projecting portion 121 described above. Therefore, the shape of the plurality of blades 12 in the turbine device 2 has four-fold (four-phase) rotational symmetry about the axis AX.
  • the turbine 10 of this embodiment is of a vertical axis type in which the axis AX is along the vertical direction, and is rotated mainly by the energy of the fluid flowing in the horizontal direction.
  • the axis AX is along the vertical direction means that the axis AX generally runs along the normal line of the installation surface (such as the ground) on which the turbine device 2 is installed, and that the axis AX is aligned in the vertical direction.
  • the axis AX may be set with a certain degree of inclination from the vertical direction, or may be set along the normal direction of an inclined surface such as a mountain or hill.
  • the vertical axis type turbine 10 includes not only the turbine 10 with the axis AX set in the vertical direction, but also the turbine 10 configured to be rotatable by the fluid flowing from the direction substantially perpendicular to the axis AX.
  • the turbine 10 of this embodiment is rotated primarily by the energy of the horizontally flowing fluid.
  • the plurality of blades 12 are formed in a shape that minimizes the generation of lift in the direction parallel to the axis AX when receiving fluid from the horizontal direction. As a result, it is possible to suppress the energy loss when the energy of the fluid is converted into the rotational power, and it is possible to suppress the occurrence of unnecessary stress on the rotating portion 11 of the turbine 10 and the portion that supports the rotating portion 11 .
  • the generator 3 shown in FIG. 1 converts the rotation of the rotating part 11 of the turbine 10 into electricity.
  • a well-known configuration can be appropriately adopted.
  • a gearbox (not shown) may be provided between the generator 3 and the rotating portion 11 .
  • the electricity generated by the generator 3 may be boosted by a transformer and flowed through a transmission line or a distribution line, or may be stored in a battery.
  • the description of the configuration of the power generator 1 is as above.
  • the turbine 10 rotates in the rotation direction D (counterclockwise) as the blades 12 receive the wind from the second opening H2.
  • the second opening H2 is provided at a position deviated in the rotational direction D from the axis AX.
  • the wind is received from the second opening H2.
  • the turbine 10 receives horizontal wind every time the blades 12 face the second opening H2. Note that when the horizontal wind hits an arbitrary blade 12 , the wind is collected on the main surface portion 120 by the projecting portion 121 of the blade 12 . As a result, the turbine 10 can efficiently receive the horizontal wind at the main surface portion 120 of the blade 12 .
  • the wind that enters the flow path portion 40 having the first opening H1 facing the 6 o'clock direction and rotates the turbine 10 is blown into the other three flow path portions 40 (the first openings H1 are at 9 o'clock, 12 o'clock and 12 o'clock).
  • the water is discharged to the outside of the turbine device 2 through at least one of the three flow passages 40 facing the hour and 3 o'clock directions.
  • the opening area of the outwardly facing first opening H1 is larger than that of the second opening H2, the wind can be discharged to the outside of the turbine device 2 with less fluid resistance.
  • Wind that is not immediately discharged to the outside of the turbine device 2 and that has components unnecessary for the rotation of the turbine 10 is stored in the shelter provided in each partition 50. It can escape to chamber 60 .
  • the wind entering the flow passage portion 40 having the first opening H1 facing the 6 o'clock direction is accelerated after the direction of the wind is controlled by the flow passage portion 40, and the wind flows through the second opening H2 of the flow passage portion 40 to the turbine 10. flow towards.
  • the wind entering the flow passage portion 40 having the first opening H1 facing the 9 o'clock direction is accelerated after the direction of the wind is controlled by the flow passage portion 40, and the wind flows from the second opening H2 of the flow passage portion 40 to the turbine 10. flow towards.
  • each blade 12 of the turbine 10 faces the second opening H2 of each flow passage portion 40.
  • the flow passage having the first opening H1 facing the 6 o'clock direction.
  • the wind entering the portion 40 hits the blades 12 extending in the 3 o'clock direction in FIG.
  • the wind entering the flow passage portion 40 having the first opening H1 facing the 9 o'clock direction hits the blades 12 extending in the 6 o'clock direction in FIG.
  • the wind directed toward the turbine 10 from the second openings H2 of both flow passage portions 40 does not interfere with the rotation of the turbine 10 in the rotation direction D, and any energy is transferred to the rotation of the turbine 10. It is converted into rotational power in direction D.
  • the wind that entered both of the flow passage portions 40 and rotated the turbine 10 was blown into the other two flow passage portions 40 (the two flow passage portions 40 with the first openings H1 facing in the 12 o'clock and 3 o'clock directions). It is discharged to the outside of the turbine device 2 through at least one of them.
  • the wind entering the flow passage portion 40 having the first opening H1 facing the 6 o'clock direction (the wind flowing upward from the bottom in FIG. 2) is accelerated after the wind direction is controlled by the flow passage portion 40, and the flow is accelerated. It flows out toward the turbine 10 from the second opening H2 of the passage portion 40 .
  • the wind entering the flow passage portion 40 having the first opening H1 facing the 12 o'clock direction (the wind flowing from the top to the bottom in FIG. 2) is accelerated after the wind direction is controlled by the flow passage portion 40. It flows out toward the turbine 10 from the second opening H2 of the passage portion 40 .
  • each blade 12 of the turbine 10 faces the second opening H2 of each flow passage portion 40.
  • the flow passage having the first opening H1 facing the 6 o'clock direction.
  • the wind entering the portion 40 hits the blades 12 extending in the 3 o'clock direction in FIG.
  • the wind entering the flow path portion 40 having the first opening H1 facing the 12 o'clock direction hits the blades 12 extending in the 9 o'clock direction in FIG. Rotate in the direction of rotation D.
  • the wind directed toward the turbine 10 from the second openings H2 of both flow passage portions 40 does not interfere with the rotation of the turbine 10 in the rotation direction D, and any energy is transferred to the rotation of the turbine 10. It is converted into rotational power in direction D.
  • the wind that entered both flow path portions 40 and rotated the turbine 10 is blown into the other two flow path portions 40 (the two flow path portions 40 whose first openings H1 face the three o'clock and nine o'clock directions). It is discharged to the outside of the turbine device 2 through at least one of them.
  • the turbine device 2 can efficiently convert the energy of the wind flowing in from all directions over the entire circumference into rotational power of the turbine 10. That is, according to the power generator 1 including the turbine device 2, the energy of the fluid can be efficiently converted into electricity.
  • the conversion efficiency of fluid kinetic energy into mechanical energy in this turbine device 2 may exceed 59.3% (Betts coefficient) derived from Betz's law. be.
  • the highly efficient energy conversion that can be realized by this turbine device 2 is expected to be clarified through future detailed theoretical calculations, experiments, and simulations.
  • the present invention is not limited by the above embodiments and drawings. Appropriate changes (including deletion of constituent elements) can be added to the embodiments without changing the gist of the present invention.
  • the power generator 1 may be configured to be capable of hydroelectric power generation.
  • a mechanism for rotating the turbine 10 of the turbine device 2 by hydraulic power is the same as wind power.
  • the size, material, and shape of the power generator 1 and each part constituting it are not limited as long as the object of the invention can be achieved, and can be arbitrarily selected according to the purpose.
  • the turbine device 2 may include three flowpath sections 40 .
  • the turbine device 2 may be configured in a triangular shape when viewed from the direction in which the axis AX extends, and the first openings H1 of the flow passages 40 may be arranged at locations corresponding to the sides of the triangle.
  • the turbine device 2 may include six flow path portions 40 .
  • the turbine device 2 may be formed in a hexagonal shape when viewed from the direction in which the axis AX extends, and the first openings H1 of the flow passages 40 may be arranged at locations corresponding to the sides of the hexagon. It should be noted that the plurality of first openings H1 corresponding to the plurality of flow passage portions 40 are arranged over the entire circumference of the turbine device 2 so that the fluid can be taken in from various directions perpendicular to the axis AX. is preferred. Therefore, it is preferable that there are three or more flow paths 40 . Further, the turbine device 2 may be configured in a circular shape when viewed from the direction in which the axis AX extends.
  • Each of the plurality of flow passages 40 has a first opening H1 facing outward and a second opening H2 having an opening area smaller than that of the first opening H1. If possible, it can be changed arbitrarily.
  • the turbine device 2 may be provided with a flow rate control plate for adjusting the flow rate entering the first opening H1, and the flow rate control plate may be controlled according to the environment. According to this configuration, it is also possible to prevent damage to the turbine device 2 during strong winds such as typhoons.
  • the surfaces 51a and 52a of the adjacent partitions 50 have curved surfaces, so that the shape of the flow path part 40 sandwiched between them also has curved surfaces in the width direction.
  • the partition portion 50 may be formed into a shape including a plane (including a shape combining a plurality of planes with different inclinations).
  • the partition portion 50 has this shape. is arbitrary without being limited to
  • the partition section 50 may have a shape in which a portion corresponding to the evacuation chamber 60 is buried, and the evacuation chamber 60 may not be provided. Further, the shape of the portions of the substrate 20 and the top plate 21 sandwiching the flow path portion 40 can be arbitrarily changed.
  • the shapes of the plurality of flow passage portions 40 and the plurality of partition portions 50 in the turbine device 2 may not have rotational symmetry about the axis AX.
  • the direction in which the fluid flows may have directivity.
  • the shape of each flow path portion 40 may be optimized so that fluid from a specific direction is efficiently drawn into the housing chamber 30 housing the turbine 10 .
  • the number of blades 12 may be any number.
  • the cross-sectional shape of the blade 12 is not limited to the example shown in FIG. 3, and can be changed according to the purpose.
  • the cross-sectional shape of the blade 12 may be a curved shape that is concave in the direction of rotation D. That is, the main surface portion 120 of the blade 12 is not limited to a flat plate shape, and the protruding portion 121 can be arbitrarily changed in shape as long as it protrudes from the outer edge of the main surface portion 120 .
  • each blade 12 is schematically shown as a flat surface, but the shape of each blade 12 is not limited to the shape shown in the drawings.
  • the shape of the back surface is preferably curved like the back of a spoon (curved surface bulging in the direction of rotation D) in order to reduce the resistance received from the fluid when the turbine 10 rotates.
  • the back surface of the blade 12 referred to here is a surface located on the back side of the main surface facing the second opening H2 in the process of rotating the turbine 10 .
  • the turbine device 2 may of course be configured to rotate the turbine 10 clockwise.
  • the installation location of the power generation device 1 is arbitrary depending on the purpose.
  • a power generation device 1 for wind power generation is installed in an automobile such as an EV (Electric Vehicle), and electricity generated by the generator 3 is stored in a battery of the automobile.
  • the turbine device 2 may be installed on the ceiling or under the floor of the automobile.
  • the power generation device 1 that performs hydroelectric power generation can be installed in the sea, rivers, and embankments.
  • buildings such as buildings are arranged to function as a plurality of partitions 50, and by adopting a configuration in which the turbine 10 is installed in the center of them, one section of the city can be used.
  • a power generator 1 for wind power generation is also feasible.
  • the power generator 1 for wind power generation is installed on the ground, it is possible to prevent the landscape from being spoiled unlike the conventional windmills installed via pillars as high as several tens of meters.
  • the power generation device 1 is installed on the ground, it is possible to facilitate maintenance compared to conventional windmills located at high altitudes or on the sea.
  • the installation location of the power generation device 1 can be set according to the purpose, power transmission loss can be suppressed compared to, for example, conventional wind turbines installed offshore.
  • the power generator 1 is installed in a building such as a house or a building, damage caused by lightning strikes can be avoided.
  • the power generation device 1 since power generation is possible even at night, the shortcomings of photovoltaic power generation can be compensated for. If there is a risk that animals such as birds and animals may enter the turbine 10, a fence may be provided around the turbine device 2 from the viewpoint of animal protection.
  • the turbine device 2 is not limited to power generation applications, and may be used as a prime mover that converts fluid energy into useful mechanical power, and its application is arbitrary.
  • the turbine device 2 described above each has a turbine 10, a first opening H1 facing outward, and a second opening H2 facing the turbine 10 and having a smaller opening area than the first opening H1. , and a plurality of flow passage portions 40 arranged along the circumferential direction about the axis AX.
  • Turbine 10 has a plurality of blades 12 and is rotatable about axis AX.
  • Each of the plurality of flow passages 40 is configured such that each of the second openings H2 extends in the rotational direction D relative to the axis AX so that the fluid flowing from each of the first openings H1 to the second openings H2 rotates the turbine 10 in the same rotational direction D.
  • the turbine 10 can be rotated in the rotation direction D by the fluid that has entered any one of the flow passage portions 40 . Further, the fluid entering the flow path portion 40 through the first opening H1 and flowing out through the second opening H2 is accelerated toward the turbine 10 after passing through the first opening H1. Therefore, the energy of the fluid can be efficiently converted into the rotational power of the turbine 10, and the torque of the turbine 10 can be earned. Further, the fluid that has passed through a certain flow path portion 40 to rotate the turbine 10 passes through the second opening H2 of another flow path portion 40 and is discharged from the first opening H1.
  • the wind can be discharged to the outside of the turbine device 2 with less fluid resistance.
  • the pressure of the fluid that hinders the rotation of the turbine 10 in the rotation direction D can be favorably reduced. That is, it is possible to reduce the amount of fluid that acts as resistance to the rotation of the turbine 10 in the rotation direction D.
  • the turbine device 2 has three or more flow passage portions 40, the fluid that has entered a certain flow passage portion 40 and caused the turbine 10 to rotate is discharged from two or more other flow passage portions 40. Therefore, the amount of fluid that acts as a resistance to the rotation of the turbine 10 in the rotation direction D can be reduced more satisfactorily.
  • the turbine device 2 includes a partition portion 50 that partitions adjacent flow passage portions among the plurality of flow passage portions 40 . If the partitioning portions 50 adjacent to each other across the predetermined flow path portion 40 among the plurality of flow path portions 40 are defined as the first partitioning portion 51 and the second partitioning portion 52, the first partitioning portion 51 and the second partitioning portion 52 A surface facing each predetermined flow path portion 40 has a curved surface that gradually curves from the first opening H1 toward the second opening H2 in the predetermined flow path portion 40 . According to the configuration (1B) above, it is possible to control the direction of the fluid entering from the first opening H1 and guide it to the turbine 10 efficiently.
  • the partition 50 has a pair of walls 61, 62, the pair of walls 61, 62 are open at their respective inner ends facing the turbine 10, while their respective outer ends are open. is blocked. According to the configuration (1C) above, since the evacuation chamber 60 is formed between the pair of walls 61 and 62, the fluid flowing from the outside of the turbine device 2, which is unnecessary for the rotation of the turbine 10, Component fluid can escape from containment chamber 30 .
  • the plurality of first openings H1 corresponding to the plurality of flow passage portions 40 are arranged over the entire circumference of the turbine device 2 .
  • the energy of the fluid can be converted into the rotational power of the turbine 10 even if the fluid flows in from any direction over the entire circumference of the turbine device 2 . Therefore, the configuration has few restrictions on the flow direction of the fluid (wind direction, water flow direction, etc.), and can efficiently use the energy of the fluid in the natural world.
  • the plurality of blades 12 are provided at equal intervals along the circumferential direction centering on the axis AX, and each has a main surface portion 120 that mainly receives the fluid and a protruding portion protruding from the outer edge of the main surface portion 120. and a part 121 . According to the configuration (3) above, as described above, the fluid hitting the outer edge of the blade 12 can be collected on the main surface portion 120 .
  • the turbine 10 is of a vertical axis type in which the axis AX extends in the vertical direction. According to the configuration (4) above, it is possible to suppress the load from being applied in the direction orthogonal to the axis AX in each of the turbine 10 and the portion that rotatably supports the turbine 10 . Therefore, compared with conventional horizontal axis wind turbines in which a significant radial load is generated, distortion occurring in the device can be suppressed.
  • the turbine device 2 may be provided in the power generation device 1 .
  • This power generator 1 includes a turbine device 2 and a generator 3 that generates power based on rotation of a turbine 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)

Abstract

A turbine device (2) is provided with a turbine (10), and a plurality of flow passage portions (40) and partitioning portions (50). The turbine (10) can rotate about an axis (AX). The plurality of flow passage portions (40) are arranged in a circumferential direction about the axis (AX). In the plurality of flow passage portions (40), second openings (H2) are provided in positions that are offset from the axis (AX) in a direction of rotation (D) such that a fluid flowing from respective first openings (H1) to the second openings (H2) causes the turbine (10) to rotate in the same direction of rotation (D). A pair of wall portions (61, 62) of each partitioning portion (50) are open at inside end portions thereof that face the turbine (10) and are closed at outside end portions thereof. A first partitioning portion (51) and a second partitioning portion (52) that are adjacent to one another each have a curved surface that curves gradually from the first opening (H1) toward the second opening (H2) of the flow passage portion (40) sandwiched therebetween.

Description

タービン装置及び発電装置Turbine equipment and power generation equipment
 本発明は、タービン装置及び発電装置に関する。 The present invention relates to a turbine device and a power generation device.
 流体のエネルギーによりタービンを回転させるタービン装置が、例えば、特許文献1、2に記載されている。特許文献1に記載の装置は、水平方向の風を受けてプロペラ型のタービンを回転させる水平軸風車である。特許文献2に記載の装置は、タービンの円周方向から風を入れる一つの吸入口と、吸入口から入ってタービンを回転させた風を排出する一つの排出口とを備える。 For example, Patent Documents 1 and 2 describe a turbine device that rotates a turbine with fluid energy. The device described in Patent Document 1 is a horizontal axis wind turbine that rotates a propeller-type turbine by receiving horizontal wind. The device described in Patent Literature 2 includes one intake port for introducing wind from the circumferential direction of the turbine and one exhaust port for discharging the wind that enters from the intake port and rotates the turbine.
特開2005-188455号公報JP 2005-188455 A 登録実用新案第3196037号公報Registered Utility Model No. 3196037
 特許文献1、2の記載の装置の構成では、タービンの回転させる風などの流体の向きが非常に限定される。そのため、これらの装置は、自然界では様々な方向に流れる流体のエネルギーを充分に活かせているとは言えない。 In the configuration of the devices described in Patent Documents 1 and 2, the direction of the fluid such as the wind rotated by the turbine is very limited. Therefore, it cannot be said that these devices can fully utilize the energy of fluids flowing in various directions in the natural world.
 本発明は、上記実情に鑑みてなされたものであり、流体のエネルギーを効率良くタービンの回転動力に変換できるタービン装置及び発電装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turbine device and a power generation device that can efficiently convert fluid energy into rotational power of a turbine.
 上記目的を達成するため、本発明の第1の観点に係るタービン装置は、
 複数のブレードを有し、軸線を中心に回転可能なタービンと、
 外側に向く第1開口、及び、前記タービンに向き且つ前記第1開口よりも開口面積が小さい第2開口を各々が有し、前記軸線を中心とする円周方向に沿って配置された複数の流路部と、
 前記複数の流路部のうち隣り合う流路部を仕切る仕切り部と、を備え、
 前記複数の流路部は、各々の前記第1開口から前記第2開口に流れる流体が前記タービンを同じ回転方向に回転させるように、各々の前記第2開口が前記軸線よりも前記回転方向に偏った位置であって前記タービンが回転する過程で前記複数のブレードのうち任意のブレードと向かい合う位置に設けられ、
 前記仕切り部は、一対の壁部を有し、
 前記一対の壁部は、前記タービンに向く各々の内側端部が開放されている一方で、各々の外側端部が閉塞されており、
 前記複数の流路部のうち所定の流路部を挟んで隣り合う前記仕切り部を、第1仕切り部及び第2仕切り部とすると、前記第1仕切り部及び前記第2仕切り部の各々の前記所定の流路部に向く面は、前記所定の流路部における前記第1開口から前記第2開口に向かって徐々に曲がる曲面を有する。
In order to achieve the above object, a turbine device according to a first aspect of the present invention includes:
a turbine having a plurality of blades and rotatable about an axis;
A plurality of outwardly facing first openings, each having a second opening facing the turbine and having a smaller opening area than the first opening, arranged along a circumferential direction about the axis. a flow channel;
a partition section that partitions adjacent flow path sections among the plurality of flow path sections,
Each of the plurality of flow passage portions is configured such that each of the second openings is arranged in the rotational direction relative to the axis so that fluid flowing from each of the first openings to the second openings rotates the turbine in the same rotational direction. provided at a biased position and facing an arbitrary blade among the plurality of blades in the process of rotating the turbine;
The partition has a pair of walls,
the pair of walls are open at their inner ends facing the turbine and are closed at their outer ends;
When the partitions adjacent to each other across a predetermined flow path among the plurality of flow paths are defined as a first partition and a second partition, each of the first partition and the second partition The surface facing the predetermined flow path section has a curved surface that gradually curves from the first opening toward the second opening in the predetermined flow path section.
 前記複数の流路部に対応して複数ある前記第1開口は、前記タービン装置の全周に渡って配置されている、ようにしてもよい。 The plurality of first openings corresponding to the plurality of flow passage portions may be arranged over the entire circumference of the turbine device.
 前記複数のブレードは、前記円周方向に沿って等間隔に設けられ、各々が、流体を主に受ける主面部と、前記主面部の外縁から迫り出す迫出部とを有する、ようにしてもよい。 The plurality of blades are provided at regular intervals along the circumferential direction, and each has a main surface portion that mainly receives the fluid and an overhanging portion that protrudes from the outer edge of the main surface portion. good.
 前記タービンは、前記軸線が縦方向に沿う縦軸型であってもよい。 The turbine may be of a vertical axis type in which the axis extends in the vertical direction.
 上記目的を達成するため、本発明の第2の観点に係る発電装置は、
 前記タービン装置と、
 前記タービンの回転に基づいて発電する発電機と、を備える。
In order to achieve the above object, the power generator according to the second aspect of the present invention includes:
the turbine device;
and a generator that generates power based on the rotation of the turbine.
 本発明によれば、流体のエネルギーを効率良くタービンの回転動力に変換できる。 According to the present invention, fluid energy can be efficiently converted into turbine rotational power.
本発明の一実施形態に係る発電装置の構成を示す図。The figure which shows the structure of the electric power generating apparatus which concerns on one Embodiment of this invention. 同上実施形態に係るタービン装置の図1に示すA-A線での断面図。FIG. 2 is a cross-sectional view of the turbine device according to the same embodiment taken along the line AA shown in FIG. 1; 同上実施形態に係るブレードの図1に示すB-B線での断面図。FIG. 2 is a cross-sectional view taken along line BB shown in FIG. 1 of the blade according to the embodiment;
 本発明の一実施形態について図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.
 図1に示す発電装置1は、風力発電を行うものであり、タービン10を有するタービン装置2と、タービン10の回転に基づいて発電する発電機3と、を備える。図1では、タービン装置2を側面図で表すとともに、発電機3を模式的に示している。 A power generation device 1 shown in FIG. 1 is for wind power generation, and includes a turbine device 2 having a turbine 10 and a power generator 3 that generates power based on the rotation of the turbine 10 . In FIG. 1, the turbine device 2 is shown in a side view, and the generator 3 is schematically shown.
 タービン装置2は、図1又は図2に示すように、タービン10と、基板20と、天板21と、収容室30と、複数の流路部40と、複数の仕切り部50と、を備える。 As shown in FIG. 1 or 2, the turbine device 2 includes a turbine 10, a substrate 20, a top plate 21, an accommodation chamber 30, a plurality of flow passages 40, and a plurality of partitions 50. .
 タービン10は、軸線AXを中心に回転可能であり、回転部11と、複数のブレード12とを備える。回転部11は、軸線AXに沿う円柱状に形成されている。回転部11は、基板20及び天板21の各々に、図示せぬベアリングを介して軸線AXを中心に回転可能に支持されている。図2に示すように、複数のブレード12の各々は、基端が回転部11に固定されて先端が軸線AXを中心とする半径方向に延びている。複数のブレード12は、軸線AXを中心とする円周方向に沿って等間隔に設けられている。この実施形態では、4枚のブレード12がタービン10に設けられている。ブレード12の詳細形状については後述する。 The turbine 10 is rotatable around an axis AX and includes a rotating portion 11 and a plurality of blades 12 . The rotating portion 11 is formed in a cylindrical shape along the axis AX. The rotating portion 11 is rotatably supported on the substrate 20 and the top plate 21 via bearings (not shown) about the axis AX. As shown in FIG. 2 , each of the plurality of blades 12 has a base end fixed to the rotating portion 11 and a tip end extending radially about the axis AX. The plurality of blades 12 are provided at regular intervals along the circumferential direction around the axis AX. In this embodiment, the turbine 10 is provided with four blades 12 . A detailed shape of the blade 12 will be described later.
 基板20及び天板21は、図1に示すように、軸線AXが延びる方向に間隔を開けて互いに対向する。基板20及び天板21は、各々が正方形状であり、互いに平行に配置されている。基板20と天板21の間に、複数の流路部40及び複数の仕切り部50が位置する。 As shown in FIG. 1, the substrate 20 and the top plate 21 face each other with a gap in the direction in which the axis AX extends. The substrate 20 and the top plate 21 each have a square shape and are arranged parallel to each other. A plurality of flow paths 40 and a plurality of partitions 50 are positioned between the substrate 20 and the top plate 21 .
 収容室30は、図2に示すように、複数の流路部40及び複数の仕切り部50に囲まれた空間部であり、内部にタービン10を収容する。 As shown in FIG. 2, the accommodation chamber 30 is a space surrounded by a plurality of flow passages 40 and a plurality of partitions 50, and accommodates the turbine 10 therein.
 複数の流路部40は、図2に示すように、軸線AXを中心とする円周方向に沿って設けられ、各々が外部から流入した風(流体)をタービン10に導くダクト状の部分である。複数の流路部40の各々は、タービン装置2の外側(詳しくは、側面方向の外側)に向く第1開口H1と、タービン10に向く第2開口H2とを有する。つまり、一つの流路部40は、一つの第1開口H1と一つの第2開口H2を有する。複数の流路部40の各々は、第2開口H2を介して収容室30と連通する。 As shown in FIG. 2 , the plurality of flow passages 40 are provided along the circumferential direction around the axis AX, and each is a duct-shaped portion that guides the wind (fluid) that has flowed in from the outside to the turbine 10 . be. Each of the plurality of flow path portions 40 has a first opening H<b>1 facing the outside of the turbine device 2 (more specifically, the outside in the lateral direction) and a second opening H<b>2 facing the turbine 10 . That is, one channel portion 40 has one first opening H1 and one second opening H2. Each of the plurality of flow path portions 40 communicates with the storage chamber 30 via the second opening H2.
 この実施形態では流路部40が4つ設けられている。タービン装置2の外側に向く第1開口H1は、正方形状の基板20の各辺に対応して設けられている。つまり、複数の流路部40に対応して複数ある第1開口H1は、タービン装置2の全周に渡って配置されている。この実施形態では、4つの第1開口H1の幅の合計は、タービン装置2の全周と略等しい。より詳細には、4つの第1開口H1の幅の合計と、後述するように4つある仕切り部50の外周端の厚みの合計とを合算した長さが、タービン装置2の全周の長さである。 Four flow path portions 40 are provided in this embodiment. The first openings H<b>1 facing the outside of the turbine device 2 are provided corresponding to each side of the square substrate 20 . That is, the plurality of first openings H1 corresponding to the plurality of flow path portions 40 are arranged over the entire circumference of the turbine device 2 . In this embodiment, the total width of the four first openings H1 is substantially equal to the entire circumference of the turbine device 2. More specifically, the total length of the total width of the four first openings H1 and the total thickness of the outer peripheral ends of the four partitions 50 as described later is the length of the entire circumference of the turbine device 2. It is.
 また、第2開口H2は、第1開口H1よりも開口面積が小さい。第1開口H1及び第2開口H2の各々の開口面積は、流路部40に風(流体)が流れる断面と見なせる。ここで、第1開口H1における断面積をA、風速(流速)をUとし、第2開口H2における断面積をA、風速(流速)をUとする。すると、流体力学における連続の式により、U=A/A×Uが成り立つ。そのため、流路部40に第1開口H1から入って第2開口H2からタービン10に向かう流体の流速は、第1開口H1の通過時点よりも(A/A)倍だけ速くなる。第1開口H1及び第2開口H2の各々の開口面積は、A>Aの条件を満たせば任意であるが、例えば、第2開口H2は、第1開口H1の1/3の開口面積に設定されている。第2開口H2を第1開口H1の1/3の開口面積に設定すれば、流路部40を経てタービン10に到達する風を3倍に加速させることができるため、例えば、1.5m/s程度の風速であってもタービン10を充分に回転させることができる。これは、ある程度大きな風速が必要である従来の風力発電用の風車に比べて大きな利点である。 Also, the second opening H2 has a smaller opening area than the first opening H1. The opening area of each of the first opening H1 and the second opening H2 can be regarded as a cross section through which air (fluid) flows in the flow path section 40 . Here, the cross-sectional area at the first opening H1 is A 1 , the wind speed (flow velocity) is U 1 , the cross-sectional area at the second opening H2 is A 2 , and the wind speed (flow velocity) is U 2 . Then, by the equation of continuity in fluid mechanics, U 2 =A 1 /A 2 ×U 1 holds. Therefore, the flow velocity of the fluid that enters the flow path portion 40 through the first opening H1 and travels toward the turbine 10 through the second opening H2 is (A 1 /A 2 ) times faster than when it passes through the first opening H1. The opening area of each of the first opening H1 and the second opening H2 is arbitrary as long as the condition A 1 >A 2 is satisfied. is set to If the opening area of the second opening H2 is set to 1/3 of the opening area of the first opening H1, the wind reaching the turbine 10 through the flow path portion 40 can be accelerated three times. The turbine 10 can be sufficiently rotated even at a wind speed of about s. This is a great advantage over conventional windmills for wind power generation, which require a relatively large wind speed.
 流路部40が有する第2開口H2は、図1に示すように、軸線AXよりもタービン10の回転方向Dに偏った位置であって、図2に示すように、タービン10が回転する過程で前記複数のブレード12のうち任意のブレード12と向かい合う位置に設けられている。なお、この実施形態におけるタービン10の回転方向Dは、図2に示すように反時計方向であって、図1に示すようにタービン装置2を側面方向から見た場合には右方向である。 As shown in FIG. 1, the second opening H2 of the flow path portion 40 is located at a position biased in the rotational direction D of the turbine 10 relative to the axis AX, and as shown in FIG. is provided at a position facing an arbitrary blade 12 among the plurality of blades 12 . Note that the rotational direction D of the turbine 10 in this embodiment is counterclockwise as shown in FIG. 2 and rightward when the turbine device 2 is viewed from the side as shown in FIG.
 上述の第2開口H2の位置は、複数の流路部40の各々について成り立つ。つまり、複数の流路部40は、各々の第1開口H1から第2開口H2に流れる流体がタービン10を同じ回転方向Dに回転させるように、各々の第2開口H2が軸線AXよりも回転方向Dに偏った位置であってタービン10が回転する過程で複数のブレード12のうち任意のブレード12と向かい合う位置に設けられている。 The positions of the second openings H<b>2 described above are established for each of the plurality of flow path portions 40 . That is, each of the plurality of flow passage portions 40 rotates each of the second openings H2 relative to the axis AX so that the fluid flowing from each of the first openings H1 to the second openings H2 rotates the turbine 10 in the same rotation direction D. It is provided at a position biased in the direction D and facing an arbitrary blade 12 among the plurality of blades 12 in the process of rotating the turbine 10 .
 仕切り部50は、隣り合う流路部40を仕切る。したがって、この実施形態では、仕切り部50は、流路部40と同数の4つ設けられている。なお、一つの流路部40は、隣り合う仕切り部50、基板20及び天板21に囲まれた部分によって形成される。 The partition part 50 partitions the adjacent flow path parts 40 . Therefore, in this embodiment, four partition portions 50 are provided, which is the same number as the flow channel portions 40 . In addition, one channel portion 40 is formed by a portion surrounded by the partition portion 50, the substrate 20 and the top plate 21 which are adjacent to each other.
 ここで、図2に示すように、複数の流路部40のうち所定の流路部40を挟んで隣り合う仕切り部50を、第1仕切り部51及び第2仕切り部52とする。ここでの説明では、所定の流路部40を図2での6時方向に向く第1開口H1を有するものとしている。第1仕切り部51及び第2仕切り部52の各々の所定の流路部40に向く面51a,52aは、所定の流路部40における第1開口H1から第2開口H2に向かって徐々に曲がる曲面を有する。つまり、流路部40の幅方向の形状を定める面51a,52aがこのような曲面を有することで、第1開口H1から第2開口H2に流体を効率良く導くことができる。 Here, as shown in FIG. 2 , the partitioning portions 50 adjacent to each other across a predetermined flow path portion 40 among the plurality of flow path portions 40 are referred to as a first partitioning portion 51 and a second partitioning portion 52 . In the description here, it is assumed that the predetermined flow path portion 40 has the first opening H1 facing the 6 o'clock direction in FIG. The surfaces 51a and 52a of the first partition portion 51 and the second partition portion 52 facing the predetermined flow path portion 40 are gradually curved from the first opening H1 toward the second opening H2 in the predetermined flow path portion 40. It has a curved surface. That is, the surfaces 51a and 52a that define the widthwise shape of the flow path portion 40 have such curved surfaces, so that the fluid can be efficiently guided from the first opening H1 to the second opening H2.
 複数の仕切り部50の各々は、一対の壁部61,62を有する。一対の壁部61,62において、壁部61は壁部62よりも回転方向Dに偏って位置する。一対の壁部61,62は、タービン10に向く各々の内側端部が開放されている一方で、各々の外側端部が閉塞されている。これにより、1つの仕切り部50を構成する一対の壁部61,62の間には、タービン装置2の外部から流れ込んだ流体のうち、タービン10の回転に不要な成分の流体を収容室30から逃がす退避室60が形成される。この実施形態では、1つの仕切り部50を構成する一対の壁部61,62の外側端部は、正方形状の基板20の角に至っている。 Each of the multiple partitions 50 has a pair of walls 61 and 62 . Among the pair of wall portions 61 and 62 , the wall portion 61 is positioned more biased in the rotation direction D than the wall portion 62 . The pair of walls 61 , 62 are open at their inner ends facing the turbine 10 and closed at their outer ends. As a result, among the fluid that has flowed from the outside of the turbine device 2 , the components unnecessary for the rotation of the turbine 10 are removed from the housing chamber 30 between the pair of walls 61 and 62 that constitute one partition 50 . An escape room 60 is formed. In this embodiment, the outer ends of the pair of walls 61 and 62 forming one partition 50 reach the corners of the square substrate 20 .
 前述した第1仕切り部51が有する面51aは、具体的には、第1仕切り部51の壁部61の壁面によって構成される。また、第2仕切り部52が有する面52aは、第2仕切り部52の壁部62の壁面によって構成される。以上に説明した、タービン装置2における複数の流路部40及び複数の仕切り部50の形状は、軸線AXを中心として4回対称(4相対称)の回転対称性を有する。 Specifically, the surface 51 a of the first partitioning portion 51 described above is configured by the wall surface of the wall portion 61 of the first partitioning portion 51 . Further, the surface 52 a of the second partition 52 is configured by the wall surface of the wall 62 of the second partition 52 . The shapes of the plurality of flow passages 40 and the plurality of partitions 50 in the turbine device 2 described above have four-fold (four-phase) rotational symmetry about the axis AX.
 ここで、ブレード12の詳細形状について説明する。ブレード12は、流体を主に受ける主面部120と、主面部120の外縁から迫り出す迫出部121とを有する。 Here, the detailed shape of the blade 12 will be described. The blade 12 has a main surface portion 120 that mainly receives the fluid, and a protruding portion 121 that protrudes from the outer edge of the main surface portion 120 .
 主面部120は、矩形の平板状に形成され、タービン10が回転する過程で任意の第2開口H2と対向する主面を有する部分である。つまり、この実施形態では、当該主面は平坦面である。また、当該主面の法線は、軸線AXと直交する。 The main surface portion 120 is formed in the shape of a rectangular flat plate, and has a main surface facing any second opening H2 in the course of rotation of the turbine 10 . That is, in this embodiment, the main surface is a flat surface. Also, the normal to the main surface is perpendicular to the axis AX.
 迫出部121は、図1に示すように、主面部120の上端に接続された第1部分121aと、主面部120の下端に接続された第2部分121bと、主面部120の先端(軸線AXを中心とする半径方向の外端)に接続された第3部分121cとを有する。図2及び図3に示すように、迫出部121は、主面部120から回転方向Dの反対方向に迫り出している。このように形成された迫出部121により、ブレード12の外縁部に当たる流体を主面部120に集めることができる。なお、主面部120に対する迫出部121の傾きは任意であり、理論計算と実験の少なくともいずれかを経て、適切に設定されればよい。 As shown in FIG. 1, the protruding portion 121 includes a first portion 121a connected to the upper end of the principal surface portion 120, a second portion 121b connected to the lower end of the principal surface portion 120, and a tip (axis line) of the principal surface portion 120. and a third portion 121c connected to the radially outer end centered at AX). As shown in FIGS. 2 and 3, the protruding portion 121 protrudes from the main surface portion 120 in the direction opposite to the rotation direction D. As shown in FIGS. The protruding portion 121 formed in this way allows the fluid that hits the outer edge of the blade 12 to be collected on the main surface portion 120 . The inclination of the projecting portion 121 with respect to the main surface portion 120 is arbitrary, and may be appropriately set through at least one of theoretical calculation and experiment.
 以上に説明した主面部120及び迫出部121は、複数のブレード12の各々が有する。したがって、タービン装置2における複数のブレード12の形状は、軸線AXを中心として4回対称(4相対称)の回転対称性を有する。 Each of the plurality of blades 12 has the main surface portion 120 and the projecting portion 121 described above. Therefore, the shape of the plurality of blades 12 in the turbine device 2 has four-fold (four-phase) rotational symmetry about the axis AX.
 この実施形態のタービン10は、軸線AXが縦方向に沿う縦軸型であり、主に水平方向に流れる流体のエネルギーにより回転する。「軸線AXが縦方向に沿う」とは、タービン装置2が設置される設置面(地面など)の法線方向に軸線AXが概ね沿っていればよく、軸線AXが鉛直方向に一致することだけでなく、タービン装置2の設置環境に応じて、軸線AXが鉛直方向からある程度傾いて設定されること、山、丘陵などの傾斜面の法線方向に沿って設定されること等を含む。したがって、縦軸型のタービン10とは、軸線AXが鉛直方向に設定されたタービン10だけでなく、軸線AXと概ね直交する方向から流れ込む流体によって回転可能に構成されたタービン10を含む。この実施形態のタービン10は、主に水平方向に流れる流体のエネルギーにより回転する。 The turbine 10 of this embodiment is of a vertical axis type in which the axis AX is along the vertical direction, and is rotated mainly by the energy of the fluid flowing in the horizontal direction. “The axis AX is along the vertical direction” means that the axis AX generally runs along the normal line of the installation surface (such as the ground) on which the turbine device 2 is installed, and that the axis AX is aligned in the vertical direction. However, depending on the environment in which the turbine device 2 is installed, the axis AX may be set with a certain degree of inclination from the vertical direction, or may be set along the normal direction of an inclined surface such as a mountain or hill. Therefore, the vertical axis type turbine 10 includes not only the turbine 10 with the axis AX set in the vertical direction, but also the turbine 10 configured to be rotatable by the fluid flowing from the direction substantially perpendicular to the axis AX. The turbine 10 of this embodiment is rotated primarily by the energy of the horizontally flowing fluid.
 複数のブレード12は、水平方向から流体を受けた際に、軸線AXと平行な方向に揚力ができるだけ生じない形状に形成される。これにより、流体のエネルギーが回転動力に変換される際のエネルギーロスを抑制でき、タービン10の回転部11とこれを支持する部分とに無用な応力が生じることを抑制できる。 The plurality of blades 12 are formed in a shape that minimizes the generation of lift in the direction parallel to the axis AX when receiving fluid from the horizontal direction. As a result, it is possible to suppress the energy loss when the energy of the fluid is converted into the rotational power, and it is possible to suppress the occurrence of unnecessary stress on the rotating portion 11 of the turbine 10 and the portion that supports the rotating portion 11 .
 図1に示す発電機3は、タービン10の回転部11の回転を電気に変換する。発電機3としては、周知の構成を適宜採用することができる。なお、発電機3と回転部11の間に、図示せぬ増速機が設けられてもよい。発電機3で発電された電気は、変圧器で昇圧されて送電線又は配電線に流されてもよいし、バッテリーに蓄電されてもよい。発電装置1の構成の説明は以上である。 The generator 3 shown in FIG. 1 converts the rotation of the rotating part 11 of the turbine 10 into electricity. As the generator 3, a well-known configuration can be appropriately adopted. Note that a gearbox (not shown) may be provided between the generator 3 and the rotating portion 11 . The electricity generated by the generator 3 may be boosted by a transformer and flowed through a transmission line or a distribution line, or may be stored in a battery. The description of the configuration of the power generator 1 is as above.
 続いて、タービン装置2の動作を主に図2を参照して説明する。 Next, the operation of the turbine device 2 will be described mainly with reference to FIG.
(第1の場合)
 まず、複数の流路部40のうち、一つの流路部40に風が流れ込む第1の場合について考える。ここでは説明便宜上、図2の下から上に向かい風が吹くものとする。
(first case)
First, consider a first case in which the wind flows into one of the plurality of flow passages 40 . Here, for convenience of explanation, it is assumed that the head wind blows from the bottom to the top of FIG.
 図2の6時方向に向く第1開口H1を有する流路部40に、第1開口H1から風が入ると、前述の連続の式を用いて説明したように、当該流路部40の第2開口H2から加速された風がタービン10に向かって流れ出す。 When the wind enters from the first opening H1 into the flow path portion 40 having the first opening H1 facing the 6 o'clock direction in FIG. Accelerated wind flows out toward the turbine 10 from the two openings H2.
 タービン10は、第2開口H2からの風をブレード12が受けて回転方向D(反時計方向)に回転する。前述のように、第2開口H2は軸線AXよりも回転方向Dに偏った位置に設けられているため、タービン10が回転する過程で、複数のブレード12が順次、第2開口H2と向かい合い、当該第2開口H2から風を受ける。つまり、タービン10は、各ブレード12が第2開口H2と向かい合う位置関係になる度に、水平方向の風を受ける。なお、水平方向の風が任意のブレード12に当たる際、当該ブレード12が有する迫出部121によって、風が主面部120に集められる。これにより、タービン10は、水平方向の風をブレード12の主面部120で効率良く受けることができる。 The turbine 10 rotates in the rotation direction D (counterclockwise) as the blades 12 receive the wind from the second opening H2. As described above, the second opening H2 is provided at a position deviated in the rotational direction D from the axis AX. The wind is received from the second opening H2. In other words, the turbine 10 receives horizontal wind every time the blades 12 face the second opening H2. Note that when the horizontal wind hits an arbitrary blade 12 , the wind is collected on the main surface portion 120 by the projecting portion 121 of the blade 12 . As a result, the turbine 10 can efficiently receive the horizontal wind at the main surface portion 120 of the blade 12 .
 上述のように、6時方向に向く第1開口H1を有する流路部40に入り込んでタービン10を回転させた風は、他の3つ流路部40(第1開口H1が9時、12時、3時の各方向に向く3つの流路部40)の少なくともいずれかを通って、タービン装置2の外部に排出される。この際、外側に向く第1開口H1は第2開口H2よりも開口面積が大きいため、少ない流体抵抗でタービン装置2の外部に風を排出することができる。 As described above, the wind that enters the flow path portion 40 having the first opening H1 facing the 6 o'clock direction and rotates the turbine 10 is blown into the other three flow path portions 40 (the first openings H1 are at 9 o'clock, 12 o'clock and 12 o'clock). The water is discharged to the outside of the turbine device 2 through at least one of the three flow passages 40 facing the hour and 3 o'clock directions. At this time, since the opening area of the outwardly facing first opening H1 is larger than that of the second opening H2, the wind can be discharged to the outside of the turbine device 2 with less fluid resistance.
 なお、即座にタービン装置2の外部に排出されない風であって、タービン10の回転に不要な成分の風(例えば、ブレード12で跳ね返った風など)については、各仕切り部50に設けられた退避室60に逃がすことができる。 Wind that is not immediately discharged to the outside of the turbine device 2 and that has components unnecessary for the rotation of the turbine 10 (for example, wind that bounces off the blades 12) is stored in the shelter provided in each partition 50. It can escape to chamber 60 .
(第2の場合)
 続いて、複数の流路部40のうち、二つの流路部40に風が流れ込む第2の場合を考える。ここでは説明便宜上、図2の左下から右上に向かって斜めに風が吹くものとする。
(second case)
Next, consider a second case in which air flows into two of the plurality of flow passages 40 . Here, for convenience of explanation, it is assumed that the wind blows obliquely from the lower left to the upper right of FIG.
 上記のように風が斜めに吹くと、風の一部は6時方向に向く第1開口H1を有する流路部40に入り込み、風の他の一部は9時方向に向く第1開口H1を有する流路部40に入り込む。 When the wind blows obliquely as described above, part of the wind enters the flow path portion 40 having the first opening H1 facing the 6 o'clock direction, and the other part of the wind enters the first opening H1 facing the 9 o'clock direction. enters into the flow channel portion 40 having the
 6時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40によって風向きが制御された上で加速され、当該流路部40の第2開口H2からタービン10に向かって流れ出す。9時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40によって風向きが制御された上で加速され、当該流路部40の第2開口H2からタービン10に向かって流れ出す。 The wind entering the flow passage portion 40 having the first opening H1 facing the 6 o'clock direction is accelerated after the direction of the wind is controlled by the flow passage portion 40, and the wind flows through the second opening H2 of the flow passage portion 40 to the turbine 10. flow towards. The wind entering the flow passage portion 40 having the first opening H1 facing the 9 o'clock direction is accelerated after the direction of the wind is controlled by the flow passage portion 40, and the wind flows from the second opening H2 of the flow passage portion 40 to the turbine 10. flow towards.
 図2に示すように、タービン10の各ブレード12が、各流路部40の第2開口H2と対向している状態を用いて説明すると、6時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40の第2開口H2から、図2で3時方向に延びるブレード12に当たり、タービン10を回転方向Dに回す。また、9時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40の第2開口H2から、図2で6時方向に延びるブレード12に当たり、タービン10を回転方向Dに回す。このように、双方の流路部40の各々の第2開口H2からタービン10に向かう風は、タービン10の回転方向Dへの回転を妨げるように干渉せず、いずれのエネルギーもタービン10の回転方向Dへの回転動力に変換される。双方の流路部40に入り込んでタービン10を回転させた風は、他の2つの流路部40(第1開口H1が12時、3時の各方向に向く2つの流路部40)の少なくともいずれかを通って、タービン装置2の外部に排出される。 As shown in FIG. 2, each blade 12 of the turbine 10 faces the second opening H2 of each flow passage portion 40. The flow passage having the first opening H1 facing the 6 o'clock direction. The wind entering the portion 40 hits the blades 12 extending in the 3 o'clock direction in FIG. Further, the wind entering the flow passage portion 40 having the first opening H1 facing the 9 o'clock direction hits the blades 12 extending in the 6 o'clock direction in FIG. Rotate in the direction of rotation D. In this way, the wind directed toward the turbine 10 from the second openings H2 of both flow passage portions 40 does not interfere with the rotation of the turbine 10 in the rotation direction D, and any energy is transferred to the rotation of the turbine 10. It is converted into rotational power in direction D. The wind that entered both of the flow passage portions 40 and rotated the turbine 10 was blown into the other two flow passage portions 40 (the two flow passage portions 40 with the first openings H1 facing in the 12 o'clock and 3 o'clock directions). It is discharged to the outside of the turbine device 2 through at least one of them.
(第3の場合)
 ここで、タービン装置2の設置環境によっては、互いに逆向きに進む風がタービン装置2に入り込む第3の場合も想定される。この場合を考慮して、図2の下から上に向かう風と、上から下に向かう風との双方がタービン装置2に入り込む事態を考える。
(third case)
Here, depending on the installation environment of the turbine device 2, a third case in which the winds traveling in opposite directions enter the turbine device 2 is also assumed. Considering this case, consider a situation in which both an upward wind and a downward wind in FIG. 2 enter the turbine device 2 .
 6時方向に向く第1開口H1を有する流路部40に入り込んだ風(図2の下から上に向かう風)は、当該流路部40によって風向きが制御された上で加速され、当該流路部40の第2開口H2からタービン10に向かって流れ出す。12時方向に向く第1開口H1を有する流路部40に入り込んだ風(図2の上から下に向かう風)は、当該流路部40によって風向きが制御された上で加速され、当該流路部40の第2開口H2からタービン10に向かって流れ出す。 The wind entering the flow passage portion 40 having the first opening H1 facing the 6 o'clock direction (the wind flowing upward from the bottom in FIG. 2) is accelerated after the wind direction is controlled by the flow passage portion 40, and the flow is accelerated. It flows out toward the turbine 10 from the second opening H2 of the passage portion 40 . The wind entering the flow passage portion 40 having the first opening H1 facing the 12 o'clock direction (the wind flowing from the top to the bottom in FIG. 2) is accelerated after the wind direction is controlled by the flow passage portion 40. It flows out toward the turbine 10 from the second opening H2 of the passage portion 40 .
 図2に示すように、タービン10の各ブレード12が、各流路部40の第2開口H2と対向している状態を用いて説明すると、6時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40の第2開口H2から、図2で3時方向に延びるブレード12に当たり、タービン10を回転方向Dに回す。また、12時方向に向く第1開口H1を有する流路部40に入り込んだ風は、当該流路部40の第2開口H2から、図2で9時方向に延びるブレード12に当たり、タービン10を回転方向Dに回す。このように、双方の流路部40の各々の第2開口H2からタービン10に向かう風は、タービン10の回転方向Dへの回転を妨げるように干渉せず、いずれのエネルギーもタービン10の回転方向Dへの回転動力に変換される。双方の流路部40に入り込んでタービン10を回転させた風は、他の2つの流路部40(第1開口H1が3時、9時の各方向に向く2つの流路部40)の少なくともいずれかを通って、タービン装置2の外部に排出される。 As shown in FIG. 2, each blade 12 of the turbine 10 faces the second opening H2 of each flow passage portion 40. The flow passage having the first opening H1 facing the 6 o'clock direction. The wind entering the portion 40 hits the blades 12 extending in the 3 o'clock direction in FIG. Further, the wind entering the flow path portion 40 having the first opening H1 facing the 12 o'clock direction hits the blades 12 extending in the 9 o'clock direction in FIG. Rotate in the direction of rotation D. In this way, the wind directed toward the turbine 10 from the second openings H2 of both flow passage portions 40 does not interfere with the rotation of the turbine 10 in the rotation direction D, and any energy is transferred to the rotation of the turbine 10. It is converted into rotational power in direction D. The wind that entered both flow path portions 40 and rotated the turbine 10 is blown into the other two flow path portions 40 (the two flow path portions 40 whose first openings H1 face the three o'clock and nine o'clock directions). It is discharged to the outside of the turbine device 2 through at least one of them.
 以上に説明した第1~第3の場合を勘案すると、この実施形態に係るタービン装置2は、全周に渡るあらゆる方向から流れ込む風のエネルギーをタービン10の回転動力に効率良く変換できることが分かる。つまり、タービン装置2を備える発電装置1によれば、流体のエネルギーを電気に効率良く変換できる。 Considering the first to third cases described above, it can be seen that the turbine device 2 according to this embodiment can efficiently convert the energy of the wind flowing in from all directions over the entire circumference into rotational power of the turbine 10. That is, according to the power generator 1 including the turbine device 2, the energy of the fluid can be efficiently converted into electricity.
 本願発明者による試算では、このタービン装置2における、流体の運動エネルギーの機械的なエネルギーへの変換効率は、ベッツの法則から導かれる59.3%(ベッツ係数)を超えることができる可能性がある。このタービン装置2により実現可能なエネルギーの高効率変換については、今後の詳細な理論計算、実験、シミュレーションを経て、解明が待たれる。 According to a trial calculation by the inventor of the present application, the conversion efficiency of fluid kinetic energy into mechanical energy in this turbine device 2 may exceed 59.3% (Betts coefficient) derived from Betz's law. be. The highly efficient energy conversion that can be realized by this turbine device 2 is expected to be clarified through future detailed theoretical calculations, experiments, and simulations.
 なお、本発明は以上の実施形態及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、実施形態に適宜の変更(構成要素の削除も含む)を加えることが可能である。 The present invention is not limited by the above embodiments and drawings. Appropriate changes (including deletion of constituent elements) can be added to the embodiments without changing the gist of the present invention.
 以上では発電装置1が風力発電を行う例を示したが、発電装置1は水力発電を可能に構成されてもよい。水力によりタービン装置2のタービン10を回転させる仕組みは、風力と同様である。また、発電装置1及びこれを構成する各部の大きさ、材質、形状は、発明の目的を達成することができる限りにおいては限定されるものではなく、目的に応じて任意に選択可能である。 Although an example in which the power generator 1 performs wind power generation has been described above, the power generator 1 may be configured to be capable of hydroelectric power generation. A mechanism for rotating the turbine 10 of the turbine device 2 by hydraulic power is the same as wind power. In addition, the size, material, and shape of the power generator 1 and each part constituting it are not limited as long as the object of the invention can be achieved, and can be arbitrarily selected according to the purpose.
 以上ではタービン装置2に流路部40を4つ設けた例を示したが、流路部40は複数あれば良く、その数は任意である。例えば、タービン装置2は、3つの流路部40を備えてもよい。この場合、タービン装置2は、軸線AXが延びる方向から見て三角形状に構成され、当該三角形の各辺に相当する箇所に各流路部40の第1開口H1が配置されればよい。また、タービン装置2は、6つの流路部40を備えてもよい。この場合、タービン装置2は、軸線AXが延びる方向から見て六角形状に構成され、当該六角形の各辺に相当する箇所に各流路部40の第1開口H1が配置されればよい。なお、軸線AXと直交する種々の方向から流体を取り込み可能とすべく、複数の流路部40に対応して複数ある第1開口H1は、タービン装置2の全周に渡って配置されることが好ましい。したがって、流路部40は、3つ以上あることが好ましい。また、タービン装置2は、軸線AXが延びる方向から見て円形に構成されてもよい。 Although an example in which the turbine device 2 is provided with four flow passages 40 has been described above, a plurality of flow passages 40 is sufficient, and the number thereof is arbitrary. For example, the turbine device 2 may include three flowpath sections 40 . In this case, the turbine device 2 may be configured in a triangular shape when viewed from the direction in which the axis AX extends, and the first openings H1 of the flow passages 40 may be arranged at locations corresponding to the sides of the triangle. Further, the turbine device 2 may include six flow path portions 40 . In this case, the turbine device 2 may be formed in a hexagonal shape when viewed from the direction in which the axis AX extends, and the first openings H1 of the flow passages 40 may be arranged at locations corresponding to the sides of the hexagon. It should be noted that the plurality of first openings H1 corresponding to the plurality of flow passage portions 40 are arranged over the entire circumference of the turbine device 2 so that the fluid can be taken in from various directions perpendicular to the axis AX. is preferred. Therefore, it is preferable that there are three or more flow paths 40 . Further, the turbine device 2 may be configured in a circular shape when viewed from the direction in which the axis AX extends.
 複数の流路部40の各々の形状は、外側に向く第1開口H1と、第1開口H1よりも開口面積が小さい第2開口H2とを備え、タービン10を同じ回転方向Dに回転させることができれば、任意に変更可能である。例えば、第1開口H1に入り込む流量を調節する流量調節板をタービン装置2に設け、この流量調節板を環境に応じて制御する構成を採用してもよい。当該構成によれば、例えば台風などの強風時にタービン装置2の破損を防ぐこともできる。以上では、隣り合う仕切り部50の面51a,52aが曲面を有することにより、これらに挟まれる流路部40の幅方向の形状も曲面を有する例を示したが、流路部40の幅方向の形状は、平面を含んだ形状(傾きが異なる複数の平面を組み合わせた形状も含む)に形成されていてもよい。また、以上では、仕切り部50が一対の壁部61,62で構成され、一対の壁部61,62の間に退避室60が形成される例を示したが、仕切り部50の形状はこれに限られず任意である。例えば、仕切り部50は、退避室60に相当する部分が埋められた形状をなし、退避室60を備えていなくともよい。また、基板20及び天板21の流路部40を挟み込む部分の形状も、任意に変更可能である。また、タービン装置2における複数の流路部40及び複数の仕切り部50の形状は、軸線AXを中心とした回転対称性を有していなくともよい。例えば、タービン装置2の設置環境によっては流体が流れ込む方向に指向性がある場合もある。これを考慮して、特定の方向からの流体を効率良くタービン10を収容する収容室30に引き込むべく、各流路部40の形状を最適化してもよい。 Each of the plurality of flow passages 40 has a first opening H1 facing outward and a second opening H2 having an opening area smaller than that of the first opening H1. If possible, it can be changed arbitrarily. For example, the turbine device 2 may be provided with a flow rate control plate for adjusting the flow rate entering the first opening H1, and the flow rate control plate may be controlled according to the environment. According to this configuration, it is also possible to prevent damage to the turbine device 2 during strong winds such as typhoons. In the above, an example is shown in which the surfaces 51a and 52a of the adjacent partitions 50 have curved surfaces, so that the shape of the flow path part 40 sandwiched between them also has curved surfaces in the width direction. may be formed into a shape including a plane (including a shape combining a plurality of planes with different inclinations). In the above, an example in which the partition portion 50 is configured by a pair of wall portions 61 and 62 and the evacuation chamber 60 is formed between the pair of wall portions 61 and 62 has been described, but the partition portion 50 has this shape. is arbitrary without being limited to For example, the partition section 50 may have a shape in which a portion corresponding to the evacuation chamber 60 is buried, and the evacuation chamber 60 may not be provided. Further, the shape of the portions of the substrate 20 and the top plate 21 sandwiching the flow path portion 40 can be arbitrarily changed. Further, the shapes of the plurality of flow passage portions 40 and the plurality of partition portions 50 in the turbine device 2 may not have rotational symmetry about the axis AX. For example, depending on the installation environment of the turbine device 2, the direction in which the fluid flows may have directivity. In consideration of this, the shape of each flow path portion 40 may be optimized so that fluid from a specific direction is efficiently drawn into the housing chamber 30 housing the turbine 10 .
 以上では、タービン10が4つのブレード12を備える例を示したが、ブレード12は複数あれば良く、その数は任意である。また、ブレード12の断面形状は、図3に示す例に限られず目的に応じて変更可能である。例えば、ブレード12の断面形状は、回転方向Dに向かって凹む湾曲した形状であってもよい。つまり、ブレード12の主面部120は平板状に限られず、また、迫出部121は主面部120の外縁から迫り出す格好であれば、その形状は任意に変更可能である。さらには、各図において、各ブレード12の背面の形状を模式的に平坦面で表したが、各ブレード12の形状は図面に表された形状に限定されない。当該背面の形状は、タービン10が回転する際に流体から受ける抵抗を低減すべく、スプーンの裏のように湾曲した曲面(回転方向Dに膨らむ曲面)を有していることが好ましい。なお、ここで言うブレード12の背面とは、タービン10が回転する過程で第2開口H2と対向する主面の裏側に位置する面である。また、以上では、流路部40の数とブレード12の数が等しい例を示したが、双方の数は異なっていてもよい。例えば、流路部40が4つあり、タービン10のブレード12が6つある構成などを採用することもできる。また、以上では、回転方向Dが反時計方向の例を示したが、タービン装置2はタービン10を時計方向に回転させるように構成されてもよいことは勿論である。 Although an example in which the turbine 10 has four blades 12 has been described above, the number of blades 12 may be any number. Moreover, the cross-sectional shape of the blade 12 is not limited to the example shown in FIG. 3, and can be changed according to the purpose. For example, the cross-sectional shape of the blade 12 may be a curved shape that is concave in the direction of rotation D. That is, the main surface portion 120 of the blade 12 is not limited to a flat plate shape, and the protruding portion 121 can be arbitrarily changed in shape as long as it protrudes from the outer edge of the main surface portion 120 . Furthermore, in each drawing, the shape of the back surface of each blade 12 is schematically shown as a flat surface, but the shape of each blade 12 is not limited to the shape shown in the drawings. The shape of the back surface is preferably curved like the back of a spoon (curved surface bulging in the direction of rotation D) in order to reduce the resistance received from the fluid when the turbine 10 rotates. In addition, the back surface of the blade 12 referred to here is a surface located on the back side of the main surface facing the second opening H2 in the process of rotating the turbine 10 . In the above, an example in which the number of flow path portions 40 and the number of blades 12 are equal has been shown, but both numbers may be different. For example, a configuration in which there are four flow passage portions 40 and six blades 12 of the turbine 10 may be adopted. Moreover, although the example in which the rotation direction D is counterclockwise has been described above, the turbine device 2 may of course be configured to rotate the turbine 10 clockwise.
 また、発電装置1の設置場所は目的に応じて任意である。例えば、風力発電を行う発電装置1をEV(Electric Vehicle)等の自動車に設け、発電機3で発電した電気を自動車のバッテリーに蓄電する構成を採用することができる。この場合、例えば、自動車の天井又は床下にタービン装置2を設置すればよい。また、例えば、水力発電を行う発電装置1を、海、河川、堤防に設置することもできる。また、都市計画で、ビル等の建物を複数の仕切り部50として機能するように配置すると共に、それらの中央部にタービン10を設置する構成を採用することで、都市の一区画を利用して風力発電を行う発電装置1も実現可能である。例えば、風力発電を行う発電装置1を地上に設置すれば、数十mの高さにも及ぶ支柱を介して設置されていた従来の風車のように景観を損ねることを防止できる。発電装置1を地上に設置すれば、高所や洋上にある従来の風車に比べてメンテナンスの容易化を図ることもできる。また、発電装置1は、その設置箇所を目的に応じて設定可能であるため、例えば洋上に設けられていた従来の風車に比べて送電ロスを抑制できる。例えば、発電装置1を家屋、ビルなどの建物内に設置すれば、落雷による被害を回避できる。また、発電装置1によれば、夜間でも発電可能であるため、太陽光発電の欠点を補うことができる。なお、鳥獣などの動物がタービン10に入り込む虞があれば、動物保護の観点から、タービン装置2の周りに柵を設けることもできる。 Also, the installation location of the power generation device 1 is arbitrary depending on the purpose. For example, it is possible to employ a configuration in which a power generation device 1 for wind power generation is installed in an automobile such as an EV (Electric Vehicle), and electricity generated by the generator 3 is stored in a battery of the automobile. In this case, for example, the turbine device 2 may be installed on the ceiling or under the floor of the automobile. Further, for example, the power generation device 1 that performs hydroelectric power generation can be installed in the sea, rivers, and embankments. In addition, in city planning, buildings such as buildings are arranged to function as a plurality of partitions 50, and by adopting a configuration in which the turbine 10 is installed in the center of them, one section of the city can be used. A power generator 1 for wind power generation is also feasible. For example, if the power generator 1 for wind power generation is installed on the ground, it is possible to prevent the landscape from being spoiled unlike the conventional windmills installed via pillars as high as several tens of meters. If the power generation device 1 is installed on the ground, it is possible to facilitate maintenance compared to conventional windmills located at high altitudes or on the sea. In addition, since the installation location of the power generation device 1 can be set according to the purpose, power transmission loss can be suppressed compared to, for example, conventional wind turbines installed offshore. For example, if the power generator 1 is installed in a building such as a house or a building, damage caused by lightning strikes can be avoided. Moreover, according to the power generation device 1, since power generation is possible even at night, the shortcomings of photovoltaic power generation can be compensated for. If there is a risk that animals such as birds and animals may enter the turbine 10, a fence may be provided around the turbine device 2 from the viewpoint of animal protection.
 タービン装置2においてタービン10の回転に伴い発生する虞のある騒音は、タービン10の回転部11を軸支するベアリングによって充分に抑えることができると考えられるが、必要に応じて、タービン装置2に防音壁、振動吸収シートなどを設けて騒音対策を施すこともできる。 It is thought that the noise that may occur in the turbine device 2 as the turbine 10 rotates can be sufficiently suppressed by bearings that support the rotating portion 11 of the turbine 10. It is also possible to take measures against noise by installing soundproof walls, vibration absorbing sheets, and the like.
 また、タービン装置2は、発電用途に限られず、流体のエネルギーを有用な機械的動力に変換する原動機として用いられてもよく、その用途は任意である。 In addition, the turbine device 2 is not limited to power generation applications, and may be used as a prime mover that converts fluid energy into useful mechanical power, and its application is arbitrary.
 以上で説明したタービン装置2の主な効果を以下に説明する。 The main effects of the turbine device 2 described above will be described below.
 (1A)以上に説明したタービン装置2は、タービン10と、外側に向く第1開口H1、及び、タービン10に向き且つ第1開口H1よりも開口面積が小さい第2開口H2を各々が有し、軸線AXを中心とする円周方向に沿って配置された複数の流路部40と、を備える。タービン10は、複数のブレード12を有し、軸線AXを中心に回転可能である。複数の流路部40は、各々の第1開口H1から第2開口H2に流れる流体がタービン10を同じ回転方向Dに回転させるように、各々の第2開口H2が軸線AXよりも回転方向Dに偏った位置であってタービン10が回転する過程で複数のブレード12のうち任意のブレード12と向かい合う位置に設けられている。
 上記(1A)の構成によれば、複数の流路部40のいずれに入り込んだ流体によっても、タービン10を回転方向Dに回転させることができる。また、流路部40に第1開口H1から入って第2開口H2から流れ出す流体は、第1開口H1の通過時点よりも加速されてタービン10に向かう。したがって、流体のエネルギーを効率良くタービン10の回転動力に変換でき、タービン10のトルクを稼ぐことができる。また、ある流路部40を通ってタービン10を回転させた流体は、他の流路部40の第2開口H2を通って第1開口H1から排出される。この際、外側に向く第1開口H1は第2開口H2よりも開口面積が大きいため、少ない流体抵抗でタービン装置2の外部に風を排出することができる。このように流体が排出されることで、タービン10の回転方向Dへの回転を妨げる流体の圧力を良好に低下させることができる。つまり、タービン10の回転方向Dへの回転の抵抗になる流体を低減することができる。また、タービン装置2が3つ以上の流路部40を有していれば、ある流路部40に入り込んでタービン10を回転させた流体を、2つ以上の他の流路部40から排出することができるため、タービン10の回転方向Dへの回転の抵抗になる流体をより良好に低減することができる。
(1A) The turbine device 2 described above each has a turbine 10, a first opening H1 facing outward, and a second opening H2 facing the turbine 10 and having a smaller opening area than the first opening H1. , and a plurality of flow passage portions 40 arranged along the circumferential direction about the axis AX. Turbine 10 has a plurality of blades 12 and is rotatable about axis AX. Each of the plurality of flow passages 40 is configured such that each of the second openings H2 extends in the rotational direction D relative to the axis AX so that the fluid flowing from each of the first openings H1 to the second openings H2 rotates the turbine 10 in the same rotational direction D. , and is provided at a position facing an arbitrary blade 12 among the plurality of blades 12 while the turbine 10 rotates.
According to the configuration (1A) above, the turbine 10 can be rotated in the rotation direction D by the fluid that has entered any one of the flow passage portions 40 . Further, the fluid entering the flow path portion 40 through the first opening H1 and flowing out through the second opening H2 is accelerated toward the turbine 10 after passing through the first opening H1. Therefore, the energy of the fluid can be efficiently converted into the rotational power of the turbine 10, and the torque of the turbine 10 can be earned. Further, the fluid that has passed through a certain flow path portion 40 to rotate the turbine 10 passes through the second opening H2 of another flow path portion 40 and is discharged from the first opening H1. At this time, since the opening area of the outwardly facing first opening H1 is larger than that of the second opening H2, the wind can be discharged to the outside of the turbine device 2 with less fluid resistance. By discharging the fluid in this way, the pressure of the fluid that hinders the rotation of the turbine 10 in the rotation direction D can be favorably reduced. That is, it is possible to reduce the amount of fluid that acts as resistance to the rotation of the turbine 10 in the rotation direction D. Further, if the turbine device 2 has three or more flow passage portions 40, the fluid that has entered a certain flow passage portion 40 and caused the turbine 10 to rotate is discharged from two or more other flow passage portions 40. Therefore, the amount of fluid that acts as a resistance to the rotation of the turbine 10 in the rotation direction D can be reduced more satisfactorily.
 (1B)タービン装置2は、複数の流路部40のうち隣り合う流路部を仕切る仕切り部50を備える。複数の流路部40のうち所定の流路部40を挟んで隣り合う仕切り部50を、第1仕切り部51及び第2仕切り部52とすると、第1仕切り部51及び第2仕切り部52の各々の所定の流路部40に向く面は、所定の流路部40における第1開口H1から第2開口H2に向かって徐々に曲がる曲面を有する。
 上記(1B)の構成によれば、第1開口H1から入り込んだ流体の向きを制御して、効率良くタービン10に導くことができる。
(1B) The turbine device 2 includes a partition portion 50 that partitions adjacent flow passage portions among the plurality of flow passage portions 40 . If the partitioning portions 50 adjacent to each other across the predetermined flow path portion 40 among the plurality of flow path portions 40 are defined as the first partitioning portion 51 and the second partitioning portion 52, the first partitioning portion 51 and the second partitioning portion 52 A surface facing each predetermined flow path portion 40 has a curved surface that gradually curves from the first opening H1 toward the second opening H2 in the predetermined flow path portion 40 .
According to the configuration (1B) above, it is possible to control the direction of the fluid entering from the first opening H1 and guide it to the turbine 10 efficiently.
 (1C)仕切り部50は、一対の壁部61,62を有し、一対の壁部61,62は、タービン10に向く各々の内側端部が開放されている一方で、各々の外側端部が閉塞されている。
 上記(1C)の構成によれば、一対の壁部61,62の間に前述の退避室60が形成されるため、タービン装置2の外部から流れ込んだ流体のうち、タービン10の回転に不要な成分の流体を収容室30から逃がすことができる。
(1C) The partition 50 has a pair of walls 61, 62, the pair of walls 61, 62 are open at their respective inner ends facing the turbine 10, while their respective outer ends are open. is blocked.
According to the configuration (1C) above, since the evacuation chamber 60 is formed between the pair of walls 61 and 62, the fluid flowing from the outside of the turbine device 2, which is unnecessary for the rotation of the turbine 10, Component fluid can escape from containment chamber 30 .
 (2)また、複数の流路部40に対応して複数ある第1開口H1は、タービン装置2の全周に渡って配置されている。
 上記(2)の構成によれば、タービン装置2の全周に渡るいずれの方向から流体が流れ込んでも、流体のエネルギーをタービン10の回転動力に変換することができる。したがって、当該構成は、流体の流れの方向(風向き、水流の方向など)の制約が少なく、自然界の流体のエネルギーを効率良く用いることができる。
(2) Further, the plurality of first openings H1 corresponding to the plurality of flow passage portions 40 are arranged over the entire circumference of the turbine device 2 .
According to the configuration (2) above, the energy of the fluid can be converted into the rotational power of the turbine 10 even if the fluid flows in from any direction over the entire circumference of the turbine device 2 . Therefore, the configuration has few restrictions on the flow direction of the fluid (wind direction, water flow direction, etc.), and can efficiently use the energy of the fluid in the natural world.
 (3)複数のブレード12は、軸線AXを中心とする円周方向に沿って等間隔に設けられ、各々が、流体を主に受ける主面部120と、主面部120の外縁から迫り出す迫出部121とを有する。
 上記(3)の構成によれば、前述の通り、ブレード12の外縁部に当たる流体を主面部120に集めることができる。
(3) The plurality of blades 12 are provided at equal intervals along the circumferential direction centering on the axis AX, and each has a main surface portion 120 that mainly receives the fluid and a protruding portion protruding from the outer edge of the main surface portion 120. and a part 121 .
According to the configuration (3) above, as described above, the fluid hitting the outer edge of the blade 12 can be collected on the main surface portion 120 .
 (4)タービン10は、軸線AXが縦方向に沿う縦軸型である。
 上記(4)の構成によれば、タービン10及びタービン10を回転可能に支持する部分の各々において、軸線AXと直交する方向に負荷がかかることを抑制できる。したがって、ラジアル荷重が顕著に発生する従来の水平軸風車に比べて、装置に生じる歪みを抑制することができる。
(4) The turbine 10 is of a vertical axis type in which the axis AX extends in the vertical direction.
According to the configuration (4) above, it is possible to suppress the load from being applied in the direction orthogonal to the axis AX in each of the turbine 10 and the portion that rotatably supports the turbine 10 . Therefore, compared with conventional horizontal axis wind turbines in which a significant radial load is generated, distortion occurring in the device can be suppressed.
 (5)タービン装置2は、発電装置1に備えられてもよい。この発電装置1は、タービン装置2と、タービン10の回転に基づいて発電する発電機3と、を備える。 (5) The turbine device 2 may be provided in the power generation device 1 . This power generator 1 includes a turbine device 2 and a generator 3 that generates power based on rotation of a turbine 10 .
 以上の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。 In the above description, descriptions of known technical matters have been omitted as appropriate in order to facilitate understanding of the present invention.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 Various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Moreover, the embodiment described above is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the meaning of the invention equivalent thereto are considered to be within the scope of the present invention.
 本出願は、2021年6月2日に出願された、日本国特許出願特願2021-93161号に基づく。本明細書中に日本国特許出願特願2021-93161号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2021-93161 filed on June 2, 2021. The entire specification, claims, and drawings of Japanese Patent Application No. 2021-93161 are incorporated herein by reference.
 1…発電装置、2…タービン装置、3…発電機
 10…タービン、D…回転方向
 11…回転部、AX…軸線
 12…ブレード、120…主面部、121…迫出部
 20…基板、21…天板、30…収容室
 40…流路部、H1…第1開口、H2…第2開口
 50…仕切り部、51…第1仕切り部、52…第2仕切り部、51a,52a…面
 60…退避室、61,62…壁部
DESCRIPTION OF SYMBOLS 1... Power generator, 2... Turbine apparatus, 3... Generator 10... Turbine, D... Direction of rotation 11... Rotating part, AX... Axis line 12... Blade, 120... Main surface part, 121... Protruding part 20... Substrate, 21... Top plate 30 Storage chamber 40 Flow path H1 First opening H2 Second opening 50 Partition 51 First partition 52 Second partition 51a, 52a Surface 60 Evacuation room, 61, 62 ... wall

Claims (5)

  1.  複数のブレードを有し、軸線を中心に回転可能なタービンと、
     外側に向く第1開口、及び、前記タービンに向き且つ前記第1開口よりも開口面積が小さい第2開口を各々が有し、前記軸線を中心とする円周方向に沿って配置された複数の流路部と、
     前記複数の流路部のうち隣り合う流路部を仕切る仕切り部と、を備え、
     前記複数の流路部は、各々の前記第1開口から前記第2開口に流れる流体が前記タービンを同じ回転方向に回転させるように、各々の前記第2開口が前記軸線よりも前記回転方向に偏った位置であって前記タービンが回転する過程で前記複数のブレードのうち任意のブレードと向かい合う位置に設けられ、
     前記仕切り部は、一対の壁部を有し、
     前記一対の壁部は、前記タービンに向く各々の内側端部が開放されている一方で、各々の外側端部が閉塞されており、
     前記複数の流路部のうち所定の流路部を挟んで隣り合う前記仕切り部を、第1仕切り部及び第2仕切り部とすると、前記第1仕切り部及び前記第2仕切り部の各々の前記所定の流路部に向く面は、前記所定の流路部における前記第1開口から前記第2開口に向かって徐々に曲がる曲面を有する、
     タービン装置。
    a turbine having a plurality of blades and rotatable about an axis;
    A plurality of outwardly facing first openings, each having a second opening facing the turbine and having a smaller opening area than the first opening, arranged along a circumferential direction about the axis. a flow channel;
    a partition section that partitions adjacent flow path sections among the plurality of flow path sections,
    Each of the plurality of flow passage portions is configured such that each of the second openings is arranged in the rotational direction relative to the axis so that fluid flowing from each of the first openings to the second openings rotates the turbine in the same rotational direction. provided at a biased position and facing an arbitrary blade among the plurality of blades in the process of rotating the turbine;
    The partition has a pair of walls,
    the pair of walls are open at their inner ends facing the turbine and are closed at their outer ends;
    When the partitions adjacent to each other across a predetermined flow path among the plurality of flow paths are defined as a first partition and a second partition, each of the first partition and the second partition The surface facing the predetermined flow path part has a curved surface that gradually curves from the first opening toward the second opening in the predetermined flow path part,
    turbine device.
  2.  前記複数の流路部に対応して複数ある前記第1開口は、前記タービン装置の全周に渡って配置されている、
     請求項1に記載のタービン装置。
    The plurality of first openings corresponding to the plurality of flow passages are arranged over the entire circumference of the turbine device,
    A turbine arrangement according to claim 1 .
  3.  前記複数のブレードは、前記円周方向に沿って等間隔に設けられ、各々が、流体を主に受ける主面部と、前記主面部の外縁から迫り出す迫出部とを有する、
     請求項1又は2に記載のタービン装置。
    The plurality of blades are provided at equal intervals along the circumferential direction, and each has a main surface portion that mainly receives the fluid and an overhanging portion that protrudes from the outer edge of the main surface portion,
    A turbine arrangement according to claim 1 or 2.
  4.  前記タービンは、前記軸線が縦方向に沿う縦軸型である、
     請求項1~3のいずれか1項に記載のタービン装置。
    The turbine is of a longitudinal axis type with the axis along the longitudinal direction,
    Turbine apparatus according to any one of claims 1-3.
  5.  請求項1~4のいずれか1項に記載のタービン装置と、
     前記タービンの回転に基づいて発電する発電機と、を備える、
     発電装置。
    a turbine device according to any one of claims 1 to 4;
    a generator that generates power based on the rotation of the turbine;
    generator.
PCT/JP2021/047445 2021-06-02 2021-12-21 Turbine device, and electricity generating device WO2022254763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093161 2021-06-02
JP2021093161A JP7002797B1 (en) 2021-06-02 2021-06-02 Turbine equipment and power generation equipment

Publications (1)

Publication Number Publication Date
WO2022254763A1 true WO2022254763A1 (en) 2022-12-08

Family

ID=80560866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047445 WO2022254763A1 (en) 2021-06-02 2021-12-21 Turbine device, and electricity generating device

Country Status (2)

Country Link
JP (1) JP7002797B1 (en)
WO (1) WO2022254763A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160457U (en) * 2009-12-04 2010-06-24 鴻金達能源科技股▲分▼有限公司 Wind power generator
JP5413757B1 (en) * 2012-11-09 2014-02-12 庸之 藤井 Start acceleration means for vertical axis wind turbine generator equipped with flywheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160457U (en) * 2009-12-04 2010-06-24 鴻金達能源科技股▲分▼有限公司 Wind power generator
JP5413757B1 (en) * 2012-11-09 2014-02-12 庸之 藤井 Start acceleration means for vertical axis wind turbine generator equipped with flywheel

Also Published As

Publication number Publication date
JP7002797B1 (en) 2022-01-20
JP2022185459A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP6257617B2 (en) Vertical axis wind turbine and water turbine with flow control
KR101042700B1 (en) Water power generator
CA2837836C (en) Wind/water turbine with rotational resistance reduced by wind vane blade
US20100187828A1 (en) Wind energy harnessing apparatuses, systems, methods, and improvements
US9567856B2 (en) Apparatus for extracting energy from a fluid flow
US20100135768A1 (en) Column structure with protected turbine
US20120121414A1 (en) Flow Driven Engine
WO2009114920A1 (en) Wind-mill electric generating unit (variants)
JP2006300030A (en) Windmill device and wind power generation device using the same
AU2007283443B2 (en) Omni-directional wind power station
US20140322012A1 (en) Flow Driven Engine
WO2022254763A1 (en) Turbine device, and electricity generating device
WO2006131935A1 (en) An improved windmill
KR20220047844A (en) wind wall
WO2017160825A1 (en) Wind energy harvesting utilizing air shaft and centrifugal impellor wheels
JP2003003944A (en) Hybrid wind power generator
US20240159221A1 (en) Wind powered generator
CN111980860A (en) New energy power land sail wind power generation device and torrent water power generation device
CN113982832B (en) Distributed micro-grid system
JPH11193773A (en) Wind power generation facility using building arrangement and shape, and method for that wind power generation
JPS5830485A (en) Wind power generation method
EA046037B1 (en) WIND GENERATOR
TW202305239A (en) Omnidirectional wind turbine and omnidirectional wind power ventilation device having a wind power body that can keep rotating no matter what direction the wind blows from
JP2011174448A (en) Skyscraper building including power generation system
WO2019033453A1 (en) Omnidirectional fluid energy absorber and accessory device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944252

Country of ref document: EP

Kind code of ref document: A1