WO2022254734A1 - Method for converting plastic into oil and apparatus for converting plastic into oil - Google Patents

Method for converting plastic into oil and apparatus for converting plastic into oil Download PDF

Info

Publication number
WO2022254734A1
WO2022254734A1 PCT/JP2021/022145 JP2021022145W WO2022254734A1 WO 2022254734 A1 WO2022254734 A1 WO 2022254734A1 JP 2021022145 W JP2021022145 W JP 2021022145W WO 2022254734 A1 WO2022254734 A1 WO 2022254734A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alumina
silica
tank
plastic
Prior art date
Application number
PCT/JP2021/022145
Other languages
French (fr)
Japanese (ja)
Inventor
壽幸 三好
Original Assignee
壽幸 三好
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 壽幸 三好 filed Critical 壽幸 三好
Publication of WO2022254734A1 publication Critical patent/WO2022254734A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a plastic-to-oil conversion method and a plastic-to-oil conversion apparatus, and more particularly to a plastic-to-oil conversion method and a plastic-to-oil conversion apparatus using a ceramic catalyst.
  • plastic-to-oil technology a technology that uses solid acid catalysts such as silica-alumina catalysts and zeolite catalysts is known.
  • solid acid catalyst is said to be capable of effectively decomposing and reducing the molecular weight of plastics containing polyolefins such as polyethylene and polypropylene.
  • the catalytic activity of the solid acid catalyst is not sufficient.
  • the decomposition speed, decomposition efficiency, and oil conversion efficiency are insufficient when the molecular weight is reduced (oiled or decomposed) to a low-molecular-weight gas.
  • Patent Document 1 discloses that the crystallinity determined by a specific formula is 5% or less, and the weight ratio of silica and alumina (SiO 2 /Al 2 O 3 ) is 90/10 to 65/35 and the acid value is 0.4 mgKOH/g or less, and a silica/alumina catalyst is treated with metal ions. In the presence of the metal ion-treated silica/alumina catalyst, the plastic is catalytically pyrolyzed. A method for converting plastics to oil is disclosed, which is characterized by producing an oily product by heating. According to the document, this configuration enables efficient conversion to oil even of plastics, especially mixed plastics containing polyolefin and polystyrene.
  • Patent Document 2 waste plastics are thermally decomposed in the presence of a silica/alumina catalyst to separate light oil from waste plastics in a method for producing oil, wherein the silica/alumina
  • the catalyst is made of porous soil having a specific gravity of 0.2 to 0.4, the total content of silicon dioxide and aluminum oxide is 70% by weight or less, and the composition ratio of silicon dioxide and aluminum oxide is , a method for converting waste plastics to oil at a weight ratio of 0.7 to 1.7:1.
  • fine-grained porous volcanic pumice which is difficult to use for gardening, can be used as it is, so an inexpensive catalyst can be used.
  • the average particle size is in the range of 30 ⁇ m to 5 mm, the angle of repose is in the range of 10 to 50 degrees, and composite oxidation of silica, silica-alumina-alumina, etc.
  • a waste plastic composed of at least one of sulfites, zeolites and/or clay minerals, and having a catalytic action capable of liquefying at least one waste plastic selected from polyethylene, polypropylene, epoxy resin, polyester resin, phenolic resin and vinyl chloride resin. and a method for liquefying waste plastics using the liquefied inorganic oxide particles (1).
  • the inventor of the present application discloses an invention in Japanese Patent No. 5450214 in which a silica-alumina catalyst with a predetermined ratio of silica and alumina is used to reduce the molecular weight of plastic pyrolysis gas in an atmosphere of 300 to 400°C. .
  • JP-A-9-302358 Japanese Patent Application Laid-Open No. 2001-152163 JP 2005-187794 A Japanese Patent No. 5450214
  • Patent Document 1 Patent Document 2, and Patent Document 3
  • a ceramic catalyst such as a silica-alumina catalyst and a waste plastic to be treated are mixed in a dissolution tank to give a predetermined temperature. As a result, it becomes liquefied or low-molecular-weight, making continuous treatment impossible.
  • Patent Document 4 has a configuration in which a dissolution tank and a decomposition tank are provided, and thermal decomposition gas obtained by gasifying the waste plastic dissolved in the dissolution tank is led to the decomposition tank.
  • a 1.2-liter catalyst tank is filled with 700-800 g of silica-alumina catalyst and waste plastic is treated to obtain an oil amount of 5-10 liters/hour" (paragraph 0071 of the specification). Therefore, in order to secure a practical yield of 50 to 100 liters/hour, a catalyst tank of 12 liters is required. is 7 to 8 kg.
  • the size of this vessel will govern the size of the overall equipment, and the amount of catalyst will have a cost impact.
  • the present invention has been made to solve the above-mentioned problems, and is a method for converting pyrolysis gas generated from pyrolyzed plastics into low-molecular-weight plastics efficiently with a small amount of catalyst. , the purpose of which is to provide a plastic oil conversion device.
  • the present invention uses a ceramic catalyst that combines an alumina silicate catalyst and a silica alumina catalyst, as disclosed below.
  • the alumina silicate catalyst is arranged on the upstream side of the pyrolysis gas, the silica alumina catalyst is arranged on the downstream side, and the ambient temperature of the catalyst tank is set to 300 to 400.
  • the pyrolysis gas is passed from the upstream side and brought into contact with the catalysts in the order of arrangement.
  • the alumina silicate catalyst has a weight ratio of silicic acid:alumina of 0.8 to 1.2:1, and the volume of the alumina silicate catalyst alone is 10 to 30 mm 3 .
  • the silica-alumina catalyst has a silica:alumina weight ratio of 1.4 to 1.6:1, and the volume of the silica-alumina catalyst alone is 1 to 10 mm 3 .
  • the plastic pyrolysis gas liquefied and gasified in the pyrolysis tank passes through the alumina silicate catalyst layer to obtain the following intermediate gas.
  • the intermediate gas When the intermediate gas is cooled, its viscosity is higher than that of the low-molecular-weight liquid obtained in the present invention, but lower than that of the liquid obtained by cooling the pyrolysis gas before passing through the catalyst tank.
  • the molecular weight is reduced to 20 or less carbon atoms.
  • PCBs can be decomposed by setting the ambient temperature of the catalyst tank to 700-800°C.
  • FIG. 1 is a schematic diagram of a plastic-to-oil conversion apparatus according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram showing carbon number distributions of low-molecular-weight oils in Examples and Comparative Examples of the present invention.
  • a plastic pyrolysis gas is brought into contact with a silicate alumina catalyst and a silica alumina catalyst described below in a catalyst tank at a predetermined temperature in the order described above, thereby depolymerizing the catalyst. .
  • ⁇ Alumina silicate catalyst> The component composition of the alumina silicate catalyst used below is silicic acid:alumina (Al 2 O 3 ) in a weight ratio of 0.8 to 1.2:1 (median 1:1). Further, when the total amount of silicic acid and alumina is 1, calcium oxide is added in a weight ratio of 0.4 to 0.6. These raw materials are kneaded and formed into a sphere or elliptical sphere having a predetermined volume in consideration of the baked volume described below. This forming raw material is heated to a predetermined temperature (around 1200° C.) to obtain a spherical or oval porous ceramic catalyst having a volume of 10 to 30 mm 3 . Calcium oxide has the function of "binder" between silicic acid and alumina.
  • At least one of sodium silicate, aluminum silicate, and potassium silicate is used as the silicic acid, and aluminum silicate is used in the following examples.
  • the pyrolysis gas When the pyrolysis gas is brought into contact with the alumina silicate catalyst, the following intermediate gases are generated. That is, when the intermediate gas is cooled, its viscosity is higher than that of the low-molecular-weight liquid obtained in the present invention, but lower than that of the liquid obtained by cooling the pyrolysis gas before passing through the catalyst tank.
  • the intermediate gas has a smaller maximum carbon number than the original pyrolysis gas (maximum carbon number 40). If the maximum number of carbon atoms is lowered by pretreatment with an alumina silicate catalyst in this way, the molecular weight can be efficiently reduced when brought into contact with the silica-alumina catalyst in the next stage. However, as will be explained later, it is not possible to produce a low-molecular-weight liquid (gas) having 20 or less carbon atoms by using only the alumina silicate catalyst.
  • the purity of silicic acid and alumina be 90% or more. If 10% or more of impurities are mixed in, the catalytic activity is lowered depending on the amount of the mixed in, making it difficult to achieve the intended purpose.
  • the apparent specific gravity of the above-mentioned alumina silicate catalyst is not particularly limited as long as it does not interfere with the object of the present invention, but the preferred range is 0.5 to 1.2 and the porosity is 50 to 60%. If the apparent specific gravity and porosity are out of this range, the catalytic activity is attenuated.
  • the pore size of the alumina silicate catalyst is not particularly limited as long as it does not interfere with the object of the present invention, but is, for example, 50 to 150 ⁇ m.
  • the porous ceramic is formed with a plurality of pores densely packed inside the alumina silicate catalyst, so that the area with which the pyrolysis gas that has passed through the alumina silicate catalyst contacts is expanded, and the pyrolysis gas can be efficiently transferred to the next-stage silica-alumina catalyst.
  • the pore diameter is less than 50 ⁇ m or more than 150 ⁇ m, the above functions may deteriorate, which is not preferable.
  • the volume of the alumina silicate catalyst is less than 10 mm 3 , the passage amount of the pyrolysis gas will be suppressed, and the efficiency of the entire apparatus will be lowered. Conversely, if the volume of the alumina silicate catalyst is 30 mm 3 or more, the time for which the pyrolysis gas is in contact with the alumina silicate catalyst will be shortened, resulting in a drop in efficiency as a catalyst.
  • the component composition of the silica-alumina catalyst according to the present invention is silica (SiO 2 ):alumina (Al 2 O 3 ) in a weight ratio of 1.4 to 1.6:1 (median, 1.5:1). be. Further, calcium oxide (CaO) is added in a weight ratio of 0.4 to 0.6 when the total amount of silica and alumina is 1. These silica, alumina, and calcium oxide are kneaded, formed into a predetermined shape considering the baked volume described below, and heated at a predetermined temperature (around 1200° C.) to obtain a porous ceramic catalyst. Calcium oxide has the function of "binder" between silica and alumina.
  • the baked shape is columnar porous with a diameter of about 1 mm, and the volume is 1 to 10 mm 3 (therefore, the length is about 0.8 to 8 mm).
  • the ratio of silica and alumina is out of the above range, the activity of the catalyst described below will drop, and the desired amount of oil per hour cannot be obtained. Also in this case, the purity of silica and alumina is desirably 90% or more. If 10% or more of impurities are mixed in, the catalytic activity is lowered depending on the amount of the mixed in, making it difficult to achieve the intended purpose.
  • the silica-alumina catalyst preferably has an apparent specific gravity of 0.5 to 1.2 and a porosity of 50 to 60%, as in the case of the alumina silicate catalyst. If the apparent specific gravity and porosity are out of this range, the catalytic activity is attenuated.
  • the intermediate gas obtained with the silicate-alumina catalyst comes into contact with the silica-alumina catalyst, it becomes a final gas with a maximum carbon number of 20 or less. It becomes the following low-molecular-weight liquid.
  • the pore size of the silica-alumina catalyst is not particularly limited, it is, for example, 20 to 100 ⁇ m. When the pore diameter is within this range, the catalytic activity of the alumina silicate catalyst with respect to an intermediate gas having a relatively low number of carbon atoms becomes active. On the other hand, if the pore diameter is less than 20 ⁇ m or more than 100 ⁇ m, the oil conversion efficiency described above may be lowered, which is not preferable.
  • the volume of the silica-alumina catalyst is allowed to be about 1.0 mm 3 to 10 mm 3 , and the shape of the silica-alumina catalyst is basically cylindrical with a diameter of about 1.0 mm and a length of about 0.8 to 8.0 mm. be. Since the volume is small, if it is spherical and filled in the catalyst tank described below, the cracked gas may cause clogging.
  • the volume of the silica-alumina catalyst is less than 1.0 mm 3 , the gas to be treated will cause clogging, which is not preferable. Conversely, if it exceeds 10 mm 3 , since the shape is long and narrow, the gaps between individual catalysts become large, and they do not come into sufficient contact with the gasified plastic, resulting in a lower effect as a catalyst.
  • the source of pyrolysis gas with which the alumina silicate catalyst and silica-alumina catalyst of the present invention come into contact is not particularly limited as long as it is a pyrolyzable plastic (thus, thermosetting plastics are excluded).
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • EPM ethylene-propylene copolymer rubber
  • EPDM ethylene-propylene-nonconjugated diene copolymer Rubber
  • SBR styrene-butadiene copolymer rubber
  • NBR butadiene-acrylonitrile copolymer rubber
  • IR polyisoprene rubber
  • IIR polyisoprene rubber
  • BR polybutadiene rubber
  • Agricultural products such as greenhouse films, agricultural poly films such as mulch films, binding bands, poles, plastic containers, etc., and fisheries products such as fishing nets, aquaculture nets, seaweed blinds, ropes and buckets. , floats, fishing gear such as buoys, plastic containers, etc.
  • Food industry supplies include food trays, packaging wraps for eggs and vegetables, convenience store bags, confectionery bags, etc. Daily necessities include detergent containers, shampoo containers, kerosene containers, Styrofoam , household appliances, OA equipment, stationery, toys, etc. are collected and used.
  • the plastic since the pyrolysis gas is brought into contact with the silica-alumina catalyst, the plastic may contain a filler, various additives, a coloring agent, a metal layer, and the like.
  • the plastic to be treated is preferably as small as possible, and if necessary, it is preferably crushed, shredded, or thinned by rolling.
  • the size of the plastic is preferably 2.0 to 20.0 mm, for example. .
  • FIG. 1 is a schematic diagram of a plastic-to-oil conversion apparatus according to an embodiment of the present invention.
  • An opening 21 that can be opened and closed is provided above the pyrolysis tank 2 , and crushed and cut waste plastic is introduced into the pyrolysis tank 2 .
  • the input port 21 is provided with, for example, a conveying device (screw-type extruder, not shown) that conveys the plastic from one end to the other end by rotating the screw shaft. It is configured such that only a predetermined amount is put into the pyrolysis bath 2 for a predetermined time.
  • a dissolving heater 221 for dissolving the waste plastic introduced from the inlet 21 is arranged on the bottom surface of the pyrolysis tank 2, and the melted plastic is gasified by the dissolving heater 221 on the outer peripheral surface of the body.
  • a gasification heater 222 is provided.
  • a stirring blade 23 for stirring the plastic melted by the melting heater 221 is provided and rotates at a predetermined rotational speed.
  • thermal decomposition tank 2 is disposed below the thermal decomposition tank 2 with residual substances that could not be dissolved or thermally decomposed (non-volatile carbonaceous matter, metal pieces contained in plastics, inorganic substances, plastics carbonized for some reason) etc.) to the outside.
  • the thermal decomposition tank 2 is provided with a temperature sensor 28a for measuring the temperature of the bottom of the thermal decomposition tank 2 and a temperature sensor 28b for measuring the internal temperature.
  • the bottom temperature and the internal temperature are measured and monitored by controller 25 .
  • the temperature sensors 28a, 28b, the melting heater 221, and the gasification heater 222 are connected to the control device 25, and the melting temperature and the gasification temperature are detected via the operation panel 25a provided in the control device 25. configured to be configurable.
  • the set temperature of the melting heater 221 (measured by the temperature sensor 28a) is appropriately changed according to the type of plastic to be processed, as described above, it is set to 300 to 350° C. at which general-purpose plastics are melted. set. If the temperature is 350° C. or higher, the object to be treated is carbonized without being melted, so the object of the present application to treat “gasified” plastic cannot be achieved.
  • the gasification temperature (measured by the temperature sensor 28b) by the gasification heater 222 is controlled to 350 to 450°C.
  • the object to be processed melted by the melting heater 221 is turned into a gaseous state by the gasification heater 222 and sent to the reforming tank 3 in the next stage through the gas delivery port 29 .
  • the internal pressure of the thermal decomposition tank 2 is not particularly adjusted as long as the object of the present invention is not hindered, and is a natural pressure. However, if necessary, an internal pressure sensor or internal pressure control device may be added I do not care.
  • the reforming tank 3 is composed of an outer tank 31 and a catalyst tank 32 which is an inner tank arranged with a predetermined space X between the outer tank 31 and the outer tank 31 .
  • a catalyst heater 34 is arranged around the outer tank 31
  • a temperature sensor 35 is arranged in the space X between the catalyst tank 32 and the outer tank 31 .
  • the temperature of the space X (ambient temperature of the catalyst tank) is controlled by the controller 25 to be around 350-400.degree.
  • the structure is such that a space X is maintained between them, and heat is applied from the outer periphery of the outer tank 31 .
  • the space X may be filled with oil that can withstand high temperatures to further improve the temperature uniformity of the catalyst tank 32 .
  • a space Y is also provided between the bottom surface of the catalyst tank 32 and the bottom surface of the outer tank 31 , and the space Y and the space X are separated by a partition 322 .
  • the gas delivery port 29 of the thermal decomposition tank 2 communicates with the introduction port 30 provided in the space Y between the bottom surface of the catalyst tank 32 and the bottom surface of the outer tank 31.
  • the pyrolysis gas obtained in 2 is led to the catalyst tank 32 .
  • a perforated bottom plate is provided at the lower open end of the catalyst tank 32 so that the pyrolysis gas flows from upstream to downstream (from bottom to top in the drawing). .
  • the bottom layer (upstream side) of the catalyst tank 32 is filled with 2 to 3 layers of glass beads 32a having a diameter of about 1.5 cm. there is
  • the alumina silicate catalyst 32b is filled to a height of about 1 ⁇ 3 of the total height of the catalyst tank 32 on the downstream side (upper side in the drawing) of the glass marble layer.
  • the alumina silicate catalyst 32b is a spherical or ellipsoidal sphere with a single volume of 10 to 30 mm 3 , so as not to impair the diffusion of the pyrolysis gas (intermediate gas) to the silica alumina catalyst 32c on the downstream side. , is sized to provide sufficient clearance.
  • the silica alumina catalyst 32c is filled in the remaining 2/3 height on the downstream side (upper side in the drawing). Since the shape of the silica-alumina catalyst 32c is, as described above, cylindrical (or prismatic), many gaps are formed between the single units, and the gas to be treated sent from the upstream side has sufficient space. The density is such that a sufficient catalytic function works. Furthermore, an alumina silicate catalyst may be placed on top of the layer of silica alumina catalyst 32c, but this is not very effective, as will be explained later.
  • the gap through which the pyrolysis gas passes becomes small, making it difficult to reduce the molecular weight at a sufficient rate.
  • the size of the catalyst tank 32 should be approximately 15 cm in diameter and 24 cm in height (capacity of approximately 4 liters). The examples shown below were carried out in a state in which the catalyst tank 32 of this size was filled with the alumina silicate catalyst and the silica alumina catalyst.
  • the function of the alumina silicate catalyst has not been fully understood, (1) when only the alumina silicate catalyst 32b is used, the reduction in carbonization is not sufficient, and the viscosity of the liquid with a low molecular weight in the present invention (2) the alumina silicate catalyst 32a is arranged downstream of the silica alumina catalyst 32c; (3) using only the silica-alumina catalyst 32c to obtain a liquid having a carbon distribution equivalent to that of the low-molecular-weight liquid obtained in the present invention; requires an amount of silica-alumina catalyst nearly 2.5 to 3 times that of the present invention.
  • the alumina silicate catalyst 32a lowers the viscosity of the pyrolysis gas (thus lowering the maximum carbon number), and by arranging it upstream of the silica alumina catalyst 32c, It is understood that the function can be effectively drawn out.
  • a low-molecular-weight gas outlet 36 is provided above the catalyst tank 32 , and the low-molecular-weight gas is introduced into the cooling tank 4 through the low-molecular-weight gas outlet 36 .
  • the internal pressure of the reforming tank 3 is not particularly adjusted as long as it does not interfere with the object of the present invention, and is a natural pressure. or an internal pressure control device may be added.
  • a coolant such as water is circulated inside the cooling tank 4 , and a spiral tube 42 spiraling in the circulating coolant is connected to the above-described low-molecular-weight introduction port 41 .
  • the low-molecular-weight pyrolysis gas is liquefied and can be extracted from a liquid discharge port 45 provided below the cooling tank 4 by operating an opening/closing valve 46 .
  • the reforming tank 3 (catalyst tank 32) of the plastic-to-oil conversion apparatus shown in FIG.
  • a multistage reforming tank may be constructed by connecting a plurality of reforming tanks in series or in parallel.
  • silica SiO 2
  • alumina Al 2 O 3
  • quicklime with a purity of 95%
  • alumina in a weight ratio of 0.5 with respect to the total amount, kneaded, formed into a cylindrical shape with a diameter of 1.0 mm and a height of 0.8 to 8.0 mm, and put into a firing furnace. Then, the temperature was raised to 1200° C. and naturally cooled to obtain a silica alumina catalyst.
  • the catalyst tank 32 of the plastic-to-oil conversion apparatus shown in FIG. It was filled to a certain height and the rest of the height downstream was filled with a silica alumina catalyst to carry out the plastic to oil reaction.
  • the temperature of the dissolution heater 221 of the pyrolysis tank 2 was set to 350°C, and the gasification temperature of the gasification heater 222 was set to 400°C.
  • a mixture of various types of waste plastics is sequentially put into the thermal decomposition tank 2 heated as described above, and the waste plastics are dissolved and melted while rotating the stirring blade 23 of the thermal decomposition tank 2 at a predetermined speed. It was thermally decomposed to generate thermal decomposition gas.
  • the generated pyrolysis gas is introduced into the reforming tank 3 in which the temperature of the space X (the ambient temperature of the catalyst tank) is set to 400° C., and the catalyst filled with the alumina silicate catalyst and the silica alumina catalyst as described above.
  • a low-molecular-weight gas was obtained by passing through a tank 32 (internal temperature of the catalyst layer was 380° C. or less), and then a low-molecular-weight liquid was cooled in a cooling tank. Yield was 100 liters/hour. However, it is considered that this yield varies depending on conditions such as the set temperature of the pyrolysis tank 2 and the set temperature of the trait tank 3 .
  • the number of carbon atoms in the low-molecular-weight liquid obtained by the apparatus of the present invention is 20 or less, and its distribution is indicated by symbol (a) in FIG. Even when compared with the carbon number distribution of the low-molecular-weight liquid obtained using only the silica-alumina catalyst described in Japanese Patent No. 5450214 (symbol b in FIG. 2), comparable results are obtained.
  • the carbon distribution of the substance obtained by cooling the pyrolysis gas before passing through the reforming tank 2 is also shown in FIG.
  • the silica-alumina catalyst tank (1.2 liters) described in paragraph 0071 of Japanese Patent No. 5450214 has a volume corresponding to a yield of 5 to 10 liters/hour. Become. In contrast, the present application uses only about 4 liters of silica-alumina catalyst. This factor can be found in the silicate alumina catalyst placed upstream of the silica alumina catalyst.
  • the low yield of the low-molecular-weight liquid in the low carbon number region is considered to be due to the low proportion of the silica-alumina catalyst.
  • the silica:alumina weight ratio of the silica-alumina catalyst is 3:1 (paragraph 0091 of patent 5450214), but when combined with the alumina silicate catalyst as in the present application, it is 3:2 (1. 4 to 1.6:1) is preferred.
  • PCBs can be decomposed by maintaining the ambient temperature of the catalyst tank at 700-800° C. in the apparatus described above.
  • a low-molecular solution with a PCB concentration of 0.2 ppm was obtained.
  • the undiluted solution is liquid, it can be sufficiently gasified by setting the temperature of the dissolution heater 221 to 350°C and the gasification temperature of the gasification heater 222 to 400°C.
  • the combination of the aluminum silicate catalyst and the silica-alumina catalyst according to the present invention is also useful in plastic oil conversion equipment used in various fields such as industry, agriculture, and fisheries. It is effective as a silica-alumina catalyst capable of efficiently reducing the molecular weight of the pyrolysis gas generated from, and a plastic-oil conversion apparatus and a plastic-oil conversion method using the same.

Abstract

The purpose of the present invention is to efficiently decrease the molecular weight of a thermal decomposition gas with use of a small amount of a ceramic catalyst, the thermal decomposition gas being generated from a thermally decomposed plastic. According to the present invention, a thermal decomposition gas generated from a thermally decomposed plastic is brought into contact with an alumina silicate catalyst at an ambient temperature of 350°C to 400°C and is subsequently brought into contact with a silica alumina catalyst in a catalyst tank so as to decrease the molecular weight of the thermal decomposition gas. The alumina silicate catalyst is in the form of a sphere or an oval sphere, while having a ratio of silicic acid to alumina of 0.8-1.2:1 and a volume of around 10 to 30 mm3; and the silica alumina catalyst has a long and thin shape with a diameter of around 1 mm, while having a ratio of silica to alumina of 1.4-1.6:1 and a volume of around 1 to 10 mm3.

Description

プラスチック油化方法、プラスチック油化装置Method for converting plastic to oil, apparatus for converting plastic to oil
 本発明は、プラスチック油化方法とプラスチック油化装置に関し特に、セラミック触媒を用いたプラスチック油化方法とプラスチック油化装置に関する。 The present invention relates to a plastic-to-oil conversion method and a plastic-to-oil conversion apparatus, and more particularly to a plastic-to-oil conversion method and a plastic-to-oil conversion apparatus using a ceramic catalyst.
 近年、石油の枯渇等のエネルギー問題が顕在化する中、石油等から既に製造されたプラスチックを、再度、石油等へ改質するプラスチック油化技術の開発が重要視されている。 In recent years, as energy problems such as the depletion of petroleum have become apparent, the development of plastic oil conversion technology that reforms plastics that have already been manufactured from petroleum, etc. to petroleum, etc. is becoming important.
 従来のプラスチック油化技術として、シリカアルミナ触媒、ゼオライト触媒等の固体酸触媒を使用する技術が知られている。このような固体酸触媒は、ポリエチレン、ポリプロピレン等のポリオレフィンを含むプラスチックを効果的に分解・低分子化することが出来るとしている。 As a conventional plastic-to-oil technology, a technology that uses solid acid catalysts such as silica-alumina catalysts and zeolite catalysts is known. Such a solid acid catalyst is said to be capable of effectively decomposing and reducing the molecular weight of plastics containing polyolefins such as polyethylene and polypropylene.
 しかしながら、一般の固体酸触媒を用いる従来の方法では、当該固体酸触媒の触媒活性が十分とは言えないため、プラスチック又はプラスチック溶解状態・熱分解状態から発生する熱分解ガスから低分子化油又は低分子化ガスへ低分子化(油化、分解)する場合の分解速度や分解効率、油化効率が不十分であるという問題があった。 However, in the conventional method using a general solid acid catalyst, the catalytic activity of the solid acid catalyst is not sufficient. There is a problem that the decomposition speed, decomposition efficiency, and oil conversion efficiency are insufficient when the molecular weight is reduced (oiled or decomposed) to a low-molecular-weight gas.
 当該問題を解決するために、特開平9-302358号公報(特許文献1)では、特定の計算式によって求められた結晶化度が5%以下、シリカとアルミナとの重量比(SiO/Al)が90/10~65/35、酸価が0.4mgKOH/g以下のシリカ・アルミナ触媒を、金属イオン処理した金属イオン処理シリカ・アルミナ触媒の存在下に、プラスチックを接触熱分解して油状物を製造することを特徴とするプラスチックの油化方法が開示されている。当該構成により、プラスチック、特にポリオレフィン及びポリスチレンを含む混合プラスチックであっても、油化を効率よく行うことができるとしている。 In order to solve the problem, Japanese Patent Application Laid-Open No. 9-302358 (Patent Document 1) discloses that the crystallinity determined by a specific formula is 5% or less, and the weight ratio of silica and alumina (SiO 2 /Al 2 O 3 ) is 90/10 to 65/35 and the acid value is 0.4 mgKOH/g or less, and a silica/alumina catalyst is treated with metal ions. In the presence of the metal ion-treated silica/alumina catalyst, the plastic is catalytically pyrolyzed. A method for converting plastics to oil is disclosed, which is characterized by producing an oily product by heating. According to the document, this configuration enables efficient conversion to oil even of plastics, especially mixed plastics containing polyolefin and polystyrene.
 又、特開2001-152163号公報(特許文献2)では、廃プラスチックスをシリカ・アルミナ触媒の存在下において加熱分解し、軽質油を分離する廃プラスチックスの油化方法において、上記シリカ・アルミナ触媒は、その比重が0.2~0.4の多孔質土からなり、二酸化珪素と酸化アルミニウムとの合計含有量が70重量%以下で、かつ、この二酸化珪素と酸化アルミニウムとの組成比が、重量比で0.7~1.7:1である廃プラスチックスの油化方法が開示されている。当該構成により、園芸用として利用され難い粒度の細かい多孔体の火山性軽石をそのまま利用することができるので、安価な触媒を利用することができるとしている。 In addition, in Japanese Patent Application Laid-Open No. 2001-152163 (Patent Document 2), waste plastics are thermally decomposed in the presence of a silica/alumina catalyst to separate light oil from waste plastics in a method for producing oil, wherein the silica/alumina The catalyst is made of porous soil having a specific gravity of 0.2 to 0.4, the total content of silicon dioxide and aluminum oxide is 70% by weight or less, and the composition ratio of silicon dioxide and aluminum oxide is , a method for converting waste plastics to oil at a weight ratio of 0.7 to 1.7:1. With this configuration, fine-grained porous volcanic pumice, which is difficult to use for gardening, can be used as it is, so an inexpensive catalyst can be used.
 更に、特開2005-187794号公報(特許文献3)では、平均粒子径が30μm~5mmの範囲にあり、安息角が10~50度の範囲にあり、シリカ、シリカアルミナ・アルミナ等の複合酸化物、ゼオライトおよび/または粘土鉱物の少なくとも1種からなり、ポリエチレン、ポリプロピレン、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、塩化ビニル樹脂から選ばれる少なくとも1種の廃プラスチックを液化しうる触媒作用を有する廃プラスチックの液化用無機酸化物粒子(1)、及び当該液化用無機酸化物粒子(1)を用いた廃プラスチックの液化法が開示されている。当該構成により、流動性に富んだ微粒の無機酸化物粒子を加えて加熱することによって、低い温度で液化するとともに、残渣も少なく、着色、臭気等が低減した燃料油が高収率で得られるとしている。 Furthermore, in Japanese Patent Application Laid-Open No. 2005-187794 (Patent Document 3), the average particle size is in the range of 30 μm to 5 mm, the angle of repose is in the range of 10 to 50 degrees, and composite oxidation of silica, silica-alumina-alumina, etc. A waste plastic composed of at least one of sulfites, zeolites and/or clay minerals, and having a catalytic action capable of liquefying at least one waste plastic selected from polyethylene, polypropylene, epoxy resin, polyester resin, phenolic resin and vinyl chloride resin. and a method for liquefying waste plastics using the liquefied inorganic oxide particles (1). With this structure, by adding fine inorganic oxide particles with high fluidity and heating, it is possible to liquefy at a low temperature and obtain fuel oil with little residue, reduced coloration, odor, etc. at a high yield. and
 更に、本願発明者は特許5450214号で、シリカとアルミナが所定割合のシリカアルミナ触媒を使用して、300~400℃の雰囲気下でプラスチックの熱分解ガスを低分子化する発明を開示している。 Furthermore, the inventor of the present application discloses an invention in Japanese Patent No. 5450214 in which a silica-alumina catalyst with a predetermined ratio of silica and alumina is used to reduce the molecular weight of plastic pyrolysis gas in an atmosphere of 300 to 400°C. .
特開平9-302358号公報JP-A-9-302358 特開2001-152163号公報Japanese Patent Application Laid-Open No. 2001-152163 特開2005-187794号公報JP 2005-187794 A 特許5450214号公報Japanese Patent No. 5450214
 しかしながら、特許文献1、特許文献2、特許文献3のいずれに記載の技術でも、シリカアルミナ触媒等のセラミック触媒と、被処理物である廃プラスチックを溶解槽中で混合して所定の温度を与えることによって、液化あるいは低分子化するようになっており、連続処理はできないことになる。 However, in any of the techniques described in Patent Document 1, Patent Document 2, and Patent Document 3, a ceramic catalyst such as a silica-alumina catalyst and a waste plastic to be treated are mixed in a dissolution tank to give a predetermined temperature. As a result, it becomes liquefied or low-molecular-weight, making continuous treatment impossible.
 特許文献4に記載の発明は、溶解槽と分解槽を設け、溶解槽で溶解した廃プラスチックをガス化した熱分解ガスを分解槽に導く構成となっている。この装置によると連続処理ができ、上記3つの先行技術の欠点は改良されたことになる。しかしながら、「1.2リットルの触媒槽に700~800gのシリカアルミナ触媒を充填し、廃プラスチックを処理すると、5~10リットル/時間の油量を得る。」としている(明細書段落0071)ところから、実用レベルの50~100リットル/時間の収量を確保しようとすると、12リットルの触媒槽が必要となり、例えば槽の高さを24cmとすると、径は25~26cm程度必要となり、触媒の量は7~8kgにもなる。この槽の大きさは全体の装置の大きさを支配することになり、触媒の量はコストに跳ね返ることになる。 The invention described in Patent Document 4 has a configuration in which a dissolution tank and a decomposition tank are provided, and thermal decomposition gas obtained by gasifying the waste plastic dissolved in the dissolution tank is led to the decomposition tank. With this apparatus, continuous processing is possible, and the above three drawbacks of the prior art are improved. However, it is stated that "a 1.2-liter catalyst tank is filled with 700-800 g of silica-alumina catalyst and waste plastic is treated to obtain an oil amount of 5-10 liters/hour" (paragraph 0071 of the specification). Therefore, in order to secure a practical yield of 50 to 100 liters/hour, a catalyst tank of 12 liters is required. is 7 to 8 kg. The size of this vessel will govern the size of the overall equipment, and the amount of catalyst will have a cost impact.
 そこで、本発明は、上記問題を解決するためになされたものであり、熱分解したプラスチックから発生する熱分解ガスを、少ない触媒量で効率よく低分子化させることが可能となるプラスチック油化方法、プラスチック油化装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-mentioned problems, and is a method for converting pyrolysis gas generated from pyrolyzed plastics into low-molecular-weight plastics efficiently with a small amount of catalyst. , the purpose of which is to provide a plastic oil conversion device.
 上記した課題を解決し、目的を達成するために、本発明は以下に開示するように、ケイ酸アルミナ触媒と、シリカアルミナ触媒を組み合わせたセラミック触媒を用いる。 In order to solve the above problems and achieve the object, the present invention uses a ceramic catalyst that combines an alumina silicate catalyst and a silica alumina catalyst, as disclosed below.
 すなわち、分解ガスが導かれた前記触媒槽の、前記熱分解ガスの上流側にケイ酸アルミナ触媒を配置し、下流側にシリカアルミナ触媒を配置して、当該触媒槽の周囲温度を300~400℃に保持下状態で、前記熱分解ガスを上流側から通過させて前記各触媒の配置の順序で、にして接触させる。 That is, in the catalyst tank to which the cracked gas is introduced, the alumina silicate catalyst is arranged on the upstream side of the pyrolysis gas, the silica alumina catalyst is arranged on the downstream side, and the ambient temperature of the catalyst tank is set to 300 to 400. C., the pyrolysis gas is passed from the upstream side and brought into contact with the catalysts in the order of arrangement.
 前記ケイ酸アルミナ触媒は、重量比でケイ酸:アルミナが0.8~1.2:1であり、当該ケイ酸アルミナ触媒の単体の体積は10~30mmである。また前記シリカアルミナ触媒は、重量比でシリカ:アルミナが1.4~1.6:1であり、当該シリカアルミナ触媒の単体の体積が1~10mmである。 The alumina silicate catalyst has a weight ratio of silicic acid:alumina of 0.8 to 1.2:1, and the volume of the alumina silicate catalyst alone is 10 to 30 mm 3 . The silica-alumina catalyst has a silica:alumina weight ratio of 1.4 to 1.6:1, and the volume of the silica-alumina catalyst alone is 1 to 10 mm 3 .
 本発明によれば、熱分解槽で液化しガス化したプラスチックの熱分解ガスは、前記ケイ酸アルミナ触媒層を通過すると、以下の中間ガスを得る。前記中間ガスは冷却すると粘度が、本発明で得られる低分子化された液より大きいが、前記触媒槽通過前の熱分解ガスを冷却した液より小さくなる。更にシリカアルミナ触媒を通過すると、炭素数20以下に低分子化される。前記ケイ酸アルミナ触媒で前処理をしておくと、シリカアルミナ触媒のみを使用する場合に比べて触媒量を減らすことができる。 According to the present invention, the plastic pyrolysis gas liquefied and gasified in the pyrolysis tank passes through the alumina silicate catalyst layer to obtain the following intermediate gas. When the intermediate gas is cooled, its viscosity is higher than that of the low-molecular-weight liquid obtained in the present invention, but lower than that of the liquid obtained by cooling the pyrolysis gas before passing through the catalyst tank. Furthermore, when passing through a silica-alumina catalyst, the molecular weight is reduced to 20 or less carbon atoms. By pretreating with the alumina silicate catalyst, the amount of catalyst can be reduced as compared with the case of using only the silica alumina catalyst.
 また、触媒槽の周囲温度を700~800℃にすることによってPCBの分解もすることができる。 Also, PCBs can be decomposed by setting the ambient temperature of the catalyst tank to 700-800°C.
本発明の実施形態に係るプラスチック油化装置の概略図である。1 is a schematic diagram of a plastic-to-oil conversion apparatus according to an embodiment of the present invention; FIG. 本発明の実施例と比較例とにおける低分子化油の炭素数分布を示す図である。FIG. 4 is a diagram showing carbon number distributions of low-molecular-weight oils in Examples and Comparative Examples of the present invention.
 本発明は、以下に記述するケイ酸アルミナ触媒とシリカアルミナ触媒に、プラスチックの熱分解ガスを、触媒槽の中で、所定温度で、前記の順に接触させることによって、低分子化するものである。 According to the present invention, a plastic pyrolysis gas is brought into contact with a silicate alumina catalyst and a silica alumina catalyst described below in a catalyst tank at a predetermined temperature in the order described above, thereby depolymerizing the catalyst. .
 <ケイ酸アルミナ触媒>
 以下に用いるケイ酸アルミナ触媒の成分構成は、ケイ酸:アルミナ(Al)が重量比で0.8~1.2:1(中央値1:1)である。更に、上記のケイ酸とアルミナの合量を1としたとき、重量比で0.4~0.6の酸化カルシウムが加えられる。これら原料は混錬され、下記焼き上がり体積を勘案した所定体積の球あるいは楕円球状に成形される。この成形原料を所定温度(1200℃前後)に加熱して、体積が10~30mmの球あるいは楕円球状の多孔質のセラミック触媒を得る。尚、酸化カルシウムはケイ酸とアルミナの「つなぎ」の機能を備えている。
<Alumina silicate catalyst>
The component composition of the alumina silicate catalyst used below is silicic acid:alumina (Al 2 O 3 ) in a weight ratio of 0.8 to 1.2:1 (median 1:1). Further, when the total amount of silicic acid and alumina is 1, calcium oxide is added in a weight ratio of 0.4 to 0.6. These raw materials are kneaded and formed into a sphere or elliptical sphere having a predetermined volume in consideration of the baked volume described below. This forming raw material is heated to a predetermined temperature (around 1200° C.) to obtain a spherical or oval porous ceramic catalyst having a volume of 10 to 30 mm 3 . Calcium oxide has the function of "binder" between silicic acid and alumina.
 前記ケイ酸はケイ酸ナトリウム、ケイ酸アルミニウム、ケイ酸カリウムの少なくとも1種を用いることとし、以下の実施例ではケイ酸アルミニウムを用いている。 At least one of sodium silicate, aluminum silicate, and potassium silicate is used as the silicic acid, and aluminum silicate is used in the following examples.
 当該ケイ酸アルミナ触媒に前記熱分解ガスを接触させると、以下の中間ガスを生成する。すなわち、当該中間ガスを冷却すると、粘度が、本発明で得られる低分子化液より大きいが、前記触媒槽通過前の熱分解ガスを冷却した液より小さくなる。 When the pyrolysis gas is brought into contact with the alumina silicate catalyst, the following intermediate gases are generated. That is, when the intermediate gas is cooled, its viscosity is higher than that of the low-molecular-weight liquid obtained in the present invention, but lower than that of the liquid obtained by cooling the pyrolysis gas before passing through the catalyst tank.
 前記粘度の低下から、中間ガスは元の熱分解ガス(炭素数最大40)より最大炭素数が小さくなっていると推定される。このようにケイ酸アルミナ触媒で前処理をして最大の炭素数を低くしておくと、次段のシリカアルミナ触媒に触れさせたときに効率よく低分子化することができる。ただし、後に説明するように、当該ケイ酸アルミナ触媒のみを使用して、炭素数20以下の低分子化液(ガス)を生成することはできない。 From the decrease in viscosity, it is estimated that the intermediate gas has a smaller maximum carbon number than the original pyrolysis gas (maximum carbon number 40). If the maximum number of carbon atoms is lowered by pretreatment with an alumina silicate catalyst in this way, the molecular weight can be efficiently reduced when brought into contact with the silica-alumina catalyst in the next stage. However, as will be explained later, it is not possible to produce a low-molecular-weight liquid (gas) having 20 or less carbon atoms by using only the alumina silicate catalyst.
 上記においてケイ酸とアルミナの純度は90%以上であることが望ましい。10%以上の不純物が混入すると、混入量に応じて触媒活性が落ち、所期の目的を達成しにくくなる。上記のケイ酸アルミナ触媒の見かけ比重は本発明の目的を阻害しない限り、特に限定はないが、0.5~1.2、気孔率は50~60%であることが望ましい。見かけ比重、気孔率がこの範囲外であると、触媒活性が減衰する。前記ケイ酸アルミナ触媒の気孔径は、本発明の目的を阻害しない限り、特に限定はないが、例えば、50~150μmである。気孔径がこの範囲であるとケイ酸アルミナ触媒内部に複数の細孔が密集した多孔質セラミックとなるから、当該ケイ酸アルミナ触媒内を通過した熱分解ガスが接触する面積を広げ、熱分解ガスを効率よく次段のシリカアルミナ触媒に渡せることが可能となる。一方、気孔径が50μm未満あるいは150μmを超える場合には、上述した機能が低下する場合があり、好ましくない。 In the above, it is desirable that the purity of silicic acid and alumina be 90% or more. If 10% or more of impurities are mixed in, the catalytic activity is lowered depending on the amount of the mixed in, making it difficult to achieve the intended purpose. The apparent specific gravity of the above-mentioned alumina silicate catalyst is not particularly limited as long as it does not interfere with the object of the present invention, but the preferred range is 0.5 to 1.2 and the porosity is 50 to 60%. If the apparent specific gravity and porosity are out of this range, the catalytic activity is attenuated. The pore size of the alumina silicate catalyst is not particularly limited as long as it does not interfere with the object of the present invention, but is, for example, 50 to 150 μm. When the pore diameter is within this range, the porous ceramic is formed with a plurality of pores densely packed inside the alumina silicate catalyst, so that the area with which the pyrolysis gas that has passed through the alumina silicate catalyst contacts is expanded, and the pyrolysis gas can be efficiently transferred to the next-stage silica-alumina catalyst. On the other hand, if the pore diameter is less than 50 μm or more than 150 μm, the above functions may deteriorate, which is not preferable.
 前記ケイ酸アルミナ触媒の体積が、10mm未満であると熱分解ガスの通過量を抑えることになり、装置全体の効率を低下することになる。逆に前記ケイ酸アルミナ触媒の体積が、30mm以上であると、当該ケイ酸アルミナ触媒に前記熱分解ガスの触れる時間が短くなり、触媒としての効率を落とすことになる。 If the volume of the alumina silicate catalyst is less than 10 mm 3 , the passage amount of the pyrolysis gas will be suppressed, and the efficiency of the entire apparatus will be lowered. Conversely, if the volume of the alumina silicate catalyst is 30 mm 3 or more, the time for which the pyrolysis gas is in contact with the alumina silicate catalyst will be shortened, resulting in a drop in efficiency as a catalyst.
 <シリカアルミナ触媒>
 本発明に係るシリカアルミナ触媒の成分構成は、シリカ(SiO):アルミナ(Al)が重量比で1.4~1.6:1(中央値で、1.5:1)である。更に、前記シリカとアルミナの合量を1としたとき重量比で0.4~0.6の酸化カルシウム(CaO)が加えられる。これらシリカ、アルミナ、酸化カルシウムを混錬し、下記の焼き上がり体積を勘案した所定形状に成形され、所定温度(1200℃前後)で加熱して、多孔質のセラミック触媒を得る。尚、酸化カルシウムはシリカとアルミナの「つなぎ」の機能を備えている。
<Silica alumina catalyst>
The component composition of the silica-alumina catalyst according to the present invention is silica (SiO 2 ):alumina (Al 2 O 3 ) in a weight ratio of 1.4 to 1.6:1 (median, 1.5:1). be. Further, calcium oxide (CaO) is added in a weight ratio of 0.4 to 0.6 when the total amount of silica and alumina is 1. These silica, alumina, and calcium oxide are kneaded, formed into a predetermined shape considering the baked volume described below, and heated at a predetermined temperature (around 1200° C.) to obtain a porous ceramic catalyst. Calcium oxide has the function of "binder" between silica and alumina.
 この時の焼き上がり形状は径1mm程度の柱状の多孔質であり、体積は1~10mm(従って長さは0.8~8mm程度)である。 At this time, the baked shape is columnar porous with a diameter of about 1 mm, and the volume is 1 to 10 mm 3 (therefore, the length is about 0.8 to 8 mm).
 シリカとアルミナの比率が上記範囲を外れると、以下に記述する触媒としての活性度が落ち、時間当たりに所期の油量を得ることはできない。この場合もシリカとアルミナの純度は90%以上であることが望ましい。10%以上の不純物が混入すると、混入量に応じて触媒活性が落ち、所期の目的を達成しにくくなる。 If the ratio of silica and alumina is out of the above range, the activity of the catalyst described below will drop, and the desired amount of oil per hour cannot be obtained. Also in this case, the purity of silica and alumina is desirably 90% or more. If 10% or more of impurities are mixed in, the catalytic activity is lowered depending on the amount of the mixed in, making it difficult to achieve the intended purpose.
 前記シリカアルミナ触媒の見かけ比重は前記ケイ酸アルミナ触媒の場合と同様0.5~1.2、気孔率50~60%であることが望ましい。見かけ比重、気孔率がこの範囲外であると、触媒活性が減衰する。 The silica-alumina catalyst preferably has an apparent specific gravity of 0.5 to 1.2 and a porosity of 50 to 60%, as in the case of the alumina silicate catalyst. If the apparent specific gravity and porosity are out of this range, the catalytic activity is attenuated.
 上記したように、ケイ酸アルミナ触媒で得られた中間ガスは、当該シリカアルミナ触媒に触れると、更に低分子化し、最大炭素数が20以下の最終ガスとなり、これを冷却すると、炭素数が20以下の低分子化液となる。 As described above, when the intermediate gas obtained with the silicate-alumina catalyst comes into contact with the silica-alumina catalyst, it becomes a final gas with a maximum carbon number of 20 or less. It becomes the following low-molecular-weight liquid.
 前記シリカアルミナ触媒の気孔径はとくに限定されないが、例えば20~100μmである。気孔径がこの範囲であると前記ケイ酸アルミナ触媒である程度炭素数が低くなった中間ガスに対する触媒活性が活発となる。一方、気孔径が20μm未満あるいは100μmを超える場合には、上述した油化効率が低下する場合があり、好ましくない。 Although the pore size of the silica-alumina catalyst is not particularly limited, it is, for example, 20 to 100 μm. When the pore diameter is within this range, the catalytic activity of the alumina silicate catalyst with respect to an intermediate gas having a relatively low number of carbon atoms becomes active. On the other hand, if the pore diameter is less than 20 μm or more than 100 μm, the oil conversion efficiency described above may be lowered, which is not preferable.
 前記シリカアルミナ触媒の体積は1.0mm~10mm程度が許容され、シリカアルミナ触媒の形状は、基本的には、直径1.0mm、長さ0.8~8.0mm程度の円柱形状である。体積が小さいので、球状にして下記の触媒槽に充填すると、分解ガスが目詰まりを起こすおそれがあり、円柱状(あるいは角柱状)として、分解バスの通過する隙間を作るようにしている。 The volume of the silica-alumina catalyst is allowed to be about 1.0 mm 3 to 10 mm 3 , and the shape of the silica-alumina catalyst is basically cylindrical with a diameter of about 1.0 mm and a length of about 0.8 to 8.0 mm. be. Since the volume is small, if it is spherical and filled in the catalyst tank described below, the cracked gas may cause clogging.
 当該シリカアルミナ触媒の体積が1.0mm満である場合は、前記処理対象のガスが目詰まりを起こすことになり、好ましくない。逆に10mmを越える場合には、細長い形状であるので個々の触媒間の隙間が大きくなり、ガス化されたプラスチックに十分接触しないので、触媒としての効果が低くなる。 If the volume of the silica-alumina catalyst is less than 1.0 mm 3 , the gas to be treated will cause clogging, which is not preferable. Conversely, if it exceeds 10 mm 3 , since the shape is long and narrow, the gaps between individual catalysts become large, and they do not come into sufficient contact with the gasified plastic, resulting in a lower effect as a catalyst.
 <プラスチック>
 本発明のケイ酸アルミナ触媒およびシリカアルミナ触媒が接触する熱分解ガスの発生源、即ち、廃プラスチックは、熱分解するプラスチック(従って熱硬化性のプラスチックは対象外)であれば、特に限定されない。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、エチレン系ワックス状重合体、プロピレン系ワックス状重合体、エチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-非共役ジエン共重合ゴム(EPDM)、スチレン-ブタジエン共重合ゴム(SBR)、ブタジエン-アクリロニトリル共重合体ゴム(NBR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)、ポリブタジエンゴム(BR)等が挙げられる。これらのプラスチックは、農業用品では、温室フィルム、マルチ用フィルム等の農業用ポリフィルム、結束バンド、ポール、プラスチック容器等を、水産業用品では、魚網、養殖用網、海苔の簾、ロープ、バケツ、浮き、ブイ等の漁具、プラスチック容器等を、食品業用品では、食品トレー、卵、野菜等の包装ラップ、コンビニ袋、菓子袋等を、日用品では、洗剤容器、シャンプー容器、灯油容器、発泡スチロール、家電機器、OA機器、文具、玩具等を回収して使用される。尚、本発明では、熱分解ガスをシリカアルミナ触媒に接触させるため、前記プラスチックには、充填剤、各種添加剤、着色料、メタル層等を含んでいても構わない。
<Plastic>
The source of pyrolysis gas with which the alumina silicate catalyst and silica-alumina catalyst of the present invention come into contact, that is, the waste plastic, is not particularly limited as long as it is a pyrolyzable plastic (thus, thermosetting plastics are excluded). For example, polyethylene (PE), polypropylene (PP), polystyrene (PS), ethylene-based waxy polymer, propylene-based waxy polymer, ethylene-propylene copolymer rubber (EPM), ethylene-propylene-nonconjugated diene copolymer Rubber (EPDM), styrene-butadiene copolymer rubber (SBR), butadiene-acrylonitrile copolymer rubber (NBR), polyisoprene rubber (IR), butyl rubber (IIR), polybutadiene rubber (BR) and the like. Agricultural products such as greenhouse films, agricultural poly films such as mulch films, binding bands, poles, plastic containers, etc., and fisheries products such as fishing nets, aquaculture nets, seaweed blinds, ropes and buckets. , floats, fishing gear such as buoys, plastic containers, etc. Food industry supplies include food trays, packaging wraps for eggs and vegetables, convenience store bags, confectionery bags, etc. Daily necessities include detergent containers, shampoo containers, kerosene containers, Styrofoam , household appliances, OA equipment, stationery, toys, etc. are collected and used. In the present invention, since the pyrolysis gas is brought into contact with the silica-alumina catalyst, the plastic may contain a filler, various additives, a coloring agent, a metal layer, and the like.
 また処理対象のプラスチックは出来るだけ小さいもの、必要に応じて、粉砕、細断したもの、又は圧延して薄くしたものが好ましく、プラスチックの大きさは、例えば、2.0~20.0mmが好ましい。 The plastic to be treated is preferably as small as possible, and if necessary, it is preferably crushed, shredded, or thinned by rolling. The size of the plastic is preferably 2.0 to 20.0 mm, for example. .
 <プラスチック油化装置>
 上記したケイ酸アルミナ触媒とシリカアルミナ触媒を用いたプラスチック油化装置の実施態様を、図面を参照しながら説明する。
<Plastic to oil equipment>
An embodiment of a plastic-to-oil conversion apparatus using the above-mentioned alumina silicate catalyst and silica-alumina catalyst will be described with reference to the drawings.
 図1は、本発明の実施形態に係るプラスチック油化装置の概略図である。 FIG. 1 is a schematic diagram of a plastic-to-oil conversion apparatus according to an embodiment of the present invention.
 熱分解槽2の上方に、開閉可能な投入口21が設けられ、破砕・切断された廃プラスチックが当該熱分解槽2内部に投入される。前記投入口21には、例えばスクリュー軸の回転により一端から他端へプラスチックを搬送する搬送装置(スクリュー型押出装置、図示しない)が設けられ、原料となる廃プラスチックが、投入口21を介して熱分解槽2に、所定の時間、所定の量だけ投入される構成になっている。 An opening 21 that can be opened and closed is provided above the pyrolysis tank 2 , and crushed and cut waste plastic is introduced into the pyrolysis tank 2 . The input port 21 is provided with, for example, a conveying device (screw-type extruder, not shown) that conveys the plastic from one end to the other end by rotating the screw shaft. It is configured such that only a predetermined amount is put into the pyrolysis bath 2 for a predetermined time.
 前記熱分解槽2の底面には、前記投入口21から投入された廃プラスチックを溶解する溶解ヒータ221が配置され、胴部外周面には、前記溶解ヒータ221で溶解したプラスチックをガス化するがガス化ヒータ222が配置される。更に、前記溶解ヒータ221により溶解したプラスチックを攪拌する撹拌羽23が備えられ、所定の回転速度で回転する。 A dissolving heater 221 for dissolving the waste plastic introduced from the inlet 21 is arranged on the bottom surface of the pyrolysis tank 2, and the melted plastic is gasified by the dissolving heater 221 on the outer peripheral surface of the body. A gasification heater 222 is provided. Furthermore, a stirring blade 23 for stirring the plastic melted by the melting heater 221 is provided and rotates at a predetermined rotational speed.
 また、前記熱分解槽2は、当該熱分解槽2の下方に、溶解又は熱分解出来なかった残渣物(不揮発性の炭素質分、プラスチックに含まれる金属片、無機物、何らかの原因により炭化したプラスチック等)を外部に抜き出しする残渣物排出口26を備え、当該残渣物の抜き出しは、当該残渣物排出口26に取り付けた残渣物開閉バルブ27により調整される。 In addition, the thermal decomposition tank 2 is disposed below the thermal decomposition tank 2 with residual substances that could not be dissolved or thermally decomposed (non-volatile carbonaceous matter, metal pieces contained in plastics, inorganic substances, plastics carbonized for some reason) etc.) to the outside.
 また、前記熱分解槽2は、当該熱分解槽2の底部の温度を計測する温度センサ28aと内部の温度を計測する温度センサ28bを備え、当該温度センサ28a、28bにより当該熱分解槽2の底部の温度と内部温度が制御装置25により測定、監視される。更に、前記温度センサ28a、28bと前記溶解ヒータ221およびガス化ヒータ222とは、制御装置25に接続され、当該制御装置25に備えられた操作パネル25aを介して、溶解温度、ガス化温度を設定することができるよう構成されている。 Further, the thermal decomposition tank 2 is provided with a temperature sensor 28a for measuring the temperature of the bottom of the thermal decomposition tank 2 and a temperature sensor 28b for measuring the internal temperature. The bottom temperature and the internal temperature are measured and monitored by controller 25 . Further, the temperature sensors 28a, 28b, the melting heater 221, and the gasification heater 222 are connected to the control device 25, and the melting temperature and the gasification temperature are detected via the operation panel 25a provided in the control device 25. configured to be configurable.
 前記溶解ヒータ221の設定温度(前記温度センサ28aにより計測)は、上述したように、処理対象となるプラスチックの種類に応じて適宜設計変更されるものの、汎用プラスチックが溶解する300度~350℃に設定される。この温度を350℃以上にすると、処理対象物は溶解することなく炭化するので、「ガス化」したプラスチックを処理するとする本願の目的を達成できない。 Although the set temperature of the melting heater 221 (measured by the temperature sensor 28a) is appropriately changed according to the type of plastic to be processed, as described above, it is set to 300 to 350° C. at which general-purpose plastics are melted. set. If the temperature is 350° C. or higher, the object to be treated is carbonized without being melted, so the object of the present application to treat “gasified” plastic cannot be achieved.
 また、前記ガス化ヒータ222によるガス化温度(前記温度センサ28bにより測定)は350~450℃に制御される。これによって、溶解ヒータ221によって溶解した処理対象物はガス化ヒータ222によってガス状態になり、ガス送出口29を介して次段の改質槽3に送られることになる。 Also, the gasification temperature (measured by the temperature sensor 28b) by the gasification heater 222 is controlled to 350 to 450°C. As a result, the object to be processed melted by the melting heater 221 is turned into a gaseous state by the gasification heater 222 and sent to the reforming tank 3 in the next stage through the gas delivery port 29 .
 尚、前記熱分解槽2の内圧は、本発明の目的を阻害しない限り、特に調整しておらず、自然圧であるが、必要に応じて、内部圧力センサや内圧制御装置を追加しても構わない。 The internal pressure of the thermal decomposition tank 2 is not particularly adjusted as long as the object of the present invention is not hindered, and is a natural pressure. However, if necessary, an internal pressure sensor or internal pressure control device may be added I do not care.
 前記改質槽3は、外槽31と当該外槽31との間に所定の空間Xを保って配置された内槽である触媒槽32とより構成される。前記外槽31の周囲には触媒ヒータ34が配置され、前記触媒槽32と外槽31との空間Xに温度センサ35が配置される。前記空間Xの温度(触媒槽の周囲温度)は前記コントローラ25によって、350~400℃前後となるように制御され、これによって、前記触媒槽32内の温度が、300~380℃になる。 The reforming tank 3 is composed of an outer tank 31 and a catalyst tank 32 which is an inner tank arranged with a predetermined space X between the outer tank 31 and the outer tank 31 . A catalyst heater 34 is arranged around the outer tank 31 , and a temperature sensor 35 is arranged in the space X between the catalyst tank 32 and the outer tank 31 . The temperature of the space X (ambient temperature of the catalyst tank) is controlled by the controller 25 to be around 350-400.degree.
 ここで、触媒槽32を加熱するには、当該触媒槽32の外周に直接ヒータを設ける構成も考えられるが、ここでは触媒槽32内の温度を均一にする必要上外槽31と触媒槽32の間に空間Xを保つ構造とし、外槽31の外周から熱を与える構成としている。更に、前記空間Xに高温に耐える油脂を充填して、前記触媒槽32の温度の均一性を更に高めることでもよい。 Here, in order to heat the catalyst tank 32, it is conceivable to provide a heater directly on the outer periphery of the catalyst tank 32. The structure is such that a space X is maintained between them, and heat is applied from the outer periphery of the outer tank 31 . Furthermore, the space X may be filled with oil that can withstand high temperatures to further improve the temperature uniformity of the catalyst tank 32 .
 更に、前記触媒槽32の底面と外槽31の底面との間にも空間Yが設けられ、当該空間Yと前記空間Xは仕切り322で仕切られている。前記熱分解槽2のガス送出口29は、触媒槽32の底面と外槽31の底面との間の前記空間Yに設けられた導入口30に連通しており、これによって、前記熱分解槽2で得られた熱分解ガスは、前記触媒槽32に導かれることになる。 Furthermore, a space Y is also provided between the bottom surface of the catalyst tank 32 and the bottom surface of the outer tank 31 , and the space Y and the space X are separated by a partition 322 . The gas delivery port 29 of the thermal decomposition tank 2 communicates with the introduction port 30 provided in the space Y between the bottom surface of the catalyst tank 32 and the bottom surface of the outer tank 31. The pyrolysis gas obtained in 2 is led to the catalyst tank 32 .
 前記触媒槽32の下側開口端には有孔の底板が設けられており、前記熱分解ガスが上流から下流に向かって(図面上、下側から上側に向かって)流れるようになっている。当該触媒槽32の最下層(上流側)には径1.5cm程度のガラス玉32aが2~3層が充填され、その下流側に置かれるケイ酸アルミナ触媒32b、シリカアルミナ触媒32cを受けている。 A perforated bottom plate is provided at the lower open end of the catalyst tank 32 so that the pyrolysis gas flows from upstream to downstream (from bottom to top in the drawing). . The bottom layer (upstream side) of the catalyst tank 32 is filled with 2 to 3 layers of glass beads 32a having a diameter of about 1.5 cm. there is
 前記ガラス玉層の下流側(図面上、上側)にケイ酸アルミナ触媒32bが前記触媒槽32の全高の1/3程度の高さまで充填される。前記したように、当該ケイ酸アルミナ触媒32bは単体の体積が10~30mmの球あるいは楕円球であり、下流側のシリカアルミナ触媒32cへの熱分解ガス(中間ガス)の拡散を損ねないよう、十分な隙間ができる大きさになっている。 The alumina silicate catalyst 32b is filled to a height of about ⅓ of the total height of the catalyst tank 32 on the downstream side (upper side in the drawing) of the glass marble layer. As described above, the alumina silicate catalyst 32b is a spherical or ellipsoidal sphere with a single volume of 10 to 30 mm 3 , so as not to impair the diffusion of the pyrolysis gas (intermediate gas) to the silica alumina catalyst 32c on the downstream side. , is sized to provide sufficient clearance.
 更にその下流側(図面上、上側)の残り2/3の高さにシリカアルミナ触媒32cが充填される。当該シリカアルミナ触媒32cの単体の形状は、前記したように、円柱状(もしくは角柱状)であるので、単体間に隙間が多く形成され、上流側から送られてきた処理対象ガスに対して十分な触媒機能が働く密度になっている。更に、前記シリカアルミナ触媒32cの層の上にケイ酸アルミナ触媒を配置してもよいが、後に説明するように、大きな効果はない。 Further, the silica alumina catalyst 32c is filled in the remaining 2/3 height on the downstream side (upper side in the drawing). Since the shape of the silica-alumina catalyst 32c is, as described above, cylindrical (or prismatic), many gaps are formed between the single units, and the gas to be treated sent from the upstream side has sufficient space. The density is such that a sufficient catalytic function works. Furthermore, an alumina silicate catalyst may be placed on top of the layer of silica alumina catalyst 32c, but this is not very effective, as will be explained later.
 上記において、仮にシリカアルミナ触媒32cの形状が球であると、熱分解ガスの通過する隙間が小さくなり、十分な速度での低分子化が困難となる。 In the above, if the shape of the silica-alumina catalyst 32c is spherical, the gap through which the pyrolysis gas passes becomes small, making it difficult to reduce the molecular weight at a sufficient rate.
 ここで、実用レベルの50~100リットル/時間の低分子化油を得ようとすると、前記触媒槽32として径15cm、高さ24cm程度(容量4リットル程度)の大きさが必要となる。下記に示す実施例はこの大きさの触媒槽32に、前記ケイ酸アルミナ触媒とシリカアルミナ触媒を充填した状態で実施した。 Here, in order to obtain low-molecular-weight oil at a practical level of 50 to 100 liters/hour, the size of the catalyst tank 32 should be approximately 15 cm in diameter and 24 cm in height (capacity of approximately 4 liters). The examples shown below were carried out in a state in which the catalyst tank 32 of this size was filled with the alumina silicate catalyst and the silica alumina catalyst.
 前記ケイ酸アルミナ触媒の機能は十分に把握できていないが、(1)前記ケイ酸アルミナ触媒32bだけを使用した場合、低炭素化は十分でなく、本発明で低分子化した液の粘度と、前記分解槽2で得られる熱分解ガスをそのまま冷却したときに得られる物質粘度の中間の粘度を呈すること、(2)シリカアルミナ触媒32cの下流側に当該ケイ酸アルミナ触媒32aを配置しても、シリカアルミナ触媒32c単独の場合と差して変わりの状態を呈すること、(3)シリカアルミナ触媒32cのみを使用して本発明で得られる低分子化液と同等の炭素分布の液を得るためには、本発明の2.5~3倍近くの量のシリカアルミナ触媒が必要であること。 Although the function of the alumina silicate catalyst has not been fully understood, (1) when only the alumina silicate catalyst 32b is used, the reduction in carbonization is not sufficient, and the viscosity of the liquid with a low molecular weight in the present invention (2) the alumina silicate catalyst 32a is arranged downstream of the silica alumina catalyst 32c; (3) using only the silica-alumina catalyst 32c to obtain a liquid having a carbon distribution equivalent to that of the low-molecular-weight liquid obtained in the present invention; requires an amount of silica-alumina catalyst nearly 2.5 to 3 times that of the present invention.
 以上のことから、ケイ酸アルミナ触媒32aは、熱分解ガスの粘度を低下(従って炭素数の最大値を低下)せしめ、シリカアルミナ触媒32cの上流側に配置されることによって、シリカアルミナ触媒32cの機能を有効に引き出すことができるものと解される。 From the above, the alumina silicate catalyst 32a lowers the viscosity of the pyrolysis gas (thus lowering the maximum carbon number), and by arranging it upstream of the silica alumina catalyst 32c, It is understood that the function can be effectively drawn out.
 前記触媒槽32の上方には、低分子化ガス放出口36が設けられ、当該低分子化ガス放出口36を介して低分子化ガスを冷却槽4に導入する。 A low-molecular-weight gas outlet 36 is provided above the catalyst tank 32 , and the low-molecular-weight gas is introduced into the cooling tank 4 through the low-molecular-weight gas outlet 36 .
 尚、前記改質槽3の内圧は、本発明の目的を阻害しない限り、特に調整しておらず、自然圧であるが、前記熱分解槽2と同様に、必要に応じて、内部圧力センサや内圧制御装置を追加しても構わない。 The internal pressure of the reforming tank 3 is not particularly adjusted as long as it does not interfere with the object of the present invention, and is a natural pressure. or an internal pressure control device may be added.
 前記冷却槽4は、内部に、水等の冷媒が循環されており、当該循環する冷媒内を螺行する螺管42が上述した低分子化導入口41と接続される。これによって低分子化された熱分解ガスは液化し、当該冷却槽4の下方に設けられた液排出口45から、開閉バルブ46を操作することによって抜き出すことができるようになっている。
図1に示すプラスチック油化装置の改質槽3(触媒槽32)は、一槽としているが、本発明の目的を阻害しない限り、特に限定はなく、触媒槽32の油化能力に応じて、複数の改質槽を直列に接続したり並列に接続したりした多段式の改質槽を構成しても構わない。
A coolant such as water is circulated inside the cooling tank 4 , and a spiral tube 42 spiraling in the circulating coolant is connected to the above-described low-molecular-weight introduction port 41 . As a result, the low-molecular-weight pyrolysis gas is liquefied and can be extracted from a liquid discharge port 45 provided below the cooling tank 4 by operating an opening/closing valve 46 .
The reforming tank 3 (catalyst tank 32) of the plastic-to-oil conversion apparatus shown in FIG. Alternatively, a multistage reforming tank may be constructed by connecting a plurality of reforming tanks in series or in parallel.
 <実施例、比較例等>
 <触媒の調整>
 ケイ酸アルミニウムの純度が95%のケイ酸塩と、純度93%のアルミナを重量比で1.5:1を混合し、純度95%の生灰石をケイ酸とアルミナの合量に対して0.5の重量比を混合して混錬して、焼き上がりが体積が10~50mmの球あるいは楕円球になるように成形し、これを焼成炉に投入し、1200℃まで昇温し、自然冷却してケイ酸アルミナ触媒を得た。
<Examples, Comparative Examples, etc.>
<Adjustment of catalyst>
Aluminum silicate with a purity of 95% and alumina with a purity of 93% are mixed at a weight ratio of 1.5:1, and quicklime with a purity of 95% is added to the total amount of silicic acid and alumina. Mix and knead at a weight ratio of 0.5, shape so that the baked product becomes a sphere or elliptical sphere with a volume of 10 to 50 mm 3 , put it in a firing furnace, and heat it up to 1200 ° C. , and naturally cooled to obtain an alumina silicate catalyst.
 同様に、純度96%の市販のシリカ(SiO)と、純度93%の市販のアルミナ(Al)を重量比で1:1を混合し、純度95%の生灰石を前記シリカとアルミナの合量に対して0.5の重量比を混合して混錬し、直径が1.0mm、高さ0.8~8.0mmの円柱状に成形し、これを焼成炉に投入し、1200℃まで昇温し、自然冷却してシリカアルミナ触媒を得た。 Similarly, commercially available silica (SiO 2 ) with a purity of 96% and commercially available alumina (Al 2 O 3 ) with a purity of 93% were mixed at a weight ratio of 1:1, and quicklime with a purity of 95% was added to the silica. and alumina in a weight ratio of 0.5 with respect to the total amount, kneaded, formed into a cylindrical shape with a diameter of 1.0 mm and a height of 0.8 to 8.0 mm, and put into a firing furnace. Then, the temperature was raised to 1200° C. and naturally cooled to obtain a silica alumina catalyst.
 <熱分解ガスの触媒との油化反応>
 前記図1に示したプラスチック油化装置の触媒槽32を、径15cm、高さ24cm(従って容量は4リットル強)の大きさとし、上流側にケイ酸アルミニウム触媒を前記触媒槽31の1/3程度の高さまで充填し、下流側の残りの高さにシリカアルミナ触媒を充填して、プラスチック油化反応を実行した。
<Oilification reaction of pyrolysis gas with catalyst>
The catalyst tank 32 of the plastic-to-oil conversion apparatus shown in FIG. It was filled to a certain height and the rest of the height downstream was filled with a silica alumina catalyst to carry out the plastic to oil reaction.
 当該プラスチック油化装置において、熱分解槽2の溶解ヒータ221の温度を350℃に、ガス化ヒータ222によるガス化温度を400度に設定した。次に、前記のように加熱した熱分解槽2に、種々の種類が混合した廃プラスチック順次を投入し、熱分解槽2の撹拌翼23を所定の速度で回転させながら、廃プラスチックを溶解・熱分解させ、熱分解ガスを発生させた。 In the plastic-to-oil system, the temperature of the dissolution heater 221 of the pyrolysis tank 2 was set to 350°C, and the gasification temperature of the gasification heater 222 was set to 400°C. Next, a mixture of various types of waste plastics is sequentially put into the thermal decomposition tank 2 heated as described above, and the waste plastics are dissolved and melted while rotating the stirring blade 23 of the thermal decomposition tank 2 at a predetermined speed. It was thermally decomposed to generate thermal decomposition gas.
 発生した熱分解ガスを、前記空間Xの温度(触媒槽の周囲温度)を400℃に設定した改質槽3に導入し、上述のようにケイ酸アルミナ触媒とシリカアルミナ触媒が充填された触媒槽32(当該触媒層の内部温度は380℃以下)を通過させて、低分子化ガスを得、その後、冷却槽により冷却された低分子化液を得た。収量は100リットル/時間であった。もっとも、この収量は熱分解槽2の設定温度、形質槽3の設定温度等の条件で変化するものと考えられる。 The generated pyrolysis gas is introduced into the reforming tank 3 in which the temperature of the space X (the ambient temperature of the catalyst tank) is set to 400° C., and the catalyst filled with the alumina silicate catalyst and the silica alumina catalyst as described above. A low-molecular-weight gas was obtained by passing through a tank 32 (internal temperature of the catalyst layer was 380° C. or less), and then a low-molecular-weight liquid was cooled in a cooling tank. Yield was 100 liters/hour. However, it is considered that this yield varies depending on conditions such as the set temperature of the pyrolysis tank 2 and the set temperature of the trait tank 3 .
 ここで、本願発明の装置によって得られた低分子化液の炭素数は20以下となり、その分布を図2に符合(a)で示す。特許5450214に記載のシリカアルミナ触媒のみを用いて得られた低分子化液の炭素数の分布(図2符号b)と比較した場合でも遜色はない結果が得られている。尚、図2符号cに、改質槽2を通す前の熱分解ガスを冷却した物質の炭素分布も示している。 Here, the number of carbon atoms in the low-molecular-weight liquid obtained by the apparatus of the present invention is 20 or less, and its distribution is indicated by symbol (a) in FIG. Even when compared with the carbon number distribution of the low-molecular-weight liquid obtained using only the silica-alumina catalyst described in Japanese Patent No. 5450214 (symbol b in FIG. 2), comparable results are obtained. In addition, the carbon distribution of the substance obtained by cooling the pyrolysis gas before passing through the reforming tank 2 is also shown in FIG.
 特許第5450214号公報の段落0071に記載のシリカアルミナ触媒槽(1.2リットル)は、収量が5~10リットル/時間に対する容積であるので、前記収量50~100リットルに換算すると、12リットルとなる。それに対して本願では4リットル程度のシリカアルミナ触媒しか使用していない。この要因は、シリカアルミナ触媒の上流に置かれるケイ酸アルミナ触媒に求めることができる。 The silica-alumina catalyst tank (1.2 liters) described in paragraph 0071 of Japanese Patent No. 5450214 has a volume corresponding to a yield of 5 to 10 liters/hour. Become. In contrast, the present application uses only about 4 liters of silica-alumina catalyst. This factor can be found in the silicate alumina catalyst placed upstream of the silica alumina catalyst.
 尚、本願発明によると炭素数が低い領域の低分子化液の収量が少ないのは、シリカアルミナ触媒の割合が少ないことに起因すると考えられる。また、特許5450214ではシリカアルミナ触媒のシリカ:アルミナの重量比を3:1(特許5450214号公報段落0091)としているが、本願のようにケイ酸アルミナ触媒と組み合わせるときは、3:2(1.4~1.6:1)とするのが好ましい。 According to the present invention, the low yield of the low-molecular-weight liquid in the low carbon number region is considered to be due to the low proportion of the silica-alumina catalyst. In addition, in patent 5450214, the silica:alumina weight ratio of the silica-alumina catalyst is 3:1 (paragraph 0091 of patent 5450214), but when combined with the alumina silicate catalyst as in the present application, it is 3:2 (1. 4 to 1.6:1) is preferred.
 <PCBの分解>
 上記装置で触媒槽の周囲温度を700~800℃に保つことによって、PCBを分解することができる。濃度60ppmのPCBに対して本発明の装置を適用して分解を試みたところ、PCB濃度が0.2ppmの低分子化液を得た。この場合、原液は液状ではあるが、前記溶解ヒータ221の温度を350℃、ガス化ヒータ222によるガス化温度を400℃とすることで十分ガス化することができる。
<Disassembly of PCB>
PCBs can be decomposed by maintaining the ambient temperature of the catalyst tank at 700-800° C. in the apparatus described above. When an attempt was made to decompose PCB with a concentration of 60 ppm by applying the apparatus of the present invention, a low-molecular solution with a PCB concentration of 0.2 ppm was obtained. In this case, although the undiluted solution is liquid, it can be sufficiently gasified by setting the temperature of the dissolution heater 221 to 350°C and the gasification temperature of the gasification heater 222 to 400°C.
 但し、当該PCBの分解処理では作業中に多量の塩素が放出されることになるので、装置としては、その点を配慮する必要がある。 However, since a large amount of chlorine will be released during the decomposition process of the PCB, it is necessary to consider this point as a device.
 以上のように、本発明に係るケイ酸アルミニウム触媒とシリカアルミナ触媒の組み合わせは、工業、農業、漁業等の様々な分野で使用されるプラスチック油化装置等においても有用であり、熱分解したプラスチックから発生する熱分解ガスを効率よく低分子化させることが可能なシリカアルミナ触媒及びそれを用いたプラスチック油化装置、プラスチック油化方法として有効である。 As described above, the combination of the aluminum silicate catalyst and the silica-alumina catalyst according to the present invention is also useful in plastic oil conversion equipment used in various fields such as industry, agriculture, and fisheries. It is effective as a silica-alumina catalyst capable of efficiently reducing the molecular weight of the pyrolysis gas generated from, and a plastic-oil conversion apparatus and a plastic-oil conversion method using the same.
  1 プラスチック油化装置
  2 熱分解槽
  3 改質槽
  4 冷却槽
  32 触媒槽
  33 シリカアルミナ触媒
REFERENCE SIGNS LIST 1 plastic oil conversion device 2 pyrolysis tank 3 reforming tank 4 cooling tank 32 catalyst tank 33 silica alumina catalyst

Claims (10)

  1.  熱分解したプラスチックから発生する熱分解ガスを触媒槽の中で触媒に接触させることによって当該熱分解ガスを低分子化するプラスチックの油化方法であって、
     所定温度下で、前記熱分解ガスをケイ酸アルミナ触媒に接触させる一次処理をし、
     次いで、上記温度下で、前記一次処理された熱分解ガスをシリカアルミナ触媒に接触させ、
    ることを特徴とするプラスチックの油化方法。
    A method for converting a plastic to oil by bringing the pyrolysis gas generated from the pyrolyzed plastic into contact with a catalyst in a catalyst tank to reduce the molecular weight of the pyrolysis gas,
    Under a predetermined temperature, perform a primary treatment of contacting the pyrolysis gas with an alumina silicate catalyst,
    Next, at the above temperature, the primary treated pyrolysis gas is brought into contact with a silica alumina catalyst,
    A method for converting plastic to oil, characterized by:
  2.  前記ケイ酸アルミナ触媒は、重量比でケイ酸:アルミナが0.8~1.2:1であり、体積が10~30mmである請求項1に記載のプラスチックの油化方法。 2. The method of converting plastics to oil according to claim 1, wherein the alumina silicate catalyst has a weight ratio of silicic acid:alumina of 0.8-1.2:1 and a volume of 10-30 mm 3 .
  3.  前記シリカアルミナ触媒は、重量比でシリカ:アルミナが1.4~1.6:1であり、体積が1~10mmである請求項1に記載のプラスチックの油化方法。 2. The method of converting plastics to oil according to claim 1, wherein the silica-alumina catalyst has a weight ratio of silica:alumina of 1.4-1.6:1 and a volume of 1-10 mm 3 .
  4.  前記所定温度が前記触媒槽の周囲温度で350~400℃である請求項1に記載のプラスチックの油化方法。 The method for converting plastics to oil according to claim 1, wherein the predetermined temperature is 350 to 400°C as the ambient temperature of the catalyst tank.
  5.  前記所定温度が前記触媒槽の周囲温度で700~800℃であり、低分子化対象物質がPCBである請求項1に記載のプラスチックの油化方法。 The method for converting plastics to oil according to claim 1, wherein the predetermined temperature is the ambient temperature of the catalyst tank of 700 to 800°C, and the substance to be reduced in molecular weight is PCB.
  6.  プラスチックを熱分解することによって熱分解ガスを発生する熱分解槽と、
     前記熱分解ガスの流路の上流側に、ケイ酸アルミナ触媒を充填し、下流側にシリカアルミナ触媒を充填した触媒槽と、
     前記触媒槽を所定の温度に保持する加熱手段と
     を備えたことを特徴とするプラスチック油化装置。
    a pyrolysis tank that generates pyrolysis gas by pyrolyzing plastic;
    A catalyst tank filled with an alumina silicate catalyst on the upstream side of the flow path of the pyrolysis gas and a silica alumina catalyst on the downstream side;
    and heating means for maintaining the catalyst tank at a predetermined temperature.
  7.  前記ケイ酸アルミナ触媒は、重量比でケイ酸:アルミナが0.8~1.2:1であり、体積が10~30mmである請求項6に記載のプラスチック油化装置。 7. The apparatus for converting plastics to oil according to claim 6, wherein the alumina silicate catalyst has a weight ratio of silicic acid:alumina of 0.8 to 1.2:1 and a volume of 10 to 30 mm 3 .
  8.  前記シリカアルミナ触媒は、重量比でシリカ:アルミナが1.4~1.6:1であり、体積が1~10mmである請求項6に記載のプラスチック油化装置。 7. The apparatus for converting plastic to oil according to claim 6, wherein the silica-alumina catalyst has a silica:alumina weight ratio of 1.4-1.6:1 and a volume of 1-10 mm 3 .
  9.  前記所定温度が前記触媒槽の周囲温度で350~400℃である請求項6に記載のプラスチック油化装置。 The apparatus for converting plastics to oil according to claim 6, wherein the predetermined temperature is 350 to 400°C as the ambient temperature of the catalyst tank.
  10.  前記所定温度が前記触媒槽の周囲温度で700~800℃であり、低分子化対象物質がPCBである請求項6に記載のプラスチック油化装置。 The apparatus for converting plastics to oil according to claim 6, wherein the predetermined temperature is 700 to 800°C as the ambient temperature of the catalyst tank, and the substance to be reduced in molecular weight is PCB.
PCT/JP2021/022145 2021-06-02 2021-06-10 Method for converting plastic into oil and apparatus for converting plastic into oil WO2022254734A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021092757A JP6913987B1 (en) 2021-06-02 2021-06-02 Plastic oiling method, plastic oiling equipment
JP2021-092757 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022254734A1 true WO2022254734A1 (en) 2022-12-08

Family

ID=77057464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022145 WO2022254734A1 (en) 2021-06-02 2021-06-10 Method for converting plastic into oil and apparatus for converting plastic into oil

Country Status (2)

Country Link
JP (1) JP6913987B1 (en)
WO (1) WO2022254734A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227877A (en) * 1996-02-26 1997-09-02 Shizuoka Prefecture Method for converting waste plastic into oil
JPH11504672A (en) * 1995-08-08 1999-04-27 シン,リ Process for producing gasoline, diesel oil and carbon black from waste rubber and / or waste plastic material
JP2002121318A (en) * 2000-10-17 2002-04-23 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for chemical recycling of waste plastic
JP2018099635A (en) * 2016-12-19 2018-06-28 株式会社Gb総合知財経営事務所 Organic waste treatment system and organic waste treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504672A (en) * 1995-08-08 1999-04-27 シン,リ Process for producing gasoline, diesel oil and carbon black from waste rubber and / or waste plastic material
JPH09227877A (en) * 1996-02-26 1997-09-02 Shizuoka Prefecture Method for converting waste plastic into oil
JP2002121318A (en) * 2000-10-17 2002-04-23 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for chemical recycling of waste plastic
JP2018099635A (en) * 2016-12-19 2018-06-28 株式会社Gb総合知財経営事務所 Organic waste treatment system and organic waste treatment method

Also Published As

Publication number Publication date
JP6913987B1 (en) 2021-08-04
JP2022185230A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US20190256781A1 (en) Process and plant for conversion of waste material to liquid fuel
JP5305400B2 (en) Waste plastic catalytic cracking method and waste plastic catalytic cracking apparatus
CA2831401C (en) Catalyst for distributed batch microwave pyrolysis and process thereof
RU2677887C2 (en) Hydropyrolysis of raw materials containing biomass
JP4799976B2 (en) Method for modifying fluid organic compounds
HU211406B (en) Method and apparatus for the treatment of organic materials and cooling unit for the cooling of coal produced in a carbonizing reactor
MX2012007724A (en) Method and installation for complete recycling through depolymerisation.
WO2019080187A1 (en) Pyrolysis treatment process for organic solid waste
EP3311969A1 (en) Device for thermally decomposing polyethylene and polypropylene waste
CN116783242A (en) Depolymerization process of solid mixed plastic
CN203923096U (en) Organic materials carbonization decomposition vapourizing furnace
JP6002877B2 (en) Method for producing oil or gas adsorbent and oil or gas adsorbent
WO2022254734A1 (en) Method for converting plastic into oil and apparatus for converting plastic into oil
Liandi et al. Pyrolysis of PP and HDPE from plastic packaging waste into liquid hydrocarbons using natural zeolite Lampung as a catalyst
AU2017213547A1 (en) Process and plant for conversion of waste plastic material into fuel products
JP2012188663A (en) Apparatus and method for catalytically cracking and liquefying plastic
JP2013103998A (en) Waste plastic catalytic cracking liquefaction apparatus and catalytic cracking liquefaction method
CN217368414U (en) Reactor for thermal decomposition of organic materials
Almeida et al. Niobium oxide as catalyst for the pyrolysis of polypropylene and polyethylene plastic waste
CN114570400B (en) catalyst for reducing oil-wax ratio in organic solid waste heat pyrolysis process, catalyst structural member and application
MX2013013518A (en) Field replaceable multifunctional cartridge for waste conversion into fuel.
JP2011212648A (en) Silica-alumina catalyst for converting plastic to oil and apparatus and method for converting plastic to oil by using the silica-alumina catalyst
JPH0985046A (en) Removal of hydrogen chloride contained in thermal cracking gas of waste plastic material and oil forming treatment equipment of waste plastic material
GB2497543A (en) Catalyst system for thermal catalytic cracking of pyrolysis derived organic molecules
WO2023161414A1 (en) A method for the production of a pyrolysis oil from end-of-life plastics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE