WO2022253238A1 - 消息传输方法、信号发送方法、装置及通信设备 - Google Patents

消息传输方法、信号发送方法、装置及通信设备 Download PDF

Info

Publication number
WO2022253238A1
WO2022253238A1 PCT/CN2022/096328 CN2022096328W WO2022253238A1 WO 2022253238 A1 WO2022253238 A1 WO 2022253238A1 CN 2022096328 W CN2022096328 W CN 2022096328W WO 2022253238 A1 WO2022253238 A1 WO 2022253238A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
message
perception
configuration information
sensing
Prior art date
Application number
PCT/CN2022/096328
Other languages
English (en)
French (fr)
Inventor
姜大洁
姚健
司晔
孙鹏
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023573478A priority Critical patent/JP2024520106A/ja
Priority to EP22815282.3A priority patent/EP4351179A1/en
Publication of WO2022253238A1 publication Critical patent/WO2022253238A1/zh
Priority to US18/522,703 priority patent/US20240098462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a message transmission method, a signal transmission method, a device and a communication device.
  • Future mobile communication systems such as Beyond 5th Generation (B5G) systems or 6th Generation (6G) systems, will have perception capabilities in addition to communication capabilities.
  • One or more devices with perception capabilities can perceive the orientation, distance, speed and other information of the target object through the transmission and reception of wireless signals, or detect, track, identify, and image the target object, event or environment, etc. .
  • the resolution of perception will be significantly improved compared with millimeter wave, so that 6G networks can provide more refined perception services.
  • the purposes of perception fall into two main categories.
  • the first type of purpose is perception for assisting communication or enhancing communication performance.
  • the base station provides more accurate beamforming alignment equipment by tracking the movement trajectory of the device;
  • the other type of purpose is perception that is not directly related to communication.
  • base stations monitor weather conditions through wireless signals, electronic devices recognize user gestures through millimeter wave wireless perception, and so on.
  • Perception methods can be divided into the following types:
  • the device uses the reflected signal of its own transmitted signal, such as echo, for sensing.
  • the transceiver is located at the same location, and different antennas can be used to sense the surrounding environment information of the device.
  • the transceiver is located at different locations, and the receiver uses the wireless signal transmitted by the transmitter for sensing.
  • base station A perceives the environmental information between base station A and base station B by receiving the wireless signal from base station B.
  • Interactive perception through information interaction between the perceiver and the target object, the subject, time, frequency, format, etc. of electromagnetic waves are agreed to complete the perception process.
  • the air interface design of the B5G system or 6G system will support wireless communication signals and wireless sensing signals at the same time, and realize the integrated design of communication and sensing functions through signal joint design and/or hardware sharing, etc. Integration), while transmitting information, it has the ability to perceive or provide perception services.
  • the benefits brought by the integration of synaesthesia include the following aspects: saving costs; reducing device size; reducing device power consumption; improving spectrum efficiency; reducing mutual interference between synaesthesias and improving system performance.
  • Embodiments of the present application provide a message transmission method, a signal transmission method, a device, and a communication device, which can solve the problem that sensing signals in the prior art cannot effectively meet sensing requirements.
  • a message transmission method including:
  • the second device receives the first message sent by the first device, where the first message is used to indicate at least one of the following:
  • a message transmission method including:
  • the first device sends a first message to the second device, and the first message is used to indicate at least one of the following:
  • a signal sending method including:
  • the third device receives the second message sent by the second device, the second message is used to indicate the configuration information of the first signal;
  • the first signal is a signal for perception or the first signal is a combination of perception and communication Signal;
  • the third device sends the first signal according to the configuration information of the first signal.
  • a message transmission device applied to a second device including:
  • the first receiving module is configured to receive a first message sent by the first device, and the first message is used to indicate at least one of the following:
  • a message transmission device which is applied to a first device, and the device includes:
  • a second sending module configured to send a first message to the second device, where the first message is used to indicate at least one of the following:
  • a signal sending device which is applied to a third device, including:
  • the fourth receiving module is configured to receive a second message sent by the second device, where the second message is used to indicate configuration information of the first signal;
  • the first signal is a signal for perception or the first signal is Sensing and communication fusion signals;
  • the fourth sending module is configured to send the first signal according to the configuration information of the first signal.
  • a communication device in a seventh aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor implement the steps of the method as described in the first aspect, or implement the steps of the method as described in the second aspect when the program or instruction is executed by the processor, or execute the program or instruction by the processor When realizing the steps of the method as described in the third aspect.
  • a communication device including a processor and a communication interface, wherein the communication interface is used to receive the first message sent by the first device, or the communication interface is used to send the first message to the second device A message; the first message is used to indicate at least one of the following:
  • the communication interface is configured to receive a second message sent by the second device, where the second message is used to indicate configuration information of the first signal;
  • the first signal is a signal for sensing or the first signal Fusing signals for perception and communication;
  • the processor is configured to send the first signal through the communication interface according to the configuration information of the first signal.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect, or, implement the steps of the method described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method as described in the second aspect, or implement the method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the The steps of the method, or to implement the steps of the method described in the second aspect, or to implement the steps of the method described in the third aspect.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal
  • the sending device and/or the first information receiving device so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the information of the first signal based on the perception requirement
  • the configuration information effectively meets the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the inconsistency of the signal type and parameter rules caused by other devices determining the first signal question.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 shows one of the schematic diagrams of the steps of the message transmission method provided by the embodiment of the present application
  • FIG. 3 shows the second schematic diagram of the steps of the message transmission method provided by the embodiment of the present application
  • FIG. 4 shows a schematic diagram of the steps of the signal transmission method provided by the embodiment of the present application.
  • FIG. 5 shows one of the structural schematic diagrams of the message transmission device provided by the embodiment of the present application.
  • Fig. 6 shows the second structural schematic diagram of the message transmission device provided by the embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a signal sending device provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 shows a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of a network-side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies, as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation 6G communication system .
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side equipment, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Scenario 1 The terminal device sends a millimeter wave sensing signal, and then receives the echo of the sensing signal, which is used to detect the user's gesture or scan the outline of an object in the black box.
  • the signal formats for different sensing purposes or sensing requirements are different.
  • the terminal knows its own sensing purpose, and also knows the format of the sensing signal corresponding to the sensing purpose.
  • the millimeter-wave frequency band used for sensing is an authorized frequency band, which requires unified management of the base station to avoid mutual interference between sensing signals and communication signals or between sensing signals and sensing signals.
  • Scenario 2 The terminal wants the base station to send a specific sensing signal, and the terminal receives the signal to detect the weather conditions between the base station and the terminal, or the building conditions, or the flow of people, etc.
  • Signal formats are different for different sensing purposes or sensing needs, and the base station needs to obtain the specific sensing purpose or sensing needs of the terminal before it can determine what format of sensing signal to send to meet the sensing needs of the terminal.
  • this embodiment of the present application provides a message transmission method, including:
  • Step 201 the second device receives a first message sent by the first device, and the first message is used to indicate at least one of the following:
  • the first device is a device with a need for perception.
  • the first device may be a base station, terminal, sidelink device, perception server, etc.
  • the second device is a control device for the first signal, similar to the location A calculation unit of a location management function (Location Management Function, LMF), the second device may be a base station, a terminal, a direct link sidelink device, a perception server, and the like.
  • LMF Location Management Function
  • the second device may be an independently configured device, or may be a unit attached to other devices; for example, the second device may be configured on the first device, or may be configured on the third device.
  • the sensing signal mentioned in the embodiment of the present application may also be referred to as a sensing signal, or a sensing and communication fusion signal.
  • Communication equipment perceives the orientation, distance, speed and other information of the target object through the transmission and reception of sensing signals, or detects, tracks, recognizes, and images the target object, event, or environment.
  • the perceptual resolution-related requirements include at least one of distance resolution, velocity resolution, angle resolution, imaging resolution, temperature resolution, air pressure resolution, and humidity resolution. one item.
  • the perceptual resolution-related requirements also include air quality-related resolution and the like.
  • the distance resolution requirement is 1 meter
  • the velocity resolution requirement is 1Km per hour
  • the angular resolution requirement is 2 degrees
  • the imaging resolution requirement is 5 cm by 5 cm
  • the temperature resolution requirement is 1 degree Celsius.
  • the perception distance-related requirements include at least one of a maximum perception distance and a perception distance interval.
  • the perceptual signal quality-related requirements include received signal strength, signal-to-noise ratio, signal-to-interference-noise ratio, signal-to-clutter ratio, signal sidelobe characteristics, and peak-to-average At least one of the Peak to Average Power Ratio (PAPR).
  • PAPR Peak to Average Power Ratio
  • the received signal strength of the sensing signal is greater than -80dBm, or the signal-to-noise ratio or signal-to-interference-noise ratio requirement is greater than 5dB, or the signal-to-clutter ratio requirement or the signal-clutter-noise ratio requirement is 10dB.
  • the signal strength of the side lobe of the sensing signal is 10dB lower than the signal strength of the main lobe; the requirement related to the quality of the sensing signal may also be the transmit power of the sensing signal, for example, the first device may obtain according to the estimated second device and The path loss between the first devices and the received signal strength requirement of the sensing signal are used to obtain the transmitting power requirement of the sensing signal.
  • the first device reports the PAPR requirement of the sensing signal to the second device.
  • the second device can configure the first device based on Orthogonal Frequency Division Multiplexing (OFDM) first device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • FMCW Frequency Modulated Continuous Wave
  • the perceived object-related requirements include weather conditions (temperature or humidity, etc.), or traffic monitoring objects such as vehicles, or crowd density, or environment, terrain or building conditions, Or human gestures, actions, etc.
  • the perceptual area-related requirements include specific areas in traffic monitoring categories, specific areas associated with reconstruction of 3D building scenes through perceptual signals, and the like.
  • the perceived delay-related requirements include at least one of the following:
  • the feedback time or feedback time window for the measured quantity associated with the sensory signal is the feedback time or feedback time window for the measured quantity associated with the sensory signal.
  • the time window for the first device or the third device to send the first signal after the first device sends the first message; or the time window for the first device or the third device to send the first signal after the second device receives the first message; or A time window for the first device to obtain feedback of sensory information after sending the first message.
  • the content indicated by the above-mentioned first message may be sent by one first message, or may be sent by multiple first messages, which is not specifically limited here.
  • the first message may directly indicate the perception-related requirements, or indirectly indicate the perception-related requirements by indicating the perception type, where the perception-related requirements associated with different perception types are different.
  • the first message directly indicates the perception-related needs
  • Table 1 shows the content included in the first message.
  • the first message indicates a perception type
  • the perception type is associated with perception-related requirements.
  • Table 2 shows the scenario where the base station sends the first signal
  • Table 3 shows the scenario where the terminal sends the first signal.
  • the method further includes:
  • the second device determines configuration information of the first signal; the first signal is a signal used for perception or the first signal is a fusion signal of perception and communication. That is, the second device determines the configuration information of the first signal according to the indication of the first message.
  • the method further includes:
  • the second device sends a second message to the first device and/or third device, where the second message is used to indicate configuration information of the first signal, so that the first device or third device sending the first signal according to configuration information of the first signal;
  • the first signal is a signal used for perception or the first signal is a fusion signal of perception and communication.
  • the third device may be the first signal sending device, or the first signal receiving device, specifically, a base station, a terminal, a sidelink device, or a perception server, etc., which is not specifically limited here.
  • the first message mentioned in the embodiment of this application may also indicate that the first signal is sent by the first device, or that the first signal is sent by the third device; The configuration information of a signal is sent to a corresponding device.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the waveform of the first signal for example, the second device determines according to the indication content of the first message that the first signal is OFDM, SC-FDMA, Orthogonal Time Frequency Space (OTFS), FMCW, and a pulse signal Which one is waiting for the signal;
  • the subcarrier spacing of the first signal for example, the minimum subcarrier spacing or the maximum subcarrier spacing or the subcarrier spacing range; wherein, the minimum subcarrier spacing of the OFDM system is generally set to be significantly greater than the maximum Doppler frequency offset; therefore, The minimum subcarrier spacing of the OFDM system can be calculated according to 10 Vmax*fc/c, where Vmax is the maximum moving speed, fc is the carrier frequency, and c represents the speed of light;
  • the guard interval of the first signal for example, the maximum guard interval or the minimum guard interval or the guard interval range; the time interval from the moment when the signal ends sending to the moment when the latest echo signal of the signal is received; this parameter is proportional to is based on the maximum sensing distance; for example, it can be calculated by 2dmax/c, dmax is the maximum sensing distance, for example, for a spontaneously received sensing signal, dmax represents the maximum distance from the sensing signal receiving and receiving point to the signal transmitting point; in some cases,
  • the OFDM signal cyclic prefix (Cyclic prefix, CP) can play the role of the minimum guard interval;
  • the bandwidth of the first signal for example, the maximum bandwidth or the minimum bandwidth or the bandwidth range; this parameter is inversely proportional to the distance resolution and can be obtained by c/2/delta_d, where delta_d is the distance resolution; c represents the speed of light;
  • this parameter is the time span of the first signal; such as minimum duration or maximum duration or duration range; this parameter is inversely proportional to rate resolution, this parameter is the time span of the perceived signal, mainly
  • this parameter can be calculated by c/2/delta_v/fc; where delta_v is the velocity resolution; fc is the carrier frequency; c represents the speed of light;
  • the time domain interval of the first signal is the time interval between two adjacent first signals; for example, the maximum time domain interval or the minimum time domain interval or time interval range; this parameter can be passed through c/2/fc /v_range is calculated; among them, v_range is the maximum speed minus the minimum speed; fc is the carrier frequency; c represents the speed of light;
  • the transmission signal power of the first signal for example, a value is taken every 2dBm from -20dBm to 23dBm; the second device can determine the transmission power according to the maximum sensing distance parameter indicated by the first message;
  • the signal format of the first signal for example, a channel sounding reference signal (Sounding Reference Signal, SRS), a demodulation reference signal (Demodulation Reference Sgnal, DMRS), a positioning reference signal (Positioning Reference Signals, PRS), etc., or other preset Defined signals, and related sequence formats and other information;
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Sgnal
  • PRS positioning reference signal
  • the signal direction of the first signal for example, what is the offset angle of the direction of the first signal based on the connection line between the first device and the second device (for example, it is used to control the possible interference of the first signal to neighboring cells );
  • the time resource of the first signal for example, the time slot index where the first signal is located or the symbol index of the time slot; wherein, the time resource is divided into two types, one is a one-time time resource, for example, one symbol sends an omnidirectional
  • one is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (which may include start time and end time), and each group of periodic time resources sends the same direction
  • the beam directions on the periodic time resources of different groups are different;
  • the frequency domain resource of the first signal includes the center frequency point, bandwidth, resource block RB or subcarrier of the first signal.
  • the above-mentioned second message may pass through layer 1 signaling, media access control layer control unit (Media Access Control Control Element, MAC CE), radio resource control (Radio Resource Control, RRC) Signaling, at least one item of system information block (System Information Block, SIB) signaling, and master information block (Master Information Block, MIB) signaling is sent.
  • Media Access Control Control Element Media Access Control Control Element, MAC CE
  • Radio Resource Control Radio Resource Control, RRC
  • SIB System Information Block
  • MIB Master Information Block
  • the second device may reject the perception requirements of the first device and notify the first device of the rejection message. equipment.
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • index 3 OTFS signal the M and N of its two-dimensional Fourier transform are 16 and 1024 respectively ... ...
  • the method further includes:
  • the first device detects the first signal or the echo of the first signal, and acquires a measurement related to perception; wherein the measurement related to perception includes at least one of the following:
  • the measurement amount includes: a measurement amount based on each antenna, and/or, a measurement amount based on each sensing resource.
  • the method also includes:
  • the first device determines the sensing result information related to the sensing requirement of the first device according to the sensing-related measurement quantity.
  • the first device sends the measurement quantity related to perception to the fourth device
  • the fourth device determines the perception result information related to the perception requirement of the first device according to the measurement quantity related to perception, and communicates with the fourth device
  • the sensing result information related to the sensing requirement of a device is sent to the first device.
  • the fourth device is the receiving/processing device of the feedback information of the first signal, which is similar to the calculation unit of the location management function LMF, and the fourth device may be a base station, a terminal, a sidelink device of a direct link, a perception server, etc. ; not specifically limited here. It should be further noted that the fourth device may be an independently configured device, or may be a unit attached to other devices; for example, the fourth device may be set on the first device, or on the second device, or Can be set on a third device.
  • the perception result information related to the perception requirements of the first device includes at least one of the following: information such as the orientation, distance, and speed of the target object, or detection, tracking, recognition, imaging, etc. of the target object, event, or environment result.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the embodiment of the present application also provides a message transmission method, including:
  • Step 301 the first device sends a first message to the second device, where the first message is used to indicate at least one of the following:
  • the perceptual resolution-related requirements include at least one of distance resolution, velocity resolution, angle resolution, imaging resolution, temperature resolution, air pressure resolution, and humidity resolution. one item.
  • the perceptual resolution-related requirements also include resolutions related to air quality. For example, the distance resolution requirement is 1 meter, or the velocity resolution requirement is 1Km per hour, the angular resolution requirement is 2 degrees, the imaging resolution requirement is 5 cm by 5 cm, and the temperature resolution requirement is 1 degree Celsius.
  • the perception distance-related requirements include at least one of a maximum perception distance and a perception distance interval.
  • the perceptual signal quality-related requirements include received signal strength, signal-to-noise ratio, signal-to-interference-noise ratio, signal-to-clutter ratio, signal sidelobe characteristics, and peak-to-average than at least one item in PAPR.
  • the received signal strength of the sensing signal is greater than -80dBm, or the signal-to-noise ratio or signal-to-interference-noise ratio requirement is greater than 5dB, or the signal-to-clutter ratio requirement or the signal-clutter-noise ratio requirement is 10dB.
  • the signal strength of the side lobe of the sensing signal is 10dB lower than the signal strength of the main lobe; the requirement related to the quality of the sensing signal may also be the transmit power of the sensing signal, for example, the first device may obtain according to the estimated second device and The path loss between the first devices and the received signal strength requirement of the sensing signal are used to obtain the transmitting power requirement of the sensing signal.
  • the first device reports the PAPR requirement of the sensing signal to the second device.
  • the second device can configure the first device based on Orthogonal Frequency Division Multiplexing (OFDM) first device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • FMCW Frequency Modulated Continuous Wave
  • the perceived object-related requirements include weather conditions (temperature or humidity, etc.), or traffic monitoring objects such as vehicles, or crowd density, or environment, terrain or building conditions, Or human gestures, actions, etc.
  • the perceptual area-related requirements include specific areas in traffic monitoring categories, specific areas associated with reconstruction of 3D building scenes through perceptual signals, and the like.
  • the perceived delay-related requirements include at least one of the following:
  • the feedback time or feedback time window for the measured quantity associated with the sensory signal is the feedback time or feedback time window for the measured quantity associated with the sensory signal.
  • the time window for the first device or the third device to send the first signal after the first device sends the first message; or the time window for the first device or the third device to send the first signal after the second device receives the first message; or A time window for the first device to obtain feedback of sensory information after sending the first message.
  • the content indicated by the above-mentioned first message may be sent by one first message, or may be sent by multiple first messages.
  • the first message may directly indicate the perception-related requirements, or indirectly indicate the perception-related requirements by indicating the perception type, where the perception-related requirements associated with different perception types are different.
  • the method further includes:
  • the first device receives a second message sent by the second device, where the second message is used to indicate configuration information of the first signal;
  • the first signal is a signal for sensing or the first signal is Sensing and communication fusion signals;
  • the first device sends the first signal according to configuration information of the first signal.
  • the method also includes:
  • the first device receives the first signal sent by the third device according to the configuration information of the first signal, wherein the configuration information of the first signal is sent by the second device to the third device through a second message.
  • a device; the first signal is a signal used for perception or the first signal is a fusion signal of perception and communication.
  • the first message mentioned in the embodiment of this application may also indicate that the first signal is sent by the first device, or that the first signal is sent by the third device; The configuration information of a signal is sent to a corresponding device.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the waveform of the first signal for example, the second device determines according to the indication content of the first message that the first signal is OFDM, SC-FDMA, Orthogonal Time Frequency Space (OTFS), FMCW, and a pulse signal Which one is waiting for the signal;
  • the subcarrier spacing of the first signal for example, the minimum subcarrier spacing or the maximum subcarrier spacing or the subcarrier spacing range; wherein, the minimum subcarrier spacing of the OFDM system is generally set to be significantly greater than the maximum Doppler frequency offset; therefore, The minimum subcarrier spacing of the OFDM system can be calculated according to 10Vmax*fc/c, where Vmax is the maximum moving speed, fc is the carrier frequency, and c represents the speed of light;
  • the guard interval of the first signal for example, the maximum guard interval or the minimum guard interval or the guard interval range; the time interval from the moment when the signal ends sending to the moment when the latest echo signal of the signal is received; this parameter is proportional to is based on the maximum sensing distance; for example, it can be calculated by 2dmax/c, dmax is the maximum sensing distance, for example, for a spontaneously received sensing signal, dmax represents the maximum distance from the sensing signal receiving and receiving point to the signal transmitting point; in some cases, OFDM signal cyclic prefix CP can play the role of minimum guard interval;
  • the bandwidth of the first signal for example, the maximum bandwidth or the minimum bandwidth or the bandwidth range; this parameter is inversely proportional to the distance resolution and can be obtained by c/2/delta_d, where delta_d is the distance resolution; c represents the speed of light;
  • this parameter is the time span of the first signal; such as minimum duration or maximum duration or duration range; this parameter is inversely proportional to rate resolution, this parameter is the time span of the perceived signal, mainly
  • this parameter can be calculated by c/2/delta_v/fc; where delta_v is the velocity resolution; fc is the carrier frequency; c represents the speed of light;
  • the time domain interval of the first signal is the time interval between two adjacent first signals; for example, the maximum time domain interval or the minimum time domain interval or time interval range; this parameter can be passed through c/2/fc /v_range is calculated; among them, v_range is the maximum speed minus the minimum speed; fc is the carrier frequency; c represents the speed of light;
  • the transmission signal power of the first signal for example, a value is taken every 2dBm from -20dBm to 23dBm; the second device can determine the transmission power according to the maximum sensing distance parameter indicated by the first message;
  • the signal format of the first signal for example, a channel sounding reference signal (Sounding Reference Signal, SRS), a demodulation reference signal (Demodulation Reference Sgnal, DMRS), a positioning reference signal (Positioning Reference Signals, PRS), etc., or other preset Defined signals, and related sequence formats and other information;
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Sgnal
  • PRS positioning reference signal
  • the signal direction of the first signal for example, what is the offset angle of the direction of the first signal based on the connection line between the first device and the second device (for example, it is used to control the possible interference of the first signal to neighboring cells );
  • the time resource of the first signal for example, the time slot index where the first signal is located or the symbol index of the time slot; wherein, the time resource is divided into two types, one is a one-time time resource, for example, one symbol sends an omnidirectional
  • one is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (which may include start time and end time), and each group of periodic time resources sends the same direction
  • the beam directions on the periodic time resources of different groups are different;
  • the frequency domain resource of the first signal includes the center frequency point, bandwidth, resource block RB or subcarrier of the first signal.
  • the above-mentioned second message may pass through layer 1 signaling, media access control layer control unit (Media Access Control Control Element, MAC CE), radio resource control (Radio Resource Control, RRC) Signaling, at least one item of system information block (System Information Block, SIB) signaling, and master information block (Master Information Block, MIB) signaling is sent.
  • Media Access Control Control Element Media Access Control Control Element, MAC CE
  • Radio Resource Control Radio Resource Control, RRC
  • SIB System Information Block
  • MIB Master Information Block
  • the second device may reject the perception requirements of the first device and notify the first device of the rejection message. equipment.
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • the index number is associated with the configuration information of the first signal.
  • the method also includes:
  • the first device detects the first signal or the echo of the first signal, and acquires a measurement related to perception; wherein the measurement related to perception includes at least one of the following:
  • the measurement amount includes: a measurement amount based on each antenna, and/or, a measurement amount based on each sensing resource.
  • the method also includes:
  • the first device determines the sensing result information related to the sensing requirement of the first device according to the sensing-related measurement quantity.
  • the method also includes:
  • the first device sends the perception-related measurement quantity to the fourth device, so that the fourth device determines the perception result information related to the perception requirement of the first device according to the perception-related measurement quantity;
  • the first device receives sensing result information related to the sensing requirement of the first device sent by the fourth device.
  • the perception result information related to the perception requirements of the first device includes at least one of the following: information such as the orientation, distance, and speed of the target object, or detection, tracking, recognition, imaging, etc. of the target object, event, or environment result.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the embodiment of the present application also provides a signal sending method, including:
  • Step 401 the third device receives a second message sent by the second device, the second message is used to indicate the configuration information of the first signal;
  • the first signal is a signal for sensing or the first signal is a sensing and communication fusion signals;
  • Step 402 the third device sends the first signal according to the configuration information of the first signal.
  • the second message is a second message sent by the second device after receiving the first message sent by the first device, and the first message is used to indicate at least one of the following:
  • the first device is a device with a need for perception.
  • the first device may be a base station, terminal, sidelink device, perception server, etc.
  • the second device is a control device for the first signal, similar to the location
  • the computing unit of the management function LMF, the second device may be a base station, a terminal, a direct link sidelink device, a perception server, and the like.
  • the second device may be an independently configured device, or may be a unit attached to other devices; for example, the second device may be configured on the first device, or may be configured on the third device.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the waveform of the first signal for example, the second device determines according to the indication content of the first message that the first signal is OFDM, SC-FDMA, Orthogonal Time Frequency Space (OTFS), FMCW, and a pulse signal Which one is waiting for the signal;
  • the subcarrier spacing of the first signal for example, the minimum subcarrier spacing or the maximum subcarrier spacing or the subcarrier spacing range; wherein, the minimum subcarrier spacing of the OFDM system is generally set to be significantly greater than the maximum Doppler frequency offset; therefore, The minimum subcarrier spacing of the OFDM system can be calculated according to 10Vmax*fc/c, where Vmax is the maximum moving speed, fc is the carrier frequency, and c represents the speed of light;
  • the guard interval of the first signal for example, the maximum guard interval or the minimum guard interval or the guard interval range; the time interval from the moment when the signal ends sending to the moment when the latest echo signal of the signal is received; this parameter is proportional to is based on the maximum sensing distance; for example, it can be calculated by 2dmax/c, dmax is the maximum sensing distance, for example, for a spontaneously received sensing signal, dmax represents the maximum distance from the sensing signal receiving and receiving point to the signal transmitting point; in some cases, OFDM signal cyclic prefix CP can play the role of minimum guard interval;
  • the bandwidth of the first signal for example, the maximum bandwidth or the minimum bandwidth or the bandwidth range; this parameter is inversely proportional to the distance resolution and can be obtained by c/2/delta_d, where delta_d is the distance resolution; c represents the speed of light;
  • this parameter is the time span of the first signal; such as minimum duration or maximum duration or duration range; this parameter is inversely proportional to rate resolution, this parameter is the time span of the perceived signal, mainly
  • this parameter can be calculated by c/2/delta_v/fc; where delta_v is the velocity resolution; fc is the carrier frequency; c represents the speed of light;
  • the time domain interval of the first signal is the time interval between two adjacent first signals; for example, the maximum time domain interval or the minimum time domain interval or time interval range; this parameter can be passed through c/2/fc /v_range is calculated; among them, v_range is the maximum speed minus the minimum speed; fc is the carrier frequency; c represents the speed of light;
  • the transmission signal power of the first signal for example, a value is taken every 2dBm from -20dBm to 23dBm; the second device can determine the transmission power according to the maximum sensing distance parameter indicated by the first message;
  • the signal format of the first signal for example, a channel sounding reference signal (Sounding Reference Signal, SRS), a demodulation reference signal (Demodulation Reference Sgnal, DMRS), a positioning reference signal (Positioning Reference Signals, PRS), etc., or other preset Defined signals, and related sequence formats and other information;
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Sgnal
  • PRS positioning reference signal
  • the signal direction of the first signal for example, what is the offset angle of the direction of the first signal based on the connection line between the first device and the second device (for example, it is used to control the possible interference of the first signal to neighboring cells );
  • the time resource of the first signal for example, the time slot index where the first signal is located or the symbol index of the time slot; wherein, the time resource is divided into two types, one is a one-time time resource, for example, one symbol sends an omnidirectional
  • one is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (which may include start time and end time), and each group of periodic time resources sends the same direction
  • the beam directions on the periodic time resources of different groups are different;
  • the frequency domain resource of the first signal includes the center frequency point, bandwidth, resource block RB or subcarrier of the first signal.
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the execution subject may be a device, or a control module in the device for executing the method.
  • the device execution method is taken as an example to describe the device provided in the embodiment of the present application.
  • the embodiment of the present application also provides a message transmission apparatus 500, which is applied to the second device, including:
  • the first receiving module 501 is configured to receive a first message sent by the first device, where the first message is used to indicate at least one of the following:
  • the perceptual resolution-related requirements include at least one of distance resolution, velocity resolution, angle resolution, imaging resolution, temperature resolution, air pressure resolution, and humidity resolution.
  • the requirement related to the perception distance includes at least one of a maximum perception distance and a perception distance interval.
  • the perceptual signal quality-related requirements include at least one of the received signal strength, signal-to-noise ratio, signal-to-interference-noise ratio, signal-to-clutter ratio, signal sidelobe characteristics, and peak-to-average ratio PAPR of the perceptual signal. one item.
  • the perceived delay-related requirements include at least one of the following:
  • the feedback time or feedback time window for the measured quantity associated with the sensory signal is the feedback time or feedback time window for the measured quantity associated with the sensory signal.
  • the device also includes:
  • the first determination module is configured to determine configuration information of a first signal; the first signal is a signal for perception or the first signal is a fusion signal of perception and communication.
  • the device also includes:
  • a first sending module configured to send a second message to the first device and/or a third device, where the second message is used to indicate configuration information of the first signal, to be used by the first device or the third device
  • the third device sends the first signal according to the configuration information of the first signal
  • the first signal is a signal used for perception or the first signal is a fusion signal of perception and communication.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the transmitted signal power of the first signal is the transmitted signal power of the first signal
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the message transmission device provided in the embodiment of the present application is a device capable of executing the above message transmission method, and all embodiments of the above message transmission method are applicable to the device, and can achieve the same or similar beneficial effects.
  • the embodiment of the present application also provides a message transmission device 600, which is applied to the first device, and the device includes:
  • the second sending module 601 is configured to send a first message to the second device, where the first message is used to indicate at least one of the following:
  • the perceptual resolution-related requirements include at least one of distance resolution, velocity resolution, angle resolution, imaging resolution, temperature resolution, air pressure resolution, and humidity resolution.
  • the requirement related to the perception distance includes at least one of a maximum perception distance and a perception distance interval.
  • the perceptual signal quality-related requirements include at least one of the received signal strength, signal-to-noise ratio, signal-to-interference-noise ratio, signal-to-clutter ratio, signal sidelobe characteristics, and peak-to-average ratio PAPR of the perceptual signal. one item.
  • the perceived delay-related requirements include at least one of the following:
  • the feedback time or feedback time window for the measured quantity associated with the sensory signal is the feedback time or feedback time window for the measured quantity associated with the sensory signal.
  • the device also includes:
  • the second receiving module is configured to receive a second message sent by the second device, where the second message is used to indicate configuration information of the first signal;
  • the first signal is a signal for sensing or the first
  • the signal is a fusion signal of perception and communication;
  • a third sending module configured to send the first signal according to configuration information of the first signal.
  • the device also includes:
  • the third receiving module is configured to receive the first signal sent by the third device according to the configuration information of the first signal, wherein the configuration information of the first signal is sent by the second device to the
  • the third device the first signal is a signal used for perception or the first signal is a fusion signal of perception and communication.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the transmitted signal power of the first signal is the transmitted signal power of the first signal
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • the device also includes:
  • An acquisition module configured to detect the first signal or the echo of the first signal, and acquire a measurement related to perception; wherein the measurement related to perception includes at least one of the following:
  • the measurement amount includes: a measurement amount based on each antenna, and/or, a measurement amount based on each sensing resource.
  • the device also includes:
  • the second determining module is configured to determine the sensing result information related to the sensing requirement of the first device according to the sensing-related measurement quantity.
  • the device also includes:
  • a measurement sending module configured to send the measurement quantity related to perception to the fourth device, so that the fourth device determines the perception result information related to the perception requirement of the first device according to the measurement quantity related to perception;
  • a result receiving module configured to receive sensing result information related to the sensing requirement of the first device sent by the fourth device.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the message transmission device provided in the embodiment of the present application is a device capable of executing the above message transmission method, and all embodiments of the above message transmission method are applicable to the device, and can achieve the same or similar beneficial effects.
  • the embodiment of the present application also provides a signal sending apparatus 700, which is applied to a third device, including:
  • the fourth receiving module 701 is configured to receive a second message sent by the second device, where the second message is used to indicate configuration information of the first signal; the first signal is a signal for sensing or the first signal Fusing signals for perception and communication;
  • the fourth sending module 702 is configured to send the first signal according to the configuration information of the first signal.
  • the configuration information of the first signal is used to indicate at least one of the following:
  • the transmitted signal power of the first signal is the transmitted signal power of the first signal
  • the second message includes:
  • index number is associated with the configuration information of the first signal.
  • the first device with a perception requirement sends the perception requirement to the second device through a first message
  • the second device determines the configuration information of the first signal according to the received perception requirement and notifies the first signal sender device and/or the first information receiving device, so that the first signal sending device and the first signal receiving device transmit the first signal according to the communication of the second device
  • the embodiment of the present application can determine the configuration of the first signal based on the perception requirement Information, effectively meet the different perception needs of different first devices; at the same time, the second device uniformly determines the configuration information of the first signal, avoiding the problem of inconsistent rules of signal types and parameters caused by other devices determining the first signal .
  • the signal sending device provided in the embodiment of the present application is a device capable of performing the above signal sending method, and all embodiments of the above signal sending method are applicable to the device, and can achieve the same or similar beneficial effects.
  • the message transmission device or signal sending device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the message transmission device or the signal sending device provided by the embodiment of the present application can realize each process realized by the method embodiments in Fig. 1 to Fig. 4 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 800, including a processor 801, a memory 802, and programs or instructions stored in the memory 802 and operable on the processor 801,
  • a communication device 800 including a processor 801, a memory 802, and programs or instructions stored in the memory 802 and operable on the processor 801,
  • the program or instruction is executed by the processor 801
  • each process of the above-mentioned method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device, the communication device is a first device or a second device or a third device, including a processor and a communication interface, wherein the communication interface is used to receive the first message, or the communication interface is used to send a first message to the second device; the first message is used to indicate at least one of the following: requirements related to perceptual resolution; requirements related to perceptual distance; requirements related to perceptual area; perceptual objects Related requirements; Perceptual error related requirements; Perceived signal quality related requirements; Perceptual delay related requirements; or, the communication interface is used to receive a second message sent by the second device, and the second message is used to indicate the first signal Configuration information; the first signal is a signal for sensing or the first signal is a sensing and communication fusion signal; the processor is configured to send the first signal through the communication interface according to the configuration information of the first signal a signal.
  • the communication interface is used to receive the first message, or the communication interface is used to send a first message to the second device
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 900 includes, but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, and a processor 910, etc. at least some of the components.
  • the terminal 900 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 910 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042, and the graphics processor 9041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 909 can be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 910 .
  • the radio frequency unit 901 is configured to receive a first message sent by the first device, and the first message is used to indicate at least one of the following:
  • the radio frequency unit 901 is further configured to send a first message to the second device, where the first message is used to indicate at least one of the following:
  • the radio frequency unit 901 is further configured to receive a second message sent by the second device, where the second message is used to indicate the configuration information of the first signal; the first signal is a signal used for perception or the first The signal is a fusion signal of perception and communication; and the first signal is sent according to the configuration information of the first signal.
  • the network device 1000 includes: an antenna 101 , a radio frequency device 102 , and a baseband device 103 .
  • the antenna 101 is connected to the radio frequency device 102 .
  • the radio frequency device 102 receives information through the antenna 101, and sends the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be sent and sends it to the radio frequency device 102
  • the radio frequency device 102 processes the received information and sends it out through the antenna 101 .
  • the above frequency band processing device may be located in the baseband device 103, and the method performed by the network side device in the above embodiment may be implemented in the baseband device 103, and the baseband device 103 includes a processor 104 and a memory 105.
  • the baseband device 103 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the baseband device 103 may also include a network interface 106 for exchanging information with the radio frequency device 102, such as a common public radio interface (Common Public Radio Interface, CPRI).
  • a network interface 106 for exchanging information with the radio frequency device 102, such as a common public radio interface (Common Public Radio Interface, CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 105 and operable on the processor 104, and the processor 104 calls the instructions or programs in the memory 105 to execute the modules shown in FIG. 10 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, where a program or instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above message transmission method or signal transmission method embodiment is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above message transmission method or signal transmission
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above message transmission method or signal transmission
  • An embodiment of the present application further provides a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the various processes in the above message transmission method or signal transmission method embodiment, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种消息传输方法、信号发送方法、装置及通信设备,属于通信技术领域,本申请实施例的方法包括:第二设备接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:感知分辨率相关需求;感知距离相关需求;感知区域相关需求;感知对象相关需求;感知误差相关需求;感知信号质量相关需求;感知时延相关需求。

Description

消息传输方法、信号发送方法、装置及通信设备
相关申请的交叉引用
本申请主张在2021年6月4日在中国提交的中国专利申请No.202110624807.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种消息传输方法、信号发送方法、装置及通信设备。
背景技术
未来移动通信***,例如超第5代(Beyond 5 th Generation,B5G)***或第6代(6 th Generation,6G)***,除了具备通信能力之外,还将具备感知能力。具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备大带宽能力的小基站在6G网络的部署,感知的分辨率相比毫米波将明显提升,从而使得6G网络能够提供更精细的感知服务。
感知的目的主要分为两大类。第一类目的是感知用于辅助通信或者增强通信性能,例如基站通过跟踪设备的移动轨迹以提供更精准的波束赋形对准设备;另一类目的是与通信没有直接关系的感知,例如基站通过无线信号对天气情况进行监测,电子设备通过毫米波无线感知识别用户的手势等等。
感知方式可以分为以下几种:
主动感知:设备利用自身发射信号的反射信号例如回波进行感知,收发机位于同一位置,可采用不同天线,可以感知设备周围环境信息。
被动感知:收发机位于不同位置,接收机利用发送机发射的无线信号进行感知,例如,基站A通过接收来自基站B的无线信号感知基站A和基站B之间的环境信息。
交互感知:感知者与目标对象之间通过信息交互,对电磁波发送的主体、时间、频率、格式等进行约定,完成感知的过程。
B5G***或6G***的空口设计,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信、感知功能一体化设计(可简称为通感一体化),在进行信息传递的同时,具备感知能力或者提供感知服务。通感一体化带来的好处包括如下几个方面:节约成本;减小设备尺寸;降低设备功耗;提升频谱效率;减小通感间的互干扰,提升***性能。
但是在实际应用的一些场景中,由于终端和基站对感知信号的格式等理解不一致或者对感知需求的理解不一致,易导致感知信号不能有效满足感知需求的问题。
发明内容
本申请实施例提供一种消息传输方法、信号发送方法、装置及通信设备,能够解决现有技术中感知信号不能有效满足感知需求的问题。
第一方面,提供了一种消息传输方法,包括:
第二设备接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求
第二方面,提供了一种消息传输方法,包括:
第一设备向第二设备发送第一消息,所述第一消息用于指示以下至少一 项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
第三方面,提供了一种信号发送方法,包括:
第三设备接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
所述第三设备根据所述第一信号的配置信息,发送所述第一信号。
第四方面,提供了一种消息传输装置,应用于第二设备,包括:
第一接收模块,用于接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
第五方面,提供了一种消息传输装置,应用于第一设备,所述装置包括:
第二发送模块,用于向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
第六方面,提供了一种信号发送装置,应用于第三设备,包括:
第四接收模块,用于接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
第四发送模块,用于根据所述第一信号的配置信息,发送所述第一信号。
第七方面,提供了一种通信设备,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤,或者所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一设备发送的第一消息,或者,所述通信接口用于向第二设备发送第一消息;所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求;
或者,所述通信接口用于接收第二设备发送的第二消息,所述第二消息 用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;所述处理器用于根据所述第一信号的配置信息通过所述通信接口发送所述第一信号。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者,实现如第三方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法,或实现如第三方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行,以实现如第一方面所述的方法的步骤,或以实现如第二方面所述的方法的步骤,或以实现如第三方面所述的方法的步骤。
在本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
附图说明
图1表示本申请实施例可应用的一种无线通信***的框图;
图2表示本申请实施例提供的消息传输方法的步骤示意图之一;
图3表示本申请实施例提供的消息传输方法的步骤示意图之二;
图4表示本申请实施例提供的信号发送方法的步骤示意图;
图5表示本申请实施例提供的消息传输装置的结构示意图之一;
图6表示本申请实施例提供的消息传输装置的结构示意图之二;
图7表示本申请实施例提供的信号发送装置的结构示意图;
图8表示本申请实施例提供的通信设备的结构示意图;
图9表示本申请实施例提供的终端的结构示意图;
图10表示本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以 上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代6G通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的消息传输方法、信号发送方法、装置及通信设备进行详细地说明。
本申请实施例涉及的应用场景至少包括:
场景1:终端设备发送毫米波感知信号,然后接收该感知信号的回波,用来检测用户的手势或者用于扫描黑盒子中的物体轮廓等目的。不同感知目 的或感知需求的信号格式有所不同。终端清楚自己的感知目的,也知道该感知目的对应的感知信号的格式是怎样的。但是该用于感知的毫米波频段是授权频段,需要基站的统一管理,才能避免感知信号和通信信号间或者感知信号和感知信号间的相互干扰。
场景2:终端希望基站发送一种特定的感知信号,终端接收该信号,用来检测基站和终端之间的天气情况,或者建筑物情况,或者人流情况等。不同感知目的或感知需求的信号格式有所不同,而基站需要获取终端的具体感知目的或感知需求是什么,然后才能够确定该发什么格式的感知信号来满足终端的感知需求。
如图2所示,本申请实施例提供一种消息传输方法,包括:
步骤201,第二设备接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
本申请实施例中,第一设备为有感知需求的设备,该第一设备可以为基站、终端、直通链路sidelink设备、感知服务器等,而第二设备为第一信号的控制设备,类似位置管理功能(Location Management Function,LMF)的计算单元,该第二设备可以为基站、终端、直通链路sidelink设备、感知服务器等。
需要说明的是,第二设备可以为一个独立设置的设备,也可以为附着于其他设备上的单元;例如,第二设备可以设置于第一设备上,也可以设置于第三设备上。
本申请实施例提及的感知信号也可以称为用于感知的信号,或感知和通信融合信号。通信设备通过感知信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。
在本申请的至少一个可选实施例中,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。所述感知分辨率相关需求还包括空气质量相关的分辨率等。例如,距离分辨率需求为1米,或速度分辨率需求是1Km每小时,角度分辨率需求是2度,成像分辨率需求为5厘米乘5厘米,温度分辨率为1摄氏度等。
在本申请的至少一个可选实施例中,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
在本申请的至少一个可选实施例中,所述感知信号质量相关需求包括所述感知信号的接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比(Peak to Average Power Ratio,PAPR)中的至少一项。例如,感知信号的接收信号强度为大于-80dBm,或信噪比或信干噪比需求为大于5dB,或信号杂波比需求或者信号杂波噪声比需求为10dB。再例如,感知信号的旁瓣信号强度比主瓣信号强度低10dB;所述感知信号质量相关需求还可以是所述感知信号的发射功率大小,例如第一设备可以根据估计得到的第二设备和第一设备间的路径损耗,以及感知信号的接收信号强度需求得到所述感知信号的发射功率需求。
例如,第一设备将感知信号的PAPR需求上报给第二设备,如果PAPR需求较宽松,第二设备可以为第一设备配置基于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)的第一信号;如果PAPR需求较严格,第二设备可以为第一设备配置基于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)的感知信号或者基于调频连续波调频连续波雷达(Frequency Modulated Continuous Wave, FMCW)的第一信号。
在本申请的至少一个可选实施例中,所述感知对象相关需求包括天气情况(温度或者湿度等),或者交通监测类的对象例如车辆,或者人群密度,或者环境,地形或者建筑物情况,或者人的手势,动作等。
在本申请的至少一个可选实施例中,所述感知区域相关需求包括交通监测类中的具体区域,通过感知信号重构3D建筑物场景关联的具体区域等。
在本申请的至少一个可选实施例中,所述感知时延相关需求包括下述至少一项:
感知信号的发送时间或发送时间窗;
与感知信号关联的测量量的反馈时间或反馈时间窗。
例如第一设备发送第一消息后第一设备或第三设备发送第一信号的时间窗口;或者第二设备接收到第一消息后第一设备或第三设备发送第一信号的时间窗口;或者第一设备发送第一消息后获得感知信息反馈的时间窗口。
需要说明的是,本申请的至少一个实施例中,上述第一消息指示的内容可以通过一条第一消息发送,也可以通过多条第一消息发送,在此不做具体限定。
进一步需要说明的是,本申请实施例中,第一消息可以直接指示感知相关需求,也可以通过指示感知类型来间接指示感知相关需求,其中不同感知类型关联的感知相关需求不同。
例如,第一消息直接指示感知相关需求,如表1所示为第一消息包括的内容。
表1
Figure PCTCN2022096328-appb-000001
Figure PCTCN2022096328-appb-000002
再例如,第一消息指示感知类型,感知类型关联感知相关需求。如表2所示为基站发送第一信号的场景,如表3所示为终端发送第一信号的场景。
表2
Figure PCTCN2022096328-appb-000003
表3
Figure PCTCN2022096328-appb-000004
Figure PCTCN2022096328-appb-000005
作为本申请的一个可选实施例,所述方法还包括:
所述第二设备确定第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。即所述第二设备根据所述第一消息的指示,确定所述第一信号的配置信息。
作为本申请的另一个可选实施例,所述方法还包括:
所述第二设备向所述第一设备和/或第三设备发送第二消息,所述第二消息用于指示所述第一信号的配置信息,以由所述第一设备或第三设备根据所述第一信号的配置信息发送所述第一信号;
其中,所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
本申请实施例中,第三设备可以是第一信号发送设备,也可以是第一信号接收设备,具体可以是基站,终端,sidelink设备,或感知服务器等,在此不做具体限定。
需要说明的是,本申请实施例中提及的第一消息还可以指示由第一设备发送第一信号,或者由第三设备发送第一信号;则第二设备根据第一消息的指示将第一信号的配置信息发送至对应的设备。
其中,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;例如,第二设备根据第一消息的指示内容来确定第一信号是OFDM,SC-FDMA,正交时频空(Orthogonal Time Frequency Space,OTFS),FMCW,脉冲信号等信号的哪一种;
所述第一信号的子载波间隔;例如,最小子载波间隔或最大子载波间隔或子载波间隔范围;其中,OFDM***的最小子载波间隔一般设置为明显大于最大多普勒频偏;因此,OFDM***的最小子载波间隔可以根据10 Vmax*fc/c计算得到,其中Vmax是最大移动速度,fc是载频,c代表光速;
所述第一信号的保护间隔;例如,最大保护间隔或最小保护间隔或保护间隔范围;从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离,例如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用;
所述第一信号的带宽;例如最大带宽或最小带宽或带宽范围;该参数反比于距离分辨率,可以通过c/2/delta_d得到,其中delta_d是距离分辨率;c代表光速;
所述第一信号的持续时间;该参数是第一信号的时间跨度;例如最小持续时间或最大持续时间或持续时间范围;该参数反比于速率分辨率,该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v是速度分辨率;fc是载频;c代表光速;
所述第一信号的时域间隔;该参数是相邻两个第一信号之间的时间间隔;例如最大时域间隔或最小时域间隔或时间间隔范围;该参数可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度;fc是载频;c代表光速;
所述第一信号的发送信号功率;例如从-20dBm到23dBm每隔2dBm取一个值;第二设备可以根据第一消息指示的最大感知距离参数来确定发射功率;
所述第一信号的信号格式;例如是信道探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Sgnal,DMRS),定位参考信号(Positioning Reference Signals,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
所述第一信号的信号方向;例如第一信号的方向以第一设备和第二设备的连线为基准角度的偏移角度是多少(例如用于控制第一信号的对邻区的可 能干扰);
所述第一信号的时间资源;例如第一信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的第一信号,不同组的周期性时间资源上的波束方向不同;
所述第一信号的频域资源;包括第一信号的中心频点,带宽,资源块RB或者子载波等。
本申请的至少一个可选实施例中,上述第二消息可以通过层1信令,媒体接入控制层控制单元(Media Access Control Control Element,MAC CE),无线资源控制(Radio Resource Control,RRC)信令,***信息块(System Information Block,SIB)信令,主信息块(Master Information Block,MIB)信令的至少一项来发送。
作为本申请的至少一个可选实施例,若第二设备基于第一消息的指示无法得满足感知需求的配置信息,则第二设备可以拒绝第一设备的感知需求,并将拒绝消息通知第一设备。
在本申请的至少一个可选实施例中,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。
换言之,第一信号的配置信息的全部或部分选项可以联合编码,则第二消息只需携带索引编号,该索引编号与第一信号的配置信息关联。如表4所示:
表4
索引编号 第一信号的配置信息
索引1 OFDM信号,其子载波间隔是60KHz,CP是normal CP等
索引2 OFDM信号,其子载波间隔是60KHz,CP是扩展CP等
索引3 OTFS信号,其二维傅里叶变换的M和N分别是16和1024
进一步的,在第二设备向第一设备和/或第三设备发送第一信号的配置信息后,所述方法还包括:
所述第一设备检测第一信号或第一信号的回波,获取与感知相关的测量量;其中,所述与感知相关的测量量包括下述至少一项:
信道矩阵;
信道状态信息;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度;
反射点的信息;
目标雷达散射截面积信息;
多普勒扩展;
多普勒频移;
天线间的相位差;
天线间的时延差。
其中,所述测量量包括:基于每个天线的测量量,和/或,基于每个感知资源的测量量。
进一步的,所述方法还包括:
所述第一设备根据与感知相关的测量量,确定与所述第一设备感知需求相关的感知结果信息。
或者,第一设备将与感知相关的测量量发送至第四设备,由第四设备根据与感知相关的测量量确定与所述第一设备感知需求相关的感知结果信息,并将与所述第一设备感知需求相关的感知结果信息发送至第一设备。
需要说明的是,该第四设备为第一信号的反馈信息的接收/处理设备,类似位置管理功能LMF的计算单元,该第四设备可以为基站、终端、直通链路 sidelink设备、感知服务器等;在此不做具体限定。进一步需要说明的是,该第四设备可以是独立设置的设备,也可以为附着于其他设备上的单元;例如,第四设备可以设置于第一设备上,也可以设置于第二设备,也可以设置在第三设备上。
例如,与所述第一设备感知需求相关的感知结果信息包括以下至少一项:目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等结果。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
如图3所示,本申请实施例还提供一种消息传输方法,包括:
步骤301,第一设备向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
在本申请的至少一个可选实施例中,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。所述感知分辨率相关需求还包括空气质量相 关的分辨率等。例如,距离分辨率需求为1米,或速度分辨率需求是1Km每小时,角度分辨率需求是2度,成像分辨率需求为5厘米乘5厘米,温度分辨率为1摄氏度等。
在本申请的至少一个可选实施例中,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
在本申请的至少一个可选实施例中,所述感知信号质量相关需求包括所述感知信号的接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比PAPR中的至少一项。例如,感知信号的接收信号强度为大于-80dBm,或信噪比或信干噪比需求为大于5dB,或信号杂波比需求或者信号杂波噪声比需求为10dB。再例如,感知信号的旁瓣信号强度比主瓣信号强度低10dB;所述感知信号质量相关需求还可以是所述感知信号的发射功率大小,例如第一设备可以根据估计得到的第二设备和第一设备间的路径损耗,以及感知信号的接收信号强度需求得到所述感知信号的发射功率需求。
例如,第一设备将感知信号的PAPR需求上报给第二设备,如果PAPR需求较宽松,第二设备可以为第一设备配置基于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)的第一信号;如果PAPR需求较严格,第二设备可以为第一设备配置基于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)的感知信号或者基于调频连续波调频连续波雷达(Frequency Modulated Continuous Wave,FMCW)的第一信号。
在本申请的至少一个可选实施例中,所述感知对象相关需求包括天气情况(温度或者湿度等),或者交通监测类的对象例如车辆,或者人群密度,或者环境,地形或者建筑物情况,或者人的手势,动作等。
在本申请的至少一个可选实施例中,所述感知区域相关需求包括交通监测类中的具体区域,通过感知信号重构3D建筑物场景关联的具体区域等。
在本申请的至少一个可选实施例中,所述感知时延相关需求包括下述至少一项:
感知信号的发送时间或发送时间窗;
与感知信号关联的测量量的反馈时间或反馈时间窗。
例如第一设备发送第一消息后第一设备或第三设备发送第一信号的时间窗口;或者第二设备接收到第一消息后第一设备或第三设备发送第一信号的时间窗口;或者第一设备发送第一消息后获得感知信息反馈的时间窗口。
需要说明的是,本申请的至少一个实施例中,上述第一消息指示的内容可以通过一条第一消息发送,也可以通过多条第一消息发送。
进一步需要说明的是,本申请实施例中,第一消息可以直接指示感知相关需求,也可以通过指示感知类型来间接指示感知相关需求,其中不同感知类型关联的感知相关需求不同。
作为本申请的一个可选实施例,所述方法还包括:
所述第一设备接收所述第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
所述第一设备根据所述第一信号的配置信息发送所述第一信号。
或者,所述方法还包括:
所述第一设备接收第三设备根据所述第一信号的配置信息发送的第一信号,其中,所述第一信号的配置信息由所述第二设备通过第二消息发送至所述第三设备;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
需要说明的是,本申请实施例中提及的第一消息还可以指示由第一设备发送第一信号,或者由第三设备发送第一信号;则第二设备根据第一消息的指示将第一信号的配置信息发送至对应的设备。
其中,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;例如,第二设备根据第一消息的指示内容来确定第一信号是OFDM,SC-FDMA,正交时频空(Orthogonal Time Frequency Space,OTFS),FMCW,脉冲信号等信号的哪一种;
所述第一信号的子载波间隔;例如,最小子载波间隔或最大子载波间隔或子载波间隔范围;其中,OFDM***的最小子载波间隔一般设置为明显大于最大多普勒频偏;因此,OFDM***的最小子载波间隔可以根据10Vmax*fc/c计算得到,其中Vmax是最大移动速度,fc是载频,c代表光速;
所述第一信号的保护间隔;例如,最大保护间隔或最小保护间隔或保护间隔范围;从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离,例如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀CP可以起到最小保护间隔的作用;
所述第一信号的带宽;例如最大带宽或最小带宽或带宽范围;该参数反比于距离分辨率,可以通过c/2/delta_d得到,其中delta_d是距离分辨率;c代表光速;
所述第一信号的持续时间;该参数是第一信号的时间跨度;例如最小持续时间或最大持续时间或持续时间范围;该参数反比于速率分辨率,该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v是速度分辨率;fc是载频;c代表光速;
所述第一信号的时域间隔;该参数是相邻两个第一信号之间的时间间隔;例如最大时域间隔或最小时域间隔或时间间隔范围;该参数可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度;fc是载频;c代表光速;
所述第一信号的发送信号功率;例如从-20dBm到23dBm每隔2dBm取一个值;第二设备可以根据第一消息指示的最大感知距离参数来确定发射功率;
所述第一信号的信号格式;例如是信道探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Sgnal,DMRS),定位参考信号(Positioning Reference Signals,PRS)等,或者其他预定义的信 号,以及相关的序列格式等信息;
所述第一信号的信号方向;例如第一信号的方向以第一设备和第二设备的连线为基准角度的偏移角度是多少(例如用于控制第一信号的对邻区的可能干扰);
所述第一信号的时间资源;例如第一信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的第一信号,不同组的周期性时间资源上的波束方向不同;
所述第一信号的频域资源;包括第一信号的中心频点,带宽,资源块RB或者子载波等。
本申请的至少一个可选实施例中,上述第二消息可以通过层1信令,媒体接入控制层控制单元(Media Access Control Control Element,MAC CE),无线资源控制(Radio Resource Control,RRC)信令,***信息块(System Information Block,SIB)信令,主信息块(Master Information Block,MIB)信令的至少一项来发送。
作为本申请的至少一个可选实施例,若第二设备基于第一消息的指示无法得满足感知需求的配置信息,则第二设备可以拒绝第一设备的感知需求,并将拒绝消息通知第一设备。
在本申请的至少一个可选实施例中,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。换言之,第一信号的配置信息的全部或部分选项可以联合编码,则第二消息只需携带索引编号,该索引编号与第一信号的配置信息关联。
进一步的,本申请的至少一个实施例中,所述方法还包括:
所述第一设备检测第一信号或第一信号的回波,获取与感知相关的测量量;其中,所述与感知相关的测量量包括下述至少一项:
信道矩阵;
信道状态信息;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度;
反射点的信息;
目标雷达散射截面积信息;
多普勒扩展;
多普勒频移;
天线间的相位差;
天线间的时延差。
其中,所述测量量包括:基于每个天线的测量量,和/或,基于每个感知资源的测量量。
进一步的,所述方法还包括:
所述第一设备根据与感知相关的测量量,确定与所述第一设备感知需求相关的感知结果信息。
或者,所述方法还包括:
所述第一设备将与感知相关的测量量发送至第四设备,以由第四设备根据与感知相关的测量量确定与所述第一设备感知需求相关的感知结果信息;
所述第一设备接收所述第四设备发送的与所述第一设备感知需求相关的感知结果信息。
例如,与所述第一设备感知需求相关的感知结果信息包括以下至少一项:目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等结果。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送 至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
如图4所示,本申请实施例还提供一种信号发送方法,包括:
步骤401,第三设备接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
步骤402,所述第三设备根据所述第一信号的配置信息,发送所述第一信号。
需要说明的是,该第二消息是第二设备在接收到第一设备发送的第一消息后发送的第二消息,该第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
本申请实施例中,第一设备为有感知需求的设备,该第一设备可以为基站、终端、直通链路sidelink设备、感知服务器等,而第二设备为第一信号的控制设备,类似位置管理功能LMF的计算单元,该第二设备可以为基站、终端、直通链路sidelink设备、感知服务器等。
需要说明的是,第二设备可以为一个独立设置的设备,也可以为附着于其他设备上的单元;例如,第二设备可以设置于第一设备上,也可以设置于 第三设备上。
在本申请的至少一个实施例中,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;例如,第二设备根据第一消息的指示内容来确定第一信号是OFDM,SC-FDMA,正交时频空(Orthogonal Time Frequency Space,OTFS),FMCW,脉冲信号等信号的哪一种;
所述第一信号的子载波间隔;例如,最小子载波间隔或最大子载波间隔或子载波间隔范围;其中,OFDM***的最小子载波间隔一般设置为明显大于最大多普勒频偏;因此,OFDM***的最小子载波间隔可以根据10Vmax*fc/c计算得到,其中Vmax是最大移动速度,fc是载频,c代表光速;
所述第一信号的保护间隔;例如,最大保护间隔或最小保护间隔或保护间隔范围;从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离;例如,可以通过2dmax/c计算得到,dmax是最大感知距离,例如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀CP可以起到最小保护间隔的作用;
所述第一信号的带宽;例如最大带宽或最小带宽或带宽范围;该参数反比于距离分辨率,可以通过c/2/delta_d得到,其中delta_d是距离分辨率;c代表光速;
所述第一信号的持续时间;该参数是第一信号的时间跨度;例如最小持续时间或最大持续时间或持续时间范围;该参数反比于速率分辨率,该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc计算得到;其中,delta_v是速度分辨率;fc是载频;c代表光速;
所述第一信号的时域间隔;该参数是相邻两个第一信号之间的时间间隔;例如最大时域间隔或最小时域间隔或时间间隔范围;该参数可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度;fc是载频;c代表光速;
所述第一信号的发送信号功率;例如从-20dBm到23dBm每隔2dBm取一个值;第二设备可以根据第一消息指示的最大感知距离参数来确定发射功率;
所述第一信号的信号格式;例如是信道探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Sgnal,DMRS),定位参考信号(Positioning Reference Signals,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
所述第一信号的信号方向;例如第一信号的方向以第一设备和第二设备的连线为基准角度的偏移角度是多少(例如用于控制第一信号的对邻区的可能干扰);
所述第一信号的时间资源;例如第一信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的第一信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的第一信号,不同组的周期性时间资源上的波束方向不同;
所述第一信号的频域资源;包括第一信号的中心频点,带宽,资源块RB或者子载波等。
在本申请的至少一个可选实施例中,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。
换言之,第一信号的配置信息的全部或部分选项可以联合编码,则第二消息只需携带索引编号,该索引编号与第一信号的配置信息关联。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和 第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
需要说明的是,本申请实施例提供的方法,执行主体可以为装置,或者,该装置中的用于执行方法的控制模块。本申请实施例中以装置执行方法为例,说明本申请实施例提供的装置。
如图5所示,本申请实施例还提供一种消息传输装置500,应用于第二设备,包括:
第一接收模块501,用于接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
作为一个可选实施例,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。
作为一个可选实施例,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
作为一个可选实施例,所述感知信号质量相关需求包括所述感知信号的接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比PAPR中的至少一项。
作为一个可选实施例,所述感知时延相关需求包括下述至少一项:
感知信号的发送时间或发送时间窗;
与感知信号关联的测量量的反馈时间或反馈时间窗。
作为一个可选实施例,所述装置还包括:
第一确定模块,用于确定第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
作为一个可选实施例,所述装置还包括:
第一发送模块,用于向所述第一设备和/或第三设备发送第二消息,所述第二消息用于指示所述第一信号的配置信息,以由所述第一设备或第三设备根据所述第一信号的配置信息发送所述第一信号;
其中,所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
作为一个可选实施例,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;
所述第一信号的子载波间隔;
所述第一信号的保护间隔;
所述第一信号的带宽;
所述第一信号的持续时间;
所述第一信号的时域间隔;
所述第一信号的发送信号功率;
所述第一信号的信号格式;
所述第一信号的信号方向;
所述第一信号的时间资源;
所述第一信号的频域资源。
作为一个可选实施例,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
需要说明的是,本申请实施例提供的消息传输装置是能够执行上述消息传输方法的装置,则上述消息传输方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图6所示,本申请实施例还提供一种消息传输装置600,应用于第一设备,所述装置包括:
第二发送模块601,用于向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
作为一个可选实施例,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。
作为一个可选实施例,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
作为一个可选实施例,所述感知信号质量相关需求包括所述感知信号的 接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比PAPR中的至少一项。
作为一个可选实施例,所述感知时延相关需求包括下述至少一项:
感知信号的发送时间或发送时间窗;
与感知信号关联的测量量的反馈时间或反馈时间窗。
作为一个可选实施例,所述装置还包括:
第二接收模块,用于接收所述第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
第三发送模块,用于根据所述第一信号的配置信息发送所述第一信号。
作为一个可选实施例,所述装置还包括:
第三接收模块,用于接收第三设备根据所述第一信号的配置信息发送的第一信号,其中,所述第一信号的配置信息由所述第二设备通过第二消息发送至所述第三设备;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
作为一个可选实施例,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;
所述第一信号的子载波间隔;
所述第一信号的保护间隔;
所述第一信号的带宽;
所述第一信号的持续时间;
所述第一信号的时域间隔;
所述第一信号的发送信号功率;
所述第一信号的信号格式;
所述第一信号的信号方向;
所述第一信号的时间资源;
所述第一信号的频域资源。
作为一个可选实施例,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。
作为一个可选实施例,所述装置还包括:
获取模块,用于检测第一信号或第一信号的回波,获取与感知相关的测量量;其中,所述与感知相关的测量量包括下述至少一项:
信道矩阵;
信道状态信息;
多径信道中每条径的功率;
多径信道中每条径的时延;
多径信道中每条径的角度;
反射点的信息;
目标雷达散射截面积信息;
多普勒扩展;
多普勒频移;
天线间的相位差;
天线间的时延差。
作为一个可选实施例,所述测量量包括:基于每个天线的测量量,和/或,基于每个感知资源的测量量。
作为一个可选实施例,所述装置还包括:
第二确定模块,用于根据与感知相关的测量量,确定与所述第一设备感知需求相关的感知结果信息。
作为一个可选实施例,所述装置还包括:
测量发送模块,用于将与感知相关的测量量发送至第四设备,以由第四设备根据与感知相关的测量量确定与所述第一设备感知需求相关的感知结果信息;
结果接收模块,用于接收所述第四设备发送的与所述第一设备感知需求相关的感知结果信息。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
需要说明的是,本申请实施例提供的消息传输装置是能够执行上述消息传输方法的装置,则上述消息传输方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图7所示,本申请实施例还提供一种信号发送装置700,应用于第三设备,包括:
第四接收模块701,用于接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
第四发送模块702,用于根据所述第一信号的配置信息,发送所述第一信号。
作为一个可选实施例,所述第一信号的配置信息用于指示下述至少一项:
所述第一信号的波形;
所述第一信号的子载波间隔;
所述第一信号的保护间隔;
所述第一信号的带宽;
所述第一信号的持续时间;
所述第一信号的时域间隔;
所述第一信号的发送信号功率;
所述第一信号的信号格式;
所述第一信号的信号方向;
所述第一信号的时间资源;
所述第一信号的频域资源。
作为一个可选实施例,所述第二消息包括:
所述第一信号的配置信息;
或者,
索引编号,所述索引编号与所述第一信号的配置信息关联。
本申请实施例中,有感知需求的第一设备将感知需求通过第一消息发送至第二设备,第二设备根据接收到的感知需求来确定第一信号的配置信息并通知给第一信号发送设备和/或第一信息接收设备,以使第一信号发送设备和第一信号接收设备根据第二设备的通信进行第一信号的传输;本申请实施例可以基于感知需求确定第一信号的配置信息,有效满足不同第一设备的不同感知需求;同时,由第二设备统一确定第一信号的配置信息,避免了由其他设备来确定第一信号导致的信号类型和参数的规则不统一的问题。
需要说明的是,本申请实施例提供的信号发送装置是能够执行上述信号发送方法的装置,则上述信号发送方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本申请实施例中的消息传输装置或信号发送装置可以是装置,具有操作***的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的消息传输装置或信号发送装置能够实现图1至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里 不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,该程序或指令被处理器801执行时实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备或第二设备或第三设备,包括处理器和通信接口,其中,所述通信接口用于接收第一设备发送的第一消息,或者,所述通信接口用于向第二设备发送第一消息;所述第一消息用于指示以下至少一项:感知分辨率相关需求;感知距离相关需求;感知区域相关需求;感知对象相关需求;感知误差相关需求;感知信号质量相关需求;感知时延相关需求;或者,所述通信接口用于接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;所述处理器用于根据所述第一信号的配置信息通过所述通信接口发送所述第一信号。该通信设备实施例是与上述通信设备侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。在该通信设备为终端时,具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等中的至少部分部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器910逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器 (Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,射频单元901,用于接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
或者,射频单元901,还用于向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
感知分辨率相关需求;
感知距离相关需求;
感知区域相关需求;
感知对象相关需求;
感知误差相关需求;
感知信号质量相关需求;
感知时延相关需求。
或者,射频单元901,还用于接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;根据所述第一信号的配置信息,发送所述第一信号。
在通信设备为网络侧设备时,如图10所示,该网络设备1000包括:天线101、射频装置102、基带装置103。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
上述频带处理装置可以位于基带装置103中,以上实施例中网络侧设备 执行的方法可以在基带装置103中实现,该基带装置103包括处理器104和存储器105。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器104,与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置103还可以包括网络接口106,用于与射频装置102交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器105上并可在处理器104上运行的指令或程序,处理器104调用存储器105中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述消息传输方法或信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述消息传输方法或信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种计算机程序产品,所述程序产品被存储在存储介质中,所述程序产品被至少一个处理器执行以实现上述消息传输方法或信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种消息传输方法,包括:
    第二设备接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
    感知分辨率相关需求;
    感知距离相关需求;
    感知区域相关需求;
    感知对象相关需求;
    感知误差相关需求;
    感知信号质量相关需求;
    感知时延相关需求。
  2. 根据权利要求1所述的方法,其中,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。
  3. 根据权利要求1所述的方法,其中,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
  4. 根据权利要求1所述的方法,其中,所述感知信号质量相关需求包括所述感知信号的接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比PAPR中的至少一项。
  5. 根据权利要求1所述的方法,其中,所述感知时延相关需求包括下述至少一项:
    感知信号的发送时间或发送时间窗;
    与感知信号关联的测量量的反馈时间或反馈时间窗。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第二设备确定第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备和/或第三设备发送第二消息,所述第二消息用于指示第一信号的配置信息,以由所述第一设备或第三设备根据所述第一信号的配置信息发送所述第一信号;
    其中,所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
  8. 根据权利要求6或7所述的方法,其中,所述第一信号的配置信息用于指示下述至少一项:
    所述第一信号的波形;
    所述第一信号的子载波间隔;
    所述第一信号的保护间隔;
    所述第一信号的带宽;
    所述第一信号的持续时间;
    所述第一信号的时域间隔;
    所述第一信号的发送信号功率;
    所述第一信号的信号格式;
    所述第一信号的信号方向;
    所述第一信号的时间资源;
    所述第一信号的频域资源。
  9. 根据权利要求7所述的方法,其中,所述第二消息包括:
    所述第一信号的配置信息;
    或者,
    索引编号,所述索引编号与所述第一信号的配置信息关联。
  10. 一种消息传输方法,包括:
    第一设备向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
    感知分辨率相关需求;
    感知距离相关需求;
    感知区域相关需求;
    感知对象相关需求;
    感知误差相关需求;
    感知信号质量相关需求;
    感知时延相关需求。
  11. 根据权利要求10所述的方法,其中,所述感知分辨率相关需求包括距离分辨率,速度分辨率,角度分辨率,成像分辨率,温度分辨率,气压分辨率以及湿度分辨率中的至少一项。
  12. 根据权利要求10所述的方法,其中,所述感知距离相关需求包括最大感知距离和感知距离区间中的至少一项。
  13. 根据权利要求10所述的方法,其中,所述感知信号质量相关需求包括所述感知信号的接收信号强度,信噪比,信干噪比,信号杂波比,信号旁瓣特征以及峰均比PAPR中的至少一项。
  14. 根据权利要求10所述的方法,其中,所述感知时延相关需求包括下述至少一项:
    感知信号的发送时间或发送时间窗;
    与感知信号关联的测量量的反馈时间或反馈时间窗。
  15. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
    所述第一设备根据所述第一信号的配置信息发送所述第一信号。
  16. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述第一设备接收第三设备根据第一信号的配置信息发送的第一信号,其中,所述第一信号的配置信息由所述第二设备通过第二消息发送至所述第三设备;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融 合信号。
  17. 根据权利要求15或16所述的方法,其中,所述第一信号的配置信息用于指示下述至少一项:
    所述第一信号的波形;
    所述第一信号的子载波间隔;
    所述第一信号的保护间隔;
    所述第一信号的带宽;
    所述第一信号的持续时间;
    所述第一信号的时域间隔;
    所述第一信号的发送信号功率;
    所述第一信号的信号格式;
    所述第一信号的信号方向;
    所述第一信号的时间资源;
    所述第一信号的频域资源。
  18. 根据权利要求15或16所述的方法,其中,所述第二消息包括:
    所述第一信号的配置信息;
    或者,
    索引编号,所述索引编号与所述第一信号的配置信息关联。
  19. 根据权利要求15或16所述的方法,其中,所述方法还包括:
    所述第一设备检测第一信号或第一信号的回波,获取与感知相关的测量量;其中,所述与感知相关的测量量包括下述至少一项:
    信道矩阵;
    信道状态信息;
    多径信道中每条径的功率;
    多径信道中每条径的时延;
    多径信道中每条径的角度;
    反射点的信息;
    目标雷达散射截面积信息;
    多普勒扩展;
    多普勒频移;
    天线间的相位差;
    天线间的时延差。
  20. 根据权利要求19所述的方法,其中,所述测量量包括:基于每个天线的测量量,和/或,基于每个感知资源的测量量。
  21. 根据权利要求19所述的方法,其中,所述方法还包括:
    所述第一设备根据与感知相关的测量量,确定与所述第一设备感知需求相关的感知结果信息。
  22. 根据权利要求19所述的方法,其中,所述方法还包括:
    所述第一设备将与感知相关的测量量发送至第四设备,以由第四设备根据与感知相关的测量量确定与所述第一设备感知需求相关的感知结果信息;
    所述第一设备接收所述第四设备发送的与所述第一设备感知需求相关的感知结果信息。
  23. 一种信号发送方法,包括:
    第三设备接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
    所述第三设备根据所述第一信号的配置信息,发送所述第一信号。
  24. 根据权利要求23所述的方法,其中,所述第一信号的配置信息用于指示下述至少一项:
    所述第一信号的波形;
    所述第一信号的子载波间隔;
    所述第一信号的保护间隔;
    所述第一信号的带宽;
    所述第一信号的持续时间;
    所述第一信号的时域间隔;
    所述第一信号的发送信号功率;
    所述第一信号的信号格式;
    所述第一信号的信号方向;
    所述第一信号的时间资源;
    所述第一信号的频域资源。
  25. 根据权利要求23所述的方法,其中,所述第二消息包括:
    所述第一信号的配置信息;
    或者,
    索引编号,所述索引编号与所述第一信号的配置信息关联。
  26. 一种消息传输装置,应用于第二设备,包括:
    第一接收模块,用于接收第一设备发送的第一消息,所述第一消息用于指示以下至少一项:
    感知分辨率相关需求;
    感知距离相关需求;
    感知区域相关需求;
    感知对象相关需求;
    感知误差相关需求;
    感知信号质量相关需求;
    感知时延相关需求。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    第一确定模块,用于确定第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
  28. 根据权利要求26所述的装置,其中,所述装置还包括:
    第一发送模块,用于向所述第一设备和/或第三设备发送第二消息,所述第二消息用于指示第一信号的配置信息,以由所述第一设备或第三设备根据所述第一信号的配置信息发送所述第一信号;
    其中,所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
  29. 根据权利要求27或28所述的装置,其中,所述第一信号的配置信息用于指示下述至少一项:
    所述第一信号的波形;
    所述第一信号的子载波间隔;
    所述第一信号的保护间隔;
    所述第一信号的带宽;
    所述第一信号的持续时间;
    所述第一信号的时域间隔;
    所述第一信号的发送信号功率;
    所述第一信号的信号格式;
    所述第一信号的信号方向;
    所述第一信号的时间资源;
    所述第一信号的频域资源。
  30. 一种消息传输装置,应用于第一设备,所述装置包括:
    第二发送模块,用于向第二设备发送第一消息,所述第一消息用于指示以下至少一项:
    感知分辨率相关需求;
    感知距离相关需求;
    感知区域相关需求;
    感知对象相关需求;
    感知误差相关需求;
    感知信号质量相关需求;
    感知时延相关需求。
  31. 根据权利要求30所述的装置,其中,所述装置还包括:
    第二接收模块,用于接收所述第二设备发送的第二消息,所述第二消息 用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
    第三发送模块,用于根据所述第一信号的配置信息发送所述第一信号。
  32. 根据权利要求30所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收第三设备根据第一信号的配置信息发送的第一信号,其中,所述第一信号的配置信息由所述第二设备通过第二消息发送至所述第三设备;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号。
  33. 一种信号发送装置,应用于第三设备,包括:
    第四接收模块,用于接收第二设备发送的第二消息,所述第二消息用于指示第一信号的配置信息;所述第一信号为用于感知的信号或者所述第一信号为感知和通信融合信号;
    第四发送模块,用于根据所述第一信号的配置信息,发送所述第一信号。
  34. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至9任一项所述的消息传输方法的步骤;或者,所述程序或指令被所述处理器执行时实现如权利要求10至22任一项所述的消息传输方法的步骤;或者,所述程序或指令被所述处理器执行时实现如权利要求23至25任一项所述的信号发送方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1-9任一项所述的消息传输方法的步骤,或者实现如权利要求10至22任一项所述的消息传输方法的步骤,或者实现如权利要求23至25任一项所述的信号发送方法的步骤。
PCT/CN2022/096328 2021-06-04 2022-05-31 消息传输方法、信号发送方法、装置及通信设备 WO2022253238A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023573478A JP2024520106A (ja) 2021-06-04 2022-05-31 メッセージ伝送方法、信号送信方法、及び通信機器
EP22815282.3A EP4351179A1 (en) 2021-06-04 2022-05-31 Message transmission method, signal sending method and device, and communication device
US18/522,703 US20240098462A1 (en) 2021-06-04 2023-11-29 Message Transmission Method, Signal Sending Method, and Communication Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110624807.2A CN115442756A (zh) 2021-06-04 2021-06-04 消息传输方法、信号发送方法、装置及通信设备
CN202110624807.2 2021-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/522,703 Continuation US20240098462A1 (en) 2021-06-04 2023-11-29 Message Transmission Method, Signal Sending Method, and Communication Device

Publications (1)

Publication Number Publication Date
WO2022253238A1 true WO2022253238A1 (zh) 2022-12-08

Family

ID=84239887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096328 WO2022253238A1 (zh) 2021-06-04 2022-05-31 消息传输方法、信号发送方法、装置及通信设备

Country Status (5)

Country Link
US (1) US20240098462A1 (zh)
EP (1) EP4351179A1 (zh)
JP (1) JP2024520106A (zh)
CN (1) CN115442756A (zh)
WO (1) WO2022253238A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118175556A (zh) * 2022-12-09 2024-06-11 维沃移动通信有限公司 信息处理、传输方法及通信设备
CN118200955A (zh) * 2022-12-13 2024-06-14 ***通信有限公司研究院 一种感知请求方法、感知节点及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140080519A1 (en) * 2012-09-18 2014-03-20 Moazzam Rehan Ahmed Method and system for providing location-aware services
CN106534239A (zh) * 2015-09-11 2017-03-22 上海交通大学 一种获取感知数据的方法和装置
CN109451430A (zh) * 2017-08-25 2019-03-08 华为技术有限公司 环境感知方法和通信设备
CN110189174A (zh) * 2019-05-29 2019-08-30 南京工业大学 一种基于数据质量感知的移动群智感知激励方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620686B1 (en) * 2013-04-08 2013-12-31 Geodimensional Decision Group, LLC Method for dynamic geospatial analysis with collaborative decision making
CN112398601B (zh) * 2019-08-12 2023-05-05 华为技术有限公司 一种确定通信传输中感知信息的方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140080519A1 (en) * 2012-09-18 2014-03-20 Moazzam Rehan Ahmed Method and system for providing location-aware services
CN106534239A (zh) * 2015-09-11 2017-03-22 上海交通大学 一种获取感知数据的方法和装置
CN109451430A (zh) * 2017-08-25 2019-03-08 华为技术有限公司 环境感知方法和通信设备
CN110189174A (zh) * 2019-05-29 2019-08-30 南京工业大学 一种基于数据质量感知的移动群智感知激励方法

Also Published As

Publication number Publication date
EP4351179A1 (en) 2024-04-10
JP2024520106A (ja) 2024-05-21
US20240098462A1 (en) 2024-03-21
CN115442756A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2022253238A1 (zh) 消息传输方法、信号发送方法、装置及通信设备
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
WO2022199647A1 (zh) 通信方法以及通信装置
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
US20240121826A1 (en) Message transmission method and apparatus, signal sending method and apparatus, and communication device
WO2023072210A1 (zh) 感知方法、装置及通信设备
WO2023001183A1 (zh) 通信感知方法、装置及设备
WO2024140763A1 (zh) 加扰处理方法、传输处理方法、装置及设备
WO2023001179A1 (zh) 通信感知方法、装置及设备
WO2023231870A1 (zh) 通信方法、装置、终端、网络侧设备及核心网设备
WO2024140762A1 (zh) 传输处理方法、装置及设备
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
WO2023083131A1 (zh) 感知方法、装置及通信设备
WO2024078382A1 (zh) 多普勒测量方法、装置及通信设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2024131757A1 (zh) 感知协作方法、装置及通信设备
WO2024099153A1 (zh) 信息传输方法、装置及通信设备
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573478

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022815282

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815282

Country of ref document: EP

Effective date: 20240104