WO2022253040A1 - 一种数字道路基础设施、编码生成方法及装置 - Google Patents

一种数字道路基础设施、编码生成方法及装置 Download PDF

Info

Publication number
WO2022253040A1
WO2022253040A1 PCT/CN2022/094596 CN2022094596W WO2022253040A1 WO 2022253040 A1 WO2022253040 A1 WO 2022253040A1 CN 2022094596 W CN2022094596 W CN 2022094596W WO 2022253040 A1 WO2022253040 A1 WO 2022253040A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
road
lane
same
infrastructure
Prior art date
Application number
PCT/CN2022/094596
Other languages
English (en)
French (fr)
Inventor
潘晓虹
Original Assignee
潘晓虹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潘晓虹 filed Critical 潘晓虹
Publication of WO2022253040A1 publication Critical patent/WO2022253040A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/004Annotating, labelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/012Dimensioning, tolerancing

Definitions

  • the invention relates to the field of structural design and code generation of digital products, in particular to a digital road infrastructure, a code generation method and a device.
  • the invention provides a virtual digital road infrastructure that uses virtual reality technology to virtualize the real road infrastructure (also known as the static road condition of the real road) into three dimensions.
  • Digital road infrastructure includes digital road static road conditions (including digital road pavement attributes) such as digital roads, digital intersections and digital traffic signs; its purpose: to free intelligent navigation equipment from the busy affairs of real-time collection of digital road static road conditions , concentrate on handling the dynamic road conditions of digital roads.
  • digital road static road conditions including digital road pavement attributes
  • digital roads, digital intersections and digital traffic signs concentrate on handling the dynamic road conditions of digital roads.
  • digital goods products that are almost the same as the real road infrastructure - digital road infrastructure (also called digital road static road conditions) are provided.
  • centimeter-level positioning system uses digital marking coordinate points to express a virtual three-dimensional digital road space (an application of geo-fencing technology). This encoding method solves the difficulty of commercialization due to the huge amount of digital road infrastructure data.
  • Digital road infrastructure adds digital road pavement attributes, which solves the problem of incomplete intelligent navigation elements; opens up a new field of automatic driving equipment; makes the functional performance of intelligent steering control system, intelligent actuation control system, intelligent braking control system, etc.
  • intelligent navigation algorithms such as steering control algorithms, vehicle lane change algorithms, and collision processing algorithms are more simple and refined.
  • lane pavement attributes such as digital lane heading angle, lateral safety distance, and safe straight distance has solved the problem of transitional dependence on real-time positioning information.
  • the digital commodity (product) of digital road infrastructure saves the test system for real-time collection of real road static road conditions by self-driving vehicles, which greatly reduces the production and maintenance costs of self-driving vehicles.
  • Digital road infrastructure is: a data set that encodes and integrates member parameters according to the data structure.
  • Specific encoding process First, according to the actual road infrastructure, adopt the manual intervention field test (same as field measurement) collection method to obtain the member parameters of the digital road infrastructure, and code and integrate them into digital road infrastructure. Secondly, adding digital road pavement attributes such as digital lane heading angle, digital lane pitch angle, digital lane roll angle, dynamic friction coefficient, digital road load, safe lateral distance, and safe straight-going distance makes the existing intelligent navigation algorithm simpler and more efficient. Accurate, providing strong data and algorithm support for the performance upgrade of automatic driving functions.
  • the innovation of digital road infrastructure defines a large number of types of digital lane markings and digital traffic signs; the algorithms of intelligent navigation equipment such as cruise, lane change, and avoidance are more effective.
  • the digital road space is expressed by virtual three-dimensional digital lane markings; and the virtual three-dimensional digital lane markings are expressed by a set of digital marking coordinate points in a standardized and orderly manner. The method is simple and the data volume is small, making Commoditization of digital road infrastructure is possible.
  • member parameters are coded and integrated into digital road infrastructure according to a standardized data structure (such as shown in Figure 4); it is a digital infrastructure.
  • the digital road infrastructure provides a retrieval method for digital driving roads.
  • the virtual three-dimensional digital road infrastructure can be encoded, produced, stored, retrieved, invoked and maintained independently without the support of tools and software such as GIS systems and databases; digital commodities (products) composed of numbers, characters and text .
  • GIS systems and databases digital commodities (products) composed of numbers, characters and text .
  • This paper will use multiple embodiments to describe its data structure, member parameters (including component parts), parameter usage, encoding method and so on.
  • the invention provides a digital road infrastructure, which is formed by coded integration of member parameters; the digital road infrastructure includes digital roads and digital traffic signs.
  • the digital roads include digital roads in the same direction; the digital roads in the same direction include at least one array of digital road surface tangent lines in the same direction; and the digital road surface tangent lines in the same direction include at least one digital lane
  • the digital road includes a digital road in the same direction; the digital road in the same direction includes at least one array of digital lanes; wherein, the array of digital lanes includes at least one digital lane; the digital lane includes two Parallel and adjacent digital marking lines and the digital lane pavement attributes; the digital lane pavement attributes include digital lane heading angles and/or digital lane roll angles and/or digital lane pitch angles and/or dynamic friction coefficients.
  • the digital road also includes digital marking coordinate points; the digital marking coordinate points include coordinate point number and/or coordinate point longitude, coordinate point latitude, coordinate point altitude and/or number Marking type code.
  • the digital road includes the longitude of the coordinate point, the error of which is less than 1.11 centimeters; and/or the heading angle, whose basic unit is less than or equal to 0.01°; and/or the pitch angle; The basic unit is less than or equal to 0.1°.
  • the digital road further includes a safe lateral distance and a safe straight distance.
  • the digital road infrastructure also includes a digital intersection; the digital intersection includes at least one set of digital guidance road sections; The digital guidance road section subset; the digital guidance road section subset includes at least one digital guidance road section array connected to the exit end of the digital lane; the digital guidance road section array includes at least one of the digital guidance road section; the digital guidance road section exit The end is connected with the entrance end of a digital same direction road.
  • the digital guiding road section includes a digital guiding road section number and a digital guiding lane; wherein, the digital guiding road section number includes a digital lane number and/or a digital driving direction code.
  • the present invention also provides a method for generating digital road infrastructure, which adopts an on-site test and collection method of manual intervention on real roads, obtains and codes and integrates the digital road signs in the same direction; obtains and codes and integrates them into the digital roads in the same direction ; Obtain and encode and integrate into the sub-set of the digital guidance road section; format the digital same-direction road signs in the digital same-direction roads, encode and generate digital same-direction roads with digital same-direction road signs; and then set the digital same-direction road signs; The digital same-direction road signs, the digital same-direction roads and/or the codes of the subset of digital guidance road sections are integrated into one digital same-direction road access piece.
  • the basic unit of encoding and storage of the digital road infrastructure is a digital same-direction road access piece.
  • the present invention also provides a method for using digital driving roads, which retrieves and obtains a digital same-direction road access piece from the digital road infrastructure according to the driving route; according to the digital same-direction road access piece Retrieve information in, retrieve and obtain the next digital same-direction road access piece connected to it; reciprocate, retrieve and obtain a digital driving road.
  • the structure of digital road infrastructure Its data structure is simple, the nesting level is clear, the analysis and calling are convenient, the member parameters are complete, and the data accurately expresses the digital road static road conditions. Among them, information displayed on the screen, such as traffic auxiliary signs, comprehensive codes of digital roads in the same direction, etc., are expressed in words, numbers, symbols, letters, etc. Digital road infrastructure does not contain image, audio, video data. Most of the member parameters of digital road infrastructure are expressed in numbers, and the computer processing efficiency is high.
  • the on-site test collection method of manual intervention is used in advance to obtain the coordinate points of the digital marking line, and then a set of digital marking line coordinate points with standardized data structure, different numbers and standard spacing are used to orderly fit a digital marking line; two parallel lines And adjacent digital markings and digital lane pavement attributes form a section of digital lane; a group of digital lanes are combined vertically and horizontally into a section of digital roads in the same direction; The data volume is greatly reduced.
  • the digital road infrastructure expresses member parameters that are difficult or have not been identified in the real road infrastructure, such as digital lane heading angle, digital lane pitch angle, digital lane roll angle, dynamic friction coefficient, road load, safe straight distance, safe lateral distance, Digital marking (including isolation facilities), digital traffic signs, etc., have greatly improved the "perception" of intelligent navigation equipment on the static road conditions of digital roads. With performance improvement, it provides rich and valuable basic data. Facilitate the upgrading of existing self-driving vehicles.
  • the member parameters of the digital road infrastructure adopt the manual intervention field test collection method.
  • the longitude and latitude error of the digital marking coordinates is less than 1.11 cm; the basic unit of the digital lane heading angle is 0.01°; the basic unit of the digital lane pitch angle and the digital lane roll angle The unit is 0.1°; the accuracy of the dynamic friction coefficient is less than or equal to 0.001°; compared with the existing laser point cloud data, clustering algorithm, mathematical modeling and other methods to generate electronic maps, the data is more accurate. It also creates conditions for precise intelligent navigation.
  • Digital road infrastructure requires the accuracy of its coordinate point parameters to be about 1 cm; the dynamic positioning parameters of vehicles using it also need to be about 1 cm.
  • the production and use of digital road infrastructure will need to be equipped with Beidou positioning, or Beidou ground station network-assisted positioning, or "Starlink" positioning that supports dynamic positioning of about 1 cm.
  • Beidou positioning or Beidou ground station network-assisted positioning, or "Starlink" positioning that supports dynamic positioning of about 1 cm.
  • the open and expandable data structure of the digital road infrastructure supports the definition of new member parameters on demand; the application fields of the digital road infrastructure are very wide: such as adding a house number to a digital road, you can realize smart express delivery; adding a shopping mall name to realize smart shopping ; Add virtual world tunnel names to realize the crossing of different virtual worlds, etc.; its economic and social benefits are limitless.
  • the virtual 3D digital road infrastructure is a "basic platform for fusion" between the virtual world and the real world, and it is also a fusion platform for most "Metaverse" applications.
  • Fig. 1 is the schematic flow sheet of the digital same-direction road code generation method that digital same-direction road sign is set;
  • Fig. 2 is a schematic diagram of a digital road exit in the same direction externally connected to the digital intersection;
  • Fig. 3 is a schematic structural diagram of a digital road infrastructure generating device
  • Fig. 4 is a schematic diagram of member parameters and data structure of the digital road infrastructure.
  • connection and “connection” mentioned herein include direct or indirect connection (connection) unless otherwise specified.
  • the present invention defines the following group of nouns and verbs to clarify their contents and boundaries.
  • Electronic Map (Electronic Map) is the data existence and upgrading of paper maps, and its digital roads and digital traffic signs are standardized and orderly data collections in computer storage media; it can also be called a digital map.
  • Virtual Reality is the combination of virtual and reality; it is called virtual reality technology (ie VR technology).
  • VR technology virtual reality technology
  • the present invention virtualizes the static road condition of the actual road into a three-dimensional digital road infrastructure through the technology.
  • Vigation refers to the process of driving a vehicle to move safely from one place to another designated place.
  • Intelligent Navigation Equipment is a device that relies on digital road infrastructure to intelligently navigate and drive autonomous vehicles.
  • Digital Road Infrastructure (Digital Road Infrastructure) includes digital roads (including digital road pavement attributes), digital traffic signs, etc.; also known as digital road static road conditions. It is a data product of the digitization of real road infrastructure; it has a mirror image relationship with the real road infrastructure. Self-driving vehicles "cognize” the digital road infrastructure, and then “cognize” the real road infrastructure; of course, it can also be displayed to people after special processing.
  • Data Structure refers to the structure of its member parameters and their positions before and after.
  • Code refers to the composition of member parameters into a meaningful data set according to the data structure, such as electronic file encoding format, communication protocol encoding format, H.264 encoding format, etc.; it can be analyzed, processed and applied by computer information. Coding is an act of listing and integrating parameters. Parameters, including parameter names and parameter values; member parameters in the data structure can agree to use parameter names or parameter values. Member parameters can be expressed using codes; codes are symbols used to represent things, which can be represented by Chinese (foreign language), numbers, letters, characters, or a combination of them. The encoded data structure may be referred to simply as an encoding structure.
  • Member parameters refers to the member parameters of digital road infrastructure; member parameters can be nested in multiple layers; lower-level member parameters can be nested layer by layer; member parameters such as digital road infrastructure include digital roads, digital traffic signs etc.; while the member parameters of the digital road include digital roads in the same direction and digital intersections; wherein, the digital roads in the same direction include an array of digital lanes;
  • Digital Products is a formatted electronic file composed of member parameters and encoded according to the data structure; among them, the name, definition and purpose of the member parameters are clear. Through exchange, digital products realize data sharing and obtain economic value.
  • “Road conditions” include static road conditions and dynamic road conditions.
  • Static road conditions refer to the technical status of existing roadbeds, road surfaces, road structures (including bridges and culverts) and their ancillary facilities (including traffic signs); dynamic road conditions refer to the types, sizes, distances, densities, and Technical status of movement speed and direction etc.
  • the invention virtualizes the static road condition of the real road into the static road condition of the digital road through the virtual reality technology. Note: The static road conditions of digital roads mentioned in this article do not include temporary technical conditions such as damage to real roads and auxiliary facilities, fences on the road construction site, and piles of objects.
  • “Road” refers to highways, urban roads and places that are within the jurisdiction of the unit but allow social motor vehicles to pass, including squares, public parking lots and other places used for public passage.
  • the present invention virtualizes real roads (excluding traffic signs) into a three-dimensional digital road space, referred to as digital roads, through virtual reality technology.
  • Digital roads include digital road segments and digital intersections; among them, digital road segments include digital two-way road segments, digital one-way road segments, digital non-directional road segments, and digital same-direction roads and other types.
  • the digital road in this paper is composed of "digital" codes; it is an integral part of the static road conditions of the digital road.
  • Two-Way Road (Two-Way Road) includes motor vehicle roads in opposite directions, and the road is formed by the centerline (or divider) of the road in the middle; in other words, a two-way road is composed of two roads in the same direction in opposite directions.
  • the invention virtualizes the actual two-way road into a three-dimensional digital two-way road space. Referred to as digital two-way road.
  • One-Way Road means a road for motor vehicles consisting of only one direction.
  • a one-way road includes a road in the same direction; it may also include a reverse non-motor vehicle lane section and a sidewalk section separately or simultaneously.
  • One-way roads are a special case of same-way roads.
  • the present invention virtualizes the actual one-way road into a three-dimensional digital one-way road space, referred to as the digital one-way road for short.
  • Undirected Road refers to a real road without marking the direction of motor vehicles, or a pedestrian street.
  • the present invention virtualizes the real non-directional road into a three-dimensional digital non-directional road space, referred to as the digital non-directional road; usually, the digital non-directional road has two digital same-directional road access parts in different directions. If the driving direction of the self-driving vehicle is determined, the corresponding digital road access piece is unique. Therefore, the present invention does not describe it in detail.
  • “Road In Same Direction” means a road in the same direction between two adjacent intersections.
  • the present invention virtualizes the actual same-direction road into a three-dimensional digital same-direction road space, referred to as digital same-direction road for short.
  • One end of the digital same-direction road is called the digital same-direction road entrance, and the other end is called the digital same-direction road exit.
  • the road in the same direction refers to the part of the road to the right of the road centerline (divider); while the rule of driving on the left is the opposite, such as the United States, Britain, Japan and other countries.
  • Digital roads in the same direction include motor vehicle lane sections, non-motor vehicle lane sections, sidewalk sections, etc. In the case of a one-way road, the road in the same direction refers to the entire road segment.
  • Drive refers to a section of lane between two adjacent intersections.
  • a lane consists of two lane markings, and the lane pavement properties between the lane markings.
  • One end of the lane is called the lane entry end, and the other end is called the lane exit end.
  • the present invention virtualizes the real lane into a three-dimensional digital lane segment space, referred to as digital lane.
  • digital lane the line connecting the coordinate points of the digital markings with the same number on both sides of the digital lane is called the cross-tangent line of the digital lane; two adjacent cross-cut lines of the digital lane are determined and form a section of virtual three-dimensional digital lane, referred to as a section of digital lane pavement.
  • Road Direction (Road Direction) usually refers to the direction in which vehicles are traveling on the same road; among them, the lane direction refers to the direction in which vehicles are indicated on the lane; The road section indicates the direction in which the vehicle is traveling; the driving direction refers to the direction in which the vehicle is indicated on the same road as the guide road section sign and its connection.
  • “Road Surface Tangent In The Same Direction” refers to the intersection line of the vertical tangent in the direction of the same road and the road surface of the same direction.
  • the present invention virtualizes the real cross-tangent line of the road in the same direction as a three-dimensional digital cross-cut line of the road in the same direction, which is referred to as the digital cross-cut line of the road in the same direction.
  • the characteristic is that the numbers of the coordinate point numbers of the digital markings in the cross-tangent lines of the roads in the same direction are all the same.
  • Two adjacent digital same-direction road pavement cross-tangent lines determine and form a section of virtual three-dimensional digital same-direction road pavement.
  • Driving Road refers to: the starting address and destination address of the itinerary set by the user, as well as the characteristics of the driving route, such as the shortest starting and ending route, the fastest arrival route, the best sightseeing route, the best purchase route, etc.
  • Planning generates a digital driving route. Then, according to the digital driving route, a group of related digital road access pieces are retrieved from the digital road infrastructure to form a three-dimensional digital driving road space, referred to as the digital driving road.
  • Digital herein means an Arabic numeral or a string of Arabic numerals; such as the numeral 99.
  • number is used as an attributive member parameter to indicate that they are expressed in numbers; some digital traffic signs are excluded.
  • Digital Line-Marking Coordinate Point (Digital Line-Marking Coordinate Point) includes coordinate point number, longitude, latitude, altitude and other member parameters, referred to as coordinate point.
  • Digital Lane Marking (Digital Lane Marking) includes a set of digital marking coordinate points with standardized coding structure, varying numbers and standard spacing, and a virtual three-dimensional digital lane marking that is fitted according to the order of coordinate point numbers, referred to as Digital reticle. Usually the direction of the coordinate point numbers from small to large is the direction of the digital lane. Types of digital lane markings, referred to as types of digital markings.
  • Digital Driveway Pavement Attribute includes digital lane heading angle, digital lane pitch angle, digital lane roll angle, dynamic friction coefficient, digital road load, safe lateral distance, safe straight distance and other member parameters.
  • the pavement attribute of the digital road is a further subdivision of the pavement attribute of the digital road, which makes the expression of the pavement attribute more universal.
  • Separatator refers to a certain width of green belts, concrete facilities, guardrails, isolation barriers, etc. Piers and other separation facilities.
  • the one set in the middle of the opposite traffic flow is called the central divider; the one set between the motor vehicle lanes in the same direction is called the motor divider; the one set between the motor vehicle lane, the non-motor vehicle lane and the pedestrian lane is called the non-motorized divider.
  • Heading Angle refers to the angle between the direction of the digital lane and the direction of the Earth's North Pole.
  • Digital lane pitch angle (Pitch Angle) refers to the angle between the longitudinal tangent line of the digital lane road surface and the horizontal line.
  • Digital lane roll angle (Roll Angle) refers to the angle between the cross-tangent line of the digital lane road surface and the horizontal line.
  • Safe Transverse Distance refers to the distance between the outside of the driving vehicle and the digital marking on the same side.
  • the self-driving vehicle can set any number of safe lateral distances; the digital lane pavement attribute of the present invention only saves one, such as the safe straight-ahead distance obtained according to the most commonly used safe lateral distance (43 centimeters) test.
  • Safety Straight Travel Distance refers to the safe lateral distance position of the self-driving vehicle in the lane, driving continuously according to the direction of the heading angle of the digital lane in the cross-tangent line of the last digital lane, and does not differ from the digital lane.
  • “Lane Type” includes motor vehicle lanes, non-motor vehicle lanes and sidewalks, etc.
  • Digital road infrastructure refers to the types of real lanes as digital lanes; they borrow the names of real lane types, such as motor vehicle lanes, non-motor vehicle lanes, and sidewalks.
  • “Vertical and Horizontal Spelling” refers to the act of vertically and horizontally splicing strips of the same length but not necessarily the same width into a rectangular shape whose original length is the sum of the width of the spelled strips.
  • Intersection refers to the level intersection of two or more roads; that is to say, the level intersection fits at least three (including three-way intersections) or more road segments.
  • the present invention virtualizes a real intersection into a three-dimensional digital intersection space, referred to as a digital intersection, or a digital intersection, or a digital intersection (generally referred to as).
  • Guiding road sections include motor vehicle guiding road sections, non-motor vehicle guiding road sections and pedestrian guiding road sections.
  • the present invention virtualizes the actual guiding road section into a three-dimensional digital guiding road section space, referred to as the digital guiding road section.
  • the digital guidance road section is also a kind of digital lane, usually the lane is relatively short, mostly a turning lane, and the arc is relatively large; the present invention defines that the distance between its coordinate points is one meter; the digital markings on both sides are solid lines.
  • Digitally guided road segments have only one direction of travel.
  • the digital guidance section contains all the digital traffic signs in it.
  • “Fitting” is to selectively connect a series of sufficiently dense points on the plane into a smooth curve with straight lines.
  • the present invention is to standardize, orderly and uniquely connect all coordinate points into a section of digital markings, digital lanes, digital roads in the same direction, digital non-directional roads, digital one-way roads, digital two-way roads, digital guiding road sections, etc. .
  • Elementary Unit the basic unit of a substance refers to the smallest independent unit that makes up the substance.
  • the basic unit of encoding and storage of the digital road infrastructure in the present invention is: a digital same-direction road access piece.
  • Test refers to a measurement of an experimental nature, that is, a combination of measurement and test.
  • the test in this paper refers to the design of a reasonable test method with the help of professional instruments or equipment, and the necessary test signal analysis and data processing of the real road infrastructure, so as to accurately collect the member parameters of the digital road.
  • Form comes from the formatting of the disk. It originally means that the operating system marks the disk in advance so that it can access data in a certain format. It was later extended to a computer term, which is a standardized computer data access method.
  • the formatting of data (information) in this paper refers to the operation that each data is clearly defined and stored in the digital road storage device or electronic map according to the data structure specification.
  • This embodiment analyzes the member parameters and data structure of the digital same-direction road with digital same-direction road signs in combination with the member parameters and data structure diagram 4 of the digital road infrastructure.
  • virtual reality technology is used to virtualize the real road infrastructure into digital road infrastructure; it is also called digital road static road conditions.
  • the real road infrastructure, its road surface attributes and traffic signs are inherited and used by the digital road infrastructure, and the virtual name is preceded by an attributive "number” or "virtual number” or “virtual number” before the real name.
  • Virtual three-dimensional digital or "virtual three-dimensional digital xxx space” and other modifications. For the convenience of technical personnel to read smoothly, this article usually uses abbreviations.
  • Digital road infrastructure member parameters include digital roads and digital traffic signs, etc.
  • the longitudinal direction of the digital road is formed by alternate fitting of digital road segments and digital intersections;
  • the digital road segment is a virtual three-dimensional digital road space (including height), which also includes the road surface attributes of digital lanes;
  • the digital intersection includes a digital guiding road segment gather.
  • the digital road section horizontally includes two digital roads in the same direction in opposite directions, or a digital one-way road, or a digital non-directional road; wherein, the digital one-way road is an enhanced digital road in the same direction; and the digital non-directional road Directional roads can be understood as two digital one-way roads in opposite directions.
  • the lane direction is determined, its digital one-way road is also determined.
  • the basic application value of digital road infrastructure is: to obtain the start address and end address of the user's journey, and plan a digital driving route;
  • the digital driving road composed of the digital same-direction road marked by the same-direction road and the sub-set of digital guide sections connected to it; do not pay attention to its opposite digital same-direction road.
  • the present embodiment focuses on analyzing digital roads in the same direction, and then can understand digital roads, digital one-way roads, and digital non-directional roads; then analyze their member parameters and their data structures, and the purpose of each member parameter; and adopt the same method Analyze digital traffic signs.
  • arrays mentioned below in this article include arrays with only one element.
  • An array is also a data structure.
  • the digital road of the present invention is also the same as the real road, and digital traffic signs need to be set; so that the self-driving vehicle can drive on the virtual digital road in a legal, compliant and orderly manner.
  • digital traffic signs include warning signs, prohibition signs, instruction signs, guide signs, tourist area signs, road construction safety signs and auxiliary signs defined in "Road Traffic Signs and Lines" (GB5768); Road markings, characters, numbers, patterns, etc. are expressed in any form; no matter whether they are marked on the road surface, or set on the sides or above the road.
  • Digital traffic signs are replaced by codes such as numbers, words, symbols and letters; thus greatly reducing the volume of digital road signs in the same direction.
  • the present invention uses digital dictionary technology to resolve the digital traffic signs expressed in digital codes into information that can be understood by humans; thereby reducing the display processing cost.
  • the present invention not only optimizes traditional traffic signs; it also adds new digital traffic signs such as new types of digital markings, attention to driving on the left side of the lane, and attention to the absence of signal lights at intersections. , so that smart navigation devices can "see" more digital traffic signs that are helpful for smart navigation.
  • the member parameters and data structures of the digital same-direction road signs of the present invention are: digital same-direction road comprehensive code+digital road category code+digital traffic sign array+digital lane sign array; explanation: "+” represents "empty” or "separated character”; where:
  • the comprehensive code of the digital same-direction road is used to describe the name of the digital same-direction road; it is used for retrieval and verification, etc., and is a data code.
  • the digital road category codes include expressways, first-class roads, second-class roads, third-class roads, fourth-class roads, county roads, country roads (gravel roads, sandy soil roads, dirt roads, etc.), special roads, urban expressways, etc.
  • the type of digital road implicitly expresses the maximum speed of the driving vehicle, the width of the digital lane, the height limit of the digital lane, the spacing standard of coordinate points, and the load of the road surface; it is used for data sharing and verification.
  • the array of digital traffic signs is used to express the traffic signs of real roads in the same direction, such as: pay attention to toll islands, no honking, no traffic signs and time periods, names of scenic spots, etc. If there is no traffic sign set on the real road in the same direction, the elements of the digital traffic sign array can be "empty"; otherwise, the array can have any number of array elements.
  • the array elements include digital traffic signs and their auxiliary signs; wherein, the digital traffic signs are expressed with digital codes, and the auxiliary signs are expressed with data that people are accustomed to, such as the expression of time period: 7:30-9:30; sentence expression: 500 meters in front of the left side of Jinshan Temple, etc.; the auxiliary sign can be "empty".
  • the member parameters of the digital lane marking array and its data structure are: digital lane type code + digital lane driving direction code + digital lane height limit value. is the data encoding. in:
  • the digital lane type code is used to regulate the traffic behavior of vehicles, human beings and livestock, etc.; the present invention refers to the real lane type as the digital lane type; and borrows the real lane type name.
  • the types of digital lanes include motor vehicle lanes, and special motor vehicle lanes, such as: emergency parking belts, special lanes, avoidance lanes, changing lanes (also known as tidal lanes), avoidance lanes, bus lanes, etc.; non-motor vehicle lanes, and Non-motorized special lanes, such as: moped lanes, bicycle lanes, tricycle lanes, cart lanes, livestock lanes, etc.; sidewalks, and special sidewalks, such as pedestrian streets, zebra sidewalks, blind roads, robot roads, etc.
  • Non-motor vehicle lanes and sidewalks in digital lanes helps intelligent navigation devices "see” the digital road infrastructure around them, drive motor vehicles more accurately, and avoid collisions; it is also the basis of intelligent lane change algorithms.
  • One of the basis. is a numeric code.
  • the driving direction code of the digital lane is used to guide the driving direction of the vehicle at the exit end of the digital lane, and is one of the basis for planning the driving route.
  • the driving direction of the lane may include: no driving direction, one driving direction, or two driving directions, or even more than two driving directions.
  • the present invention is expressed by digital codes, and there are at most 100 combinations of digital lane driving directions.
  • the present invention also adopts a digital dictionary to meet the needs of showing people the driving direction of the lane.
  • the digital lane height limit is one of the basic data for planning a driving route of an ultra-high vehicle. Expressed numerically.
  • the present invention divides the types of digital markings into: the leftmost marking of the digital same-direction road (including the divider), the digital same-direction road marking (including the divider) and the digital same-direction road There are three categories, including the marking line on the far right (including the separation strip), and hundreds of types, expressed in digital codes.
  • the leftmost markings of the digital road in the same direction include: central markings, 2 wave-shaped guardrails on the left and right, shallow green belts in the middle; central markings, fixed iron fences on the left and right, shallow green belts in the middle; central markings, opposite isolation Belts for crash bollards, sidewalks and houses etc.
  • Lane markings on roads in the same direction include: white dotted lines; yellow dotted lines; yellow solid lines; double white dotted lines; double yellow solid lines; double white solid lines; yellow dotted solid lines, etc.
  • the markings on the far right of the digital same-direction road include: white solid line, non-motor vehicle lane, tree, farmland; white dotted line (curb stone), sidewalk, shop; cable guardrail, shrub green belt (curb stone), sidewalk and tree, etc.
  • intelligent navigation equipment can drive vehicles more accurately and safely, such as helping vehicles go straight in digital lanes; vehicles changing lanes preferably left or right lanes; vehicle lane change timing preparation and implementation; intelligent avoidance of traffic accidents ;
  • vehicle lane change timing preparation and implementation intelligent avoidance of traffic accidents ;
  • the obtained information such as the relative (collision object) speed of the self-driving vehicle, vehicle quality, vehicle structure strength, braking effectiveness, the position of important personnel in the vehicle, and the type of lane digital markings, etc., timely Adjust its own collision posture, estimate the optimal collision object, collision location and minimum damage degree.
  • Numerical marking types use numeric codes.
  • the digital road sign in the same direction is a collection of digital traffic signs with standardized data structure. It is encoded by data.
  • the digital same-direction road of the present invention includes an array of digital lanes; wherein, the array of digital lanes includes at least one digital lane; that is to say, several parallel and adjacent digital lanes can be combined vertically and horizontally to form a digital same-direction road.
  • the digital lane includes the left digital marking, the road surface attribute of the digital lane, and the right digital marking; wherein, the data structures of the left and right digital markings are the same; they are parallel and adjacent. is a numerical code.
  • the coordinate point of the digital marking is the basic unit of the digital marking; the coordinate point of the digital marking (to help determine the relative position of the intelligent driving vehicle on the digital road in the same direction, and obtain the static road conditions of the surrounding digital road) includes the coordinate point number, coordinate Member parameters such as point longitude, coordinate point latitude, and coordinate point altitude (used to determine whether it is a ground lane or an urban elevated lane; or a complex overlapping traffic lane of an overpass) are all expressed in numbers.
  • a set of digital marking coordinate points with standardized data structures, varying numbers, and standard spacing are fitted in ascending order of coordinate point numbers to form a virtual three-dimensional digital marking line.
  • the maximum number m of the coordinate point is multiplied by the standard spacing of the coordinate point, which is the length of this digital marking line; it will be more accurate for calculating mileage and speed; the vehicle odometer and speedometer will be eliminated, reducing the production cost of the vehicle .
  • it has the function of recording and tracing all the driving and mileage of the vehicle every time, every day, every month, every year, and the whole life cycle.
  • the actual road marking width is 10-20 cm, while the digital marking is an infinitely "thin" connection; therefore, the digital marking assists remote handling of traffic accidents, and the responsibility is more precise.
  • the coordinate points of this embodiment refer to the spacing standards of actual road markings: the spacing standard of expressways, first-class highways, and urban expressways is 10 meters; The spacing standard for internal roads, campus roads, village roads, mountain roads, expressways, urban viaducts, overpasses, underground parking lot entrance and exit ramps, etc. is 6 meters; various turning roads, and other roads that require a spacing standard of 1 meter.
  • This kind of reference specification is not only for the convenience of testing coordinate points, but also can learn from years of traffic experience.
  • Two adjacent and parallel digital marking lines determine and form a virtual three-dimensional digital road surface.
  • Realistic road markings and perceived pavement attributes are too costly; however, digital lanes are easier.
  • the member parameters of the pavement attribute of the digital lane and its data structure are: heading angle of the digital lane + pitch angle of the digital lane + roll angle of the digital lane + dynamic friction coefficient + digital road load + safe lateral distance + safe straight-ahead distance; it is Digital coding, designed with precision in this paper, can meet the needs of various intelligent algorithms for fully automatic driving (level 5), among which the member parameters are:
  • Digital lane pitch angle The maximum design value is ⁇ 45° ("Technical Standards for Highway Engineering” (JTG B1-2003) stipulates that the maximum longitudinal slope of roads at all levels should not be greater than 9%), and the basic unit is 0.1°; it is used for automatic driving vehicles when going up and down slopes , intelligent shift control, intelligent actuation control or intelligent brake control, etc., to reach a preset vehicle speed.
  • the digital lane pitch angle can also replace the uphill and downhill warning signs.
  • the maximum design value is ⁇ 45°, and the basic unit is 0.1°; according to the center of gravity of the self-driving vehicle and the steering angle of the digital lane, the maximum safe turning speed of the vehicle is calculated, which is used for intelligent vehicle turning control to prevent vehicle rollover.
  • the dynamic friction coefficient of the lane is one of the basic data processed by the intelligent actuation system and the intelligent braking system; especially one of the basic data for the automatic correction of the dynamic friction coefficient of the self-driving vehicle.
  • Digital road load is one of the basic data used to plan a heavy-duty vehicle driving route; vehicle load classification: 8 tons, 10 tons, 15 tons, 20 tons, 25 tons, 30 tons, 40 tons, 50 tons, 60 tons, 80 tons and above.
  • the safe lateral distance is determined according to the user's safety and comfort needs. Specifically, the self-driving vehicle obtains the heading angle of a set of digital lanes in front, from near to far, if it changes clockwise, it will drive to the right, and use the safe lateral distance on the right side of the digital lane; otherwise, if it changes counterclockwise, it will drive to the left. Use the safe lateral distance on the left side of the digital lane.
  • the heading angle of a group of digital lanes remains unchanged, it means that it is a straight lane, and the safe lateral distance on the original side will not be changed.
  • the digital lateral distance was preset manually; in the future, the safe lateral distance will be automatically generated according to parameters such as the digital road plane curve, driving safety level and comfort level, and the strength of positioning signals; this paper defines it as a digital road attribute.
  • Blind driving distance ⁇ vehicle speed blind driving time; it is used to inform the smart navigation device how much time is left, and to ensure the safe straight driving distance of the automatic driving vehicle in the absence of a reliable positioning signal. This attribute shows that the use of digital road infrastructure and intelligent steering control systems greatly reduces the frequency and serviceability requirements for autonomous vehicle positioning information.
  • the present invention codes and integrates its member parameters into a digital road in the same direction. It is coded by numbers.
  • the digital same-direction road sign is formatted in the digital same-direction road, and the digital same-direction road with the digital same-direction road sign is generated by encoding.
  • the data structure of the digital same-direction road for setting the digital same-direction road sign is: an array of digital same-direction road tangent lines.
  • the digital same-direction road tangent line includes a digital same-direction road sign and a digital same-direction road pavement tangent line; if there is no digital same-direction road sign, the digital same-direction road tangent line is equivalent to the digital same-direction road pavement tangent line.
  • the digital cross-tangent lines of roads in the same direction include at least one array of digital lane cross-tangent lines.
  • An array of digital road surface tangent lines includes at least one digital road surface tangent line.
  • the member parameters and data structure of the cross-tangent line of the digital road surface the left digital marking coordinate point + the digital road surface attribute + the right digital marking coordinate point, etc.; Line coordinate point numbers are the same.
  • two adjacent and parallel cross-tangent lines of the digital road surface determine and form a virtual three-dimensional digital road surface.
  • a set of cross-tangent lines of the digital road surface with standardized data structures, varying numbers and standard spacing are fitted into a section of virtual three-dimensional digital road surface in a standardized and orderly manner according to the direction of the digital roadway.
  • a number of adjacent digital lane pavements are integrated vertically and horizontally one by one to generate a section of virtual three-dimensional digital road pavement in the same direction.
  • the coordinate points of digital markings are the basic units that constitute components such as virtual three-dimensional digital markings, virtual three-dimensional digital lane cross-cutting lines, and virtual three-dimensional digital road cross-cutting lines in the same direction.
  • Generating digital roads with digital codes is one of the core features of the present invention.
  • digital intersections include types such as digital intersections, digital roundabouts, and digital three-way intersections; the arrangement and combination of digital guiding sections can express different types of digital intersections.
  • the digital intersection is connected with the entrance and exit of digital roads, the entrance and exit of digital roads in the same direction, and the entrance and exit of digital lanes.
  • the digital guidance sections mentioned in this paper all contain their digital traffic signs.
  • Digital road infrastructure also includes digital intersections.
  • a digital intersection includes a collection of digitally guided road segments.
  • the digital guidance road section set includes at least one digital guidance road section sub-set connected to the exit end of the digital road in the same direction.
  • the digital guidance road section sub-set includes at least one digital guidance road section array connected to the exit end of the digital lane.
  • the array of digital guidance road sections includes at least one digital guidance road section; the digital guidance road section has only one driving direction, and its exit end is only connected with the entrance end of one digital road in the same direction.
  • the busy digital intersection is equipped with a traffic signal system to ensure that there will be no intersection between the effective passage digital guidance sections (straight red).
  • the collection of right-turning lanes with green lights and straight lanes with green lights does not belong to intersections), so as to ensure that vehicles drive in accordance with the law, orderly, safe and smooth.
  • Non-busy intersections are usually not equipped with traffic lights, and drivers need to follow the traffic avoidance rules to ensure safe, orderly, safe and smooth driving of vehicles.
  • the unique digital guidance road section in the subset of digital guidance road sections connected to it can be determined.
  • This paper defines that all digital lanes at the exit of digital road A are numbered from left to right, starting from number 1, and numbered in order of natural numbers from small to large.
  • This paper also defines the digital driving direction code: take the U-turn direction of the exit end of the road A in the same direction as the code 1, rotate clockwise (or counterclockwise), and compile the codes in order from small to large for the entrance of each digital road in the same direction with natural numbers. to accurately express irregular digital intersections.
  • All digital lanes at the entrance of road B in the same direction are also numbered from left to right, starting with number 1, and numbered in descending order of natural numbers.
  • each numbered lane in the numbered road A is connected to the same numbered lane at the entrance of the numbered road B indicated by its numbered driving direction through a unique numbered guiding road section; except for the expanded or reduced numbered guiding road section .
  • one end of the special digital guidance road section is a digital lane, and the other end is a plurality of digital lanes; its digital marking line is drawn according to the avoidance specification of traffic expansion and contraction, and digital traffic signs are set.
  • the present invention defines the outer digital markings of the digital guiding sections as solid lines, so that the self-driving vehicle cannot change lanes at the digital intersection.
  • digital guidance road sections include digital motor vehicle lanes, digital non-motor vehicle lanes, and digital sidewalks; they cannot be connected to each other.
  • the digital lane number of a certain driving direction in the exit end of the digital road A in the same direction is the b digital lane
  • the remaining (a-b) digital lanes on the right are the entrance of the special digital guidance road section ;
  • the exit end is reduced to the bth digital lane from the left in the digital road B in the same direction; and the reduced digital marking line and the reduced digital sign are set up in the special digital guiding road section; there is a b lane at the exit end of the digital road A in the same direction digital guidance section.
  • the digital lane number a of the digital lane number of a certain driving direction in the exit end of the digital road A in the same direction is the entrance of the special digital guiding road section; the ath lane from the left in the digital road B in the same direction
  • the digital lane, and the remaining (b-a) digital lanes on the right are the extended exit ends, and the extended digital marking lines and digital extended signs are drawn in the special digital guidance road section; there is a road at the exit end of the digital road A in the same direction. digital guidance section.
  • FIG. 1 it is a schematic flow chart of the digital same-direction road code generation method for setting digital same-direction road signs, the member parameters and data thereof in conjunction with Embodiment 1, digital road infrastructure generation device structure diagram 3 and digital road infrastructure Structural schematic 4 analyzes the method.
  • a digital road generation device was installed on a test vehicle.
  • the digital road generation device uses professional equipment and instruments, adopts the on-site test collection method of manual intervention, intelligently collects the lane markings and lane pavement attributes of the real road infrastructure, and the testers select or input traffic signs, etc. , encode and generate a digital same-direction road with digital same-direction road signs.
  • the digital road generation device includes a digital road encoder 10 and a digital road infrastructure storage device 30; wherein, the digital road encoder 10 includes a digital road sign input program module 11, a digital marking line and a road surface attribute acquisition program module 12 , digital same-direction road coding generation program module 13 and collection equipment interface program module 14 etc.; 20. Its acquisition and encoding generation methods are as follows:
  • Step 100 Obtain the comprehensive code and category code of digital roads in the same direction; during actual operation, testers select or input the comprehensive code and category of digital roads in the same direction through the input window of digital road signs in the same direction; digital roads in the same direction
  • the identification input program module 11 automatically obtains from the corresponding "traffic identification dictionary" (one of the digital dictionaries) of the system: digital road comprehensive codes in the same direction, digital road category codes, etc.
  • the integrated code of the digital same-direction road is used to retrieve the next digital same-direction road access piece.
  • the first cross-tangent line of the digital road in the same direction including all digital lanes is taken; the excess part belongs to the exit end of the digital guidance road section.
  • the comprehensive code of digital roads in the same direction and the type of digital roads belong to the digital traffic signs of digital roads in the same direction.
  • Step 101 Encoding to generate an array of digital traffic signs; in actual operation, testers select or input the traffic signs observed on the same-direction road one by one through the input window of digital same-direction road signs.
  • the digital same-direction road sign input program module 11 obtains the digital traffic sign code from the "Traffic Sign Dictionary", and the affiliated auxiliary signs need to be input by testers; such as Ashoka Temple is 8.3 kilometers away from the next exit.
  • Step 102 Encoding generates an array of digital lane markings; in actual operation, the tester selects and inputs the digital lane type, the driving direction of the digital lane, and the height limit of the digital lane through the digital road marking input window of the same direction one by one;
  • the road sign input program module 11 encodes and generates a digital lane sign through a corresponding digital dictionary, and its data structure is: digital lane type code + digital lane driving direction code + digital lane height limit value.
  • the cycle repeats; finally, all the digital lane markings are coded and integrated into a digital lane marking array according to the order of the digital lane numbers.
  • Step 103 Encoding generates digital road signs in the same direction; specifically, the digital road signs in the same direction input program module 11 according to the member parameters and data structures of the digital road signs in the same direction: comprehensive code of digital roads in the same direction+digital road category code+digital An array of traffic signs + an array of digital lane signs, code and integrate them into digital road signs in the same direction, and store them in the array E[B] of digital road signs in the same direction.
  • digital road surface cross-tangent line array in the same direction includes a digital vehicle road surface cross-tangent line array
  • acquisition device interface program module 14 connects intelligent focusing equipment, RTK through RS442 interface Test receiving equipment, fiber optic gyroscope, speed measuring and length measuring instrument, intelligent navigation equipment and other professional testing equipment, collect digital road data in the same direction
  • Step 200 Obtain the type of digital markings; in actual operation, the tester enters the digital lane markings in the same direction through the digital road marking input window, sequentially selects the two digital lanes that need to be marked in the input window from the digital lanes of the digital lanes in the same direction from left to right.
  • the tester drives the test vehicle to the test position, and the left and right sets of intelligent focusing equipment control four stepping motors (currently, the single-step stroke of the stepping motor is about 0.01mm, which can meet the test of the coordinate points of the digital marking line.
  • the device test cross of the left and right smart focus devices will focus on the actual test cross (currently, the step distance of the smart focus device can reach 60cm, which meets the requirements of smart focus); the focus is confirmed until it is completely overlapped; and a focus success signal is sent.
  • the intelligent navigation device navigates the test vehicle, and proceeds to the standard distance of the coordinate point according to the direction of the lane; Then draw the distance arc on the actual marking line (10-20 cm), take the mid-point line to generate the vertical line of the virtual test cross, and require an error of about 1 mm, which can meet the application requirements of fully automatic driving (L5); and then generate Virtual test cross.
  • the smart focusing device controls the left, right, front and rear stepping motors, and the left and right smart focusing device test crosses focus on the virtual test cross until they overlap completely; and send out a focus success signal.
  • Step 202 Collect codes to generate the left and right digital marking coordinate points of the digital lane; specifically, the focus success signal of the smart focus device triggers the work of the left and right RTK test receiving devices respectively through the RS442 interface; their positioning antennas are fixed on the focus points of the smart focus device.
  • the WGS-84 coordinate data of the coordinate point is automatically received; the coordinate point parameter conversion algorithm is used to collect the latitude, longitude and altitude of the current left and right digital marking coordinate points.
  • China's Beidou will provide reliable centimeter-level positioning services to the world; further, the Beidou ground base station auxiliary platform will be used to obtain millimeter-level positioning data to meet the accuracy requirements of digital roads.
  • the RTK test receiving equipment is connected with the digital road generation device through the RS-442 interface, and the coordinate point information of the digital marking is exchanged. Further, the digital road encoder 10 encodes and generates the left and right of the digital lane respectively according to the member parameters of the coordinate point and its data structure: coordinate point number+coordinate point longitude+coordinate point latitude+punctuation altitude+digital marking type code Coordinate point of side digital reticle.
  • Step 203 Test and collect some member parameters of the pavement properties of the digital roadway; specifically, receive the focusing success signal of the intelligent focusing device through the RS442 interface, and trigger the work of the left and right fiber optic gyroscopes (currently, the zero bias stability and zero bias repeatability of the gyroscope and random walk coefficients are all ⁇ 0.008°/h, scale factor nonlinearity, scale factor repeatability, and scale factor asymmetry are all ⁇ 10PPM, which can meet the precision requirements of digital roads). Collect and obtain the heading angle, pitch angle and roll angle of the digital lane. Furthermore, the fiber optic gyroscope is connected with the digital road generation device through the RS442 interface, and exchanges the member parameters of the road surface attributes of the digital road.
  • Step 204 Test and collect the dynamic friction coefficient of the road surface; in actual operation, testers prepare the test environment of the lane according to the highest speed according to the "On-site Test Regulations for Highway Subgrade Pavement (JTG E60-2008), carry out the on-site test, and obtain the dynamic friction coefficient ; such as a highway, select a straight and flat test lane with a length of about 300 meters; set a test target at one end of the lane; at the other end 0.5 kilometers away from the front of the speed test target, the tester adjusts the focus of the laser Doppler speed measuring instrument The vehicle speed test target, and ensure that the effective reflection signal can be captured when the test vehicle is moving towards the test target. After the preparation is completed, start the test vehicle and accelerate towards the speed test target.
  • the laser Doppler speed measuring instrument sends braking information to the digital road generation device through the RS-442 interface at a distance of 300 meters from the test target; the digital road generation device passes The RS-442 interface transmits the braking information to the intelligent navigation equipment, thus triggering the test vehicle to start emergency braking.
  • the laser Doppler speed and length measuring instrument (currently, the supported test range is 10,000 meters per minute, and the accuracy is ⁇ 0.05%) produces and saves about 150K sets of speed and length measurement data per second.
  • the dynamic friction coefficients of the same road construction are basically the same; usually only one test of the dynamic friction coefficient is required. If the pavement surface of digital lanes in the same direction of digital roads is not homogeneous, it is necessary to test their dynamic friction coefficients separately with the same test method.
  • Step 205 Selecting digital road loads; during actual operation, testers select digital road loads according to the types of digital road pavement through the input window of digital road signs in the same direction, including bridge loads. Mainly refers to the load of the motorway.
  • Step 206 Select a safe lateral distance; in actual operation, the tester selects a safe lateral distance through the input window of the digital road signs in the same direction.
  • Step 207 Calculate and obtain the safe straight-ahead distance; calculation principle: connect the digital marking coordinate points with the same number on the left and right of the digital lane, and virtualize a section of digital lane road surface tangent line; Take two test points with a safe lateral distance from the two ends of the tangent line, extend forward according to the digital heading angle in the cross-tangent line of the digital road surface, and test how far they intersect with the digital marking lines on both sides; the maximum value is 500 meters. Numeric lane pavement attributes only identify longer safe straight-ahead distances. Explanation: This is a late calculation. For example, the safe straight-ahead distance of the coordinate points of the digital marking line is up to 200 meters, and the standard distance between the coordinate points of the digital marking line is 10 meters.
  • the optimal safe straight distance calculation is done by the digital road generation device "afterwards" to shorten the test time of the digital road.
  • the blind driving time can be calculated according to the safe straight distance and the driving speed of the intelligent vehicle; that is to say, even if the navigation and positioning data is missing, the self-driving vehicle is safe within the safe straight distance when driving strictly according to the heading angle of the digital lane. .
  • the intelligent navigation device takes corresponding measures, including controlling actuation, braking, shifting gears, changing lanes, etc., to avoid traffic accidents such as collisions.
  • Step 208 Encoding generates digital lane pavement attributes; specifically, digital marking and road surface attribute acquisition program module 12 encodes and generates member parameters and data structures of digital lane pavement attributes: digital lane heading angle+digital lane pitch angle+digital lane transverse Roll angle + dynamic friction coefficient + digital road load + safe lateral distance + safe straight running distance.
  • Step 209 Encoding generates all longitudinal digital road surface cross-tangent line arrays of digital roads in the same direction; specifically, the digital marking and road surface attribute acquisition program module 12 is according to the data structure: digital marking coordinate point on the left side of the digital lane+digital lane Road surface attribute + digital marking coordinate point on the right side of the digital lane, encode its member parameters to generate a digital lane road surface tangent line.
  • digital same-direction road coding generation program module 13 codes and integrates a digital same-direction road with digital same-direction road signs; the implementation steps are as follows:
  • Step 301 Coding and integrating a digital road surface cross-tangent line in the same direction; specifically, the data structure of the digital road surface cross-tangent line in the same direction is: digital road road cross-tangent line 1+digital road road surface cross-tangent line 2+...+ Digital lane road surface cross-cutting line N; Digital same-direction road coding generation program module 13 codes take out digital marking coordinate point numbering as all digital lane road surface cross-cutting lines of C from above-mentioned all longitudinal digital lane road surface cross-cutting line arrays, order from small to large They are coded and integrated into a digital cross-cutting line F[C] of the road in the same direction.
  • Step 302 Code to generate a digital road tangent line in the same direction; specifically, the data structure of the digital road tangent line in the same direction is: digital road sign E[C]+digital road surface tangent line F[C];
  • the same-direction road code generation program module 13 integrates the codes of the digital same-direction road sign E[C] and the digital same-direction road surface crosscut F[C] into a digital same-direction road crosscut D[C].
  • Embodiment 2 is combined with Embodiment 2 and Embodiment 3, the member parameters of digital road infrastructure and its data structure schematic diagram 4 analysis, so that those skilled in the art can further understand digital intersections, digital guiding road sections, digital road access parts in the same direction, etc.
  • This embodiment is an intersection formed by the plane intersection of two roads; or in other words, the digital intersection is connected with the entrances of four digital roads in the same direction at most; it may also be connected with the exits of four digital roads in the same direction at most.
  • it is a part of the digital intersection, and a digital road exit in the same direction is connected to it.
  • the exit end of the digital road in the same direction is composed of three digital motor vehicle lanes, one digital non-motor vehicle lane and one digital sidewalk.
  • the exit end of the digital same-direction road starts from the left.
  • the first digital motor lane has two digital lane driving directions: U-turn and straight.
  • two digital guiding road sections shall also be coded for the test;
  • the third digital motor vehicle lane only has the driving direction of one digital lane going straight, but according to the current traffic rules, this lane can also turn right (traffic signal indication except that you cannot turn right), also code two digital guide segments for its test.
  • the exit end of a digital lane can identify multiple driving directions of the digital lane; each driving direction of the digital lane must be coded to generate a digital guidance section connected with it.
  • This embodiment only describes the 6 digitally guided road sections of motor vehicle lanes; it does not describe the digitally guided road sections of non-motor vehicle lanes and sidewalks.
  • the digital guidance section is a simple digital lane, and its member parameters and its data structure are: number of the digital guidance section + length of the digital guidance section + identification of the digital guidance section + digital guidance lane + comprehensive code of the digital road in the same direction. in:
  • Encoding generates a digital guide section number (2 bytes). Specifically, its data structure is: digital lane number (1 byte) + digital driving direction code (1 byte).
  • Figure 2 shows the digital guidance section numbers at the exit end of the digital road in the same direction, as follows: 11 (turn around in 1 lane), 13 (go straight in 1 lane); 22 (turn left in 2 lanes), 23 (go straight in 2 lanes); 33 (3 6 lanes, 34 (3 lanes turn right), etc. They respectively belong to the array of digital guidance road sections of three digital lanes, but belong to the sub-set of digital guidance road sections of the same digital road in the same direction.
  • Generate digital guidance segment length (4 bytes). Specifically, it includes the cumulative word length of member parameters such as digital guidance road section signs, digital guidance lanes, and comprehensive codes of digital roads in the same direction.
  • the length of the digital guidance section is used to quickly analyze and obtain the digital guidance section identification, digital guidance lane and digital road comprehensive code from the digital guidance section.
  • Digital guidance road section identification Coded to generate digital guidance road section identification.
  • digital guidance road section signs such as stop lines in turning areas, digital markings for lane reduction, digital markings for lane expansion, and the like. Its member parameters and its data structure are defined, collected and coded the same as the digital traffic sign arrays in the first and third embodiments, and expressed in data.
  • the digital guidance lane is usually one digital lane; only the digital guidance lane with the sign of expansion or reduction will have multiple digital lanes at one end.
  • This embodiment adopts the test vehicle equipped with the digital road generating device of the third embodiment, which can provide a guide to the intersection through professional equipment such as intelligent focusing equipment, RTK test receiving equipment, fiber optic gyroscope, speed measuring and length measuring instrument, and intelligent navigation equipment.
  • the road section implements the same manual intervention on-site test collection method; the digital road encoder 10 encodes its entire longitudinal digital lane road surface cross-cut line array; thus the encoding is integrated into a digital guide lane.
  • the member parameters and data structure of the cross-tangent line of the digital road surface the left digital marking line, the digital road surface attribute, and the right digital marking line;
  • the standard distance between the coordinate points of the digital marking of the lane is 1 meter.
  • the digital road encoder 10 integrates the number of the digital guidance road section, the length of the digital guidance road section, the identification of the digital guidance road section, the digital guidance lane, and the comprehensive code code of the digital road in the same direction into a digital guidance road section according to the data structure of the digital guidance road section.
  • the operation is repeated cyclically, encoding and generating six digital guiding road sections; further encoding is integrated into three arrays of digital guiding road sections; further encoding is performed to generate a subset of digital guiding road sections for digital roads in the same direction as shown in Figure 2 .
  • the digital road encoder 10 codes and integrates the digital road in the same direction with digital road signs in the same direction in Embodiment 3 and a subset of digital guidance road sections connected to it in this embodiment into a digital road in the same direction. It is the basic unit of encoding, storage, indexing, reading, and parsing of digital truth infrastructure.
  • simulated annealing algorithm uses simulated annealing algorithm, artificial potential field method, fuzzy logic algorithm, visual image space method, free space method, ant colony algorithm, neural network algorithm, genetic algorithm and other planning driving route algorithms , plan and obtain a driving route.
  • fuzzy logic algorithm uses simulated annealing algorithm, artificial potential field method, fuzzy logic algorithm, visual image space method, free space method, ant colony algorithm, neural network algorithm, genetic algorithm and other planning driving route algorithms , plan and obtain a driving route.
  • the intelligent navigation device searches the digital road infrastructure (storage device) to obtain a digital same-direction road access piece. Then, the digital same-direction road access file is analyzed to obtain the digital same-direction road with the digital same-direction road sign and the sub-set of digital guidance road sections connected thereto. Then, according to the digital driving direction code in the driving route, the subset of digital guidance road sections is analyzed, and at least one digital guidance road section is obtained therefrom. Then, analyze a digital guiding road section according to the need, and obtain its digital road comprehensive code in the same direction. Finally, analyze the comprehensive code of the digital road in the same direction to obtain the retrieval information of the access piece of the next digital road in the same direction.
  • the digital road infrastructure storage device
  • the next digital same-direction road access part connected with the digital guidance road section is retrieved.
  • the process repeats until the digital same-direction road access piece containing the end address is obtained.
  • Digital road infrastructure is a collection of digital road access components.
  • the digital driving road is a collection of digital road access parts associated with the driving route.
  • the digital same-direction roads with digital same-direction road signs and their associated digital guidance road section subsets are coded and stored respectively; however, establishing an associated retrieval relationship between the two can also realize this Efficacy of inventing digital road infrastructure. Disadvantages such as: encoding, storage, retrieval, reading, and parsing are one more step.
  • FIG. 3 it is a schematic structural diagram of a digital road generation device; this embodiment analyzes the digital road generation device in conjunction with embodiment three and embodiment four, which includes a digital road encoder 10, various data test collection equipment 20 and a digital road infrastructure storage device 30 .
  • Digital road coder 10 is used to carry out the coding generation method of embodiment three and embodiment four; It comprises digital same direction road sign input program module 11, digital marking line and road surface attribute acquisition program module 12, digital same direction road code generation program Module 13 and acquisition device interface program module 14; Wherein:
  • the digital same-direction road sign input program module 11 is used for testers to select or input all digital traffic signs of the digital same-direction road.
  • the digital same-direction road sign input program module 11 includes a digital same-direction road sign input window, which has the function of selecting and inputting digital traffic signs; An array of traffic signs, an array of digital lane marking codes, etc.; the codes are integrated into digital road signs in the same direction; or digital guidance road section signs.
  • the digital marking and road surface attribute collection program module 12 is used to automatically collect member parameters of digital roads in the same direction.
  • the first step is to obtain the type of digital marking;
  • the second step is to focus on the test cross of the coordinate point of the digital marking;
  • the third step is to collect the code to generate the left and right digital marking coordinate points of the digital lane;
  • the fourth step is to Test and collect the parameters of some members of the pavement attributes of the digital lane;
  • the fifth step is to test and collect the dynamic friction coefficient of the road surface;
  • the sixth step is to select the digital road load;
  • the seventh step is to select the safe lateral distance;
  • the eighth step is to calculate the safe straight line distance;
  • encoding generates digital lane pavement attributes;
  • in the tenth step encoding generates all longitudinal digital lane pavement cross-tangent line arrays of digital roads in the same direction.
  • the digital same-direction road code generation program module 13 is used to code and integrate a digital same-direction road with digital same-direction road signs.
  • the first step is to prepare for encoding;
  • the second step is to encode and generate a digital road in the same direction;
  • the third step is to encode and generate a digital road in the same direction;
  • the fourth step is to encode and integrate a digital road in the same direction An array of transverse lines; thereby obtaining the virtual three-dimensional digital same-direction road space with digital same-direction road signs described in the third embodiment; or obtaining the virtual three-dimensional digital guidance road section described in the fourth embodiment.
  • the acquisition device interface program module 14 connects the digital co-direction road sign input program module 11, the digital marking line and road surface attribute acquisition program module 12, the digital co-direction road code generation program module 13 and various data acquisition devices 20 for interactive digital roads
  • the member parameters of the infrastructure connected to the digital road storage device 30; used to store the access parts of the digital road in the same direction.
  • Various data acquisition devices 20 include professional equipment such as intelligent focusing equipment, RTK test receiving equipment, fiber optic gyroscopes, speed measuring and length measuring instruments, and intelligent navigation equipment.
  • the intelligent focusing device is used to determine the test cross (positioning) of the digital marking
  • the RTK test receiving device is used to test the longitude, latitude and height of the coordinate points
  • the fiber optic gyroscope is used to test the digital lane heading angle, digital Lane pitch angle, digital lane roll angle
  • laser Doppler speed measuring instrument and intelligent navigation equipment used to test and obtain road dynamic friction coefficient.
  • the digital road infrastructure storage device 30 is used for storing digital road infrastructure.
  • each functional module in the foregoing embodiments may be implemented in the form of hardware (such as a computer), or may be implemented in the form of software functional modules.
  • the present embodiments are not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

一种虚拟的三维数字道路基础设施,依据现实道路基础设施,采用专用设备测试或者人工输入方法,获取数字道路基础设施成员参数,编码整合成虚拟的数字道路基础设施;赤道经度误差不超过1.11厘米,确保智能导航设备能够精准"驾驶"现实机动车辆,行驶在虚拟的三维数字道路基础设施空间中,实现将现实道路设施虚拟为三维数字道路基础设施;智能导航设备依据虚拟的三维数字道路基础设施,驾驶现实机动车辆安全可靠地行驶在现实道路上,从而实现虚拟现实技术的闭环应用。

Description

一种数字道路基础设施、编码生成方法及装置 技术领域
本发明涉及数字产品的结构设计与编码生成领域,具体涉及一种数字道路基础设施、编码生成方法及装置。
背景技术
随着智能交通逐渐走进现实社会,电子(数字)地图已被广泛地应用于智能导航。现有的电子地图主要功能是给人工驾驶示意导航;即便使用各种成像技术获得现实道路的特征信息,采集点云数据,使用聚类算法等手段获取虚拟的数字道路;依托图像识别技术获取现实道路上的交通标识、再通过数学建模方法,借助于GIS工具软件生成电子地图。这种电子地图存在:首先,数字道路借助GIS和数据库辅助工具软件表达,方法方式落后,造成电子地图体量巨大。其次,道路参数不够精准;难以满足智能导航车辆安全行驶的需要。其三,没有完备的现实道路静态路况,难以升级智能导航算法;所以,使用电子地图的自动驾驶车辆还需要装备较多的传感器来实时获取现实道路静态路况。其四,实时处理图像数据,技术要求高,处理难度大。
现有的实验室应用电子地图,其道路参数比较丰富,但都是虚构电子地图,用于实验室测试现实机动车辆的功能与性能;或者通过模拟驾驶***培训驾驶人员。还有,现有的电子游戏地图,也是虚构电子地图;用于体验虚拟游戏,很少见到交通标识。综上所述,现有的电子地图不能为智能导航提供较精准且完备的现实道路静态路况,更不具备成为数字基础设施级的数字商品(产品)。
发明内容
本发明提供一种采用虚拟现实技术,将现实道路基础设施(又称现实道路静态路况),虚拟为三维的虚拟数字道路基础设施。数字道路基础设施包括数字道路、数字交叉路口和数字交通标识等数字道路静态路况(含数字道路路面属性);其用途:就是为了让智能导航设备从实时采集数字道路静态路况的繁忙事务中解放出来,专心致志地处理数字道路动态路况。为实现完全自动驾驶(5级)的导航,提供与现实道路基础设施几乎一样的数字商品(产品)——数字道路基础设施(也称数字道路静态路况)。
2020年8月3日,国新办召开新闻发布会,北斗***发言人冉承其宣布我国在2025年前为全球提供厘米级的定位服务。采用厘米级定位***,测试现实道路基础设施,初步解决了数字道路基础设施的定位数据精准问题;也解决了碎石路、泥土路等道路划设精准数字标线的问题。数字道路基础设施采用数字标线坐标点表达虚拟的三维数字道路空间(一种地理围栏技术应用),这种编码方法解决了数字道路基础设施数据体量巨大,无法商业化的困难。数字道路基础设施增加数字道路路面属性,解决了智能导航要素不 够完备的难题;开拓了自动驾驶装备的新领域;使得智能转向控制***、智能致动控制***、智能制动控制***等的功能性能大大提高,且转向控制算法、车辆变道算法、碰撞处理算法等智能导航算法更加简约精细。尤其是数字车道航向角、横向安全距离、安全直行距离等车道路面属性的引入,解决了对实时定位信息过渡依赖问题。数字道路基础设施这种数字商品(产品),节省了自动驾驶车辆实时采集现实道路静态路况的测试***,大大降低了自动驾驶车辆的生产与维护成本。
数字道路基础设施是:一种将成员参数按照数据结构编码整合的数据集合。具体编码过程:首先,依据现实道路基础设施,采用人工干预的现场测试(同现场实测)采集方法,获取数字道路基础设施成员参数,编码整合成数字道路基础设施。其次,增加数字车道航向角、数字车道俯仰角、数字车道横滚角、动态摩擦系数、数字道路载荷、安全横向距离、安全直行距离等数字道路路面属性,使得现有的智能导航算法更简捷更精准,为自动驾驶功能性能升级,提供强有力的数据及其算法支撑。其三,数字道路基础设施创新定义了大量的数字车道标线种类和数字交通标识;智能导航设备的巡航、变道、避让等算法更加有效。其四,数字道路空间用虚拟的三维数字车道标线表达;而虚拟的三维数字车道标线是用一组数字标线坐标点规范有序地拟合表达,方式简捷且数据体量小,使得数字道路基础设施商品化成为可能。其五,成员参数按照规范的数据结构(诸如图4所示),编码整合成数字道路基础设施;它是一种数字基础设施。其六,数字道路基础设施提供了一种数字行驶道路的检索方法。
综上所说,虚拟的三维数字道路基础设施可以独立编码、生产、存储、检索、调用与维护,而无需GIS***和数据库等工具软件支持;由数字、字符和文字组成的数字商品(产品)。本文将用多个实施例来描述它的数据结构、成员参数(含组成部件)、参数用途、编码方法等等。
本发明提供一种数字道路基础设施,数字道路基础设施由成员参数编码整合而成;所述数字道路基础设施包括数字道路和数字交通标识。
在一种改进的方案中,所述数字道路包括数字同向道路;所述数字同向道路包括至少一个数字同向道路路面横切线数组;所述数字同向道路路面横切线包括至少一个数字车道路面横切线数组;所述数字车道路面横切线数组包括至少一条数字车道路面横切线;所述数字车道路面横切线的成员参数包括:左侧数字标线坐标点、数字车道路面属性和/或右侧数字标线坐标点。
在一种改进的方案中,所述数字道路包括数字同向道路;所述数字同向道路包括至少一个数字车道数组;其中,所述数字车道数组包括至少一条数字车道;所述数字车道包括两条平行且相邻的数字标线和所述数字车道路面属性;所述数字车道路面属性包括数字车道航向角和/或数字车道横滚角和/或数字车道俯仰角和/或动态摩擦系数。
在一种改进的方案中,所述数字道路包括所述数字标线;所述数字标线包括至少一组所述数字标线坐标点;所述数字标线坐标点的编号k从0起始,数字标线的第n个所述数字标线坐标点编号k=n-1;其中, k和n都是自然数,n大于等于1;将所述一组数字标线坐标点,按照所述数字标线座标点编号从小到大排序,规范地连线拟合成一段所述数字标线。
在一种改进的方案中,所述数字道路还包括数字标线坐标点;所述数字标线坐标点包括坐标点编号和/或坐标点经度、坐标点纬度、坐标点海拔高度和/或数字标线种类代码。
在一种改进的方案中,所述数字道路包括所述坐标点经度,其误差小于1.11厘米;和/或所述航向角,其基本单元小于等于0.01°;和/或所述俯仰角;其基本单元小于等于0.1°。
在一种改进的方案中,所述数字道路还包括安全横向距离和安全直行距离。
在一种改进的方案中,所述数字道路基础设施还包括数字交叉路口;所述数字交叉路口包括至少一个数字引导路段集合;所述数字引导路段集合包括至少一个与数字同向道路出口端连接的数字引导路段子集合;所述数字引导路段子集合包括至少一个与数字车道出口端连接的数字引导路段数组;所述数字引导路段数组包括至少一条所述数字引导路段;所述数字引导路段出口端与一条数字同向道路入口端相连。
在一种改进的方案中,其中数字引导路段包括数字引导路段编号和数字引导车道;其中,所述数字引导路段编号包括数字车道编号和/或数字行驶方向代码。
本发明还提供一种数字道路基础设施生成方法,其对现实道路采用人工干预的现场测试采集方法,获得并编码整合成所述数字同向道路标识;获得并编码整合成所述数字同向道路;获得并编码整合成所述数字引导路段子集合;将所述数字同向道路标识格式化在数字同向道路中,编码生成设置数字同向道路标识的数字同向道路;进而将所述设置数字同向道路标识、所述数字同向道路和/或所述数字引导路段子集合编码整合成一个所述数字同向道路存取件。
在一种改进的方案中,所述数字道路基础设施编码与存储的基本单元为数字同向道路存取件。
本发明还提供一种数字行驶道路的运用方法,其根据行驶路线,从所述数字道路基础设施中,检索获得一个所述数字同向道路存取件;依据所述数字同向道路存取件中检索信息,检索获得下一个与其连接的所述数字同向道路存取件;循环往复,检索获得一条数字行驶道路。
与现有技术相比,上述技术方案中描述的数字道路基础设施具有以下有益效果:
1、数字道路基础设施结构方面。其数据结构简单,嵌套层次清晰,解析调用便捷,成员参数完备,数据精准表达的数字道路静态路况。其中,屏幕显示信息,诸如交通辅助标志、数字同向道路综合代码等使用文字、数字、符号、字母等表达。数字道路基础设施不含图像、音频、视频数据。数字道路基础设施绝大多数成员参数用数字表达,计算机处理效率高。
2、数字道路基础设施技术方面。预先采用人工干预的现场测试采集方法,获得数字标线坐标点,进而用一组数据结构规范、数量不等、间距标准的数字标线坐标点有序拟合成一条数字标线;两条平行且相邻的数字标线和数字车道路面属性组成一段数字车道;一组数字车道纵向横拼为一段数字同向道路;还用 一个数字引导路段集合表达一个数字交叉路口,使得其数字道路基础设施的数据体量大大减小。
3、数字道路基础设施创新方面。数字道路基础设施表达了现实道路基础设施难以或者尚未标识的成员参数,诸如数字车道航向角、数字车道俯仰角、数字车道横滚角、动态摩擦系数、道路载荷、安全直行距离、安全横向距离、数字标线(含隔离设施)、数字交通标识等,大大提升了智能导航设备对数字道路静态路况的“感知”,为提升智能转向控制***、智能致动控制***、智能制动控制***等功能与性能提升,提供了丰富而有价值的基础数据。助力现有的自动驾驶车辆的升级换代。
4、数字道路基础设施辨识方面。大雾、大雨、大雪、大风、冰雹、沙尘暴、雾霾、遮蔽物等不良现场,严重影响现有智能导航设备“看清”现实道路和交通标识;而智能导航设备能实时(毫秒级)、准确、完备地“看清”数字道路和数字交通标识,且不会被遗漏与错识;将大大提高智能导航设备的辨识率。同时,也节省了实时获取现实道路静态路况的时间。
5、数字道路基础设施精准方面。数字道路基础设施的成员参数采用人工干预的现场测试采集方法,数字标线坐标的经纬度误差小于1.11厘米;数字车道航向角的基本单元为0.01°;数字车道俯仰角和数字车道横滚角的基本单元为0.1°;动态摩擦系数的精度为小于等于0.001°;比较现有的激光点云数据、聚类算法、数学建模等方法生成电子地图,数据更加精准。也为精准的智能导航创造了条件。
6、数字道路基础设施存储方面。本文估算过全国519.8万公里(2020年底统计数据),约为1000万公里的同向车道;同向道路平均按4车道(两条机动车道、一条非机动车道和人行道)计算,约有678GB体量。目前,1T存储设备价格支持数字道路基础设施的推广应用。而采用GIS***、数据库的电子地图,占用存储设备资源将大大超过数字道路基础设施。
7、数字道路基础设施配套方面。数字道路基础设施需要其坐标点参数精度为1厘米左右;应用其的车辆动态定位参数也需要为1厘米左右。将来数字道路基础设施的生产与使用,需要配套北斗定位,或者北斗地面站网辅助定位,或者“星链”定位支持1厘米左右的动态定位。才能充分发挥数字道路基础设施的作用,为实现L4甚至L5驾驶自动化***,奠定了精细、有效的数字基础。
8、数字道路基础设施融合方面。数字道路基础设施开放可拓展的数据结构,支持按需定义新的成员参数;数字道路基础设施的应用领域十分广泛:诸如数字道路添加门牌号码,就能实现智能快递;添加商场名称,实现智能购物;添加虚拟世界隧道名称,实现不同虚拟世界的穿越等;其经济效益与社会效益不可限量。更重要的是,虚拟的三维数字道路基础设施是一种虚拟世界与现实世界的“融合基础平台”,更是多数“元宇宙”应用的融合平台。
将现实道路虚拟为三维数字道路空间;现实智能导航设备依据虚拟的三维数字道路空间,智能“驾驶”现实机动车辆安全可靠地行驶在虚拟的数字道路中,到达现实的终点,从而实现虚拟现实技术的典型的闭环应用。
附图说明
图1为设置数字同向道路标识的数字同向道路编码生成方法的流程示意图;
图2为数字交叉路口外接的一个数字同向道路出口端示意图;
图3为数字道路基础设施生成装置的结构示意图;
图4为数字道路基础设施的成员参数及其数据结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明,其中不同实施方式中类似部件采用相关联的部件号标识。以下实施方式中很多细节描述是为了使得本发明能被更好地理解;本领域技术人员可以毫不费力地认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他部件、材料、方法所替代。某种情况下,本发明相关的一些实施细节并没有在说明书显示或者描述,这是为了避免本发明的核心部分被过多的描述所淹没;对本领域技术人员而言,详细描述这些实施细节并不是必要的,他们根据说明书描述以及本领域的一般技术知识即可完整地了解相关实施细节。
以下具体实施方式只是作为示例,用于帮助理解本发明,而不是用以限制本发明。对于本发明领域技术人员而言,在不背离具体实施方式的实质和范围条件下,根据本发明的思想,还可以做出若干简单推演、变形、组合和改变,均应涵盖在本发明的权利要求范围当中。
本文中部件所编序号本身,例如“第一”、“第二”;(1)、(2)、(3);步骤一、步骤二等,仅用于区分所描述的对象,不具有任何顺序或技术含义。本文所述“连接”、“联接”,如无特别说明,均包括直接或间接连接(联接)。
本文中所使用的“包含”、“包括”、“具有”、“含有”等,均为开放性的用语,即意指包含但不限于。
本发明定义以下一组名词和动词,以明确它们的内容与边际。
“电子地图”(Electronic Map)是纸制地图的数据存在与升级,其数字道路和数字交通标识是计算机存储介质中规范有序的数据集合;也可称之为数字地图。
“虚拟现实”(Virtual Reality)就是虚拟与现实的相互结合;称之为虚拟现实技术(即VR技术)。本发明通过该技术,将现实道路静态路况虚拟成三维的数字道路基础设施。
“导航”(Navigation)是指驱使车辆从一个地方安全移动到另一个指定地方的过程。
“智能导航设备”(Intellect Navigation Equipment),是一种依托数字道路基础设施,智能导航自动驾驶车辆行驶的设备。
“数字道路基础设施”(Digital Road Infrastructure)包括数字道路(含数字道路路面属性)、数字交通标识等;又称之为数字道路静态路况。它是现实道路基础设施数字化的一种数据产品;它与现实道路基础设施互为镜像关系。自动驾驶车辆通过“认知”数字道路基础设施,进而“认知”现实道路基础设施;当然,其经过专门处理也可以显示给人看。
“数据结构”(Data Structure)是指其成员参数,及其前后所处位置的结构。
“表达”(Express),原意是将思维所得的成果,用语言等方式反映出来的一种行为。本文是指一个事物可以用另一些事物来描述的意思。诸如:数字产品或者数字部件是由其成员参数编码组成;数字道路基础设施由数字同向道路存取件集合表达;数字坐标点由经度、纬度、海拔高度等表达。
“编码”(Code)是指将成员参数按照数据结构组成一个有意义的数据集合,诸如电子文件编码格式、通信协议编码格式、H.264编码格式等;它是计算机可分析、处理和应用的信息。编码是一种参数罗列与整合的行为。参数,包括参数名称和参数值;数据结构中的成员参数可以约定用参数名称,或者用参数值。成员参数可以使用代码来表达;代码是用来表示事物的记号,它可以用中文(外文)、数字、字母、字符,或者它们组合来表示。编码而成的数据结构可简称为编码结构。
“成员参数”(Member parameters),是指数字道路基础设施的成员参数;成员参数可以多层嵌套;逐层嵌套下级成员参数;诸如数字道路基础设施的成员参数包括数字道路、数字交通标识等;而数字道路的成员参数包括数字同向道路和数字交叉路口等;其中,数字同向道路包括数字车道数组;数字交叉路口包括数字引导路段集合等等。
“数字产品”(Digital Products)是一种由成员参数组成,按照数据结构编码的格式化电子文件;其中,成员参数名称、定义和用途明确。数字产品通过交换,实现数据共享,进而获得经济价值。
“路况”(road condition)包括静态路况与动态路况。静态路况是指现有道路路基、道路路面、道路构造物(含桥涵)及其附属设施(含交通标识)等的技术状况;动态路况是指道路上的移动物体种类、尺寸、距离、密度、运动速度与方向等的技术状况。本发明通过虚拟现实技术,将现实道路的静态路况虚拟为数字道路静态路况。说明:本文所述数字道路静态路况不包括:现实道路及附属设施损坏、修路现场围栏、堆放物等临时的技术状况。
“道路”(Road)是指公路、城市道路和虽在单位管辖范围但允许社会机动车通行的地方,包括广场、公共停车场等用于公众通行的场所。本发明通过虚拟现实技术,将现实道路(不包括交通标识)虚拟为三维数字道路空间,简称数字道路。数字道路(含数字道路路面属性和数字道路限高)包括数字道路段和数字交叉路口;其中,数字道路段包括数字双向道路段、数字单向道路段、数字无方向道路段、数字同向道路等种类。本文数字道路由“数字”编码组成;它是数字道路静态路况的组成部分。
“双向道路”(Two-Way Road)包括方向相反的机动车道路,且中间由道路中心线(或分隔带)构成的道路;或者说,双向道路是由两条方向相反的同向道路构成。本发明将现实双向道路虚拟为三维数字双向道路空间。简称数字双向道路。
“单向道路”(One-Way Road)是指只包含单向的机动车道路。或者说,单向道路包括一条同向道路;还可以分别或者同时包括反向非机动车道段和人行道段。单向道路为同向道路的一种特例。本发明将现实单向道路虚拟为三维数字单向道路空间,简称数字单向道路。
“无方向道路”(Undirected Road)是指没有标识机动车行驶方向的现实道路,或者是步行街。本发明将现实无方向道路虚拟为三维数字无方向道路空间,简称数字无方向道路;通常数字无方向道路有两个不同方向的数字同向道路存取件。若自动驾驶车辆行驶方向确定,其对应的数字同向道路存取件是唯一的。因此,本发明不再对它做详细描述。
“同向道路”(Road In Same Direction),是指两个相邻交叉路口之间的一段同向道路。本发明将现实同向道路虚拟为三维数字同向道路空间,简称数字同向道路。数字同向道路一端称之为数字同向道路入口端,另一端称之为数字同向道路出口端。若是双向道路,同向道路是指道路中心线(分隔带)以右部分道路;而靠左行驶规则的则相反,诸如美国、英国、日本等国家。数字同向道路包括机动车道段、非机动车道段、人行道段等。若是单向道路,同向道路是指整条道路段。
“车道”(Drive)是指相邻两个交叉路口之间的一段车道。车道由两条车道标线,及其车道标线之间的车道路面属性等组成。车道一端称之为车道入口端,另一端称之为车道出口端。本发明将现实车道虚拟为三维数字车道段空间,简称数字车道。其中,数字车道两侧编号相同的数字标线坐标点连线称之为数字车道路面横切线;两条相邻的数字车道路面横切线确定并构成一段虚拟的三维数字车道路面,简称一段数字车道路面。
“道路方向”(Road Direction),通常是指同向道路上指示车辆行驶的方向;其中,车道方向是指车道上指示车辆行驶的方向;车道行驶方向是指车道出口端标识的若干与其连接引导路段上指示车辆行驶的方向;行驶方向是指引导路段标识与其连接同向道路上指示车辆行驶的方向。
“同向道路路面横切线”(Road Surface Tangent In The Same Direction)是指同向道路方向的垂直切面与同向道路路面的相交线。本发明将现实同向道路路面横切线虚拟为三维数字同向道路路面横切线,简称为数字同向道路路面横切线。特点是:数字同向道路路面横切线中的数字标线坐标点编号都相同。两条相邻的数字同向道路路面横切线确定并构成一段虚拟的三维数字同向道路路面。
“行驶道路”(Driving Road)是指:根据用户设定行程的起始地址和目的地址,以及行驶路线特征,诸如最短起止路线、最快到达路线、最佳观光路线、最佳购买路线等,规划生成一条数字行驶路线。再根据数字行驶路线,从数字道路基础设施中检索获得一组相关连的数字同向道路存取件,组成一段三维数字行驶道路空间,简称数字行驶道路。
“数字”(Digital),本文是指***数字或者***数字串;诸如数字99。本文用“数字”定语成员参数,说明它们是用数字表达的;部分数字交通标识除外。
“数字标线坐标点”(Digital Line-Marking Coordinate Point)包括坐标点编号、经度、纬度、海拔高度等成员参数,简称坐标点。
“数字车道标线”(Digital Lane Marking)包括一组编码结构规范、数量不等、间距标准的数字标线坐标点,按照坐标点编号顺序拟合而成的虚拟的三维数字车道标线,简称数字标线。通常坐标点编号从小到大顺序方向,就是数字车道方向。数字车道标线种类,简称数字标线种类。
“数字车道路面属性”(Digital Driveway Pavement Attribute)包括数字车道航向角、数字车道俯仰角、数字车道横滚角、动态摩擦系数、数字道路载荷、安全横向距离、安全直行距离等成员参数。数字车道路面属性是数字道路路面属性的进一步细分,使得路面属性表达更具有普适性。
“分隔带”(Separator)是指,为保障道路上异向或者同向的机动车、非机动车与行人各行其道,在路面上设置的一定宽度的绿化带、混凝土设施、防护栏、隔离墩等分隔设施。设置在对向车流中间的称中央分隔带;设置在同向机动车道之间的称之为机动分隔带;设置在机动车道、非机动车道与行人道之间的称之为非机动分隔带。
“数字车道航向角”(Heading Angle)是指数字车道方向与地球北极方向之间的夹角。
“数字车道俯仰角”(Pitch Angle)是指数字车道路面纵切线与水平线之间的夹角。
“数字车道横滚角”(Roll Angle)是指数字车道路面横切线与水平线之间的夹角。
“动态摩擦系数”(Dynamic friction coefficient of pavement)是指车辆相对路面运动时的动态摩擦系数μ;动态摩擦力f=μ×N;其中,N为垂直力。
“安全横向距离”(Safe Transverse Distance)是指行驶车辆外侧与同侧数字标线之间的距离。自动驾驶车辆可以设置任意多的安全横向距离;本发明的数字车道路面属性只保存一个,诸如根据最为常用的安全横向距离(43厘米)测试获得的安全直行距离。
“安全直行距离”(Safe Straight Travel Distance)是指自动驾驶车辆在车道内的安全横向距离位置,按照驶过最后一条数字车道横切线中的数字车道航向角方向持续不变行驶,而不与数字标线碰撞的纵向最大距离。它与安全横向距离垂直。
“车道种类”(Lane Type)包括机动车道、非机动车道和人行道等。数字道路基础设施将现实车道种类称之为数字车道种类;通借现实车道种类名称,诸如机动车道、非机动车道、人行道等。
“纵向横拼”(Vertical and Horizontal Spelling)是指将长度一样,宽度不一定一样的条状纵向横拼成原长度,但宽度为所拼条状物宽度之和的长方形状的行为。
“交叉路口”(Intersection)是指两条或者两条以上道路的平面交叉部位;也就是说,平面交叉路口至少与三条(含三叉路口)以上道路段相拟合。本发明将现实交叉路口虚拟为三维数字交叉路口空间,简称数字交叉路口,或者数字交岔路口,或者数字十字路口(泛称)。
“引导路段”(Guide The Road)是指交叉路口内分别拟合同向道路出口端与另一同向道路入口端之间的车道。引导路段包括机动车引导路段、非机动车引导路段和人行引导路段。本发明将现实引导路段虚拟为三维数字引导路段空间,简称数字引导路段。数字引导路段也是一种数字车道,通常车道比较短、多为转弯车道、弧度比较大;本发明定义其坐标点间距为一米;两侧数字标线为实线。数字引导路段只有一个行驶方向。数字引导路段含其中的全部数字交通标识。
“拟合”(fitting)就是把平面上一系列足够密集的点,有选择地用直线连接成一条光滑的曲线。本发明是将全部坐标点规范、有序、唯一地连线拟合成一段数字标线、数字车道、数字同向道路、数字无方向道路、数字单向道路、数字双向道路,数字引导路段等。
“基本单元”(Elementary Unit),物质的基本单元是指组成该物质的最小独立单位。本发明数字道路基础设施编码与存储的基本单元为:数字同向道路存取件。
“测试”(Test)是指具有试验性质的测量,即测量和试验的综合。本文测试是指借助专业仪器或设备,设计合理的测试方法,对现实道路基础设施进行必要的测试信号分析与数据处理,从而精准地采集数字道路的成员参数。
“格式化”(Format)源自磁盘的格式化,原意指操作***事先对磁盘做些标记,使其能按照一定格式存取数据。后来引申为计算机术语,即一种标准化的计算机数据存取方法。本文数据(信息)的格式化是指每个数据定义明确,并按照数据结构规范地保存在数字道路存储设备或者电子地图中的操作。
“设置”(Set Up),本文是指将警告标志、禁令标志、指示标志、指路标志、旅游区标志、道路施工安全标志及其辅助标志等数字交通标识,规范编码整合后,格式化在数字同向道路中的行为。
实施例一:
本实施例结合数字道路基础设施的成员参数及其数据结构示意图4,分析设置数字同向道路标识的数字同向道路的成员参数及其数据结构。其中,采用虚拟现实技术,将现实道路基础设施虚拟为数字道路基础设施;它又称之为数字道路静态路况。本文中,现实道路基础设施,及其路面属性和交通标识等名称被数字道路基础设施所传承使用,虚拟名称就在现实名称前冠以一个定语“数字”,或者“虚拟的数字”,或者“虚拟的三维数字”,或者“虚拟的三维数字xxx空间”等修饰。为了方便技术人员顺畅阅读,本文通常使用简称。
数字道路基础设施成员参数包括数字道路和数字交通标识等。其中,数字道路纵向由数字道路段和数字交叉路***替拟合而成;数字道路段是一个虚拟的三维数字道路空间(含高度),还包括数字车道路面 属性;数字交叉路口包括一个数字引导路段集合。具体地,数字道路段横向包括两条方向相反的数字同向道路,或者一段数字单向道路,或者一段数字无方向道路;其中,数字单向道路是一段增强型数字同向道路;而数字无方向道路可以理解为两条方向相反的数字单向道路,车道方向确定时,其数字单向道路也就确定。具体地,数字道路基础设施的基本应用价值就是:获得用户行程的起始地址和结束地址,规划一条数字行驶路线;然后,根据起始地址检索一条包括起止地址和结束地址的,由若干设置数字同向道路标识的数字同向道路及与其连接的数字引导路段子集合组成的数字行驶道路;而不关注其反向的数字同向道路。本实施例重点分析数字同向道路,进而就能理解数字道路、数字单向道路、数字无方向道路;进而分析它们的成员参数及其数据结构,以及每个成员参数的用途;并采用同样方式分析数字交通标识。
说明:本文以下所指数组,包括只含一个元素的数组。数组也是一种数据结构。
本发明的数字道路也像现实道路一样,需要设置数字交通标识;让自动驾驶车辆依法、合规、有序地在虚拟数字道路上行驶。其中,数字交通标识包括《道路交通标志和标线》(GB5768)已定义的警告标志、禁令标志、指示标志、指路标志、旅游区标志、道路施工安全标志及其辅助标志等;无论它们采用道路标线、文字、数字、图案等何种形式表达;无论它们是标记在路面、还是设置在道路两侧或者上方。数字交通标识都用数字、文字、符号和字母等编码替代;从而大大减小数字同向道路标识的体量。进一步地,本发明用数字字典技术,将用数字代码表达的数字交通标识解析为人能看懂的信息;从而降低其显示处理成本。本发明还根据数字道路特点和智能导航实际需要,不仅优化了传统交通标识;还添加了诸如新的数字标线种类、注意靠车道左侧行驶、注意交叉路口没设置信号灯等新的数字交通标识,使智能导航设备能够“看到”更多有助于智能导航的数字交通标识。
本发明数字同向道路标识的成员参数及其数据结构为:数字同向道路综合代码+数字道路种类代码+数字交通标识数组+数字车道标识数组;说明:“+”代表“空”或者“分隔符”;其中:
具体地,数字同向道路综合代码用于描述数字同向道路名称等;用于检索与验证等,是数据代码。
具体地,数字道路种类代码包括高速公路、一级公路、二级公路、三级公路、四级公路、县道、乡村道(碎石路、沙土路、泥土路等)、专用道路、城市快速路、主干路、次干路、支路、单位内部道路、住宅小区道路、院区道路、高速公路出入口匝道、城市高架出入口匝道、立交桥出入口匝道、地下停车场出入口匝道等;它们统一使用数据代码。数字道路种类隐含表达行驶车辆的最高车速、数字车道宽度、数字车道限高、坐标点的间距标准、以及道路路面载荷等规范信息;用于数据共享与验证。
具体地,数字交通标识数组用于表达现实同向道路的交通标识,诸如:注意收费岛、禁止鸣喇叭、禁止通行标志及时间段、风景游览区名称等。若现实同向道路没有设置交通标识,数字交通标识数组的元素可以为“空”;否则,该数组可以有任意多的数组元素。具体地,数组元素包括数字交通标识及其辅助标志;其中,数字交通标识用数字代码表达,辅助标志用人们习惯的数据表达,诸如时间段表达为:7∶30-9∶30;语句表达:金山寺左前方500米等;辅助标志可以为“空”。
具体地,数字车道标识数组的成员参数及其数据结构为:数字车道种类代码+数字车道行驶方向代码+数字车道限高值。是数据编码。其中:
具体地,数字车道种类代码用于规范车辆、人类和牲畜等的交通行为;本发明将现实车道种类称之为数字车道种类;通借现实车道种类名称。数字车道种类包括机动车道,及其特殊机动车道,诸如:紧急停车带、专用车道、避车道、变向车道(又称潮汐车道)、避险车道、公交车道等;非机动车道,及其非机动特殊车道,诸如:助动车车道、自行车车道、三轮车车道、板车车道、畜牲车道等;人行道,及其特殊人行道,诸如步行街、斑马人行道、盲道、机器人行道等。将非机动车道和人行道包含在数字车道中,有利于智能导航设备“看清”所处地周遭的数字道路基础设施,更加精准地驾驶机动车辆,规避碰撞事件的发生;也是智能变道算法的依据之一。是数字代码。
具体地,数字车道行驶方向代码用于指导车辆在数字车道出口端可行驶方向,是规划行驶路线的依据之一。车道行驶方向可以包括:无行驶方向,一个行驶方向,或者两个行驶方向,甚至两个以上行驶方向。本发明用数字代码表达,最多可以有100种组合的数字车道行驶方向。本发明还采用数字字典,以满足展示给人“看”车道行驶方向的需要。
具体地,数字车道限高是规划一条超高车辆行驶路线的基础数据之一。用数值表达。
具体地,根据《道路交通标志和标线》(GB5768)2022年版已定义的现实道路标线有84种。本发明根据智能导航各种算法的需要,将数字标线种类分为:数字同向道路最左侧标线(含分隔带)、数字同向道路标线(含分隔带)和数字同向道路最右侧标线(含分隔带)等三大类,数百种,用数字代码表达。其中,数字同向道路最左侧标线包括:中心标线,左右2波形护栏,中间浅碟绿化带;中心标线,左右固定铁栅栏,中间浅碟绿化带;中心标线,对向隔离带为防撞柱,人行道和房屋等。同向道路车道标线包括:白色虚线;黄色虚线;黄色实线;双白虚线;双黄实线;双白实线;黄色虚实线等。数字同向道路最右侧标线包括:白实线,非机动车道,树,农田;白虚线(路缘石),人行道,商店;缆索护栏,灌木绿化带(路缘石),人行道和树等。借助数字标线种类,智能导航设备能够更加精准、安全地驾驶车辆,诸如帮助车辆在数字车道中规范直行;车辆变道优选左或者右侧车道;车辆变道时机准备与实施;智能规避交通事故;预判发生不可避免的碰撞事故时,根据获得自动驾驶车辆相对(碰撞对象)速度、车辆质量、车辆架构强度、制动有效性、重要人员车内位置和车道数字标线种类等信息,及时调整自身碰撞姿态,估算最优碰撞对象、碰撞位点和最低损毁程度。数字标线种类使用数字代码。
总而言之,数字同向道路标识是一个数据结构规范的数字交通标识集合。它由数据编码。
本发明的数字同向道路包括一个数字车道数组;其中,数字车道数组至少包括一条数字车道;也就是说,若干条并行且相邻的数字车道可以纵向横拼为一条数字同向道路。具体地,数字车道包括左侧数字标线、数字车道路面属性和右侧数字标线等;其中,左、右两侧数字标线的数据结构一样;平行且相邻。是数字编码。
具体地,数字标线坐标点是组成数字标线的基本单元;数字标线坐标点(帮助确定智能驾驶车辆在数字同向道路中相对位置,获取周遭数字道路静态路况)包括坐标点编号、坐标点经度、坐标点纬度、坐标点海拔高度(用于判定是地面车道还是城市高架车道;或者是立交桥复杂重叠的交通车道)等成员参数,都用数字表达。本实施例,从一段现实车道标线(位于数字车道入口端)开始采集坐标点的测试数据,定义坐标点编号k从0起始,数字标线的第n个坐标点编号k=n-1,其最大的坐标点编号为m(位于数字车道出口端);其中,n和m都是大于等于1的自然数。具体地,一组数据结构规范、数量不等、间距标准的数字标线坐标点,按照坐标点编号从小到大顺序拟合成:一段虚拟的三维数字标线。坐标点用途:首先,若定义坐标点间距标准,且相对车速而言足够“短”,密集且有效的坐标点之间直线连接,拟合成一条“光滑”的数字标线曲线,进而不再做数字标线之间、数字车道之间的拟合处理,节省了表达数字标线弧度的大量数据。其次,用两条数字标线、数字车道路面属性和一个车道高度标识表达虚拟的三维数字车道空间,是最节省数据量的点线融合表达方法。其三,坐标点最大编号m乘以坐标点的标准间距,就是这段数字标线的长度;用于计算里程和速度将更精准;车辆里程表和速度表将被淘汰,降低了车辆生产成本。其四,具有记录并追溯车辆每次、每日、每月、每年、全生命周期的全部行驶和里程的功能。其五,现实道路标线宽度为10~20厘米,而数字标线是一条无限“细”的连线;因此,数字标线辅助远程处理交通事故,责任更加精准。
具体地,本实施例的坐标点参照现实道路划线的间距标准:高速公路、一级公路和城市快速路间距标准为10米;二级公路、三级公路、四级公路、城市道路、单位内部道路、院区道路、村镇道路、山区公路、高速公路,城市高架、立交桥、地下停车场出入口匝道等的间距标准为6米;各种转弯道路,以及其它需要间距标准为1米的道路。这种参照规范,既是为了测试坐标点方便,也能够汲取长年交通经验。
两条相邻且平行的数字标线确定并构成一段虚拟的三维数字车道路面。现实道路标识与感知路面属性成本太高;但是,数字车道比较容易。具体地,数字车道路面属性的成员参数及其数据结构为:数字车道航向角+数字车道俯仰角+数字车道横滚角+动态摩擦系数+数字道路载荷+安全横向距离+安全直行距离;它是数字编码,本文精准度设计,能满足完全自动驾驶(5级)的各种智能算法需要,其中成员参数:
数字车道航向角。设计取值为360°,基本单元为0.01°。主要用于智能转向***,确保自动驾驶车辆巡航或者变道的安全。诸如航向角tan0.01°=0.0001745329,若自动驾驶车辆以120公里/小时行驶500米,其有15秒钟时间处理不到8.73厘米的偏差。
数字车道俯仰角。设计最大取值为±45°(《公路工程技术标准》(JTG B1-2003)规定:各级公路最大纵坡应不大于9%),基本单元为0.1°;用于自动驾驶车辆上下坡时,智能换挡控制、智能致动控制或智能制动控制等,达到一个预设的车辆速度。数字车道俯仰角还能替代上下坡警告标识。
数字车道横滚角。设计最大取值为±45°,基本单元为0.1°;根据自动驾驶车辆重心和数字车道转向角度,计算出车辆转弯最大安全速度,用于智能车辆转弯控制,预防车辆倾翻。
动态摩擦系数。根据《公路路基路面现场测试规程(JTG 3450-2019)》,通过类似双轮式横向力系数测试***,测定路面的动态摩擦系数;精度为0.001。车道动态摩擦系数是智能致动***、智能制动***处理的基础数据之一;尤其是自动驾驶车辆的动态摩擦系数自动补正的基础数据之一。
数字道路载荷用于规划一条重载荷车辆行驶路线的基础数据之一;汽车载荷分级:为8吨、10吨、15吨、20吨、25吨、30吨、40吨、50吨、60吨、80吨及以上。
安全横向距离。用于计算安全直行距离;精度为厘米级。通常车辆都会靠数字车道平面曲线外侧行驶,以获得最大安全直行距离;故而,智能导航设备的安全横向距离是唯一的。具体地,根据用户安全与舒适需要,确定安全横向距离。具体地,自动驾驶车辆获得前方一组数字车道航向角,由近及远,若发生顺时针变化就靠右行驶,使用数字车道右侧安全横向距离;否则,发生逆时针变化就靠左行驶,使用数字车道左侧安全横向距离。若一组数字车道航向角不变,说明是直行车道,不改变原侧的安全横向距离。早期数字横向距离由人工预先设置;将来根据数字道路平面曲线、行驶安全等级和舒适程度、定位信号强弱等参数,自动生成安全横向距离;本文定义它是一种数字道路属性。
安全直行距离,又称盲驶距离。盲驶距离÷车辆行驶速度=盲驶时间;用于告知智能导航设备还有多少时间,在没有可靠定位信号情况下,保障自动驾驶车辆安全直行距离。该属性说明使用数字道路基础设施和智能转向控制***,对自动驾驶车辆定位信息频度和可服务性要求大大降低。
本发明按照数字同向道路的数据结构,将其成员参数编码整合成一个数字同向道路。它由数字编码而成。将数字同向道路标识格式化在数字同向道路中,编码生成设置数字同向道路标识的数字同向道路。
在另一优选的实施例中,设置数字同向道路标识的数字同向道路的数据结构是:一个数字同向道路横切线数组。具体地,数字同向道路横切线包括一个数字同向道路标识和一条数字同向道路路面横切线;若没有数字同向道路标识,数字同向道路横切线等同数字同向道路路面横切线。具体地,数字同向道路路面横切线至少包括一个数字车道路面横切线数组。一个数字车道路面横切线数组至少包括一条数字车道路面横切线。具体地,数字车道路面横切线的成员参数及其数据结构:左侧数字标线坐标点+数字车道路面属性+右侧数字标线坐标点等;其中,数字同向道路路面横切线上数字标线坐标点编号都一样。
具体地,两条相邻且平行的数字车道路面横切线确定并构成一段虚拟的三维数字车道路面。进一步地,一组数据结构规范、数量不等、间距标准的数字车道路面横切线,按照数字车道方向,规范有序地拟合成一段虚拟的三维数字车道路面。再进一步地,若干相邻的数字车道路面逐条纵向横拼整合生成一段虚拟的三维数字同向道路路面。
综上所述,数字标线坐标点是构成虚拟的三维数字标线、虚拟的三维数字车道路面横切线、虚拟的三维数字同向道路路面横切线等部件的基本单元。用数字编码生成数字道路,是本发明的核心特征之一。
实施例二:
本实施例结合数字道路基础设施的成员参数及其数据结构示意图4,分析数字道路的另一个重要组成部分:数字交叉路口。具体地,数字交叉路口包括数字十字交叉路口、数字环行交叉路口、数字三岔路口等种类;数字引导路段排列组合能够表达不同种类的数字交叉路口。数字交叉路口与数字道路出入口端,数字同向道路出入口端,数字车道出入口端等连接。本文所述数字引导路段都含其数字交通标识。
数字道路基础设施还包括数字交叉路口。数字交叉路口包括一个数字引导路段集合。其中,数字引导路段集合包括至少一个与数字同向道路出口端连接的数字引导路段子集合。数字引导路段子集合包括至少一个与数字车道出口端连接的数字引导路段数组。数字引导路段数组包括至少一条数字引导路段;数字引导路段只有一个行驶方向,其出口端只与一条数字同向道路入口端相连接。其特征是:数字交叉路口的数字引导路段之间可能存在互相交叉现象;鉴于此,繁忙的数字交叉路口配置交通信号灯***,才能确保有效通行的数字引导路段之间不会出现交叉现象(直行红灯右转弯车道与绿灯直行车道的汇集不属于交叉),从而保障车辆行驶依法、有序、安全、顺畅。不繁忙的交叉路口,通常不配套交通信号灯,需要驾驶人员按照交通避让规则,保障车辆行驶安全有序、安全、顺畅。
具体地,确定数字同向道路出口端的数字车道编号和数字行驶方向代码,就能确定与其连接的数字引导路段子集合中唯一的数字引导路段。本文定义数字同向道路A出口端中全部数字车道从左到右,编号1开始,按照自然数从小到大地顺序编号。本文还定义数字行驶方向代码:以本数字同向道路A出口端掉头方向为代码1,按顺(或者逆)时针旋转,为每条数字同向道路入口端用自然数从小到大地顺序编制代码,以准确表达不规范的数字交叉路口。数字同向道路B入口端全部数字车道编号同样从左到右,编号1开始,按照自然数从小到大地顺序编号。具体地,数字同向道路A中每条数字车道经唯一的数字引导路段与其数字行驶方向所指的另一数字同向道路B入口端的相同编号的数字车道相连;拓展或者缩减的数字引导路段除外。
在另一优选的实施例中,特殊数字引导路段一端是一条数字车道,另一端是多条数字车道;按照交通拓展与减缩的避让规范划设其数字标线,并设置数字交通标识。本发明为了车辆行驶安全,定义数字引导路段的外侧数字标线都为实线,使得自动驾驶车辆在数字交叉路口不能变道行驶。具体地,数字引导路段包括数字机动车道、数字非机动车道和数字人行道等种类;它们互相不能相连。
本实施例数字同向道路A中某行驶方向的数字车道数量为a,且a≥1;这些数字车道经数字引导路段相连到另一数字同向道路B,其数字车道数量为b,且b≥1。具体地,若车道数量a=b,数字同向道路A中某行驶方向的数字车道出口端从左到右,顺序与数字同向道路B的数字车道入口端相连。具体地,若数字车道数量a大于b;数字同向道路A出口端中某行驶方向数字车道编号为第b条数字车道,及以右剩余的(a-b)条数字车道为特殊数字引导路段入口端;出口端缩减为数字同向道路B中左起第b条数字车道;并在特殊数字引导路段内划设缩减数字标线和设置数字缩减标识;数字同向道路A出口端有b条与其相连的数字引导路段。具体地,若数字车道数量a小于b,数字同向道路A出口端中某行驶方向的数字车道编 号第a条数字车道为特殊数字引导路段入口端;数字同向道路B中左起第a条数字车道,及以右剩余的(b-a)条数字车道为拓展出口端,并在特殊数字引导路段内划设拓展数字标线和设置数字拓展标识;数字同向道路A出口端有a条与其相连的数字引导路段。
实施例三:
如图1所示为设置数字同向道路标识的数字同向道路编码生成方法的流程示意图,以下结合实施例一、数字道路基础设施生成装置结构示意图3和数字道路基础设施的成员参数及其数据结构示意图4分析该方法。
具体地,数字道路生成装置安装在测试车辆上。测试车辆行进过程中,数字道路生成装置借助专业设备和仪器,采用人工干预的现场测试采集方法,智能采集现实道路基础设施的车道标线和车道路面属性,以及测试人员选定或者输入交通标识等,编码生成一条设置数字同向道路标识的数字同向道路。具体地,数字道路生成装置包括数字道路编码器10和数字道路基础设施存储设备30;其中,数字道路编码器10包括数字同向道路标识输入程序模块11、数字标线及路面属性采集程序模块12、数字同向道路编码生成程序模块13和采集设备接口程序模块14等;以及连接并包括智能对焦设备、RTK测试接收设备、光纤陀螺仪、测速测长仪、智能导航设备等的数据测试采集设备20。其采集与编码生成方法如下:
St1、编码生成数字同向道路标识。具体地,数字同向道路标识输入程序模块11包括一个数字同向道路标识输入窗口;测试人员用其选定或者输入数字同向道路的全部数字交通标识;并被保存在数字同向道路标识输入程序模块11中。设置数字同向道路标识数组E[B]为“空”,其数组下标B=0(数字标线坐标点编号);数字同向道路标识数组的采集与编码生成步骤如下:
步骤100:获得数字同向道路综合代码和数字道路种类代码;实际操作时,测试人员通过数字同向道路标识输入窗口,选定或者输入数字同向道路综合代码和数字道路种类;数字同向道路标识输入程序模块11自动从***对应《交通标识字典》(数字字典之一)中获得:数字同向道路综合代码、数字道路种类代码等。说明:首先,数字同向道路综合代码用于检索下一个数字同向道路存取件。其次,数字同向道路入口端,取第一条包括全部数字车道的数字同向道路路面横切线;多余部分属于数字引导路段出口端。同理,数字同向道路出口端取最后一条包括全部数字车道的数字同向道路路面横切线;多余部分归属数字引导路段入口端。其三,数字同向道路综合代码和数字道路种类属于数字同向道路的数字交通标识。
步骤101:编码生成数字交通标识数组;实际操作时,测试人员通过数字同向道路标识输入窗口,逐一选定或者输入在同向道路上观测到的交通标识。数字同向道路标识输入程序模块11从《交通标识字典》中获得数字交通标识代码,所属辅助标志则需要测试人员输入;诸如阿育王寺距下一出口8.3公里。
步骤102:编码生成数字车道标识数组;实际操作时,测试人员通过数字同向道路标识输入窗口,逐一选定和输入同向道路的数字车道种类、数字车道行驶方向、数字车道限高;数字同向道路标识输入程序 模块11通过相应的数字字典,编码生成数字车道标识,其数据结构为:数字车道种类代码+数字车道行驶方向代码+数字车道限高值。循环往复;最后,将全部数字车道标识,按照数字车道编号顺序编码整合成一个数字车道标识数组。
步骤103:编码生成数字同向道路标识;具体地,数字同向道路标识输入程序模块11按照数字同向道路标识的成员参数及其数据结构:数字同向道路综合代码+数字道路种类代码+数字交通标识数组+数字车道标识数组,将它们编码整合成数字同向道路标识,并保存在数字同向道路标识数组E[B]中。
St2、编码生成数字同向道路路面横切线数组;具体地,数字同向道路路面横切线包括一个数字车道路面横切线数组;其中,采集设备接口程序模块14通过RS442接口,连接智能对焦设备、RTK测试接收设备、光纤陀螺仪、测速测长仪、智能导航设备等专业测试设备,采集数字同向道路数据;数字标线及路面属性采集程序模块12包括一个数字同向道路标识输入窗口;实施数字标线(或者数字标线坐标点)和数字车道路面属性的人工干预的现场测试采集;设置数字车道编号A=1;具体实施步骤:
步骤200:获得数字标线种类;实际操作时,测试人员通过数字同向道路标识输入窗口,依次将数字同向道路的数字车道从左到右,在输入窗口选定数字车道需要标识的两条数字标线种类;数字标线及路面属性采集程序模块12自动生成数字标线种类代码;再根据数字道路种类自动生成数字标线坐标点的标准间距。设置数字车道路面横切线数组A[B]=空。
步骤201:对焦数字标线坐标点的测试十字;实际操作时,测试人员在道路入口端拉直线(垂直于道路),在直线与车道标线中心,用笔划出两个现实测试十字,其数字标线坐标点编号B=0。测试人员将测试车辆行驶到测试位置,左右两套智能对焦设备控制它们左右前后四个步进马达(目前,步进马达直线的单步行程约为0.01mm,能满足数字标线坐标点的测试精度),将左右智能对焦设备的设备测试十字对焦现实测试十字(目前,智能对焦设备的步进距离可达60cm,满足智能对焦要求);直至完全重叠才确认对焦成功;并发出对焦成功信号。具体地,若数字标线坐标点编号B≥1;智能导航设备导航测试车辆,按照车道方向行进坐标点规范距离;计算数字标线坐标点(B-1)的间距弧为虚拟测试十字的横线;然后间距弧划在现实标线上(10~20厘米),取其中位线生成虚拟测试十字的竖线,要求误差1毫米左右,能满足完全自动驾驶(L5)的应用要求;进而生成虚拟测试十字。智能对焦设备控制左右前后步进马达,将左右智能对焦设备的设备测试十字对焦虚拟测试十字;直至完全重叠为止;并发出对焦成功信号。
步骤202:采集编码生成数字车道的左右侧数字标线坐标点;具体地,智能对焦设备的对焦成功信号通过RS442接口分别触发左右RTK测试接收设备工作;它们的定位天线固定在智能对焦设备的对焦镜头正上方,自动接收坐标点的WGS-84坐标数据;用坐标点参数转换算法,采集到当下左右数字标线坐标点的经纬度和海拔高度。2025年,中国北斗将为全球提供可靠的厘米级定位服务;进一步地,采用北斗地面基站辅助平台,获得毫米级定位数据,满足数字道路的精度要求。具体地,RTK测试接收设备通过RS-442接口与数字道路生成装置相连,交互数字标线坐标点信息。进一步地,数字道路编码器10按照坐标点的成 员参数及其数据结构:坐标点编号+坐标点经度+坐标点纬度+标点海拔高度+数字标线种类代码,分别编码生成数字车道的左、右侧数字标线坐标点。
步骤203:测试采集数字车道路面属性部分成员参数;具体地,通过RS442接口接收到智能对焦设备的对焦成功信号,触发左右光纤陀螺仪工作(目前,陀螺仪的零偏稳定性、零偏重复性和随机游走系数都≤0.008°/h,标度因素非线性、标度因素重复性、标度因素不对称性都≤10PPM,能够满足数字道路的精度要求)。采集获得数字车道的航向角、俯仰角和横滚角。进一步地,光纤陀螺仪通过RS442接口与数字道路生成装置相连,交互数字车道路面属性部分成员参数。
步骤204:测试采集路面的动态摩擦系数;实际操作时,测试人员根据《公路路基路面现场测试规程(JTG E60-2008)》,按最高车速准备车道的测试环境,实施现场测试,获得动态摩擦系数;诸如高速公路,选定长300米左右直行且平坦的测试车道;车道一端设置一个测试靶;距车速测试靶正面0.5公里以远的另一端,测试人员调试激光多普勒测速测长仪对焦车速测试靶,并确保测试车辆向测试靶方向行进过程中都能捕获有效反射信号。准备完毕,启动测试车辆向车速测试靶方向加速行驶,激光多普勒测速测长仪在距测试靶300米处,通过RS-442接口给数字道路生成装置发送制动信息;数字道路生成装置通过RS-442接口将制动信息转送给智能导航设备,因而触发测试车辆开始紧急制动。同时,激光多普勒测速测长仪(目前,支持测试范围为10000米/每分钟,精度≤0.05%)每秒生产并保存150K组左右的测速测长数据。激光多普勒测速测长仪与数字道路生成装置相连并交换测试数据;通过动态摩擦系数公式μ=v^2/2gS(其中,v为测试车辆的初始速度;g为重力加速度;S为制动距离),计算获得约150K×M组动态摩擦系数μ;其中,M是开始制动车辆到车辆停止的时间长度,单位为秒。进一步地,通过计算约150K×M组动态摩擦系数μ的中误差值,获得更精准的动态摩擦系数曲线图;表达该路面在不同车速下的动态摩擦系数;数字车道路面属性取车道最高限速70%时的动态摩擦系数。同次修筑道路的动态摩擦系数基本都一样;通常只要测试一次动态摩擦系数。若数字同向道路中数字车道路面不同质,需要采用相同测试方式分别测试它们的动态摩擦系数。
步骤205:选定数字道路载荷;实际操作时,测试人员通过数字同向道路标识输入窗口,根据数字道路路面种类,选定数字道路载荷;包括桥梁承重。主要指机动车道的载荷。
步骤206:选定安全横向距离;实际操作时,测试人员通过数字同向道路标识输入窗口,选定安全横向距离。
步骤207:计算获得安全直行距离;计算原理:连线数字车道左右编号相同的数字标线坐标点,虚拟成一段数字车道路面横切线;数字标线及路面属性采集程序模块12从数字车道路面横切线两端向中取安全横向距离的两个测试点,按照数字车道路面横切线中的数字航向角向前延,测试其与两侧数字标线“多远”交叉;最大计为500米。数字车道路面属性只标识较长的安全直行距离。说明:这是一个迟后的计算,例如数字标线坐标点的安全直行距离最长为200米,且数字标线坐标点的标准间距为10米,这意味着, 它要等到数字标线坐标点前方20个数字标线坐标点都测试完成,才能实施其迟后的安全直行距离计算;优选的安全直行距离计算工作由数字道路生成装置“事后”补做,以缩短数字道路的测试时间。具体地,根据安全直行距离和智能车辆行驶速度,就能计算出盲驶时间;也就是说,即便缺损导航定位数据,严格按照数字车道航向角行驶,安全直行距离内,自动驾驶车辆也是安全的。盲驶时间段内,智能导航设备采取相应措施,包括控制致动、制动、换挡、变道等处理,以规避碰撞等交通事故。
步骤208:编码生成数字车道路面属性;具体地,数字标线及路面属性采集程序模块12编码生成数字车道路面属性的成员参数及其数据结构:数字车道航向角+数字车道俯仰角+数字车道横滚角+动态摩擦系数+数字道路载荷+安全横向距离+安全直行距离。
步骤209:编码生成数字同向道路的全部纵向的数字车道路面横切线数组;具体地,数字标线及路面属性采集程序模块12根据数据结构为:数字车道左侧数字标线坐标点+数字车道路面属性+数字车道右侧数字标线坐标点,将其成员参数编码生成一条数字车道路面横切线。具体地,将数字车道路面横切线作为纵向的数字车道路面横切线数组A[B]的元素;获得下一个数字标线坐标点的编号B=B+1;若A=1,重复执行步骤100~步骤209;直至测试人员认为完整编码生成第一条纵向数字车道路面横切线数组A[B]为止。若还有其余车道要测试,设置数字车道编号A=A+1,数组下标B=0。重复执行步骤200~209。直至测试人员认为编码生成数字同向道路的全部纵向的数字车道路面横切线数组为止。
St3、数字同向道路编码生成程序模块13编码整合一条设置数字同向道路标识的数字同向道路;实施步骤如下:
步骤300:整合准备;具体地,设置数字标线坐标点编号C=0,数字同向道路横切线数组D[C]=空。
步骤301:编码整合一条数字同向道路路面横切线;具体地,数字同向道路路面横切线的数据结构为:数字车道路面横切线1+数字车道路面横切线2+......+数字车道路面横切线N;数字同向道路编码生成程序模块13编码从上述全部纵向数字车道路面横切线数组中取出数字标线坐标点编号为C的全部数字车道路面横切线,从小到大顺序将它们编码整合成一条数字同向道路路面横切线F[C]。
步骤302:编码生成一条数字同向道路横切线;具体地,数字同向道路横切线的数据结构为:数字同向道路标识E[C]+数字同向道路路面横切线F[C];数字同向道路编码生成程序模块13将数字同向道路标识E[C]与数字同向道路路面横切线F[C]编码整合成数字同向道路横切线D[C]。
步骤303:编码整合一个数字同向道路横切线数组D[C];具体地,C=C+1;若C<最大数字标线坐标点编号B,重复步骤301~步骤303;否则,完成编码整合一个数字同向道路横切线数组D[B]。从而获得一条设置数字同向道路标识的数字同向道路。
实施例四:
本实施例结合实施例二与实施例三、数字道路基础设施的成员参数及其数据结构示意图4分析,让本 领域技术人员进一步理解数字交叉路口、数字引导路段、数字同向道路存取件等的成员参数及其数据结构,以及生成方法。
本实施例为一个由两条道路平面相交而成的交叉路口;或者说,该数字交叉路口最多与四条同向数字道路入口端相连;还可能最多与四条同向数字道路出口端相连。如图2所示为该数字交叉路口局部,其外接的一个数字同向道路出口端。具体地,数字同向道路出口端是由3条数字机动车道、一条数字非机动车道和一条数字人行道组成。数字同向道路出口端从左开始,第一条数字机动车道有掉头和直行两个数字车道行驶方向,按规范需为其测试编码两条数字引导路段;第二条数字机动车道有左转弯和直行两个数字车道行驶方向,也要为其测试编码两条数字引导路段;第三条数字机动车道只有直行一个数字车道行驶方向,但按照现行交通规则,该车道还可以右转弯(交通信号指示不能右转除外),也要为其测试编码两条数字引导路段。具体地,一条数字车道出口端可以标识多个数字车道行驶方向;每个数字车道行驶方向都要编码生成一条数字引导路段与其连接。本实施例只描述机动车道的6条数字引导路段;而不描述非机动车道和人行道的数字引导路段。
数字引导路段是一种简单的数字车道,其成员参数及其数据结构为:数字引导路段编号+数字引导路段长度+数字引导路段标识+数字引导车道+数字同向道路综合代码。其中:
编码生成数字引导路段编号(2字节)。具体地,其数据结构为:数字车道编号(1字节)+数字行驶方向代码(1字节)。首先,如图2所示数字车道编号k:编号规则是按照数字同向道路出口端从左到右顺序,最左的数字车道编号k=1,其余数字车道编号k依次逐一为:k=k+1,最大k=3。其次,定义数字行驶方向代码r,本数字同向道路入口端的数字行驶方向代码r=1,即为掉头;其余数字同向道路入口端按照顺时针方向,依次逐一代码为:r=r+1。图2所示数字同向道路出口端的数字引导路段编号,依次为:11(1车道掉头)、13(1车道直行);22(2车道左转)、23(2车道直行);33(3车道直行)、34(3车道右转)等6个。它们分别属于3条数字车道的数字引导路段数组,但是属于同一个数字同向道路的数字引导路段子集合。说明:数字同向道路连接的数字引导路段子集合中,数字引导路段编号都是唯一的。而数字交叉路口的数字引导路段集合中,数字引导路段编号可以存在重复。
生成数字引导路段长度(4字节)。具体地,其包括数字引导路段标识、数字引导车道、数字同向道路综合代码等成员参数累计字长。数字引导路段长度用于快速从数字引导路段中,解析获取数字引导路段标识、数字引导车道和数字同向道路综合代码。
编码生成数字引导路段标识。具体地,数字引导路段标识比较少,诸如转弯区停止线、车道缩减数字标线、车道拓展数字标线等。它的成员参数及其数据结构与实施例一与实施例三中的数字交通标识数组一样定义与采集编码,用数据表达。
编码整合成数字引导车道。具体地,数字引导车道通常是一条数字车道;只有标识拓展或者减缩的数字引导车道才会一端有多条数字车道。本实施例采用实施例三安装有数字道路生成装置的测试车辆,它通 过智能对焦设备、RTK测试接收设备、光纤陀螺仪、测速测长仪、智能导航设备等专业设备,对交叉路口的一条引导路段实施相同的人工干预的现场测试采集方法;通过数字道路编码器10编码其全部纵向的数字车道路面横切线数组;从而编码整合成一数字引导车道。其中,数字车道路面横切线的成员参数及其数据结构:左侧数字标线、数字车道路面属性、右侧数字标线;数字引导路段与数字同向道路中数字车道的数据结构一样;数字引导车道的数字标线坐标点的标准间距为1米。
数字同向道路综合代码。具体地,它的成员参数及其数据结构,人工干预的现场测试采集方法同实施例一和实施例三。通过数字同向道路综合代码中检索信息,获得数字引导路段出口端连接的唯一的数字同向道路存取件;使得智能导航设备“预先看到”下一段数字道路静态路况成为现实;进一步地,自动驾驶车辆行驶途中“休闲”时,按照同样方法可以预先看到更远的数字道路静态路况。
具体地,数字道路编码器10按照数字引导路段的数据结构,将数字引导路段编号、数字引导路段长度、数字引导路段标识、数字引导车道、数字同向道路综合代码编码整合成一条数字引导路段。循环重复操作,编码生成六条数字引导路段;进而编码整合成三个数字引导路段数组;再进而编码生成如图2所示数字同向道路的数字引导路段子集合。最后,数字道路编码器10将实施例三的设置数字同向道路标识的数字同向道路与本实施例的一个与其连接的数字引导路段子集合等编码整合成一个数字同向道路存取件。它是数字道理基础设施的编码、存储、索引、读取、解析的基本单元。
具体地,根据行程起始地址和结束地址,采用模拟退火算法、人工势场法、模糊逻辑算法、可视图空间法、自由空间法、蚁群算法、神经网络算法、遗传算法等规划行驶路线算法,规划并获得一条行驶路线。这已是业内常用技术与方法,本发明不做深入描述。
具体地,根据行驶路线的起始地址,智能导航设备在数字道路基础设施(存储设备)中检索获得一个数字同向道路存取件。然后,解析数字同向道路存取件,获取设置数字同向道路标识的数字同向道路,及与其连接的数字引导路段子集合。再根据行驶路线中的数字行驶方向代码,解析数字引导路段子集合,从中获取至少一条数字引导路段。再后,根据需要从中解析一条数字引导路段,获取其数字同向道路综合代码。还后,解析数字同向道路综合代码,获得下一个数字同向道路存取件的检索信息。最后,根据检索信息,检索获得下一个与数字引导路段连接的数字同向道路存取件。循环往复,直至获得含结束地址的数字同向道路存取件为止。从而检索获得一条虚拟的三维数字行驶道路空间——一组有关联的数字同向道路存取件的任务;这是数字道路基础设施的基本应用。
数字道路基础设施是一个数字同向道路存取件集合。数字行驶道路是一条根据行驶路线关联的数字同向道路存取件集合。
在另一优选的实施例中,将设置数字同向道路标识的数字同向道路,及与其相关的数字引导路段子集合分别编码与存储;但是,建立两者的关联检索关系,也能实现本发明数字道路基础设施的功效。缺点诸如:编码、存储、检索、读取、解析都多一步骤。
实施例五:
如图3所示为数字道路生成装置的结构示意图;本实施例结合实施例三和实施例四,分析数字道路生成装置,其包括数字道路编码器10、各种数据测试采集设备20和数字道路基础设施存储设备30。
数字道路编码器10用于执行实施例三与实施例四的编码生成方法;其包括数字同向道路标识输入程序模块11、数字标线及路面属性采集程序模块12、数字同向道路编码生成程序模块13和采集设备接口程序模块14;其中:
数字同向道路标识输入程序模块11用于测试人员选定或者输入数字同向道路的全部数字交通标识。具体地,数字同向道路标识输入程序模块11包括数字同向道路标识输入窗口,其具备数字交通标识的选定与输入功能;数字交通标识包括数字同向道路综合代码、数字道路种类代码、数字交通标识数组、数字车道标识代码数组等;编码整合成数字同向道路标识;或者数字引导路段标识。
数字标线及路面属性采集程序模块12用于自动采集数字同向道路的成员参数。实际操作时,第一步,获得数字标线种类;第二步,对焦数字标线坐标点的测试十字;第三步,采集编码生成数字车道的左右侧数字标线坐标点;第四步,测试采集数字车道路面属性部分成员参数;第五步,测试采集路面的动态摩擦系数;第六步,选定数字道路载荷;第七步,选定安全横向距离;第八步,计算获得安全直行距离;第九步,编码生成数字车道路面属性;第十步,编码生成数字同向道路的全部纵向的数字车道路面横切线数组。
数字同向道路编码生成程序模块13用于编码整合一条设置数字同向道路标识的数字同向道路。具体地,第一步,编码准备;第二步,编码生成一条数字同向道路路面横切线;第三步,编码生成一条数字同向道路横切线;第四步,编码整合一个数字同向道路横切线数组;从而获得实施例三所述的虚拟的三维的设置数字同向道路标识的数字同向道路空间;或者获得实施例四所述的虚拟的三维的数字引导路段。
采集设备接口程序模块14连接数字同向道路标识输入程序模块11、数字标线及路面属性采集程序模块12、数字同向道路编码生成程序模块13和各种数据采集设备20,用于交互数字道路基础设施的成员参数;连接数字道路存储设备30;用于存储数字同向道路存取件。
各种数据采集设备20包括智能对焦设备、RTK测试接收设备、光纤陀螺仪、测速测长仪、智能导航设备等专业设备。其中,智能对焦设备用于确定数字标线的测试十字(定位);RTK测试接收设备用于测试获取坐标点的经度、纬度和高度;光纤陀螺用于测试获取坐标点的数字车道航向角、数字车道俯仰角、数字车道横滚角;激光多普勒测速测长仪和智能导航设备,用于测试获取道路动态摩擦系数。
数字道路基础设施存储设备30用于存储数字道路基础设施。
本领域普通技术人员应当理解,上述数字道路编码器10的全部或部分步骤可通过程序模块来指令相关硬件完成,所述程序模块可以存储在计算机可读存储介质中,诸如只读存储器、磁盘或光盘等。可选地,上述实施例中的各功能模块可以采用硬件(例如计算机)的形式实现,也可以采用软件功能模块的形式实 现。本实施例不限制于任何特定形式的硬件与软件结合。

Claims (12)

  1. 一种数字道路基础设施,其特征在于,
    数字道路基础设施由成员参数编码整合而成;
    所述数字道路基础设施包括数字道路和数字交通标识。
  2. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路包括数字同向道路;
    所述数字同向道路包括至少一个数字同向道路路面横切线数组;
    所述数字同向道路路面横切线包括至少一个数字车道路面横切线数组;
    所述数字车道路面横切线数组包括至少一条数字车道路面横切线;
    所述数字车道路面横切线的成员参数包括:左侧数字标线坐标点、数字车道路面属性和/或右侧数字标线坐标点。
  3. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路包括所述数字车道路面属性;
    所述数字车道路面属性包括数字车道航向角和/或数字车道横滚角和/或数字车道俯仰角和/或动态摩擦系数。
  4. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路包括所述数字标线;
    所述数字标线包括至少一组所述数字标线坐标点;
    所述数字标线坐标点的编号k从0起始,数字标线的第n个所述数字标线坐标点编号k=n-1;
    其中,k和n都是自然数,n大于等于1;
    将所述一组数字标线坐标点,按照所述数字标线座标点编号从小到大拟合成一段所述数字标线。
  5. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路还包括数字标线坐标点;
    所述数字标线坐标点包括数字标线种类代码。
  6. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路包括所述坐标点经度,其误差小于1.11厘米;
    和/或所述航向角,其基本单元小于等于0.01°;
    和/或所述俯仰角;其基本单元小于等于0.1°。
  7. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路还包括安全横向距离和安全直行距离。
  8. 根据权利1所述数字道路基础设施,其特征在于,
    所述数字道路基础设施还包括数字交叉路口;
    所述数字交叉路口包括至少一个数字引导路段集合;
    所述数字引导路段集合包括至少一个与数字同向道路出口端连接的数字引导路段子集合;
    所述数字引导路段子集合包括至少一个与数字车道出口端连接的数字引导路段数组;
    所述数字引导路段数组包括至少一条所述数字引导路段。
  9. 根据权利8所述的数字道路基础设施,其特征在于,
    其中数字引导路段包括数字引导路段编号和数字引导车道;
    其中,所述数字引导路段编号包括数字车道编号和/或数字行驶方向代码。
  10. 一种数字道路基础设施生成方法,其特征在于,
    对现实道路采用人工干预的现场测试采集方法,获得并编码整合成所述数字同向道路标识;
    获得并编码整合成所述数字同向道路;
    获得并编码整合成所述数字引导路段子集合;
    进而将所述设置数字同向道路标识、所述数字同向道路和/或所述数字引导路段子集合编码整合成一个所述数字同向道路存取件。
  11. 根据权利10所述的数字道路基础设施生成方法,其特征在于,
    所述数字道路基础设施编码与存储的基本单元为数字同向道路存取件。
  12. 一种数字行驶道路的运用方法,其特征在于,
    根据行驶路线,从所述数字道路基础设施中,检索获得一个所述数字同向道路存取件;
    依据所述数字同向道路存取件中检索信息,检索获得下一个与其连接的所述数字同向道路存取件;
    循环往复,检索获得一条数字行驶道路。
PCT/CN2022/094596 2021-05-30 2022-05-24 一种数字道路基础设施、编码生成方法及装置 WO2022253040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110596224 2021-05-30
CN202110596224.3 2021-05-30

Publications (1)

Publication Number Publication Date
WO2022253040A1 true WO2022253040A1 (zh) 2022-12-08

Family

ID=82724410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094596 WO2022253040A1 (zh) 2021-05-30 2022-05-24 一种数字道路基础设施、编码生成方法及装置

Country Status (2)

Country Link
CN (1) CN114898058A (zh)
WO (1) WO2022253040A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162556A (zh) * 2006-10-09 2008-04-16 哈曼贝克自动***股份有限公司 数字地图中静态元素的***
CN101290725A (zh) * 2007-04-17 2008-10-22 株式会社日立制作所 数字道路地图的生成方法和地图生成***
KR20150031810A (ko) * 2013-09-16 2015-03-25 김경중 디지털 도로 및 교통 표지판 시스템
CN105677686A (zh) * 2014-11-21 2016-06-15 高德软件有限公司 一种道路编码方法及装置
CN106777366A (zh) * 2017-01-24 2017-05-31 亚信蓝涛(江苏)数据科技有限公司 一种微观交通基础道路数字化及可视化方法
JP2017156704A (ja) * 2016-03-04 2017-09-07 三菱電機株式会社 基盤的地図データ
KR20170124214A (ko) * 2016-05-02 2017-11-10 전자부품연구원 차량 및 인프라 연계 기반 디지털 맵 생성 시스템 및 방법
CN109101649A (zh) * 2018-08-23 2018-12-28 广东方纬科技有限公司 一种可计算路网建立方法和装置
CN112146664A (zh) * 2019-06-28 2020-12-29 罗伯特·博世有限公司 用于提供数字的道路地图的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162556A (zh) * 2006-10-09 2008-04-16 哈曼贝克自动***股份有限公司 数字地图中静态元素的***
CN101290725A (zh) * 2007-04-17 2008-10-22 株式会社日立制作所 数字道路地图的生成方法和地图生成***
KR20150031810A (ko) * 2013-09-16 2015-03-25 김경중 디지털 도로 및 교통 표지판 시스템
CN105677686A (zh) * 2014-11-21 2016-06-15 高德软件有限公司 一种道路编码方法及装置
JP2017156704A (ja) * 2016-03-04 2017-09-07 三菱電機株式会社 基盤的地図データ
KR20170124214A (ko) * 2016-05-02 2017-11-10 전자부품연구원 차량 및 인프라 연계 기반 디지털 맵 생성 시스템 및 방법
CN106777366A (zh) * 2017-01-24 2017-05-31 亚信蓝涛(江苏)数据科技有限公司 一种微观交通基础道路数字化及可视化方法
CN109101649A (zh) * 2018-08-23 2018-12-28 广东方纬科技有限公司 一种可计算路网建立方法和装置
CN112146664A (zh) * 2019-06-28 2020-12-29 罗伯特·博世有限公司 用于提供数字的道路地图的方法

Also Published As

Publication number Publication date
CN114898058A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
EP3901782B1 (en) Lane-centric road network model for navigation
US8364398B2 (en) Method of operating a navigation system to provide route guidance
CN101608926B (zh) 多层次多模态寻径导航方法
US20200182626A1 (en) Local window-based 2d occupancy grids for localization of autonomous vehicles
US8370060B2 (en) Method of operating a navigation system to provide route guidance
US8442767B2 (en) Method of operating a navigation system to provide route guidance
CN110779535B (zh) 一种获得地图数据及地图的方法、装置和存储介质
Bil et al. Unified GIS database on cycle tourism infrastructure
Sun et al. Calibration of the Highway Safety Manual for Missouri [2013]
Beil et al. CityGML and the streets of New York-A proposal for detailed street space modelling
CN111693056B (zh) 用于维护和更新自修复的高清晰度地图的小地图
GB2382685A (en) Method and system to provide traffic lane recommendations
US8301641B2 (en) Method of collecting information for a geographic database for use with a navigation system
Zhou et al. Investigation of methods and approaches for collecting and recording highway inventory data
CN103234546A (zh) 真三维导航中变道诱导的方法和装置
CN113076638A (zh) 一种基于bim与vissim微观仿真的双向交通导改模拟方法
CN104746397A (zh) 道路平面交叉口红线最小切角值的确定方法
WO2022253040A1 (zh) 一种数字道路基础设施、编码生成方法及装置
Bashkanov et al. Exploiting OpenStreetMap-data for outdoor robotic applications
Dobrovolskaia Research the application of data from unmanned systems for the development of micromobility and modernization of urban infrastructure
Vorobyev et al. Development of requirements for a digital road model as a means of implementing an information service for road users
CN102235868A (zh) 操作导航***以提供路线指引的方法
CN115563230A (zh) 一种数字道路基础设施混合编码与优化方法
CN111524380A (zh) 虚线交通标线表征车辆定位及道路交通设施信息的方法
WO2024075572A1 (ja) 情報処理方法、プログラム、情報処理装置、及びデータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815087

Country of ref document: EP

Kind code of ref document: A1