WO2022252938A1 - 一种语音交互应答方法和电子设备 - Google Patents

一种语音交互应答方法和电子设备 Download PDF

Info

Publication number
WO2022252938A1
WO2022252938A1 PCT/CN2022/092137 CN2022092137W WO2022252938A1 WO 2022252938 A1 WO2022252938 A1 WO 2022252938A1 CN 2022092137 W CN2022092137 W CN 2022092137W WO 2022252938 A1 WO2022252938 A1 WO 2022252938A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
user
respond
positional relationship
voice
Prior art date
Application number
PCT/CN2022/092137
Other languages
English (en)
French (fr)
Inventor
蔡双林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022252938A1 publication Critical patent/WO2022252938A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/223Execution procedure of a spoken command
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L2015/225Feedback of the input speech

Definitions

  • the present application relates to the communication field, and more specifically, relates to a voice interactive response method and electronic equipment.
  • More and more electronic devices support voice commands.
  • voice commands When users control electronic devices through voice commands, multiple electronic devices need to determine a main electronic device, and each electronic device sends the received voice commands and sound intensity information to the main electronic device According to the sound intensity information, the main electronic device determines the electronic device with the closest distance to the user among the various electronic devices and notifies the electronic device to respond to the user's response.
  • the main electronic device determines the electronic device with the closest distance to the user among the various electronic devices and notifies the electronic device to respond to the user's response.
  • the present application provides a voice interactive response method and an electronic device.
  • the method allows the electronic device to independently decide whether to respond to a user's voice command, thereby improving the response efficiency of the electronic device.
  • a voice interactive response method the method is applied to a first electronic device, and the method includes: the first electronic device acquires a user's first voice command; the first electronic device responds according to the first voice command instructions to determine the positional relationship between the first electronic device and the user; the first electronic device determines whether to Respond to a voice command; if it is determined to respond to the first voice command, the first electronic device executes the response command in response to the first voice command.
  • the first electronic device can directly determine whether to respond to the user's voice command according to the positional relationship between the first electronic device and the second electronic device and the position of the first electronic device and the user, avoiding making decisions through the main electronic device , improving the speed of voice interaction response and user experience.
  • the positional relationship between the first electronic device and the second electronic device includes distance information and orientation information between the first electronic device and the second electronic device
  • the positional relationship between the first electronic device and the user includes distance information and orientation information between the first electronic device and the user.
  • the method before determining whether to respond to the first voice command, further includes: the first electronic device according to the first electronic device and the second electronic The distance information and orientation information between the devices divides the area where the first electronic device and the second electronic device are located into a plurality of sub-areas, and the plurality of sub-areas includes a first sub-area, and the first sub-area is close to the A subregion of the first electronic device.
  • the first electronic device determines whether to Responding to the first voice command includes: the first electronic device determines whether the user is located in the first sub-area according to the distance information and orientation information between the first electronic device and the user, so as to determine whether to respond to the first voice command Respond to the command; if it is determined to respond to the first voice command, the first electronic device responds to the first voice command and executes the response command, including: in the case of determining that the user is located in the first sub-area , the first electronic device determines to respond to the first voice command, and the first electronic device executes the response command in response to the first voice command.
  • the first electronic device may determine a sub-area close to itself in the area where the first electronic device and the second electronic device are located according to the positional relationship between the first electronic device and the second electronic device, so that when the user is in In this sub-region, the first electronic device can directly determine and respond to the user's voice command, avoiding decision-making through the main electronic device, and improving the speed of voice interaction response and user experience.
  • the method further includes: after determining that the user is not located in the first sub-area In some cases, the first electronic device determines not to respond to the first voice command, and the first electronic device does not respond to the first voice command and does not execute the response command.
  • the first electronic device can determine a sub-area close to itself in the area where the first electronic device and the second electronic device are located according to the positional relationship between the first electronic device and the second electronic device. In the sub-area of the first electronic device, the first electronic device can directly determine that it does not respond to the user's voice command, avoiding decision-making through the main electronic device, and improving the speed of voice interaction response and user experience.
  • the positional relationship between the first electronic device and the second electronic device includes distance information between the first electronic device and the second electronic device, and the first electronic device
  • the positional relationship between an electronic device and a user includes distance information between the first electronic device and the user; where the first electronic device is based on the positional relationship between the first electronic device and the user and the first
  • the location relationship of the device, determining whether to respond to the first voice command includes: the first electronic device determines a preset distance according to the distance information between the first electronic device and the second electronic device; the first electronic device determines a preset distance according to the first electronic device The distance information between the device and the user and the preset distance determine whether to respond to the first voice command; if it is determined to respond to the first voice command, the first electronic device responds to the first voice command
  • the voice command, executing the response command includes: when it is determined that the distance between the first electronic device and the user is less than the preset distance, the first electronic device determines to respond to the first
  • the preset distance may be half of the distance between the first electronic device and the second electronic device.
  • the first electronic device may determine the preset distance according to the distance relationship between the first electronic device and the second electronic device, when the first electronic device determines that the distance between the first electronic device and the user is less than the preset distance , the first electronic device can determine that the user is closer to the first electronic device, so that the first electronic device can directly respond to the user's voice command, avoiding decision-making through the main electronic device, and improving the speed of voice interaction response and user experience.
  • the positional relationship between the first electronic device and the second electronic device includes that the second electronic device is located on the first side of the first electronic device; wherein, the The first electronic device determines whether to respond to the first voice instruction according to the positional relationship between the first electronic device and the user and the positional relationship between the first electronic device and the second electronic device, including: the first electronic device determines whether to respond to the first voice instruction according to the The orientation information between the first electronic device and the user determines whether the user is located on the second side, and the second side has a relative positional relationship with the first side; if it is determined that the first voice command is answered, the In response to the first voice command, the first electronic device executes a response command, including: in a case where it is determined that the user is located on the second side of the first electronic device, the first electronic device determines to respond to the first voice command , the first electronic device executes the response instruction in response to the first voice instruction.
  • the first electronic device may divide the area where the first electronic device is located into two sides with the first electronic device as the boundary according to the azimuth relationship between the first electronic device and the second electronic device, and the second electronic device is located at the second electronic device.
  • the first side and the second side are in a relative relationship.
  • the first electronic device determines that the user is located on the second side of the first electronic device, the first electronic device can determine that the user is farther away from the first electronic device. Therefore, the first electronic device can directly respond to the user's voice command, avoiding decision-making through the main electronic device, and improving the speed of voice interaction response and user experience.
  • the positional relationship between the first electronic device and the second electronic device further includes distance information between the first electronic device and the second electronic device
  • the positional relationship between the first electronic device and the user also includes distance information between the first electronic device and the user
  • the method further includes: when it is determined that the user is located on the first side of the first electronic device, the first The electronic device further determines whether the distance between the first electronic device and the user is less than a critical distance according to the distance information between the first electronic device and the user, wherein the critical distance is determined by the first electronic device according to the first
  • the positional relationship between the electronic device and the second electronic device is determined; when it is determined that the distance between the first electronic device and the user is less than the critical distance, the first electronic device determines that the first voice command To respond, the first electronic device executes the response instruction in response to the first voice instruction.
  • the first electronic device can determine multiple sub-areas according to the positional relationship between the first electronic device and the second electronic device, and the first electronic device can determine whether the user responds to the user's voice command in different ways in different sub-areas , which avoids decision-making through the main electronic device, and improves the speed of voice interaction response and user experience.
  • the second electronic device when the first electronic device determines to respond to the first voice command, the second electronic device does not respond to the first voice command, does not execute The answer command.
  • the method further includes: the first electronic device, not according to the data or instructions sent by the second electronic device or other electronic devices, Respond to voice commands.
  • the method further includes: the first voice instruction includes a wake-up word for waking up the first electronic device and the second electronic device.
  • the method further includes: the first electronic device includes a microphone array, and the microphone array includes a plurality of microphones; the first electronic device, according to the first voice instruction, Determining the positional relationship between the first electronic device and the user includes: the first electronic device uses sound source localization technology to determine the first electronic device according to the phase information and time difference information of the first voice command received by the multiple microphones. The location relationship of the device to the user.
  • the first electronic device may also include a millimeter wave radar and/or a Bluetooth antenna array and/or an infrared sensor and/or a WiFi antenna array, and the first electronic device may also use millimeter wave positioning technology and/or Bluetooth positioning technology and/or infrared positioning technology and/or WiFi positioning technology to determine the positional relationship between the first electronic device and the user.
  • a millimeter wave radar and/or a Bluetooth antenna array and/or an infrared sensor and/or a WiFi antenna array and the first electronic device may also use millimeter wave positioning technology and/or Bluetooth positioning technology and/or infrared positioning technology and/or WiFi positioning technology to determine the positional relationship between the first electronic device and the user.
  • the method further includes: the first electronic device includes an ultra-wideband antenna array; the first electronic device determines that the first electronic device and The positional relationship of the user includes: after the first electronic device receives the first voice instruction, determine the positional relationship between the first electronic device and the user through ultra-wideband positioning technology.
  • the method further includes: the first electronic device acquires a positioning signal of the second electronic device; the first electronic device determines the first electronic device according to the positioning signal A positional relationship between the device and the second electronic device.
  • the microphone array in the first electronic device can receive the ultrasonic signal sent by the second electronic device, and determine the position between the first electronic device and the second electronic device according to the time when the ultrasonic signal reaches each microphone relation.
  • the first electronic device may also include a millimeter wave radar and/or a Bluetooth antenna array and/or an infrared sensor and/or a WiFi antenna array, and the first electronic device may also receive a millimeter wave signal and/or a Bluetooth signal and/or infrared signals and/or WiFi signals to determine the positional relationship between the first electronic device and the user.
  • a millimeter wave radar and/or a Bluetooth antenna array and/or an infrared sensor and/or a WiFi antenna array may also receive a millimeter wave signal and/or a Bluetooth signal and/or infrared signals and/or WiFi signals to determine the positional relationship between the first electronic device and the user.
  • the second aspect is an electronic device according to an embodiment of the present application, and the electronic device includes modules/units that perform any of the above-mentioned first aspect or any possible design method of the first aspect; these modules/units can be implemented through hardware It can also be realized by executing corresponding software through hardware.
  • the third aspect is a chip according to the embodiment of the present application, the chip is coupled with the memory in the electronic device, and is used to call the computer program stored in the memory and execute the first aspect of the embodiment of the present application and any one of the first aspects thereof.
  • Possible design technical solution; "Coupling" in the embodiment of the present application means that two components are directly or indirectly combined with each other.
  • the fourth aspect is a computer-readable storage medium according to an embodiment of the present application, the computer-readable storage medium includes a computer program, and when the computer program runs on the electronic device, the electronic device executes the above-mentioned first aspect. Any possible design technical solution of the first aspect thereof.
  • the fifth aspect is a computer program according to an embodiment of the present application, the computer program includes instructions, and when the instructions are run on a computer, the computer is made to perform the above-mentioned first aspect and any possibility of the first aspect thereof. Design technical solutions.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a block diagram of a software structure of an electronic device provided by an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of an electronic device identifying an orientation provided by an embodiment of the present application.
  • FIG. 4 shows an example diagram of distance detection through ultrasonic waves provided by the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of positioning between electronic devices provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an electronic device voice interaction response provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the electronic device may be a portable electronic device that also includes other functions such as a personal digital assistant and/or a music player, such as a mobile phone, a tablet computer, a wearable electronic device with a wireless communication function (such as a smart watch) Wait.
  • portable electronic devices include, but are not limited to Or portable electronic devices with other operating systems.
  • the aforementioned portable electronic device may also be other portable electronic devices, such as a laptop computer (Laptop). It should also be understood that, in some other embodiments, the above-mentioned electronic device may not be a portable electronic device, but a desktop computer.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, compass 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent components, or may be integrated in one or more processors.
  • the electronic device 101 may also include one or more processors 110 . Wherein, the controller can generate an operation control signal according to the instruction operation code and the timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be set in the processor 110 for storing instructions and data.
  • the memory in the processor 110 may be a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. In this way, repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the electronic device 101 in processing data or executing instructions.
  • processor 110 may include one or more interfaces.
  • the interface may include inter-integrated circuit (I2C) interface, inter-integrated circuit sound (I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous transceiver (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input/output (general-purpose input/output, GPIO) interface, SIM card interface, and/or USB interface, etc.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 101 , and can also be used to transmit data between the electronic device 101 and peripheral devices.
  • the USB interface 130 can also be used to connect earphones to play audio through the earphones.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 can receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive a wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be disposed in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be set in the same device.
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (wireless fidelity, WiFi) network), bluetooth (bluetooth, BT), global navigation satellite system ( Global navigation satellite system (GNSS), frequency modulation (frequency modulation, FM), near field communication (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (liquid crystal display, LCD), organic light-emitting diode (organic light-emitting diode, OLED), active-matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the electronic device 100 may include one or more display screens 194 .
  • the display screen 194 in FIG. 1 above when materials such as OLED, AMOLED, and FLED are used for the display panel, the display screen 194 in FIG. 1 above can be bent.
  • the above-mentioned display screen 194 being bendable means that the display screen 194 can be bent to any angle at any position, and can be kept at this angle, for example, the display screen 194 can be folded in half from the middle. It can also be folded in half from the middle up and down.
  • the display screen 194 of the electronic device 100 may be a flexible screen.
  • the flexible screen has attracted much attention due to its unique characteristics and great potential.
  • flexible screens have the characteristics of strong flexibility and bendability, which can provide users with a new interaction method based on bendable characteristics, and can meet more needs of users for electronic devices.
  • the foldable display screen on the electronic device can be switched between a small screen in a folded state and a large screen in an unfolded state at any time. Therefore, users use the split-screen function more and more frequently on electronic devices equipped with foldable display screens.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 , and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP for conversion into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the electronic device 100 may include one or more cameras 193 .
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be realized through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store one or more computer programs including instructions.
  • the processor 110 may execute the above-mentioned instructions stored in the internal memory 121, so that the electronic device 101 executes the methods provided in some embodiments of the present application, as well as various applications and data processing.
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system; the stored program area can also store one or more applications (such as a gallery, contacts, etc.) and the like.
  • the storage data area can store data (such as photos, contacts, etc.) created during the use of the electronic device 101 .
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more disk storage components, flash memory components, universal flash storage (universal flash storage, UFS) and the like.
  • the processor 110 may execute the instructions stored in the internal memory 121 and/or the instructions stored in the memory provided in the processor 110, so that the electronic device 101 executes the instructions provided in the embodiments of the present application. methods, and other applications and data processing.
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the pressure sensor 180A is used for sensing pressure signals, and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the electronic device 100 determines the intensity of pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of the electronic device 100 around three axes ie, X, Y and Z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access to application locks, take pictures with fingerprints, answer incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the electronic device 100 may reduce the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the electronic device 100 from being shut down abnormally due to the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the position of the display screen 194 .
  • FIG. 2 is a block diagram of the software structure of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate through software interfaces.
  • the Android system is divided into four layers, which are respectively the application program layer, the application program framework layer, the Android runtime (Android runtime) and the system library, and the kernel layer from top to bottom.
  • the application layer can consist of a series of application packages.
  • the application package may include application programs such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and short message.
  • application programs such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, and short message.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer, and the application framework layer includes some predefined functions.
  • API application programming interface
  • the application framework layer may include a window manager, a content provider, a view system, a phone manager, a resource manager, a notification manager, and the like.
  • the window manager is used to manage window programs.
  • the window manager can obtain the size of the display screen, determine whether there is a status bar, lock the screen, capture the screen, etc.
  • Content providers are used to store and retrieve data and make it accessible to applications.
  • the data may include video, images, audio, calls made and received, browsing history and bookmarks, phonebook, and the like.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on.
  • the view system can be used to build applications.
  • a display interface can consist of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide communication functions of the electronic device 100 . For example, the management of call status (including connected, hung up, etc.).
  • the resource manager provides various resources to the application, such as localized strings, icons, pictures, layout files, video files, and so on.
  • the notification manager enables the application to display notification information in the status bar, which can be used to convey notification-type messages, and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify the download completion, message reminder, etc.
  • the notification manager can also be a notification that appears on the top status bar of the system in the form of a chart or scroll bar text, such as a notification of an application running in the background, or a notification that appears on the screen in the form of a dialog window.
  • prompting text information in the status bar issuing a prompt sound, vibrating electronic equipment, and flashing an indicator light, etc.
  • a system library can include multiple function modules. For example: surface manager (surface manager), media library (media libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • the surface manager is used to manage the display subsystem and provides the fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of many commonly used audio and video formats, as well as still image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG and PNG.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, synthesis and layer processing, etc.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer includes at least a display driver, a camera driver, an audio driver, and a sensor driver.
  • Wireless positioning technology use communication and parameter measurement to determine the direction and distance of the target to be measured.
  • Wireless positioning technologies may include: sound source positioning technology, ultra wideband (Ultra Wideband, UWB) positioning technology, Bluetooth positioning technology, WiFi positioning technology, infrared positioning technology, radio frequency identification (Radio Frequency Identification, RFID) positioning technology.
  • Sound source localization technology refers to the determination of the direction and distance of the sound source by electronic equipment.
  • Common sound source localization technologies include microphone array sound source localization technology, binaural hearing mechanism sound source localization technology, and optical sensor sound source localization technology.
  • Microphone array sound source localization technology may include: controllable beamforming technology based on maximum output power, high-resolution spectrum estimation technology, and sound source localization technology based on sound time difference of arrival (Time Difference Of Arrival, TDOA).
  • Binaural hearing mechanism sound source localization technology may include: interaural intensity difference (IID) sound source localization technology, interaural time difference (interaural time difference, ITD) sound source localization technology.
  • Optical sensor sound source localization technology may include: optical fiber microphone sensor sound source localization technology, visual microphone sensor sound source localization technology.
  • UWB wireless communication is a communication method that uses extremely narrow pulses instead of carriers.
  • the distance and direction from the target to be measured to the fixed target can be measured through the positioning algorithm, and the position of the target to be measured can be finally determined.
  • the user may carry a positioning tag, and the positioning tag may include a UWB module, and the position of the positioning tag may be represented as the user's position.
  • the target to be measured receives the positioning signal sent by the Bluetooth beacon, calculates the distance between the target to be measured and the Bluetooth beacon according to the positioning algorithm, and finally determines the position of the target to be measured.
  • WiFi positioning technology by deploying wireless signal access points in the area to be positioned, the target to be measured receives the WiFi signal sent by the wireless signal access point, and calculates the distance between the target to be measured and the wireless signal access point according to the positioning algorithm. And finally determine the position of the target to be measured.
  • Infrared ray positioning technology generates an infrared signal through an infrared ray mark, and after being received by an optical sensor, the position of the target to be measured is obtained according to a positioning algorithm.
  • RFID positioning technology performs two-way communication and interactive data through radio frequency signals to achieve the purpose of identification and positioning. After receiving the command from the processor, the RF reader of the target to be tested sends a fixed-frequency signal. After receiving the message, the RF electronic tag in the environment returns its own identification to the RF reader, which is identified and processed by the processor.
  • Millimeter wave positioning technology millimeter wave radar sends out directional millimeter waves through the transmitting antenna, and when the millimeter wave encounters an obstacle target, it is reflected back, and the transmitted millimeter wave is received through the receiving antenna, according to the millimeter wave band and time The position of the target to be measured can be determined.
  • the above positioning technology does not constitute a specific limitation on the positioning technology adopted by the electronic device in the embodiment of the present application.
  • the electronic device in the embodiment of the present application may adopt one or more positioning technologies mentioned above, or adopt one or more positioning technologies other than the above positioning technologies.
  • the positioning algorithm may be: using signal time of flight (Time Of Flight, TOF), and/or signal time of arrival (Time Of Arrival, TOA), and/or signal time difference of arrival (Time Difference Of Arrival, TDOA), And/or Angle of Arrival (AOA), and/or Received Signal Strength Indication (RSSI).
  • TOF Time Of Flight
  • TOA Time Of Arrival
  • TDOA Time Difference Of Arrival
  • AOA And/or Angle of Arrival
  • RSSI Received Signal Strength Indication
  • More and more electronic devices support voice command interaction. With the increase of electronic devices, when a user controls an electronic device through a voice command, multiple electronic devices will respond at the same time. In some implementations, when there are multiple electronic devices in one space, a master device can be determined between the user or the electronic devices. When the user wakes up the electronic device by voice or interacts with the electronic device by voice, multiple electronic devices need to receive The sound intensity information (such as sound pressure value) of the received voice command is sent to the main device, and after the main device collects the sound intensity information of the voice command of all electronic devices, it judges the relationship between the user and each electronic device according to the sound intensity information of each electronic device. Distance relationship, determine the need to respond to the user's electronic equipment and send control instructions. The above process involves multiple rounds of communication interactions, which will bring a large delay and affect user experience. The embodiment of the present application provides a voice interactive response method, by dividing different response areas, multiple rounds of communication interactions are avoided, and the response speed of the electronic device is improved.
  • FIG. 3 A schematic diagram of identifying the orientation of an electronic device and measuring a distance between electronic devices provided by the embodiment of the present application is introduced below with reference to FIG. 3 and FIG. 4 .
  • the electronic device can determine the azimuth of the target to be measured and the distance from the electronic device through the sound source localization technology and the ultrasonic ranging technology.
  • the electronic device determines the position relationship between the electronic device and the user through TDOA-based sound source localization technology as an example, but it should not be limited to this.
  • other positioning technologies can also be used to determine the electronic device and the user. orientation relationship.
  • the sound source localization technology based on TDOA can be divided into two steps. First, the time difference of the sound source signal arriving at the microphone array is calculated, and then the sound source localization model is established through the geometry of the microphone array and solved to obtain position information. As shown in FIG.
  • the first electronic device includes three microphones, namely the first microphone, the second microphone, and the third microphone, and the distances between the sound source and the first microphone, the second microphone, and the third microphone are r 1 , r 2 , r 3 , the distance between the first microphone and the second microphone is s 1 , the distance between the first microphone and the third microphone is s 2 , the distance between the second microphone and the third microphone is s 3 , when the sound source sends out the sound source signal, the time delay for the sound source signal to reach the second microphone and the first microphone can be obtained according to formula (1):
  • ⁇ 12 is the time delay when the sound source signal reaches the second microphone and the first microphone
  • r1 is the distance between the sound source and the first microphone
  • r2 is the distance between the sound source and the second microphone
  • c is the propagation speed of the sound .
  • ⁇ 13 is the time delay when the sound source signal arrives at the third microphone and the first microphone
  • r1 is the distance between the sound source and the first microphone
  • r3 is the distance between the sound source and the second microphone
  • c is the propagation speed of the sound .
  • the time delay for the sound source signal to reach the third microphone and the second microphone can be obtained according to formula (3):
  • Time delay can be understood as the time difference between different sensor arrays (such as microphone arrays) receiving homologous signals (such as sound sources) due to different transmission distances.
  • Time delay estimation is based on the theory and method of parameter estimation and signal processing. Estimate the time delay, and further determine related parameters, such as the orientation of the source.
  • the commonly used time delay estimation methods mainly include generalized cross-correlation method, least mean square adaptive filtering method, and cross-power spectrum phase method.
  • the joint formulas (1)-(6) can be solved to obtain ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 , and then according to the above 6 angle to obtain the orientation of the sound source and the first electronic device.
  • the delay estimation method in the embodiment of the present application is not limited, and may be the above three methods, or other delay estimation methods.
  • the electronic equipment uses the sound source localization technology based on TDOA to locate the sound source of the target to be measured, but it is not limited to this, and the electronic equipment in the embodiment of the present application can also use other sound source localization technologies and positioning algorithms.
  • the electronic device can also measure the distance between the electronic device and the target to be measured through the ultrasonic ranging technology. As shown in Figure 4, the electronic device sends an ultrasonic signal, and the electronic device starts timing when the ultrasonic wave is emitted. When the ultrasonic wave hits the target to be measured, it will reflect back to the electronic device, and the electronic device will stop timing after receiving the reflected ultrasonic wave, so that The distance between the first electronic device and the user is determined according to the propagation speed and time of the sound.
  • the distance between the electronic device and the target to be measured is measured by ultrasonic waves as an example, but it is not limited thereto.
  • the electronic device in the embodiment of the present application can also use UWB, Bluetooth, millimeter wave and other technologies Measure the distance between the electronic device and the target to be measured.
  • Fig. 5 shows a schematic flowchart of positioning between electronic devices provided by the embodiment of the present application, and the process includes:
  • the first electronic device may periodically send the first positioning signal
  • the second electronic device may periodically send the second positioning signal
  • the first positioning signal and the second positioning signal may be: an ultrasonic signal, and/or a Bluetooth signal, and/or a WiFi signal, and/or an infrared signal, and/or a UWB signal, and/or a radio frequency signal, and / or mmWave.
  • the first electronic device receives a positioning signal to determine the location of the second electronic device.
  • the first electronic device may determine the position information of the second electronic device through a positioning algorithm according to the received second positioning signal.
  • the positioning algorithm may be: TOF, and/or TOA, and/or TDOA, and/or AOA, and/or RSSI.
  • the second electronic device receives the positioning signal to determine the position of the first electronic device.
  • the second electronic device may determine the position of the first electronic device through a positioning algorithm according to the received first positioning signal.
  • the positioning algorithm may be: TOF, and/or TOA, and/or TDOA, and/or AOA, and/or RSSI.
  • the electronic equipment can determine the position and location between the electronic equipment through Bluetooth positioning technology, UWB positioning technology, sound source positioning technology, infrared positioning technology, radio frequency identification positioning technology, millimeter wave radar positioning technology, and WiFi positioning technology. distance.
  • the surrounding areas of the first electronic device and the second electronic device can be further divided, and the first electronic device can be determined respectively and the response area of the second electronic device.
  • the first electronic device performs voice interaction with the user in response to the user's voice command;
  • the second electronic device responds to the user's voice command Voice commands, for voice interaction with users.
  • each electronic device can independently decide whether to respond to the user's voice command and interact with the user without relying on the main device to make a decision, avoiding multiple rounds of communication and interaction between devices, and can improve multiple electronic device scenarios. How quickly an electronic device responds to voice commands.
  • the voice command may include a wake-up word for the user to wake up the electronic device.
  • FIGS. 6-7 A schematic diagram of an electronic device determining a response area provided by an embodiment of the present application is introduced below with reference to FIGS. 6-7 .
  • FIG. 6 shows a schematic diagram of an electronic device determining a response area provided by an embodiment of the present application.
  • the first electronic device can receive the second positioning signal sent by the second electronic device, and the first electronic device obtains the second position information of the second electronic device through a positioning algorithm according to the second positioning signal, and the second position
  • the information includes the distance information between the second electronic device and the first electronic device and the direction of the second electronic device relative to the first electronic device.
  • the second electronic device is located in the east direction of the first electronic device, The distance KP between the first electronic device and the second electronic device is d0.
  • the second electronic device can receive the first positioning signal sent by the first electronic device, and the second electronic device obtains the first position information of the first electronic device through a positioning algorithm according to the first positioning signal, and the first position information includes the first position information of the first electronic device The distance information from the second electronic device and the direction of the first electronic device relative to the second electronic device. For example, as shown in FIG. 6 , the first electronic device is located due west of the second electronic device, and the distance KP between the first electronic device and the second electronic device is d0.
  • the first electronic device and the second electronic device may establish a plane Cartesian coordinate system according to the first positional relationship and the second positional relationship, and determine their respective determined response areas.
  • a coordinate system as shown in Figure 6 can be established, which includes an x-axis, a y1-axis and a y2-axis, wherein the x-axis is the coordinate axis determined by the K point and the P point, and the y1-axis is perpendicular to the x-axis and The coordinate axis passing through the K point, the y2 axis is the coordinate axis perpendicular to the x-axis and passing through the P point.
  • the distance KP between the first electronic device and the second electronic device is d0
  • point O is the midpoint of KP, starting from point O
  • the ray ON is perpendicular to the x-axis, any point on the ray ON
  • the distances to points K and P are equal.
  • the first electronic device and the second electronic device may set the area west of the ray ON as the response area of the first electronic device, such as area A in FIG. 6 .
  • the distance between any point in area A and the first electronic device is smaller than the distance between the point and the second electronic device.
  • the first electronic device and the second electronic device may set the area east of the ray ON as the response area of the second electronic device, such as area B in FIG. 6 .
  • the distance between any point in area B and the first electronic device is greater than the distance between the point and the second electronic device.
  • the embodiment of the present application takes the first area as an example to introduce the first electronic device and the second area.
  • the response areas of the second electronic device, the response areas of the first electronic device and the second electronic device in the second area can be obtained by being symmetrical about the x-axis, and for the sake of brevity, details are not described here.
  • the surrounding areas of the first electronic device and the second electronic device may be further It is divided into area A and area B, and the response area of the first electronic device is determined as area A, and the response area of the second electronic device is area B.
  • area A the user is closer to the first electronic device. It can be considered that the user wishes to interact with the first electronic device at this time, so that the first electronic device performs voice interaction with the user in response to the user's voice command; similarly, when When the user is located in area B, the user is closer to the second electronic device.
  • the user wants to interact with the second electronic device at this time, so that the second electronic device performs voice interaction with the user in response to the user's voice command.
  • the first electronic device and the second electronic device can independently decide whether to respond to the user's voice command and conduct voice interaction with the user without relying on the main device to make a decision, avoiding multiple rounds of communication and interaction between devices, and improving multiple
  • the electronic device responds to voice commands.
  • FIG. 7 shows another schematic diagram of an electronic device for determining a response area provided by an embodiment of the present application.
  • the first electronic device can receive the second positioning signal sent by the second electronic device, and obtain the second position information of the second electronic device through a positioning algorithm.
  • the second position information includes the information of the second electronic device and the first electronic device.
  • the distance information of the device and the direction of the second electronic device relative to the first electronic device for example, as shown in Figure 7, the second electronic device is located in the east direction of the first electronic device, and The distance KP between them is d0.
  • the second electronic device can receive the first positioning signal sent by the first electronic device, and obtain the first position information of the first electronic device through a positioning algorithm, and the first position information includes the distance information and the distance information between the first electronic device and the second electronic device.
  • the orientation of an electronic device relative to a second electronic device For example, as shown in FIG. 7 , the first electronic device is located in the due west direction of the second electronic device, and the distance KP between the first electronic device and the second electronic device is d0.
  • the first electronic device and the second electronic device may establish a plane Cartesian coordinate system according to the first positional relationship and the second positional relationship and determine their respective response areas.
  • a coordinate system as shown in Figure 7 can be established, which includes an x-axis, a y1-axis and a y2-axis, wherein the x-axis is the coordinate axis determined by the K point and the P point, and the y1-axis is perpendicular to the x-axis and The coordinate axis passing through the K point, the y2 axis is the coordinate axis perpendicular to the x-axis and passing through the P point.
  • the distance KP between the first electronic device and the second electronic device is d0
  • point O is the midpoint of KP, starting from point O
  • the ray ON is perpendicular to the x-axis, any point on the ray ON
  • the distances to points K and P are equal.
  • the first electronic device and the second electronic device may set the area west of the y1 axis as the response area of the first electronic device, such as area A in FIG. 7 .
  • the distance between any point in area A and the first electronic device is smaller than the distance between the point and the second electronic device.
  • the first electronic device and the second electronic device may set the area east of the y2 axis as the response area of the second electronic device, such as area B in FIG. 7 .
  • the distance between any point in area B and the first electronic device is greater than the distance between the point and the second electronic device.
  • the first electronic device and the second electronic device can set the area east of the y1 axis and west of the y2 axis as a common area, such as area C in Figure 7,
  • the common area can include a first sub-area and a second common area, where
  • the first sub-area is the CA area in Figure 7, the distance between any point in the first sub-area and the first electronic device is smaller than the distance between the point and the second electronic device, and the second sub-area is the CB area in Figure 7 , the distance between any point in the second sub-region and the first electronic device is greater than the distance between the point and the second electronic device.
  • the embodiment of this application takes the first area as an example to introduce the response area and public area of the first electronic device and the second electronic device, and the response area of the first electronic device and the second electronic device in the second area.
  • the area and the public area can be obtained by being symmetrical about the x-axis, and for the sake of brevity, details are not described here.
  • the surrounding areas of the first electronic device and the second electronic device may be further analyzed
  • the area is divided into area A, area B, and area C, and area C includes area CA and area CB.
  • the response area of the first electronic device is determined to be area A and area CA
  • the response area of the second electronic device is determined to be area B and area C. CB area.
  • the first electronic device may determine that the user is located in area A by measuring the orientation with the user.
  • the first electronic device may consider that the user wishes to interact with the first electronic device, thereby responding to the user's voice command, Perform voice interaction with the user; similarly, the second electronic device can determine that the user is located in area B by measuring the orientation with the user, and when the user is located in area B, the first electronic device can think that the user wants to interact with the first electronic device , so as to perform voice interaction with the user in response to the user's voice command.
  • the first electronic device measures the orientation with the user and determines that the user is located in area C
  • the first electronic device needs to further measure the distance to the user to determine that the user is located in area CA or area CB.
  • the second An electronic device may think that the user wants to interact with the first electronic device, and thus respond to the user's voice command to perform voice interaction with the user; similarly, when the user is located in the CB area, the second electronic device responds to the user's voice command and communicates with the user.
  • the user performs voice interaction.
  • each electronic device can independently decide whether to respond to the user's voice command and interact with the user without relying on the main device for decision-making, and can determine whether to measure the distance to the user according to the position of the user, avoiding Multiple rounds of communication interactions between devices are saved, the judgment process is saved, and the response speed of electronic devices to voice commands in multiple electronic device scenarios can be improved
  • Fig. 8 shows a schematic flowchart of an electronic device voice interaction response provided by an embodiment of the present application, and the process includes:
  • the first electronic device may periodically send the first positioning signal
  • the second electronic device may periodically send the second positioning signal.
  • first positioning signal and the second positioning signal reference may be made to the foregoing embodiments, and details are not repeated here.
  • the first electronic device determines the location of the second electronic device and determines a response area of the first electronic device.
  • the first electronic device may determine the position of the second electronic device through a positioning algorithm according to the second positioning signal.
  • a positioning algorithm for the description of the positioning algorithm, reference may be made to the foregoing description, which will not be repeated here.
  • the first electronic device may determine the response area of the first electronic device through the position relationship with the second electronic device.
  • the second electronic device determines the location of the first electronic device and determines a response area of the second electronic device.
  • the first electronic device may determine the position of the first electronic device through a positioning algorithm according to the first positioning signal.
  • a positioning algorithm for the description of the positioning algorithm, reference may be made to the foregoing description, which will not be repeated here.
  • the second electronic device After the second electronic device determines the position of the first electronic device, the second electronic device can determine the response area of the second electronic device through the position relationship with the first electronic device.
  • the first electronic device receives a user's voice instruction.
  • the second electronic device receives a user's voice instruction.
  • the first electronic device determines whether the user is in the response area of the first electronic device.
  • the first electronic device After receiving the user's voice instruction, the first electronic device can determine the distance and orientation of the user relative to the first electronic device through sound source localization technology and ultrasonic ranging technology.
  • the area where the user is located can be determined through the user's orientation and distance.
  • the ray KM and the ray ON intersect at point D, the ray KM is ⁇ eastward relative to the y1 axis, the distance of KD is d1, and the point D can be understood as the critical point of the A area and the B area, when the ray KM
  • the point is located in area A; when the distance between any point on the ray KM and point K is greater than d1, the point is located in area B.
  • the first user and the second user are respectively located at points R and L on the ray KM, wherein the first user is located at ⁇ south-east of the first electronic device, and the distance KR is d2, and d2 is less than d1, then the first electronic device It may be determined that the first user is located in area A, that is, the response area of the first electronic device.
  • the second user is located south-east of the first electronic device at ⁇ , the distance KL is d3, and d3 is greater than d1, then the first electronic device can determine that the second user is located in area B, which is the response area of the second electronic device.
  • the first electronic device may determine that the user is located in the first electronic device after determining the distance between the user located in the ray KM' and the user. response area.
  • the first electronic device determines the response area through the method shown in Figure 7, it can first determine the orientation of the user relative to the first electronic device, and then the first electronic device can determine whether to measure or not according to the orientation of the user relative to the first electronic device distance from the user. As shown in Figure 10, if the second electronic device is located in the due east direction of the first electronic device, it can be obtained that the distance from any point in the area west of the y1 axis to the first electronic device is smaller than the distance from the point to the second electronic device, Then when the first electronic device determines that the user's orientation is west of the y1 axis, the first electronic device may determine that the user is located in the response area of the first electronic device without determining the distance between the user and the first electronic device.
  • the first electronic device determines that the user's orientation is east relative to the y1 axis
  • the first electronic device needs to determine the distance between the user and the first electronic device before determining the area where the user is located.
  • the third user is located at point G on the ray KE
  • the fourth user and the fifth user are respectively located at points H and T on the ray KU, where the ray KE is offset by ⁇ to the west relative to the y1 axis, and the ray KU is relative to the y1 axis Deviating to the east by ⁇ , and intersecting the ray ON at point F.
  • the first electronic device may directly determine that the third user is located in the first electronic device without measuring the distance to the third user. The response area of the device.
  • the first electronic device judges the fourth user and the fifth user, since the azimuths of the fourth user and the fifth user are offset by ⁇ to the east relative to the y1 axis, the first electronic device also needs to determine the first electronic device and the fourth user. The distance from the first electronic device.
  • the first electronic device can determine that the fourth user is located in the CA area, that is, the response area of the first electronic device, and d6 is greater than d4 , the first electronic device may determine that the fifth user is located in the CB area, that is, the response area of the second electronic device.
  • the second electronic device determines whether the user is in the response area of the second electronic device.
  • the second electronic device After receiving the user's voice instruction, the second electronic device can determine the area where the user is located. For specific description, reference may be made to S806, which is not repeated here for the sake of brevity.
  • the response area is determined by the method shown in FIG. 7 . Compared with the response area determined by the method shown in FIG. 6 , when the user is in the area west of the y1 axis or the user is in the area east of the y2 axis, it is unnecessary to determine the user and The step of the distance between the first electronic device and the second electronic device can save calculation amount to a certain extent and improve the response speed.
  • the first electronic device and the second electronic device determine the response area of the first electronic device and the second electronic device by locating the positional relationship between them.
  • the first electronic device and the second electronic device receive When the user's voice command is received, the area to which the user belongs can be determined.
  • the first electronic device can directly answer, or when the user is in the response area of the second electronic device, the second electronic device The device can respond directly, improving the user experience of voice interaction.
  • the first electronic device and the second electronic device are taken as examples to describe the embodiment of the present application, but the embodiment of the present application is not limited thereto, and the embodiment of the present application may also include more electronic devices .
  • the first electronic device, the second electronic device, and the third electronic device mutually determine their respective positional relationships relative to the other two electronic devices, they may determine their respective response areas.
  • the first electronic device and the third electronic device may determine a positional relationship by using a positioning technology.
  • the first electronic device and the third electronic device can establish a plane Cartesian coordinate system according to the positional relationship between them and determine their respective determined response areas.
  • a coordinate system as shown in (a) in Figure 11 can be established, which includes an x2 axis, a y3 axis and a y4 axis, wherein the x axis is the coordinate axis determined by the K point and the P point, and the y3 axis is vertical
  • the y4 axis is the coordinate axis that is perpendicular to the x2 axis and passes through the Z point.
  • the distance KZ between the first electronic device and the third electronic device is d7
  • the point M is the midpoint of KZ.
  • the first electronic device may determine that the ray MS is the boundary line between the area (area A) for which the first electronic device determines the response and the area (area E) for which the third electronic device determines the response.
  • the first electronic device judges that the area where the user is located is Zone A, the first electronic device responds; when the first electronic device determines that the area where the user is located is Zone E, the first electronic device does not respond.
  • the third electronic device The area where the user is located can also be determined.
  • the second electronic device and the third electronic device may also determine respective determined response areas according to the positional relationship between the two. As shown in (b) of FIG. 11 , the distance ZP between the second electronic device and the third electronic device is d8, and the point L is the midpoint of ZP. Then the first electronic device can determine that the ray LT is the boundary line between the area (B area) for which the second electronic device determines the response and the area (E area) for which the third electronic device determines the response. When the second electronic device determines that the area where the user is located is zone B, the second electronic device responds; when the second electronic device determines that the area where the user is located is zone E, the first electronic device does not respond. Similarly, the third electronic device may also determine the area where the user is located.
  • the electronic devices can further refine the overlapping area according to the distance between the overlapping area and each electronic device .
  • the area formed by the triangle KZP is the overlapping part of the response area of the first electronic device, the second electronic device, and the third electronic device, then it can be based on the points in the area and each electronic device Divide the area formed by the four points of ZMGL into the DE area, and the distance between any point in this area and the third electronic device is less than the distance between the point and the first electronic device and the second electronic device distance.
  • a DA area and a DB area can be divided, and for the sake of brevity, details are not repeated here.
  • the first electronic device, the second electronic device, and the third electronic device may set the rays GS, GN, and GT as boundaries to divide their respective response areas.
  • multiple electronic devices determine their respective response areas by locating the positional relationship between them.
  • multiple electronic devices receive the user's voice command, they can determine the area to which the user belongs.
  • the electronic device can respond directly, which improves the user experience of voice interaction.
  • the electronic devices can directly respond to the user's voice instructions without the master device by dividing their respective response areas.
  • the electronic device can also directly respond to the voice command of the user without the main device by setting the first preset condition.
  • the distance KP measured between the first electronic device and the second electronic device is d0
  • O is the midpoint of KP
  • the first electronic device can set the distance KP of KO to d0/2 Set as the preset distance, when the distance measured by the first electronic device to the seventh user is less than d0/2, it can be determined that the distance between the seventh user and the first electronic device is smaller than the distance between the second electronic device , thus directly responding to the user's voice commands.
  • the electronic device when the electronic device detects that the distance between the user and the electronic device satisfies the preset condition, it can directly respond to the user's voice command, which saves the steps of determining the orientation and improves the response speed.
  • the first electronic device may also set a second preset condition, so as to directly respond to the user's voice command without the master device.
  • the first electronic device determines that the second electronic device is located in the due east direction of the first electronic device, then when the first electronic device detects that the eighth user is located in the west relative to the first electronic device direction, it can be determined that the distance between the eighth user and the first electronic device is smaller than the distance between the eighth user and the second electronic device, and can directly respond to the voice command of the user.
  • the electronic device when the electronic device detects that the distance between the user and the electronic device satisfies the preset condition, it can directly respond to the user's voice command, which saves the step of judging the distance and improves the response speed.
  • the first electronic device may combine the first preset condition and the second preset condition.
  • the distance between the first electronic device and the ninth user is greater than d0/2, which does not meet the first preset condition, but the ninth user is located in the first electronic device The westward direction, so that the first electronic device can determine that the distance between the ninth user and the first electronic device is smaller than the distance between the ninth user and the second electronic device, and can directly respond to the voice command of the user.
  • the method provided in the embodiments of the present application is introduced from the perspective of an electronic device serving as an execution subject.
  • the electronic device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the embodiment of the present application also provides an electronic device, including: a processor, a memory, one or more sensors, a power key, an application program, and a computer program.
  • the various components described above may be connected by one or more communication buses.
  • the one or more computer programs are stored in the above-mentioned memory and are configured to be executed by the one or more processors, the one or more computer programs include instructions, and the above-mentioned instructions can be used to make the electronic device execute the above-mentioned Each step of the interface display method in the embodiment.
  • the above-mentioned processor may specifically be the processor 110 shown in FIG. 2
  • the above-mentioned memory may specifically be the internal memory 120 shown in FIG. 2
  • the sensor may specifically be one or more sensors in the sensor module 150 shown in FIG. 2
  • the power key may be the power key 141 shown in FIG. 2 .
  • the embodiment of the present application does not impose any limitation on this.
  • the terms “when” or “after” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting ".
  • the phrases “in determining” or “if detected (a stated condition or event)” may be interpreted to mean “if determining" or “in response to determining" or “on detecting (a stated condition or event)” or “in response to detecting (a stated condition or event)”.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present invention will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, DVD
  • a semiconductor medium for example, a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Telephone Function (AREA)

Abstract

一种语音交互应答方法和电子设备,该方法应用于电子设备,该电子设备获取用户的语音指令,根据语音指令确定用户的位置,并且该电子设备根据与其他电子设备的位置关系确定不同的响应区域,当用户位于该电子设备的响应区域时,该电子设备可以直接响应用户的语音指令,而其他电子设备不应答,提高了语音交互应答的效率。

Description

一种语音交互应答方法和电子设备
本申请要求于2021年05月31日提交中国专利局、申请号为202110618249.9、申请名称为“一种语音交互应答方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种语音交互应答方法和电子设备。
背景技术
越来越多的电子设备支持语音指令,当用户通过语音指令控制电子设备时,多个电子设备需要确定一个主电子设备,各个电子设备将收到的语音指令和声音强度信息发送至主电子设备,由主电子设备根据声音强度信息确定各个电子设备中与用户之间的距离最近的电子设备并通知该电子设备响应用户的应答,执行上述过程中存在着多轮的通信和交互,会有非常大的延迟,严重影响用户的体验。
发明内容
本申请提供一种语音交互应答方法和电子设备,该方法可以有电子设备自主决策是否响应用户的语音指令,提高了电子设备的应答效率。
第一方面,提供了一种语音交互应答方法,该方法应用于第一电子设备,该方法包括:该第一电子设备获取用户的第一语音指令;该第一电子设备根据所述第一语音指令,确定该第一电子设备与用户的位置关系;该第一电子设备根据该第一电子设备与用户的位置关系以及该第一电子设备与第二电子设备的位置关系,确定是否对该第一语音指令进行应答;在确定对该第一语音指令进行应答的情况下,该第一电子设备响应于该第一语音指令,执行应答指令。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的位置关系以及第一电子设备与用户的位置直接确定是否响应用户的语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,该第一电子设备与第二电子设备的位置关系包括该第一电子设备与该第二电子设备之间的距离信息以及方位信息,该第一电子设备与用户的位置关系包括该第一电子设备与用户的距离信息以及方位信息。
结合第一方面,在第一方面的某些实现方式中,在确定是否对该第一语音指令进行应答之前,该方法还包括:该第一电子设备根据该第一电子设备与该第二电子设备之间的距离信息以及方位信息,将该第一电子设备和该第二电子设备所在的区域划分为多个子区域,该多个子区域中包括第一子区域,该第一子区域为靠近该第一电子设备的子区域。
结合第一方面,在第一方面的某些实现方式中,该第一电子设备根据该第一电子设备 与用户的位置关系以及该第一电子设备与第二电子设备的位置关系,确定是否对该第一语音指令进行应答,包括:该第一电子设备根据该第一电子设备与用户之间的距离信息以及方位信息,确定用户是否位于该第一子区域,从而确定是否对该第一语音指令进行应答;该在确定对该第一语音指令进行应答的情况下,该第一电子设备响应于该第一语音指令,执行应答指令,包括:在确定用户位于该第一子区域的情况下,该第一电子设备确定对该第一语音指令进行应答,该第一电子设备响应于该第一语音指令,执行该应答指令。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的位置关系,在第一电子设备和第二电子设备所在的区域中确定靠近自身的子区域,从而当用户在该子区域时,第一电子设备可以直接确定响应用户的语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,在该第一电子设备确定是否对该第一语音指令进行应答之后,该方法还包括:在确定用户不位于该第一子区域的情况下,该第一电子设备确定不对该第一语音指令进行应答,该第一电子设备不响应该第一语音指令、不执行该应答指令。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的位置关系,在第一电子设备和第二电子设备所在的区域中确定靠近自身的子区域,当用户不在靠近第一电子设备的子区域时,第一电子设备可以直接确定不响应用户的语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,该第一电子设备与该第二电子设备的位置关系包括该第一电子设备与该第二电子设备之间的距离信息,该第一电子设备与用户的位置关系包括该第一电子设备与用户之间的距离信息;其中,该第一电子设备根据该第一电子设备与用户的位置关系以及该第一电子设备与第二电子设备的位置关系,确定是否对该第一语音指令进行应答,包括:该第一电子设备根据和该第二电子设备之间的距离信息确定预设距离;该第一电子设备根据该第一电子设备与用户之间的距离信息以及该预设距离,确定是否对该第一语音指令进行应答;该在确定对该第一语音指令进行应答的情况下,该第一电子设备响应于该第一语音指令,执行应答指令,包括:在确定该第一电子设备与用户之间的距离小于该预设距离的情况下,该第一电子设备确定对该第一语音指令进行应答,该第一电子设备响应于该第一语音指令,执行该应答指令。
可选地,该预设距离可以是第一电子设备与第二电子设备距离的二分之一。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的距离关系确定预设距离,当第一电子设备确定第一电子设备与用户之间的距离小于预设距离时,第一电子设备可以确定用户离第一电子设备更近,从而第一电子设备可以直接响应用户语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,该第一电子设备和该第二电子设备的位置关系包括该第二电子设备位于该第一电子设备的第一侧;其中,该第一电子设备根据该第一电子设备与用户的位置关系以及该第一电子设备与第二电子设备的位置关系,确定是否对该第一语音指令进行应答,包括:该第一电子设备根据该第一电子设备与用户之间的方位信息,确定用户是否位于第二侧,该第二侧和该第一侧具有相对位置关系;该在确定对该第一语音指令进行应答的情况下,该第一电子设备响应于该第一语音指令,执行应 答指令,包括:在确定用户位于该第一电子设备的该第二侧的情况下,该第一电子设备确定对该第一语音指令进行应答,该第一电子设备响应于该第一语音指令,执行该应答指令。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的方位关系将第一电子设备的所在区域以第一电子设备为界分为两侧,第二电子设备位于第一电子设备的第一侧,第一侧与第二侧为相对关系,当第一电子设备确定用户位于第一电子设备的第二侧时,第一电子设备可以确定用户离第一电子设备更近,从而第一电子设备可以直接响应用户语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,该第一电子设备与该第二电子设备的位置关系还包括该第一电子设备与该第二电子设备之间的距离信息,该第一电子设备与用户的位置关系还包括该第一电子设备与用户之间的距离信息;该方法还包括:在确定用户位于该第一电子设备的该第一侧的情况下,该第一电子设备进一步根据该第一电子设备与用户之间的该距离信息,确定该第一电子设备与用户之间的距离是否小于临界距离,其中,该临界距离是该第一电子设备根据该第一电子设备与该第二电子设备之间的该位置关系确定的;在确定该第一电子设备与用户之间的距离小于该临界距离的情况下,该第一电子设备确定对该第一语音指令进行应答,该第一电子设备响应于该第一语音指令,执行该应答指令。
本申请实施例中,第一电子设备可以根据第一电子设备与第二电子设备的位置关系确定多个子区域,第一电子设备在不同的子区域可以通过不同的方式确定用户是否响应用户语音指令,避免了通过主电子设备进行决策,提高了语音交互应答的速度和用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,在该第一电子设备确定对该第一语音指令进行应答的情况下,该第二电子设备不响应该第一语音指令、不执行该应答指令。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一电子设备,不根据该第二电子设备或其他电子设备发送的数据或指令,确定是否对该第一语音指令进行应答。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一语音指令包含用于唤醒该第一电子设备和该第二电子设备的唤醒词。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一电子设备包括麦克风阵列,该麦克风阵列包括多个麦克风;该第一电子设备根据该第一语音指令,确定该第一电子设备与用户的位置关系,包括:该第一电子设备利用声源定位技术,根据该多个麦克风接收到的该第一语音指令的相位信息和时间差信息,确定该第一电子设备与用户的位置关系。
替代性的,该第一电子设备还可以包括毫米波雷达和/或蓝牙天线阵列和/或红外线传感器和/或WiFi天线阵列,该第一电子设备还可以通过毫米波定位技术和/或蓝牙定位技术和/或红外线定位技术和/或WiFi定位技术确定该第一电子设备与用户的位置关系。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一电子包括超宽带天线阵列;该第一电子设备根据该第一语音指令,确定该第一电子设备与用户的位置关系,包括:该第一电子设备接收到第一语音指令后,通过超宽带定位技术,确定该第一电 子设备与用户的位置关系。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一电子设备获取该第二电子设备的定位信号;该第一电子设备根据该定位信号确定该第一电子设备与该第二电子设备的位置关系。
具体来说,该第一电子设备中的麦克风阵列可以接收该第二电子设备发送的超声波信号,根据超声波信号到达每一个麦克风的时间确定该第一电子设备与该第二电子设备之间的位置关系。
替代性的,该第一电子设备还可以包括毫米波雷达和/或蓝牙天线阵列和/或红外线传感器和/或WiFi天线阵列,该第一电子设备还可以通过接收毫米波信号和/或蓝牙信号和/或红外线信号和/或WiFi信号,确定该第一电子设备与用户的位置关系。
第二方面,为本申请实施例的一种电子设备,所述电子设备包括执行上述第一方面或者第一方面的任意一种可能的设计的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第三方面,为本申请实施例的一种芯片,所述芯片与电子设备中的存储器耦合,用于调用存储器中存储的计算机程序并执行本申请实施例第一方面及其第一方面任一可能设计的技术方案;本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
第四方面,为本申请实施例的一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备执行如上述第一方面及其第一方面任一可能设计的技术方案。
第五方面,为本申请实施例的一种计算机程序,所述计算机程序包括指令,当所述指令在计算机上运行时,使得所述计算机执行如上述第一方面及其第一方面任一可能设计的技术方案。
其中,第二方面至第五方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图。
图2是本申请实施例提供的一例电子设备的软件结构框图。
图3示出了本申请实施例提供的电子设备识别方位的示意图。
图4示出了本申请实施例提供的通过超声波进行距离检测的示例图。
图5是本申请实施例提供的电子设备间定位的示意图流程图。
图6是本申请实施例提供的电子设备确定响应区域的示意图。
图7是本申请实施例提供的电子设备确定响应区域的示意图。
图8是本申请实施例提供的电子设备语音交互应答的示意性流程图。
图9是本申请实施例提供的电子设备确定响应区域的示意图。
图10是本申请实施例提供的电子设备确定响应区域的示意图。
图11是本申请实施例提供的电子设备确定响应区域的示意图。
图12是本申请实施例提供的电子设备确定响应区域的示意图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下介绍电子设备、用于这样的电子设备的用户界面、和用于使用这样的电子设备的实施例。在一些实施例中,电子设备可以是还包含其它功能诸如个人数字助理和/或音乐播放器功能的便携式电子设备,诸如手机、平板电脑、具备无线通讯功能的可穿戴电子设备(如智能手表)等。便携式电子设备的示例性实施例包括但不限于搭载
Figure PCTCN2022092137-appb-000001
Figure PCTCN2022092137-appb-000002
或者其它操作***的便携式电子设备。上述便携式电子设备也可以是其它便携式电子设备,诸如膝上型计算机(Laptop)等。还应当理解的是,在其他一些实施例中,上述电子设备也可以不是便携式电子设备,而是台式计算机。
示例性的,图1示出了电子设备100的结构示意图。电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,指南针190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的部件,也可以集成在一个或多个处理器中。在一些实施例中,电子设备101也可以包括一个或多个处理器110。其中,控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。在其他一些实施例中,处理器110中还可以设置存储器,用于 存储指令和数据。示例性地,处理器110中的存储器可以为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。这样就避免了重复存取,减少了处理器110的等待时间,因而提高了电子设备101处理数据或执行指令的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路间(inter-integrated circuit,I2C)接口,集成电路间音频(nter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,SIM卡接口,和/或USB接口等。其中,USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备101充电,也可以用于电子设备101与***设备之间传输数据。该USB接口130也可以用于连接耳机,通过耳机播放音频。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同 一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,WiFi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像、视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED)、柔性发光二极管(flex light-emitting diode,FLED)、Miniled、MicroLed、Micro-oLed、量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或多个显示屏194。
在本申请的一些实施例中,当显示面板采用OLED、AMOLED、FLED等材料时,上述图1中的显示屏194可以被弯折。这里,上述显示屏194可以被弯折是指显示屏可以在任意部位被弯折到任意角度,并可以在该角度保持,例如,显示屏194可以从中部左右对折。也可以从中部上下对折。
电子设备100的显示屏194可以是一种柔性屏,目前,柔性屏以其独特的特性和巨大的潜力而备受关注。柔性屏相对于传统屏幕而言,具有柔韧性强和可弯曲的特点,可以给用户提供基于可弯折特性的新交互方式,可以满足用户对于电子设备的更多需求。对于配置有可折叠显示屏的电子设备而言,电子设备上的可折叠显示屏可以随时在折叠形态下的小屏和展开形态下大屏之间切换。因此,用户在配置有可折叠显示屏的电子设备上使用分屏功能,也越来越频繁。
电子设备100可以通过ISP、摄像头193、视频编解码器、GPU、显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点、亮度、肤色进行算法优化。ISP还可以对拍摄场景的曝光、色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转 换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或多个摄像头193。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1、MPEG2、MPEG3、MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别、人脸识别、语音识别、文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储一个或多个计算机程序,该一个或多个计算机程序包括指令。处理器110可以通过运行存储在内部存储器121的上述指令,从而使得电子设备101执行本申请一些实施例中所提供的方法,以及各种应用以及数据处理等。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***;该存储程序区还可以存储一个或多个应用(比如图库、联系人等)等。存储数据区可存储电子设备101使用过程中所创建的数据(比如照片,联系人等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如一个或多个磁盘存储部件,闪存部件,通用闪存存储器(universal flash storage,UFS)等。在一些实施例中,处理器110可以通过运行存储在内部存储器121的指令,和/或存储在设置于处理器110中的存储器的指令,来使得电子设备101执行本申请实施例中所提供的方法,以及其他应用及数据处理。电子设备100可以通过音频模块170、扬声器170A、受话器170B、麦克风170C、耳机接口170D、以及应用处理器等实现音频功能。例如音乐播放、录音等。
传感器模块180可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、骨传导传感器180M等。
其中,压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不 同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即X、Y和Z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
图2是本申请实施例的电子设备100的软件结构框图。分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和***库,以及内核层。应用程序层可以包括一系列应用程序包。
如图2所示,应用程序包可以包括相机、图库、日历、通话、地图、导航、WLAN、蓝牙、音乐、视频、短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架,应用程序框架层包括一些预先定义的函数。
如图2所示,应用程序框架层可以包括窗口管理器、内容提供器、视图***、电话管理器、资源管理器、通知管理器等。
窗口管理器用于管理窗口程序,窗口管理器可以获取显示屏大小,判断是否有状态栏、锁定屏幕、截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频、图像、音频、拨打和接听的电话、浏览历史和书签、电话簿等。
视图***包括可视控件,例如显示文字的控件,显示图片的控件等。视图***可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串、图标、图片、布局文件、视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在***顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息、发出提示音、电子设备振动、指示灯闪烁等。
***库可以包括多个功能模块。例如:表面管理器(surface manager)、媒体库(media libraries)、三维图形处理库(例如:OpenGL ES)、2D图形引擎(例如:SGL)等。
表面管理器用于对显示子***进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频、视频格式回放和录制以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4、H.264、MP3、AAC、AMR、JPG和PNG等。
三维图形处理库用于实现三维图形绘图、图像渲染、合成和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动、摄像头驱动、音频驱动、传感器驱动。
在介绍本申请实施例的之前,先介绍几个和本申请实施例相关的概念。
无线定位技术:利用通信和参数测量确定待测目标的方向和距离。无线定位技术可以包括:声源定位技术、超宽带(Ultra Wideband,UWB)定位技术、蓝牙定位技术、WiFi定位技术、红外线定位技术、射频识别(Radio Frequency Identification,RFID)定位技术。
声源定位技术:声源定位技术是指电子设备确定声源的方向和距离,常见的声源定位技术包括麦克风阵列声源定位技术、双耳听觉机理声源定位技术、光学传感声源定位技术。麦克风阵列声源定位技术可以包括:基于最大输出功率的可控波束形成技术、基于高分辨率谱估计技术、基于声音到达时间差(Time Difference Of Arrival,TDOA)的声源定位技术。双耳听觉机理声源定位技术可以包括:耳间强度差(inter-aural intensity difference,IID)声源定位技术、耳间时间差(interaural time difference,ITD)声源定位技术。光学传感器声源定位技术可以包括:光纤麦克风传感器声源定位技术、视觉麦克风传感器声源定位技术。
UWB定位技术:UWB无线通信是一种不用载波,而采用极窄的脉冲进行通信的方式。通过UWB进行定位时,可以通过定位算法测量待测目标到固定目标的距离和方向,并最终确定待测目标的位置。
需要说明的是,当待测目标是用户时,用户可以通过携带定位标签,该定位标签可以包括UWB模块,则该定位标签的位置可以表示为用户的位置。
蓝牙定位技术:待测目标接收蓝牙信标发出的定位信号,根据定位算法计算得出待测目标与蓝牙信标之间的距离,并最终确定待测目标的位置。
WiFi定位技术:通过在待定位区域部署无线信号接入点,待测目标接收无线信号接入点发送的WiFi信号,根据定位算法计算得出待测目标与无线信号接入点之间的距离,并最终确定待测目标的位置。
红外线定位技术:红外线定位技术通过红外线标识发生红外信号,由光学传感器接收后,根据定位算法得到待测目标的位置。
RFID定位技术:RFID定位技术通过射频信号进行双向通信交互数据从而达到识别与定位的目的。待测目标的射频读写器接收到处理器命令后,发送固定频率的信号,环境内的射频电子标签接收到讯息后回传自身标识至射频读写器,由处理器进行识别和处理。
毫米波定位技术:毫米波雷达通过发射天线向外发出有指向性的毫米波,当毫米波遇到障碍目标时后反射回来,通过接收天线接收发射回来的毫米波,根据毫米波的波段和时间可以确定待测目标的位置。
可以理解的是,上述定位技术并不构成对本申请实施例中的电子设备采用的定位技术的具体限定。本申请实施例中的电子设备可以采取上述一种或多种定位技术,或者采取除上述定位技术以外的一种或多种定位技术。
示例性的,定位算法可以是:利用信号飞行时间(Time Of Flight,TOF),和/或信号到达时间(Time Of Arrival,TOA),和/或信号到达时间差(Time Difference Of Arrival,TDOA),和/或信号到达角度(Angle of Arrival,AOA),和/或信号到达强度(Received Signal Strength Indication,RSSI)。
越来越多的电子设备都支持语音指令交互,随着电子设备的增加,当用户通过语音指令控制电子设备时,会有多个电子设备同时响应。在一些实现方式中,一个空间中有多个电子设备时,用户或者各电子设备之间可以确定一个主设备,用户在语音唤醒电子设备或与电子设备语音交互时时,多个电子设备需要将接收到的语音指令的声强信息(例如声压值)发送至主设备,由主设备收集所有电子设备的语音指令的声强信息后,根据各电子设备的声强信息判断用户与各电子设备的距离关系,确定需要响应用户的电子设备并发送控制指令。上述流程中涉及多轮的通信交互,会带来很大的时延,影响用户体验。本申请实施例提供了一种语音交互应答的方法,通过划分不同的响应区域,避免了多轮通信交互,提高了电子设备的响应速度。
下面结合图3和图4介绍本申请实施例提供的识别电子设备方位和电子设备间测距的示意图。
电子设备可以通过声源定位技术和超声波测距技术确定待测目标的方位和与电子设备之间的距离。本申请实施例中以电子设备通过基于TDOA的声源定位技术确定电子设备与用户的方位关系为例,但并不应对此限定,本申请实施例中还可以通过其他定位技术 确定电子设备与用户的方位关系。基于TDOA的声源定位技术可以分为两步,首先计算声源信号到达麦克风阵列的时间差,然后通过麦克风阵列的几何形状建立声源定位模型并求解从而获得位置信息。如图3所示,第一电子设备包括3个麦克风,分别为第一麦克风、第二麦克风、第三麦克风,声源与第一麦克风、第二麦克风、第三麦克风的距离分别为r 1、r 2、r 3,第一麦克风与第二麦克风之间的距离为s 1,第一麦克风与第三麦克风之间的距离为s 2,第二麦克风与第三麦克风之间的距离为s 3,当声源发出声源信号后,该声源信号到达第二麦克风和第一麦克风的时延可以根据公式(1)得到:
Figure PCTCN2022092137-appb-000003
其中,τ 12为声源信号到达第二麦克风和第一麦克风的时延,r 1为声源与第一麦克风的距离,r 2为声源与第二麦克风的距离,c为声音的传播速度。
同理的,该声源信号到达第三麦克风和第一麦克风的时延可以根据公式(2)得到:
Figure PCTCN2022092137-appb-000004
其中,τ 13为声源信号到达第三麦克风和第一麦克风的时延,r 1为声源与第一麦克风的距离,r 3为声源与第二麦克风的距离,c为声音的传播速度。
同理的,该声源信号到达第三麦克风和第二麦克风的时延可以根据公式(3)得到:
Figure PCTCN2022092137-appb-000005
根据第一麦克风、第二麦克风、第三麦克风之间的几何关系,可以得到公式(4)-公式(6):
Figure PCTCN2022092137-appb-000006
Figure PCTCN2022092137-appb-000007
Figure PCTCN2022092137-appb-000008
其中,τ 12、τ 13、τ 23可以通过时延估计得到。时延可以理解为不同传感器阵列(如麦克风阵列)接收到同源信号(如声源)之间由于传输距离不同而引起的时间差,时延估计是利用参数估计和信号处理的理论和方法,对时延进行估计,并由此进一步确定有关的参量,例如信源的方位。目前,常用的时延估计方法主要有广义互相关法、最小均方自适应滤波法、互功率谱相位法。通过时延估计得到τ 12、τ 13、τ 23后,联合公式(1)-(6)可以求解得到α 1、α 2、α 3、α 4、α 5、α 6,进而可以根据上述6个角度得到声源与第一电子设备的方位。
应理解,本申请实施例中对时延估计的方法并不限定,可以是上述的3种方法,还可以是其他的时延估计的方法。
还应理解,本申请实施中电子设备以基于TDOA的声源定位技术对待测目标进行声源定位,但并不限定于此,本申请实施例中的额电子设备还可以采用其他声源定位技术和定位算法。
电子设备还可以通过超声波测距技术测得电子设备与待测目标之间的距离。如图4所示,电子设备发送超声波信号,电子设备在超声波发出的时刻开始计时,当超声波碰到待测目标后会发生反射返回电子设备,电子设备接收到反射的超声波后停止计时,从而可以 根据声音的传播速度和时间确定第一电子设备与用户之间的距离。
应理解,本申请实施例中以超声波测定电子设备与待测目标之间的距离为例,但并不限定于此,本申请实施例中的电子设备还可以通过UWB、蓝牙、毫米波等技术测定电子设备与待测目标之间的距离。
下面结合图5介绍本申请实施例提供的电子设备间定位的示意图流程图。
图5示出了本申请实施例提供的电子设备间定位的示意性流程图,该流程包括:
S501,周期性发送定位信号。
第一电子设备可以周期性发送第一定位信号,第二电子设备可以周期性发送第二定位信号。
示例性的,第一定位信号和第二定位信号可以是:超声波信号,和/或蓝牙信号,和/或WiFi信号,和/或红外信号,和/或UWB信号,和/或射频信号,和/或毫米波。
S502,第一电子设备接收定位信号确定第二电子设备位置。
当第一电子设备接收到第二电子设备发送的第二定位信号时,第一电子设备可以根据接收到的第二定位信号,通过定位算法确定第二电子设备的位置信息。
示例性的,定位算法可以是:TOF,和/或TOA,和/或TDOA,和/或AOA,和/或RSSI。
S503,第二电子设备接收定位信号确定第一电子设备位置。
当第二电子设备接收到第一电子设备发送的第一定位信号时,第二电子设备可以根据接收到的第一定位信号,通过定位算法确定第一电子设备的位置。
示例性的,定位算法可以是:TOF,和/或TOA,和/或TDOA,和/或AOA,和/或RSSI。
本申请实施例中,电子设备间可以通过蓝牙定位技术、UWB定位技术、声源定位技术、红外定位技术、射频识别定位技术、毫米波雷达定位技术、WiFi定位技术确定电子设备之间的方位和距离。
在第一电子设备和第二电子设备确定彼此之间的位置的情况下,可以基于所确定的位置,进一步对第一电子设备和第二电子设备的周围区域进行分割,分别确定第一电子设备和第二电子设备的响应区域。当用户位于第一电子设备的响应区域时,第一电子设备响应于用户的语音指令,与用户进行语音交互;当用于位于第二电子设备的响应区域时,第二电子设备响应于用户的语音指令,与用户进行语音交互。从而实现了不依赖于主设备进行决策即可由各个电子设备自主决策是否响应用户的语音指令、与用户进行语音交互,避免了设备之间的多轮通信交互,可以提高多个电子设备场景中,电子设备对语音指令的响应速度。
需要说明的是语音指令可以包括用户唤醒电子设备的唤醒词。
下面结合图6-图7介绍本申请实施例提供的电子设备确定响应区域的示意图。
图6示出了本申请实施例提供的电子设备确定响应区域的示意图。
如图6所示,第一电子设备可以接收第二电子设备发送的第二定位信号,第一电子设备根据第二定位信号,通过定位算法得到第二电子设备的第二位置信息,第二位置信息包括第二电子设备与第一电子设备的距离信息和第二电子设备相对于第一电子设备的方向,例如,如图6所示,第二电子设备位于第一电子设备的正东方向,第一电子设备和第二电子设备之间的距离KP为d0。
第二电子设备可以接收第一电子设备发送的第一定位信号,第二电子设备根据第一定 位信号,通过定位算法得到第一电子设备的第一位置信息,第一位置信息包括第一电子设备与第二电子设备的距离信息和第一电子设备相对于第二电子设备的方向。例如,如图6所示,第一电子设备位于第二电子设备的正西方向,第一电子设备和第二电子设备之间的距离KP为d0。
第一电子设备和第二电子设备可以根据第一位置关系、第二位置关系建立平面直角坐标系并确定各自的确定响应区域。例如,可以建立如图6所示的坐标系,该坐标系包含x轴、y1轴和y2轴,其中,x轴为K点和P点所确定的坐标轴,y1轴为垂直于x轴且经过K点的坐标轴,y2轴为垂直于x轴且经过P点的坐标轴。
如图6所示,第一电子设备和第二电子设备之间的距离KP为d0,O点为KP的中点,以O点为起点,射线ON垂直于x轴,射线ON上的任意一点到K点和P点的距离相等。
第一电子设备和第二电子设备可以将射线ON以西的区域设置为第一电子设备的响应区域,如图6中的A区。A区中的任意一点与第一电子设备的距离小于该点与第二电子设备的距离。
第一电子设备和第二电子设备可以将射线ON以东的区域设置为第二电子设备的响应区域,如图6中的B区。B区中的任意一点与第一电子设备的距离大于该点与第二电子设备的距离。
需要说明的是,若将x轴以南区域称为第一区域、将x轴以北区域称为第二区域,则本申请实施例以第一区域为例,介绍了第一电子设备和第二电子设备的响应区域,第二区域中的第一电子设备和第二电子设备的响应区域可以通过以x轴对称得到,为了简洁,在此不再赘述。
在图6所示实施例中,在第一电子设备和第二电子设备确定彼此之间的位置的情况下,可以基于所确定的位置,进一步将第一电子设备和第二电子设备的周围区域分割为A区和B区,确定第一电子设备的响应区域为A区、第二电子设备的响应区域为B区。当用户位于A区域时用户更靠近第一电子设备,可以认为此时用户希望与第一电子设备进行交互,从而第一电子设备响应于用户的语音指令,与用户进行语音交互;类似的,当用于位于B区域时用户更靠近第二电子设备,可以认为此时用户希望与第二电子设备进行交互,从而第二电子设备响应于用户的语音指令,与用户进行语音交互。从而实现了不依赖于主设备进行决策即可由第一电子设备、第二电子设备自主决策是否响应用户的语音指令、与用户进行语音交互,避免了设备之间的多轮通信交互,可以提高多个电子设备场景中,电子设备对语音指令的响应速度。
图7示出了本申请实施例提供的电子设备另一种确定响应区域的示意图。
如图7所示,第一电子设备可以接收第二电子设备发送的第二定位信号,通过定位算法得到第二电子设备的第二位置信息,第二位置信息包括第二电子设备与第一电子设备的距离信息和第二电子设备相对于第一电子设备的方向,例如,如图7所示,第二电子设备位于第一电子设备的正东方向,第一电子设备和第二电子设备之间的距离KP为d0。
第二电子设备可以接收第一电子设备发送的第一定位信号,通过定位算法得到第一电子设备的第一位置信息,第一位置信息包括第一电子设备与第二电子设备的距离信息和第一电子设备相对于第二电子设备的方向。例如,如图7所示,第一电子设备位于第二电子设备的正西方向,第一电子设备和第二电子设备之间的距离KP为d0。
第一电子设备和第二电子设备可以根据第一位置关系、第二位置关系建立平面直角坐标系并确定各自的响应区域。例如,可以建立如图7所示的坐标系,该坐标系包括x轴、y1轴和y2轴,其中,x轴为K点和P点所确定的坐标轴,y1轴为垂直于x轴且经过K点的坐标轴,y2轴为垂直于x轴且经过P点的坐标轴。
如图7所示,第一电子设备和第二电子设备之间的距离KP为d0,O点为KP的中点,以O点为起点,射线ON垂直于x轴,射线ON上的任意一点到K点和P点的距离相等。
第一电子设备和第二电子设备可以将y1轴以西的区域设置为第一电子设备的响应区域,如图7中的A区。A区中的任意一点与第一电子设备的距离小于该点与第二电子设备的距离。
第一电子设备和第二电子设备可以将y2轴以东的区域设置为第二电子设备的响应区域,如图7中的B区。B区中的任意一点与第一电子设备的距离大于该点与第二电子设备的距离。
第一电子设备和第二电子设备可以将y1轴以东和y2轴以西的区域设置为公共区域,如图7中的C区,该公共区域可以包括第一子区域和第二公区域,其中第一子区域为图7中的CA区,该第一子区域中的任意一点与第一电子设备的距离小于该点与第二电子设备的距离,第二子区域为图7中的CB区,该第二子区域中的任意一点与第一电子设备的距离大于该点与第二电子设备的距离。
需要说明的是,本申请实施例以第一区域为例,介绍了第一电子设备和第二电子设备的响应区域以及公共区域,第二区域中的第一电子设备和第二电子设备的响应区域以及公共区域可以通过以x轴对称得到,为了简洁,在此不再赘述。
在图7所示的实施例中,在第一电子设备和第二电子设备确定彼此之间的位置的情况下,可以基于所确定的位置,进一步对第一电子设备和第二电子设备的周围区域进行分割为A区、B区以及C区,同时C区包括CA区和CB区,确定第一电子设备的响应区域为A区和CA区,确定第二电子设备的响应区域为B区和CB区。第一电子设备可以通过测定与用户之间的方位确定用户位于A区,当用户位于A区时,第一电子设备可以认为用户希望与第一电子设备进行交互,从而响应于用户的语音指令,与用户进行语音交互;类似的,第二电子设备可以通过测定与用户之间的方位确定用户位于B区,当用户位于B区时,第一电子设备可以认为用户希望与第一电子设备进行交互,从而响应于用户的语音指令,与用户进行语音交互。当第一电子设备测定与用户之间的方位确定用户位于C区时,第一电子设备需要进一步测定与用户之间的距离,从而判断用户位于CA区或者CB区,当用户位于CA区,第一电子设备可以认为用户希望与第一电子设备进行交互,从而响应于用户的语音指令,与用户进行语音交互;类似的,当用户位于CB区,第二电子设备响应于用户的语音指令,与用户进行语音交互。从而实现了不依赖于主设备进行决策即可由各个电子设备自主决策是否响应用户的语音指令、与用户进行语音交互,并且可以根据用户所处方位的不同确定是否测量与用户之间的距离,避免了设备之间的多轮通信交互,节省了判定流程,可以提高多个电子设备场景中,电子设备对语音语音指令的响应速度
下面结合图8-图10介绍本申请实施例提供的电子设备语音交互的方法。
图8示出了本申请实施例提供的电子设备语音交互应答的示意性流程图,该流程包括:
S801,周期性发送定位信号。
第一电子设备可以周期性发送第一定位信号,第二电子设备可以周期性发送第二定位信号。其中,针对第一定位信号和第二定位信号的描述,可以参见前述实施例,在此不再赘述。
S802,第一电子设备确定第二电子设备位置并确定第一电子设备的响应区域。
当第一电子设备接收到第二电子设备发送的第二定位信号时,第一电子设备可以根据第二定位信号,通过定位算法确定第二电子设备的位置。其中,针对定位算法的描述,可以参见前文描述,在此不再赘述。
当第一电子设备确定第二电子设备的位置后,第一电子设备可以通过与第二电子设备的位置关系,确定第一电子设备的响应区域。
S803,第二电子设备确定第一电子设备位置并确定第二电子设备的响应区域。
当第二电子设备接收到第一电子设备发送的第一定位信号时,第一电子设备可以根据第一定位信号,通过定位算法确定第一电子设备的位置。其中,针对定位算法的描述,可以参见前文描述,在此不再赘述。
当第二电子设备确定第一电子设备的位置后,第二电子设备可以通过与第一电子设备的位置关系,确定第二电子设备的响应区域。
S804,第一电子设备接收到用户的语音指令。
S805,第二电子设备接收到用户的语音指令。
S806,第一电子设备判断用户是否在第一电子设备的响应区域。
第一电子设备接收到用户的语音指令后,可以通过声源定位技术和超声波测距技术确定用户相对于第一电子设备的距离和方位。
当第一电子设备通过如图6所示的方法确定响应区域时,可以通过用户的方位和距离确定用户所在的区域。如图9所示,射线KM与射线ON相交于D点,射线KM相对于y1轴向东偏λ,KD的距离为d1,D点可以理解为A区和B区的临界点,当射线KM上的任意一点与K点的距离小于d1时,则该点位于A区,当射线KM上的任意一点与K点的距离大于d1时,则该点位于B区。例如,第一用户和第二用户分别位于射线KM上的R点和L点,其中第一用户位于第一电子设备的南偏东λ,距离KR为d2,d2小于d1,则第一电子设备可以判定第一用户位于A区,即第一电子设备的响应区域。第二用户位于第一电子设备的南偏东λ,距离KL为d3,d3大于d1,则第一电子设备可以判定第二用户位于B区,即第二电子设备的响应区域。需要说明的是,如图9所示,若射线KM’不与射线ON相交时,则第一电子设备可以在确定用户位于射线KM’和用户之间的距离后,判定用户位于第一电子设备的响应区域。
当第一电子设备通过如图7所示的方法确定响应区域时,可以首先判断用户相对于第一电子设备的方位,然后第一电子设备可以根据用户相对于第一电子设备的方位判断是否测量与用户之间的距离。如图10所示,第二电子设备位于第一电子设备的正东方向,则可以得到y1轴以西的区域中的任意一点到第一电子设备的距离小于该点到第二电子设备的距离,则当第一电子设备确定用户的方位相对于y1轴以西时,第一电子设备可以在不确定用户与第一电子设备之间的距离的情况下,确定用户位于第一电子设备的响应区域。当第一电子设备确定用户的方位相对于y1轴以东时,则第一电子设备需要确定用户与第一电子设备之间的距离后,再确定用户所在的区域。例如,第三用户位于射线KE上的G 点,第四用户和第五用户分别位于射线KU上的H点和T点,其中射线KE相对于y1轴向西偏β,射线KU相对于y1轴向东偏η,同时与射线ON相交于F点。第一电子设备在判断第三用户时,由于第三用户的方位相对于y1轴向西偏β,则第一电子设备可以不测定与第三用户的距离,直接判定第三用户位于第一电子设备的响应区域。第一电子设备在判断第四用户和第五用户时,由于第四用户和第五用户的方位相对于y1轴向东偏η,则第一电子设备还需要测定第一电子设备与第四用户与第一电子设备之间的距离。其中,KF的距离为d4,KH的距离为d5,KT的距离为d6,d5小于d4,则第一电子设备可以判定第四用户位于CA区,即第一电子设备的响应区域,d6大于d4,则第一电子设备可以判定第五用户位于CB区,即第二电子设备的响应区域。
S807,第二电子设备判断用户是否在第二电子设备的响应区域。
第二电子设备接收到用户的语音指令后,可以确定用户所在的区域。具体描述可以参见S806,为了简洁,在此不再赘述。
通过如图7所示的方法确定响应区域,相较于通过如图6所示的方法确定响应区域,可以在用户处于y1轴以西区域或者用户处于y2轴以东区域时,省去测定用户与第一电子设备、第二电子设备之间距离的步骤,从而可以在一定程度上节省计算量,提高响应速度。
本申请实施例中,第一电子设备和第二电子设备通过定位两者之间的位置关系,确定第一电子设备和第二电子设备的响应区域,当第一电子设备和第二电子设备接收到用户的语音指令时,可以确定用户所属的区域,当用户在第一电子设备的响应区域时,第一电子设备可以直接应答,或者当用户在第二电设备的响应区域时,第二电子设备可以直接应答,提升了用户语音交互的体验。
需要说明的是,上述实施例中以第一电子设备和第二电子设备为例描述本申请实施例,但本申请实施例并不限定于此,本申请实施例还可以包括更多的电子设备。如图11所示,第一电子设备、第二电子设备、第三电子设备在互相确定各自相对于其他两个电子设备的位置关系后,可以确定各自的响应区域。
如图11中的(a)所示,第一电子设备和第三电子设备可以通过定位技术确定位置关系。第一电子设备和第三电子设备可以根据两者之间的位置关系建立平面直角坐标系并确定各自的确定响应区域。例如,可以建立如图11中的(a)所示的坐标系,该坐标系包含x2轴,y3轴和y4轴,其中x轴为K点和P点所确定的坐标轴,y3轴为垂直于x2轴且经过K点的坐标轴,y4轴为垂直与x2轴且经过Z点的坐标轴。第一电子设备和第三电子设备之间的距离KZ为d7,M点为KZ的中点。则第一电子设备可以确定射线MS为第一电子设备确定响应的区域(A区)和第三电子设备确定响应的区域(E区)的分界线。当第一电子设备判定用户所在区域为A区时,则第一电子设备响应,当第一电子设备判定用户所在区域为E区时,则第一电子设备不响应,类似的,第三电子设备也可以判定用户所在的区域。
类似的,第二电子设备和第三电子设备也可以根据两者之间的位置关系确定各自的确定响应区域。如图11中的(b)所示,第二电子设备和第三电子设备之间的距离ZP为d8,L点为ZP的中点。则第一电子设备可以确定射线LT为第二电子设备确定响应的区域(B区)和第三电子设备确定响应的区域(E区)的分界线。当第二电子设备判定用户所在区域为B区时,则第二电子设备响应,当第二电子设备判定用户所在区域为E区时,则第 一电子设备不响应。类似的,第三电子设备也可以判定用户所在的区域。
由于同时存在2个以上的电子设备,电子设备在划分各自的响应区域时,会发生响应区域的重叠,则电子设备可以根据发生重叠的区域与各个电子设备之间的距离进一步细化重叠的区域。如图11中的(c)所示,由三角形KZP形成的区域为第一电子设备、第二电子设备、第三电子设备响应区域的重叠部分,则可以根据该区域中的点与各个电子设备之间的距离将ZMGL四个点形成的区域划分为DE区,该区中的任意一点的距离到第三电子设备之间的距离小于该点到第一电子设备和第二电子设备之间的距离。类似的,可以划分出DA区和DB区,为了简洁,在此不再赘述。
综上所述,如图11中的(c)所示,第一电子设备、第二电子设备、第三电子设备可以将射线GS、射线GN、射线GT设置为边界,划分各自的响应区域。
本申请实施例中,多个电子设备通过定位两者之间的位置关系,确定各自的响应区域,当多个电子设备接收到用户的语音指令时,可以确定用户所属的区域,当用户在某个电子设备的响应区域时,则该电子设备可以直接应答,提升了用户语音交互的体验。
上述实施例中电子设备之间通过划分各自的响应区域,实现在没有主设备的情况下,可以直接响应用户的语音指令。本申请实施例中,电子设备还可以通过设定第一预设条件实现在没有主设备的情况下,直接响应用户的语音指令。例如,如图12中的(a)所示,第一电子设备测得与第二电子设备之间距离KP为d0,O为KP的中点,第一电子设备可以将KO的距离d0/2设置为预设距离,则当第一电子设备测得与第七用户之间的距离小于d0/2时,可以确定第七用户与第一电子设备的距离小于与第二电子设备之间的距离,从而直接响应用户的语音指令。
本申请实施例中,当电子设备测得用户与电子设备之间的距离满足预设条件时,可以直接响应用户的语音指令,节省了方位的判断步骤,提高了响应速度。
可选的,第一电子设备还可以设定第二预设条件,实现在没有主设备的情况下,直接响应用户的语音指令。如图12中的(b)所示,第一电子设备测定第二电子设备位于第一电子设备的正东方向,则当第一电子设备测到第八用户相对于第一电子设备位于偏西方向时,可以确定第八用户与第一电子设备的距离小于与第二电子设备之间的距离,可以直接响应用户的语音指令。
本申请实施例中,当电子设备测得用户与电子设备之间的距离满足预设条件时,可以直接响应用户的语音指令,节省了距离的判断步骤,提高了响应速度。
可选的,第一电子设备可以结合第一预设条件和第二预设条件。例如,如图12中的(c)所示,第一电子设备测得与第九用户之间的距离大于d0/2,并不满足第一预设条件,但是第九用户位于第一电子设备的偏西方向,从而第一电子设备可以确定第九用户与第一电子设备的距离小于与第二电子设备之间的距离,可以直接响应用户的语音指令。
上述本申请提供的实施例中,从电子设备作为执行主体的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,电子设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例还提供了一种电子设备,包括:处理器、存储器、一个或多个传感器、 电源键、应用程序以及计算机程序。上述各器件可以通过一个或多个通信总线连接。其中,该一个或多个计算机程序被存储在上述存储器中并被配置为被该一个或多个处理器执行,该一个或多个计算机程序包括指令,上述指令可以用于使电子设备执行上述各实施例中界面显示方法的各个步骤。
示例性的,上述处理器具体可以为图2所示的处理器110,上述存储器具体可以为图2所示的内部存储器120和/或与电子设备连接的外部存储器,上述显示屏具体可以为图2所示的显示屏130,上述传感器具体可以为图2所示的传感器模块150中的一个或多个传感器,上述电源键可以为图2所示的电源键141。本申请实施例对此不做任何限制。
以上实施例中所用,根据上下文,术语“当…时”或“当…后”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。在不冲突的情况下,以上各实施例的方案都可以组合使用。

Claims (18)

  1. 一种语音交互应答方法,所述方法应用于第一电子设备,其特征在于,所述方法包括:
    所述第一电子设备获取用户的第一语音指令;
    所述第一电子设备根据所述第一语音指令,确定所述第一电子设备与用户的位置关系;
    所述第一电子设备根据所述第一电子设备与用户的位置关系以及所述第一电子设备与第二电子设备的位置关系,确定是否对所述第一语音指令进行应答;
    在确定对所述第一语音指令进行应答的情况下,所述第一电子设备响应于所述第一语音指令,执行应答指令。
  2. 根据权利要求1所述的方法,其特征在于,所述第一电子设备与所述第二电子设备的位置关系包括所述第一电子设备与所述第二电子设备之间的距离信息以及方位信息,所述第一电子设备与用户的位置关系包括所述第一电子设备与用户之间的距离信息以及方位信息。
  3. 根据权利要求2所述的方法,其特征在于,在所述第一电子设备确定是否对所述第一语音指令进行应答之前,所述方法还包括:
    所述第一电子设备根据所述第一电子设备与所述第二电子设备之间的距离信息以及方位信息,将所述第一电子设备和所述第二电子设备所在的区域划分为多个子区域,所述多个子区域中包括第一子区域,所述第一子区域为靠近所述第一电子设备的子区域。
  4. 根据权利要求3所述的方法,其特征在于,所述第一电子设备根据所述第一电子设备与用户的位置关系以及所述第一电子设备与第二电子设备的位置关系,确定是否对所述第一语音指令进行应答,包括:
    所述第一电子设备根据所述第一电子设备与用户之间的距离信息以及方位信息,确定用户是否位于所述第一子区域,从而确定是否对所述第一语音指令进行应答;
    所述在确定对所述第一语音指令进行应答的情况下,所述第一电子设备响应于所述第一语音指令,执行应答指令,包括:
    在确定用户位于所述第一子区域的情况下,所述第一电子设备确定对所述第一语音指令进行应答,所述第一电子设备响应于所述第一语音指令,执行所述应答指令。
  5. 根据权利要求3或4所述的方法,其特征在于,在所述第一电子设备确定是否对所述第一语音指令进行应答之后,所述方法还包括:
    在确定用户不位于所述第一子区域的情况下,所述第一电子设备确定不对所述第一语音指令进行应答,所述第一电子设备不响应所述第一语音指令、不执行所述应答指令。
  6. 根据权利要求1所述的方法,其特征在于,所述第一电子设备与所述第二电子设备的位置关系包括所述第一电子设备与所述第二电子设备之间的距离信息,所述第一电子设备与用户的位置关系包括所述第一电子设备与用户之间的距离信息;
    其中,所述第一电子设备根据所述第一电子设备与用户的位置关系以及所述第一电子设备与第二电子设备的位置关系,确定是否对所述第一语音指令进行应答,包括:
    所述第一电子设备根据和所述第二电子设备之间的距离信息确定预设距离;
    所述第一电子设备根据所述第一电子设备与用户之间的距离信息以及所述预设距离,确定是否对所述第一语音指令进行应答;
    所述在确定对所述第一语音指令进行应答的情况下,所述第一电子设备响应于所述第一语音指令,执行应答指令,包括:
    在确定所述第一电子设备与用户之间的距离小于所述预设距离的情况下,所述第一电子设备确定对所述第一语音指令进行应答,所述第一电子设备响应于所述第一语音指令,执行所述应答指令。
  7. 根据权利要求6所述的方法,其特征在于,所述预设距离为所述第一电子设备和所述第二电子设备之间的距离的二分之一。
  8. 根据权利要求1所述的方法,其特征在于,所述第一电子设备与所述第二电子设备的位置关系包括所述第二电子设备位于所述第一电子设备的第一侧,所述第一电子设备与用户的位置关系包括所述第一电子设备与用户之间的方位信息;
    其中,所述第一电子设备根据所述第一电子设备与用户的位置关系以及所述第一电子设备与第二电子设备的位置关系,确定是否对所述第一语音指令进行应答,包括:
    所述第一电子设备根据所述第一电子设备与用户之间的方位信息,确定用户是否位于第二侧,从而确定是否对所述第一语音指令进行应答,其中,所述第二侧和所述第一侧具有相对位置关系;
    所述在确定对所述第一语音指令进行应答的情况下,所述第一电子设备响应于所述第一语音指令,执行应答指令,包括:
    在确定用户位于所述第一电子设备的所述第二侧的情况下,所述第一电子设备确定对所述第一语音指令进行应答,所述第一电子设备响应于所述第一语音指令,执行所述应答指令。
  9. 根据权利要求8所示的方法,其特征在于,所述第一电子设备与所述第二电子设备的位置关系还包括所述第一电子设备与所述第二电子设备之间的距离信息,所述第一电子设备与用户的位置关系还包括所述第一电子设备与用户之间的距离信息;
    所述方法还包括:
    在确定用户位于所述第一电子设备的所述第一侧的情况下,所述第一电子设备进一步根据所述第一电子设备与用户之间的所述距离信息,确定所述第一电子设备与用户之间的距离是否小于临界距离,其中,所述临界距离是所述第一电子设备根据所述第一电子设备与所述第二电子设备之间的所述位置关系确定的;
    在确定所述第一电子设备与用户之间的距离小于所述临界距离的情况下,所述第一电子设备确定对所述第一语音指令进行应答,所述第一电子设备响应于所述第一语音指令,执行所述应答指令。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一电子设备确定对所述第一语音指令进行应答的情况下,所述第二电子设备不响应所述第一语音指令、不执行所述应答指令。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一电子设备,不根据所述第二电子设备或其他电子设备发送的数据或指令,确定是否对所述第一语音指令进行应答。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一语音指令包含用于唤醒所述第一电子设备和所述第二电子设备的唤醒词。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一电子设备包括麦克风阵列,所述麦克风阵列包括多个麦克风;
    所述第一电子设备根据所述第一语音指令,确定所述第一电子设备与用户的位置关系,包括:
    所述第一电子设备利用声源定位技术,根据所述多个麦克风接收到的所述第一语音指令的相位信息和时间差信息,确定所述第一电子设备与用户的位置关系。
  14. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一电子包括超宽带天线阵列;
    所述第一电子设备根据所述第一语音指令,确定所述第一电子设备与用户的位置关系,包括:
    所述第一电子设备接收到第一语音指令后,通过超宽带定位技术,确定所述第一电子设备与用户的位置关系。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一电子设备获取所述第二电子设备的定位信号;
    所述第一电子设备根据所述定位信号确定所述第一电子设备与所述第二电子设备的位置关系。
  16. 一种电子设备,其特征在于,包括一个或多个处理器;一个或多个存储器;所述一个或多个存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述电子设备执行权利要求1至15中任一项所述的方法。
  17. 一种计算机程序,当在计算机上运行时,使得所述计算机执行上述权利要求1至15中任一项所述的方法。
  18. 计算机可读存储介质,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行权利要求1至15中任一项所述的方法。
PCT/CN2022/092137 2021-05-31 2022-05-11 一种语音交互应答方法和电子设备 WO2022252938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110618249.9 2021-05-31
CN202110618249.9A CN115482811A (zh) 2021-05-31 2021-05-31 一种语音交互应答方法和电子设备

Publications (1)

Publication Number Publication Date
WO2022252938A1 true WO2022252938A1 (zh) 2022-12-08

Family

ID=84323857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092137 WO2022252938A1 (zh) 2021-05-31 2022-05-11 一种语音交互应答方法和电子设备

Country Status (2)

Country Link
CN (1) CN115482811A (zh)
WO (1) WO2022252938A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188551A (ja) * 1999-12-28 2001-07-10 Sony Corp 情報処理装置および方法、並びに記録媒体
JP2013238499A (ja) * 2012-05-15 2013-11-28 Yahoo Japan Corp 応答生成装置、応答生成方法および応答生成プログラム
CN110910880A (zh) * 2019-11-29 2020-03-24 广东美的厨房电器制造有限公司 语音控制方法、***、设备及存储介质
JP2020046478A (ja) * 2018-09-14 2020-03-26 株式会社フュートレック ロボットシステム
CN111812588A (zh) * 2020-07-20 2020-10-23 百度在线网络技术(北京)有限公司 多设备语音唤醒实现方法及设备、电子设备和介质
CN111880855A (zh) * 2020-07-31 2020-11-03 宁波奥克斯电气股份有限公司 设备控制方法和分布式语音***
CN112037787A (zh) * 2020-10-20 2020-12-04 北京小米松果电子有限公司 唤醒控制方法、装置及计算机可读存储介质
CN112185377A (zh) * 2020-09-28 2021-01-05 珠海格力电器股份有限公司 一种解决智能语音重复应答的方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188551A (ja) * 1999-12-28 2001-07-10 Sony Corp 情報処理装置および方法、並びに記録媒体
JP2013238499A (ja) * 2012-05-15 2013-11-28 Yahoo Japan Corp 応答生成装置、応答生成方法および応答生成プログラム
JP2020046478A (ja) * 2018-09-14 2020-03-26 株式会社フュートレック ロボットシステム
CN110910880A (zh) * 2019-11-29 2020-03-24 广东美的厨房电器制造有限公司 语音控制方法、***、设备及存储介质
CN111812588A (zh) * 2020-07-20 2020-10-23 百度在线网络技术(北京)有限公司 多设备语音唤醒实现方法及设备、电子设备和介质
CN111880855A (zh) * 2020-07-31 2020-11-03 宁波奥克斯电气股份有限公司 设备控制方法和分布式语音***
CN112185377A (zh) * 2020-09-28 2021-01-05 珠海格力电器股份有限公司 一种解决智能语音重复应答的方法及装置
CN112037787A (zh) * 2020-10-20 2020-12-04 北京小米松果电子有限公司 唤醒控制方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN115482811A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN112040361B (zh) 耳机控制方法、装置及存储介质
WO2020108356A1 (zh) 一种应用显示方法及电子设备
WO2021213164A1 (zh) 应用界面交互方法、电子设备和计算机可读存储介质
WO2020253758A1 (zh) 一种用户界面布局方法及电子设备
WO2021036770A1 (zh) 一种分屏处理方法及终端设备
CN113115439B (zh) 定位方法及相关设备
CN111983559A (zh) 室内定位导航方法及装置
CN114513847B (zh) 定位方法、装置、***、电子设备及存储介质
US11431401B2 (en) Terminal detection method and terminal
WO2021223539A1 (zh) 射频资源分配方法及装置
CN112637758B (zh) 一种设备定位方法及其相关设备
WO2022027972A1 (zh) 一种设备搜寻方法以及电子设备
CN114090102B (zh) 启动应用程序的方法、装置、电子设备和介质
CN114384465A (zh) 方位角确定方法及装置
WO2023216957A1 (zh) 一种目标定位方法、***和电子设备
WO2022252938A1 (zh) 一种语音交互应答方法和电子设备
WO2022247614A1 (zh) 一种多界面显示的方法和电子设备
WO2022062902A1 (zh) 一种文件传输方法和电子设备
WO2021254510A1 (zh) 一种确定截图区域的方法及相关装置
CN114465852A (zh) 信号处理方法及相关装置
CN114336998A (zh) 充电控制方法、装置及存储介质
WO2022089523A1 (zh) 一种数据分享方法及相关装置
WO2022028324A1 (zh) 启动应用程序的方法、装置、电子设备和介质
CN114339607B (zh) 测距方法、装置及存储介质
CN111459271B (zh) 注视偏移误差确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814985

Country of ref document: EP

Kind code of ref document: A1