WO2022252591A1 - 一种水力压裂与甲烷原位燃爆协同致裂增透方法 - Google Patents

一种水力压裂与甲烷原位燃爆协同致裂增透方法 Download PDF

Info

Publication number
WO2022252591A1
WO2022252591A1 PCT/CN2021/141463 CN2021141463W WO2022252591A1 WO 2022252591 A1 WO2022252591 A1 WO 2022252591A1 CN 2021141463 W CN2021141463 W CN 2021141463W WO 2022252591 A1 WO2022252591 A1 WO 2022252591A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane
fracturing
detonation
extraction
gas
Prior art date
Application number
PCT/CN2021/141463
Other languages
English (en)
French (fr)
Inventor
杨威
魏则宁
翟成
张文晓
梁德郎
薛佳凯
白海鑫
陈庆贺
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US18/027,605 priority Critical patent/US20240110465A1/en
Publication of WO2022252591A1 publication Critical patent/WO2022252591A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/066Valve arrangements for boreholes or wells in wells electrically actuated
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • E21B43/248Combustion in situ in association with fracturing processes or crevice forming processes using explosives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/263Methods for stimulating production by forming crevices or fractures using explosives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Definitions

  • the invention relates to a fracturing and anti-permeability method, and is especially suitable for a hydraulic fracturing and methane in-situ combustion and explosion synergistic fracturing and anti-permeability method used in the exploitation of shale gas reservoirs.
  • Shale gas refers to a kind of unconventional natural gas that exists in organic-rich mud shale and its interlayers in an adsorbed, free or dissolved state, and is called the three major unconventional gas reservoirs together with coalbed methane reservoirs and tight sandstone gas reservoirs , whose main component is methane, mixed with ethane and propane, has the characteristics of long mining cycle, cleanness and high efficiency, and has become one of the best alternative energy sources for coal in the process of industrial development. China is rich in shale gas resources, with recoverable resources reaching 36.1 trillion m 3 .
  • Shale reservoirs are characterized by low porosity ( ⁇ 5%) and low permeability ( ⁇ 0.001 ⁇ 10 -3 ⁇ m 2 ), which pose difficulties to the development and utilization of shale gas. For this reason, shale reservoirs must be artificially fractured to form a connected fracture network to increase shale gas production.
  • horizontal well staged fracturing technology is currently the mainstream technology for developing unconventional reservoirs such as shale gas and tight oil. It refers to using steering technology on the basis of vertical wells to lower the drill pipe into the target layer and A large amount of high-pressure fracturing fluid is injected to depress the target layer and stimulate the reservoir. Under the action of continuous injection of high-pressure fracturing fluid, the pressure in the natural fracture exceeds the closing pressure, the natural fracture opens, and the rock produces shear slip, realizing the communication between the natural fracture and the rock bedding.
  • This technology can increase the volume of reservoir stimulation and increase the productivity of horizontal wells.
  • the burial depth of shale gas in Sichuan, Chongqing and other places in my country is generally between 2600m and 3000m, and the burial depth of deep shale gas reservoirs is above 4000m.
  • the shale reservoirs are dense, with high pressure coefficients and difficult fracturing.
  • High-energy gas fracturing mainly uses the high-pressure gas generated by the explosion of gunpowder (such as fast-curing liquid explosive) or rocket propellant (such as unsymmetrical dimethyl hydrazine) to fracture the rock mass, creating micro-cracks in the reservoir, which has the characteristics of low cost and low pollution , but there are also problems such as poor safety of pyrotechnics and small scale of crack expansion.
  • a hydraulic fracturing and methane in-situ detonation synergistic fracturing enhancement method which can give full play to the respective advantages of hydraulic fracturing and energy-concentrated explosion fracturing, and adopts energy-concentrated perforation technology to open pores in tight shale reservoirs, and cooperate with hydraulic fracturing technology to extend the pores into main fractures, and at the same time realize the injection of combustion accelerants into the fractures, using the methane gas desorbed in situ from the shale reservoirs as the explosion source.
  • Pulse multi-stage explosion fracturing method synergistic fracturing to enhance the permeability of shale reservoirs.
  • the hydraulic fracturing and methane in-situ combustion and explosion synergistic fracturing and anti-permeation method firstly carry out horizontal drilling construction in the area to be constructed, and then use concentrated energy perforation to create fractures around the horizontal drilling hole wall;
  • the fracturing method continues to expand the gaps around the horizontal drilling holes, and methane extraction is carried out after the fracturing fluid is discharged; when the methane gas is reduced, the methane participating in the horizontal drilling holes is detonated and fractured in situ; after the detonation, continue Expand the gaps in the horizontal boreholes to allow methane to continue to seep, and then continue to drain; repeat the explosion fracturing and drainage operations, so as to realize the synergistic fracturing and permeability enhancement of explosion, which greatly enhances the shale gas recovery effect.
  • the desorption amount of methane gas in the shale reservoir increases.
  • the solenoid valve I is closed and the solenoid valve II is opened, and the methane extraction pump is started to extract methane through the methane extraction pipeline.
  • the methane gas concentration and flow detector on the rock gas extraction pipeline monitors the methane gas concentration and the gas flow in the extraction pipeline in real time; the methane gas concentration and flow detector detects that the extracted methane gas flow is stable and kept at the preset When the value is set above, it is judged that this is a stable extraction stage, and the currently monitored methane gas concentration is considered to be the same as the real-time desorbed gas concentration; at this time, the casing string is used as the gas extraction pipeline at the horizontal gas well section;
  • the methane gas concentration and flow detectors monitor the change of the methane concentration during the extraction process in real time, according to the natural attenuation characteristics of the gas concentration in the drainage borehole, when the methane gas concentration in the overall space of the pipeline and the fracture is reduced to the detonation level during the extraction process After the concentration is reached, the extraction operation is stopped, and the detonation device is lowered at the wellhead of the horizontal gas well, and the methane desorbed in situ in the reservoir fracture is ignited and detonated through the detonation device; the detonation device includes an electric spark igniter, a transmission cable, a ground intelligent The controller, the ignition-induced deflagration process is that the ground intelligent controller closes the solenoid valve I and the solenoid valve II, and connects the electric spark igniter through the transmission cable to generate electric sparks to induce methane deflagration;
  • Fracture network so that more methane in the reservoir can be desorbed, collected in the casing string, and transported to the well through the methane extraction pipeline, until the increase rate of methane extraction is less than 10%, and the compression of this interval is ended. Fracture extraction operation.
  • a cement sheath formed by cement pouring is set between the outer side of the casing string and the well wall to fix the casing string.
  • the casing string and the shaft shaft are connected by a diverter.
  • a sealing sleeve, a solenoid valve I is installed on the fracturing fluid pumping pipeline, and a solenoid valve II is installed on the methane extraction pipeline, and the solenoid valve I and the solenoid valve II are connected to an intelligent controller installed on the ground through a connecting line.
  • energy-concentrated perforation means that the perforating gun loaded with perforating charges is lowered to the pre-fracturing position of the shale reservoir through the casing string.
  • the perforating bullets are shot out from the perforation holes, and the high-temperature and high-pressure shock waves generated penetrate the casing string to create cone-shaped channels in the shale reservoir, thereby realizing the early fracture creation of the tight shale reservoir;
  • the ground intelligent controller is used to open the solenoid valve I and close the solenoid valve II to carry out hydraulic fracturing operations on the shale reservoir: the fracturing fluid is pumped from the fracturing fluid storage tank along the fracturing fluid pumping pipeline Enter the casing to fracturing the shale reservoir, so that the cone-shaped pores are further opened and expanded into main fractures, and secondary hydraulic fracturing fractures are generated around the main fractures.
  • the combustion aid is solid particles, including potassium permanganate balls, aluminum powder, and magnesium powder, which are mixed into the fracturing fluid so that the combustion aid is injected into the cracks generated during the hydraulic fracturing process; in order to ensure that the combustion aid particles enter In the fracturing fractures, the injection of displacement fluid is supplemented. After the fracturing fluid flows back, the combustion accelerant remains in the generated fractures for support.
  • the detonation concentration is within the range of 8%-11% between the methane gas concentration and the concentration measured by the flow detector.
  • step S6 when it is necessary to carry out methane detonation fracturing as described in step S6, the hydraulic fracturing process can be carried out again and the combustion accelerant can be added synchronously.
  • solid particle combustion accelerant is used instead of proppant, which not only prevents the smooth cracks formed by hydraulic fracturing from being reclosed due to stress and other influences, but also ensures the conductivity of the reservoir. It can assist methane deflagration in subsequent processes to realize in-situ methane detonation and fracturing of reservoirs at fractures;
  • Fig. 1 is a schematic diagram of hydraulic fracturing and methane in-situ synergistic fracturing and permeability enhancement of shale reservoirs according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of energy-gathering perforation fracture creation according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the hydraulic fracturing process and fracture development of shale reservoirs according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of methane extraction after hydraulic fracturing of a shale reservoir according to an embodiment of the present invention
  • Fig. 5 is a schematic diagram of methane extraction and fracture network after in-situ explosion of a shale reservoir according to an embodiment of the present invention.
  • a hydraulic fracturing and methane in-situ detonation synergistic fracturing anti-permeability method of the present invention comprises the following steps:
  • Drill a vertical shaft 10 pass through the overburden 2 and the shale roof 3 to enter the shale reservoir 4, and use the diverter 11 to drill the horizontal gas well 12 to reach the pre-fracturing position.
  • the casing is lowered to the horizontal well section, and the two casings are sealed and connected to form a casing string 13, which is used to support the shale gas well, especially to support the hole wall after the deflagration of methane, and at the same time to construct the delivery of fracturing fluid and methane gas It works with the sampling channel.
  • Cement is poured between the casing string 13 and the well wall to form a cement sheath 14 to fix the casing string 13; the casing string 13 is connected to the shaft shaft 10, specifically, a fracturing fluid pumping pipeline 8 is arranged in the shaft shaft 10 1.
  • Methane extraction pipeline 9 a metal sealing sleeve 15 is installed at the connection between the casing string 13 and the shaft shaft 10, a solenoid valve I16 is installed on the fracturing fluid pumping pipeline 8, and a solenoid valve is installed on the methane extraction pipeline 9 II17, the solenoid valve is connected to the ground intelligent controller 24 through the connection line 25;
  • perforation holes 19 on the body of the casing 18, and the perforation holes 19 are alternately arranged along the circumferential direction and the axial direction of the casing 18.
  • the perforating charge grooves 20 in the perforating gun 19 are aligned to form a directional concentrated jet.
  • Energy-concentrated perforation means that the perforating gun 19 loaded with perforating bullets is lowered to the pre-fracturing position of the shale reservoir 4 through the casing string 13.
  • the perforating gun 19 adopts electric detonation.
  • the pin transmits the current to the detonator, and the detonator is detonated to eject the perforating charges in the perforating charge slot 20, and the generated high-temperature and high-pressure shock wave penetrates the casing string 13 and produces a cone-like tunnel 21 in the shale reservoir 4 , so as to realize the early fracture creation of the tight shale reservoir 4.
  • a large amount of energy will be accumulated in the casing 18 and released concentratedly from the unconstrained perforation 19.
  • This high-energy and high-speed shock wave will have a huge impact on the surrounding shale and produce a cone-shaped spike tens of centimeters long.
  • Channel 21 The perforating bullet slots 20 are arranged staggeredly along the gun body of the perforating gun 19, forming a three-dimensional tunnel system in the space, as shown in Fig. 2 ;
  • the ground intelligent controller 24 opens the solenoid valve I16 and closes the solenoid valve II17, and carries out hydraulic fracturing operation on the shale reservoir 4, and the fracturing fluid flows along the tunnel.
  • the reservoir is fractured, so that the original channels are further opened and expanded into main fractures 22, and the fracturing fluid is subjected to tensile damage at the tip of the channels formed by the energy-gathering perforation, forming hundreds of meters of hydraulic fractures, and constructing flow casings for fluids such as methane.
  • the main channel of the pipe is fractured around the main fracture to generate secondary hydraulic fractures23.
  • Combustion additives are solid particles that are mixed into the fracturing fluid so that they are injected into the fractures created along with the hydraulic fracturing process.
  • the hydraulic fracturing fractures extend to a predetermined length and the number of injected combustion accelerant particles reaches a predetermined number, the hydraulic fracturing operation is stopped, and the combustion accelerant remains in the generated fractures for support, as shown in Figure 3.
  • a staged injection method of low-viscosity fracturing fluid is adopted during the hydraulic fracturing process, that is, at the initial stage of fracturing, a hydraulic fluid with a viscosity of 40 ⁇ 10mPa ⁇ s is used.
  • the fracturing fluid carries 100-mesh combustion accelerant particles, the purpose of which is that the low-viscosity fracturing fluid can reduce the frictional resistance of the fracture surface, and the fine particles have a certain sealing effect on the natural fractures near the casing to promote the outward extension of the main fractures.
  • Fine particles are more likely to enter the secondary micro-fractures generated during the fracturing process; in the later stage of fracturing, fracturing fluid with a viscosity of 80 ⁇ 10mPa ⁇ s is used to carry 30-mesh combustion aid particles, the purpose is to support the main fractures and increase their width, ensuring It extends to the deep part.
  • the fluid allows the accelerant to better penetrate into the cracks.
  • the combustion aid particles can be selected from potassium permanganate, potassium perchlorate, magnesium powder, aluminum powder and the like.
  • the desorption amount of methane gas in the shale reservoir 4 increases, and the methane gas concentration and flow detector 26 is installed on the methane extraction pipeline 9, which is used to monitor the concentration of methane gas desorbed in the fracture area. real-time monitoring.
  • the ground intelligent controller 24 opens the electromagnetic valve II17 and closes the electromagnetic valve I16 to carry out methane extraction.
  • the casing string 13 is used as a gas extraction pipeline for collecting and transporting shale gas, as shown in FIG. 4 ;
  • the methane concentration in the reservoir fractures is monitored in real time by the methane gas concentration and flow detector 26. According to the natural attenuation characteristics of the gas concentration in the drilling borehole, when the methane gas concentration in the overall space of the pipeline and the fracture reaches the detonation concentration during the extraction process, The in-situ desorbed methane in reservoir fractures is ignited to induce deflagration through the detonation device.
  • Described detonating device comprises electric spark igniter 27, transmission cable 28, ground intelligent controller 24, and described detonation concentration is that methane gas concentration and flow detector record concentration within the scope of 8%-11%, and described ignition
  • the induced deflagration process is that the ground intelligent controller 24 closes the solenoid valve I16 and the solenoid valve II17, and the electric spark igniter 27 is connected to the current through the transmission cable 28 to generate an electric spark to induce the deflagration of methane; more preferably, the optimal detonation point of methane is At about 9.5%, the chemical reaction is the most complete at this time, and the temperature and pressure generated are also the largest, as shown in Figure 5;
  • a three-dimensional fracture network 29 is built step by step, so that more methane in the reservoir can be desorbed, collected in the casing string 13, and transported to the well through the methane extraction pipeline 8 until all intervals are completed fracturing and drainage operations.
  • the present invention proposes a hydraulic fracturing and methane in-situ deflagration synergistic fracturing and anti-permeability method.
  • the in-situ desorbed methane is used for detonation to carry out secondary transformation of the reservoir, and the drainage area of the reservoir and the scope of the fracture network are comprehensively improved.
  • the effects of in-situ methane explosion on shale reservoirs mainly include: first, the mechanical action of high-temperature and high-pressure explosions, which are used to break up dense reservoirs and generate a large number of micro-cracks; second, the stress wave action, which causes deformation and failure of rocks The third is the replacement effect.
  • the adsorption capacity of CO 2 molecules is greater than that of methane molecules, and the CO 2 with stronger adsorption capacity will replace the adsorbed methane in the reservoir;
  • the fourth is chemical action, the acid gas generated by the explosion (such as CO 2 , SO 2 , etc.) are dissolved in water to form an acidic solution that etches shale reservoirs;
  • the fifth is the thermal effect.
  • the high-temperature downhole environment generated by deflagration can significantly reduce the methane adsorption potential and promote methane desorption and flow.
  • the hydraulic fracturing and in-situ methane detonation synergistic fracturing and permeability enhancement method can effectively improve the efficiency of shale reservoir stimulation and methane extraction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

本发明涉及一种水力压裂与甲烷原位燃爆协同致裂增透方法,适用于页岩气储层开采。先对待施工区域进行水平钻井施工,然后利用聚能射孔在水平钻孔孔壁周围进行造缝;利用水力压裂的方式继续对水平钻孔周围的缝隙进行扩展,排出压裂液后进行甲烷抽采;当甲烷气体减少后对水平钻孔中参与的甲烷进行原位燃爆压裂;燃爆后继续扩展水平钻孔中的缝隙从而使甲烷继续渗出,之后继续进行抽采;重复燃爆压裂和抽采作业,从而实现燃爆协同致裂增透,大大加强了页岩气的开采效果。该方法设计合理、施工操作可行性高,适合页岩气藏、煤层气藏、致密砂岩气藏等非常规油气藏压裂改造。

Description

一种水力压裂与甲烷原位燃爆协同致裂增透方法 技术领域
本发明涉及一种致裂增透方法,尤其适用于页岩气储层开采时使用的一种水力压裂与甲烷原位燃爆协同致裂增透方法。
背景技术
页岩气是指以吸附、游离或溶解状态赋存在富含有机质的泥页岩及其夹层中的一种非常规天然气,与煤层气藏和致密砂岩气藏并称为三大非常规气藏,其主要成分为甲烷,混有乙烷和丙烷,具有开采周期长、清洁、高效等特点,已成为工业发展过程中煤炭的最佳替代能源之一。我国页岩气资源丰富,可采资源量达到36.1万亿m 3,页岩气资源的高效开发,可补充我国未来天然气需求缺口,并将深刻影响我国能源结构,对于保障国家能源安全具有重要意义。页岩储层低孔隙度(﹤5%)、低渗透率(﹤0.001×10 -3μm 2)特征明显,对页岩气的开发利用造成困难。为此,必须对页岩储层进行人工压裂改造,形成连通的裂缝网络,达到增大页岩产气量的目的。
利用水力压裂技术对页岩储层进行压裂改造以获得工业气流是目前开采页岩气的主要方式。其中,水平井分段压裂技术,是当前开发页岩气、致密油等非常规储层的主流技术,是指在垂直井的基础上采用转向技术,将钻杆下入到目标层,通过注入大量高压压裂液将目标层位压开,对储层实施改造。在不断注入高压压裂液的作用下,天然裂缝缝内压力超过闭合压力,天然裂缝开启,岩石产生剪切滑移,实现对天然裂缝和岩石层理的沟通。该技术可以增大储层的改造体积,提高水平井的产能,美国利用水平井分段压裂、同步压裂等技术对页岩储层进行了有效改造,页岩气开发得到迅猛发展;但是我国页岩气藏在地质特点、储层埋深以及压裂技术条件等方面与美国存在明显差异,美国页岩气开采的成功经验无法直接应用到我国。
我国四川、重庆等地的页岩气埋藏深度普遍在2600m~3000m,深层页岩气藏埋深在4000m以上,页岩储层致密,压力系数高,压裂难度大。高能气体压裂主要利用火药(如快速固化液体***)或者火箭推进剂(如偏二甲肼)***产生的高压气体压裂岩体,使储层产生微裂隙,具有低成本、低污染的特点,但是也存在着诸如火工品安全性差、裂缝扩展规模小等问题。
发明内容
针对现有技术的不足之处,提供一种水力压裂与甲烷原位燃爆协同致裂增透方法,能 够充分发挥水力压裂和聚能燃爆压裂的各自优势,采用聚能射孔技术于致密页岩储层中开出孔道,配合水力压裂技术使孔道延展成主裂隙,同时实现助燃剂的缝内投放,以页岩储层原位解吸出的甲烷气体作为***源,采取脉冲式多级燃爆压裂方式,协同致裂增透页岩储层。
为实现上述目的,本水力压裂与甲烷原位燃爆协同致裂增透方法,首先对待施工区域进行水平钻井施工,然后利用聚能射孔在水平钻孔孔壁周围进行造缝;利用水力压裂的方式继续对水平钻孔周围的缝隙进行扩展,排出压裂液后进行甲烷抽采;当甲烷气体减少后对水平钻孔中参与的甲烷进行原位燃爆压裂;燃爆后继续扩展水平钻孔中的缝隙从而使甲烷继续渗出,之后继续进行抽采;重复燃爆压裂和抽采作业,从而实现燃爆协同致裂增透,大大加强了页岩气的开采效果。
具体步骤如下:
S1确定页岩储层的压裂层段和压裂位置之后从地面向页岩储层中预压裂层段开钻竖井井筒,利用转向器开钻水平气井到达预压裂位置,在水平气井中设置套管形成套管柱,然后向水平气井连接的竖井井筒中设置压裂液泵注管道和甲烷抽采管道,甲烷抽采管道上设置有甲烷气体浓度与流量探测器;
S2将载有射孔弹的射孔枪通过套管柱下放到页岩储层预压裂位置进行聚能射孔造缝,从而在致密页岩储层上产生大量锥刺状孔道;
S3回收射孔枪,然后利用压裂液储罐通过压裂液泵注管道向套管内注入掺混有助燃剂的压裂液,压裂液从套管的射孔孔眼对页岩储层进行水力压裂,压裂液沿锥刺状孔道对储层进行压裂,使锥刺状孔道进一步张开扩展成主裂缝,压裂液在射孔孔眼形成的锥刺状孔道尖端进行张性破坏,从而构建出甲烷等流体流向套管的主通道,并在主裂缝周围压裂产生二级水力压裂裂缝,当压裂液泵注压力降低到峰值压力的30%时,停止泵注,在水力压裂过程结束后返排压裂液,助燃剂留存于所进入的裂缝中从而起到辅助支撑的作用;
S4压裂液返排结束后,页岩储层中的甲烷气体解吸量增加,此时关闭电磁阀Ⅰ并开启电磁阀Ⅱ,启动甲烷抽采泵通过甲烷抽采管道进行甲烷抽采,利用设置在岩气抽采管道上的甲烷气体浓度与流量探测器对甲烷气体浓度与抽采管道里气体流量进行实时监测;甲烷气体浓度与流量探测器检测到抽采的甲烷气体流量稳定且保持在预设数值之上时,则判断此时为稳定抽采阶段,当前监测到的甲烷气体浓度认为与实时解吸的气体浓度相同;此时套管柱即作为水平气井段处的气体抽采管道;
S5当甲烷气体浓度与流量探测器实时监测抽采过程中甲烷浓度发生变化,根据抽采钻 孔气体浓度的自然衰减特性,当抽采过程中管道与裂缝整体空间内的甲烷气体浓度降低到起爆浓度后,停止抽采作业,下放引爆装置于水平气井井口处,通过引爆装置对储层裂隙原位解吸的甲烷进行点火诱导燃爆;所述引爆装置包括电火花点火器、传输电缆、地面智能控制器,所述点火诱导爆燃过程为地面智能控制器关闭电磁阀Ⅰ和电磁阀Ⅱ,通过传输电缆使电火花点火器接通电流,产生电火花,诱导甲烷爆燃;
S6燃爆后,水平气井中形成更加复杂的新裂缝网络,促进甲烷气体的解吸与运移,从而再次增加水平气井中的甲烷气体浓度,此时重新开启电磁阀Ⅱ继续进行气体抽采,当甲烷气浓度再次降低后,重复步骤S5再次进行甲烷燃爆压裂,如此重复上述步骤,实现水力压裂与甲烷原位多级燃爆协同致裂增透页岩储层,逐级构建起立体裂缝网络,使更多的赋存在储层中的甲烷解吸、汇集到套管柱中,经甲烷抽采管道输送至井上,直至甲烷抽采量增加率低于10%,结束该层段的压裂抽采作业。
进一步,套管柱外侧与井壁之间设水泥浇筑形成的水泥环以固定套管柱,套管柱与竖井井筒之间通过转向器连接,套管柱与竖井井筒中管道连接处安装有金属密封套,压裂液泵注管道上安装有电磁阀Ⅰ、甲烷抽采管道上安装有电磁阀Ⅱ,电磁阀Ⅰ和电磁阀Ⅱ通过连接线连接有设置在地面的智能控制器。
进一步,聚能射孔造缝是指将载有射孔弹的射孔枪通过套管柱下放到页岩储层预压裂位置,射孔枪采用电引爆方式,将射孔弹弹槽内的射孔弹从射孔孔眼射出,产生的高温、高压冲击波从而穿透套管柱在页岩储层中产生锥刺状孔道,从而实现对致密页岩储层的前期造缝;
进一步,起出射孔枪后,利用地面智能控制器开启电磁阀Ⅰ并关闭电磁阀Ⅱ,对页岩储层进行水力压裂作业:压裂液从压裂液储罐沿压裂液泵注管道进入套管对页岩储层进行压裂,使锥刺状孔道进一步张开扩展成主裂缝,并在主裂缝周围压裂产生二级水力压裂裂缝。
进一步,助燃剂为固体颗粒,包括高锰酸钾球、铝粉、镁粉,掺入压裂液中,使助燃剂随水力压裂过程一同注入所产生的裂缝中;为保证助燃剂颗粒进入压裂缝中,辅以注入顶替液,压裂液返排后,助燃剂留存在所产生的裂缝中予以支撑。
进一步,所述起爆浓度是指甲烷气体浓度与流量探测器测得浓度在8%-11%范围内。
进一步,步骤S6中记载的需要再次进行甲烷燃爆压裂时,可再次进行水力压裂过程并同步加入助燃剂。
有益效果:
1、充分发挥水力压裂裂缝延展范围远和甲烷原位多级燃爆诱发复杂裂隙的优点,将两种技术结合,实现对页岩储层的协同致裂增透,有效提高压裂缝密度,更好地扩大储层改造体积(SRV);
2、创新助燃剂的投放方式,向压裂液中掺入助燃剂,在水力压裂的过程即实现了助燃剂投放,使裂缝压裂和助燃剂投放同步进行;
3、基于传统水力压裂携砂入缝的工艺特点,采用固体颗粒助燃剂来代替支撑剂,既避免水力压裂形成的光滑裂隙受应力等影响而重新闭合,保障储层的导流能力,又可在后序工艺中辅助甲烷燃爆,实现裂缝处甲烷原位燃爆压裂储层;
4、采用聚能射孔方式进行前期造缝,显著降低了后续水力压裂起裂压强,降低施工难度;采用甲烷原位燃爆方式冲击压裂页岩储层,利于产生侧向衍生裂隙、构建立体裂缝网络,同时弥补了传统水力压裂难以有效实现深层致密页岩气藏增产的短板,提高了改造效果。
附图说明
图1为本发明的实施例的页岩储层水力压裂与甲烷原位协同致裂增透的示意图;
图2为本发明的实施例的聚能射孔造缝示意图;
图3为本发明的实施例的页岩储层水力压裂过程及裂缝发育示意图;
图4为本发明的实施例的页岩储层水力压裂后甲烷抽采示意图;
图5为本发明的实施例的页岩储层原位燃爆后甲烷抽采与裂缝网络示意图。
图中:1-地面、2-覆盖层、3-页岩顶板、4-页岩储层、5-页岩底板、6-压裂液储罐、7-甲烷抽采泵、8-压裂液泵注管道、9-甲烷抽采管道、10-竖井井筒、11-转向器、12-水平气井、13-套管柱、14-水泥环、15-金属密封套、16-电磁阀Ⅰ、17-电磁阀Ⅱ、18-套管、19-射孔孔眼、20-射孔弹弹槽、21-锥刺状孔道、22-主裂缝、23-二级水力压裂裂缝、24-地面智能控制器、25-连接线、26-甲烷气体浓度与流量探测器、27-电火花点火器、28-传输电缆、29-立体裂缝网络、30-射孔枪。
具体实施方式
下面结合附图对本发明的实施例做进一步说明:
如图1所示,本发明的一种水力压裂与甲烷原位燃爆协同致裂增透方法,包括以下步骤:
(一)钻井准备工作。
通过前期地质勘探,探明页岩顶板3和页岩底板5位置,确定页岩储层4的压裂层段 和压裂位置,于地面1向页岩储层4中预压裂层段开钻竖井井筒10,井筒穿过覆盖层2、页岩顶板3进入页岩储层4,并利用转向器11开钻水平气井12到达预压裂位置。之后下放套管到水平井段,套管两两密封连接成套管柱13,用于支撑页岩气井,特别是在甲烷爆燃后支撑着孔壁,同时起到构筑压裂液、甲烷气体的输送与抽采通道的作用。套管柱13与井壁之间用水泥浇筑形成水泥环14以固定套管柱13;套管柱13与竖井井筒10相连通,具体地,竖井井筒10中布置有压裂液泵注管道8、甲烷抽采管道9,套管柱13与竖井井筒10中管道连接处安装有金属密封套15,压裂液泵注管道8上安装有电磁阀Ⅰ16、甲烷抽采管道9上安装有电磁阀Ⅱ17,电磁阀通过连接线25与地面智能控制器24连接;
(二)聚能射孔造缝。
套管18管身上开有射孔孔眼19,射孔孔眼19沿套管18的环向和轴向交错布置,射孔枪19中的射孔弹弹槽20对准,形成定向聚能射流。聚能射孔造缝是指将载有射孔弹的射孔枪19通过套管柱13下放到页岩储层4预压裂位置,射孔枪19采用电引爆方式,打开引爆开关后,插针将电流传递到***上,***引爆将射孔弹弹槽20内的射孔弹射出,产生的高温、高压冲击波穿透套管柱13在页岩储层4中产生锥刺状孔道21,从而实现对致密页岩储层4的前期造缝。引爆后套管18内会聚集大量的能量,并从没有约束的射孔孔眼19出集中释放,这种高能高速的冲击波对周围页岩产生巨大的冲击,并产生数十公分长的锥刺状孔道21。射孔弹弹槽20沿射孔枪19枪身交错布置,在空间内形成三维立体孔道体系,如图2所示;
(三)水力压裂作业。
聚能射孔造缝结束后,起出射孔枪19,地面智能控制器24开启电磁阀Ⅰ16并关闭电磁阀Ⅱ17,对页岩储层4进行水力压裂作业,压裂液沿所述孔道对储层进行压裂,使原有孔道进一步张开扩展成主裂缝22,压裂液在聚能射孔形成的孔道尖端进行张性破坏,形成百米级水力裂缝,构建出甲烷等流体流向套管的主通道,并在主裂缝周围压裂产生二级水力压裂裂缝23。助燃剂为固体颗粒,掺入压裂液中,使其随水力压裂过程一同注入所产生的裂缝中。当水力压裂裂缝延伸到预定长度、注入的助燃剂颗粒达到预定数量时,停止水力压裂作业,助燃剂留存在所产生的裂缝中予以支撑,如图3所示。
为更好地实现裂缝压裂及助燃剂的入缝投放,在水力压裂过程中采取低高粘度压裂液分阶段注入方式,即在压裂初期,采用粘度为40±10mPa·s的压裂液携带100目的助燃剂颗粒,目的在于低粘度压裂液可以降低裂缝面的摩擦阻力,细小颗粒对套管附近的天然裂隙有一定的封堵作用,以促进主裂缝的向外延伸,同时细颗粒更易进入压裂过程中产生的 二级微小裂缝;压裂后期,采用粘度为80±10mPa·s的压裂液携带30目的助燃剂颗粒,目的在于支撑主裂缝并增加其缝宽、保障其向深部延伸,此次压裂液粘度越高,携砂能力越强,可携带粒径更大的助燃剂,提高主裂隙导流能力以及保障甲烷燃爆效果;更优地,可注入顶替液使助燃剂更好地进入到裂缝中。更优地,助燃剂颗粒可以选择高锰酸钾、高氯酸钾、镁粉、铝粉等。
(四)甲烷抽采。
水力压裂作业后,页岩储层4中的甲烷气体解吸量增加,所述甲烷抽采管道9上安设有甲烷气体浓度与流量探测器26,用于对裂缝区域解吸的甲烷气体浓度进行实时监测。当气体浓度达到抽采标准时,地面智能控制器24开启电磁阀Ⅱ17并关闭电磁阀Ⅰ16,进行甲烷抽采。套管柱13即作为气体抽采管道,用于收集、输送页岩气,如图4所示;
(五)甲烷原位燃爆压裂。
通过甲烷气体浓度与流量探测器26实时监测储层裂缝内甲烷浓度,根据抽采钻孔气体浓度的自然衰减特性,当抽采过程中管道与裂缝整体空间内的甲烷气体浓度达到起爆浓度后,通过引爆装置对储层裂隙原位解吸的甲烷进行点火诱导爆燃。所述引爆装置,包括电火花点火器27、传输电缆28、地面智能控制器24,所述起爆浓度是指甲烷气体浓度与流量探测器测得浓度在8%-11%范围内,所述点火诱导爆燃过程为地面智能控制器24关闭电磁阀Ⅰ16和电磁阀Ⅱ17,通过传输电缆28使电火花点火器27接通电流,产生电火花,诱导甲烷爆燃;更优地,甲烷最佳爆点为9.5%左右,此时化学反应最为完全,产生的温度与压力也最大,如图5所示;
(六)燃爆后继续抽采。
页岩储层4经燃爆增透后,形成更为复杂的裂隙,甲烷抽采浓度和流量提高,继续按照步骤(四)进行抽采作业。
(七)多级脉冲聚能燃爆压裂。
当甲烷浓度再次降低后,进行甲烷燃爆压裂,必要时可进行水力压裂过程并同步加入助燃剂,如此重复上述步骤,实现水力压裂与甲烷原位多级燃爆协同致裂增透页岩储层,逐级构建起立体裂缝网络29,使更多的赋存在储层中的甲烷解吸、汇集到套管柱13中,经甲烷抽采管道8输送至井上,直至完成所有层段的压裂抽采作业。
针对页岩储层等非常规油气藏的压裂改造问题,本发明提出了一种水力压裂与甲烷原位燃爆协同致裂增透方法,在相对成熟的聚能射孔技术和水力压裂技术的基础上,利用原位解吸的甲烷进行燃爆对储层进行二次改造,综合提升储层泄流面积与裂缝网络范围。甲 烷原位燃爆对页岩储层的作用,归纳起来主要包括:一是高温高压***的机械作用,用于破碎致密储层、产生大量微裂缝;二是应力波作用,使岩石发生变形破坏;三是置换作用,甲烷燃爆产物中,CO 2分子的吸附能力大于甲烷分子,吸附能力更强的CO 2会置换出储层中的吸附态甲烷;四是化学作用,***产生的酸性气体(如CO 2、SO 2等)溶于水后形成酸性溶液酸蚀页岩储层;五是热效应,爆燃产生的井下高温环境能够显著降低甲烷吸附势,促进甲烷解吸和流动。综上所述,采用水力压裂与甲烷原位燃爆协同致裂增透方法,能够有效提升页岩储层改造和甲烷抽采效率。

Claims (10)

  1. 一种水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:首先对待施工区域进行水平钻井施工,然后利用聚能射孔在水平钻孔孔壁周围进行造缝;利用低高粘度压裂液分阶段注入方式继续对水平钻孔周围的缝隙进行扩展,排出压裂液后进行甲烷抽采;当甲烷气体减少后对水平钻孔中参与的甲烷进行原位燃爆压裂,即当抽采过程中管道与裂缝整体空间内的甲烷浓度降低到起爆浓度后,停止抽采作业,通过引爆装置对储层裂隙原位解吸的甲烷进行点火诱导燃爆,所述引爆装置包括电火花点火器(27),燃爆后继续扩展水平钻孔中的缝隙从而使甲烷继续渗出,之后继续进行抽采;重复燃爆压裂和抽采作业,从而实现燃爆协同致裂增透,大大加强了页岩气的开采效果。
  2. 根据权利要求1所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于,具体步骤如下:
    S1确定页岩储层(4)的压裂层段和压裂位置之后从地面(1)向页岩储层(4)中预压裂层段开钻竖井井筒(10),利用转向器(11)开钻水平气井(12)到达预压裂位置,在水平气井(12)中设置套管(18)形成套管柱(13),然后向水平气井(12)连接的竖井井筒(10)中设置压裂液泵注管道(8)和甲烷抽采管道(9),甲烷抽采管道(9)上设置有甲烷浓度与流量探测器(26);
    S2将载有射孔弹的射孔枪(30)通过套管柱(13)下放到页岩储层(4)预压裂位置进行聚能射孔造缝,从而在致密页岩储层(4)上产生大量锥刺状孔道(21);
    S3回收射孔枪(30),然后利用压裂液储罐(6)通过压裂液泵注管道(8)向套管(18)内注入掺混有助燃剂的压裂液,压裂液从套管(18)的射孔孔眼(19)对页岩储层(4)进行水力压裂,压裂液沿锥刺状孔道(21)对储层进行压裂,使锥刺状孔道(21)进一步张开扩展成主裂缝,压裂液在射孔孔眼(19)形成的锥刺状孔道(21)尖端进行张性破坏,从而构建出甲烷等流体流向套管的主通道,并在主裂缝周围压裂产生二级水力压裂裂缝(23),当压裂液泵注压力降低到峰值压力的30%时,停止泵注,在水力压裂过程结束后返排压裂液,助燃剂留存于所进入的裂缝中从而起到辅助支撑的作用;
    S4压裂液返排结束后,页岩储层(4)中的甲烷气体解吸量增加,此时关闭电磁阀Ⅰ(16)并开启电磁阀Ⅱ(17),启动甲烷抽采泵(7)通过甲烷抽采管道(9)进行甲烷抽采,利用设置在甲烷抽采管道(9)上的甲烷气体浓度与流量探测器(26)对甲烷气体浓度与抽采管道里气体流量进行实时监测;甲烷气体浓度与流量探测器(26)检测到抽采的甲烷气体流量稳定且保持在预设数值之上时,则判断此时为稳定抽采阶段,当前监测到的 甲烷气体浓度认为与实时解吸的气体浓度相同;此时套管柱(13)即作为水平气井段处的气体抽采管道;
    S5甲烷气体浓度与流量探测器(26)实时监测抽采过程中甲烷浓度发生变化,根据抽采钻孔气体浓度的自然衰减特性,当抽采过程中管道与裂缝整体空间内的甲烷浓度降低到起爆浓度后,停止抽采作业,下放引爆装置于水平气井(12)井口处,通过引爆装置对储层裂隙原位解吸的甲烷进行点火诱导燃爆;所述引爆装置包括电火花点火器(27)、传输电缆(28)、地面智能控制器(24),所述点火诱导爆燃过程为地面智能控制器(24)关闭电磁阀Ⅰ(16)和电磁阀Ⅱ(17),通过传输电缆(28)使电火花点火器(27)接通电流,产生电火花,诱导甲烷爆燃;
    S6燃爆后,水平气井(12)中形成更加复杂的新裂缝网络,促进甲烷气体的解吸与运移,从而再次增加水平气井(12)中的甲烷气体浓度,此时重新开启电磁阀Ⅱ(17)继续进行气体抽采,当甲烷浓度再次降低后,重复步骤S5再次进行甲烷燃爆压裂,如此重复上述步骤,实现水力压裂与甲烷原位多级燃爆协同致裂增透页岩储层,逐级构建起立体裂缝网络,使更多的赋存在储层中的甲烷解吸、汇集到套管柱(13)中,经甲烷抽采管道(9)输送至井上,直至甲烷抽采量增加率低于10%,结束该层段的压裂抽采作业。
  3. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:聚能射孔造缝通过将载有射孔弹的射孔枪(30)通过套管柱(13)下放到页岩储层(4)预压裂位置,射孔枪(30)采用电引爆方式,将射孔弹弹槽(20)内的射孔弹从射孔孔眼(19)射出,产生的高温、高压冲击波从而穿透套管柱(13)在页岩储层(4)中产生锥刺状孔道(21),从而实现对致密页岩储层(4)的前期造缝。
  4. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:压裂液泵注管道(8)上安装有电磁阀Ⅰ(16)、甲烷抽采管道(9)上安装有电磁阀Ⅱ(17),电磁阀Ⅰ(16)和电磁阀Ⅱ(17)通过连接线(25)连接有设置在地面的智能控制器(24)。
  5. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:起出射孔枪(30)后,利用地面智能控制器(24)开启电磁阀Ⅰ(16)并关闭电磁阀Ⅱ(17),对页岩储层(4)进行水力压裂作业:压裂液从压裂液储罐(6)沿压裂液泵注管道(8)进入套管(18)对页岩储层(4)进行压裂,使锥刺状孔道(21)进一步张开扩展成主裂缝(22),并在主裂缝周围压裂产生二级水力压裂裂缝(23)。
  6. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:套管柱(13)外侧与井壁之间设水泥浇筑形成的水泥环(14)以固定套管柱(13)。
  7. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:套管柱(13)与竖井井筒(10)之间通过转向器(11)连接,套管柱(13)与竖井井筒(10)中管道连接处安装有金属密封套(15)。
  8. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:助燃剂为固体颗粒,包括高锰酸钾球、铝粉、镁粉,掺入压裂液中,使助燃剂随水力压裂过程一同注入所产生的裂缝中;为保证助燃剂颗粒进入压裂缝中,辅以注入顶替液,压裂液返排后,助燃剂留存在所产生的裂缝中予以支撑。
  9. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:所述起爆浓度是指甲烷气体浓度与流量探测器(26)测得浓度在8%-11%范围内。
  10. 根据权利要求2所述的水力压裂与甲烷原位燃爆协同致裂增透方法,其特征在于:步骤S6中记载的需要再次进行甲烷燃爆压裂时,可再次进行水力压裂过程并同步加入助燃剂。
PCT/CN2021/141463 2021-05-31 2021-12-27 一种水力压裂与甲烷原位燃爆协同致裂增透方法 WO2022252591A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/027,605 US20240110465A1 (en) 2021-05-31 2021-12-27 Cracking permeability increasing method combining hydraulic fracturing and methane in-situ combustion explosion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110598931.6 2021-05-31
CN202110598931.6A CN113294134B (zh) 2021-05-31 2021-05-31 一种水力压裂与甲烷原位燃爆协同致裂增透方法

Publications (1)

Publication Number Publication Date
WO2022252591A1 true WO2022252591A1 (zh) 2022-12-08

Family

ID=77326249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141463 WO2022252591A1 (zh) 2021-05-31 2021-12-27 一种水力压裂与甲烷原位燃爆协同致裂增透方法

Country Status (3)

Country Link
US (1) US20240110465A1 (zh)
CN (1) CN113294134B (zh)
WO (1) WO2022252591A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115659736A (zh) * 2022-10-19 2023-01-31 西南石油大学 一种深层页岩气水平井缝内转向压裂缝网扩展计算方法
CN116398106A (zh) * 2023-04-26 2023-07-07 中国矿业大学 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法
CN116717227A (zh) * 2023-08-07 2023-09-08 中煤科工西安研究院(集团)有限公司 一种井地联合煤矿井下定向长钻孔水力压裂方法
CN116771319A (zh) * 2023-08-28 2023-09-19 中国石油大学(华东) 水平井多裂缝支撑剂运移及回流模拟装置及实验方法
CN116816323A (zh) * 2023-08-31 2023-09-29 中国石油大学(华东) 一种甲烷原位燃爆压裂装置及燃爆压裂方法
CN117108261A (zh) * 2023-10-24 2023-11-24 四川大学 一种基于含能液气流体复合控制燃爆的页岩压裂方法
CN117231289A (zh) * 2023-11-13 2023-12-15 华北理工大学 煤矿水介质***与脉动压裂联合增透强润减尘工艺
CN117780322A (zh) * 2024-02-28 2024-03-29 中国矿业大学 深部高温储层多级多尺度缝网压裂方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294134B (zh) * 2021-05-31 2022-03-11 中国矿业大学 一种水力压裂与甲烷原位燃爆协同致裂增透方法
CN113982556B (zh) * 2021-10-08 2023-01-06 中国矿业大学 一种逐级聚能燃爆压裂非常规气藏强化抽采***及方法
CN113898330B (zh) * 2021-10-14 2024-02-02 中国石油大学(华东) 一种水平井裸眼段甲烷原位射孔燃爆压裂一体化装置及方法
CN114352253B (zh) * 2022-01-09 2022-08-23 中国矿业大学 一种页岩储层甲烷多重原位燃爆压裂方法
CN114412433B (zh) * 2022-01-20 2023-02-07 中国矿业大学 一种基于取热发电的深部煤炭原位流态化开采方法
CN114412434B (zh) * 2022-01-20 2022-09-13 中国矿业大学 一种深部煤炭资源地下原位流态化开采方法
CN114876434B (zh) * 2022-05-30 2023-02-03 中国矿业大学 一种页岩气储层缝内甲烷原位燃爆压裂方法
CN115059444B (zh) * 2022-07-08 2023-06-23 中国石油大学(华东) 一种甲烷原位燃爆装置、多级压裂***及其压裂方法
CN115234200B (zh) * 2022-08-01 2023-05-09 中国矿业大学 一种非常规天然气储层甲烷原位定点燃爆压裂方法
CN115182713B (zh) * 2022-08-15 2023-09-22 中国矿业大学 一种页岩储层三维水平井燃爆密切割立体开发方法
CN117189035A (zh) * 2023-09-08 2023-12-08 中国矿业大学 一种用于煤层气储层直井甲烷原位燃爆压裂方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045085A (en) * 1975-04-14 1977-08-30 Occidental Oil Shale, Inc. Fracturing of pillars for enhancing recovery of oil from in situ oil shale retort
CN101558216A (zh) * 2006-10-13 2009-10-14 埃克森美孚上游研究公司 使用水力压裂生产井、通过原位加热增强页岩油生产
CN101563524A (zh) * 2006-10-13 2009-10-21 埃克森美孚上游研究公司 原位加热开发油页岩与开发更深的烃源结合
CN105626028A (zh) * 2016-02-17 2016-06-01 西南石油大学 增加页岩气井压裂改造缝网密度的方法
CN109025937A (zh) * 2018-06-22 2018-12-18 中国矿业大学 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法
US20190112909A1 (en) * 2017-10-13 2019-04-18 Uti Limited Partnership Completions for triggering fracture networks in shale wells
CN110454131A (zh) * 2019-08-19 2019-11-15 中国石油大学(华东) 一种缝内充填式爆燃聚能体积压裂方法
CN112761588A (zh) * 2021-01-22 2021-05-07 中国矿业大学 一种页岩储层甲烷原位燃爆压裂与助燃剂安全投放协同控制方法
CN113294134A (zh) * 2021-05-31 2021-08-24 中国矿业大学 一种水力压裂与甲烷原位燃爆协同致裂增透方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215964A (zh) * 2008-01-04 2008-07-09 辽河石油勘探局 一种煤层深部爆燃方法
US20100132946A1 (en) * 2008-12-01 2010-06-03 Matthew Robert George Bell Method for the Enhancement of Injection Activities and Stimulation of Oil and Gas Production
CN102619496B (zh) * 2012-04-12 2014-09-24 中国科学院力学研究所 含油气岩分层分段多级***扩孔增裂方法
CN104975838B (zh) * 2015-07-17 2017-11-14 中国石油大学(华东) 一种可阻止高能气体压裂预存裂缝闭合的方法
CN106089171B (zh) * 2016-08-05 2018-08-31 北京普新石油技术开发有限公司 一种利用火烧煤层辅助造缝开采煤层气的方法
CN108252700B (zh) * 2018-03-18 2020-02-07 西南石油大学 一种页岩油气藏氧化热激爆裂改造方法
CN109025936A (zh) * 2018-06-22 2018-12-18 中国矿业大学 煤矿井下燃烧冲击波致裂煤体强化瓦斯抽采方法与设备
CN109025945B (zh) * 2018-06-25 2021-01-01 中国石油天然气股份有限公司 一种致密油气储层二次压裂的方法和应用
CN108955404B (zh) * 2018-07-12 2020-06-02 北方斯伦贝谢油田技术(西安)有限公司 一种油气井射孔压裂用超能装药及制备方法
CN112832728B (zh) * 2021-01-08 2022-03-18 中国矿业大学 一种基于甲烷多级燃爆的页岩储层压裂方法
CN112796726B (zh) * 2021-02-03 2022-03-25 西南石油大学 一种用于煤层气井储层裂缝扩展的井下燃爆装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045085A (en) * 1975-04-14 1977-08-30 Occidental Oil Shale, Inc. Fracturing of pillars for enhancing recovery of oil from in situ oil shale retort
CN101558216A (zh) * 2006-10-13 2009-10-14 埃克森美孚上游研究公司 使用水力压裂生产井、通过原位加热增强页岩油生产
CN101563524A (zh) * 2006-10-13 2009-10-21 埃克森美孚上游研究公司 原位加热开发油页岩与开发更深的烃源结合
CN105626028A (zh) * 2016-02-17 2016-06-01 西南石油大学 增加页岩气井压裂改造缝网密度的方法
US20190112909A1 (en) * 2017-10-13 2019-04-18 Uti Limited Partnership Completions for triggering fracture networks in shale wells
CN109025937A (zh) * 2018-06-22 2018-12-18 中国矿业大学 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法
CN110454131A (zh) * 2019-08-19 2019-11-15 中国石油大学(华东) 一种缝内充填式爆燃聚能体积压裂方法
CN112761588A (zh) * 2021-01-22 2021-05-07 中国矿业大学 一种页岩储层甲烷原位燃爆压裂与助燃剂安全投放协同控制方法
CN113294134A (zh) * 2021-05-31 2021-08-24 中国矿业大学 一种水力压裂与甲烷原位燃爆协同致裂增透方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115659736A (zh) * 2022-10-19 2023-01-31 西南石油大学 一种深层页岩气水平井缝内转向压裂缝网扩展计算方法
CN115659736B (zh) * 2022-10-19 2023-11-03 西南石油大学 一种深层页岩气水平井缝内转向压裂缝网扩展计算方法
CN116398106A (zh) * 2023-04-26 2023-07-07 中国矿业大学 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法
CN116398106B (zh) * 2023-04-26 2024-05-07 中国矿业大学 页岩储层原位解析甲烷高效利用及多级聚能燃爆压裂方法
CN116717227B (zh) * 2023-08-07 2023-11-17 中煤科工西安研究院(集团)有限公司 一种井地联合煤矿井下定向长钻孔水力压裂方法
CN116717227A (zh) * 2023-08-07 2023-09-08 中煤科工西安研究院(集团)有限公司 一种井地联合煤矿井下定向长钻孔水力压裂方法
CN116771319A (zh) * 2023-08-28 2023-09-19 中国石油大学(华东) 水平井多裂缝支撑剂运移及回流模拟装置及实验方法
CN116771319B (zh) * 2023-08-28 2023-10-17 中国石油大学(华东) 水平井多裂缝支撑剂运移及回流模拟装置及实验方法
CN116816323A (zh) * 2023-08-31 2023-09-29 中国石油大学(华东) 一种甲烷原位燃爆压裂装置及燃爆压裂方法
CN116816323B (zh) * 2023-08-31 2023-11-03 中国石油大学(华东) 一种甲烷原位燃爆压裂装置及燃爆压裂方法
CN117108261A (zh) * 2023-10-24 2023-11-24 四川大学 一种基于含能液气流体复合控制燃爆的页岩压裂方法
CN117108261B (zh) * 2023-10-24 2024-01-19 四川大学 一种基于含能液气流体复合控制燃爆的页岩压裂方法
CN117231289A (zh) * 2023-11-13 2023-12-15 华北理工大学 煤矿水介质***与脉动压裂联合增透强润减尘工艺
CN117231289B (zh) * 2023-11-13 2024-01-16 华北理工大学 煤矿水介质***与脉动压裂联合增透强润减尘工艺
CN117780322A (zh) * 2024-02-28 2024-03-29 中国矿业大学 深部高温储层多级多尺度缝网压裂方法
CN117780322B (zh) * 2024-02-28 2024-05-07 中国矿业大学 深部高温储层多级多尺度缝网压裂方法

Also Published As

Publication number Publication date
CN113294134A (zh) 2021-08-24
CN113294134B (zh) 2022-03-11
US20240110465A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2022252591A1 (zh) 一种水力压裂与甲烷原位燃爆协同致裂增透方法
US9062545B2 (en) High strain rate method of producing optimized fracture networks in reservoirs
CN105625946B (zh) 煤层气水平井超临界co2射流造腔及多段同步爆燃压裂方法
US9057261B2 (en) System and method for fracturing rock in tight reservoirs
CN108678747B (zh) 一种脉冲水力致裂控制顶煤冒放性的方法及设备
CN112922577B (zh) 一种页岩储层多层次径向水平井甲烷燃爆压裂方法
CN106761852B (zh) 广域水下煤岩深孔承压微爆注浆堵水方法
CN101440704B (zh) 可地浸矿层连续高能气体压裂增渗方法及专用高能气体发生器
RU2373398C1 (ru) Способ дегазации и разупрочнения горных пород
He et al. Oil well perforation technology: Status and prospects
CN103352684B (zh) 化学物理复合***压裂器及其制造方法
CN114352253B (zh) 一种页岩储层甲烷多重原位燃爆压裂方法
CN114876434B (zh) 一种页岩气储层缝内甲烷原位燃爆压裂方法
CN110965979B (zh) 一种径向小井眼内深部燃爆压裂方法
CN107120137B (zh) 一种煤巷掘进沿煤层底板深孔预裂***抽采方法
WO2024103622A1 (zh) 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法
CN102878874A (zh) 深孔预裂***注浆方法
CN110344806B (zh) 一种小井眼***造缝辅助水力压裂方法
CN108301811A (zh) 一种低渗透性煤层瓦斯高效抽采方法
CN105178933A (zh) 环保型井下压裂地层装置
WO2016078627A1 (zh) 一种利用钻井机器人钻多分枝鱼骨径向微小井眼的页岩气储层钻完井和增产***及方法
CN114278270A (zh) 甲烷原位控制燃爆压裂方法及其装置
CN105201483A (zh) 环保型井下压裂地层方法
CN105986801A (zh) 用于侧钻井***压裂的方法和装置
CN106593393A (zh) 一种提高碎软油气储层渗透率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18027605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943943

Country of ref document: EP

Kind code of ref document: A1