WO2022252115A1 - 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备 - Google Patents

一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备 Download PDF

Info

Publication number
WO2022252115A1
WO2022252115A1 PCT/CN2021/097685 CN2021097685W WO2022252115A1 WO 2022252115 A1 WO2022252115 A1 WO 2022252115A1 CN 2021097685 W CN2021097685 W CN 2021097685W WO 2022252115 A1 WO2022252115 A1 WO 2022252115A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
touch
sub
excitation signal
Prior art date
Application number
PCT/CN2021/097685
Other languages
English (en)
French (fr)
Inventor
郝帅凯
Original Assignee
广州视源电子科技股份有限公司
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司, 广州视睿电子科技有限公司 filed Critical 广州视源电子科技股份有限公司
Priority to CN202180041426.XA priority Critical patent/CN115701774A/zh
Priority to PCT/CN2021/097685 priority patent/WO2022252115A1/zh
Publication of WO2022252115A1 publication Critical patent/WO2022252115A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to the field of touch technology, in particular to a touch substrate, a touch drive method, a touch input device identification method, and a touch device.
  • touch technology especially the mutual capacitive touch screen, plays a very important role and is widely used in the smartphone, tablet and smart watch markets.
  • the mutual capacitive touch screen includes scanning electrodes and receiving electrodes, and mutual capacitance will be formed where the two sets of electrodes intersect.
  • Mutual capacitance touch screen scanning measures the mutual capacitance between two vertically intersecting electrodes on the screen.
  • the horizontal electrodes When detecting the size of the mutual capacitance, the horizontal electrodes send excitation signals in sequence, and all the vertical electrodes receive the sensing signals at the same time, so that the capacitance value at the intersection of all horizontal and receiving electrodes can be obtained, that is, the capacitance of the two-dimensional plane of the entire touch screen size.
  • the measuring circuit in the touch chip measures the mutual capacitance, and can sense the variation of the mutual capacitance, and calculate the touch position of the touch point according to the variation.
  • Embodiments of the present invention provide a touch substrate, a touch driving method, a touch input device identification method, and a touch device, which can reduce scanning time, increase reporting speed, and further reduce touch delay.
  • an embodiment of the present invention provides a touch substrate, including: a carrier substrate;
  • the receiving electrodes extend along a first direction
  • the driving electrodes extend along a second direction
  • the receiving electrodes are not in contact with the driving electrodes
  • the vertical projections on the carrier substrate are staggered
  • the receiving electrode includes at least two sub-electrodes, and the sub-electrodes include electrode units arranged at intervals along the first direction;
  • the electrode units in the same sub-electrode are electrically connected, and the electrode units of different sub-electrodes are alternately arranged.
  • the touch control substrate includes a first conductive layer and a second conductive layer, the receiving electrodes are located on the first conductive layer, the driving electrodes are located on the second conductive layer, and the first conductive layer An insulating layer is arranged between the second conductive layer and the second conductive layer.
  • the carrier substrate is provided with a plurality of first grooves extending along the second direction, the driving electrodes are arranged in the first grooves, and the insulating layer is away from the bottom of the carrier substrate.
  • One side is provided with a plurality of second grooves extending along the first direction, and the electrode unit is arranged in the second grooves.
  • the electrode units are block grids, and the driving electrodes are strip grids.
  • the touch control substrate includes a third conductive layer and a fourth conductive layer, and an insulating layer is arranged between the third conductive layer and the fourth conductive layer;
  • the receiving electrode is disposed on the third conductive layer
  • the electrode unit includes a first electrode block, a second electrode block and a connection part, and the first electrode block and the second electrode block are electrically connected through the connection part;
  • the drive electrode includes a plurality of third electrode blocks arranged along the second direction and a plurality of conductive bridges;
  • the third electrode block is arranged on the third conductive layer, the third electrode block is insulated from the electrode unit, and the conductive bridge is arranged on the fourth conductive layer;
  • the vertical projections of the conductive bridges and the connecting portion in the plane where the carrier substrate is located are interlaced, and two adjacent third electrode blocks are electrically connected through the conductive bridges.
  • the insulating layer is provided with a plurality of through holes penetrating through the insulating layer
  • the third electrode block includes an extension part extending into the through hole
  • the third electrode block communicates with the extension part through the The conductive bridges are electrically connected.
  • the carrier substrate is provided with a plurality of third grooves extending along the second direction, and the conductive bridge is disposed in the third grooves;
  • a side of the insulating layer away from the carrier substrate is provided with a plurality of fourth grooves arranged along the first direction and a plurality of fifth grooves arranged along the second direction, the first The electrode block and the second electrode block are respectively arranged in the corresponding fourth groove, and the third electrode block is arranged in the fifth groove.
  • the first electrode block and the second electrode block are two isosceles triangles with opposite vertices, the midlines of the bottom sides of the first electrode block and the second electrode block coincide and parallel to the first direction.
  • two adjacent electrode units are electrically connected by wires, and the electrode units and the wires are arranged on the same layer on the insulating layer.
  • the receiving electrode includes two sub-electrodes.
  • an embodiment of the present invention provides a touch driving method, based on the touch substrate provided in the first aspect of the present invention, including:
  • an embodiment of the present invention provides a method for identifying a touch input device, based on the touch substrate provided in the first aspect of the present invention, including:
  • the operating frequency of the touch input device is determined based on the response of the touch input device to the excitation signal of each frequency.
  • an embodiment of the present invention provides a touch device, including the touch substrate as provided in the first aspect of the present invention, and also includes a driver, a receiver, and a controller;
  • the controller is respectively connected to the driver and the receiver, the driver is connected to the driving electrode, and the receiver is connected to the sub-electrode of the receiving electrode;
  • the controller is used to control the driver to simultaneously apply the same excitation signal to at least two drive electrodes to which no excitation signal has been applied, wherein the number of drive electrodes to which the excitation signal is simultaneously applied is equal to the number of sub-electrodes in one receiving electrode ;
  • the controller is used to control the driver to repeat the above steps until all the driving electrodes are applied with an over-excitation signal
  • the receiver is configured to receive a sensing signal of each sub-electrode when the driver applies an excitation signal, and send the sensing signal to the controller;
  • the controller is used for calculating the position of the touch point according to the sensing signal.
  • the embodiment of the present invention also provides a touch device, including the touch substrate as provided in the first aspect of the present invention, and also includes a driver, a receiver, and a controller;
  • the controller is respectively connected to the driver and the receiver, the driver is connected to the driving electrode, and the receiver is connected to the sub-electrode of the receiving electrode;
  • the controller is used to control the driver to simultaneously apply an excitation signal to at least two drive electrodes to which no excitation signal has been applied, wherein the number of drive electrodes to which an excitation signal is simultaneously applied is equal to the number of sub-electrodes in one receiving electrode, and each The excitation signals applied to the drive electrodes have different frequencies;
  • the controller is used to control the driver to exchange the applied excitation signals of the at least two drive electrodes, so that the frequency of the applied excitation signal of each drive electrode is different from the frequency of the previous applied excitation signal;
  • the controller is used to control the driver to repeat the above steps until each of the at least two driving electrodes is applied with an excitation signal of each frequency once;
  • the receiver is configured to receive a sensing signal of each sub-electrode when the driver applies an excitation signal, and send the sensing signal to the controller;
  • the controller is used for determining the operating frequency of the touch input device based on the response of the touch input device to excitation signals of different frequencies.
  • the touch substrate provided by the embodiment of the present invention includes: a carrier substrate, and a plurality of receiving electrodes and a plurality of driving electrodes arranged on the carrier substrate, the receiving electrodes extend along the first direction, the driving electrodes extend along the second direction, and the receiving electrodes extend along the second direction. It is not in contact with the driving electrodes, and the vertical projections on the carrier substrate are interlaced with each other.
  • the receiving electrodes include at least two sub-electrodes, and the sub-electrodes include electrode units arranged at intervals along the first direction.
  • the electrode units in the same sub-electrode are electrically connected.
  • the electrode units of the sub-electrodes are arranged alternately.
  • the same excitation signal can be applied to at least two driving electrodes at the same time, therefore, the scanning time can be reduced, the scanning speed can be increased, and thus the reporting speed can be increased, and the touch delay can be reduced.
  • FIG. 1 is a top view of a touch substrate provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a seed electrode in an embodiment of the present invention.
  • FIG. 3 is a working principle diagram of a touch substrate in the prior art
  • FIG. 4 is a working principle diagram of the touch substrate shown in FIG. 1 in an embodiment of the present invention.
  • Fig. 5 is a top view of another touch substrate provided by the present invention.
  • FIG. 6 is a partial cross-sectional view of the touch substrate in FIG. 1;
  • FIG. 7 is a cross-sectional view of another touch substrate provided by the present invention.
  • FIG. 8 is a top view of another touch substrate provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another seed electrode in an embodiment of the present invention.
  • FIG. 10 is a working principle diagram of the touch substrate shown in FIG. 8 in an embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view of the touch substrate in FIG. 8;
  • FIG. 12 is a cross-sectional view of another touch substrate according to an embodiment of the present invention.
  • Fig. 13 is an identification principle diagram of a variety of touch input devices provided by an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a touch device provided by an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the terms “first” and “second” are only used for distinction in description and have no special meaning.
  • FIG. 1 is a top view of a touch substrate provided by an embodiment of the present invention.
  • the touch substrate includes a carrier substrate 110 , multiple receiving electrodes 120 and multiple driving electrodes 130 .
  • the carrier substrate 110 may be a transparent insulating board, such as a PET substrate (polyethylene terephthalate), or a transparent insulating board made of other insulating materials, which is not limited in the present invention.
  • the receiving electrodes 120 and the driving electrodes 130 are disposed on the carrier substrate 110, and the receiving electrodes 120, the driving electrodes 130, and the receiving electrodes 120 and the driving electrodes 130 are insulated from each other.
  • the receiving electrodes 120 extend along the first direction X
  • the driving electrodes 130 extend along the second direction Y intersecting with the first direction X
  • the vertical projections of the receiving electrodes 120 and the driving electrodes 130 on the plane where the carrier substrate 110 is located are interlaced
  • the receiving electrodes 130 120 and the driving electrode 130 are insulated and isolated at the intersection.
  • the receiving electrodes 120 intersect with the driving electrodes 130 , but the intersecting positions are not in contact in the thickness direction of the carrier substrate 110 , forming a capacitance node.
  • the first direction X is perpendicular to the second direction Y, and in other embodiments of the present invention, the first direction X and the second direction Y may not be perpendicular , as long as they intersect, and this embodiment of the present invention does not limit it here.
  • the receiving electrode includes at least two sub-electrodes, and the sub-electrodes include electrode units arranged at intervals along the first direction.
  • the electrode units in the same sub-electrode are electrically connected, and the electrode units of different sub-electrodes are alternately arranged.
  • FIG. 2 is a schematic structural diagram of a sub-electrode in an embodiment of the present invention.
  • Both the electrode 121 and the second sub-electrode 122 include electrode units 123 arranged at intervals along the first direction X.
  • the electrode units in the same sub-electrode are electrically connected.
  • the electrode units 123 are electrically connected by a wire L2.
  • the electrode units of different sub-electrodes are arranged alternately. For example, as shown in FIG. 2 , in the receiving electrode 120 , the electrode units 123 of the first sub-electrode 121 and the electrode units 123 of the second sub-electrode 122 are arranged alternately.
  • Fig. 3 is a working principle diagram of the touch substrate in the prior art.
  • the driving electrodes electrodes arranged horizontally
  • the receiving electrodes electrodes arranged vertically
  • the driving electrodes Sequentially send excitation signals (sequentially drive D1, D2, ... D6), each time a drive electrode is driven, the receiving electrodes S1 to S5 complete sensing at the same time, and output the sensing data, and the received electrodes S1 to S5 sensed
  • the data is stored in a row corresponding to the sensing data array, and then the next driving electrode is driven. After all the driving electrodes are scanned, the scanning of one frame of data is completed. That is, six scans are required to complete the scanning of one frame of data.
  • the embodiment of the present invention also provides a touch driving method, based on the touch substrate provided in the above embodiment, including:
  • FIG. 4 is a working principle diagram of the touch substrate shown in FIG. 1 in an embodiment of the present invention.
  • the touch control method of the present invention will be described below by taking the touch substrate shown in FIG. 1 as an example.
  • the touch substrate includes 8 receiving electrodes 120 and 6 driving electrodes 130, each receiving electrode 120 includes 2 sub-electrodes, each sub-electrode is a receiving channel, and there are 16 receiving electrodes in total.
  • the channels are respectively receiving channels RX1-RX16, and each receiving electrode corresponds to an even-numbered channel and an odd-numbered channel.
  • the six driving electrodes 130 are six input channels, namely input channels TX1-TX6.
  • each drive can input the same excitation signal to two input channels at the same time, as shown in Figure 4, the input channels TX1 and TX2 are connected in parallel to input the same excitation signal at the same time, and the input channels TX3 and TX4 are connected in parallel.
  • the input channels TX5 and TX6 are connected in parallel for inputting the same excitation signal at the same time.
  • 16 receiving channels RX1-RX16 receive sensing signals at the same time
  • the electrode unit 123 of a row that is inducted with the input channel TX1 receives the inductive signal and stores it into the odd-numbered row of the sensing data array through the odd-numbered channels, and inducts with the input channel TX2
  • the sensing signals received by the electrode units 123 in one row are stored in the even rows of the sensing data array through the even channels. In this way, only 3 scans are required to complete the scanning of one frame of data, which reduces the number of scans by half compared to the prior art touch substrate, and doubles the scan speed, thereby increasing the reporting speed and reducing the touch delay.
  • the touch substrate provided by the embodiment of the present invention includes: a carrier substrate, and a plurality of receiving electrodes and a plurality of driving electrodes arranged on the carrier substrate, the receiving electrodes extend along the first direction, and the driving electrodes extend along the first direction intersecting with the first direction. Extending in two directions, the receiving electrode and the driving electrode are not in contact, and the vertical projections on the carrier substrate are interlaced, the receiving electrode includes at least two sub-electrodes, and the sub-electrodes include electrode units arranged at intervals along the first direction, each of the same sub-electrodes The electrode units are electrically connected, and the electrode units of different sub-electrodes are alternately arranged.
  • the same excitation signal can be applied to at least two driving electrodes at the same time, therefore, the scanning time can be reduced, the scanning speed can be increased, and then the reporting speed can be increased, and the touch delay can be reduced.
  • FIG. 5 is a top view of another touch control substrate provided by the present invention.
  • the electrode unit 123 is a block grid
  • the driving electrodes 130 are a strip grid.
  • the grid-shaped driving electrodes 130 or receiving electrodes 120 can improve the transparent transmission of electric field lines, thereby improving touch sensitivity.
  • the receiving electrodes and the driving electrodes are respectively disposed on different layers.
  • Fig. 6 is a partial cross-sectional view of the touch substrate in Fig. 1, and the section line is shown as A-A.
  • the touch substrate includes a first conductive layer and a second conductive layer, The receiving electrode 120 is disposed on the first conductive layer, the driving electrode 130 is disposed on the second conductive layer, and a first insulating layer 140 is disposed between the first conductive layer and the second conductive layer. That is, the receiving electrodes 120 and the driving electrodes 130 are respectively located in different layers, and the layers are insulated from each other by the first insulating layer 140 .
  • a plurality of driving electrodes 130 are arranged in parallel on the carrier substrate 110 at intervals, and the driving electrodes 130 extend along the second direction Y.
  • the first insulating layer 140 is formed on the carrier substrate 110 and covers the driving electrodes 130 .
  • the electrode units 123 of the receiving electrode 120 are arranged at intervals along the first direction X on the first insulating layer 140 .
  • the carrier substrate is provided with a plurality of first grooves extending along the second direction, and the driving electrodes are arranged in the first grooves.
  • a plurality of second grooves extending along the first direction are arranged on the side of the insulating layer away from the carrier substrate, and the electrode units are arranged in the second grooves.
  • Fig. 7 is a cross-sectional view of another touch substrate provided by the present invention. Exemplarily, as shown in Fig. 1, Fig. 2 and Fig.
  • the carrier substrate 110 is provided with a There are a plurality of first grooves 111 , the driving electrodes 130 are disposed in the first grooves 111 , and the side surface of the driving electrodes 130 away from the carrier substrate 110 may be flush with the notches of the first grooves 111 .
  • the first insulating layer 140 is covered on the carrier substrate 110, the side of the first insulating layer 140 away from the carrier substrate 110 is provided with a plurality of second grooves 141 extending along the first direction X, and the electrode unit 123 is arranged in the second grooves 141 , the side surface of the electrode unit 123 away from the driving electrode 130 may be flush with the notch of the second groove 141 .
  • the electrode unit 123 and the driving electrode 130 may be respectively formed in the second groove 141 and the first groove 111 by inkjet printing.
  • two adjacent electrode units are electrically connected by wires, and the electrode units and the wires are arranged on the insulating layer in the same layer.
  • two adjacent electrode units 123 are electrically connected through a wire L2 , and the electrode units 123 and the wires L1 and L2 are disposed on the first insulating layer 140 in the same layer.
  • FIG. 8 is a top view of another touch substrate provided by an embodiment of the present invention.
  • the touch substrate includes a carrier substrate 210, a plurality of receiving electrodes 220, a plurality of driving electrodes 230 and a second insulating layer (not shown in Figure 8).
  • the receiving electrodes 220 and the driving electrodes 230 are disposed on the carrier substrate 210 , and the receiving electrodes 220 , the driving electrodes 230 , and the receiving electrodes 220 and the driving electrodes 230 are insulated from each other.
  • the receiving electrode 220 extends along the first direction X
  • the driving electrode 230 extends along the second direction Y intersecting with the first direction X.
  • the vertical projections of the receiving electrode 220 and the driving electrode 230 on the plane where the carrier substrate 210 is located are interlaced. 220 and the driving electrode 230 are insulated and isolated at the intersection.
  • the receiving electrode includes at least two sub-electrodes, and the sub-electrodes include electrode units arranged at intervals along the first direction.
  • the electrode units in the same sub-electrode are electrically connected, and the electrode units of different sub-electrodes are alternately arranged.
  • FIG. 9 is a schematic structural diagram of another sub-electrode in an embodiment of the present invention. Exemplarily, as shown in FIG. 8 and FIG. , both the first sub-electrode 221 and the second sub-electrode 222 include electrode units 223 arranged at intervals along the first direction X. The electrode units in the same sub-electrode are electrically connected. Exemplarily, as shown in FIG. The electrode units 223 are electrically connected through a wire L2.
  • the electrode units of different sub-electrodes are arranged at intervals. Exemplarily, as shown in FIG. 9 , in the receiving electrode 220 , the electrode units 223 of the first sub-electrode 221 and the electrode units 223 of the second sub-electrode 222 are arranged alternately.
  • the touch substrate can simultaneously apply the same excitation signal to at least two driving electrodes during the working process.
  • the number of driving electrodes to which the same excitation signal is applied at the same time is the same as the number of sub-electrodes in the receiving electrodes.
  • the quantity is equal.
  • FIG. 10 is a working principle diagram of the touch substrate shown in FIG. 8 in the embodiment of the present invention. The touch control method of the present invention will be described below by taking the touch substrate shown in FIG. 8 as an example.
  • the touch substrate includes 8 receiving electrodes 220 and 6 driving electrodes 230, each receiving electrode 220 includes 2 sub-electrodes, each sub-electrode is a receiving channel, and there are 16 receiving electrodes in total.
  • the channels are respectively receiving channels RX1-RX16, and each receiving electrode corresponds to an even-numbered channel and an odd-numbered channel.
  • the six driving electrodes 230 are six input channels, namely input channels TX1-TX6.
  • each drive can input the same excitation signal to two input channels at the same time, as shown in Figure 10, the input channels TX1 and TX2 are connected in parallel to input the same excitation signal at the same time, and the input channels TX3 and TX4 are connected in parallel.
  • the input channels TX5 and TX6 are connected in parallel for inputting the same excitation signal at the same time.
  • 16 receiving channels RX1-RX16 receive sensing signals at the same time
  • the electrode unit 223 of a row of input channel TX1 receives the sensing signal and stores it into the odd row of the sensing data array through the odd channel, and senses the sensing signal with the input channel TX2.
  • the sensing signals received by the electrode units 223 of one row are stored in the even rows of the sensing data array through the even channels. In this way, only 3 scans are needed to complete the scan of one frame of data. Compared with the prior art touch substrate, the number of scans is reduced by half, and the scan speed is doubled, thereby increasing the reporting speed and reducing the touch delay.
  • one receiving electrode includes two sub-electrodes, and the same excitation signal is input to two input channels at the same time for each driving, to illustrate the embodiment of the present invention.
  • one receiving electrode includes more than 2 sub-electrodes, and the same excitation signal is input to more than 2 input channels at the same time for each drive, which can also reduce the number of scans and touch delay. The example will not be repeated here.
  • the electrode units of different sub-electrodes are arranged alternately, and two adjacent electrode units in the sub-electrodes are electrically connected by wires, when the same excitation signal is input to at least two input channels at the same time, it is not possible to simultaneously
  • the electrode units in the sub-electrodes generate induced driving electrodes to apply excitation signals.
  • any two of the input channels TX1, TX3, and TX5 cannot be driven at the same time, nor can the input channels TX2, TX4, and Any two of TX6.
  • the receiving electrodes and the driving electrodes may be on the same layer.
  • Fig. 11 is a partial cross-sectional view of the touch substrate in Fig. 8, and the section line is shown as B-B.
  • the touch substrate includes a third conductive layer and a fourth conductive layer
  • a second insulating layer 240 is disposed between the third conductive layer and the fourth conductive layer.
  • the receiving electrode 220 is disposed on the third conductive layer.
  • the electrode unit 223 includes a first electrode block 2231 , a second electrode block 2232 and a connection part 2233 , and the first electrode block 2231 and the second electrode block 2232 are electrically connected through the connection part 2233 .
  • the driving electrode 230 includes a plurality of third electrode blocks 231 arranged along the second direction Y and a plurality of conductive bridges 232 .
  • the third electrode block 231 is disposed on the third conductive layer, the third electrode block 231 is insulated from the electrode unit 223, and the conductive bridge 232 is disposed on the fourth conductive layer.
  • the vertical projections of the conductive bridges 232 and the connecting portion 2233 on the plane of the carrier substrate 210 intersect each other to form a capacitor node, and two adjacent third electrode blocks 231 are electrically connected through the conductive bridges 232 .
  • the carrier substrate is provided with a plurality of third grooves extending along the second direction, and the conductive bridges are arranged in the third grooves.
  • the side of the insulating layer away from the carrier substrate is provided with a plurality of fourth grooves arranged along the first direction and a plurality of fifth grooves arranged along the second direction, and the first electrode block and the second electrode block are respectively arranged on In the corresponding fourth groove, the third electrode block is arranged in the fifth groove.
  • FIG. 12 is a cross-sectional view of another touch substrate according to an embodiment of the present invention. Exemplarily, as shown in FIG. 8 , FIG. 9 , and FIG.
  • the groove 211 and the conductive bridge 232 are disposed in the third groove 211 , and the surface of the conductive bridge 232 away from the carrier substrate 210 may be flush with the notch of the third groove 211 .
  • the second insulating layer 240 is disposed on the carrier substrate 210 and covers the conductive bridges 232 .
  • the side of the second insulating layer 240 away from the carrier substrate 210 is provided with a plurality of fourth grooves arranged along the first direction X and a plurality of fifth grooves 241 arranged along the second direction Y, and the first electrode block 2231
  • the second electrode block 2232 is disposed in the corresponding fourth groove
  • the third electrode block 231 is disposed in the fifth groove 241 .
  • the side surface of the first electrode block 2231 and the second electrode block 2232 away from the carrier substrate 210 can be flush with the notch of the fourth groove, and the side surface of the third electrode block 231 away from the carrier substrate 210 can be aligned with the fifth groove. 241 notches flush.
  • the second insulating layer 240 is provided with a number of through holes penetrating the second insulating layer 240, the third electrode block 231 includes an extension 2311 extending into the through hole, the third electrode block 231 is electrically connected to the conductive bridge 232 through the extension portion 2311 .
  • the first electrode block 2231 and the second electrode block 2232 are two isosceles triangles with opposite vertices, and the first electrode block 2231 and the second electrode block
  • the centerlines of the bottoms of the electrode blocks 2232 are coincident and parallel to the first direction X, and the opposite vertices are connected by the connecting portion 2233 .
  • the third electrode block 231 is in the shape of a prism.
  • two adjacent electrode units are electrically connected by wires, and the electrode units and the wires are arranged on the insulating layer in the same layer.
  • two adjacent electrode units 223 are electrically connected by wires L2 , and the electrode units 223 and the wires are disposed on the second insulating layer 240 in the same layer.
  • the embodiment of the present invention also provides a recognition method for a touch input device, based on the touch substrate provided by the embodiment of the present invention, the recognition speed can be improved.
  • the method includes:
  • the operating frequency of the touch input device is determined based on the response of the touch input device to the excitation signal of each frequency.
  • the following uses the touch substrate shown in FIG. 8 as an example to describe the identification method of the touch input device.
  • Fig. 13 is an identification principle diagram of a variety of touch input devices provided by the embodiment of the present invention.
  • different excitation signals can be input to two input channels at the same time for each drive, Exemplarily, input channels TX1 and TX2 respectively input excitation signal 1 and excitation signal 2 with different frequencies, 16 receiving channels RX1-RX16 receive sensing signals at the same time, and a row of electrode units 223 induced by input channel TX1 receives the sensing signals via
  • the odd-numbered channels are stored in the odd-numbered rows of the sensing data array 1
  • the sensing signal received by the electrode unit 223 of a row connected to the input channel TX2 is stored in the even-numbered rows of the sensing data array 2 through the even-numbered channels.
  • input channels TX1 and TX2 respectively input excitation signal 2 and excitation signal 1 with different frequencies, and 16 receiving channels RX1-RX16 receive sensing signals at the same time, and a row of electrode units 223 induced by input channel TX1 receives the sensing signals through odd channels It is stored in the odd rows of the sensing data array 2 , and the sensing signal received by the electrode unit 223 of a row induced by the input channel TX2 is stored in the even rows of the sensing data array 1 through the even channels.
  • the driving of the input channels TX3 and TX4, and the driving of the input channels TX5 and TX6 are completed in sequence.
  • Each frequency of the excitation signal is associated with a type of touch input device (such as a stylus), and the touch input device only responds to the excitation signal of the associated frequency. Therefore, in the process of identifying the touch input device, it only needs to scan 6 times.
  • the touch substrate provided by the embodiment of the present invention can improve the recognition speed of the touch input device.
  • the embodiment of the present invention also provides a touch device, including the touch substrate as provided in any of the above embodiments of the present invention.
  • the touch device can be electronic devices such as touch panels, smart phones, and smart tablets. No limit.
  • FIG. 14 is a schematic structural diagram of a touch device provided by an embodiment of the present invention. As shown in FIG. 14 , the touch device includes a touch substrate 100 , a driver 200 , a receiver 300 and a controller 400 .
  • the controller 400 is respectively connected to the driver 200 and the receiver 300, the driver 200 is connected to the driving electrode, and the receiver 300 is connected to the sub-electrode of the receiving electrode.
  • the controller 400 controls the driver 200 to simultaneously apply the same excitation signal to at least two drive electrodes to which no excitation signal has been applied, wherein the number of drive electrodes to which the excitation signal is simultaneously applied is equal to the number of sub-electrodes in one receiving electrode.
  • the driver 200 is controlled to repeat the above steps until all the driving electrodes are applied with an over-excitation signal.
  • the receiver 300 receives the sensing signal of each sub-electrode when the driver 200 applies the excitation signal, and sends the sensing signal to the controller 400 .
  • the controller 400 is used for calculating the position of the touch point according to the sensing signal.
  • the embodiment of the present invention also provides another touch device, including the touch substrate as provided in any of the above embodiments of the present invention.
  • the touch device can be electronic devices such as touch panels, smart phones, and smart tablets. This is not limited.
  • the structure of the touch device can refer to FIG. 14 of the present invention, including a touch substrate 100 , a driver 200 , a receiver 300 and a controller 400 .
  • the controller 400 is respectively connected to the driver 200 and the receiver 300, the driver 200 is connected to the driving electrode, and the receiver 300 is connected to the sub-electrode of the receiving electrode.
  • the controller 400 controls the driver 200 to simultaneously apply an excitation signal to at least two drive electrodes to which no excitation signal has been applied, wherein the number of drive electrodes to which an excitation signal is simultaneously applied is equal to the number of sub-electrodes in one receiving electrode, and each drive electrode is The applied excitation signals have different frequencies.
  • the controller 400 controls the driver 200 to exchange the applied excitation signals of at least two driving electrodes, so that the frequency of the applied excitation signal of each driving electrode is different from the frequency of the previous applied excitation signal.
  • controller 400 controls the driver 200 to repeat the above steps until each of the at least two driving electrodes is applied with an excitation signal of each frequency once.
  • the receiver 300 receives the sensing signal of each sub-electrode when the driver 200 applies the excitation signal, and sends the sensing signal to the controller 400 .
  • the controller 400 determines the operating frequency of the touch input device based on the responses of the touch input device to excitation signals of different frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备,本发明实施例提供的触控基板,包括:载体基板,以及设置于载体基板上的多条接收电极和多条驱动电极,接收电极沿第一方向延伸,驱动电极沿第二方向延伸,接收电极和驱动电极不接触,且在载体基板上的垂直投影相互交错,接收电极包括至少两个子电极,子电极包括沿第一方向间隔排布的电极单元,同一子电极中各电极单元电连接,不同的子电极的电极单元间隔排布。在扫描过程中,可以同时对至少两个驱动电极施加相同的激励信号,因此,可以减少扫描时间,提高扫描速度,进而提高了报点速度,降低了触控延迟。

Description

一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备 技术领域
本发明涉及触控技术领域,尤其涉及一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备。
背景技术
触控技术作为一种显示辅助技术,尤其是互电容式触控屏,发挥着非常重要的作用,广泛应用于智能手机、平板和智能手表市场。
互电容式触控屏包括扫描电极与接收电极,两组电极交叉的地方将会形成互电容。互电容触控屏扫描测量的是屏上垂直相交的两个电极之间的相互电容大小,当人的手指或输入设备靠近或接触互电容触控屏表面时,相当于在屏上原来相交电极形成的电容两端并联一个新电容,这将导致总的互电容变小。检测互电容大小时,横向的电极依次发出激励信号,纵向的所有电极同时接收感测信号,这样可以得到所有横向和接收电极交汇点的电容值大小,即整个触控屏的二维平面的电容大小。触控芯片中的测量电路对该互电容进行测量,并能感知互电容的变化量,根据该变化进而计算得到触摸点的触摸位置。
随着触控屏尺寸的增大和触控精度的提高,使得扫描电极的数量增多,导致扫描时间延长、报点速度慢,进而导致触控延迟较长的问题。
发明内容
本发明实施例提供了一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备,能够减少扫描时间、提高报点速度,进而降低触控延迟。
第一方面,本发明实施例提供了一种触控基板,包括:载体基板;
设置于所述载体基板上的多条接收电极和多条驱动电极,所述接收电极沿第一方向延伸,所述驱动电极沿第二方向延伸,所述接收电极和所述驱动电极不接触,且在所述载体基板上的垂直投影相互交错;
所述接收电极包括至少两个子电极,所述子电极包括沿所述第一方向间隔排布的电极单元;
同一所述子电极中各电极单元电连接,不同的所述子电极的电极单元交替排布。
可选的,所述触控基板包括第一导电层和第二导电层,所述接收电极位于所述第一导电层,所述驱动电极位于所述第二导电层,所述第一导电层和所述第二导电层之间设置有绝缘层。
可选的,所述载体基板上设置有沿所述第二方向延伸的多个第一凹槽,所述驱动电极设置于所述第一凹槽内,所述绝缘层远离所述载体基板的一侧设置有沿所述第一方向延伸的多个第二凹槽,所述电极单元设置于所述第二凹槽内。
可选的,所述电极单元为块状网格,所述驱动电极为条状网格。
可选的,所述触控基板包括第三导电层和第四导电层,所述第三导电层和所述第四导电层之间设置有绝缘层;
所述接收电极设置于所述第三导电层;
所述电极单元包括第一电极块、第二电极块和连接部,所述第一电极块和所述第二电极块通过所述连接部电连接;
所述驱动电极包括多个沿所述第二方向排布的第三电极块和多个导电跨桥;
所述第三电极块设置于所述第三导电层,所述第三电极块与所述电极单元 绝缘隔离,所述导电跨桥设置于所述第四导电层;
所述导电跨桥和所述连接部在所述载体基板所在的平面内的垂直投影相互交错,相邻的两个所述第三电极块通过所述导电跨桥电连接。
可选的,所述绝缘层开设有若干贯穿所述绝缘层的通孔,所述第三电极块包括向所述通孔内延伸的延伸部,所述第三电极块通过所述延伸部与所述导电跨桥电连接。
可选的,所述载体基板上设置有沿所述第二方向延伸的多个第三凹槽,所述导电跨桥设置于所述第三凹槽内;
所述绝缘层远离所述载体基板的一侧设置有沿所述第一方向排布的多个第四凹槽和沿所述第二方向排布的多个第五凹槽,所述第一电极块和所述第二电极块分别设置于对应的所述第四凹槽内,所述第三电极块设置于所述第五凹槽内。
可选的,在所述电极单元中,所述第一电极块和第二电极块为顶点相对的两个等腰三角形,所述第一电极块和第二电极块的底边的中线重合且平行于所述第一方向。
可选的,同一子电极中,相邻的两个所述电极单元通过导线电连接,所述电极单元和所述导线同层设置在所述绝缘层上。
可选的,所述接收电极包括两个子电极。
第二方面,本发明实施例提供了一种触控驱动方法,基于本发明第一方面提供的触控基板,包括:
向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等;
同时接收各子电极的感测信号;
重复上述步骤,直至所有驱动电极均被施加过激励信号。
第三方面,本发明实施例提供了一种触控输入设备的识别方法,基于本发明第一方面提供的触控基板,包括:
向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率;
交换所述至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同;
重复上述步骤,直至所述至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次;
重复上述步骤,直至所有驱动电极均被施加过激励信号;
基于触控输入设备对各频率的激励信号的响应确定触控输入设备的工作频率。
第四方面,本发明实施例提供了一种触控设备,包括如本发明第一方面提供的触控基板,还包括驱动器、接收器和控制器;
所述控制器分别与所述驱动器和所述接收器连接,所述驱动器与所述驱动电极连接,所述接收器与所述接收电极的子电极连接;
所述控制器用于控制所述驱动器向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等;
所述控制器用于控制所述驱动器重复上述步骤,直至所有驱动电极均被施加过激励信号;
所述接收器用于在所述驱动器施加激励信号时接收各子电极的感测信号, 并将所述感测信号发送至所述控制器;
所述控制器用于根据所述感测信号计算出触摸点的位置。
第五方面,本发明实施例还提供了一种触控设备,包括如本发明第一方面提供的触控基板,还包括驱动器、接收器和控制器;
所述控制器分别与所述驱动器和所述接收器连接,所述驱动器与所述驱动电极连接,所述接收器与所述接收电极的子电极连接;
所述控制器用于控制所述驱动器向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率;
所述控制器用于控制所述驱动器交换所述至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同;
所述控制器用于控制所述驱动器重复上述步骤,直至所述至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次;
所述接收器用于在所述驱动器施加激励信号时接收各子电极的感测信号,并将所述感测信号发送至所述控制器;
所述控制器用于基于触控输入设备对不同频率的激励信号的响应确定触控输入设备的工作频率。
本发明实施例提供的触控基板,包括:载体基板,以及设置于载体基板上的多条接收电极和多条驱动电极,接收电极沿第一方向延伸,驱动电极沿第二方向延伸,接收电极和驱动电极不接触,且在载体基板上的垂直投影相互交错,接收电极包括至少两个子电极,子电极包括沿第一方向间隔排布的电极单元,同一子电极中各电极单元电连接,不同的子电极的电极单元交替排布。在扫描 过程中,可以同时对至少两个驱动电极施加相同的激励信号,因此,可以减少扫描时间,提高扫描速度,进而提高了报点速度,降低了触控延迟。
附图说明
下面根据附图和实施例对本发明作进一步详细说明。
图1为本发明实施例提供的一种触控基板的俯视图;
图2为本发明实施例中一种子电极的结构示意图;
图3为现有技术的触控基板的工作原理图;
图4为本发明实施例中图1所示的触控基板的工作原理图;
图5为本发明提供的另一种触控基板的俯视图;
图6为图1中触控基板的局部剖视图;
图7为本发明提供的另一种触控基板的剖视图;
图8为本发明实施例提供的另一种触控基板的俯视图;
图9为本发明实施例中另一种子电极的结构示意图;
图10为本发明实施例中图8所示的触控基板的工作原理图;
图11为图8中触控基板的局部剖视图;
图12为本发明实施例提供另一种触控基板的剖视图;
图13为本发明实施例提供的一种多种触控输入设备的识别原理图;
图14为本发明实施例提供的一种触控设备的结构示意图。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描 述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
本发明实施例提供了一种触控基板,该触控基板可用于触控显示装置实现触摸操作,能够降低触控延迟。图1为本发明实施例提供的一种触控基板的俯视图,如图1所示,该触控基板包括载体基板110、多条接收电极120和多条驱动电极130。
其中,载体基板110可以是透明绝缘板,例如PET基板(聚对苯二甲酸乙二醇酯),或其他绝缘材料制成的透明绝缘板,本发明在此不做限定。接收电极 120和驱动电极130设置于载体基板110上,且各接收电极120之间、各驱动电极130之间以及接收电极120与驱动电极130之间相互绝缘隔离。接收电极120沿第一方向X延伸,驱动电极130沿与第一方向X交错的第二方向Y延伸,接收电极120与驱动电极130在载体基板110所在的平面内的垂直投影相互交错,接收电极120和驱动电极130在交错处绝缘隔离。换句话说,接收电极120与驱动电极130交叉,但在载体基板110的厚度方向上交叉位置不接触,形成电容节点。示例性的,如图1所示,在本发明实施例中,第一方向X与第二方向Y垂直,在本发明的其他实施例中,第一方向X与第二方向Y也可以不垂直,只要交叉即可,本发明实施例在此不做限定。
接收电极包括至少两个子电极,子电极包括沿第一方向间隔排布的电极单元。同一子电极中各电极单元电连接,不同的子电极的电极单元交替排布。示例性的,图2为本发明实施例中一种子电极的结构示意图,如图2所示,接收电极120包括两条子电极,分别为第一子电极121和第二子电极122,第一子电极121和第二子电极122均包括沿第一方向X间隔排布的电极单元123。同一子电极中各电极单元电连接,示例性的,如图2所示,第一子电极121中相邻的两个电极单元123通过导线L1电连接,第二子电极122中相邻的两个电极单元123通过导线L2电连接。不同的子电极的电极单元交替排布,示例性的,如图2所示,接收电极120中,第一子电极121的电极单元123和第二子电极122的电极单元123交替排布。
图3为现有技术的触控基板的工作原理图,如图3所示,驱动电极(横向排布的电极)和接收电极(纵向排布的电极)一一交替组成网格形状,驱动电极依次发送激励信号(依次驱动D1、D2、…D6),每次驱动一个驱动电极的时候,接收电极S1到S5同时完成感测,并输出感测数据,将接收电极S1到S5感测到 的数据存入感测数据阵列对应的一行中,再驱动下一驱动电极,当所有的驱动电极都扫描完成之后完成一帧数据的扫描。即完成一帧数据的扫描需要扫描6次。
本发明实施例还提供了一种触控驱动方法,基于上述实施例提供的触控基板,包括:
向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等;
同时接收各子电极的感测信号;
重复上述步骤,直至所有驱动电极均被施加过激励信号。
图4为本发明实施例中图1所示的触控基板的工作原理图,下面以图1所示的触控基板为示例,对本发明的触控驱动方法进行说明。
示例性的,如图4所示,触控基板包括8条接收电极120和6条驱动电极130,每条接收电极120包括2条子电极,每条子电极即为一个接收通道,则共有16个接收通道,分别为接收通道RX1-RX16,每条接收电极对应一个偶数通道和一个奇数通道。6条驱动电极130即为6个输入通道,分别为输入通道TX1-TX6。在应用过程中,每次驱动可以同时对2个输入通道输入相同的激励信号,如图4所示,输入通道TX1和TX2并联,用于同时输入相同的激励信号,输入通道TX3和TX4并联,用于同时输入相同的激励信号,输入通道TX5和TX6并联,用于同时输入相同的激励信号。每次驱动时,16个接收通道RX1-RX16同时接收感测信号,与输入通道TX1感应的一行电极单元123接收到感应信号经由奇数通道存入感测数据阵列的奇数行,与输入通道TX2感应的一行电极单元123接收到感应信号经由偶数通道存入感测数据阵列的偶数行。如此,完成一帧数据的扫描仅需要扫描3次,相对于现有技术的触控基板的扫描次数减少了一半,扫描 速度提高了一倍,进而提高了报点速度,降低了触控延迟。
本发明实施例提供的触控基板,包括:载体基板,以及设置于载体基板上的多条接收电极和多条驱动电极,接收电极沿第一方向延伸,驱动电极沿与第一方向交错的第二方向延伸,接收电极和驱动电极不接触,且在载体基板上的垂直投影相互交错,接收电极包括至少两个子电极,子电极包括沿第一方向间隔排布的电极单元,同一子电极中各电极单元电连接,不同的子电极的电极单元交替排布。在扫描过程中,可以同时对至少两个驱动电极施加相同的激励信号,因此,可以减少扫描时间,提高扫描速度,进而提高了报点速度,降低了触控延迟。
图5为本发明提供的另一种触控基板的俯视图,如图5所示,在该实施例中,电极单元123为块状网格,驱动电极130为条状网格。网格状的驱动电极130或接收电极120能够改善电场线的透传,进而提高触控灵敏度。
在本发明的一些实施例中,接收电极和驱动电极分别设置于不同的层。图6为图1中触控基板的局部剖视图,剖面线如A-A所示,示例性的,如图1、图2、图6所示,触控基板包括第一导电层和第二导电层,接收电极120设置于第一导电层,驱动电极130位于第二导电层,第一导电层和第二导电层之间设置有第一绝缘层140。即接收电极120和驱动电极130分别位于不同的层,且层间通过第一绝缘层140相互绝缘隔离。具体的,多条驱动电极130间隔平行设置于载体基板110上,驱动电极130沿第二方向Y延伸。第一绝缘层140形成在载体基板110上,且覆盖驱动电极130。接收电极120的电极单元123沿第一方向X间隔排布于第一绝缘层140上。
在上述实施例的基础上,为了减少触控基板的厚度,实现触控设备的轻薄化,载体基板上设置有沿第二方向延伸的多个第一凹槽,驱动电极设置于第一 凹槽内,绝缘层远离载体基板的一侧设置有沿第一方向延伸的多个第二凹槽,电极单元设置于第二凹槽内。图7为本发明提供的另一种触控基板的剖视图,示例性的,如图1、图2、图7所示,在上述实施例中,载体基板110上设置有沿第二方向Y延伸的多个第一凹槽111,驱动电极130设置于第一凹槽111内,驱动电极130远离载体基板110的一侧表面可以与第一凹槽111的槽口平齐。第一绝缘层140覆盖于载体基板110上,第一绝缘层140远离载体基板110的一侧设置有沿第一方向X延伸的多个第二凹槽141,电极单元123设置于第二凹槽141,电极单元123远离驱动电极130的一侧表面可以与第二凹槽141的槽口平齐。电极单元123和驱动电极130可以采用喷墨打印的方式分别形成在第二凹槽141和第一凹槽111内。
同一子电极中,相邻的两个电极单元通过导线电连接,电极单元和导线同层设置在绝缘层上。示例性的,在上述实施例中,如图1、图2、图6、图7所示,第一子电极121中,相邻的两个电极单元123通过导线L1电连接,第二子电极122中,相邻的两个电极单元123通过导线L2电连接,电极单元123和导线L1、L2同层设置在第一绝缘层140上。
图8为本发明实施例提供的另一种触控基板的俯视图,如图8所示,该触控基板包括载体基板210、多条接收电极220、多条驱动电极230和第二绝缘层(图8中未示出)。
接收电极220和驱动电极230设置于载体基板210上,且各接收电极220之间、各驱动电极230之间以及接收电极220与驱动电极230之间相互绝缘隔离。接收电极220沿第一方向X延伸,驱动电极230沿与第一方向X交错的第二方向Y延伸,接收电极220与驱动电极230在载体基板210所在的平面内的垂直投影相互交错,接收电极220和驱动电极230在交错处绝缘隔离。
接收电极包括至少两个子电极,子电极包括沿第一方向间隔排布的电极单元。同一子电极中各电极单元电连接,不同的子电极的电极单元交替排布。图9为本发明实施例中另一种子电极的结构示意图,示例性的,如图8、图9所示,接收电极220包括两条子电极,分别为第一子电极221和第二子电极222,第一子电极221和第二子电极222均包括沿第一方向X间隔排布的电极单元223。同一子电极中各电极单元电连接,示例性的,如图9所示,第一子电极221中相邻的两个电极单元223通过导线L1电连接,第二子电极222中相邻的两个电极单元223通过导线L2电连接。不同的子电极的电极单元间隔排布,示例性的,如图9所示,接收电极220中,第一子电极221的电极单元223和第二子电极222的电极单元223交替排布。
本发明实施例中,触控基板在工作过程中,可以同时对至少两个驱动电极施加相同的激励信号,具体的,被同时施加相同的激励信号的驱动电极的数量与接收电极中子电极的数量相等。图10为本发明实施例中图8所示的触控基板的工作原理图,下面以图8所示的触控基板为示例,对本发明的触控驱动方法进行说明。
示例性的,如图10所示,触控基板包括8条接收电极220和6条驱动电极230,每条接收电极220包括2条子电极,每条子电极即为一个接收通道,则共有16个接收通道,分别为接收通道RX1-RX16,每条接收电极对应一个偶数通道和一个奇数通道。6条驱动电极230即为6个输入通道,分别为输入通道TX1-TX6。在应用过程中,每次驱动可以同时对2个输入通道输入相同的激励信号,如图10所示,输入通道TX1和TX2并联,用于同时输入相同的激励信号,输入通道TX3和TX4并联,用于同时输入相同的激励信号,输入通道TX5和TX6并联,用于同时输入相同的激励信号。每次驱动时,16个接收通道RX1-RX16同时接收感 测信号,与输入通道TX1感应的一行电极单元223接收到感应信号经由奇数通道存入感测数据阵列的奇数行,与输入通道TX2感应的一行电极单元223接收到感应信号经由偶数通道存入感测数据阵列的偶数行。如此,完成一帧数据的扫描仅需要扫描3次,相对于现有技术的触控基板的扫描次数减少了一半,扫描速度提高了一倍,进而提高了报点速度,降低了触控延迟。
需要说明的是,上述实施例中以一个接收电极包括2条子电极,每次驱动同时对2个输入通道输入相同的激励信号为例,对本发明实施例进行示例性说明。在本发明其他实施例中,一个接收电极包括2条以上的子电极,每次驱动同时对2个以上的输入通道输入相同的激励信号,同样能够减少扫描次数、降低触控延迟,本发明实施例在此不再赘述。由于不同的子电极的电极单元交替排布,且子电极中相邻的两个电极单元通过导线电连接,因此,在同时对至少两个输入通道输入相同的激励信号时,不能同时对与同一子电极中的电极单元产生感应的驱动电极施加激励信号,例如,图4、图10中,不能同时驱动输入通道TX1、TX3、TX5中的任意两个,也不能同时驱动输入通道TX2、TX4、TX6中的任意两个。
在本发明的一些实施例中,接收电极和驱动电极可以处于同一层。图11为图8中触控基板的局部剖视图,剖面线如B-B所示,示例性的,如图8、图9、图11所示,该触控基板包括第三导电层和第四导电层,第三导电层和第四导电层之间设置有第二绝缘层240。接收电极220设置于第三导电层。电极单元223包括第一电极块2231、第二电极块2232和连接部2233,第一电极块2231和第二电极块2232通过连接部2233电连接。
驱动电极230包括多个沿第二方向Y排布的第三电极块231和多个导电跨桥232。第三电极块231设置于第三导电层,第三电极块231与电极单元223绝 缘隔离,导电跨桥232设置于第四导电层。导电跨桥232和连接部2233在载体基板210所在的平面内的垂直投影相互交错,形成电容节点,相邻的两个第三电极块231通过导电跨桥232电连接。
在上述实施例的基础上,为了减少触控基板的厚度,载体基板上设置有沿第二方向延伸的多个第三凹槽,导电跨桥设置于第三凹槽内。绝缘层远离载体基板的一侧设置有沿第一方向排布的多个第四凹槽和沿第二方向排布的多个第五凹槽,第一电极块和第二电极块分别设置于对应的第四凹槽内,第三电极块设置于第五凹槽内。图12为本发明实施例提供另一种触控基板的剖视图,示例性的,如图8、图9、图12所示,载体基板210上设置有沿第二方向Y延伸的多个第三凹槽211,导电跨桥232设置于第三凹槽211内,导电跨桥232远离载体基板210的一侧表面可以与第三凹槽211的槽口平齐。第二绝缘层240设置于载体基板210上,且覆盖导电跨桥232。第二绝缘层240远离载体基板210的一侧设置有沿第一方向X排布的多个第四凹槽和沿第二方向Y排布的多个第五凹槽241,第一电极块2231和第二电极块2232分别设置于对应的第四凹槽内,第三电极块231设置于第五凹槽241内。第一电极块2231和第二电极块2232远离载体基板210的一侧表面可以与第四凹槽的槽口平齐,第三电极块231远离载体基板210的一侧表面可以与第五凹槽241的槽口平齐。
具体的,如图11、图12所示,第二绝缘层240开设有若干贯穿第二绝缘层240的通孔,第三电极块231包括向通孔内延伸的延伸部2311,第三电极块231通过延伸部2311与导电跨桥232电连接。
在本发明的一些实施例中,如图9所示,电极单元223中,第一电极块2231和第二电极块2232为顶点相对的两个等腰三角形,且第一电极块2231和第二电极块2232的底边的中线重合且平行于第一方向X,相对的顶点通过连接部 2233连接。如图8所示,第三电极块231呈棱形。
同一子电极中,相邻的两个电极单元通过导线电连接,电极单元和导线同层设置在绝缘层上。示例性的,在上述实施例中,如图8、图9、图11、图12所示,第一子电极221中,相邻的两个电极单元223通过导线L1电连接,第二子电极222中,相邻的两个电极单元223通过导线L2电连接,电极单元223和导线同层设置在第二绝缘层240上。
本发明实施例还提供了一种触控输入设备的识别方法,基于本发明实施例提供的触控基板,可以提高识别速度。该方法包括:
向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率;
交换所述至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同;
重复上述步骤,直至所述至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次;
重复上述步骤,直至所有驱动电极均被施加过激励信号;
基于触控输入设备对各频率的激励信号的响应确定触控输入设备的工作频率。
具体的,下面以图8所示的触控基板为示例,对触控输入设备的识别方法进行说明。
图13为本发明实施例提供的一种多种触控输入设备的识别原理图,如图13所示,在应用过程中,每次驱动可以同时对2个输入通道输入不相同的激励信号,示例性的,输入通道TX1和TX2分别输入频率不同的激励信号1和激励信 号2,16个接收通道RX1-RX16同时接收感测信号,与输入通道TX1感应的一行电极单元223接收到感应信号经由奇数通道存入感测数据阵列1的奇数行,与输入通道TX2感应的一行电极单元223接收到感应信号经由偶数通道存入感测数据阵列2的偶数行。接着,输入通道TX1和TX2分别输入频率不同的激励信号2和激励信号1,16个接收通道RX1-RX16同时接收感测信号,与输入通道TX1感应的一行电极单元223接收到感应信号经由奇数通道存入感测数据阵列2的奇数行,与输入通道TX2感应的一行电极单元223接收到感应信号经由偶数通道存入感测数据阵列1的偶数行。以此类推,依次完成输入通道TX3和TX4的驱动,和输入通道TX5和TX6的驱动。每一种频率的激励信号关联一种类型的触控输入设备(例如触控笔),触控输入设备只对关联频率的激励信号作出响应。因此,在识别触控输入设备过程中,只需扫描6次。
现有技术中,要识别触控输入设备,需要首先采用激励信号1依次对输入通道TX1-TX6进行扫描,然后采用激励信号2依次对输入通道TX1-TX6进行扫描,一共需要扫描12次。因此,本发明实施例提供的触控基板能够提高触控输入设备的识别速度。
本发明实施例还提供了一种触控设备,包括如本发明上述任意实施例提供的触控基板,该触控设备可以是触控板、智能手机、智能平板等电子设备,本发明在此不做限定。
图14为本发明实施例提供的一种触控设备的结构示意图,如图14所示,该触控设备包括触控基板100、驱动器200、接收器300和控制器400。
其中,触控基板100的具体结构在前述实施例中已有详细记载,本发明实施例在此不再赘述。控制器400分别与驱动器200和接收器300连接,驱动器200与驱动电极连接,接收器300与接收电极的子电极连接。
控制器400控制驱动器200向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等。
然后,控制驱动器200重复上述步骤,直至所有驱动电极均被施加过激励信号。
接收器300在驱动器200施加激励信号时接收各子电极的感测信号,并将感测信号发送至控制器400。
控制器400用于根据感测信号计算出触摸点的位置。
具体的,该触控设备的触控驱动过程在前述实施例中已有详细记载,本发明实施例在此不再赘述。
本发明实施例还提供了另一种触控设备,包括如本发明上述任意实施例提供的触控基板,该触控设备可以是触控板、智能手机、智能平板等电子设备,本发明在此不做限定。该触控设备的结构可以参考本发明图14,包括触控基板100、驱动器200、接收器300和控制器400。
其中,触控基板100的具体结构在前述实施例中已有详细记载,本发明实施例在此不再赘述。控制器400分别与驱动器200和接收器300连接,驱动器200与驱动电极连接,接收器300与接收电极的子电极连接。
控制器400控制驱动器200向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率。
接着,控制器400控制驱动器200交换至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同。
然后,控制器400控制驱动器200重复上述步骤,直至至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次。
接收器300在驱动器200施加激励信号时接收各子电极的感测信号,并将感测信号发送至控制器400。
控制器400基于触控输入设备对不同频率的激励信号的响应确定触控输入设备的工作频率。
具体的,该触控设备的触控输入设备的识别方法在前述实施例中已有详细记载,本发明实施例在此不再赘述。
于本文的描述中,需要理解的是,术语“上”、“下”、“左”“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以适当组合,形成本领域技术人员可以理解的其他实施方式。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具 体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (14)

  1. 一种触控基板,其特征在于,包括:
    载体基板;
    设置于所述载体基板上的多条接收电极和多条驱动电极,所述接收电极沿第一方向延伸,所述驱动电极沿第二方向延伸,所述接收电极和所述驱动电极不接触,且在所述载体基板上的垂直投影相互交错;
    所述接收电极包括至少两个子电极,所述子电极包括沿所述第一方向间隔排布的电极单元;
    同一所述子电极中各电极单元电连接,不同的所述子电极的电极单元交替排布。
  2. 根据权利要求1所述的触控基板,其特征在于,所述触控基板包括第一导电层和第二导电层,所述接收电极位于所述第一导电层,所述驱动电极位于所述第二导电层,所述第一导电层和所述第二导电层之间设置有绝缘层。
  3. 根据权利要求2所述的触控基板,其特征在于,所述载体基板上设置有沿所述第二方向延伸的多个第一凹槽,所述驱动电极设置于所述第一凹槽内,所述绝缘层远离所述载体基板的一侧设置有沿所述第一方向延伸的多个第二凹槽,所述电极单元设置于所述第二凹槽内。
  4. 根据权利要求2或3所述的触控基板,其特征在于,所述电极单元为块状网格,所述驱动电极为条状网格。
  5. 根据权利要求1所述的触控基板,其特征在于,所述触控基板包括第三导电层和第四导电层,所述第三导电层和所述第四导电层之间设置有绝缘层;
    所述接收电极设置于所述第三导电层;
    所述电极单元包括第一电极块、第二电极块和连接部,所述第一电极块和所述第二电极块通过所述连接部电连接;
    所述驱动电极包括多个沿所述第二方向排布的第三电极块和多个导电跨桥;
    所述第三电极块设置于所述第三导电层,所述第三电极块与所述电极单元绝缘隔离,所述导电跨桥设置于所述第四导电层;
    所述导电跨桥和所述连接部在所述载体基板所在的平面内的垂直投影相互交错,相邻的两个所述第三电极块通过所述导电跨桥电连接。
  6. 根据权利要求5所述的触控基板,其特征在于,所述绝缘层开设有若干贯穿所述绝缘层的通孔,所述第三电极块包括向所述通孔内延伸的延伸部,所述第三电极块通过所述延伸部与所述导电跨桥电连接。
  7. 根据权利要求5或6所述的触控基板,其特征在于,所述载体基板上设置有沿所述第二方向延伸的多个第三凹槽,所述导电跨桥设置于所述第三凹槽内;
    所述绝缘层远离所述载体基板的一侧设置有沿所述第一方向排布的多个第四凹槽和沿所述第二方向排布的多个第五凹槽,所述第一电极块和所述第二电极块分别设置于对应的所述第四凹槽内,所述第三电极块设置于所述第五凹槽内。
  8. 根据权利要求5或6所述的触控基板,其特征在于,在所述电极单元中,所述第一电极块和第二电极块为顶点相对的两个等腰三角形,所述第一电极块和第二电极块的底边的中线重合且平行于所述第一方向。
  9. 根据权利要求2、3、5或6所述的触控基板,其特征在于,同一子电极中,相邻的两个所述电极单元通过导线电连接,所述电极单元和所述导线同层设置在所述绝缘层上。
  10. 根据权利要求1-3、5、6任一所述的触控基板,其特征在于,所述接收 电极包括两个子电极。
  11. 一种触控驱动方法,其特征在于,基于权利要求1-10任一所述的触控基板,包括:
    向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等;
    同时接收各子电极的感测信号;
    重复上述步骤,直至所有驱动电极均被施加过激励信号。
  12. 一种触控输入设备的识别方法,其特征在于,基于权利要求1-10任一所述的触控基板,包括:
    向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率;
    交换所述至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同;
    重复上述步骤,直至所述至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次;
    重复上述步骤,直至所有驱动电极均被施加过激励信号;
    基于触控输入设备对各频率的激励信号的响应确定触控输入设备的工作频率。
  13. 一种触控设备,其特征在于,包括如权利要求1-10任一所述的触控基板,还包括驱动器、接收器和控制器;
    所述控制器分别与所述驱动器和所述接收器连接,所述驱动器与所述驱动电极连接,所述接收器与所述接收电极的子电极连接;
    所述控制器用于控制所述驱动器向未施加过激励信号的至少两条驱动电极同时施加相同的激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等;
    所述控制器用于控制所述驱动器重复上述步骤,直至所有驱动电极均被施加过激励信号;
    所述接收器用于在所述驱动器施加激励信号时接收各子电极的感测信号,并将所述感测信号发送至所述控制器;
    所述控制器用于根据所述感测信号计算出触摸点的位置。
  14. 一种触控设备,其特征在于,包括如权利要求1-10任一所述的触控基板,还包括驱动器、接收器和控制器;
    所述控制器分别与所述驱动器和所述接收器连接,所述驱动器与所述驱动电极连接,所述接收器与所述接收电极的子电极连接;
    所述控制器用于控制所述驱动器向未施加过激励信号的至少两条驱动电极同时施加激励信号,其中,被同时施加激励信号的驱动电极的数量与一个接收电极中子电极的数量相等,各驱动电极被施加的激励信号具有不同的频率;
    所述控制器用于控制所述驱动器交换所述至少两条驱动电极的被施加的激励信号,使得各驱动电极的被施加的激励信号的频率均与前一次的被施加的激励信号的频率不同;
    所述控制器用于控制所述驱动器重复上述步骤,直至所述至少两条驱动电极中每一驱动电极均被施加各频率的激励信号一次;
    所述接收器用于在所述驱动器施加激励信号时接收各子电极的感测信号,并将所述感测信号发送至所述控制器;
    所述控制器用于基于触控输入设备对不同频率的激励信号的响应确定触控 输入设备的工作频率。
PCT/CN2021/097685 2021-06-01 2021-06-01 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备 WO2022252115A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180041426.XA CN115701774A (zh) 2021-06-01 2021-06-01 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备
PCT/CN2021/097685 WO2022252115A1 (zh) 2021-06-01 2021-06-01 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097685 WO2022252115A1 (zh) 2021-06-01 2021-06-01 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备

Publications (1)

Publication Number Publication Date
WO2022252115A1 true WO2022252115A1 (zh) 2022-12-08

Family

ID=84322663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097685 WO2022252115A1 (zh) 2021-06-01 2021-06-01 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备

Country Status (2)

Country Link
CN (1) CN115701774A (zh)
WO (1) WO2022252115A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221905A (zh) * 2011-10-21 2013-07-24 智点科技(深圳)有限公司 一种有源触控***的驱动方法
US20140218631A1 (en) * 2013-02-05 2014-08-07 Samsung Display Co., Ltd. Touch screen panel
CN104571756A (zh) * 2014-12-04 2015-04-29 上海天马微电子有限公司 一种触摸显示面板及其驱动方法、触摸装置
CN106383621A (zh) * 2016-09-14 2017-02-08 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN109002214A (zh) * 2018-07-26 2018-12-14 京东方科技集团股份有限公司 一种触控基板及其驱动方法、触控显示装置
CN109917969A (zh) * 2019-04-01 2019-06-21 昆山龙腾光电有限公司 触控基板、触摸屏以及显示装置
CN110865737A (zh) * 2019-11-15 2020-03-06 京东方科技集团股份有限公司 一种触控基板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221905A (zh) * 2011-10-21 2013-07-24 智点科技(深圳)有限公司 一种有源触控***的驱动方法
US20140218631A1 (en) * 2013-02-05 2014-08-07 Samsung Display Co., Ltd. Touch screen panel
CN104571756A (zh) * 2014-12-04 2015-04-29 上海天马微电子有限公司 一种触摸显示面板及其驱动方法、触摸装置
CN106383621A (zh) * 2016-09-14 2017-02-08 厦门天马微电子有限公司 触控显示面板和触控显示装置
CN109002214A (zh) * 2018-07-26 2018-12-14 京东方科技集团股份有限公司 一种触控基板及其驱动方法、触控显示装置
CN109917969A (zh) * 2019-04-01 2019-06-21 昆山龙腾光电有限公司 触控基板、触摸屏以及显示装置
CN110865737A (zh) * 2019-11-15 2020-03-06 京东方科技集团股份有限公司 一种触控基板及显示装置

Also Published As

Publication number Publication date
CN115701774A (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
CN105094479B (zh) 触控显示面板、制备方法、驱动方法及显示装置
CN106802747B (zh) 触控显示面板
CN103809801B (zh) 包括集成式触摸面板的显示装置
WO2017118017A1 (zh) 触控面板、触控显示装置及其驱动方法
US11281327B2 (en) Touch substrate, method of driving the same and touch display device
CN112733790B (zh) 指纹识别模组、显示面板及其驱动方法、显示装置
CN106325631A (zh) 一种具有压力侦测的触控显示模组及其驱动方法
CN101191915A (zh) 液晶显示面板
CN108062188B (zh) Tft基板及应用其的触控显示面板
CN105739763A (zh) 触控显示面板及其驱动方法、触摸显示屏
CN104571756A (zh) 一种触摸显示面板及其驱动方法、触摸装置
CN104699353A (zh) 阵列基板、驱动方法、显示面板及显示装置
RU2681355C2 (ru) Встроенные панели отображения информации и терминалы с сенсорной функцией, способ определения прикосновения
WO2019201056A1 (zh) 一种基板、显示面板及基板的控制方法
WO2018120287A1 (zh) 一种基于oled的内置式触控显示面板
CN104765506A (zh) 触控显示面板及其驱动方法和触控显示装置
CN104699354A (zh) 触控面板及其驱动方法、触控显示装置
CN105589600A (zh) 触控显示面板、触控显示装置及触控检测方法
CN106383608B (zh) 内嵌触摸结构的阵列基板以及显示面板、显示装置
CN104571767A (zh) 触控面板、显示装置及触摸驱动方法
US20210064212A1 (en) Touch display panel, touch display device, and touch detection method
CN205427804U (zh) 一种触控显示面板和触控显示装置
WO2021092993A1 (zh) 显示装置和终端
CN108897458B (zh) 一种触控面板、触控显示面板和装置及触控驱动方法
WO2022252115A1 (zh) 一种触控基板、触控驱动方法、触控输入设备的识别方法及触控设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943486

Country of ref document: EP

Kind code of ref document: A1