WO2022252035A1 - 一种探测装置 - Google Patents

一种探测装置 Download PDF

Info

Publication number
WO2022252035A1
WO2022252035A1 PCT/CN2021/097338 CN2021097338W WO2022252035A1 WO 2022252035 A1 WO2022252035 A1 WO 2022252035A1 CN 2021097338 W CN2021097338 W CN 2021097338W WO 2022252035 A1 WO2022252035 A1 WO 2022252035A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
optical module
optical
module
pulse sequence
Prior art date
Application number
PCT/CN2021/097338
Other languages
English (en)
French (fr)
Inventor
陈亚林
王栗
黄潇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/097338 priority Critical patent/WO2022252035A1/zh
Publication of WO2022252035A1 publication Critical patent/WO2022252035A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the technical field of target detection, and in particular, to a detection device.
  • Detection devices such as lidar and millimeter-wave radar are widely used in fields such as drones and unmanned vehicles.
  • This type of detection device can emit light pulse sequences to the external environment, and receive the light pulse sequences reflected by the external environment, and detect the external environment according to the received light pulse sequences.
  • the point cloud pattern formed by the scanning trajectory of the light pulse sequence emitted by the detection device can be denser and more uniform, so as to avoid the existence of large pores in the point cloud pattern, which will cause some problems during the detection process. Fixed areas cannot be scanned. Therefore, it is necessary to design the detection device to form a more uniform point cloud pattern with smaller pores.
  • the present application provides a detection device.
  • a detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a driving module and at least two optical modules, and the at least two optical modules move under the driving of the driving module, so that the light pulse sequence emitted by the light source is changed by the at least two optical modules
  • the optical path then emerges from at least one angular range to form a scanning field of view in each angular range; wherein, the movement speed of at least one of the at least two optical modules fluctuates with time, so that the optical pulse sequence is
  • the point cloud pattern formed after the movement speed fluctuation covers the aperture of the point cloud pattern formed by the light pulse sequence before the movement speed fluctuation.
  • a detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a first optical module, a second optical module, a first driving module and a second driving module, and the first driving module is used to drive the first optical module to move so that The light pulse sequence of the optical module is emitted from the first angle range, and the second driving module is used to drive the movement of the second optical module, so that the light pulse sequence emitted from the first angle range changes the optical path through the second optical module Exit from at least one second angle range to form at least one scanning field of view; wherein, the difference between the moving speed of the first optical module and the moving speed of the second optical module is not higher than the first preset speed, so Neither the moving speed of the first optical module nor the moving speed of the second optical module is less than a second preset speed.
  • a detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a first optical module, a second optical module, a first driving module and a second driving module, and the first driving module is used to drive the first optical module to move so that The light pulse sequence of the optical module is emitted from the first angle range, and the second driving module is used to drive the movement of the second optical module, so that the light pulse sequence emitted from the first angle range changes the optical path through the second optical module Emitting from at least one second angle range to form at least one scanning field of view; wherein, the difference between the moving speeds of the first optical module and the second optical module is not lower than a first preset speed.
  • a detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a driving module and at least two optical modules, and the at least two optical modules move under the driving of the driving module, so that the light pulse sequence emitted by the light source changes through the at least two optical modules
  • the optical path is emitted from at least one angle range to form at least one scanning field of view; wherein, the detection device includes multiple modes, and the combinations of the movement speeds of the at least two optical modules are different in different modes, and the detection device It is possible to switch between the various modes.
  • the movement speed of at least one optical module in the detection device can be controlled to fluctuate with time,
  • the point cloud pattern formed by the light pulse sequence emitted by the light source in the detection device after the movement speed of the optical module fluctuates can cover the gap of the point cloud pattern formed by the light pulse sequence before the movement speed fluctuation of the optical module, thereby reducing the formation of the detection device.
  • the pores of the point cloud pattern improve the detection accuracy of the detection device.
  • Fig. 1(a) is a schematic diagram of a detection device according to an embodiment of the present application.
  • Fig. 1(b) is a schematic diagram of a scanning field of view formed by a detection device according to an embodiment of the present application.
  • Fig. 1(c) is a schematic diagram of a point cloud pattern formed when the light sources of a detection device according to an embodiment of the present application are arranged in a row in the horizontal direction.
  • Fig. 2 is a schematic structural diagram of a detection device according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an arrangement of light sources according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an arrangement of light sources according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an arrangement of light sources according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of two radiating element groups arranged in double concentric circles according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an arrangement of two emitting element groups and a corresponding chip package according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an arrangement of two emitting element groups and a schematic diagram of a chip package according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of the relationship between the viewing angles of the first scanning field of view and the second scanning field of view according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a point cloud pattern formed when the moving speed of the optical module fluctuates with time and the moving speed of the optical module does not fluctuate with time according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a point cloud pattern formed as the moving speed of the optical module with a higher rotational speed increases when a combination of high and low rotational speeds is adopted in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a point cloud pattern formed by a combination of high and high rotational speeds and a combination of high and low rotational speeds according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of installation of a detection device in an automobile according to an embodiment of the present application.
  • Detection devices such as lidar and millimeter-wave radar are widely used in fields such as drones and unmanned vehicles.
  • This type of detection device can emit light pulse sequences to the external environment, and receive the light pulse sequences reflected by the external environment, and detect the external environment according to the received light pulse sequences.
  • the detection devices used in unmanned aerial vehicles and unmanned vehicles have high requirements for detection accuracy and accuracy of detection results
  • the pattern can cover a larger angle range, and is denser and more uniform, avoiding the existence of large holes in the point cloud pattern, which will cause some fixed areas to be unscannable during the detection process, so objects in these fixed areas cannot be detected , so that the detection is missed, which affects the accuracy of the detection results.
  • some fixed areas cannot be scanned during the movement, obstacles in these areas cannot be detected in time, and safety accidents are prone to occur.
  • the point cloud pattern formed by the light pulse sequence of the detection device will be affected by many factors.
  • the detection device usually includes a light source and a scanning module
  • the light source is used to emit light pulse sequences
  • the scanning module usually includes an optical module, which is used to change the optical path of the light pulse sequence emitted by the light source, so that the light pulse sequence can be viewed from different angles at different times exit, thus forming a scanning field of view.
  • the arrangement of light sources is different, and the shape of the emitted light pulse sequence is also different, so the final point cloud pattern will also be different.
  • the optical modules in the scanning module are used to change the optical path of the optical pulse sequence. Therefore, the arrangement of the optical modules, the number and type of optical modules, the movement direction and speed of the optical modules will all affect the output of the pulse sequence. direction, thereby changing the final point cloud pattern.
  • the internal structure of the detection device is fixed, for example, the arrangement of light sources, the number, type and arrangement of optical modules are fixed, if you want to change the point cloud pattern formed by the detection device, you can adjust the The movement speed of the optical module is realized.
  • the detection devices due to the limitation of various factors in their internal structure, there may be large holes in the point cloud pattern formed by the detection device, so that the area corresponding to the holes cannot be scanned, resulting in inaccurate detection results.
  • the detection device in order to increase the scanning field angle of the detection device, includes a light source, a beam splitter, a collimation element, a first optical module, a second optical module, A first driving module (not shown in the figure) for driving the movement of the first optical module and a second driving module (not shown in the figure) for driving the movement of the second optical module.
  • the light source can emit two kinds of optical pulse sequences with different wavelengths, optical pulse sequence 1 and optical pulse sequence 2, and the optical pulse sequence emitted by the light source can be collimated into parallel beams by the collimation element after passing through the beam splitter.
  • the first optical module It may be a wedge-shaped scanning prism, driven by the first driving module, the scanning prism can rotate around a specified axis, and change the outgoing direction of the incident light pulse sequence so that it exits from the first angle range.
  • the second optical module includes a splitting surface, which can reflect the light pulse sequence 1, so that the light pulse sequence 1 emerges from the second angle range to form a ring-shaped scanning field of view 1, as shown in Figure 1(b), At the same time, the light splitting surface can transmit the light pulse sequence 2, so that the light pulse sequence 2 emerges from the third angle range to form a scanning field of view 2 in the hollow of the scanning field of view 1, as shown in FIG. 1(b).
  • the point cloud pattern formed by it usually has large pores.
  • the point cloud pattern formed by optical pulse sequence 1 as an example, as shown in Figure 1(c)
  • the light sources emitting optical pulse sequence 1 are arranged in a row in the horizontal direction, after being reflected by the second optical module, the light The point cloud formed by pulse sequence 1 will be a straight line in the vertical direction.
  • the point cloud formed by optical pulse sequence 1 will be a straight line in the horizontal direction.
  • the change method will cause the point cloud pattern formed by the light pulse sequence 1 to have larger pores in some positions.
  • the movement strategy of the optical module in the scanning module can be adjusted.
  • the distribution of the point cloud pattern formed by the detection device is as uniform as possible, and the largest hole is as small as possible to improve the detection of the detection device. precision.
  • the embodiment of the present application provides a detection device, as shown in Figure 2, which is a schematic diagram of the detection device in an embodiment of the application, it should be pointed out that Figure 2 is only a schematic example, the embodiment of the application
  • the structure of the detection device provided is not limited to that shown in FIG. 2 .
  • the detection device includes a light source 21 and a scanning module 22, wherein the light source 21 is used to emit a sequence of light pulses, wherein the light source can emit a sequence of light pulses of one wavelength, and can also emit a sequence of light pulses of multiple wavelengths, specifically according to actual demand design.
  • the scanning module 22 includes a drive module (not shown in the figure) and at least two optical modules (221 and 222 in the figure), wherein, the at least two optical modules can be lenses, mirrors, prisms, vibrating mirrors, Grating, liquid crystal, optical phased array (Optical Phased Array) or any combination of the above optical elements.
  • the at least two optical modules move under the drive of the driving module, so that the light pulse sequence emitted by the light source is emitted from at least one angle range after changing the optical path through the at least two optical modules, so as to form a scanning field of view in each angle range.
  • the at least two optical modules can change the optical path of the optical pulse sequence so that it emits from a range of angles to form a scanning field of view, and can also perform spectroscopic processing on the optical pulse sequence to divide it into multiple optical pulse sequences, and then from different The angle range is emitted to form multiple scanning fields of view.
  • the movement manners of the at least two optical modules may include various manners, for example, rotation around a certain axis, vibration or other manners.
  • the movement modes of the at least two optical modules may be consistent or inconsistent.
  • the at least two optical modules may rotate in the same direction or in different directions, and their moving speeds may be the same or different. Same.
  • the point cloud pattern formed by it may have large pores in certain fixed positions. In order to fill these pores, the maximum pore of the point cloud pattern formed by the detection device should be as small as possible.
  • the movement speed of at least one of the at least two optical modules can fluctuate with time, wherein the way of fluctuation can be designed according to specific requirements, for example, some of the at least two optical modules can fluctuate, or All optical modules fluctuate, and the fluctuation mode of each optical module can be different.
  • the optical module can fluctuate periodically or aperiodically, and the amplitude of fluctuation can also be set according to actual needs, as long as the After the movement speed of the optical module fluctuates, the point cloud pattern formed by the light pulse sequence can cover the gaps in the point cloud pattern formed by the light pulse sequence before the movement speed fluctuation of the optical module, which is not limited in the embodiment of the present application.
  • the movement speed of the optical module can fluctuate once after collecting a frame of point cloud patterns, so that the next frame of point cloud patterns in the two adjacent frames of point cloud patterns formed by the light pulse sequence emitted by the light source A hole that can cover the point cloud pattern of the previous frame.
  • the movement speed of the optical module can also fluctuate before collecting a frame of point cloud patterns, for example, making the point cloud pattern formed by the point cloud data of the second half frame cover the hole of the point cloud pattern formed by the point cloud data of the first half frame .
  • the movement speed of the optical module may fluctuate periodically, for example, the movement speed may fluctuate in sine or cosine.
  • the movement of the at least two optical modules may be to rotate around a specified rotation axis, then the relationship between the rotational speed and time of the optical module whose movement speed fluctuates can be expressed by formula (1):
  • V is the real-time speed of the optical module
  • t is the time
  • V 0 is the initial rotation speed of the optical module
  • A is the fluctuation amplitude of the rotation speed of the optical module
  • T is the time when the detection device acquires a single frame scanning pattern.
  • the at least two optical modules can rotate around a specified axis, and the speed of movement includes the rotation speed of the at least one optical module. Since the time for the detection device to acquire a single-frame scanning pattern is generally short, usually 0.1 s. Since the control precision of the motor controlling the rotation of the optical module is limited, to achieve more accurate speed fluctuation control within this range, the fluctuation amplitude of the optical module's rotational speed should not be too large, and generally the fluctuation amplitude of the rotational speed does not exceed 500rmp.
  • each optical module can correspond to a driving module, and the driving module can be used to drive the optical module to move, and the movement speed of the at least one optical module can fluctuate over time by controlling the corresponding driving module of the optical module.
  • the driving module can drive a motor and other devices that can drive the movement of the optical module.
  • the detection device can be mounted on the pan/tilt, thus, the fluctuation of the motion speed of the at least one optical module over time can also be realized by controlling the movement of the pan/tilt, for example, by controlling the movement of the pan/tilt over time Fluctuation, so that the final movement speed of the optical module fluctuates with time.
  • the movement of the pan/tilt can be adjusted so that the light pulse sequence emitted by the detection device can scan the pore part again, and the pores can be scanned again. fill up.
  • the movement speed fluctuation strategy of at least two optical modules in the detection device can be preset, that is, the internal structure of the detection device is set, and its fluctuation strategy is also set, or its fluctuation strategy is fixed when it leaves the factory. down.
  • the movement speed fluctuation strategy can be used to indicate one or more of the following information: whether to control the movement speed fluctuations of the at least two optical modules, or which optical module of the at least two optical modules can set the movement speed fluctuate over time, or the fluctuation mode of the movement speed of the at least two optical modules, for example, whether it is a sine wave or a cosine wave, or the fluctuation amplitude of the movement speed of the at least two optical modules.
  • All of the above fluctuation strategies can be determined in advance based on factors such as the arrangement of light sources of the detection device and the application scenarios of the detection device. For example, assuming that after the detection device adopts a certain light source arrangement, the distribution of the point cloud pattern formed by it is already very uniform and the pores are small, so there is no need to adopt the fluctuation strategy. However, after the detection device adopts a certain light source arrangement method, the formed point cloud pattern distribution has large pores, so the fluctuation strategy can be adopted. In addition, it is also possible to determine whether to adopt the fluctuation strategy based on the application scenario of the detection device. For example, if the detection device is used in a scenario that requires high detection accuracy, the fluctuation strategy can be used. If it is used in a scenario that does not require high detection accuracy, Then the volatility strategy can not be used.
  • the detection device in order to make the adoption of the motion speed fluctuation strategy more intelligent, can also determine in real time whether to adopt the motion speed fluctuation strategy according to the current application scene. For example, the detection device can determine whether to use the motion speed fluctuation strategy according to the current application field. It is necessary to control the movement speed of the optical module to fluctuate with time, and the movement speed will be controlled to fluctuate with time when it is determined to be necessary. For example, assuming that the detection device is used for drones, the drones have different requirements for detection accuracy in different environments. For example, when flying at a relatively open high altitude, the detection accuracy is relatively low, so the movement speed fluctuation strategy may not be used at this time. However, in scenes where there are many jungles or obstacles, the detection accuracy is required to be high, so the movement speed fluctuation strategy can be enabled.
  • the light source can emit a variety of optical pulse sequences of different wavelengths, and the optical module splits the optical pulse sequences of different wavelengths into multiple optical pulses, and emits them from different angle ranges. Multiple different scanning fields of view are formed, and a larger scanning field of view can be obtained by combining multiple scanning fields of view.
  • the light source is used to emit an optical pulse sequence of the first wavelength and an optical pulse sequence of the second wavelength, wherein the optical pulse sequence of the first wavelength changes the optical path through the optical module to form a circular first scanning view field, and the light pulse sequence of the second wavelength changes the optical path through the optical module to form a second scanning field of view in the hollow of the first scanning field of view.
  • the detection device includes a first optical module, a second optical module, a first driving module and a second driving module, wherein the first driving module is used to drive the first optical module to move so that The optical pulse sequence of the optical module is emitted from the first angle range, and the second driving module is used to drive the movement of the second optical module, so that the optical pulse sequence emitted from the first angle range changes from two different optical paths through the second optical module.
  • the second angle range is emitted to form the first scanning field of view and the second scanning field of view.
  • the at least two optical modules include a splitting surface, as shown in FIG.
  • the light pulse sequence of the second wavelength is emitted from another angle range to form a second scanning field of view.
  • the first optical module may be a scanning prism with a non-parallel light exit surface and a light incident surface, located on the optical path of the light pulse sequence emitted by the light source, when the first driving module drives the scanning prism to rotate, it can The light pulse sequence passing through the scanning prism forms a scanning field of view.
  • the second optical module can be a prism assembly
  • the prism assembly includes a first prism and a second prism fixed to each other
  • the beam splitting surface is located between the first prism and the second prism
  • the detection device also includes a The second drive module for the rotation of the prism assembly.
  • the second drive module drives the rotation of the prism assembly
  • the light pulse sequence of the first wavelength is reflected and refracted by the first prism to form the first scanning field of view
  • the light pulse sequence of the second wavelength The light pulse sequence is refracted by the first prism, transmitted and refracted by the second prism to form a second scanning field of view.
  • the fixing method of the two prisms can be selected according to actual needs.
  • the two prisms can be fixed by gluing, that is, an adhesive such as an adhesive is added to the bonding surface of the two prisms.
  • the two prisms are bonded together using an agent.
  • other fixing methods may also be used, which are not limited in this embodiment of the present application.
  • the two prisms can be seamlessly bonded, or the bonding surfaces of the two prisms can also be filled with air or other materials.
  • one surface of the first prism is bonded to one surface of the second prism, and the light splitting surface is located where the first prism and the second prism are bonded.
  • a dichroic film can be used to split light pulse sequences of different wavelengths, and the light splitting surface can be an optical surface coated with a dichroic film, for example, the second optical module is obtained by fixing two prisms to each other
  • the light splitting surface may be a bonding surface
  • the light splitting surface may include a dichroic film, for example, a layer of dichroic film may be coated on the bonding surface of two prisms.
  • the dichroic film can realize the selective transmission or selective reflection of the light pulse sequence of different wavelength ranges, so that the light pulse sequence of at least one wavelength range can be reflected and refracted by one of the prisms to exit from a range of angles , the rest of the light pulse sequence is transmitted, and refracted by another prism to exit from another angle range.
  • the arrangement of light sources is also a major factor affecting the point cloud pattern formed by the detection device. If the current detection device wants to achieve a larger scanning field of view and a higher angular resolution, it generally needs to be realized by stacking more lasers, which is costly and has relatively large pores in the formation of point cloud patterns, and there are some fixed points. Area cannot be scanned. In order to realize that the detection device can obtain point cloud patterns with relatively uniform distribution and relatively small pores, the arrangement of light sources can also be designed at the same time to obtain more uniform point cloud patterns while using as few light sources as possible. , improve the detection accuracy of the detection device.
  • the light source may include at least one emitting element group, and each emitting element group is used to emit a light pulse sequence of a wavelength, wherein each emitting element may include a plurality of emitting elements, and the plurality of emitting elements may Used to emit light pulse sequences of the same wavelength, during the detection process of the detection device, the multiple emitting and emitting elements can emit light pulse sequences at the same time, or can transmit light pulse sequences in time division, which is not limited by the embodiment of this application.
  • the optical pulse sequence of the same wavelength in the embodiment of the present application means that the wavelength of the optical pulse sequence emitted by multiple emitting elements is within a certain wavelength range.
  • each emitting element group The wavelengths of the light pulses emitted by the plurality of emitting elements within may be 800nm ⁇ 10nm.
  • the number of emitting element groups can be one or more. In some scenarios, only one wavelength of optical pulse sequence can be used, and in some scenarios, two or more wavelengths of optical pulse sequences can also be used, which can be based on The difference in wavelength divides the light pulse sequence into two or more light pulses, so that each light pulse is emitted from a different angle range, thereby forming a different scanning field of view.
  • the point cloud pattern formed by the detection device it is generally hoped that the point cloud point distribution is more uniform, and the largest hole formed in the point cloud pattern is as small as possible to avoid large areas that cannot be detected.
  • Most of the current detection devices adopt the method of stacking and arranging multiple emitting elements, that is, a plurality of emitting elements are arranged in a row, for example, in a row in the horizontal direction, or in a row in the vertical direction. As a result, during the rotation of the optical module in the detection device, large holes will appear in some positions in the point cloud pattern formed, making it impossible to detect the area corresponding to the holes.
  • the first direction and the second direction may be any directions perpendicular to each other, for example, may be a horizontal direction and a vertical direction, and of course, may also be other directions.
  • the multiple radiating elements of each radiating element group are arranged staggered in the first direction and the second direction, which means that the multiple radiating elements cannot only be arranged in a straight line, for example, all the radiating elements of each radiating element group are arranged in a A horizontal straight line, or all the radiating elements of each radiating element group are arranged in a vertical straight line, or all the radiating elements of each radiating element group are arranged in a diagonal line, and multiple radiating elements are at least two mutually perpendicular The direction will be staggered.
  • a plurality of emitting elements are staggered in both the horizontal direction and the vertical direction, that is, there is an offset (offset ⁇ x) in the position of at least two emitting elements in the horizontal direction, and in the vertical direction There is also an offset (offset ⁇ y) in the positions of at least two emitting elements, instead of being arranged in a straight line.
  • the emitting element can be a laser
  • the laser can be a vertical cavity surface laser (VCSEL), because the arrangement pattern of each laser in the vertical cavity surface laser can be customized, and the light exit holes can be densely arranged, which is relatively easy to design other Arrangement method.
  • VCSEL vertical cavity surface laser
  • the aperture in the scanning point cloud pattern of the detection device is related to the interval between the emitting elements in the light source and the focal length of the optical module.
  • the position offset of two adjacent radiating elements in the first direction in the plurality of radiating element groups is offset from the position of the two adjacent radiating elements in the second direction
  • the amount should be as close as possible, so that the point cloud pattern formed by the detection device will be relatively uniform, and the largest pore will be relatively small.
  • the position offset of two adjacent emitting elements in the horizontal direction is ⁇ x
  • the adjacent The position offset of the two emitting elements in the horizontal direction is ⁇ y
  • the maximum aperture of the formed point cloud pattern is smaller. Therefore, in some embodiments, the position offset of two adjacent radiating elements in the first direction in the plurality of radiating element groups is different from the position offset of the two adjacent radiating elements in the second direction The difference is less than the preset threshold.
  • the position offset of two adjacent radiating elements in each radiating element group in the first direction may be equal to the position offset of the two adjacent radiating elements in the second direction , so that the pores of the point cloud pattern formed by the detection device are as small as possible.
  • a plurality of radiating elements in each radiating element group can also be arranged in multiple rows, for example, arranged in one or more rows in the first direction, and also arranged in one row in the second direction Or multiple columns, in the case shown in (a) in Figure 3, in this case, the positional offset of two adjacent emitting elements in the first direction in each emitting element group in the first direction
  • the position offsets in the second direction of two adjacent emitting units among the plurality of emitting elements in the second direction may be equal, so that the hole of the point cloud pattern formed by the detection device is as small as possible.
  • the maximum position offset formed by the plurality of emitting elements in each emitting element group in the first direction is the same as that of the plurality of emitting elements
  • the maximum position offsets formed in the second direction are equal.
  • the maximum position offset ⁇ x max of the emitting element in the horizontal direction and the maximum position offset ⁇ y of the emitting element in the vertical direction max is equal.
  • multiple radiating elements in each radiating element group can be arranged in an array, for example, arranged in a matrix array or other polygonal arrays, but this way consumes more radiating elements and costs more.
  • multiple emitting elements in each emitting element group can be arranged at equal intervals in an equal space. side of the polygon. For example, multiple radiating elements can be arranged at equal intervals on the sides of equilateral triangles, equilateral quadrilaterals, and equilateral hexagons. Through this arrangement, fewer radiating elements can be used to form A point cloud pattern with a relatively uniform distribution and a small maximum pore size.
  • the light source includes a first emitting element group and a second emitting element group, the first emitting element group is used for emitting a light pulse sequence of a first wavelength, and the second emitting element group is used for emitting a light pulse sequence of a second wavelength
  • the multiple radiating elements in any one of the first radiating element group and the second radiating element group are arranged in a staggered manner in a first direction and a second direction perpendicular to each other.
  • the first radiating element group and/or the second radiating element group may be arranged in one of the following shapes: circle, parallel double straight lines, quadrilateral and cross.
  • the first radiating element group can be arranged in a circle
  • the second radiating element group can be arranged in a cross shape, or both the first radiating element group and the second radiating element group can be arranged in a circle, and so on.
  • the effect of the point cloud pattern is the best when the transmitting element groups are arranged in a circle.
  • semiconductor lasers are usually grown from the chip substrate, and the price of the chip is usually relatively expensive.
  • the arrangement saves cost and reduces the volume of the light source at the same time.
  • the first radiating element group and the second radiating element group are arranged in double concentric circles, and the sides of each concentric circle in the double concentric circles are arranged by a plurality of radiating elements in one of the radiating element groups form.
  • the radiating elements in the first radiating element group can be arranged at equal intervals on the side of a concentric circle
  • the radiating elements in the second radiating element group can be arranged at equal intervals On the edge of another concentric circle.
  • which of the two emitting element groups is arranged to form an inner ring and which one is arranged to form an outer ring can be determined according to actual needs, and has little influence on the point cloud pattern formed.
  • the effect of the point cloud pattern formed by it is the best, the distribution is more uniform, and the largest hole in the point cloud pattern is relatively small.
  • the multiple radiating elements in the first radiating element group and the multiple radiating elements in the second radiating element group can be Located on the same chip, for example, the emitting element can be a semiconductor laser, and semiconductor lasers of different wavelengths can be grown on the same chip substrate to form two emitting element groups that emit light pulse sequences of two different wavelengths, but this method has no The process requirements are higher.
  • the first emitting element group and the second emitting element group are located on two different chips, for example, the first emitting element group Multiple emitting elements of the element group are located on one chip, multiple emitting elements of the second emitting element group are located on another chip, and the two chips can be packaged by stacking in the axial direction.
  • the thickness of the two chips should be as thin as possible, so as to avoid the luminous points of the emitting element elements of the two emitting element groups being located on different planes, so that defocusing occurs after being refracted by the optical module of the detection device Phenomenon.
  • the first emitting element group and the second emitting element group are arranged in double concentric circles, the effect of the point cloud formed by the detection device is better, and the formed pores are smaller, but the circular arrangement will occupy a larger area, that is, The chip area of the emitting element group is required to be relatively large, resulting in relatively high cost. Therefore, in some embodiments, the multiple radiating elements of one of the first radiating element group and the second radiating element group are arranged on the side of a circle, and the multiple emitting elements of the other radiating element group The elements are arranged on at least two sides of a quadrilateral.
  • the plurality of emitting elements in the first emitting element group may be arranged at equal intervals on a circular side, and the plurality of emitting elements in the second emitting element group may be arranged at equal intervals on at least two sides of a quadrilateral, such as , can be two opposite sides of the quadrilateral, or all four sides of the quadrilateral are arranged.
  • the multiple radiating elements in the first radiating element group are equally spaced on at least two sides of the quadrilateral, and the multiple radiating elements in the first radiating element group are equally spaced on the sides of the circle. .
  • the quadrilateral can be located in a circle, as shown in (a) of Figure 7, a plurality of radiating elements of the first radiating element group can be arranged on two opposite sides of the quadrilateral at equal intervals, and the second Multiple radiating elements of the radiating element group can be arranged on the side of the circle at equal intervals, and the quadrilateral can be located in the circle.
  • the circle can be located in a quadrilateral, as shown in Figure 7(b), the plurality of emitting elements of the first emitting element group can be arranged on two opposite sides of the quadrangle at equal intervals, and the second Multiple radiating elements of the radiating element group can be arranged at equal intervals on the side of the circle, wherein the quadrilateral can be outside the circle.
  • the plurality of radiating elements of the second radiating element group can be arranged on two opposite sides of the quadrangle at equal intervals, and the plurality of radiating elements of the first radiating element group can be arranged at equal intervals. Cloth on the edge of the circle, as shown in (c) in Figure 7.
  • the point cloud pattern formed by the light pulses emitted by it is compared with the point cloud pattern formed by the circular arrangement.
  • the effect is slightly worse, but the preparation process is relatively easy to implement.
  • the packaging scheme shown in (d) in Figure 7 can be used, that is, multiple emitting elements arranged on the sides of the circle can be located in a first chip
  • a plurality of emitting elements arranged on each side of the quadrangle are respectively located on a second chip, and then the second chip is packaged around the first chip.
  • the emitting elements on each opposite side can be located on one second chip, and two second chips can be located on both sides of the first chip.
  • the emitting element groups are arranged on the four sides of the quadrangle, four second chips can be used, and the four second chips can be located around the first chip.
  • the packaging scheme shown in (e) in Figure 7 can be used to arrange the quadrilateral
  • a plurality of emitting elements on the circle can be located on a third chip, and a plurality of emitting elements arranged on each of the two arcs of the circle can be respectively located on a fourth chip. Four chips are packaged on both sides of the third chip.
  • the multiple radiating elements in one of the first radiating element group and the second radiating element group are arranged in a cross shape, and the multiple radiating elements in the other radiating element group are arranged in a Cross or quadrilateral.
  • the first radiating element group and the second radiating element group can be arranged in a double cross, that is, the multiple radiating element groups in the first radiating element group are arranged in a cross, and the multiple radiating element groups in the second radiating element group Arranged into another cross, the centers of the two crosses can be staggered, but the sides can overlap, as shown in (a) in Figure 8.
  • one radiating element group may be arranged in a cross, and another radiating element group may be arranged on at least two sides of a quadrilateral, as shown in (b) in FIG.
  • the radiating elements can be arranged at equal intervals on two opposite sides of the quadrilateral, and the radiating elements of the second radiating element group can be arranged in a cross shape.
  • the cross or quadrilateral is divided into multiple line segments, so that the radiating elements on each line segment can be located at On a chip, thus forming a cross or a quadrilateral.
  • the package schematic diagram of the chip when the first emitting element group and the second emitting element group are arranged in double crosses, the package schematic diagram of the chip, the two double crosses can be divided into multiple line segments, and the lines on each line segment The emitting element is located on one chip, and multiple chips can be spliced to form the double cross.
  • the point cloud effect obtained by the arrangement of two emitting element groups in double concentric circles is the best, and the largest pore is relatively small.
  • the point cloud effect obtained by arranging one transmitting element in a circle and one on two opposite sides of a quadrilateral is slightly inferior (the point cloud pattern formed by a group of transmitting elements arranged in a quadrilateral is slightly worse than that of the arrangement The point cloud pattern formed by the circular emitting element group), but it is relatively easy to realize in the process.
  • the angle of view of the second scanning field of view in a direction parallel to the optical axis of the light source is equal to that of the first scanning field of view in a direction parallel to the optical axis of the light source. Twice the viewing angle in the direction of the optical axis of the light source.
  • the scanning field angle formed by the first optical module in the direction parallel to the optical axis of the light source is ⁇
  • the scanning field angle formed by the light pulse sequence 1 reflected by the second optical module in the direction parallel to the optical axis of the light source is also close to ⁇
  • the second optical module can be regarded as a mirror, and the influence of its refraction can be ignored, so it is equivalent to reflecting the light pulse sequence 1, and its field of view angle remains unchanged
  • the second optical module can be regarded as a refracting prism, that is, the light pulse forming the second scanning field of view is refracted twice by the first optical module and the second optical module before exiting, in order to avoid the second scanning field of view
  • the second scanning field of view is parallel to the optical axis of
  • the FOV of the first scanning field of view can be adjusted by adjusting the inclination angle of the light exit surface of the optical pulse sequence 1 in the second optical module, and can be adjusted by adjusting the inclination angle of the light exit surface of the optical pulse sequence 2 in the second optical module. Adjust the FOV of the second scan field of view.
  • the light source arrangement of the detection device shown in Figure 1(a) is shown in Figure 7(c), that is, the first emitting element group is arranged in a circle, and the second emitting element group is arranged in a circle.
  • the point cloud pattern formed in the first scanning field of view and the point cloud pattern formed in the second scanning field of view when the moving speed of the optical module in the detection device fluctuates with time and does not fluctuate with time.
  • (a) in Fig. 10 is a schematic diagram of the point cloud pattern formed in the first scanning field of view when the moving speed of the optical module does not fluctuate with time
  • FIG. 10 is a schematic diagram of the moving speed of the optical module fluctuating with time in the first Schematic diagram of the point cloud pattern formed by the scanning field of view
  • (c) in Figure 10 is a schematic diagram of the point cloud pattern formed in the second scanning field of view when the moving speed of the optical module does not fluctuate with time
  • (d) in Figure 10 is the point cloud pattern of the optical module Schematic diagram of the point cloud pattern formed by the movement speed fluctuating with time in the second scanning field of view.
  • the moving speed of the first optical module and the second optical module can adopt a high-low combination strategy, and the difference between the moving speed of the first optical module and the moving speed of the second optical module is not lower than the third preset speed.
  • the speed of the optical module with a smaller movement speed can be determined based on the frame rate of the point cloud pattern collected by the detection device. Assume that the rotation speed of the optical module with a smaller movement speed is V1, and the optical module with a greater movement speed The rotation speed is V2, then V1 can be determined by formula (2):
  • V1 1r*1/n*60+dv formula (2)
  • r represents the number of revolutions per minute
  • n represents the frame rate of the point cloud pattern collected by the detection device
  • dv represents the velocity fluctuation value.
  • the difference between the two moving speeds is not less than 1000rmp, that is, the third preset speed can be set to 1000rmp.
  • (a) and (b) in Figure 11 show that the rotational speed of the first optical module is 601rmp, and the moving speed of the second optical module is 7999rmp respectively, and the point cloud patterns formed in the first scanning field of view and the second scanning field of view Schematic diagram, (c) and (d) in Figure 11 are the point cloud patterns formed in the first scanning field of view and the second scanning field of view when the rotational speed of the first optical module is 601rmp, and the moving speed of the second optical module is 12999rmp respectively schematic diagram.
  • the moving speed of the first optical module and the second optical module can also adopt a high-high combination strategy, that is, the moving speed of the first optical module is not lower than the first The preset speed, the difference between the moving speed of the second optical module and the moving speed of the first optical module is not higher than the second preset speed.
  • the moving speed of the optical module with the lower moving speed among the first optical module and the second optical module is not less than 600rmp, that is, the first preset speed can be set to 600rmp.
  • the second preset speed can be determined based on the frame rate of the point cloud pattern collected by the detection device. Since the frame rate of the collected point cloud pattern of the detection device is about 10 Hz, therefore. In some embodiments, the second preset speed may be set to 600 rpm.
  • the point cloud pattern formed will be more uniform than that formed by the combination of high and low speeds.
  • the light source arrangement scheme adopted for the detection device shown in Figure 1(a) is shown in Figure 7(a), that is, the first emitting element group is arranged on two opposite sides of the quadrilateral, and the second When the two emitting element groups are arranged in a circle, the rotation speed of the first optical module is 601rmp, and the rotation speed of the second optical module is 7999rmp.
  • the point cloud pattern formed in the first scanning field of view (such as (a) in 12) and The point cloud pattern formed in the second scanning field of view (such as (b) in 12), and the point cloud pattern formed in the first scanning field of view when the rotation speed of the first optical module is 7399rmp and the rotation speed of the second optical module is 7999rmp (as in (c) in 12) and the point cloud pattern formed in the second scanning field of view (as in (d) in 12).
  • the detecting device includes at least two modes, the combinations of the moving speeds of the at least two optical modules are different in different modes, and the detecting device can be switched between the at least two modes.
  • the detection device is preset with multiple modes, for example, a combination of high and low speeds, a combination of high and high speeds, etc., wherein the combination of high and low speeds can include a combination of multiple speed values, and the combination of high and high speeds can also include multiple speeds.
  • the user can set the mode of the detection device based on the current application scenario.
  • the detection device can also automatically determine the currently applicable mode based on the current application scenario, and then automatically switch to this mode.
  • the point cloud formed in the first scanning field of view or the second scanning field of view may have large pores.
  • the installation method of the detection device can be adjusted based on the detection accuracy requirements of the mobile device equipped with the detection device in all directions, so that the direction of the scanning field of view with a larger hole in the point cloud pattern has a higher demand for detection accuracy. lower direction.
  • the aperture of the first scanning field of view formed by the first light pulse sequence may be relatively large. If the detection device is used on a car, since the areas above and below the car have low requirements for detection accuracy, a very dense point cloud is not required.
  • the area with a large gap in the point cloud of the first scanning field of view can be placed at the upper and lower positions of the FOV, so one detector can be placed on each side of the car according to the method shown in Figure 13, and one-sided hemispherical detection can be realized field of view.
  • the embodiment of the present application also provides a detection device, the detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a first optical module, a second optical module, a first driving module and a second driving module, and the first driving module is used to drive the first optical module to move so that The light pulse sequence of the optical module is emitted from the first angle range, and the second driving module is used to drive the movement of the second optical module, so that the light pulse sequence emitted from the first angle range changes the optical path through the second optical module Exit from at least one second angle range to form at least one scanning field of view; wherein, the difference between the moving speed of the first optical module and the moving speed of the second optical module is not higher than the first preset speed, so Neither the moving speed of the first optical module nor the moving speed of the second optical module is less than a second preset speed.
  • the moving speed of the first optical module is lower than the moving speed of the second optical module.
  • the second preset speed is determined based on the frame rate of the point cloud patterns collected by the detection device.
  • the embodiment of the present application also provides a detection device, which is characterized in that the detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a first optical module, a second optical module, a first driving module and a second driving module, and the first driving module is used to drive the first optical module to move so that The light pulse sequence of the optical module is emitted from the first angle range, and the second driving module is used to drive the movement of the second optical module, so that the light pulse sequence emitted from the first angle range changes the optical path through the second optical module Emitting from at least one second angle range to form at least one scanning field of view; wherein, the difference between the moving speeds of the first optical module and the second optical module is not lower than a first preset speed.
  • the embodiment of the present application also provides a detection device, the detection device includes a light source and a scanning module,
  • the light source is used to emit a sequence of light pulses
  • the scanning module includes a driving module and at least two optical modules, and the at least two optical modules move under the driving of the driving module, so that the light pulse sequence emitted by the light source changes through the at least two optical modules
  • the optical path is emitted from at least one angle range to form at least one scanning field of view; wherein, the detection device includes multiple modes, and the combinations of the movement speeds of the at least two optical modules are different in different modes, and the detection device It is possible to switch between the various modes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种探测装置,该探测装置包括光源(21)和扫描模组(22),光源(21)用于发射光脉冲序列;扫描模组(22)包括驱动模块和至少两个光学模块(221,222),至少两个光学模块(221,222)在驱动模块的驱动下运动,使得光源(21)发射的光脉冲序列经至少两个光学模块(221,222)改变光路后从至少一个角度范围出射,以在每个角度范围形成一个扫描视场;其中,至少两个光学模块(221,222)中的至少一个光学模块(221,222)的运动速度随时间波动,使得光脉冲序列在运动速度波动后形成的点云图案覆盖光脉冲序列在运动速度波动前形成的点云图案的孔隙。通过控制光学模块(221,222)的运动速度随时间波动,可以提升探测装置形成的点云图案的均匀度,使的点云图案中的孔隙更小,从而提升探测装置的探测精度。

Description

一种探测装置 技术领域
本申请涉及目标探测技术领域,具体而言,涉及一种探测装置。
背景技术
诸如激光雷达、毫米波雷达等探测装置广泛应用于无人机、无人驾驶汽车等领域。该类探测装置可以向外界环境发射光脉冲序列,并接收经外界环境反射回来的光脉冲序列,根据接收到的光脉冲序列对外界环境进行探测。为了保证探测装置的探测精度,通常希望探测装置发射的光脉冲序列的扫描轨迹形成的点云图案可以更加密集和均匀,避免点云图案中存在较大的孔隙,导致在探测过程中对于某些固定区域无法扫描到。因此,有必要对探测装置进行设计,使其形成更加均匀、孔隙更小的点云图案。
发明内容
有鉴于此,本申请提供一种探测装置。
根据本申请的第一方面,提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括驱动模块和至少两个光学模块,所述至少两个光学模块在所述驱动模块的驱动下运动,使得所述光源发射的光脉冲序列经所述至少两个光学模块改变光路后从至少一个角度范围出射,以在每个角度范围形成一个扫描视场;其中,所述至少两个光学模块中的至少一个光学模块的运动速度随时间波动,使得所述光脉冲序列在所述运动速度波动后形成的点云图案覆盖所述光脉冲序列在所述运动速度波动前形成的点云图案的孔隙。
根据本申请的第二方面,提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块的运动速度和所述第二光学模块的运动速度的差值不高于第一预设速度,所述第一光学模块的运动速度和所述第二光学模块的运动速度均不小于第二预设速度。
根据本申请的第三方面,提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块和所述第二光学模块的运动速度的差值不低于第一预设速度。
根据本申请的第四方面,提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括驱动模块和至少两个光学模块,所述至少两个光学 模块在所述驱动模块的驱动下运动,使得所述光源发射的光脉冲序列经过所述至少两个光学模块改变光路后从至少一个角度范围出射,以形成至少一个扫描视场;其中,所述探测装置包括多种模式,不同模式下所述至少两个光学模块的运动速度的组合方式不同,所述探测装置可在所述多种模式之间切换。
应用本申请提供的方案,在探测装置的结构固定后,为了让探测装置形成的点云图案尽可能分布均匀,孔隙较小,可以控制探测装置中的至少一个光学模块的运动速度随时间波动,使得探测装置中光源发射的光脉冲序列在光学模块的运动速度波动后形成的点云图案可以覆盖光脉冲序列在光学模块运动速度波动前形成的点云图案的孔隙,从而可以减小探测装置形成的点云图案的孔隙,提升探测装置的探测精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1(a)是本申请一个实施例的一种探测装置的示意图。
图1(b)是本申请一个实施例的一种探测装置形成的扫描视场的示意图。
图1(c)是本申请一个实施例的一种探测装置光源在水平方向排成一列时形成的点云图案示意图。
图2是本申请一个实施例的一种探测装置的结构示意图。
图3是本申请一个实施例的光源排布方式示意图。
图4是本申请一个实施例的光源排布方式示意图。
图5是本申请一个实施例的光源排布方式示意图。
图6是本申请一个实施例的两个发射元件组均排布成双同心圆的示意 图。
图7是本申请一个实施例的两个发射元件组的排布方式示意图以及对应的芯片封装示意图。
图8是本申请一个实施例的两个发射元件组的排布方式示意图以及芯片封装示意图。
图9是本申请一个实施例第一扫描视场和第二扫描视场的视场角大小关系示意图。
图10是本申请一个实施例光学模块的运动速度随时间波动以及光学模块的运动速度不随时间波动时形成的点云图案的示意图。
图11是本申请一个实施例采用高低转速组合时,随着转速较高的光学模块的运动速度增大,形成的点云图案的示意图。
图12是本申请一个实施例采用高高转速组合以及采用高低转速组合形成的点云图案的示意图。
图13是本申请一个实施例探测装置在汽车上的安装示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
诸如激光雷达、毫米波雷达等探测装置广泛应用于无人机、无人驾驶汽车等领域。该类探测装置可以向外界环境发射光脉冲序列,并接收经外界环境反射回来的光脉冲序列,根据接收到的光脉冲序列对外界环境进行探测。由于应用于无人机、无人驾驶汽车上的探测装置对探测精度和探测结果的准确度要求较高,因而,在对探测装置进行设计时,通常希望探测装置的光脉冲序列形成的点云图案可以覆盖更大的角度范围,且更加密集 和均匀,避免点云图案中存在较大孔隙,导致在探测过程中对于某些固定区域无法扫描到,因而这些固定区域内的对象无法被检测到,以至于漏检测,影响探测结果的准确度。比如,对于无人机和无人驾驶汽车,如果运动过程中某些固定区域无法扫描到,造成无法及时探测到这些区域的障碍物,容易出现安全事故。
探测装置的光脉冲序列形成的点云图案会受到很多因素的影响。比如,探测装置通常包括光源和扫描模组,光源用于发射光脉冲序列,扫描模组通常包括光学模块,用于改变光源发射的光脉冲序列的光路,使光脉冲序列在不同时刻从不同角度出射,从而形成扫描视场。通常光源的排布方式不一样,出射的光脉冲序列的形状也不一样,从而最终形成的点云图案也会不一样。此外,扫描模组中的光学模块用于改变光脉冲序列的光路,因而,光学模块的排布方式、光学模块的数量和类型、光学模块的运动方向以及运动速度等均会影响脉冲序列的出射方向,从而改变最终形成的点云图案。
当探测装置的内部结构固定后,比如,光源的排布方式固定、光学模块的数量、类型以及排布方式固定,如果要改变探测装置形成的点云图案,则可以通过调节扫描模组中的光学模块的运动速度实现。对于有些探测装置,其内部结构由于各种因素的限制,可能导致该探测装置形成的点云图案中存在较大的孔隙,使得孔隙对应的区域无法被扫描到,导致探测结果不准确。以图1(a)所示的探测装置为例,为了增大探测装置的扫描视场角,该探测装置包括光源、分光镜、准直元件、第一光学模块、第二光学模块、用于驱动第一光学模块运动的第一驱动模块(图中未示出)以及用于驱动第二光学模块运动的第二驱动模块(图中未示出)。其中,光源可以发射两种不同波长的光脉冲序列,光脉冲序列1和光脉冲序列2,光源发射的光脉冲序列透过分光镜后,可以由准直元件准直成平行光束,第一光学模块可以是楔形的扫描棱镜,该扫描棱镜在第一驱动模块的带动下可以绕着指定轴转动,并改变入射的光脉冲序列的出射方向,使其从第一角度 范围出射。第二光学模块包括分光面,该分光面可以反射光脉冲序列1,使得光脉冲序列1从第二角度范围出射,以形成一个环状的扫描视场1,如图1(b)所示,同时该分光面可以透射光脉冲序列2,使的光脉冲序2从第三角度范围出射,以在扫描视场1的中空处形成扫描视场2,如图1(b)所示。通过将不同波长的光脉冲序列分成多路,然后从不同的角度范围出射,可以形成不同的扫描视场,使得组合后的扫描视场的视场角更大。
但是对于该类探测装置,其形成的点云图案通常存在较大的孔隙。比如,以光脉冲序列1形成的点云图案为例,如图1(c)所示,如果发射光脉冲序列1的光源在水平方向上排成一列,则经第二光学模块反射后,光脉冲序列1形成的点云会是竖直方向上的一条直线,当第二光学模块旋转90°后,光脉冲序列1形成的点云则会是水平方向上的一条直线,扫描轨迹的这种变化方式会导致光脉冲序列1形成的点云图案在某些位置存在较大的孔隙。通过对光源的排布方式进行设计,可以一定程度减小点云图案中形成的最大孔隙,使点云图案分布更均匀,但是由于光源的排布也受到诸多因素的限制,可能实际采用的光源排布方案无法很好的解决点云图案分布不均匀,孔隙较大的问题。因此,可以调整扫描模组中的光学模块的运动策略,通过对光学模块的运动速度的调整,使得探测装置形成的点云图案分布尽可能均匀,最大孔隙尽可能小,以提升探测装置的探测精度。
基于此,本申请实施例提供了一种探测装置,如图2所示,为本申请一个实施例中的探测装置的示意图,需要指出的是,图2只是示意性的例子,本申请实施例提供的探测装置的结构不局限于图2。该探测装置包括光源21和扫描模组22,其中,光源21用于发射光脉冲序列,其中,光源可以发射一种波长的光脉冲序列,也可以发射多种波长的光脉冲序列,具体可以根据实际需求设计。扫描模组22包括驱动模块(图中未示出)和至少两个光学模块(如图中的221和222),其中,该至少两个光学模块可以是透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。该至少两个光学模块在驱动模块的驱 动下运动,使得光源发射的光脉冲序列经该至少两个光学模块改变光路后从至少一个角度范围出射,以在每个角度范围形成一个扫描视场。比如,该至少两个光学模块可以改变光脉冲序列的光路,使其从一个角度范围出射,形成一个扫描视场,也可以对光脉冲序列进行分光处理,分成多路光脉冲序列,然后从不同的角度范围出射,形成多个扫描视场。该至少两个光学模块的运动方式可以包括多种,比如,绕着某个轴旋转、振动或者其他的方式。该至少两个光学模块的运动方式可以一致,也可以不一致,比如,该至少两个光学模块可以朝着同一个方向转动,也可以朝着不同的方向转动,其运动速度可以一样,也可以不一样。
由于探测装置的内部结构固定后,其形成的点云图案可能会在某些固定的位置存在较大的孔隙,为了可以填补这些孔隙,让探测装置形成的点云图案的最大孔隙尽可能小,可以让该至少两个光学模块中的至少一个光学模块的运动速度随时间波动,其中,波动的方式可以根据具体需求设计,比如,可以是该至少两个光学模块中部分光学模块波动,也可以是全部光学模块均波动,每个光学模块的波动方式可以不一样,此外,该光学模块可以周期性地波动,也可以非周期性地波动,波动的幅度大小也可以根据实际需求设置,只要使得光学模块的运动速度波动后,光脉冲序列形成的点云图案可以覆盖该光脉冲序列在光学模块的运动速度波动前形成的点云图案的孔隙即可,本申请实施例不作限制。
在一些实施例中,该光学模块的运动速度可以在每采集一帧点云图案后发生一次波动,使得光源发射的光脉冲序列形成的相邻两帧点云图案中的后一帧点云图案可覆盖前一帧点云图案的孔隙。当然,也可以在未采集完一帧点云图案时光学模块的运动速度即发生波动,比如,使得后半帧点云数据形成的点云图案覆盖前半帧点云数据形成的点云图案的孔隙。
在一些实施例中,该光学模块的运动速度可以呈周期性的波动,比如,其运动速度可以呈正弦波动或余弦波动。比如,在一些场景中,该至少两个光学模块的运动方式可以是绕着指定的转动轴转动,则运动速度发生波 动的光学模块的转速与时间的关系可以采用公式(1)表示:
Figure PCTCN2021097338-appb-000001
其中,V为光学模块的实时速度,t为时间,V 0为光学模块的初始转速,A为光学模块的转速波动幅值,T为探测装置采集得到单帧扫描图案的时间。
在一些实施例中,该至少两个光学模块可以绕着指定轴转动,该运动速度包括该至少一个光学模块的转动速度,由于探测装置采集得到单帧扫描图案的时间一般较短,通常为0.1s。由于控制光学模块转动的电机的控制精度有限,故要在该范围内实现比较准确的转速波动控制时,光学模块的转动速度的波动幅值不能太大,一般转动速度的波动幅度不超过500rmp。
在一些实施例中,每个光学模块可以对应一个驱动模块,该驱动模块可以用于驱动该光学模块运动,该至少一个光学模块的运动速度随时间波动可以通过控制该光学模块对应的驱动模块实现。其中,驱动模块可以驱动电机等可以带动光学模块运动的装置。
在一些实施例中,该探测装置可以搭载于云台上,因而,该至少一个光学模块的运动速度随时间波动也可以通过控制云台的运动实现,比如,可以通过控制云台的运动随时间波动,使得光学模块最终的运动速度随时间波动。比如,假设探测装置形成的点云图案在某些固定的位置会存在较大的孔隙,因而可以通过调整云台运动,使得探测装置发射的光脉冲序列可以对孔隙部分进行再次扫描,对孔隙进行填补。
在一些实施例中,探测装置中的至少两个光学模块的运动速度波动策略可以预先设置,即探测装置的内部结构设定好,其波动策略也设定好,或者出厂时其波动策略即固定下来。其中,该运动速度波动策略可以用于指示以下信息中的一种或者多种:是否控制该至少两个光学模块的运动速度波动、或者该至少两个光学模块中哪个光学模块的运动速度可以设置成随时间波动,或者该至少两个光学模块的运动速度的波动方式,比如,呈 正弦波动还是余弦波动,或者该至少两个光学模块的运动速度的波动幅度。上述波动策略均可以预先基于探测装置的光源排布方式、探测装置的应用场景等因素确定。比如,假设探测装置的采用某种光源排布方式后,其形成的点云图案分布已经很均匀,孔隙较小,那么则无需采用波动策略。而探测装置采用某种光源排布方式后,形成的点云图案分布存在较大孔隙,则可以采用波动策略。此外,也可以基于探测装置的应用场景确定是否采用波动策略,比如,该探测装置应用于对探测精度要求较高的场景,则可以采用波动策略,如果用于对探测精度要求不高的场景,则可以不采用波动策略。
在一些实施例中,为了使得运动速度波动策略的采用可更加智能化,该探测装置也可以根据当前的应用场景实时确定是否采用运动速度波动策略,比如,探测装置可以根据当前的应用场确定是否需要控制光学模块的运动速度随时间波动,在判定需要的时候,才会控制运动速度随时间波动。举个例子,假设探测装置用于无人机,无人机处于不同环境下,其对探测精度需求也会不一样。比如,在比较空旷的高空飞行时,其对探测精度要求较低,因而此时可以不采用运动速度波动策略。而在丛林或者障碍物分布较多的场景,对探测精度要求较高,因而可以开启运动速度波动策略。
为了可以增大探测装置的扫描视场角,光源可以发射多种不同波长的光脉冲序列,通过光学模块将不同波长的光脉冲序列分光成多路光脉冲,并从不同的角度范围出射,以形成多个不同的扫描视场,通过多个扫描视场组合,即可以得到更大的扫描视场角。在一些实施例中,该光源用于发射第一波长的光脉冲序列和第二波长的光脉冲序列,其中,第一波长的光脉冲序列经光学模块改变光路后形成环状的第一扫描视场,以及第二波长的光脉冲序列经光学模块改变光路后在第一扫描视场的中空处形成第二扫描视场。
在一些实施例中,该探测装置包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,其中,第一驱动模块用于驱动第一光学模块 运动,以使经过第一光学模块的光脉冲序列从第一角度范围出射,第二驱动模块用于驱动第二光学模块运动,以使从第一角度范围出射的光脉冲序列经第二光学模块改变光路后从两个不同的第二角度范围出射,形成第一扫描视场和第二扫描视场。
在一些实施例中,该至少两个光学模块包括分光面,如图1(a)所示,该分光面用于反射第一波长的光脉冲序列,以使第一波长的光脉冲序列从一个角度范围出射,形成第一扫描视场,同时,该分光面可以透射第二波长的光脉冲序列,以使第二波长的光脉冲序列从另一个角度范围出射,形成第二扫描视场。
在一些实施例中,第一光学模块可以是具有不平行的光出射面和光入射面的扫描棱镜,位于光源发射的光脉冲序列的光路上,在第一驱动模块带动该扫描棱镜旋转时,能够使得经过该扫描棱镜的光脉冲序列形成扫描视场。
在一些实施例中,第二光学模块可以是棱镜组件,该棱镜组件包括相互固定的第一棱镜和第二棱镜,分光面位于第一棱镜和第二棱镜之间,探测装置还包括用于带动该棱镜组件旋转的第二驱动模块,在第二驱动模块带动该棱镜组件旋转的过程中,第一波长的光脉冲序列经第一棱镜反射和折射后形成第一扫描视场,第二波长的光脉冲序列经第一棱镜折射、经第二棱镜透射和折射后形成第二扫描视场。其中,两个棱镜的固定方式可以根据实际需求选择,比如,在一些实施例中,可以将两个棱镜通过胶合的方式固定,即在两个棱镜的贴合面中加入胶黏剂等粘结剂将两个棱镜贴合,当然,也可以采用其他的固定方式,本申请实施例不作限制。两个棱镜可以无缝贴合,或者两个棱镜贴合面处也可以填充空气或者其他的材料。
在一些实施例中,第一棱镜的一个表面与第二棱镜的一个表面贴合,该分光面位于第一棱镜和第二棱镜相贴合处。在一些实施例中,可以采用二向色膜对不同波长的光脉冲序列进行分光,分光面可以是镀有二向色膜的光学面,比如,第二光学模块由两个棱镜相互固定得到的场景,该分光 面可以是贴合面,该分光面可以包括二向色膜,比如,可以在两个棱镜贴合面处镀一层二向色膜。二向色膜可以实现对不同波长范围的光脉冲序列的选择性透过或选择性反射,从而可以将至少一种波长范围的光脉冲序列反射,并经其中一个棱镜折射后从一个角度范围出射,将其余的光脉冲序列透射,并经另一个棱镜折射后从另一个角度范围出射。
光源的排布方式也是影响探测装置形成的点云图案的一大因素。目前的探测装置如果要达到较大的扫描视场,以及较高的角度分辨率,一般需要通过堆叠较多的激光器来实现,成本较高,且形成点云图案孔隙比较大,存在一些固定的区域无法扫描到。为了实现探测装置可以得到分布比较均匀、孔隙比较小的点云图案,也可以同时对光源的排布方式进行设计,以在使用尽可能少的光源的情况下,得到更为均匀的点云图案,提高探测装置的探测精度。
在一些实施例中,光源可以包括至少一个发射元件组,每个发射元件组用于发射一种波长的光脉冲序列,其中,每个发射元件可以包括多个发射元件,这多个发射元件可以用于发射同一种波长的光脉冲序列,在探测装置的探测过程,这多个发发射元件可以同时发射光脉冲序列,也可以分时发送光脉冲序列,本申请实施例不作限制。本申请实施例中的同一种波长的光脉冲序列是指多个发射元件发射的光脉冲序列的波长在一定的波长范围内,比如,假设光脉冲序列的波长为800nm,则每个发射元件组内的多个发射元件发射的光脉冲的波长可以是800nm±10nm。其中,发射元件组的数量可以是一个或者多个,在一些场景,可以只采用一种波长的光脉冲序列,在一些场景,也可以采用2种或2种以上波长的光脉冲序列,可以基于波长的不同将光脉冲序列分成2路或者多路光脉冲,使得每路光脉冲从不同的角度范围出射,从而形成不同的扫描视场。
对于探测装置形成的点云图案,通常希望其点云点分布越均匀,点云图案中形成最大孔隙尽可能小,避免出现大面积区域无法探测到。目前的探测装置,大多采用将多个发射元件堆叠排布的方式,即多个发射元件排 成一列,比如,在水平方向排成一列,或者在竖直方向上排成一列,这种排列方式会导致探测装置中的光学模块在旋转过程中,形成的点云图案在某些位置上会出现较大的孔隙,导致无法探测到孔隙对应的区域。申请人经过大量的试验发现,当每个发射元件组中的多个发射元件在相互垂直的第一方向和第二方向上均错开排布时,可以减少形成的点云图案中的最大孔隙。其中,第一方向和第二方向可以是相互垂直的任意方向,比如,可以是水平方向和竖直方向,当然,也可以是其他方向。每个发射元件组的多个发射元件在第一方向和第二方向上错开排布,是指多个发射元件不能只排布成一条直线,比如,每个发射元件组的所有发射元件排成一条水平的直线,或者每个发射元件组的所有发射元件排成一条竖直的直线,或者每个发射元件组的所有发射元件排成一条斜线,多个发射元件至少在两个相互垂直的方向上会错开排布。如图3所示,多个发射元件不论在水平方向还是竖直方向均错开排布,即水平方向上至少有两个发射元件的位置存在偏移(偏移量△x),竖直方向上也至少有两个发射元件的位置存在偏移(偏移量△y),而不是呈一条直线排布。
在一些实施例中,发射元件可以是激光器,该激光器可以选用垂直腔面激光器(VCSEL),因为垂直腔面激光器中各激光器的排布图案可以定制,且出光孔可密集排列,比较便于设计其排布方式。
通常探测装置的扫描点云图案中的孔隙与光源中发射元件之间的间隔和光学模块的焦距有关,发射元件之间的间隔越小,形成的点云团案的孔隙也会越小。在设计光源中每个发光元件组的多个发射元件的排布方式时,多个发射元件在相互垂直的两个方向上均需错开排布,多个发射元件不能仅排布成一条直线。并且,经申请人大量试验发现,多个发射元件组中相邻的两个发射元件在第一方向上的位置偏移量与该相邻的两个发射元件在第二方向上的位置偏移量应尽可能接近,探测装置形成的点云图案才会比较均匀,最大孔隙会比较小,如图4所示,相邻两个发射元件在水平方向的位置偏移量为△x,相邻两个发射元件在水平方向的位置偏移量为△y,△x 和△y比较接近时,形成的点云图案的最大孔隙较小。因此,在一些实施例中,多个发射元件组中相邻的两个发射元件在第一方向上的位置偏移量与该相邻的两个发射元件在第二方向上的位置偏移量的差值小于预设阈值。
在一些实施例中,每个发射元件组中相邻的两个发射元件在第一方向上的位置偏移量与该相邻的两个发射元件在第二方向上的位置偏移量可以相等,以便探测装置形成的点云图案的孔隙尽可能小。
在一些实施例中,每个发射元件组中的多个发射元件也可以排布成多列,比如,在第一方向上排成一列或者多列,同时在第二方向上也排布成一列或者多列,如图3中(a)所示的情况下,这种情况下,每个发射元件组中在第一方向上相邻的两个发射元件在第一方向上的位置偏移量与该多个发射元件中在第二方向上相邻的两个发射单元在第二方向上的位置偏移量可以相等,以便探测装置形成的点云图案的孔隙尽可能小。
在一些实施例中,为了让点云图案分布尽可能均匀,孔隙尽可能小,每个发射元件组中的多个发射元件在第一方向上形成的最大位置偏移量与该多个发射元件在第二方向上形成的最大位置偏移量相等。比如,如图5所示,图5中的(a)和(b)中发射元件在水平方向的最大位置偏移量△x max与发射元件在竖直方向上的最大位置偏移量△y max相等。
在一些实施例中,为了形成分布比较均匀、最大孔隙较小的点云图案。每个发射元件组中的多个发射元件可以排布成阵列,比如,排布成矩阵阵列或者其他多边形阵列,但是这种方式需消耗较多的发射元件,成本较高。在一些实施例中,为了可以实现使用较少的发射元件即可以形成分布较均匀、孔隙较小的点云图案,每个发射元件组中的多个发射元件可以等间距地排布在一个等边多边形的边上。比如,多个发射元件可以等间距地排布在等边三角形、等边四边、等边六边形的边上,通过此种排布方式,可以在使用较少的发射元件的情况下,形成分布比较均匀、最大孔隙较小的点云图案。
在一些实施例中,光源包括第一发射元件组和第二发射元件组,第一 发射元件组用于发射第一波长的光脉冲序列,第二发射元件组用于发射第二波长的光脉冲序列,第一发射元件组和第二发射元件组中的任一个发射元件组中的多个发射元件在相互垂直的第一方向和第二方向上均错开排布。
对于如图1所示的探测装置,如果第一发射元件组或者第二发射元件组排布成一列,则第一光脉冲序列和第二光脉冲序列形成的点云图案会出现比较大的孔隙,严重影响探测精度。所以,在一些实施例中,第一发射元件组和/或第二发射元件组可以排布成以下形状中的一种:圆形、平行的双直线、四边形和十字形。比如,第一发射元件组可以排布成圆形,第二发射元件组偏布成十字形,或者第一发射元件组和第二发射元件组均排布成圆形等等。其中,发射元件组排布成圆形时的点云图案效果最佳。此外,由于发射元件大多采用半导体激光器,半导体激光器通常是从芯片衬底长出,而芯片的价格通常比较昂贵,为了可以在尽可能小的面积内即可以完成两个发射元件组中的发射元件的排布,节约成本,同时也减小光源的体积,两个发射元件组中的多个发射元件在排布时,可以考虑使其尽可能紧凑,占用的面积尽可能小。
为了便于对本申请实施例中的光源排布方案进行介绍,本申请说明书附图中,采用“*”表示第一发射元件组中的发射元件,“o”表示第二发射元件组中的发射元件。每个虚线矩形框表示承载发射元件的一个芯片。
在一些实施例中,第一发射元件组与第二发射元件组呈双同心圆排布,该双同心圆中的每个同心圆的边由其中一个发射元件组中的多个发射元件排布形成。比如,如图6中(a)所示,第一发射元件组中的发射元件可以等间距地排布在一个同心圆的边上,第二发射元件组中的发射元件可以等间距地排布在另一个同心圆的边上。当然,两个发射元件组中具体哪个发射元件组排布成内部圆环,哪个排布成外部圆环可以根据实际需求确定,对其形成的点云图案影响不大。其中,两个发射元件组呈双同心圆排布时,其形成的点云图案效果最好,分布较为均匀,且点云图案中的最大孔隙也比较小。
当光源采用不同的排布方式排布时,如何对光源的芯片进行封装也是工程实现中必须考虑的一个问题。在一些实施例中,当第一发射元件组与第二发射元件组呈双同心圆排布时,第一发射元件组中的多个发射元件和第二发射元件组中的多个发射元件可以位于同一个芯片上,比如,发射元件可以是半导体激光器,可以在同一芯片衬底生长不同波长的半导体激光器,以形成发射两种不同波长的光脉冲序列的两个发射元件组,但是该方法对工艺要求较高。
在一些实施例中,当第一发射元件组与第二发射元件组呈双同心圆排布时,第一发射元件组和第二发射元件组位于两个不同的芯片上,比如,第一发射元件组的多个发射元件位于一个芯片上,第二发射元件组的多个发射元件位于另一个芯片上,两个芯片可以通过在轴向上堆叠的方式进行封装。当然,为了避免出现离焦效应,两个芯片的厚度应尽可能薄一些,避免两个发射元件组的发射元元件的发光点位于不同的平面,使得经探测装置的光学模块折射后出现离焦现象。当然,采用这种方式进行芯片的封装时,考虑到芯片的材质硅片有金相,只能按矩形划开,因此,双同心圆中内部圆环的直径不能超过外部圆环最大内接正方形的边长。
当然,第一发射元件组与第二发射元件组呈双同心圆排布,探测装置形成的点云效果较好,形成的孔隙较小,但是排布成圆形会占用较大的面积,即要求发射元件组的芯片面积较大,导致成本比较高。所以,在一些实施例中,第一发射元件组和第二发射元件组中的其中一个发射元件组的多个发射元件排布在一个圆的边上,另一个发射元件组中的多个发射元件排布在一个四边形的至少两条边上。比如,可以是第一发射元件组中的多个发射元件等间距地排布在圆边上,第二发射元组中的多个发射元件等间距排布在四边形的至少两条边上,比如,可以是四边形的两条对边,也可以是四边形的四条边均排布。当然,也可以是第一发射元件组中的多个发射元件等间距地排布在四边形的至少两条边上,第一发射元组中的多个发射元件等间距排布在圆的边上。在一些实施例中,该四边形可以位于圆内, 如图7中(a)所示,第一发射元件组的多个发射元件可以等间距的排布在四边形的两条对边上,第二发射元件组的多个发射元件可以等间距排布在圆的边上,四边形可以位于圆内。在一些实施例中,该圆可以位于四边形内,如图中7(b)所示,第一发射元件组的多个发射元件可以等间距的排布在四边形的两条对边上,第二发射元件组的多个发射元件可以等间距排布在圆的边上,其中四边形可以在圆外。当然,在一些实施例中,也可以是第二发射元件组的多个发射元件可以等间距的排布在四边形的两条对边上,第一发射元件组的多个发射元件可以等间距排布在圆的边上,如图7中(c)所示。其中,将第一发射元件组或者第二发射元件组排布在四边形的至少两条边上时,其发射的光脉冲形成的点云图案相比于排布成圆形形成的点云图案的效果略差些,但是制备工艺相对较容易实现。
在一些实施例中,如果第一发射元件组和第二发射元件组中的其中一个发射元件组排布在一个圆的边上,另一个发射元件组中排布在一个四边形的至少两条边上,且该圆位于四边形内,那么在进行芯片封装时,可以采用如图7中(d)所示的封装方案,即排布在圆的边上的多个发射元件可以位于一个第一芯片上,排布在该四边形的每条边上的多个发射元件分别位于一个第二芯片上,然后将第二芯片封装在第一芯片的周围。比如,如果一个发射元件组排布在四边形的两条对边上,则每条对边上的发射元件可以位于一个第二芯片上,两个第二芯片可以位于第一芯片的两侧。当然,如果发射元件组排布在四边形的四条边上,则可以采用四个第二芯片,四个第二芯片可以位于第一芯片的四周。
在一些实施例中,如果第一发射元件组和第二发射元件组中的其中一个发射元件组排布在一个圆的边上,另一个发射元件组中排布在一个四边形的至少两条边上,且该四边形位于圆内,即该四边形将圆分割成两段圆弧,那么在进行芯片封装时,可以采用如图7中(e)所示的封装方案,排布在该四边形的边上的多个发射元件均可以位于一个第三芯片上,排布在该圆的两段圆弧中的每段圆弧上的多个发射元件可以分别位于一个第四芯 片上,李两个第四芯片封装于在第三芯片的两侧。
在一些实施例中,第一发射元件组和第二发射元件组中的其中一个发射元件组中的多个发射元件排布成十字形,另一个发射元件组中的多个发射元件排布成十字形或者四边形。比如,第一发射元件组和第二发射元件组可以呈双十字排布,即第一发射元件组中的多个发射元件组排布成一个十字,第二发射元件组中的多个发射元件排布成另一个十字,两个十字的中心可以错开,但边可以存在交叠,如图8中(a)所示。在一些实施例中,可以有一个发射元件组排布成十字,另一个发射元件组排布在四边形的至少两条边上,如图8中(b)所示,第一发射元件组的多个发射元件可以等间距排布在四边形的两条对边上,第二发射元件组的多个发射元件可以排布成十字形。
在一些实施例中,如果第一发射元件组和第二发射元件组排布成十字或四边形时,该十字形或四边形被分割成多条线段,因而,可以让每条线段上的发射元件位于一个芯片上,从而组成十字形或者四边形。如图8中(c)所示,为第一发射元件组和第二发射元件组排布成双十字时,芯片的封装示意图,两个双十字可以分成多个条线段,每条线段上的发射元件位于一个芯片上,多个芯片可以拼接成该双十字。
上述多种光源排布方案中,两个发射元件组排布成双同心圆得到的点云效果最佳,最大孔隙比较小。一个发射元件排布成圆形,一个排布在四边形的两条对边上的排布方式得到的点云效果稍逊色(排布成四边形的发射元件组形成的点云图案略差于排布成圆形的发射元件组形成的点云图案),但是工艺上比较容易实现。
在一些实施例中,为了让探测装置形成的点云图案的孔隙尽可能小,第二扫描视场在平行于所述光源的光轴方向的视场角为所述第一扫描视场在平行于所述光源的光轴方向的视场角的2倍。以图1(a)所示的探测装置为例,如图9所示,假设第一光学模块在平行于光源的光轴方向(图1(a)中的竖直方向)的扫描视角为θ,则当光脉冲序列1形成的第一扫描 视场在平行于光源的光轴方向的视场角FOV≈θ,光脉冲序列2形成的第二扫描视场在平行于光源的光轴方向的视场角FOV≈2θ,才可使第二扫描视场中心无空洞,减小形成的点云图案的孔隙。由于第一光学模块在平行于光源的光轴方向形成的扫描视场角为θ,那么经第二光学模块反射后的光脉冲序列1在平行于光源的光轴方向形成的扫描视场角也接近θ(可以将第二光学模块看成反射镜,忽略其折射的影响,因而,相当于将光脉冲序列1反射,其视场角不变),而对于经第二光学模块透射的光脉冲序列2,可以将第二光学模块看成一个折射棱镜,即形成第二扫描视场的光脉冲是经第一光学模块和第二光学模块两次折射后出射的,为了避免第二扫描视场的中心出现较大的空洞,第二光学模块对光脉冲序列的偏折作用应当与第一光学模块对光脉冲序列的偏折能力一致,因此,第二扫描视场在平行于光源的光轴方向形成的扫描视场角接近2θ。
在一些实施例中,θ≥45°。在实际设计中,可通过调整第二光学模块中光脉冲序列1的出光面的倾斜角度来调整第一扫描视场的FOV,通过调第二光学模块中光脉冲序列2的出光面倾斜角度来调整第二扫描视场的FOV。
如图10所示,为图1(a)所示的探测装置的光源排布如图7中(c)所示,即第一发发射元件组排布成圆形,第二发射元件组排布在四边形两条对边上时,探测装置中光学模块的运动速度随时间波动以及不随时间波动时在第一扫描视场形成的点云图案和在第二扫描视场形成的点云图案。其中,图10中(a)为光学模块的运动速度不随时间波动在第一扫描视场形成的点云图案示意图,其中,图10中(b)为光学模块的运动速度随时间波动在第一扫描视场形成的点云图案示意图,图10中(c)为光学模块的运动速度不随时间波动在第二扫描视场形成的点云图案示意图,其中,图10中(d)为光学模块的运动速度随时间波动在第二扫描视场形成的点云图案示意图。从图10中可知,光学模块运动速度随时间波动对第一扫描视场的点云效果的改善有限,但对第二扫描视场的点云效果具有明显的改善效果。
申请人经过大量试验发现,当探测装置为具有图1(a)所示的结构或 者类似结构时,第二光学模块的运动速度大于第一光学模块的运动速度,得到的点云图案分布较均匀,最大孔隙较小,具有较好的效果。所以,在一些实施例中,第二光学模块的运动速度大于第一光学模块的运动速度。
在一些实施例中,第一光学模块和第二光学模块的运动速度可以采用高低组合的策略,第一光学模块的运动速度和第二光学模块的运动速度的差值不低于第三预设速度。其中,两个光学模块中运动速度较小的光学模块的速度可以基于探测装置采集点云图案的帧率确定,假设运动速度较小的光学模块的转动速度为V1,运动速度较大的光学模块的转动速度为V2,则V1可以通过公式(2)确定:
V1=1r*1/n*60+dv   公式(2)
其中,r表示每分钟转动的圈数,n表示探测装置采集点云图案的帧率,dv表示速度波动值。
在一些实施例中,第一光学模块和第二光学模块的运动速度采用高低组合的策略时,两者的运动速度差值不小于1000rmp,即第三预设速度可以设置为1000rmp。
在探测装置采用高低转速组合时,速度较大的光学模块的运动速度越大,得到的点云图案分布会更均匀。如图11所示,为图1(a)所示的探测装置排布成双同心圆(如图6)时,且第一光学模块的转速固定,第二光学模块的运动速度依次增大时,在第一扫描视场和第二扫描视场形成的点云图案示意图。其中,图11中(a)和(b)为第一光学模块的转速为601rmp,第二光学模块的运动速度分别为7999rmp,在第一扫描视场和第二扫描视场形成的点云图案示意图,图11中(c)和(d)为第一光学模块的转速为601rmp,第二光学模块的运动速度分别为12999rmp,在第一扫描视场和第二扫描视场形成的点云图案示意图。
在一些实施例中,为了得到效果较好的点云图案,第一光学模块和第二光学模块的运动速度也可以采用高高组合的策略,即第一光学模块的运动速度不低于第一预设速度,第二光学模块的运动速度与第一光学模块的 运动速度的差值不高于第二预设速度。
在一些实施例中,第一光学模块和第二光学模块中运动速度较小的光学模块的运动速度不小于600rmp,即第一预设速度可以设置为600rmp。
在一些实施例中,第二预设速度可以基于根据探测装置采集点云图案的帧率确定。由于通常探测装置的采集点云图案的帧率为10Hz左右,因而。在一些实施例中,第二预设速度可以设置为600rmp。
采用高高转速组合时,形成的点云图案会比采用高低转速组合形成的点云图案更加均匀。如图12所示,为图1(a)所示的探测装置采用的光源排布方案如图7中(a)所示,即第一发射元件组排布在四边形的两条对边,第二发射元件组排布成圆形时,第一光学模块的转速为601rmp,第二光学模块的转速为7999rmp,在第一扫描视场形成的点云图案(如12中(a))和在第二扫描视场形成的点云图案(如12中(b)),以及第一光学模块的转速为7399rmp,第二光学模块的转速为7999rmp时,在第一扫描视场形成的点云图案(如12中(c))和在第二扫描视场形成的点云图案(如12中(d))。
在一些实施例中,该探测装置包括至少两种模式,不同模式下该至少两个光学模块的运动速度的组合方式不同,该探测装置可在该至少两种模式之间切换。比如,该探测装置预先设置多种模式,比如,高低转速组合、高高转速组合等多种模式,其中,高低转速组合可以包括多种转速值的组合,高高转速组合也可以包括多种转速值的组合,在使用过程中,用户可以基于当前的应用场景设置探测装置的模式,当然,探测装置也可以基于当前的应用场景自动确定当前适用的模式,然后自动切换至该模式。
由于光源采用不同的排布方式,以及光学模块采用不同的转速组合时,在第一扫描视场或第二扫描视场形成的点云均可能会出现孔隙较大的问题,为了尽量提高探测装置的探测精度,在实际使用中,可以基于搭载探测装置的移动设备对各个方向的探测精度的需求来调整探测装置的安装方式,使得形成点云图案孔隙较大的扫描视场朝向对探测精度需求较低的方向。 比如,假设光源采用如图7中(a)所示的排布方式时,即第一发射元件组排布在四边形的两太对边,第二发射元件组排布成圆,此种情况下,第一光脉冲序列形成的第一扫描视场的孔隙可能会比较大,如果将探测装置用于汽车上,由于汽车上方与下方的区域对探测精度需求较低,不需要非常密集的点云,故可将第一扫描视场点云空隙较大的区域放在FOV上下位置,因而可以按照图13所示的方式,在汽车的两侧各放置一个探测,即可实现单侧半球形检测视场。
此外,本申请实施例还提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块的运动速度和所述第二光学模块的运动速度的差值不高于第一预设速度,所述第一光学模块的运动速度和所述第二光学模块的运动速度均不小于第二预设速度。
在一些实施例中,所述第一光学模块的运动速度小于所述第二光学模块的运动速度。
在一些实施例中,所述第二预设速度基于所述探测装置采集的点云图案的帧率确定。
此外,本申请实施例还提供一种探测装置,其特征在于,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经 过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块和所述第二光学模块的运动速度的差值不低于第一预设速度。
此外,本申请实施例还提供一种探测装置,所述探测装置包括光源和扫描模组,
所述光源用于发射光脉冲序列;
所述扫描模组包括驱动模块和至少两个光学模块,所述至少两个光学模块在所述驱动模块的驱动下运动,使得所述光源发射的光脉冲序列经过所述至少两个光学模块改变光路后从至少一个角度范围出射,以形成至少一个扫描视场;其中,所述探测装置包括多种模式,不同模式下所述至少两个光学模块的运动速度的组合方式不同,所述探测装置可在所述多种模式之间切换。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变 之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种探测装置,其特征在于,所述探测装置包括光源和扫描模组,
    所述光源用于发射光脉冲序列;
    所述扫描模组包括驱动模块和至少两个光学模块,所述至少两个光学模块在所述驱动模块的驱动下运动,使得所述光源发射的光脉冲序列经所述至少两个光学模块改变光路后从至少一个角度范围出射,以在每个角度范围形成一个扫描视场;其中,所述至少两个光学模块中的至少一个光学模块的运动速度随时间波动,使得所述光脉冲序列在所述运动速度波动后形成的点云图案覆盖所述光脉冲序列在所述运动速度波动前形成的点云图案的孔隙。
  2. 根据权利要求1所述的探测装置,其特征在于,所述光脉冲序列形成的相邻两帧点云图案中的后一帧点云图案可覆盖前一帧点云图案的孔隙。
  3. 根据权利要求1所述的探测装置,其特征在于,所述运动速度呈周期性的波动。
  4. 根据权利要求3所述探测装置,其特征在于,所述运动速度呈正弦波动或余弦波动。
  5. 根据权利要求1-4任一项所述的探测装置,其特征在于,所述运动速度包括所述至少一个光学模块的转动速度,所述转动速度的波动幅度不超过500rmp。
  6. 根据权利要求1-5任一项所述的探测装置,其特征在于,所述至少一个光学模块的运动速度随时间波动通过控制所述驱动模块实现;或
    所述探测装置搭载于云台,所述至少一个光学模块的运动速度随时间波动通过控制所述云台的运动实现。
  7. 根据权利要求1-6任一项所述的探测装置,其特征在于,所述探测装置还用于:
    基于所述探测装置的应用场景确定是否控制所述运动速度随时间波动;
    如果是,则控制所述运动速度随时间波动。
  8. 根据权利要求1-6任一项所述的探测装置,其特征在于,所述至少两 个光学模块的运动速度波动策略基于所述探测装置的光源排布方式和所述探测装置的应用场景确定,所述运动速度波动策略用于指示以下一种或多种信息:是否控制所述至少两个光学模块的运动速度波动、所述至少两个光学模块的运动速度的波动方式、所述至少两个光学模块的运动速度的波动范围。
  9. 根据权利要求1-8任一项所述的探测装置,其特征在于,所述光源用于发射第一波长的光脉冲序列和第二波长的光脉冲序列,其中,所述第一波长的光脉冲序列经所述光学模块改变光路后形成环状的第一扫描视场,以及所述第二波长的光脉冲序列经所述光学模块改变光路后在所述第一扫描视场的中空处形成第二扫描视场。
  10. 根据权利要求9所述的探测装置,其特征在于,所述探测装置包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从两个不同的第二角度范围出射,形成所述第一扫描视场和所述第二扫描视场。
  11. 根据权利要求10所述的探测装置,其特征在于,所述第二光学模块包括分光面,用于透射所述第二波长的光脉冲序列,以形成所述第二扫描视场,以及用于反射所述第一波长的光脉冲序列,以形成所述第一扫描视场。
  12. 根据权利要求11所述的探测装置,其特征在于,所述第二光学模块包括棱镜组件,所述棱镜组件包括相互固定的第一棱镜和第二棱镜,所述分光面位于所述第一棱镜和所述第二棱镜之间;所述第二驱动模块带动所述棱镜组件旋转时,所述第一波长光脉冲序列经所述第一棱镜反射和折射后形成第一扫描视场,所述第二波长光脉冲序列经所述第一棱镜折射、经所述第二棱镜透射和折射后形成第二扫描视场。
  13. 根据权利要求12所述的探测装置,其特征在于,所述第一棱镜的一个表面与所述第二棱镜的一个表面贴合,所述分光面位于所述第一棱镜和所述第二棱镜相贴合处。
  14. 根据权利要求10-13任一项所述的探测装置,其特征在于,所述第一光学模块包括具有不平行的光出射面和光入射面的扫描棱镜,位于所述光脉冲序列的光路上,所述第一驱动模块带动所述扫描棱镜旋转时,能够使得经过所述扫描棱镜的光脉冲序列形成扫描视场。
  15. 根据权利要求10-14任一项所述的探测装置,其特征在于,所述第二光学模块的运动速度大于所述第一光学模块的运动速度。
  16. 根据权利要求10-15任一项所述的探测装置,其特征在于,所述第一光学模块的运动速度不低于第一预设速度,所述第二光学模块的运动速度与所述第一光学模块的运动速度的差值不高于第二预设速度。
  17. 根据权利要求16所述的探测装置,其特征在于,所述第二预设速度基于所述探测装置采集点云图案的帧率确定。
  18. 根据权利要求17所述的探测装置,其特征在于,所述第二预设速度为600rmp。
  19. 根据权利要求16-18任一项所述的探测装置,其特征在于,所述第一预设速度为600rmp。
  20. 根据权利要求10-15任一项所述的探测装置,其特征在于,所述第一光学模块的运动速度和所述第二光学模块的运动速度的差值不低于第三预设速度。
  21. 根据权利要求20所述的探测装置,其特征在于,所述第三预设速度为1000rmp。
  22. 根据权利要求1-21任一项所述的探测装置,其特征在于,所述探测装置包括至少两种模式,不同模式下所述至少两个光学模块的运动速度的组合方式不同,所述探测装置可在所述至少两种模式之间切换。
  23. 根据权利要求9所述的探测装置,其特征在于,所述光源包括第一发射元件组和第二发射元件组,所述第一发射元件组用于发射所述第一波长的光脉冲序列,所述第二发射元件组用于发射所述第二波长的光脉冲序列,所述第一发射元件组和所述第二发射元件组中的任一个发射元件组中的多个 发射元件在相互垂直的第一方向和第二方向上均错开排布。
  24. 根据权利要求23所述的探测装置,其特征在于,所第一发射元件组和/或所述第二发射元件组排布成以下形状中的一种:圆形、平行的双直线、四边形和十字形。
  25. 根据权利要求23所述的探测装置,其特征在于,所述第一发射元件组与所述第二发射元件组排布成双同心圆,每个同心圆的边由一个发射元件组中的多个发射元件排布形成。
  26. 根据权利要求23所述的探测装置,其特征在于,所述第一发射元件组和所述第二发射元件组中的其中一个发射元件组的多个发射元件排布在一个圆的边上,另一个发射元件组中的多个发射元件排布在一个四边形的至少两条边上。
  27. 根据权利要求23所述的探测装置,其特征在于,所述第一发射元件组和所述第二发射元件中的其中一个发射元件组排布成十字形,另一个发射元件组排布成十字形或者四边形。
  28. 一种探测装置,其特征在于,所述探测装置包括光源和扫描模组,
    所述光源用于发射光脉冲序列;
    所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块的运动速度和所述第二光学模块的运动速度的差值不高于第一预设速度,所述第一光学模块的运动速度和所述第二光学模块的运动速度均不小于第二预设速度。
  29. 根据权利要求28所述的一种探测装置,其特征在于,所述第一光学模块的运动速度小于所述第二光学模块的运动速度。
  30. 根据权利要求29所述的一种探测装置,其特征在于,所述第二预设 速度基于所述探测装置采集的点云图案的帧率确定。
  31. 一种探测装置,其特征在于,所述探测装置包括光源和扫描模组,
    所述光源用于发射光脉冲序列;
    所述扫描模组包括第一光学模块、第二光学模块、第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一光学模块运动,以使经过所述第一光学模块的光脉冲序列从第一角度范围出射,所述第二驱动模块用于驱动第二光学模块运动,以使从所述第一角度范围出射的光脉冲序列经第二光学模块改变光路后从至少一个第二角度范围出射,形成至少一个扫描视场;其中,所述第一光学模块和所述第二光学模块的运动速度的差值不低于第一预设速度。
  32. 一种探测装置,其特征在于,所述探测装置包括光源和扫描模组,
    所述光源用于发射光脉冲序列;
    所述扫描模组包括驱动模块和至少两个光学模块,所述至少两个光学模块在所述驱动模块的驱动下运动,使得所述光源发射的光脉冲序列经过所述至少两个光学模块改变光路后从至少一个角度范围出射,以形成至少一个扫描视场;其中,所述探测装置包括多种模式,不同模式下所述至少两个光学模块的运动速度的组合方式不同,所述探测装置可在所述多种模式之间切换。
PCT/CN2021/097338 2021-05-31 2021-05-31 一种探测装置 WO2022252035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097338 WO2022252035A1 (zh) 2021-05-31 2021-05-31 一种探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097338 WO2022252035A1 (zh) 2021-05-31 2021-05-31 一种探测装置

Publications (1)

Publication Number Publication Date
WO2022252035A1 true WO2022252035A1 (zh) 2022-12-08

Family

ID=84323834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097338 WO2022252035A1 (zh) 2021-05-31 2021-05-31 一种探测装置

Country Status (1)

Country Link
WO (1) WO2022252035A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240020A1 (en) * 2001-08-31 2004-12-02 Holger Schanz Scanning device
CN106019296A (zh) * 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN107643525A (zh) * 2017-08-24 2018-01-30 南京理工大学 基于45°转镜的线阵激光雷达周向无像旋成像***
CN111273255A (zh) * 2018-12-04 2020-06-12 苏州旭创科技有限公司 一种激光雷达发射装置及激光雷达
CN111273254A (zh) * 2018-12-04 2020-06-12 苏州旭创科技有限公司 一种激光雷达发射装置及激光雷达
CN111587381A (zh) * 2018-12-17 2020-08-25 深圳市大疆创新科技有限公司 调整扫描元件运动速度的方法及测距装置、移动平台
CN112313531A (zh) * 2019-05-28 2021-02-02 深圳市大疆创新科技有限公司 一种测距装置及其扫描视场的控制方法
CN112654893A (zh) * 2019-08-13 2021-04-13 深圳市大疆创新科技有限公司 扫描模块的电机转速控制方法、装置和测距装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040240020A1 (en) * 2001-08-31 2004-12-02 Holger Schanz Scanning device
CN106019296A (zh) * 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN107643525A (zh) * 2017-08-24 2018-01-30 南京理工大学 基于45°转镜的线阵激光雷达周向无像旋成像***
CN111273255A (zh) * 2018-12-04 2020-06-12 苏州旭创科技有限公司 一种激光雷达发射装置及激光雷达
CN111273254A (zh) * 2018-12-04 2020-06-12 苏州旭创科技有限公司 一种激光雷达发射装置及激光雷达
CN111587381A (zh) * 2018-12-17 2020-08-25 深圳市大疆创新科技有限公司 调整扫描元件运动速度的方法及测距装置、移动平台
CN112313531A (zh) * 2019-05-28 2021-02-02 深圳市大疆创新科技有限公司 一种测距装置及其扫描视场的控制方法
CN112654893A (zh) * 2019-08-13 2021-04-13 深圳市大疆创新科技有限公司 扫描模块的电机转速控制方法、装置和测距装置

Similar Documents

Publication Publication Date Title
KR101966971B1 (ko) 라이다 장치
CN108226899B (zh) 激光雷达及其工作方法
EP3598229B1 (en) Light source apparatus and projection system
WO2020114229A1 (zh) 激光雷达光学***及扫描方法
US20210263303A1 (en) Optical scanning device with beam compression and expansion
JP2020526755A (ja) 再結像器を有するLadar送信機
WO2020135802A1 (zh) 一种激光测量模组和激光雷达
US10788573B2 (en) Light detection and ranging device
US20220260688A1 (en) Lidar device
US20210223367A1 (en) Laser Radar and Scanning Method Thereof
CN102053364B (zh) 扫描光学设备和使用其的成像设备
WO2022141534A1 (zh) 探测装置、扫描单元、可移动平台及探测装置的控制方法
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
WO2022252035A1 (zh) 一种探测装置
CN111263898A (zh) 一种光束扫描***、距离探测装置及电子设备
WO2022252034A1 (zh) 一种探测装置
WO2022141452A1 (zh) 探测装置、无人机以及探测装置的控制方法及装置
CN114265041A (zh) 扫描装置和扫描方法
CN112835016B (zh) 面阵激光雷达、激光器模块及探测器模块
US11899136B2 (en) Increasing VCSEL projector spatial resolution
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
CN206353216U (zh) 一种基于mems振镜和鼓镜的广角扫描***
CN113126107A (zh) 一种扫描激光雷达
US20140321159A1 (en) Light guide plate and backlight module having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943412

Country of ref document: EP

Kind code of ref document: A1