WO2022251980A1 - Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment - Google Patents

Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment Download PDF

Info

Publication number
WO2022251980A1
WO2022251980A1 PCT/CL2022/050025 CL2022050025W WO2022251980A1 WO 2022251980 A1 WO2022251980 A1 WO 2022251980A1 CL 2022050025 W CL2022050025 W CL 2022050025W WO 2022251980 A1 WO2022251980 A1 WO 2022251980A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
bushing
chip
measurement module
layer
Prior art date
Application number
PCT/CL2022/050025
Other languages
Spanish (es)
French (fr)
Inventor
Álvaro Patricio ESPEJO PIÑA
Omar Andrés DAUD ALBASINI
Dora Rosa ALTBIR DRULLINSKY
Sebastián Andrés SEPÚLVEDA VÁSQUEZ
Carlos Javier EUGENIO HERRERA
Matías Bernardo TARGARONA HERRERA
Gabriel Esteban FUENTES AMPUERO
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Priority to CA3221356A priority Critical patent/CA3221356A1/en
Publication of WO2022251980A1 publication Critical patent/WO2022251980A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/14Arrangement, location, or adaptation of rollers
    • B62D55/15Mounting devices, e.g. bushings, axles, bearings, sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Definitions

  • the present invention refers to a kit, system and method for remote, autonomous, real-time monitoring of bushing wear or thickness installed in an earthmoving machine, preferably in the ear of a bucket of a mining machine, where the kit includes: a measurement module, an acquisition module, and an adapter with one flexible and one rigid end.
  • the system comprises the aforementioned kit in communication with a wireless receiving means and a wireless communication network comprising at least one central unit that can be located inside or outside the mine, which are in communication to receive and manage remotely, the collected bushing wear data and schedule stops to replace the bushing either temporarily or permanently.
  • the monitoring method is based on the complementarity, but not limited to, of two ways to determine bushing wear; while the first method is based on capacitance measurements with thermal compensation, in at least one test piece of the measurement module, which is located in the bushing mantle, and which wears jointly with it, the other performs quantification measurements of the level of the electrical conduction lines spaced in the witness specimen, which are eliminated as the level of wear progresses.
  • the purpose of the bushings is to protect other critical components from wear caused by friction between moving mechanisms, in this case, between the bucket ear and the pin. They are made of a special steel alloy that allows them to operate for a certain period of time or for a certain number of tons of displaced material. However, these elements can suffer a reduction in their useful life due to accelerated, excessive and unforeseen wear, causing damage to other components that the bushing is intended to protect, resulting in unscheduled stoppages with significant economic losses for the mine.
  • US10696337B2 or US10046815B2 relate to a wear train control device comprising a roller assembly including a stationary roller component and a bushing. An opening is formed within the stationary roller component.
  • a first sensor is disposed within the opening of the fixed roller component on the bushing. The first sensor is configured to detect a first physical characteristic of the hub.
  • the stationary roller component is either a shaft or a housing.
  • the first sensor is a temperature sensor or a Hall effect sensor.
  • a magnet is arranged in the roller assembly.
  • a second sensor is disposed within the opening of the fixed roller component on the bushing. The second sensor is configured to detect a second physical characteristic of the hub.
  • a data transmission device is coupled to the first sensor. Data is collected from the sensor and transmitted to a receiving device
  • US6868711 B2 discloses a method for controlling mechanical wear caused by a first component on a second component, in which the first and second components are movable relative to each other and in which the first and second components are adjacent to each other. At least sometimes, in mechanical contact with each other, at least one sensor head is arranged in a wear area to monitor the second component. The at least one sensor head is mechanically worn by the first component upon reaching a predetermined wear limit. When the at least one sensor head is mechanically worn, a measurement signal is generated by the at least one sensor head or a change in a measurement signal is detected, produced by the at least one sensor head before it was mechanically worn. The measurement is the intensity of light reflected from the metal cover.
  • US20150066291 A1 discloses a Wear Monitoring System for an undercarriage component includes an ultrasonic sensor disposed on the undercarriage component.
  • the ultrasonic sensor is configured to emit ultrasonic waves to detect wear on the landing gear component.
  • the wear control system further includes a wear control device disposed in communication with the ultrasonic sensor.
  • the wear control device is located away from the ultrasonic sensor.
  • the wear monitoring device is configured to generate an output indicative of landing gear component wear.
  • US20160121945A1 discloses a roller of an undercarriage track system for a machine, comprising a body and a sensed function.
  • the body is a solid of revolution formed around a roller axis.
  • the body includes a perforation surface and a roller contact surface.
  • the hole surface defines a hole that extends through the body.
  • the surface of the hole is a radially inner surface of the body.
  • the contact surface of the roller is located away from the surface of the hole.
  • the detected feature is located on the body.
  • the detected function is configured to rotate with the body and be detected by a sensor.
  • the sensor is a magnetic speed sensor, and measures the length of a tooth/protrusion or recess extending from and integral to the body.
  • US20160221618A1 discloses a wear sensor device that can be used in conjunction with a carrier roller assembly of a track assembly and may have a wear sensor roller mounted on a shaft of the carrier roller assembly, which may be configured to contact a set of track pins connected to one or more track links of the track set.
  • the wear detection device may further have a wear sensor mounted on the wear sensor roller and configured to generate a signal indicative of a wear parameter of one or more chain links.
  • the sensor is a Hall effect sensor, an ultrasonic sensor, a magnetic sensor, an induction sensor, or a laser sensor.
  • US20090223083A1 (Pacific Bearing Co) discloses a bearing that includes a portable section that includes a wear sensor.
  • the hub includes a wear sensor that provides feedback to the user regarding the life of the bearing that has been used.
  • the sensor may be in the form of a wire embedded in the wearable section of the bearing, so that as the wearable section wears over time, the wire can wear out by breaking a circuit that includes the wire.
  • An indicator module can detect a cable break and determine the amount of bearing life that has been used.
  • the bearing is used in a drying drum; and method for monitoring bearing wear including monitoring changes in the electrical properties of a bearing-mounted sensor.
  • DE102007063519A1 discloses a wear and overload control system having two elements moving against each other, where the elements are supported or coupled by means of a spring or absorption coupling.
  • the medium comprises an elastomeric component.
  • a unit is built into or attached to the elastic component for electrical wear monitoring or absorption measurement and overload indication.
  • the elastic component consists of two mutually movable elements which by means of a spring and/or release coupling are mutually supported or coupled to one another, which comprises at least one elastomeric component.
  • the electrically conductive, conductive or semiconductive structures in the elastomeric component are inserted or vulcanized, and produce the electrical contact between the two mutually movable elements which in turn are electrically conductive or have electrically conductive contacts and have a sensor and/or open circuit or closed with different parameters, and have conductive structures with fracture or fatigue behavior or life time based on defined physical, thermal or chemical parameters.
  • US20150081166A1 discloses a wear monitoring system for monitoring wear of a surface of a track roller associated with an undercarriage of a machine, comprising a sensor device positioned under an upper surface of the track roller, which in turn comprises a probe configured to undergo wear along with the upper surface of the track roller, a controller circuit configured to monitor the degree of wear on the upper surface of the track roller based on the wear of the probe, an antenna, and a power source.
  • the wear control system further comprises a transceiver configured to transmit a signal indicative of the degree of wear of the follow roller.
  • the wear monitoring system further includes a monitoring device configured to generate an output indicative of the degree of wear on the track roll.
  • KRRI KR101863909B1 discloses a controller and a control method of an abrasion tester in an axle floor brush of a railway vehicle, a controller for receiving a detected detection signal from the plurality of sensors of the abrasion tester. performance simulating the driving characteristics of the railway vehicle and issuing a command to control the motor device of the performance tester; an input/output board for receiving an input signal, converting the signal into a digital signal and transmitting the signal to the controller, and sending an analog signal to the performance tester according to a command from the controller, and a controller for motor to control the motor device according to a command from the controller.
  • the apparatus enables an automatic abrasion resistance test of a railway vehicle axle ground brush and a performance tester control method.
  • An abrasion resistance test environment that simulates a real vehicle environment is built during the wear test of an axle floor brush for a railway vehicle and a skid disc to reproduce a dynamic numerical change measured on a vehicle. real railway, and perform the test at low cost
  • US20150266527A1 discloses a link for a rail assembly for a machine, comprising: a link body defining an opening configured to receive a tracking pin therein.
  • the link body further includes a first surface configured to contact a rotatable member of the rail assembly and a second surface configured to contact a rail shoe coupled to the link body.
  • the link further includes a plurality of indicia defined on the body of the link proximate the first surface. Each of the plurality of marks is indicative of progressive wear of the link body with respect to the first surface.
  • the present invention refers to a kit, system and method for monitoring, remote, autonomous, in real time, the wear of a bushing installed in an earthmoving machine, preferably in the ear (1) of a mining machine bucket, where the kit is installed directly on the bushing (2), and provides information on its wear status, reliably and with low energy consumption.
  • This kit includes at least one small-sized measurement module that can be installed in small spaces, thus adapting to spaces of various geometries, and includes at least one test tube, at least one capacitive chip, at least one digital counter chip and at least one temperature measurement chip, and at one end, a female connector for flexible planar circuit connections.
  • This kit also includes at least one multilayer printed circuit acquisition module with an antenna that does not have electromagnetic shielding due to the high presence of metals in its environment, which is a frequent problem in telecommunications, and instead emits microwave/radio frequency signals from a metallic environment where small gaps and gaps exist.
  • the acquisition module also includes high-capacity batteries, micro SD memory for error recording and information storage, a rigid connector that allows joining the adapter, a microcontroller, RF chips, a power management chip, led lights, among others.
  • the acquisition module comprises an outer protective casing (13) that protects - both the aforementioned electronic components and other passive electronic components, including resistors, capacitors and inductances, among others, from an environment with high thermal fluctuations and corrosive , and blows/impacts and vibrations that occur as a result of the acceleration/deceleration of the mining machine, and the loading and unloading of ore, among others.
  • This kit also includes an adapter (7) with a rigid vertical connector (8) at one end, and a flexible connector (9) at the other end, which allows you to dispense with other mechanical connection elements (such as bolts, screws, nuts, among others), and with this, be able to resist low temperatures without deteriorating, where said flexible connector comprises a flexible flat circuit that is housed in the female connector of the measurement module, and said rigid vertical connector comprises a circuit which is attached to the acquisition module.
  • the present system comprises the kit described above, a wireless receiving means and a wireless communication network with at least one central communication unit, in communication with said kit, specifically, in communication with said acquisition module of said kit.
  • the method is based on the complementarity, but not limited to, of two ways of determining bushing wear.
  • the first form comprises the measurement of capacitance with thermal compensation, considering that the wear of the bushing varies proportionally with the length of the wear of said at least one test piece of said measurement module that wears jointly with the bushing, and that is located to the except in a rectangular channel in the bushing mantle.
  • the second way performs length measurements on said at least one control specimen by detecting and quantifying the level of its spaced conduction power lines (21, 22), which reflects the progress/degree of wear, this means that at lower levels of electrical conduction lines or lower level quantization density, the wear in said at least one control specimen is greater, while at higher levels of electrical conduction lines or higher level quantization density, the wear in control specimens is less.
  • the bushing comprises in its mantle, at least one shallow rectangular channel, and also at least one through-hole in said channel where said at least one witness specimen of said measurement module is located, and a flared end.
  • the bushing may have multiple channels evenly distributed in the mantle, and each channel may have multiple through-bore holes to receive multiple core specimens.
  • FIGURE 1 Shows a section of the ear (1) of a mining bucket, with a cylindrical opening to house the bushing.
  • FIGURES 2A-2F Show hub (2) with at least one rectangular, low profile/shallow groove (Figs. 2A and 2B), which ends at its end with an enlargement of the groove. It can have 1 or more cylindrical through holes distributed along the channel to accommodate test tubes or cores (4). Bushing with 3 shallow rectangular grooves and one or more cylindrical through-holes distributed along the groove are illustrated (Figs. 2C and 2D). Bushing with 5 shallow rectangular grooves and one or more cylindrical through-holes distributed along the groove are illustrated (Figs. 2E and 2F).
  • FIGURES 3A and 3B Sample Bushing (2), with at least one channel installed in the ear (1) of the mining bucket.
  • FIGURE 4 Shows a measurement module (3) for at least one channel that contains at least 1 or more witness specimens (4) of wear, at least 1 or more measurement chips, which can be capacitive, digital counters or both, at minus 1 or more temperature measurement chips. It also contains a female connector (5) at one of its ends for connections of flat flexible circuits.
  • FIGURES 5A-5C Shows at least one measurement module (3) installed in at least one channel of the hub (2), with one channel (Fig. 5A), three channels (Fig. 5B) and five channels (Fig. 5C ).
  • FIGURES 6A and 6B Hub with measurement module (2) installed in ear (1) of the mining machine bucket.
  • a section of the canal (6) can be seen that protrudes from the side of the ear, a section that allows the adapter to be installed later (Fig. 6A).
  • a cut view of the ear is shown (1) (Fig. 6B).
  • FIGURES 7A-7C Sample Perspective View (Fig. 7A) of adapter (7). Lower plan view (Fig. 7B). Top elevation view (Fig. 7C). A flat flexible connector (9) and a rigid connector (8) can be seen.
  • FIGURES 8A-8C Shows a cutaway view of the ear (1) of the measurement module (3) and adapter (7) connected and installed in the channel (6) of the bushing (2).
  • the adapter (7) has two ends, the first consists of a flexible flat circuit that is housed in the connector of the measurement module, the second end consists of a rigid vertical connector.
  • FIGURES 9A-9C Shows different perspectives of the system after the installation of the swivel (10). It can be seen that the vertical end of the adapter (7) is completely sealed except for the upper opening of the screw hole cavity (11), a cavity that later allows the acquisition module to be installed from above.
  • FIGURES 10A-10I Shows different perspectives of the acquisition module (12) and assembly with casing (13).
  • FIGURES 11 A-11 D Shows different perspectives of the system after the acquisition module (12) with casing (13) has been installed.
  • FIGURES 12A and 12B Shows a cross section of the complete system.
  • FIGURE 13 Shows the acquisition module (12) with connector (14), the antenna (15) and batteries
  • FIGURE 14 Shows an operation scheme of the present system and method.
  • FIGURE 15 Sample Specimen Capacitance vs. Bushing Wear Graph.
  • FIGURE 16 Sample Graph Digital level of probe versus Bushing wear.
  • FIGURE 17 Shows wireless connectivity between acquisition modules and receiver on the cabin roof.
  • FIGURE 18 Shows wireless connectivity between acquisition modules, receivers on the cabin roof, cloud or server, with end user devices, such as computers, tablets, mobile phones, among others.
  • FIGURE 19 Shows different manufacturing layers of the same specimen (4), which includes wear capacitor (19), reference capacitor (20) and circuits that form the different levels of conduction lines (21, 22). DESCRIPTION OF THE INVENTION
  • This kit, system and method for remote, autonomous, real-time monitoring of bushing wear installed in an earthmoving machine, preferably in the ear of a bucket of a mining machine, allows periodic monitoring and reporting wirelessly or telematics, the level of accumulated wear in one or more bushings, in one or more machines, and in response, schedule their maintenance and permanent or temporary replacement in order to prolong its useful life, and thus prevent unwanted damage or unexpected stoppages in the mining machine.
  • the present kit then makes it possible to measure the wear of the bushing, positioning in at least one rectangular channel, of little depth, in the outer layer of the bushing, at least one measurement module, which is connected to at least one acquisition module ( data) by means of an adapter, where the acquisition module is located in a cavity of the swivel, and where said bushing wear information collected and processed by said at least one measurement module and received by said at least one acquisition module, that transmits to a wireless receiving medium and from said wireless receiving medium to a central unit of a communication network, which can be the cloud (Internet) or a server (connected to the Internet or to a local network), thus enabling the management of maintenance, replacement or removal of the bushing(s) monitored.
  • a communication network which can be the cloud (Internet) or a server (connected to the Internet or to a local network
  • the channel where the measurement module is housed, does not negatively affect the performance of the bushing during operation, nor does it reduce its useful life, and instead, it allows reliable measurement of wear from its own body, without the need to estimate it from the outside of the bucket ear of a mining machine or from a similar position on the mining machine, as is done hitherto.
  • the measurement module in addition to the acquisition module, once connected, are autonomous and do not require external on/off, guaranteeing low energy consumption with a 2-year autonomy.
  • the bushing comprises in its mantle, at least one shallow rectangular channel, and also at least one through-hole in said channel where said at least one witness specimen of said measurement module is located, and where said at least one channel has a flared end to receive said adapter connecting the measurement module and said acquisition module.
  • the hub can thus comprise multiple rectangular grooves distributed in a regular manner in the shell of the hub, as well as multiple through-holes equally distributed in each groove.
  • Multiple measurement modules with multiple witness probes allow a complete wear profile to be achieved for the entire bushing body, while with a single measurement module and more than one witness probe, a localized wear profile is achieved on a mantle line. of the bushing, and particularly, for only one test piece, a single point of wear is reached.
  • the measurement module has a reduced size that allows it to be installed in small spaces, thus adapting to spaces with different geometries, and it has a low-profile female connector at its end for flat and flexible circuit connections. This type of connector supports high vibrations and temperatures.
  • the measurement module comprises at least one witness probe, at least one capacitive measurement chip, at least one digital counter chip, at least one temperature measurement chip, and a female connector for flexible planar circuit connections, at one end, and also includes passive electronic components selected from capacitors, resistors, inductances, among others.
  • the control specimen (4) comprising at least two functional layers (bilayer), comprising at least a first external layer comprising at least one wear capacitor (19), and a second internal layer comprising at least one reference capacitor (20). ), where the first outer layer can optionally alternate its location with the second inner layer, and also optionally, the control sample can comprise a third inner layer and a fourth complementary inner layer that comprise at least one circuit each layer, and together they form the different levels of conduction lines (21, 22).
  • These third inner layer and fourth inner layer can be located either immediately after or before the first outer layer and second inner layer bilayer or between said first outer layer and said second inner layer, and where the wear capacitor (19) It allows measuring the capacitance of the witness specimen as it wears out, while from the reference capacitor (20) measurements are obtained that allow the measurement of wear on the witness specimen to be corrected depending on the effect of temperature. Meanwhile, said third internal layer and fourth internal layer that form the different levels of conduction lines (21, 22) additionally allow the wear of the witness specimen to be measured.
  • the control sample can comprise at least one additional layer to the aforementioned configuration and that increases the bilayer by at least one layer, comprising a first external layer and a second internal layer, either in an additional layer comprising a wear capacitor, an additional layer comprising a reference capacitor or both or different combinations thereof.
  • the control sample can also comprise at least one additional complementary layer comprising circuits that complement the conduction lines, which can be located immediately before or after or between the aforementioned layers of wear capacitors and reference capacitors.
  • the wear capacitor comprises two conducting wires or two conducting tracks facing each other in a comb-like fashion.
  • the reference capacitor differs from the wear capacitor only in that it is shorter in length.
  • the acquisition module comprises at least one antenna that does not have electromagnetic shielding due to the high presence of metals in its environment, emitting signals of Microwave/RF from a metallic environment where small gaps and gaps exist; it also comprises a set of light indicators with patterns and colors that allows visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the end gullion open; a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module and processes them, including errors from said measurement module and other peripherals, and in general, the execution of tasks of the others components of this module; a memory card that stores the information/data of said daily periodic measurements of the measurement module and its errors or those of other peripherals, including RF chips, power managers, among others, preferably selected from a microSD card memory; an integrated circuit/chip that maintains intermittent or continuous communication with said receiving means to wirelessly send/transmit said information/data accumulated from said daily periodic measurements and said errors coming from
  • the acquisition module also includes an outer protective casing (13) that protects the electronic components that make up the module, from an environment with high thermal fluctuations and corrosive, and from blows/impacts and vibrations that occur as a result of acceleration/deceleration. of the mining machine, and the loading and unloading of ore, among others.
  • Fig. 1 shows, by way of illustration, the ear of the mining shovel bucket. While figs. 2A-2F show, illustratively, at least one mining shovel hub modified to comprise, in its mantle, one shallow rectangular channel, three shallow rectangular channels, or five shallow rectangular channels. In Figs. 3A and 3B, the installation of the bushing in the ear of the mining shovel bucket is illustrated by way of example.
  • the configuration of the measurement module and the control specimens are illustrated by way of example in Fig. 4 and Fig. 19, where in the latter figure a three-layer embodiment is shown on the surface of the specimen with an external layer for the wear capacitor (19), an intermediate layer for the reference capacitor (20) and an internal layer for the circuits that form the different levels of conduction lines (21, 2.
  • the installation of the measurement module in at least one hub with one shallow rectangular channel, three shallow rectangular channels, or five shallow rectangular channels, are illustrated as a example, in Figs. 5A-5C. While bushing with the measurement module installed in the ear of the mining shovel bucket, illustrated in Figs. 6A and 6B, showing in a section in section, the side of the ear that later allows the installation of the adapter.
  • Figs 7A-7C illustrate, by way of example, the adapter observed from different views, and highlighting the end that receives the flexible connector of the measurement module and the rigid vertical connector that receives the rigid connector of the acquisition module, where each connector is located on opposite ends of the adapter. While Figs. 8A-8C show a cutaway view of the bushing ear with the measurement module installed and the adapter connected to the measurement module via the flat flexible connector, where the connectors correspond to circuits. Figs.9A-9C illustrate, by way of example, different views of the rear swivel installation system, showing that the vertical end of the adapter is completely sealed except for the upper opening of the swivel cavity, where the acquisition module is installed. from above, connecting the rigid connector of the acquisition module with the rigid vertical module of the adapter.
  • Figs. 10A-1 OH illustrate by way of example, different views of the acquisition module without casing and with casing assembled. While Figs. 11A-11 D illustrate, by way of example, different views of the rear installation system of the acquisition module with casing.
  • the Figs. 12A and 12B illustrate, by way of example, a cross section of the complete system installed in the hub and Fig. 13 illustrates, by way of example, the acquisition module with rigid connector, the antenna and the power supply that can comprise at least one cell, battery, among other sources of energy.
  • Fig. 14 shows the scheme of operation of the present system and method. While Fig. 17 shows wireless connectivity between acquisition modules and receiver module on the roof of the cab of an earthmoving machine, and Fig. 18 shows wireless connectivity between acquisition modules, receiver module on the roof of cabin, cloud or server, with end user devices, such as computers, tablets, mobile phones, among others.
  • Fig. 15 and Fig. 16 show a plot of blank capacitance versus bushing wear and a plot of blank digital level versus bushing wear.
  • an electronic circuit ico comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least one control probe and is located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in
  • This remote, autonomous, real-time monitoring system of bushing wear or thickness installed in an earthmoving machine, preferably in the bucket ear of a mining machine includes: a) at least one kit as described above, comprising: a.1) at least one measurement module to be located in said at least one rectangular channel of the outer shell of said hub, comprising: a.1.1) at least three chips located on a single electronic board, which can have diverse geometry and perform daily periodic measurements of at least 2 parameters selected from: bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, a.1.2) at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow obtaining measurements of variations in the wear of
  • a.2 at least one acquisition module that is located in a cavity in the swivel, having a unique individual identifier code (ID) that allows the bushing to be identified and registered in a local, wireless network, connected to a server, which may or may not be connected to the Internet, and comprises: a.2.1) a set of light indicators with patterns and colors that allow visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the swivel; a.2.2) a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors from said measurement module or other peripherals, and in general, the execution of component tasks remaining of this module, a.2.3) a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any error coming from it or other peripherals, including chips, such as RF chips , power management chips, RGB LED light control
  • the bushing made of polyamide and FR4, to be located at the end of said rectangular channel of the bushing, and to be connected at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector ; b) at least one receiver module or Gateway located, preferably, on the roof of the cabin of the mining machine, in communication with said acquisition module and said network server; c) at least one network server that processes said information/data from said daily periodic measurements that are sent/transmitted by said receiving module to estimate the state of wear and the useful life of the bushing by means of a projection according to the rate of wear calculated at from daily periodic wear measurements, accumulated over time, and optionally, includes means of alarms, be they visual, audible or both, which report a risk either because a risky wear of the bushing has been reached, that is to say , the bushing has a thickness/thickness less than 6mm; a dangerous temperature in the bushing, that is, the bushing has reached a temperature greater than 85
  • each control specimen Prior to its use, each control specimen is electrically characterized by the relationship between capacitance and length, at different temperatures, since its electrical characteristics depend both on length and temperature, and with this, a relationship between capacitance and length is determined. length, depending on the temperature, which allows estimating the level of wear on the bushing. See Figures 14 and 15.
  • said at least one rectangular groove of the bushing is obtained by machining the bushing, preserving its mechanical properties, that is, without generating significant stress or stress deformation in said rectangular groove of the bushing, which can eventually give origin of micro-fractures, which during work may eventually propagate, shortening the useful life of the bushing.
  • the bushing may be eccentric, ie the circular bore of the bushing is not concentric with the outside diameter of the bushing.
  • said bushing with said measurement module, or simply the bushing sensorized it is submerged in liquid nitrogen, until it reaches a radius less than the radius it would have at room temperature, with the aim of being able to enter with the necessary clearance inside the ear of the bucket.
  • the measurement module has been designed to withstand immersion in liquid nitrogen without damage.
  • the measurement module has a design that allows none of its electronic components and parts to protrude from the contour of the bushing volume to the outside, which ensures that it is not damaged, both during the transport of the bushing, and during its installation process in bucket ear.
  • the measurement module is resistant to vibrations and shocks transmitted to the bushing that are typical in work, since said single electronic board and said at least one control specimen are a continuous or single body. This resistance would not be achieved if the witness specimens are joined to the plate by welding or other joining means.
  • the single electronic board of the measurement module has holes/drills that assist in fixing to the bushing, either by a means of fixing such as a threaded stud, rivet, through means or by means of adhesion. These perforations also allow the alignment of said single electronic board over the length and width of said rectangular channel of the bushing, which facilitates the later installation of the adapter.
  • the installation of the measurement module is done prior to the installation of the bushing in the bucket lug.
  • the witness specimens are introduced into the corresponding perforations of the bushing, and then, said single electronic plate is inserted into said rectangular channel, and said single electronic plate is fixed to the bushing.
  • both the perforations that receive the witness specimens, as well as the rest of the volume of the channel are filled with a liquid polymeric resin and the curing of said polymeric resin is awaited.
  • Electrical lead lines or wear levels are wires/conductors that run from a witness probe to the digital counter chip.
  • the levels are located in the probes and these are close to the counter chip, otherwise, if they were not close, it would require a large volume of cables / conductors that would require extra space across the width of the board, and with it, it should also widen the bushing groove, which would make it brittle and reduce its useful life to enable monitoring, which is an undesirable effect.
  • An adapter connects the measurement module and the acquisition module. It is quick and easy to install. It is installed once the bushing has been installed in the ear of the bucket and prior to the installation of the swivel. It is located at the end of the hub channel where the measurement module goes. It is a plate made of flexible rigid material, which allows greater comfort at the time of its installation and better dampens vibrations. At one end it has a set of flat conduit paths that mates with the connector on the measurement module. At the other end it has a vertical connector, which fits with the connector of the acquisition module. All the connectors, both of the measurement module, as well as of the adapter and of the acquisition module, are connectors for high vibration environments that withstand temperatures of up to 125 ° C.
  • the acquisition module comprises an outer protective casing that allows easy movement through the cavity or emptying of the swivel. In the final installation position, said casing is embedded inside the swivel cavity and is only visible from the upper end of its hollowing. In this way, none of its electronic components or parts are exposed to the external environment, where it could become damaged, for example, by the impact of rocks on the bucket ear.
  • the acquisition module communicates wirelessly with the outside by means of an antenna that can be tuned despite the essentially metallic environment that surrounds it, at an emission frequency between 2.4 GHz and 2.5 GHz, thus allowing the transmission of measurement information from the measurement module in the hub to the Gateway or receiving medium, and from there to a network server.
  • the Receiver or Gateway module is located so that it has line of sight or direct line of sight with the direction of propagation of the antenna.
  • it could be installed on the mining machine and even more preferably on the roof of the mining machine cabin, the mast that holds the bucket, as well as some other place that has a line of sight.
  • This system begins to monitor from the moment the installation of the kit is completed, that is, when the acquisition module is connected to the adapter through the cavity, closing the electrical supply circuit.
  • the acquisition module wirelessly links/communicates with said receiver module and said web server, and the kit then registers itself by a unique identification (ID) code and provides information of the time it was installed. Then, it begins to report daily and at pre-established/pre-scheduled times, the level of wear on the bushing.
  • ID unique identification
  • a capacitor which is a device formed by two electrical conductors close to each other and surrounded by a dielectric medium, an electric field is generated and, consequently, a distribution of charges inside that allows energy to be stored.
  • Conductors can be foils, thin films, metal tracks, or electrolytes.
  • control specimens were designed as capacitors or sensitive elements that comprise a first external layer that comprises a wear capacitor that in turn comprises two conductors facing each other interspersed in the form of combs, which when worn lose sections and decreasing the capacitance of the capacitor.
  • the measurement of the capacitance change corresponds to an analog-to-digital conversion of the measured physical signal, for which a capacitive microchip is used, specially dedicated to measuring the capacitance of the witness specimens.
  • the microchip delivers a digital value proportional to the division of the resonance frequency of the circuit that includes the witness probe and an internal reference frequency of the chip.
  • This chip is managed from the acquisition module by the microprocessor (MCU), which through a power management chip turns the capacitive microchip on or off, efficiently managing power and indicating when to measure.
  • MCU microprocessor
  • the MCU can iterate one or several consecutive measurements, to obtain a set of statistically significant measurements, and in this way eliminate the noise and artifacts of the analog-to-digital conversion, including "aliasing", quantization noise, among others. Additionally, you can calculate the standard deviation of the set of measurements and set a degree of confidence.
  • the MCU transforms the digital frequency reading from the capacitive microchip into length values, using a relationship obtained experimentally from sensor calibration (f c ), which relates the digital reading to the analog-to-digital conversion ( ⁇ 3 ⁇ 4 with length of the control specimen (L), see Eq. 1.
  • the acquisition module can compensate the digital frequency measurement and establish an effective value of the measurement, D t .
  • the compensation consists of adjusting the current reading of the capacitive microchip with its temperature response f T , obtained experimentally by relating the capacitance measurement at different temperatures. See Eq. 2 and Eq. 3.
  • the method additionally comprises the incorporation of an intermediate layer that comprises a reference capacitor located as a layer following the wear capacitor, which will be used to obtain a differential measurement or referential correction measurement.
  • This condenser does not wear out during the operation of the measurement module so that its length L 2 remains constant, however, the measurement is affected by the temperature difference.
  • the capacitance of the reference capacitor C R can be modeled as follows (Eq. 4):
  • B corresponds to a geometric factor and m corresponds to the value of the dielectric constant as a function of temperature. Since the geometry of the capacitor is constant, B is constant, which implies that the variations of the capacitance measurements are attributable only to temperature changes in the medium.
  • the wear capacitor can be modeled as (Eq. 5):
  • the capacitance measurement stage is complemented by an additional stage of discrete measurement, that is, the measurement of a variable that can take only certain values in a given interval, which may or may not be equidistant, and where the resolution of the measurement is determined by the difference between two consecutive values.
  • the discrete measurement corresponds to a digital state counter, for which a witness probe is used that has at least 32 circuits, and each circuit can have two states, 1 or 0, which means energized or not energized.
  • the digital counter chip evaluates the state of each circuit and counts the positive states (1), with a first counting sensor, each circuit is spaced equidistantly along the length of the specimen in the direction of wear, preferably at a difference of 1mm. Alternatively, they can be located so that there are more circuits (dense area) in the most critical areas of wear, for example, in the area closest to the measurement module.
  • the counter detects 22 circuits on, which translates to a length of 22mm.
  • the digital counter chip is managed from the MCU through the power management chip. This turns the counter chips on and off each time an update of the measurements is required.
  • the counter chips deliver a number of active circuits and send that information to the MCU, which transforms it into the current thickness of the bushing and reports it to the Gateway or receiver, and this to its once to a network server.
  • the main advantage of this type of measurement is that it is invariant or independent of temperature changes.
  • both measurement methods it is possible to establish a redundant routine for checking the measured wear and error.
  • the digital measurement is of low resolution, of the order of 1 mm, it allows to measure efficiently and independently of the thermal variations.
  • the capacitive method has a much higher resolution, but it depends on the temperature and the analog-digital conversion. By combining both methods, it is possible to check if the capacitive measurement is correct by comparing it with the current and previous digital measurement. If the current measurement is not in the range, it is discarded and must be measured again until both results are consistent.
  • the present method of remote, autonomous monitoring, in real time, of bushing wear installed in an earthmoving machine, preferably, in a bucket ear of a mining machine, which uses the system described above, comprises the following stages: a ) adapt a bushing so that in its outer layer it has at least one shallow rectangular channel, and adapt a bushing swivel so that it includes a cavity, where in said rectangular channel at least one measurement module is located and where in Said screw cavity is located at least one acquisition module, where said at least one measurement module comprises at least three chips located on a single electronic board, which can have different geometry and perform daily periodic measurements of at least 2 selected parameters of : bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, at least one control specimen that is projected from said single electronic board, through a flexible
  • said at least one acquisition module has a unique individual identifier code (ID) that allows the hub to be identified and registered in a local, wireless network, connected to a server, which may or may not be connected to the Internet, and comprises a set of light indicators with patterns and colors that allows visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the golillion; a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors coming from said measurement module or other peripherals, and in general, the execution of tasks of the remaining components of this module , a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any errors coming from it or other peripherals, including chips, such as RF chips, power management chips, chips for controlling RGB LED lights, among others, preferably selected from a microSD card memory, an integrated circuit/chip that maintains intermittent or continuous communication with said receiving means
  • an adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, which joins said measurement module and said acquisition module, connecting at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector, b) preparing a curve of capacitance compensation values of the control specimens based on the measurements of the measurement chip of measurement module temperature; c) determine the value of the bushing wear from the capacitance measurements of the test piece of the measurement module, thermally compensating according to the compensation values of the curve obtained in stage b), d) determining the temperature of the bushing a from the measurements of the temperature measurement chip, e) establish the level of the accumulated wear value of the bushing in time according to the values of the determined wear in c) accumulated in time, and optionally f) activate means of alarms either visual
  • the bushing has a thickness/thickness of less than 6mm; or a dangerous temperature in the bushing, that is, the bushing has reached a temperature higher than 85 ° C, among others, and optionally, where said alarm means are selected from alarm means that send/transmit to the user, a warning message.
  • notification email a visual or audio message displayed on the screen of a selected wireless device of a computer laptop, mobile phone, a Tablet, among others, where said audio message is selected from a horn/siren, an audio message, among others, and where said visual message is selected from a fixed or flashing light signal, among others, and where said alarm messages are updated automatically and periodically.
  • step g optionally after step b), preparing a curve of bushing wear values as a function of the measurements of the digital counter chip; h) determining the bushing wear value from the measurements of the digital counter chip of the measurement module according to the curve obtained in step g); yi) establishing the level of the wear value of the bushing accumulated over time according to the wear values determined in g) accumulated over time, to complement stage e).
  • the following examples refer to obtaining the calibration curves of the capacitance and the digital level of the probe and the wear of the bushing.
  • Example 1 Capacitance of control specimen versus bushing wear
  • a 32 mm specimen connected to the capacitive chip was worn in a controlled manner.
  • the wear was generated with a mechanical lathe at a rate of 1 mm feed per pass, completely grinding the face of the specimen in each pass.
  • the capacitance value was acquired, thus obtaining a relationship between the length of the specimen and the capacitance value at constant temperature.
  • Figure 15 shows the length measured by the measurement module vs. the length of the specimen as the wear increased.
  • Example 2 Digital level of witness probe vs. bushing wear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Operation Control Of Excavators (AREA)
  • Selective Calling Equipment (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

Disclosed are a kit, system and method for the real-time, autonomous, remote monitoring of the wear of the body of a bushing, installed in earth-moving equipment, including a lug of a bucket, the kit comprising: a measurement module; an acquisition module; and an adapter that connects the two modules. The system comprises the kit, in communication with a receiving means and a wireless communication network, with a central unit located inside or outside the place of operation of the mining machine. The temporary or permanent removal of the bushing is scheduled once the bushing wear data have been received. The monitoring method comprises taking measurements of capacitance with thermal compensation, in a control specimen in the measurement module of the sleeve of the bushing, which wears jointly with same; and, complementarily, quantifying the level of electrical conducting lines spaced apart in the control specimen, which are gradually eliminated with wear.

Description

KIT, SISTEMA Y MÉTODO DE MONITOREO REMOTO, AUTÓNOMO, EN TIEMPO REAL, DEKIT, SYSTEM AND METHOD OF REMOTE, AUTONOMOUS, REAL-TIME MONITORING OF
DESGASTE BUJE DE MÁQUINA DE MOVIMIENTO DE TIERRA EARTH MOVING MACHINE BUSHING WEAR
CAMPO DE LA INVENCION FIELD OF THE INVENTION
La presente invención se refiere a un kit, sistema y método de monitoreo remoto, autónomo, en tiempo real, del desgaste o espesor de buje instalado en máquina de movimiento de tierra, preferentemente, en la oreja de un balde de máquina minera, donde el kit comprende: un módulo de medición, un módulo de adquisición, y un adaptador de un extremo flexible y otro rígido. El sistema comprende el kit antes mencionado en comunicación con un medio receptor inalámbrico y una red de comunicación inalámbrica comprendiendo al menos una unidad central que puede estar ubicada en o fuera de la mina, que están en comunicación para recibir y administrar en forma remota, los datos de desgaste del buje recolectados y programar detenciones para reemplazar dicho buje ya sea en forma temporal o definitiva. El método de monitoreo se basa en la complementariedad, pero no limitado a, de dos formas de determinar el desgaste de bujes; mientras una primera forma se basa en mediciones de capacitancia con compensación térmica, en al menos una probeta testigo del módulo de medición, que se ubica en el manto del buje, y que desgasta solidariamente con éste, la otra realiza mediciones de cuantificación del nivel de las líneas eléctricas de conducción espaciadas en la probeta testigo, las cuales se van eliminando en la medida que avanza el nivel de desgaste. The present invention refers to a kit, system and method for remote, autonomous, real-time monitoring of bushing wear or thickness installed in an earthmoving machine, preferably in the ear of a bucket of a mining machine, where the kit includes: a measurement module, an acquisition module, and an adapter with one flexible and one rigid end. The system comprises the aforementioned kit in communication with a wireless receiving means and a wireless communication network comprising at least one central unit that can be located inside or outside the mine, which are in communication to receive and manage remotely, the collected bushing wear data and schedule stops to replace the bushing either temporarily or permanently. The monitoring method is based on the complementarity, but not limited to, of two ways to determine bushing wear; while the first method is based on capacitance measurements with thermal compensation, in at least one test piece of the measurement module, which is located in the bushing mantle, and which wears jointly with it, the other performs quantification measurements of the level of the electrical conduction lines spaced in the witness specimen, which are eliminated as the level of wear progresses.
ANTECEDENTES BACKGROUND
El objetivo de los bujes es proteger otros componentes críticos del desgaste producido por el roce entre mecanismos en movimiento, en este caso, entre la oreja del balde y el pasador. Están fabricados en una aleación de acero especial que le permite operar durante un período de tiempo determinado o por cierta cantidad de toneladas de material desplazado. Sin embargo, estos elementos pueden sufrir una reducción de su vida útil por un desgaste acelerado, excesivo e imprevisto, provocando daño en otros componentes que el buje pretende proteger, lo que radica en detenciones no programadas con pérdidas económicas importantes para la mina. The purpose of the bushings is to protect other critical components from wear caused by friction between moving mechanisms, in this case, between the bucket ear and the pin. They are made of a special steel alloy that allows them to operate for a certain period of time or for a certain number of tons of displaced material. However, these elements can suffer a reduction in their useful life due to accelerated, excessive and unforeseen wear, causing damage to other components that the bushing is intended to protect, resulting in unscheduled stoppages with significant economic losses for the mine.
Hay pocas compañías que se aventuran a monitorear los bujes para que puedan ser reemplazados a tiempo sin generar daños económicos por detenciones no programadas. Las soluciones actuales van desde inspecciones visuales del espesor del buje, hasta post-análisis de fotografías de las piezas. Estos métodos son imprecisos, subjetivos, costosos y poco prácticos, porque sus resultados no son inmediatos, y para llevarlos a cabo, es necesario detener la faena para estimar el desgaste. Además, dependen de la experiencia y el juicio del operador que lleva a cabo la medición, además que ésta se debe realizar desde una distancia considerable ya que, por motivos de seguridad, el personal no puede acceder a una pala minera durante una faena. US10696337B2 o US10046815B2 (WearPro Inc.) se relacionan con un dispositivo de control del tren de desgaste que comprende un conjunto de rodillos que incluye un componente de rodillo fijo y un buje. Se forma una abertura dentro del componente de rodillo fijo. Un primer sensor está dispuesto dentro de la abertura del componente de rodillo fijo sobre el casquillo. El primer sensor está configurado para detectar una primera característica física del buje. El componente de rodillo fijo es un eje o una carcasa. El primer sensor es un sensor de temperatura o un sensor de efecto Hall. Se dispone un imán en el conjunto de rodillos. Un segundo sensor está dispuesto dentro de la abertura del componente de rodillo fijo sobre el casquillo. El segundo sensor está configurado para detectar una segunda característica física del buje. Un dispositivo de transmisión de datos está acoplado al primer sensor. Los datos se recopilan del sensor y se transmiten a un dispositivo receptor Few companies venture to monitor bushings so they can be replaced on time without economic damage from unscheduled downtime. Current solutions range from visual inspection of the thickness of the bushing, to post-analysis of photographs of the pieces. These methods are imprecise, subjective, expensive and impractical, because their results are not immediate, and to carry them out, it is necessary to stop the work to estimate the wear. In addition, they depend on the experience and judgment of the operator who carries out the measurement, in addition to the fact that it must be carried out from a considerable distance since, for security reasons, personnel cannot access a mining shovel during a job. US10696337B2 or US10046815B2 (WearPro Inc.) relate to a wear train control device comprising a roller assembly including a stationary roller component and a bushing. An opening is formed within the stationary roller component. A first sensor is disposed within the opening of the fixed roller component on the bushing. The first sensor is configured to detect a first physical characteristic of the hub. The stationary roller component is either a shaft or a housing. The first sensor is a temperature sensor or a Hall effect sensor. A magnet is arranged in the roller assembly. A second sensor is disposed within the opening of the fixed roller component on the bushing. The second sensor is configured to detect a second physical characteristic of the hub. A data transmission device is coupled to the first sensor. Data is collected from the sensor and transmitted to a receiving device
US6868711 B2 (General Electric Technology GmbH) divulga un método para controlar el desgaste mecánico causado por un primer componente en un segundo componente, en el que el primer y segundo componentes son móviles entre sí y en el que el primer y el segundo componente están al menos a veces, en contacto mecánico entre sí, al menos un cabezal sensor está dispuesto en un área de desgaste para monitorear el segundo componente. El al menos un cabezal sensor es desgastado mecánicamente por el primer componente al alcanzar un límite de desgaste predeterminado. Cuando el al menos un cabezal sensor está desgastado mecánicamente, se genera una señal de medición por el al menos un cabezal sensor o se detecta un cambio de una señal de medición, producido por el al menos un cabezal sensor antes de haber sido desgastado mecánicamente. La medición es la intensidad de la luz reflejada en la cubierta metálica. US6868711 B2 (General Electric Technology GmbH) discloses a method for controlling mechanical wear caused by a first component on a second component, in which the first and second components are movable relative to each other and in which the first and second components are adjacent to each other. At least sometimes, in mechanical contact with each other, at least one sensor head is arranged in a wear area to monitor the second component. The at least one sensor head is mechanically worn by the first component upon reaching a predetermined wear limit. When the at least one sensor head is mechanically worn, a measurement signal is generated by the at least one sensor head or a change in a measurement signal is detected, produced by the at least one sensor head before it was mechanically worn. The measurement is the intensity of light reflected from the metal cover.
US20150066291 A1 (Caterpillar Inc) divulga un Sistema de monitoreo de desgaste para un componente del tren de aterrizaje incluye un sensor ultrasónico dispuesto en el componente del tren de rodaje. El sensor ultrasónico está configurado para emitir ondas ultrasónicas para detectar el desgaste del componente del tren de aterrizaje. El sistema de control del desgaste incluye además un dispositivo de control del desgaste dispuesto en comunicación con el sensor ultrasónico. El dispositivo de control de desgaste se encuentra alejado del sensor ultrasónico. Además, el dispositivo de control del desgaste está configurado para generar una salida indicativa del desgaste del componente del tren de aterrizaje. US20150066291 A1 (Caterpillar Inc) discloses a Wear Monitoring System for an undercarriage component includes an ultrasonic sensor disposed on the undercarriage component. The ultrasonic sensor is configured to emit ultrasonic waves to detect wear on the landing gear component. The wear control system further includes a wear control device disposed in communication with the ultrasonic sensor. The wear control device is located away from the ultrasonic sensor. In addition, the wear monitoring device is configured to generate an output indicative of landing gear component wear.
US20160121945A1 (Caterpillar Inc) divulga un rodillo de un sistema de orugas de tren de aterrizaje para una máquina, que comprende un cuerpo y una función detectada. El cuerpo es un sólido de revolución formado alrededor de un eje de rodillo. El cuerpo incluye una superficie de perforación y una superficie de contacto de rodillo. La superficie del orificio define un orificio que se extiende a través del cuerpo. La superficie del orificio es una superficie radialmente interior del cuerpo. La superficie de contacto del rodillo está ubicada hacia afuera de la superficie del orificio. La característica detectada se encuentra en el cuerpo. La función detectada está configurada para girar con el cuerpo y ser detectada por un sensor. El sensor es un sensor de velocidad magnético, y mide la longitud de un diente/protuberancia o un receso que se extiende desde e integralmente al cuerpo. US20160121945A1 (Caterpillar Inc) discloses a roller of an undercarriage track system for a machine, comprising a body and a sensed function. The body is a solid of revolution formed around a roller axis. The body includes a perforation surface and a roller contact surface. The hole surface defines a hole that extends through the body. The surface of the hole is a radially inner surface of the body. The contact surface of the roller is located away from the surface of the hole. The detected feature is located on the body. The detected function is configured to rotate with the body and be detected by a sensor. The sensor is a magnetic speed sensor, and measures the length of a tooth/protrusion or recess extending from and integral to the body.
US20160221618A1 (Caterpillar Inc) divulga un dispositivo sensor de desgaste que se puede utilizar junto con un conjunto de rodillo portador de un conjunto de pista y puede tener un rodillo sensor de desgaste montado en un eje del conjunto de rodillo portador, el que puede estar configurado para contactar un conjunto de pasador de pista conectado a uno o más enlaces de pista del conjunto de pista. El dispositivo de detección de desgaste puede tener además un sensor de desgaste montado en el rodillo del sensor de desgaste y configurado para generar una señal indicativa de un parámetro de desgaste de uno o más eslabones de la cadena. El sensor es un sensor de efecto Hall, un sensor ultrasónico, un sensor magnético, un sensor de inducción o un sensor láser. US20160221618A1 (Caterpillar Inc) discloses a wear sensor device that can be used in conjunction with a carrier roller assembly of a track assembly and may have a wear sensor roller mounted on a shaft of the carrier roller assembly, which may be configured to contact a set of track pins connected to one or more track links of the track set. The wear detection device may further have a wear sensor mounted on the wear sensor roller and configured to generate a signal indicative of a wear parameter of one or more chain links. The sensor is a Hall effect sensor, an ultrasonic sensor, a magnetic sensor, an induction sensor, or a laser sensor.
US20090223083A1 (Pacific Bearing Co) divulga un cojinete que incluye una sección portátil que incluye un sensor de desgaste. El buje incluye un sensor de desgaste que proporciona información al usuario en relación con la vida útil del rodamiento que se ha utilizado. El sensor puede tener la forma de un cable incrustado en la sección portátil del cojinete, de modo que a medida que la sección portátil se desgasta con el tiempo, el cable puede desgastarse al romper un circuito que incluye el cable. Un módulo indicador puede detectar la rotura del cable y determinar la cantidad de vida útil del rodamiento que se ha utilizado. En una implementación, el rodamiento se usa en un tambor de secado; y método para controlar el desgaste del cojinete que incluye controlar los cambios en las propiedades eléctricas de un sensor montado en el cojinete. DE102007063519A1 (Lein Claudius) divulga un sistema de control de desgaste y sobrecarga tiene dos elementos móviles uno contra otro, donde los elementos se apoyan o se acoplan mediante un medio para un acoplamiento de resorte o absorción. El medio comprende un componente elastomérico. Una unidad está integrada o fijada en el componente elástico para un monitoreo de desgaste eléctrico o medición de absorción y una indicación de sobrecarga. El componente elástico consiste en dos elementos que se mueven mutuamente y que por medio de un resorte y/o acoplamiento de descarga son sostenidos mutuamente o acoplados uno a otro, el que comprende al menos un componente elastomérico. Las estructuras eléctricamente conductoras, conductoras o semiconductoras en el componente elastomérico son introducidas o vulcanizadas, y producen el contacto eléctrico entre los dos elementos mutuamente movibles que a su vez son eléctricamente conductores o tienen contactos eléctricamente conductores y tienen un sensor y/o circuito abierto o cerrado con diferentes parámetros, y tienen estructuras conductoras con comportamiento de fractura o fatiga o tiempo de vida en base a parámetros físico, térmicos o químicos definidos. US20090223083A1 (Pacific Bearing Co) discloses a bearing that includes a portable section that includes a wear sensor. The hub includes a wear sensor that provides feedback to the user regarding the life of the bearing that has been used. The sensor may be in the form of a wire embedded in the wearable section of the bearing, so that as the wearable section wears over time, the wire can wear out by breaking a circuit that includes the wire. An indicator module can detect a cable break and determine the amount of bearing life that has been used. In one implementation, the bearing is used in a drying drum; and method for monitoring bearing wear including monitoring changes in the electrical properties of a bearing-mounted sensor. DE102007063519A1 (Lein Claudius) discloses a wear and overload control system having two elements moving against each other, where the elements are supported or coupled by means of a spring or absorption coupling. The medium comprises an elastomeric component. A unit is built into or attached to the elastic component for electrical wear monitoring or absorption measurement and overload indication. The elastic component consists of two mutually movable elements which by means of a spring and/or release coupling are mutually supported or coupled to one another, which comprises at least one elastomeric component. The electrically conductive, conductive or semiconductive structures in the elastomeric component are inserted or vulcanized, and produce the electrical contact between the two mutually movable elements which in turn are electrically conductive or have electrically conductive contacts and have a sensor and/or open circuit or closed with different parameters, and have conductive structures with fracture or fatigue behavior or life time based on defined physical, thermal or chemical parameters.
US20150081166A1 (Caterpillar Inc) divulga un sistema de monitoreo de desgaste para monitorear el desgaste de una superficie de un rodillo de oruga asociado con un tren de aterrizaje de una máquina, que comprende un dispositivo sensor colocado debajo de una superficie superior del rodillo de seguimiento, el que a su vez comprende una sonda configurada para sufrir desgaste junto con la superficie superior del rodillo de seguimiento, un circuito controlador configurado para monitorear el grado de desgaste de la superficie superior del rodillo de seguimiento en función del desgaste de la sonda, una antena y una fuente de energía. El sistema de control del desgaste además comprende un transceptor configurado para transmitir una señal indicativa del grado de desgaste del rodillo de seguimiento. El sistema de control del desgaste incluye además un dispositivo de control configurado para generar una salida indicativa del grado de desgaste del rodillo de seguimiento. US20150081166A1 (Caterpillar Inc) discloses a wear monitoring system for monitoring wear of a surface of a track roller associated with an undercarriage of a machine, comprising a sensor device positioned under an upper surface of the track roller, which in turn comprises a probe configured to undergo wear along with the upper surface of the track roller, a controller circuit configured to monitor the degree of wear on the upper surface of the track roller based on the wear of the probe, an antenna, and a power source. The wear control system further comprises a transceiver configured to transmit a signal indicative of the degree of wear of the follow roller. The wear monitoring system further includes a monitoring device configured to generate an output indicative of the degree of wear on the track roll.
KR101863909B1 (KRRI) divulga un controlador y un método de control de un “tester” de abrasión en un cepillo de suelo de eje de un vehículo ferroviario, un controlador para recibir una señal de detección detectada desde la pluralidad de sensores del “tester” de rendimiento que simula las características de conducción del vehículo ferroviario y emitir un comando para controlar el dispositivo motor del probador de rendimiento; una placa de entrada/salida para recibir una señal de entrada, convertir la señal en una señal digital y transmitir la señal al controlador, y enviar una señal analógica al “tester” de rendimiento de acuerdo con un comando del controlador, y un controlador de motor para controlar el dispositivo de motor de acuerdo con un comando del controlador. El aparato permite una prueba automática de resistencia a la abrasión de un cepillo de tierra del eje de un vehículo ferroviario y un método de control del probador de rendimiento. Se construye un entorno de prueba de resistencia a la abrasión que simula el entorno de un vehículo real durante la prueba de desgaste de un cepillo de suelo de eje para un vehículo ferroviario y un disco de deslizamiento para reproducir un cambio numérico dinámico medido en un vehículo ferroviario real, y realizar la prueba a bajo costo KR101863909B1 (KRRI) discloses a controller and a control method of an abrasion tester in an axle floor brush of a railway vehicle, a controller for receiving a detected detection signal from the plurality of sensors of the abrasion tester. performance simulating the driving characteristics of the railway vehicle and issuing a command to control the motor device of the performance tester; an input/output board for receiving an input signal, converting the signal into a digital signal and transmitting the signal to the controller, and sending an analog signal to the performance tester according to a command from the controller, and a controller for motor to control the motor device according to a command from the controller. The apparatus enables an automatic abrasion resistance test of a railway vehicle axle ground brush and a performance tester control method. An abrasion resistance test environment that simulates a real vehicle environment is built during the wear test of an axle floor brush for a railway vehicle and a skid disc to reproduce a dynamic numerical change measured on a vehicle. real railway, and perform the test at low cost
US20150266527A1 (Caterpillar Inc) divulga un enlace para un conjunto de riel para una máquina, que comprende: un cuerpo de enlace que define una abertura configurada para recibir un pasador de seguimiento en su interior. El cuerpo de enlace incluye además una primera superficie configurada para contactar un elemento giratorio del conjunto de riel y una segunda superficie configurada para contactar una zapata de riel acoplada al cuerpo de enlace. El enlace incluye además una pluralidad de marcas definidas en el cuerpo del enlace próximo a la primera superficie. Cada una de la pluralidad de marcas es indicativa de un desgaste progresivo del cuerpo de enlace con respecto a la primera superficie. US20150266527A1 (Caterpillar Inc) discloses a link for a rail assembly for a machine, comprising: a link body defining an opening configured to receive a tracking pin therein. The link body further includes a first surface configured to contact a rotatable member of the rail assembly and a second surface configured to contact a rail shoe coupled to the link body. The link further includes a plurality of indicia defined on the body of the link proximate the first surface. Each of the plurality of marks is indicative of progressive wear of the link body with respect to the first surface.
En el mercado existen productos que, aunque no permiten medir el desgaste en bujes, pueden medir el desgaste de “liners” de molinos SAG, “Smart Wear System” (SWS) de High Service, con su producto SWS, Smart Wear System, lo que se logra por medio de un dispositivo de transmisión inalámbrica en forma de perno que se instala en los molinos y permite acceder de forma “online” a la información de desgaste del “liner”. En cuanto al monitoreo de desgaste, WearPro, cuyo producto patentado UCM (US20130255354A1/US10046815B2), monitorea el desgaste en bujes de eslabones en dispositivos de tracción tipo oruga. El sensor reporta desgaste en bujes de rodillos y engranajes de manera remota y para medir el espesor utiliza un sensor de efecto hall. There are products on the market that, although they do not allow bushing wear to be measured, can measure the wear of SAG mill liners, High Service's “Smart Wear System” (SWS), with its SWS product, Smart Wear System, which which is achieved by means of a bolt-shaped wireless transmission device that is installed in the mills and allows online access to the wear information of the liner. Regarding wear monitoring, WearPro, whose patented product UCM (US20130255354A1/US10046815B2), monitors the wear on link bushings in caterpillar-type traction devices. The sensor reports wear on roller bushings and gears remotely and uses a hall effect sensor to measure thickness.
La presente invención, en cambio, se refiere a un kit, sistema y método de monitoreo, remoto, autónomo, en tiempo real, del desgaste de un buje instalado en máquina de movimiento de tierra, preferentemente, en la oreja (1 ) de un balde de máquina minera, donde el kit se instala directamente en el buje (2), y proporciona información del estado de desgaste del mismo, de manera confiable y con bajo consumo energético. The present invention, on the other hand, refers to a kit, system and method for monitoring, remote, autonomous, in real time, the wear of a bushing installed in an earthmoving machine, preferably in the ear (1) of a mining machine bucket, where the kit is installed directly on the bushing (2), and provides information on its wear status, reliably and with low energy consumption.
El presente kit comprende al menos un módulo de medición de tamaño reducido que se puede instalar en espacios pequeños, adaptándose así, a espacios de diversas geometrías, y comprende al menos una probeta testigo, al menos un chip capacitivo, al menos un chip contador digital y al menos un chip de medición de temperatura, y en un extremo, un conector hembra para conexiones de circuitos planos flexibles. This kit includes at least one small-sized measurement module that can be installed in small spaces, thus adapting to spaces of various geometries, and includes at least one test tube, at least one capacitive chip, at least one digital counter chip and at least one temperature measurement chip, and at one end, a female connector for flexible planar circuit connections.
El presente kit también comprende al menos un módulo de adquisición de circuito impreso, multicapas, con una antena que no presenta apantallamiento electromagnético por la alta presencia de metales en su entorno, lo que es un problema frecuente en las telecomunicaciones, y en cambio, emite señales de microondas/radiofrecuencia desde un entorno metálico dónde existen pequeñas brechas y espacios. El módulo de adquisición también comprende baterías de alta capacidad, memoria micro SD para registro de errores y almacenamiento de información, conector rígido que permite unirse al adaptador, microcontrolador, chips RF, chip administrador de energía, luces led, entre otras. This kit also includes at least one multilayer printed circuit acquisition module with an antenna that does not have electromagnetic shielding due to the high presence of metals in its environment, which is a frequent problem in telecommunications, and instead emits microwave/radio frequency signals from a metallic environment where small gaps and gaps exist. The acquisition module also includes high-capacity batteries, micro SD memory for error recording and information storage, a rigid connector that allows joining the adapter, a microcontroller, RF chips, a power management chip, led lights, among others.
Asimismo, el módulo de adquisición comprende una carcasa protectora exterior (13) que protege - tanto a los componentes electrónicos antes mencionados como a otros componentes electrónicos pasivos, incluyendo resistencias, condensadores e inductancias, entre otros, de un ambiente con altas fluctuaciones térmicas y corrosivo, y de golpes/impactos y vibraciones que ocurren producto de la aceleración/desaceleración de la máquina minera, y la carga y descarga de mineral, entre otras. Likewise, the acquisition module comprises an outer protective casing (13) that protects - both the aforementioned electronic components and other passive electronic components, including resistors, capacitors and inductances, among others, from an environment with high thermal fluctuations and corrosive , and blows/impacts and vibrations that occur as a result of the acceleration/deceleration of the mining machine, and the loading and unloading of ore, among others.
El presente kit además comprende un adaptador (7) con un conector vertical rígido (8) en un extremo, y un conector flexible (9) en el otro extremo, que le permite prescindir de otros elementos mecánicos de conexión (tales como, pernos, tornillos, tuercas, entre otros), y con ello, ser capaz de resistir bajas temperaturas sin deteriorarse, donde dicho conector flexible comprende un circuito plano flexible que se aloja en el conector hembra del módulo de medición, y dicho conector vertical rígido comprende un circuito que se une al módulo de adquisición.This kit also includes an adapter (7) with a rigid vertical connector (8) at one end, and a flexible connector (9) at the other end, which allows you to dispense with other mechanical connection elements (such as bolts, screws, nuts, among others), and with this, be able to resist low temperatures without deteriorating, where said flexible connector comprises a flexible flat circuit that is housed in the female connector of the measurement module, and said rigid vertical connector comprises a circuit which is attached to the acquisition module.
El presente sistema comprende el kit antes descrito, un medio receptor inalámbrico y una red de comunicación inalámbrica con al menos una unidad central de comunicación, en comunicación con dicho kit, específicamente, en comunicación con dicho módulo de adquisición de dicho kit. El método se basa en la complementariedad, pero no limitado a, de dos formas de determinar el desgaste de bujes. La primera forma comprende la medición de capacitancia con compensación térmica, considerando que el desgaste del buje varía proporcionalmente con la longitud del desgate de dicha al menos una probeta testigo de dicho módulo de medición que se desgasta solidariamente con el buje, y que se ubica al menos en una canal rectangular en el manto del buje. La segunda forma realiza mediciones de longitud en dicha al menos una probeta testigo mediante la detección y cuantificación del nivel de sus líneas eléctricas (21 , 22) de conducción espaciadas, lo que refleja el avance/grado de desgaste, esto significa que a menores niveles de líneas eléctricas de conducción o menor densidad de cuantización de niveles es mayor el desgaste en dicha al menos una probeta testigo, mientras que a mayores niveles de líneas eléctricas de conducción o mayor densidad de cuantización de niveles es menor el desgaste en probetas testigos. The present system comprises the kit described above, a wireless receiving means and a wireless communication network with at least one central communication unit, in communication with said kit, specifically, in communication with said acquisition module of said kit. The method is based on the complementarity, but not limited to, of two ways of determining bushing wear. The first form comprises the measurement of capacitance with thermal compensation, considering that the wear of the bushing varies proportionally with the length of the wear of said at least one test piece of said measurement module that wears jointly with the bushing, and that is located to the except in a rectangular channel in the bushing mantle. The second way performs length measurements on said at least one control specimen by detecting and quantifying the level of its spaced conduction power lines (21, 22), which reflects the progress/degree of wear, this means that at lower levels of electrical conduction lines or lower level quantization density, the wear in said at least one control specimen is greater, while at higher levels of electrical conduction lines or higher level quantization density, the wear in control specimens is less.
El buje comprende en su manto, al menos una canal rectangular, de poca profundidad, y además al menos una perforación pasante en dicha canal donde se ubican dicha al menos una probeta testigo de dicho módulo de medición, y un extremo ensanchado. El buje puede tener múltiples canales distribuidas regularmente en el manto, y cada canal puede tener múltiples perforaciones pasantes para recibir múltiples probetas testigos. The bushing comprises in its mantle, at least one shallow rectangular channel, and also at least one through-hole in said channel where said at least one witness specimen of said measurement module is located, and a flared end. The bushing may have multiple channels evenly distributed in the mantle, and each channel may have multiple through-bore holes to receive multiple core specimens.
BREVE DESCRIPCION DE FIGURASBRIEF DESCRIPTION OF FIGURES
FIGURA 1 : Muestra sección de oreja (1 ) de balde minero, con abertura cilindrica para alojar buje. FIGURE 1: Shows a section of the ear (1) of a mining bucket, with a cylindrical opening to house the bushing.
FIGURAS 2A-2F: Muestra buje (2) con al menos una canal rectangular, de bajo perfil/poca profundidad (Figs. 2A y 2B), que concluye en su extremo con una ampliación de la canal. Puede presentar 1 o más perforaciones cilindricas pasantes distribuidas a lo largo de la canal para alojar probetas o testigos (4). Se ilustran buje con 3 canales rectangulares, de poca profundidad, y una o más perforaciones cilindricas pasantes distribuidas a lo largo de la canal (Figs. 2C y 2D). Se ilustran buje con 5 canales rectangulares, de poca profundidad, y una o más perforaciones cilindricas pasantes distribuidas a lo largo de la canal (Figs. 2E y 2F). FIGURES 2A-2F: Show hub (2) with at least one rectangular, low profile/shallow groove (Figs. 2A and 2B), which ends at its end with an enlargement of the groove. It can have 1 or more cylindrical through holes distributed along the channel to accommodate test tubes or cores (4). Bushing with 3 shallow rectangular grooves and one or more cylindrical through-holes distributed along the groove are illustrated (Figs. 2C and 2D). Bushing with 5 shallow rectangular grooves and one or more cylindrical through-holes distributed along the groove are illustrated (Figs. 2E and 2F).
FIGURAS 3A y 3B: Muestra Buje (2), con al menos una canal instalada en oreja (1 ) de balde minero. FIGURES 3A and 3B: Sample Bushing (2), with at least one channel installed in the ear (1) of the mining bucket.
FIGURA 4: Muestra módulo de medición (3) para al menos una canal que contiene al menos 1 o más probetas testigos (4) de desgaste, al menos 1 o más chips de medición, que pueden ser capacitivos, contadores digitales o ambos, al menos 1 o más chips de medición de temperatura. Contiene además en uno de sus extremos un conector hembra (5) para conexiones de circuitos planos flexibles. FIGURAS 5A-5C: Muestra al menos un módulo de medición (3) instalado en al menos una canal del buje (2), con una canal (Fig. 5A), tres canales (Fig. 5B) y cinco canales (Fig. 5C). FIGURE 4: Shows a measurement module (3) for at least one channel that contains at least 1 or more witness specimens (4) of wear, at least 1 or more measurement chips, which can be capacitive, digital counters or both, at minus 1 or more temperature measurement chips. It also contains a female connector (5) at one of its ends for connections of flat flexible circuits. FIGURES 5A-5C: Shows at least one measurement module (3) installed in at least one channel of the hub (2), with one channel (Fig. 5A), three channels (Fig. 5B) and five channels (Fig. 5C ).
FIGURAS 6A y 6B: Buje con módulo de medición (2) instalado en oreja (1) del balde de máquina minera. Se observa sección de la canal (6) que sobresale por el costado de la oreja, sección que permite posteriormente instalar el adaptador (Fig. 6A). Se muestra vista con corte en oreja (1) (Fig. 6B). FIGURES 6A and 6B: Hub with measurement module (2) installed in ear (1) of the mining machine bucket. A section of the canal (6) can be seen that protrudes from the side of the ear, a section that allows the adapter to be installed later (Fig. 6A). A cut view of the ear is shown (1) (Fig. 6B).
FIGURAS 7A-7C: Muestra Vista Perspectiva (Fig. 7A) de adaptador (7). Vista en Planta inferior (Fig. 7B). Vista en elevación Superior (Fig. 7C). Se observa conector plano flexible (9) y conector rígido (8). FIGURES 7A-7C: Sample Perspective View (Fig. 7A) of adapter (7). Lower plan view (Fig. 7B). Top elevation view (Fig. 7C). A flat flexible connector (9) and a rigid connector (8) can be seen.
FIGURAS 8A-8C: Muestra una vista con corte en oreja (1) de módulo de medición (3) y adaptador (7) conectados e instalados en la canal (6) del buje (2). El adaptador (7) consta de dos extremos, el primero consiste en un circuito plano flexible que se aloja en el conector del módulo de medición, el segundo extremo consta de un conector vertical rígido. FIGURES 8A-8C: Shows a cutaway view of the ear (1) of the measurement module (3) and adapter (7) connected and installed in the channel (6) of the bushing (2). The adapter (7) has two ends, the first consists of a flexible flat circuit that is housed in the connector of the measurement module, the second end consists of a rigid vertical connector.
FIGURAS 9A-9C: Muestra distintas perspectivas del sistema posterior a la instalación del golillón (10). Se observa que el extremo vertical del adaptador (7) queda completamente sellado salvo por la abertura superior de la cavidad del golillón (11 ), cavidad que permite posteriormente instalar el módulo de adquisición desde arriba. FIGURES 9A-9C: Shows different perspectives of the system after the installation of the swivel (10). It can be seen that the vertical end of the adapter (7) is completely sealed except for the upper opening of the screw hole cavity (11), a cavity that later allows the acquisition module to be installed from above.
FIGURAS 10A-10I: Muestra distintas perspectivas del módulo de adquisición (12) y ensamblado con carcasa (13). FIGURES 10A-10I: Shows different perspectives of the acquisition module (12) and assembly with casing (13).
FIGURAS 11 A-11 D: Muestra distintas perspectivas del sistema posterior a la instalación del módulo de adquisición (12) con carcasa (13). FIGURES 11 A-11 D: Shows different perspectives of the system after the acquisition module (12) with casing (13) has been installed.
FIGURAS 12A y 12B: Muestra corte transversal del sistema completo. FIGURES 12A and 12B: Shows a cross section of the complete system.
FIGURA 13: Muestra el módulo de adquisición (12) con conector (14), la antena (15) y bateríasFIGURE 13: Shows the acquisition module (12) with connector (14), the antenna (15) and batteries
(16). (16).
FIGURA 14: Muestra un esquema de operación de presente sistema y método. FIGURA 15: Muestra Gráfico Capacitancia de probeta versus Desgaste de buje. FIGURA 16: Muestra Gráfico Nivel digital de probeta versus Desgaste de buje. FIGURA 17: Muestra conectividad inalámbrica entre módulos de adquisición y receptor en techo de cabina. FIGURE 14: Shows an operation scheme of the present system and method. FIGURE 15: Sample Specimen Capacitance vs. Bushing Wear Graph. FIGURE 16: Sample Graph Digital level of probe versus Bushing wear. FIGURE 17: Shows wireless connectivity between acquisition modules and receiver on the cabin roof.
FIGURA 18: Muestra conectividad inalámbrica entre módulos de adquisición, receptores en techo de cabina, nube o servidor, con dispositivos de usuario final, como computadores, Tablet, teléfonos móviles, entre otros. FIGURE 18: Shows wireless connectivity between acquisition modules, receivers on the cabin roof, cloud or server, with end user devices, such as computers, tablets, mobile phones, among others.
FIGURA 19: Muestra distintas capas de fabricación de una misma probeta (4) , que incluye condensador de desgaste (19), condensador de referencia (20) y circuitos que forman los distintos niveles de líneas de conducción (21 , 22). DESCRIPCION DE LA INVENCION FIGURE 19: Shows different manufacturing layers of the same specimen (4), which includes wear capacitor (19), reference capacitor (20) and circuits that form the different levels of conduction lines (21, 22). DESCRIPTION OF THE INVENTION
El presente kit, sistema y método de monitoreo remoto, autónomo, en tiempo real, del desgaste de buje instalado en una máquina de movimiento de tierra, preferentemente, en la oreja de un balde de máquina minera, permite monitorear y reportar periódicamente de manera inalámbrica o telemática, el nivel de desgaste acumulado en uno o más bujes, en una o más máquinas, y en respuesta, programar su mantención y reemplazo definitivo o temporal para efectos de prolongar la vida útil del mismo, y así, prevenir daños no deseados o detenciones imprevistas en la máquina minera. This kit, system and method for remote, autonomous, real-time monitoring of bushing wear installed in an earthmoving machine, preferably in the ear of a bucket of a mining machine, allows periodic monitoring and reporting wirelessly or telematics, the level of accumulated wear in one or more bushings, in one or more machines, and in response, schedule their maintenance and permanent or temporary replacement in order to prolong its useful life, and thus prevent unwanted damage or unexpected stoppages in the mining machine.
El presente kit permite entonces, medir el desgaste del buje, posicionando en al menos una canal rectangular, de poca profundidad, en el manto externo del buje, al menos un módulo de medición, el que se conecta con al menos un módulo de adquisición (de datos) mediante un adaptador, donde el módulo de adquisición se ubica en una cavidad del golillón, y donde dicha información de desgaste del buje recolectada y procesada por dicho al menos un módulo de medición y recibida por dicho al menos un módulo de adquisición, que transmite hacia un medio receptor inalámbrico y desde dicho medio receptor inalámbrico a una unidad central de una red de comunicación, que puede ser la nube (Internet) o un servidor (conectado a Internet, o bien a una red local), habilitando así la gestión de mantención, reemplazo o retiro del o de los bujes monitoreados. The present kit then makes it possible to measure the wear of the bushing, positioning in at least one rectangular channel, of little depth, in the outer layer of the bushing, at least one measurement module, which is connected to at least one acquisition module ( data) by means of an adapter, where the acquisition module is located in a cavity of the swivel, and where said bushing wear information collected and processed by said at least one measurement module and received by said at least one acquisition module, that transmits to a wireless receiving medium and from said wireless receiving medium to a central unit of a communication network, which can be the cloud (Internet) or a server (connected to the Internet or to a local network), thus enabling the management of maintenance, replacement or removal of the bushing(s) monitored.
La canal, dónde va alojado el módulo de medición no afecta negativamente el rendimiento del buje durante la operación, ni reduce su vida útil, y en cambio, permite medir en forma confiable, el desgaste desde su propio cuerpo, sin necesidad de estimarlo desde el exterior de la oreja del balde de una máquina minera o desde una posición similar de la máquina minera, como se realiza hasta ahora. El módulo de medición, además del módulo de adquisición, una vez conectados, son autónomos y no requieren de encendido/apagado externo, garantizando un bajo consumo de energía con una autonomía de 2 años. The channel, where the measurement module is housed, does not negatively affect the performance of the bushing during operation, nor does it reduce its useful life, and instead, it allows reliable measurement of wear from its own body, without the need to estimate it from the outside of the bucket ear of a mining machine or from a similar position on the mining machine, as is done hitherto. The measurement module, in addition to the acquisition module, once connected, are autonomous and do not require external on/off, guaranteeing low energy consumption with a 2-year autonomy.
El buje comprende en su manto, al menos una canal rectangular, de poca profundidad, y además al menos una perforación pasante en dicha canal donde se ubican dicha al menos una probeta testigo de dicho módulo de medición, y donde dicha al menos una canal tiene un extremo ensanchado para recibir a dicho adaptador que conecta el módulo de medición y dicho módulo de adquisición. El buje puede así, comprender múltiples canales rectangulares distribuidas de manera regular en el manto del buje, así como también múltiples perforaciones pasantes igualmente distribuidas en cada canal. Múltiples módulos de medición con múltiples probetas testigos permiten alcanzar un perfil completo de desgaste para todo el cuerpo del buje, mientras que un con un solo módulo de medición y más de una probeta testigo, se alcanza un perfil de desgaste localizado en una línea del manto del buje, y particularmente, para sólo una probeta testigo, se alcanza un sólo punto de desgaste. El módulo de medición tiene un tamaño reducido que le permite ser instalado en espacios pequeños, adaptándose así, a espacios de diversas geometrías, y tiene en su extremo un conector hembra de bajo perfil para conexiones de circuitos planos y flexibles. Este tipo de conector soporta altas vibraciones y temperaturas. The bushing comprises in its mantle, at least one shallow rectangular channel, and also at least one through-hole in said channel where said at least one witness specimen of said measurement module is located, and where said at least one channel has a flared end to receive said adapter connecting the measurement module and said acquisition module. The hub can thus comprise multiple rectangular grooves distributed in a regular manner in the shell of the hub, as well as multiple through-holes equally distributed in each groove. Multiple measurement modules with multiple witness probes allow a complete wear profile to be achieved for the entire bushing body, while with a single measurement module and more than one witness probe, a localized wear profile is achieved on a mantle line. of the bushing, and particularly, for only one test piece, a single point of wear is reached. The measurement module has a reduced size that allows it to be installed in small spaces, thus adapting to spaces with different geometries, and it has a low-profile female connector at its end for flat and flexible circuit connections. This type of connector supports high vibrations and temperatures.
El módulo de medición comprende al menos una probeta testigo, al menos un chip de medición capacitivo, al menos un chip contador digital, al menos un chip de medición de temperatura, y un conector hembra para conexiones de circuitos planos flexibles, en un extremo, y además comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros. The measurement module comprises at least one witness probe, at least one capacitive measurement chip, at least one digital counter chip, at least one temperature measurement chip, and a female connector for flexible planar circuit connections, at one end, and also includes passive electronic components selected from capacitors, resistors, inductances, among others.
La probeta testigo (4) comprendiendo al menos dos capas (bicapa) funcionales, comprendiendo al menos una primera capa externa que comprende al menos un condensador de desgaste (19), y una segunda capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, y además opcionalmente, la probeta testigo puede comprender una tercera capa interna y una cuarta capa interna complementarias que comprenden al menos un circuito cada capa, y juntas forman los distintos niveles de líneas de conducción (21 , 22). Estas tercera capa interna y cuarta capa interna se pueden ubicar ya sea inmediatamente a continuación o antes de la bicapa de primera capa externa y segunda capa interna o entre dicha primera capa externa y dicha segunda capa interna, y donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura. Mientras, dicha tercera capa interna y cuarta capa interna que forman los distintos niveles de líneas de conducción (21 , 22) permiten complementariamente medir el desgaste de la probeta testigo. The control specimen (4) comprising at least two functional layers (bilayer), comprising at least a first external layer comprising at least one wear capacitor (19), and a second internal layer comprising at least one reference capacitor (20). ), where the first outer layer can optionally alternate its location with the second inner layer, and also optionally, the control sample can comprise a third inner layer and a fourth complementary inner layer that comprise at least one circuit each layer, and together they form the different levels of conduction lines (21, 22). These third inner layer and fourth inner layer can be located either immediately after or before the first outer layer and second inner layer bilayer or between said first outer layer and said second inner layer, and where the wear capacitor (19) It allows measuring the capacitance of the witness specimen as it wears out, while from the reference capacitor (20) measurements are obtained that allow the measurement of wear on the witness specimen to be corrected depending on the effect of temperature. Meanwhile, said third internal layer and fourth internal layer that form the different levels of conduction lines (21, 22) additionally allow the wear of the witness specimen to be measured.
La probeta testigo puede comprender al menos una capa adicional a la configuración antes mencionada y que aumenta en al menos una capa la bicapa comprendiendo una primera capa externa y una segunda capa interna ya sea en una capa adicional comprendiendo un condensador de desgaste, una capa adicional comprendiendo un condensador de referencia o ambas o diferentes combinaciones de las mismas. La probeta testigo también puede comprender al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, la que se puede ubicar inmediatamente antes o a continuación de o entre las capas de condensadores de desgaste y condensadores de referencia, antes mencionadas. El condensador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine. El condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor. The control sample can comprise at least one additional layer to the aforementioned configuration and that increases the bilayer by at least one layer, comprising a first external layer and a second internal layer, either in an additional layer comprising a wear capacitor, an additional layer comprising a reference capacitor or both or different combinations thereof. The control sample can also comprise at least one additional complementary layer comprising circuits that complement the conduction lines, which can be located immediately before or after or between the aforementioned layers of wear capacitors and reference capacitors. The wear capacitor comprises two conducting wires or two conducting tracks facing each other in a comb-like fashion. The reference capacitor differs from the wear capacitor only in that it is shorter in length.
El módulo de adquisición comprende al menos una antena que no presenta apantallamiento electromagnético por la alta presencia de metales en su entorno, emitiendo señales de microondas/radiofrecuencia desde un entorno metálico dónde existen pequeñas brechas y espacios; también comprende un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición y procesa las mismas, incluyendo los errores provenientes de dicho módulo de medición y otros periféricos, y en general, la ejecución de tareas de los demás componentes de este módulo; una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias del módulo de medición y sus errores o aquellos de otros periféricos, incluyendo chips RF, administradores de energía, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD; un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición y otros periféricos, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz; un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por el microcontrolador, y que suministra energía tanto al módulo de adquisición como al módulo de medición, evitando así un consumo excesivo cuando los componentes no se están utilizando, favoreciendo una autonomía energética de al menos dos años. The acquisition module comprises at least one antenna that does not have electromagnetic shielding due to the high presence of metals in its environment, emitting signals of Microwave/RF from a metallic environment where small gaps and gaps exist; it also comprises a set of light indicators with patterns and colors that allows visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the end gullion open; a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module and processes them, including errors from said measurement module and other peripherals, and in general, the execution of tasks of the others components of this module; a memory card that stores the information/data of said daily periodic measurements of the measurement module and its errors or those of other peripherals, including RF chips, power managers, among others, preferably selected from a microSD card memory; an integrated circuit/chip that maintains intermittent or continuous communication with said receiving means to wirelessly send/transmit said information/data accumulated from said daily periodic measurements and said errors coming from said measurement module and other peripherals, which allows radio frequency communication via the use of Bluetooth Low Energy and Lora protocols at 2.4 GHz; an integrated circuit/chip that manages/controls the power supply from a selected power source of at least 2 batteries, controlled by the microcontroller, and which supplies power to both the acquisition module and the measurement module, thus avoiding consumption excessive when the components are not being used, favoring an energy autonomy of at least two years.
El módulo de adquisición además comprende, una carcasa protectora exterior (13) que protege a los componentes electrónicos que conforman al módulo, de un ambiente con altas fluctuaciones térmicas y corrosivo, y de golpes/impactos y vibraciones que ocurren producto de la aceleración/desaceleración de la máquina minera, y la carga y descarga de mineral, entre otras. La Fig. 1 muestra a modo ilustrativo la oreja del balde de pala minera. Mientras las figs. 2A-2F muestran en modo ilustrativo, al menos un buje de la pala minera modificado para comprender en su manto, una canal rectangular de poca profundidad, tres canales rectangulares de poca profundidad o cinco canales rectangulares de poca profundidad. En las Figs. 3A y 3B, se ilustra a modo de ejemplo, la instalación del buje en la oreja del balde de pala minera. The acquisition module also includes an outer protective casing (13) that protects the electronic components that make up the module, from an environment with high thermal fluctuations and corrosive, and from blows/impacts and vibrations that occur as a result of acceleration/deceleration. of the mining machine, and the loading and unloading of ore, among others. Fig. 1 shows, by way of illustration, the ear of the mining shovel bucket. While figs. 2A-2F show, illustratively, at least one mining shovel hub modified to comprise, in its mantle, one shallow rectangular channel, three shallow rectangular channels, or five shallow rectangular channels. In Figs. 3A and 3B, the installation of the bushing in the ear of the mining shovel bucket is illustrated by way of example.
La configuración de módulo de medición y las probetas testigos, se ilustran a modo de ejemplo, en la Fig. 4 y Fig. 19, donde en esta última figura se muestra un realización tricapa en la superficie de la probeta con una capa externa para el condensador de desgaste (19), una capa intermedia para el condensador de referencia (20) y una capa interna para los circuitos que forman los distintos niveles de líneas de conducción (21 , 2. La instalación del módulo de medición en al menos un buje con una canal rectangular de poca profundidad, tres canales rectangulares de poca profundidad o cinco canales rectangulares de poca profundidad, se ilustran a modo de ejemplo, en las Figs. 5A-5C. Mientras en buje con el módulo de medición instalado en la oreja del balde de pala minera, se ilustra en las Figs. 6A y 6B, mostrando en una sección en corte, el costado de la oreja que posteriormente permite la instalación del adaptador. The configuration of the measurement module and the control specimens are illustrated by way of example in Fig. 4 and Fig. 19, where in the latter figure a three-layer embodiment is shown on the surface of the specimen with an external layer for the wear capacitor (19), an intermediate layer for the reference capacitor (20) and an internal layer for the circuits that form the different levels of conduction lines (21, 2. The installation of the measurement module in at least one hub with one shallow rectangular channel, three shallow rectangular channels, or five shallow rectangular channels, are illustrated as a example, in Figs. 5A-5C. While bushing with the measurement module installed in the ear of the mining shovel bucket, illustrated in Figs. 6A and 6B, showing in a section in section, the side of the ear that later allows the installation of the adapter.
Las Figs, 7A-7C ilustran a modo de ejemplo, el adaptador observado desde distintas vistas, y destacando el extremo que recibe conector flexible del módulo de medición y conector vertical rígido que recibe el conector rígido del módulo de adquisición, donde cada conector se ubica en extremos opuestos del adaptador. Mientras las Figs. 8A-8C muestran una vista en corte de la oreja del buje con el módulo de medición instalado y el adaptador conectado al módulo de medición mediante el conector plano flexible, donde los conectores corresponden a circuitos. Las Figs.9A-9C ilustran a modo de ejemplo, distintas vistas del sistema posterior de instalación del golillón, mostrado que el extremo vertical del adaptador queda completamente sellado salvo por la abertura superior de la cavidad del golillón, donde se instala el módulo de adquisición desde arriba, conectando el conector rígido del módulo de adquisición con el módulo vertical rígido del adaptador. Figs 7A-7C illustrate, by way of example, the adapter observed from different views, and highlighting the end that receives the flexible connector of the measurement module and the rigid vertical connector that receives the rigid connector of the acquisition module, where each connector is located on opposite ends of the adapter. While Figs. 8A-8C show a cutaway view of the bushing ear with the measurement module installed and the adapter connected to the measurement module via the flat flexible connector, where the connectors correspond to circuits. Figs.9A-9C illustrate, by way of example, different views of the rear swivel installation system, showing that the vertical end of the adapter is completely sealed except for the upper opening of the swivel cavity, where the acquisition module is installed. from above, connecting the rigid connector of the acquisition module with the rigid vertical module of the adapter.
Las Figs. 10A-1 OH, ilustran a modo de ejemplo, distintas vistas de módulo de adquisición sin carcasa y con carcasa ensamblada. Mientras las Figs. 11A-11 D ilustran a modo de ejemplo, distintas vistas del sistema posterior de instalación del módulo de adquisición con carcasa. Las Figs. 12A y 12B ilustran a modo de ejemplo, un corte transversal del sistema completo instalado en el buje y la Fig. 13 ilustra a modo de ejemplo, el módulo de adquisición con conector rígido, la antena y la fuente de alimentación de energía que pueden comprender al menos una pila, batería, entre otras fuentes de energía. The Figs. 10A-1 OH, illustrate by way of example, different views of the acquisition module without casing and with casing assembled. While Figs. 11A-11 D illustrate, by way of example, different views of the rear installation system of the acquisition module with casing. The Figs. 12A and 12B illustrate, by way of example, a cross section of the complete system installed in the hub and Fig. 13 illustrates, by way of example, the acquisition module with rigid connector, the antenna and the power supply that can comprise at least one cell, battery, among other sources of energy.
La Fig. 14 muestra el esquema de operación de presente sistema y método. Mientras la Fig. 17 muestra la conectividad inalámbrica entre módulos de adquisición y módulo receptor en el techo de la cabina de una máquina de movimiento de tierra, y la Fig. 18 muestra la conectividad inalámbrica entre módulos de adquisición, módulo receptor en el techo de cabina, nube o servidor, con dispositivos de usuario final, como computadores, Tablet, teléfonos móviles, entre otros. Fig. 14 shows the scheme of operation of the present system and method. While Fig. 17 shows wireless connectivity between acquisition modules and receiver module on the roof of the cab of an earthmoving machine, and Fig. 18 shows wireless connectivity between acquisition modules, receiver module on the roof of cabin, cloud or server, with end user devices, such as computers, tablets, mobile phones, among others.
Las Fig. 15 y Fig. 16 muestran un gráfico de capacitancia de probeta testigo versus desgaste del buje y gráfico nivel digital de probeta testigo versus desgaste de buje. Fig. 15 and Fig. 16 show a plot of blank capacitance versus bushing wear and a plot of blank digital level versus bushing wear.
El presente kit de monitoreo remoto, autónomo, en tiempo real, del desgaste o espesor de un buje instalado en una máquina de movimiento de tierra, preferentemente, en una oreja del balde de una máquina minera, donde dicho buje comprende en su manto externo, al menos una canal rectangular, de poca profundidad, y además al menos una perforación cilindrica pasante en dicha canal rectangular para alojar al menos una probeta testigo y un extremo ensanchado, comprendiendo dicho kit: a) al menos un módulo de medición para ser ubicado en dicho al menos una canal rectangular del manto externo de dicho buje, comprendiendo: a.1) al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, a.2) al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, teniendo dicha probeta testigo en su superficie al menos dos capas, una primera capa externa que comprende al menos un condensador de desgaste (19), una segunda capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, y opcionalmente, la probeta testigo puede comprender una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22), las que se pueden ubicar ya sea inmediatamente a continuación o antes de la bicapa de primera capa externa y de la segunda capa interna o entre dicha primera capa externa y dicha segunda capa interna, y donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde dicha tercera capa interna y cuarta capa interna que forman los distintos niveles de líneas de conducción (21 , 22) permiten complementariamente medir el desgaste de la probeta testigo, y donde la probeta testigo puede comprender al menos una capa adicional a la configuración antes mencionada y que aumenta en al menos una capa la bicapa comprendiendo una primera capa externa y una segunda capa interna ya sea en una capa adicional comprendiendo un condensador de desgaste, una capa adicional comprendiendo un condensador de referencia o ambas o diferentes combinaciones de las mismas, y donde adicionalmente la probeta testigo también puede comprender al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, la que se puede ubicar inmediatamente antes o a continuación de o entre las capas de condensadores de desgaste y condensadores de referencia, antes mencionadas, a.3) una placa electrónica única que comprende los componentes a.1 ) y a.2) de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, b) al menos un módulo de adquisición que se ubica en una cavidad en el golillón, teniendo código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende: b.1 ) un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; b.2) un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes de dicho módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, b.3) una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, b.4) un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, b.5) un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, b.6) al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y b.7) una carcasa protectora que aloja a cada uno de los componentes b.1 ) a b.6), protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y c) al menos un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, para ser ubicado en el extremo de dicha canal rectangular del buje, y ser conectado en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical. This remote, autonomous, real-time monitoring kit of the wear or thickness of a bushing installed in an earthmoving machine, preferably in a bucket ear of a mining machine, where said bushing includes in its external mantle, at least one shallow rectangular channel, and also at least one through-hole cylindrical hole in said rectangular channel to accommodate at least one witness specimen and one flared end, said kit comprising: a) at least one measurement module to be located in said at least one rectangular channel of the external mantle of said bushing, comprising: a.1) at least three chips located on a single electronic board, which can have different geometry and perform daily periodic measurements of at least 2 parameters selected from: bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, a.2) at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow obtaining measurements of variations in the wear of the bushing, since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one test specimen , electrical properties/characteristics that vary as its length decreases, including capacitance; and their own electrical conduction lines, on an electronic card that electrically connects the parts to each other, said test piece having at least two layers on its surface, a first external layer comprising at least one wear capacitor (19), a second layer comprising at least one reference condenser (20), where the first outer layer can optionally alternate its location with the second inner layer, and optionally, the witness specimen can comprise a complementary third inner layer and fourth inner layer that together form the different levels of conduction lines (21, 22), which can be located either immediately after or before the bilayer of the first outer layer and the second inner layer or between said first outer layer and said second inner layer, and where the wear capacitor (19) allows the measurement of the capacitance of the witness specimen as it wears out, while the re-condenser In reference (20) measurements are obtained that allow the measurement of wear in the witness specimen to be corrected according to the effect of temperature, and where said third internal layer and fourth internal layer that form the different levels of conduction lines (21, 22) In addition, they allow measuring the wear of the control specimen, and where the control specimen can comprise at least one additional layer to the aforementioned configuration and which increases the bilayer by at least one layer, comprising a first external layer and a second internal layer either in an additional layer comprising a wear capacitor, an additional layer comprising a reference capacitor, or both or different combinations thereof, and where additionally the witness specimen may also comprise at least one additional complementary layer comprising circuits that complement the conduction lines, which can be located immediately before or after or between the aforementioned layers of wear capacitors and reference capacitors, a.3) a single electronic board comprising Components a.1) and a.2) of essentially rectangular, elongated and flat geometry, flexo-rigid and multilayer, having a first zone or zone of flexion, made of flexible material, preferably selected from polyamide, which can be flexed without causing damage. in the electrical connections present on said single electronic board, while the second area opposite said first area is made of semi-rigid material, preferably selected from FR4, which can be slightly bent without damaging the electrical connections present on said single electronic board, and at one end, a female connector for connection of flat flexible circuits, and where an electronic circuit ico comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least one control probe and is located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, b) at least one acquisition module that is located in a cavity in the swivel, having a unique individual identifier code (ID) that allows the bushing to be identified and registered in a local, wireless network, connected to a server, which can be or not connected to the Internet, and includes: b.1) a set of light indicators with patterns and colors that allow visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the swivel; b.2) a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors from said measurement module or other peripherals, and in general, the execution of component tasks remaining of this module, b.3) a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any error coming from it or other peripherals, including chips, such as RF chips , power management chips, RGB LED light control chips, among others, preferably selected from a microSD card memory, b.4) an integrated circuit/chip that maintains intermittent or continuous communication with said receiving medium to send it / wirelessly transmit to you said accumulated information / data from said daily periodic measurements and said errors coming from said measurement module, which enables radio frequency communication using Bluetooth Low Energy and Lora protocols at 2.4 GHz, b.5) an integrated circuit/chip that manages/controls, power supply from a selected power source of at least 2 batteries, controlled by said microcontroller, and that supplies power to both the acquisition module and said measurement module, thus avoiding excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years , b.6) at least one antenna that allows wireless communication with said receiving medium, and b.7) a protective casing that houses each of the components b.1) to b.6), protecting them from dust and water , having a parallelepiped geometry, with mainly flat and smooth faces, which allows its easy displacement through the cavity or emptying of the screw, and in the final installation position, it is embedded inside the upper end of the screw, being visible only by the upper end of the screw, protecting it from the outside, for example, from rocks that can hit the ear of the bucket, and connected to an adapter; and c) at least one adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, to be located at the end of said rectangular channel of the bushing, and be connected at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector.
El presente sistema de monitoreo remoto, autónomo, en tiempo real, del desgaste o espesor de buje instalado en una máquina de movimiento de tierra, preferentemente, en la oreja de balde de máquina minera, comprende: a) al menos un kit como el antes descrito, comprendiendo: a.1) al menos un módulo de medición para ser ubicado en dicho al menos una canal rectangular del manto externo de dicho buje, comprendiendo: a.1.1) al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, a.1.2) al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, comprendiendo dicha probeta testigo en su superficie al menos dos capas, una primera capa externa que comprende al menos un condensador de desgaste (19), una segunda capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, y opcionalmente, la probeta testigo puede comprender una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22), las que se pueden ubicar ya sea inmediatamente a continuación o antes de la bicapa de primera capa externa y de la segunda capa interna o entre dicha primera capa externa y dicha segunda capa interna, y donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde dicha tercera capa interna y cuarta capa interna que forman los distintos niveles de líneas de conducción (21 , 22) permiten complementariamente medir el desgaste de la probeta testigo, y donde la probeta testigo puede comprender al menos una capa adicional a la configuración antes mencionada y que aumenta en al menos una capa la bicapa comprendiendo una primera capa externa y una segunda capa interna ya sea en una capa adicional comprendiendo un condensador de desgaste, una capa adicional comprendiendo un condensador de referencia o ambas o diferentes combinaciones de las mismas, y donde adicionalmente la probeta testigo también puede comprender al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, la que se puede ubicar inmediatamente antes o a continuación de o entre las capas de condensadores de desgaste y condensadores de referencia, antes mencionadas, donde el condenador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine, y el condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor, a.1.3) una placa electrónica única que comprende los componentes a.1.1 ) y a.1.2) de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, a.2) al menos un módulo de adquisición que se ubica en una cavidad en el golillón, teniendo código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende: a.2.1 ) un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; a.2.2) un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes de dicho módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, a.2.3) una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, a.2.4) un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, a.2.5) un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, a.2.6) al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y a.2.7) una carcasa protectora que aloja a cada uno de los componentes a.2.1 ) a a.2.6), protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y a.3) al menos un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, para ser ubicado en el extremo de dicha canal rectangular del buje, y ser conectado en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical; b) al menos un módulo receptor o Gateway ubicado, preferentemente, en el techo de la cabina de la máquina minera, en comunicación con dicho módulo de adquisición y dicho servidor de red; c) al menos un servidor de red que procesa dicha información/datos de dichas mediciones periódicas diarias que son enviadas/transmitidas por dicho módulo receptor para estimar el estado de desgaste y la vida útil del buje mediante una proyección según la tasa de desgaste calculada a partir de las mediciones de desgaste, periódicas diarias, acumuladas en el tiempo, y opcionalmente, comprende medios de alarmas ya sean visuales, auditivas o ambas, que dan cuenta de un riesgo ya sea porque se ha alcanzado un desgaste riesgoso del buje, es decir, el buje tiene un grosor/espesor inferior a 6 mm; una temperatura riesgosa en el buje, es decir, el buje ha alcanzado una temperatura superior a 85eC, entre otras, donde dichos medios de alarmas se seleccionan de medios de alarmas que envían/transmiten al usuario, un mensaje de correo electrónico de notificación, un mensaje visual o auditivo con despliegue en la pantalla de un dispositivo inalámbrico seleccionado de un computador portátil, teléfono móvil, una Tablet, entre otros, donde dicho mensaje auditivo se seleccionada de una bocina/sirena, un mensaje de audio, entre otras, y donde dicho mensaje visual se selecciona de una señal lumínica fija o intermitente, entre otras, y donde dichos mensajes de alarmas se actualizan automática y periódicamente, This remote, autonomous, real-time monitoring system of bushing wear or thickness installed in an earthmoving machine, preferably in the bucket ear of a mining machine, includes: a) at least one kit as described above, comprising: a.1) at least one measurement module to be located in said at least one rectangular channel of the outer shell of said hub, comprising: a.1.1) at least three chips located on a single electronic board, which can have diverse geometry and perform daily periodic measurements of at least 2 parameters selected from: bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, a.1.2) at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow obtaining measurements of variations in the wear of the bushing, since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one test specimen , electrical properties/characteristics that vary as its length decreases, including capacitance; and their own electrical conduction lines, on an electronic card that electrically connects the parts to each other, said test piece comprising at least two layers on its surface, a first external layer comprising at least one wear capacitor (19), a second layer comprising at least one reference condenser (20), where the first outer layer can optionally alternate its location with the second inner layer, and optionally, the witness specimen can comprise a complementary third inner layer and fourth inner layer that together form the different levels of conduction lines (21, 22), which can be located either immediately after or before the bilayer of the first outer layer and the second inner layer or between said first outer layer and said second inner layer, and where the wear capacitor (19) allows to measure the capacitance of the test piece as it wears out, while the capacitor reference (20) measurements are obtained that allow correcting the measurement of wear in the witness specimen depending on the effect of temperature, and where said third internal layer and fourth internal layer that form the different levels of conduction lines (21, 22 ) additionally make it possible to measure the wear of the control specimen, and where the control specimen can comprise at least one additional layer to the aforementioned configuration and which increases the bilayer by at least one layer, comprising a first external layer and a second internal layer, either in a additional layer comprising a wear capacitor, an additional layer comprising a reference capacitor, or both or different combinations thereof, and where additionally the witness specimen may also comprise at least one additional complementary layer comprising circuitry that complements the conduction lines, the which can be located immediately before or after or between the aforementioned layers of wear capacitors and reference capacitors, wherein the wear capacitor comprises two conductive wires or two conductive tracks facing each other in a comb-shaped interleaved manner, and the capacitor The reference capacitor differs from the wear capacitor only in that it has a shorter length, a.1.3) a single electronic board that comprises the components a.1.1) and a.1.2) with an essentially elongated and flat rectangular geometry, flexo-rigid and multilayer , having a first zone or zone of flexion, of flexible material, preferably entity selected from polyamide, which can be bent without causing damage to the electrical connections present on said single electronic board, while the second area opposite said first area, is made of semi-rigid material, preferably selected from FR4, which can be slightly bent without damaging the electrical connections present on said unique electronic board, and at one end, a female connector for connection of flexible planar circuits, and where an electronic circuit comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least a witness probe and is located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, a.2) at least one acquisition module that is located in a cavity in the swivel, having a unique individual identifier code (ID) that allows the bushing to be identified and registered in a local, wireless network, connected to a server, which may or may not be connected to the Internet, and comprises: a.2.1) a set of light indicators with patterns and colors that allow visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the swivel; a.2.2) a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors from said measurement module or other peripherals, and in general, the execution of component tasks remaining of this module, a.2.3) a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any error coming from it or other peripherals, including chips, such as RF chips , power management chips, RGB LED light control chips, among others, preferably selected from a microSD card memory, a.2.4) an integrated circuit/chip that maintains intermittent or continuous communication with said receiving medium to send it / wirelessly transmit to you said information / data accumulated from said daily periodic measurements and said errors coming from said measurement module , which enables radio frequency communication using Bluetooth Low Energy and Lora protocols at 2.4 GHz, a.2.5) an integrated circuit/chip that manages/controls, power supply from a selected power source of at least 2 batteries , controlled by said microcontroller, and which supplies power to both the acquisition module and said measurement module, thus avoiding excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years, a.2.6) at least one antenna that allows wireless communication with said receiving medium, and a.2.7) a protective casing that houses each of the components a.2.1) to a.2.6), protecting them from dust and water, having a parallelepiped geometry, with mainly flat and smooth faces, which allows its easy displacement through the cavity or emptying of the screw, and in the final installation position, it is embedded inside the screw, being visible only by the upper end of the screw, protecting it from the outside, for example, from rocks that could hit the ear of the bucket, and connected to an adapter; and a.3) at least one adapter for high vibration environments that withstand temperatures up to 125 ° C, which is selected from a selected flexo-rigid plate. made of polyamide and FR4, to be located at the end of said rectangular channel of the bushing, and to be connected at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector ; b) at least one receiver module or Gateway located, preferably, on the roof of the cabin of the mining machine, in communication with said acquisition module and said network server; c) at least one network server that processes said information/data from said daily periodic measurements that are sent/transmitted by said receiving module to estimate the state of wear and the useful life of the bushing by means of a projection according to the rate of wear calculated at from daily periodic wear measurements, accumulated over time, and optionally, includes means of alarms, be they visual, audible or both, which report a risk either because a risky wear of the bushing has been reached, that is to say , the bushing has a thickness/thickness less than 6mm; a dangerous temperature in the bushing, that is, the bushing has reached a temperature greater than 85 ° C, among others, where said alarm means are selected from alarm means that send/transmit to the user, a notification email message , a visual or audio message displayed on the screen of a wireless device selected from a laptop, mobile phone, tablet, among others, where said audio message is selected from a horn/siren, an audio message, among others, and where said visual message is selected from a fixed or flashing light signal, among others, and where said alarm messages are updated automatically and periodically,
Previamente a su uso, cada probeta testigo es caracterizada eléctricamente mediante la relación entre la capacitancia y la longitud, a diferentes temperaturas, ya que sus características eléctricas dependen tanto de la longitud y la temperatura, y con ello, se determina una relación entre capacitancia y longitud, en función de la temperatura, que permite estimar el nivel de desgaste del buje. Ver Figuras 14 y 15. Prior to its use, each control specimen is electrically characterized by the relationship between capacitance and length, at different temperatures, since its electrical characteristics depend both on length and temperature, and with this, a relationship between capacitance and length is determined. length, depending on the temperature, which allows estimating the level of wear on the bushing. See Figures 14 and 15.
En cuanto a dicho al menos un canal rectangular del buje, este se obtiene al mecanizar el buje, conservando sus propiedades mecánicas, esto es, sin generar estrés ni deformaciones por esfuerzo que sean significativas en dicho canal rectangular del buje, las cuales pueden eventualmente dar origen a microfracturas, que durante la faena puedan eventualmente propagarse, acortando la vida útil del buje. El buje puede ser excéntrico, es decir, el agujero interior circular del buje no es concéntrico con el diámetro exterior del buje. Para ser instalado en el interior de la oreja del balde, dicho buje con dicho módulo de medición, o simplemente el buje sensorizado, es sumergido en nitrógeno líquido, hasta alcanzar un radio inferior al radio que tendría a temperatura ambiente, con el objetivo de poder entrar con la holgura necesaria dentro de la oreja del balde. El módulo de medición ha sido diseñado para soportar la inmersión en nitrógeno líquido sin sufrir daños. As regards said at least one rectangular groove of the bushing, this is obtained by machining the bushing, preserving its mechanical properties, that is, without generating significant stress or stress deformation in said rectangular groove of the bushing, which can eventually give origin of micro-fractures, which during work may eventually propagate, shortening the useful life of the bushing. The bushing may be eccentric, ie the circular bore of the bushing is not concentric with the outside diameter of the bushing. To be installed inside the ear of the bucket, said bushing with said measurement module, or simply the bushing sensorized, it is submerged in liquid nitrogen, until it reaches a radius less than the radius it would have at room temperature, with the aim of being able to enter with the necessary clearance inside the ear of the bucket. The measurement module has been designed to withstand immersion in liquid nitrogen without damage.
El módulo de medición tiene un diseño que permite que ninguno de sus componentes electrónicos y partes sobresalgan del contorno del volumen del buje hacia el exterior, lo que asegura que no se dañe, tanto durante el transporte del buje, como durante su proceso de instalación en la oreja del balde. Además, el módulo de medición es resistente a vibraciones y golpes transmitidos al buje que son propios en faena ya que dicha placa electrónica única y dicha al menos una probeta testigo son un cuerpo continuo o único. Esta resistencia no se alcanzaría si las probetas testigos se unen a la placa por soldadura u otro medio de unión. The measurement module has a design that allows none of its electronic components and parts to protrude from the contour of the bushing volume to the outside, which ensures that it is not damaged, both during the transport of the bushing, and during its installation process in bucket ear. In addition, the measurement module is resistant to vibrations and shocks transmitted to the bushing that are typical in work, since said single electronic board and said at least one control specimen are a continuous or single body. This resistance would not be achieved if the witness specimens are joined to the plate by welding or other joining means.
La placa electrónica única del módulo de medición tiene orificios/perforaciones que asisten en la fijación al buje, ya sea por un medio de fijación tipo perno roscado, remache, medio pasante o medio de adhesión. Estas perforaciones además permiten la alineación de dicha placa electrónica única a lo largo y ancho de dicha canal rectangular del buje, lo que facilita la posterior instalación del adaptador. The single electronic board of the measurement module has holes/drills that assist in fixing to the bushing, either by a means of fixing such as a threaded stud, rivet, through means or by means of adhesion. These perforations also allow the alignment of said single electronic board over the length and width of said rectangular channel of the bushing, which facilitates the later installation of the adapter.
La instalación del módulo de medición se realiza en forma previa a la instalación del buje en la oreja de balde. Primero se introducen las probetas testigos en las perforaciones correspondientes del buje, y luego, se introduce dicha placa electrónica única en dicha canal rectangular, y se fija dicha placa electrónica única al buje. Posterior y opcionalmente se rellenan tanto las perforaciones que reciben a las probetas testigos, como el resto del volumen del canal, con una resina polimérica líquida y se espera el curado de dicha resina polimérica. The installation of the measurement module is done prior to the installation of the bushing in the bucket lug. First, the witness specimens are introduced into the corresponding perforations of the bushing, and then, said single electronic plate is inserted into said rectangular channel, and said single electronic plate is fixed to the bushing. Subsequently and optionally, both the perforations that receive the witness specimens, as well as the rest of the volume of the channel, are filled with a liquid polymeric resin and the curing of said polymeric resin is awaited.
Las líneas conductoras eléctricas o niveles de desgaste son cables/conductores que van desde una probeta testigo al chip contador digital. Los niveles se ubican en las probetas y éstas están cerca del chip contador, de lo contrario, si no estuvieran cerca, se requeriría de un gran volumen de cables/conductores que necesitarían espacio extra a lo ancho de la placa, y con ello, se debería ensanchar también el canal del buje, lo cual lo tornaría frágil y reduciría su vida útil para habilitar el monitoreo, lo que es un efecto indeseable. Electrical lead lines or wear levels are wires/conductors that run from a witness probe to the digital counter chip. The levels are located in the probes and these are close to the counter chip, otherwise, if they were not close, it would require a large volume of cables / conductors that would require extra space across the width of the board, and with it, it should also widen the bushing groove, which would make it brittle and reduce its useful life to enable monitoring, which is an undesirable effect.
Un adaptador conecta el módulo de medición y el módulo de adquisición. Es de rápida y fácil instalación. Se instala, una vez que el buje ha sido instalado en la oreja del balde y previo a la instalación del golillón. Se sitúa en el extremo del canal del buje donde va el módulo de medición. Es una placa de material rígido flexible, lo que permite una mayor comodidad al momento de su instalación y amortigua de mejor forma las vibraciones. En un extremo tiene un conjunto de vías de conducción planas que se acopla con el conector del módulo de medición. En el otro extremo posee un conector vertical, el que encaja con el conector del módulo de adquisición. Todos los conectores, tanto del módulo de medición, como del adaptador y del módulo de adquisición, son conectores para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC. El módulo de adquisición comprende una carcasa protectora exterior que permite su fácil desplazamiento por la cavidad o vaciado del golillón. En la posición final de instalación, dicha carcasa se encuentra embebida al interior de la cavidad del golillón y sólo es visible por el extremo superior del vaciado de éste, de esta forma, ninguno de sus componentes electrónicos o partes queda expuesta al ambiente externo, donde podría llegar a ser dañados, por ejemplo, por el impacto de rocas en la oreja del balde. An adapter connects the measurement module and the acquisition module. It is quick and easy to install. It is installed once the bushing has been installed in the ear of the bucket and prior to the installation of the swivel. It is located at the end of the hub channel where the measurement module goes. It is a plate made of flexible rigid material, which allows greater comfort at the time of its installation and better dampens vibrations. At one end it has a set of flat conduit paths that mates with the connector on the measurement module. At the other end it has a vertical connector, which fits with the connector of the acquisition module. All the connectors, both of the measurement module, as well as of the adapter and of the acquisition module, are connectors for high vibration environments that withstand temperatures of up to 125 ° C. The acquisition module comprises an outer protective casing that allows easy movement through the cavity or emptying of the swivel. In the final installation position, said casing is embedded inside the swivel cavity and is only visible from the upper end of its hollowing. In this way, none of its electronic components or parts are exposed to the external environment, where it could become damaged, for example, by the impact of rocks on the bucket ear.
El módulo de adquisición se comunica inalámbricamente con el exterior mediante una antena que puede sintonizarse a pesar del ambiente esencialmente metálico que la rodea, a una frecuencia de emisión entre 2.4 GHz y 2.5 GHz, permitiendo con ello, la transmisión de información de las mediciones desde el módulo de medición en el buje al Gateway o al medio receptor, y de ahí, a un servidor de red. The acquisition module communicates wirelessly with the outside by means of an antenna that can be tuned despite the essentially metallic environment that surrounds it, at an emission frequency between 2.4 GHz and 2.5 GHz, thus allowing the transmission of measurement information from the measurement module in the hub to the Gateway or receiving medium, and from there to a network server.
El módulo Receptor o Gateway se ubica de modo que tiene línea vista o línea de visión directa con la dirección de propagación de la antena. Preferentemente, podría ser instalado en la máquina minera y aún más preferentemente en el techo de la cabina de la máquina minera, el mástil que sujeta al balde, así como en algún otro lugar que tenga línea vista. The Receiver or Gateway module is located so that it has line of sight or direct line of sight with the direction of propagation of the antenna. Preferably, it could be installed on the mining machine and even more preferably on the roof of the mining machine cabin, the mast that holds the bucket, as well as some other place that has a line of sight.
El presente sistema comienza a monitorear desde el momento en que se completa la instalación del kit, es decir, cuando el módulo de adquisición se conecta por la cavidad al adaptador, cerrando el circuito eléctrico de alimentación. El módulo de adquisición se enlaza/comunica inalámbricamente con dicho módulo receptor y dicho servidor de red, y a continuación, el kit se registra mediante un código de identificación único (ID) y suministra información del horario en que se instaló. Luego, comienza a reportar diariamente y en horarios preestablecidos/programados previamente, el nivel de desgaste del buje. This system begins to monitor from the moment the installation of the kit is completed, that is, when the acquisition module is connected to the adapter through the cavity, closing the electrical supply circuit. The acquisition module wirelessly links/communicates with said receiver module and said web server, and the kit then registers itself by a unique identification (ID) code and provides information of the time it was installed. Then, it begins to report daily and at pre-established/pre-scheduled times, the level of wear on the bushing.
Por otra parte, es sabido que, al aplicar una diferencia de potencial a un condensador, que es un dispositivo formado por dos conductores eléctricos próximos entre sí y rodeados por un medio dieléctrico, se genera un campo eléctrico y, en consecuencia, una distribución de cargas en el interior que permite almacenar energía. Los conductores pueden ser láminas, películas delgadas, pistas metálicas o electrolitos. También, es conocido que, la capacitancia depende de un factor geométrico como el área A (A = ancho ( a ) x largo (I)) y, por lo tanto, si un condensador de ancho constante a y largo I, disminuye su longitud, también disminuye su capacitancia. On the other hand, it is known that by applying a potential difference to a capacitor, which is a device formed by two electrical conductors close to each other and surrounded by a dielectric medium, an electric field is generated and, consequently, a distribution of charges inside that allows energy to be stored. Conductors can be foils, thin films, metal tracks, or electrolytes. Also, it is known that the capacitance depends on a geometric factor such as the area A (A = width ( a ) x length (I)) and, therefore, if a capacitor of constant width a and length I decreases its length, its capacitance also decreases.
De acuerdo con lo anterior, se diseñaron probetas testigos como condensadores o elementos sensibles que comprenden una primera capa externa que comprende un condensador de desgate que a su vez comprende dos conductores enfrentados de manera intercalada en forma de peines, que al desgastarse van perdiendo secciones y disminuyendo la capacitancia del condensador. In accordance with the above, control specimens were designed as capacitors or sensitive elements that comprise a first external layer that comprises a wear capacitor that in turn comprises two conductors facing each other interspersed in the form of combs, which when worn lose sections and decreasing the capacitance of the capacitor.
La medida del cambio de capacitancia corresponde a una conversión analógica digital de la señal física medida, para lo que se utiliza un microchip capacitivo, dedicado especialmente a la medición de la capacitancia de las probetas testigos. El microchip entrega un valor digital proporcional a la división de la frecuencia de resonancia del circuito que incluye a la probeta testigo y una frecuencia de referencia interna del chip. Este chip es administrado desde el módulo de adquisición por el microprocesador (MCU), el que a través de un chip administrador de energía enciende o apaga el microchip capacitivo administrando la energía en forma eficiente e indicándole cuándo debe medir. The measurement of the capacitance change corresponds to an analog-to-digital conversion of the measured physical signal, for which a capacitive microchip is used, specially dedicated to measuring the capacitance of the witness specimens. The microchip delivers a digital value proportional to the division of the resonance frequency of the circuit that includes the witness probe and an internal reference frequency of the chip. This chip is managed from the acquisition module by the microprocessor (MCU), which through a power management chip turns the capacitive microchip on or off, efficiently managing power and indicating when to measure.
El MCU puede iterar una o varias mediciones consecutivas, para obtener un conjunto de mediciones estadísticamente significativa, y de esta forma eliminar el ruido y artefactos propios de la conversión analógica digital, incluyendo “aliasing”, ruido de cuantificación, entre otros. Además, puede calcular la desviación estándar del conjunto de mediciones y establecer un grado de confiabilidad. The MCU can iterate one or several consecutive measurements, to obtain a set of statistically significant measurements, and in this way eliminate the noise and artifacts of the analog-to-digital conversion, including "aliasing", quantization noise, among others. Additionally, you can calculate the standard deviation of the set of measurements and set a degree of confidence.
Adicionalmente, el MCU transforma la lectura de frecuencia digital del microchip capacitivo en valores de longitud, utilizando una relación obtenida experimentalmente de la calibración del sensor (fc), que relaciona la lectura digital de la conversión análogo-digital (<¾ con la longitud de la probeta testigo (L), ver Ec. 1 . Additionally, the MCU transforms the digital frequency reading from the capacitive microchip into length values, using a relationship obtained experimentally from sensor calibration (f c ), which relates the digital reading to the analog-to-digital conversion (<¾ with length of the control specimen (L), see Eq. 1.
L m ] = /c(di) Ec. 1 L m ] = /c(di) Eq. 1
No obstante, las mediciones de capacitancia son susceptibles a los cambios de temperatura, por lo que de manera adicional y complementaria se cuenta con un sensor de temperatura que reporta la temperatura en el buje al mismo tiempo que se mide la capacitancia. Con esta información, el módulo de adquisición puede compensar la medida de frecuencia digital y establecer un valor eficaz de la medida, Dt. La compensación consiste en ajustar la lectura actual del microchip capacitivo con su respuesta en temperatura fT, obtenida experimentalmente al relacionar la medida de capacitancia a distintas temperaturas. Ver Ec. 2 y Ec. 3. However, capacitance measurements are susceptible to temperature changes, therefore, in an additional and complementary way, there is a temperature sensor that reports the temperature in the bushing at the same time that the capacitance is measured. With this information, the acquisition module can compensate the digital frequency measurement and establish an effective value of the measurement, D t . The compensation consists of adjusting the current reading of the capacitive microchip with its temperature response f T , obtained experimentally by relating the capacitance measurement at different temperatures. See Eq. 2 and Eq. 3.
Di = Mdi) Ec. 2 Di = Mdi) Eq. 2
L^mm = fc(D ) Ec. 3 L^mm = fc(D ) Eq. 3
El método comprende adicionalmente la incorporación de una capa intermedia que comprende un condensador de referencia ubicado como capa siguiente al condensador de desgaste, el cual se utilizará para obtener una medida diferencial o medida referencial de corrección. Este condensador no sufre de desgaste durante la operación del módulo de medición de modo que su longitud L2, permanece constante, sin embargo, la medida si se ve afectada por la diferencia de temperatura. La capacitancia del condensador de referencia CR se puede modelar de la siguiente manera (Ec. 4): The method additionally comprises the incorporation of an intermediate layer that comprises a reference capacitor located as a layer following the wear capacitor, which will be used to obtain a differential measurement or referential correction measurement. This condenser does not wear out during the operation of the measurement module so that its length L 2 remains constant, however, the measurement is affected by the temperature difference. The capacitance of the reference capacitor C R can be modeled as follows (Eq. 4):
CR = B m('G) Ec. 4 C R = B m('G) Eq. 4
Donde B corresponde a un factor geométrico y m corresponde al valor de la constante dieléctrica en función de la temperatura. Como la geometría del condensador es constante, B es constante, lo que implica que las variaciones de las medidas de capacitancia son atribuibles solamente a cambios de temperatura en el medio. Where B corresponds to a geometric factor and m corresponds to the value of the dielectric constant as a function of temperature. Since the geometry of the capacitor is constant, B is constant, which implies that the variations of the capacitance measurements are attributable only to temperature changes in the medium.
Análogamente, el condensador de desgaste se puede modelar como (Ec. 5): Similarly, the wear capacitor can be modeled as (Eq. 5):
0o = A(1)m(T) Ec. 5 0 or = A(1)m(T) Eq. 5
En este caso, el factor geométrico A(l) depende del desgaste, es decir de la longitud del condensador mientras que la constante dieléctrica m('G) es función de la temperatura. Luego si dividimos ambas expresiones obtenemos (Ec. 6 y Ec. 7): In this case, the geometric factor A(l) depends on wear, that is, on the length of the capacitor, while the dielectric constant m('G) is a function of temperature. Then if we divide both expressions we obtain (Eq. 6 and Eq. 7):
CD = A(1)m(T CD = A(1)m(T
Ec. 6 6
CR B m(G) CR Bm(G)
C A(l) C A(l)
Ec. 7 CR B Eq. 7 CR B
De esta última expresión se desprende que el factor geométrico del condensador de desgaste que depende del largo puede escribirse en función de los valores de capacitancia medidos en cada condensador multiplicados por un factor geométrico (Ec. 8). From this last expression it follows that the geometric factor of the wear capacitor that depends on the length can be written as a function of the capacitance values measured in each capacitor multiplied by a geometric factor (Eq. 8).
C C.
A(l ) = -D - B Ec. 8 CR A(l ) = - D - B Eq. 8 CR
Con esta última expresión se obtiene un elemento adicional y un método complementario para determinar el nivel de desgaste del testigo. With this last expression, an additional element and a complementary method are obtained to determine the wear level of the witness.
La etapa de medición de capacitancia se complementa con una etapa adicional de medición discreta, esto es, la medición de una variable que puede tomar sólo ciertos valores en un intervalo dado, que pueden ser o no equidistantes, y donde la resolución de la medición está determinada por la diferencia entre dos valores consecutivos. The capacitance measurement stage is complemented by an additional stage of discrete measurement, that is, the measurement of a variable that can take only certain values in a given interval, which may or may not be equidistant, and where the resolution of the measurement is determined by the difference between two consecutive values.
En este caso, la medición discreta corresponde a un contador digital de estados, para esto se utiliza una probeta testigo que cuenta con al menos 32 circuitos, y cada circuito puede tener dos estados, 1 o 0, que significa energizado o no energizado. El chip contador digital evalúa el estado de cada circuito y cuenta los estados positivos (1), con un primer sensor de conteo, cada circuito está espaciado de manera equidistante a lo largo de la probeta en la dirección de desgaste, preferentemente, a una diferencia de 1 mm. Alternativamente, pueden estar ubicados de modo que haya más circuitos (zona densa) en las zonas más críticas de desgaste, por ejemplo, en la zona más cercana al módulo de medición. De modo que a medida que el desgaste aumenta, se van cortando circuitos y cambiando de estado, de esta forma, es posible obtener el espesor del buje al contar cuantos circuitos se encuentran encendidos, por ejemplo: el contador detecta 22 circuitos encendidos, lo que se traduce en un largo de 22 mm. In this case, the discrete measurement corresponds to a digital state counter, for which a witness probe is used that has at least 32 circuits, and each circuit can have two states, 1 or 0, which means energized or not energized. The digital counter chip evaluates the state of each circuit and counts the positive states (1), with a first counting sensor, each circuit is spaced equidistantly along the length of the specimen in the direction of wear, preferably at a difference of 1mm. Alternatively, they can be located so that there are more circuits (dense area) in the most critical areas of wear, for example, in the area closest to the measurement module. Thus, as wear increases, circuits are cut and state changes, in this way, it is possible to obtain the thickness of the bushing by counting how many circuits are on, for example: the counter detects 22 circuits on, which translates to a length of 22mm.
El chip contador digital es administrado desde el MCU a través del chip administrador de energía. Este enciende y apaga los chips contadores cada vez que se requieran actualizar las mediciones. Los chips contadores entregan un número de circuitos activos y envían esa información al MCU, el que lo transforma en el espesor actual del buje y lo reporta al Gateway o receptor, y éste a su vez a un servidor de red. La ventaja principal de este tipo de medición es que es invariante o independiente a los cambios de temperatura. The digital counter chip is managed from the MCU through the power management chip. This turns the counter chips on and off each time an update of the measurements is required. The counter chips deliver a number of active circuits and send that information to the MCU, which transforms it into the current thickness of the bushing and reports it to the Gateway or receiver, and this to its once to a network server. The main advantage of this type of measurement is that it is invariant or independent of temperature changes.
Si se combinan ambos métodos de medición, es posible establecer una rutina redundante de verificación del desgaste medido y error. Si bien la medida digital es de baja resolución, del orden de 1 mm, permite medir de manera eficaz e independiente de las variaciones térmicas. Mientras que el método capacitivo tiene una resolución mucho mayor, pero depende de la temperatura y de la conversión analógica-digital. Al combinar ambos métodos, es posible corroborar si la medida capacitiva es correcta al comparar con la medida digital actual y anterior. Si la medida actual no se encuentra en el rango se desecha y se debe medir nuevamente hasta que ambos resultados sean coherentes. If both measurement methods are combined, it is possible to establish a redundant routine for checking the measured wear and error. Although the digital measurement is of low resolution, of the order of 1 mm, it allows to measure efficiently and independently of the thermal variations. While the capacitive method has a much higher resolution, but it depends on the temperature and the analog-digital conversion. By combining both methods, it is possible to check if the capacitive measurement is correct by comparing it with the current and previous digital measurement. If the current measurement is not in the range, it is discarded and must be measured again until both results are consistent.
El presente método de monitoreo remoto, autónomo, en tiempo real, del desgaste de buje instalado en una máquina de movimiento de tierra, preferentemente, en una oreja de balde de máquina minera, que usa el sistema antes descrito, comprende las siguientes etapas: a) adaptar un buje para que en su manto externo disponga de al menos una canal rectangular, de poca profundidad, y adaptar un golillón de buje para que comprenda una cavidad, donde en dicha canal rectangular se ubica al menos un módulo de medición y donde en dicha cavidad del golillón se ubica al menos un módulo de adquisición, donde dicho al menos un módulo de medición comprende al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, comprendiendo dicha probeta testigo en su superficie al menos dos capas, una primera capa externa que comprende al menos un condensador de desgaste (19), una segunda capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, y opcionalmente, la probeta testigo puede comprender una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22), las que se pueden ubicar ya sea inmediatamente a continuación o antes de la bicapa de primera capa externa y de la segunda capa interna o entre dicha primera capa externa y dicha segunda capa interna, y donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde dicha tercera capa interna y cuarta capa interna que forman los distintos niveles de líneas de conducción (21 , 22) permiten complementariamente medir el desgaste de la probeta testigo, y donde la probeta testigo puede comprender al menos una capa adicional a la configuración antes mencionada y que aumenta en al menos una capa la bicapa comprendiendo una primera capa externa y una segunda capa interna ya sea en una capa adicional comprendiendo un condensador de desgaste, una capa adicional comprendiendo un condensador de referencia o ambas o diferentes combinaciones de las mismas, y donde adicionalmente la probeta testigo también puede comprender al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, la que se puede ubicar inmediatamente antes o a continuación de o entre las capas de condensadores de desgaste y condensadores de referencia, antes mencionadas, donde el condenador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine, y el condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor, una placa electrónica única que comprende los componentes antes descritos, de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, y dicho al menos un módulo de adquisición tiene un código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes de dicho módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y una carcasa protectora que aloja a cada uno de los componentes antes descritos, protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, que une dicho módulo de medición y dicho módulo de adquisición, conectando en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical, b) preparar una curva de valores de compensación de capacitancia de las probetas testigos en función de las mediciones del chip de medición de temperatura del módulo de medición; c) determinar el valor del desgaste del buje a partir de las mediciones de capacitancia de la probeta testigo del módulo de medición, compensando térmicamente según los valores de compensación de la curva obtenida en la etapa b), d) determinar la temperatura del buje a partir de las mediciones del chip de medición de temperatura, e) establecer el nivel del valor del desgaste del buje acumulado en el tiempo según los valores del desgaste determinado en c) acumulado en el tiempo, y opcionalmente f) activar medios de alarmas ya sea visuales, auditivos o ambos, ya sea porque se ha alcanzado un desgaste riesgoso del buje, es decir, el buje tiene un grosor/espesor inferior a 6 mm; o una temperatura riesgosa en el buje, es decir, el buje ha alcanzado una temperatura superior a 85eC, entre otras, y opcionalmente, donde dichos medios de alarmas se seleccionan de medios de alarmas que envían/transmiten al usuario, un mensaje de correo electrónico de notificación, un mensaje visual o auditivo con despliegue en la pantalla de un dispositivo inalámbrico seleccionado de un computador portátil, teléfono móvil, una Tablet, entre otros, donde dicho mensaje auditivo se seleccionada de una bocina/sirena, un mensaje de audio, entre otras, y donde dicho mensaje visual se selecciona de una señal lumínica fija o intermitente, entre otras, y donde dichos mensajes de alarmas se actualizan automática y periódicamente. g) opcionalmente después de la etapa b), preparar una curva de valores de desgaste de buje en función de las mediciones del chip de contador digital; h) determinar el valor del desgaste del buje a partir de las mediciones del chip contador digital del módulo de medición según la curva obtenida en la etapa g); y i) establecer el nivel del valor del desgaste del buje acumulado en el tiempo según los valores del desgaste determinado en g) acumulado en el tiempo, para complementar la etapa e). The present method of remote, autonomous monitoring, in real time, of bushing wear installed in an earthmoving machine, preferably, in a bucket ear of a mining machine, which uses the system described above, comprises the following stages: a ) adapt a bushing so that in its outer layer it has at least one shallow rectangular channel, and adapt a bushing swivel so that it includes a cavity, where in said rectangular channel at least one measurement module is located and where in Said screw cavity is located at least one acquisition module, where said at least one measurement module comprises at least three chips located on a single electronic board, which can have different geometry and perform daily periodic measurements of at least 2 selected parameters of : bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow to obtain measurements of variations of the wear of the bushing since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one witness test, properties/characteristics electric currents that vary as their length decreases, including capacitance; and its own electrical conduction lines, in an electronic card that electrically connects the parts to each other, said test tube comprising at least two layers on its surface, a first external layer comprising at least one wear capacitor (19), a second internal layer comprising at least one reference condenser (20), where the first external layer can optionally alternate its location with the second internal layer, and optionally, the control sample can comprise a third internal layer and a complementary fourth internal layer that together form the different levels of conduction lines (21, 22), which can be located either immediately after or before the bilayer of the first outer layer and the second inner layer or between said first outer layer and said second inner layer , and where the wear capacitor (19) makes it possible to measure the capacitance of the witness specimen as it wears, while from the reference capacitor (20) measurements are obtained that allow correcting the measurement of wear on the witness specimen depending on the effect of the temperature, and where said third internal layer and fourth internal layer that form the different levels of conduction lines (21, 22) allow co additionally measure the wear of the control specimen, and where the control specimen can comprise at least one additional layer to the aforementioned configuration and that increases the bilayer by at least one layer, comprising a first external layer and a second internal layer either in one additional layer comprising a wear capacitor, an additional layer comprising a reference capacitor, or both or different combinations thereof, and where additionally the witness specimen may also comprise at least one additional complementary layer comprising circuitry that complements the conduction lines, the which can be located immediately before or after or between the aforementioned layers of wear capacitors and reference capacitors, wherein the wear capacitor comprises two conductive wires or two conductive tracks facing each other in a comb-shaped interleaved manner, and the capacitor reference differs from condensate r of wear only in that it has a shorter length, a single electronic board that comprises the components described above, with an essentially elongated and flat rectangular geometry, flexo-rigid and multilayer, having a first zone or zone of flexion, of flexible material, preferably selected from polyamide, which can be flexed without causing damage to the electrical connections present on said single electronic board, while the second area opposite said first area, is made of semi-rigid material, preferably selected from FR4, which can be slightly flexed without damage the electrical connections present on said single electronic board, and at one end, a female connector for connection of flexible planar circuits, and where an electronic circuit comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least one witness test tube and located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, and said at least one acquisition module has a unique individual identifier code (ID) that allows the hub to be identified and registered in a local, wireless network, connected to a server, which may or may not be connected to the Internet, and comprises a set of light indicators with patterns and colors that allows visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the golillion; a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors coming from said measurement module or other peripherals, and in general, the execution of tasks of the remaining components of this module , a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any errors coming from it or other peripherals, including chips, such as RF chips, power management chips, chips for controlling RGB LED lights, among others, preferably selected from a microSD card memory, an integrated circuit/chip that maintains intermittent or continuous communication with said receiving means to wirelessly send/transmit said information/data accumulated from said periodic measurements daily and said errors coming from said measurement module, which allows a com Radio frequency communication through the use of Bluetooth Low Energy and Lora protocols at 2.4 GHz, an integrated circuit/chip that manages/controls the power supply from a selected power source of at least 2 batteries, controlled by said microcontroller, and which supplies power to both the acquisition module and said measurement module, thus avoiding an excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years, at least one antenna that allows wireless communication with said receiving medium, and a protective casing that houses each one of the components described above, protecting them from dust and water, having a parallelepiped geometry, with mainly flat and smooth faces, which allows easy movement through the cavity or emptying of the swivel, and in the final installation position, it is located embedded inside the screw, being visible only by the upper end of the screw, protecting it from the outside, for example. it, from rocks that may hit the ear of the bucket, and connected into an adapter; and an adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, which joins said measurement module and said acquisition module, connecting at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector, b) preparing a curve of capacitance compensation values of the control specimens based on the measurements of the measurement chip of measurement module temperature; c) determine the value of the bushing wear from the capacitance measurements of the test piece of the measurement module, thermally compensating according to the compensation values of the curve obtained in stage b), d) determining the temperature of the bushing a from the measurements of the temperature measurement chip, e) establish the level of the accumulated wear value of the bushing in time according to the values of the determined wear in c) accumulated in time, and optionally f) activate means of alarms either visual, auditory or both, either because a risky bushing wear has been reached, i.e. the bushing has a thickness/thickness of less than 6mm; or a dangerous temperature in the bushing, that is, the bushing has reached a temperature higher than 85 ° C, among others, and optionally, where said alarm means are selected from alarm means that send/transmit to the user, a warning message. notification email, a visual or audio message displayed on the screen of a selected wireless device of a computer laptop, mobile phone, a Tablet, among others, where said audio message is selected from a horn/siren, an audio message, among others, and where said visual message is selected from a fixed or flashing light signal, among others, and where said alarm messages are updated automatically and periodically. g) optionally after step b), preparing a curve of bushing wear values as a function of the measurements of the digital counter chip; h) determining the bushing wear value from the measurements of the digital counter chip of the measurement module according to the curve obtained in step g); yi) establishing the level of the wear value of the bushing accumulated over time according to the wear values determined in g) accumulated over time, to complement stage e).
Los siguientes ejemplos se refieren a la obtención de las curvas de calibración de la capacitancia y el nivel digital de probeta y el desgaste del buje. The following examples refer to obtaining the calibration curves of the capacitance and the digital level of the probe and the wear of the bushing.
Ejemplo 1 : Capacitancia de probeta testigo versus desgaste de buje En un ambiente de laboratorio se desgastó de manera controlada una probeta de 32 mm conectada al chip capacitivo. El desgaste se generó con torno mecánico a una taza de 1 mm de avance por paso, desbastando completamente la cara de la probeta en cada pasada. Cada vez que se desgastaba la probeta se adquiría el valor de capacitancia, de este modo se obtuvo una relación entre el largo de la probeta y el valor de capacitancia a temperatura constante. En la figura 15 se observa la longitud medida por el módulo de medición vs la longitud de la probeta a medida que el desgaste aumentaba. Example 1: Capacitance of control specimen versus bushing wear In a laboratory environment, a 32 mm specimen connected to the capacitive chip was worn in a controlled manner. The wear was generated with a mechanical lathe at a rate of 1 mm feed per pass, completely grinding the face of the specimen in each pass. Each time the specimen was worn, the capacitance value was acquired, thus obtaining a relationship between the length of the specimen and the capacitance value at constant temperature. Figure 15 shows the length measured by the measurement module vs. the length of the specimen as the wear increased.
Ejemplo 2: Nivel digital de probeta testigo versus desgaste de buje Example 2: Digital level of witness probe vs. bushing wear
En un ambiente de laboratorio se desgasto de manera controlada una probeta de 35 mm conectada al chip de desgaste digital. El desgaste se generó con torno mecánico a una taza de 1 mm de avance por paso, desbastando completamente la cara de la probeta en cada pasada. Cada vez que se desgastaba la probeta se registraba el número de pistas interrumpidas o cortadas con el sensor de desgaste digital. Como cada pista se encuentra igualmente distanciada es posible transformar el número de pistas restantes en longitud al multiplicar ese número por la separación entre pistas. En la figura 16 se observa la longitud medida por el sensor digital vs la longitud de la probeta a medida que el desgaste aumentaba. In a laboratory environment, a 35 mm test tube connected to the digital wear chip was worn in a controlled manner. The wear was generated with a mechanical lathe at a rate of 1 mm feed per pass, completely grinding the face of the specimen in each pass. Each time the specimen was worn, the number of interrupted or cut tracks was recorded with the digital wear sensor. Since each track is equally spaced, it is possible to transform the number of remaining tracks into length by multiplying that number by the spacing between tracks. Figure 16 shows the length measured by the digital sensor vs. the length of the specimen as wear increased.

Claims

REIVINDICACIONES
1 . Un kit de monitoreo remoto, autónomo, en tiempo real, del desgaste o espesor de un buje instalado en una máquina de movimiento de tierra, preferentemente en una oreja del balde de una máquina minera, donde dicho buje comprende en su manto externo, al menos una canal rectangular, de poca profundidad, y además al menos una perforación cilindrica pasante en dicha canal rectangular para alojar al menos una probeta testigo y un extremo ensanchado, caracterizado porque comprende: a) al menos un módulo de medición para ser ubicado en dicho al menos una canal rectangular del manto externo de dicho buje, comprendiendo: a.1) al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, a.2) al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, comprendiendo dicha probeta testigo en su superficie al menos dos capas, una capa externa que comprende al menos un condensador de desgaste (19), y una capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde el condenador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine, y el condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor, a.3) una placa electrónica única que comprende los componentes a.1) y a.2) de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, b) al menos un módulo de adquisición que se ubica en una cavidad en el golillón, teniendo código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende: b.1 ) un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; b.2) un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes del módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, b.3) una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, b.4) un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, b.5) un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, b.6) al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y b.7) una carcasa protectora que aloja a cada uno de los componentes b.1) a b.6), protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y c) al menos un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, para ser ubicado en el extremo de dicha canal rectangular del buje, y ser conectado en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical. 1 . A remote, autonomous, real-time monitoring kit of the wear or thickness of a bushing installed in an earthmoving machine, preferably in one bucket ear of a mining machine, where said bushing includes in its outer layer, at least a shallow rectangular channel, and also at least one cylindrical through hole in said rectangular channel to house at least one witness specimen and a flared end, characterized in that it comprises: a) at least one measurement module to be located in said al at least one rectangular channel of the external mantle of said bushing, comprising: a.1) at least three chips located on a single electronic board, which can have different geometry and perform daily periodic measurements of at least 2 parameters selected from: wear/thickness of the bushing, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, a.2) at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow obtaining measurements of variations in the wear of the bushing, since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one test specimen , electrical properties/characteristics that vary as its length decreases, including capacitance; and their own electrical conduction lines, on an electronic card that electrically connects the parts to each other, said test piece comprising at least two layers on its surface, an external layer that comprises at least one wear capacitor (19), and an internal layer comprising at least one reference capacitor (20), where the first outer layer can optionally alternate its location with the second inner layer, where the wear capacitor (19) makes it possible to measure the capacitance of the witness specimen as it wears out, while from the reference condenser (20) measurements are obtained that make it possible to correct the measurement of wear in the witness specimen depending on the effect of temperature, and where the wear condenser comprises two conductive cables or two conductive tracks facing each other in an interleaved manner. of comb, and the reference capacitor differs from the wear capacitor only in that it has a shorter length, a.3) a single electronic board comprising components a.1) and a.2) of essentially rectangular, elongated and flat geometry, flexo-rigid and multilayer, having a first zone or zone of flexion, of flexible material, preferably selected made of polyamide, which can be bent without causing damage to the electrical connections present on said single electronic board, while the second zone opposite said first zone, is made of semi-rigid material, preferably selected from FR4, which can be slightly bent without damaging the electrical connections present on said single electronic board, and at one end, a female connector for connection of flexible planar circuits, and where an electronic circuit comprises said capacitive chip that receives and processes the capacitance measurements from said at least one probe witness and is located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, b) at least one acquisition module that is located in a cavity in the swivel, having a unique individual identifier code (ID) that allows the bushing to be identified and registered in a local, wireless network, connected to a server, which can be or not connected to the Internet, and includes: b.1) a set of light indicators with patterns and colors that allow visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the swivel; b.2) a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors coming from the measurement module or other peripherals, and in general, the execution of tasks of the remaining components of this module, b.3) a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any error coming from it or other peripherals, including chips, such as RF chips, power management chips, RGB LED light control chips, among others, preferably selected from a microSD card memory, b .4) an integrated circuit/chip that maintains intermittent or continuous communication with said receiving means to wirelessly send/transmit said information/data accumulated from said daily periodic measurements and said errors coming from said measurement module, which allows radio frequency communication by the use of Bluetooth Low Energy and Lora protocols at 2.4 GHz, b.5) an integrated circuit/chip that manages/controls a, the power supply from a selected power source of at least 2 batteries, controlled by said microcontroller, and which supplies power both to the acquisition module and to said measurement module, thus avoiding excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years, b.6) at least one antenna that allows wireless communication with said receiving means, and b.7) a protective casing that houses each one of the components b.1) to b.6), protecting them from dust and water, having a parallelepiped geometry, with mainly flat and smooth faces, which allows easy movement through the cavity or emptying of the swivel, and in the final installation position, it is embedded inside the screw, being visible only from the upper end of the screw, protecting it from the outside, for example, from rocks that can hit the ear. a from the bucket, and plugged into an adapter; and c) at least one adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, to be located at the end of said rectangular channel of the bushing, and be connected at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector.
2. El kit de la reivindicación 1 caracterizado porque dicha probeta testigo comprende en su superficie, adicionalmente, al menos una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22) que permiten medir complementariamente el desgaste de la probeta. 2. The kit of claim 1, characterized in that said test piece comprises on its surface, additionally, at least a third internal layer and a complementary fourth internal layer that together form the different levels of conduction lines (21, 22) that allow measuring additionally the wear of the test piece.
3. El kit de la reivindicación 1 caracterizado porque dicha probeta testigo comprende en su superficie, adicionalmente al menos una capa adicional, la bicapa comprendiendo una primera capa externa y una segunda capa interna ya sea en una capa adicional comprendiendo un condensador de desgaste, una capa adicional comprendiendo un condensador de referencia o ambas o diferentes combinaciones de las mismas. 3. The kit of claim 1, characterized in that said test piece comprises on its surface, additionally at least one additional layer, the bilayer comprising a first external layer and a second internal layer, either in an additional layer comprising a wear capacitor, a additional layer comprising a reference capacitor or both or different combinations thereof.
4. El kit de la reivindicación 1 caracterizado porque dicha probeta testigo comprende en su superficie, además al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, y que se puede ubicar inmediatamente antes o a continuación de la bicapa de una primera capa externa de condensador de desgaste y una segunda capa de condensador de referencia o entre dicha primera capa externa de condensador de desgaste y dicha segunda capa interna de condensador de referencia.4. The kit of claim 1, characterized in that said test piece comprises on its surface, in addition, at least one additional complementary layer comprising circuits that complement the conduction lines, and that can be located immediately before or after the bilayer of a first layer. wear capacitor outer layer and a second reference capacitor layer or between said first outer wear capacitor layer and said second inner reference capacitor layer.
5. Un sistema de monitoreo remoto, autónomo, en tiempo real, del desgaste o espesor de buje instalado en una máquina de movimiento de tierra, principalmente, en una oreja de balde de máquina minera, caracterizado porque comprende: a) al menos un kit como el antes descrito, comprendiendo: a.1) al menos un módulo de medición para ser ubicado en dicho al menos una canal rectangular del manto externo de dicho buje, comprendiendo: a.1.1) al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, a.1.2) al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, comprendiendo dicha probeta testigo en su superficie al menos dos capas, una capa externa que comprende al menos un condensador de desgaste (19), y una capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde el condenador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine, y el condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor, a.1.3) una placa electrónica única que comprende los componentes a.1.1 ) y a.1.2) de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, a.2) al menos un módulo de adquisición que se ubica en una cavidad en el golillón, teniendo código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende: a.2.1 ) un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; a.2.2) un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes del módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, a.2.3) una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, a.2.4) un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, a.2.5) un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, a.2.6) al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y a.2.7) una carcasa protectora que aloja a cada uno de los componentes a.2.1 ) a a.2.6), protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y a.3) al menos un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, para ser ubicado en el extremo de dicha canal rectangular del buje, y ser conectado en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical; b) al menos un módulo receptor o Gateway ubicado en la máquina minera, preferentemente, en el techo de la cabina de la máquina minera, en comunicación con dicho módulo de adquisición y dicho servidor de red; c) al menos un servidor de red que procesa dicha información/datos de dichas mediciones periódicas diarias que son enviadas/transmitidas por dicho módulo receptor para estimar el estado de desgaste y la vida útil del buje mediante una proyección según la tasa de desgaste calculada a partir de las mediciones de desgaste, periódicas diarias, acumuladas en el tiempo. 5. A remote, autonomous, real-time monitoring system of bushing wear or thickness installed in an earthmoving machine, mainly in a mining machine bucket ear, characterized in that it comprises: a) at least one kit as described above, comprising: a.1) at least one measurement module to be located in said at least one rectangular channel of the external mantle of said hub, comprising: a.1.1) at least three chips located on a single electronic board , which can have diverse geometry and perform daily periodic measurements of at least 2 parameters selected from: bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, a.1.2) at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow obtaining measurements of variations in the wear of the bushing, since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one test specimen , electrical properties/characteristics that vary as its length decreases, including capacitance; and their own electrical conduction lines, on an electronic card that electrically connects the parts to each other, said test piece comprising at least two layers on its surface, an external layer that comprises at least one wear capacitor (19), and an internal layer comprising at least one reference capacitor (20), where the first outer layer can optionally alternate its location with the second inner layer, where the wear capacitor (19) allows measuring the capacitance of the witness specimen as it wears, while the reference capacitor (20) measures are obtained that allow correcting the measurement of wear on the witness specimen depending on the effect of temperature , and where the wear capacitor comprises two conductive cables or two conductive tracks facing each other in a comb-shaped manner, and the reference capacitor differs from the wear capacitor only in that it is shorter in length, a.1.3) an electronic board The only one that comprises components a.1.1) and a.1.2) of essentially rectangular, elongated and flat geometry, flexo-rigid and multilayer, having a first zone or zone of flexion, of flexible material, preferably selected from polyamide, which can be flexed without causing damage to the electrical connections present on said single electronic board, while the second area opposite said first area is made of material to the semi-rigid, preferably selected from FR4, which can be slightly bent without damaging the electrical connections present on said single electronic board, and at one end, a female connector for connection of flexible flat circuits, and where an electronic circuit comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least one witness probe and is located immediately before the beginning of the flexible area of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, a.2) at least one acquisition module that is located in a cavity in the swivel, having a unique individual identifier code (ID) that allows the bushing to be identified and registered in a local, wireless network, connected to a server, the which may or may not be connected to the Internet, and includes: a.2.1) a set of light indicators with patterns and colors that allow visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the stud; a.2.2) a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors from the measurement module or other peripherals, and in general, the execution of tasks of the remaining components of this module, a.2.3) a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any error coming from it or other peripherals, including chips, such as RF chips, chips for power management, chips for controlling RGB LED lights, among others, preferably selected from a microSD card memory, a.2.4) an integrated circuit/chip that maintains intermittent or continuous communication with said receiving medium to send/ wirelessly transmit to you said information/data accumulated from said daily periodic measurements and said errors coming from said measurement module, which enables radio frequency communication using Bluetooth Low Energy and Lora protocols at 2.4 GHz, a.2.5) an integrated circuit/chip that manages/controls, power supply from a selected power source of at least 2 batteries, controlled by said microcontroller, and that supplies power to both the acquisition module and said measurement module, thus avoiding excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years , a.2.6) at least one antenna that allows wireless communication with said receiving medium, and a.2.7) a protective casing that houses each of the components a.2.1) to a.2.6), protecting them from dust and water , having a parallelepiped geometry, with mainly flat and smooth faces, which allows its easy movement through the cavity or emptying of the screw, and in the final installation position, it is embedded. going inside the screw, being visible only by the upper end of the screw, protecting it from the outside, for example, from rocks that could hit the ear of the bucket, and connected to an adapter; and a.3) at least one adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, to be located at the end of said rectangular channel of the bushing. , and be connected at the flexible end, with said measurement module, while at the other rigid end, is connected to said acquisition module by means of a vertical connector; b) at least one receiver or Gateway module located in the mining machine, preferably on the roof of the cabin of the mining machine, in communication with said acquisition module and said network server; c) at least one network server that processes said information/data from said daily periodic measurements that are sent/transmitted by said receiving module to estimate the state of wear and the useful life of the bushing by means of a projection according to the rate of wear calculated at from wear measurements, periodic daily, accumulated over time.
6. El sistema de la reivindicación 5 caracterizado porque dicha probeta testigo comprende en su superficie, adicionalmente, al menos una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22) que permiten medir complementariamente el desgaste de la probeta. 6. The system of claim 5, characterized in that said test piece comprises on its surface, additionally, at least a third internal layer and a complementary fourth internal layer that together form the different levels of conduction lines (21, 22) that allow measuring additionally the wear of the test piece.
7. El sistema de la reivindicación 5 caracterizado porque dicha probeta testigo comprende en su superficie, además al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, y que se puede ubicar inmediatamente antes o a continuación de la bicapa de una primera capa externa de condensador de desgaste y una segunda capa de condensador de referencia o entre dicha primera capa externa de condensador de desgaste y dicha segunda capa interna de condensador de referencia.7. The system of claim 5, characterized in that said test piece comprises on its surface, in addition, at least one additional complementary layer comprising circuits that complement the conduction lines, and that can be located immediately before or after the bilayer of a first layer. wear capacitor outer layer and a second reference capacitor layer or between said first outer wear capacitor layer and said second inner reference capacitor layer.
8. El sistema de la reivindicación 5 caracterizado porque comprende medios de alarmas ya sean visuales, auditivas o ambas, que dan cuenta de un riesgo ya sea porque se ha alcanzado un desgaste riesgoso del buje, donde el buje tiene un grosor/espesor inferior a 6 mm; o una temperatura riesgosa en el buje, donde dicho buje ha alcanzado una temperatura superior a 85eC. 8. The system of claim 5, characterized in that it comprises means of alarms, whether visual, audible or both, which report a risk either because a risky wear of the bushing has been reached, where the bushing has a thickness/thickness less than 6mm; or a dangerous bushing temperature, where the bushing has reached a temperature greater than 85 ° C.
9. El sistema de la reivindicación 8 caracterizado porque dichos medios de alarmas se seleccionan de medios de alarmas que envían/transmiten al usuario, un mensaje de correo electrónico de notificación, un mensaje visual o auditivo con despliegue en la pantalla de un dispositivo inalámbrico seleccionado de un computador portátil, teléfono móvil, una Tablet, entre otros, donde dicho mensaje auditivo se seleccionada de una bocina/sirena, un mensaje de audio, entre otras, y donde dicho mensaje visual se selecciona de una señal lumínica fija o intermitente, entre otras, y donde dichos mensajes de alarmas se actualizan automática y periódicamente. The system of claim 8 characterized in that said alarm means are selected from alarm means that send/transmit to the user, a notification email message, a visual or audible message displayed on the screen of a selected wireless device of a laptop, mobile phone, a Tablet, among others, where said audio message is selected from a horn/siren, an audio message, among others, and where said visual message is selected from a fixed or flashing light signal, among others. others, and where said alarm messages are updated automatically and periodically.
10. Un método de monitoreo remoto, autónomo, en tiempo real, del desgaste de buje instalado en una máquina minera, preferentemente, en una oreja de balde de máquina minera, que usa el sistema antes descrito, caracterizado porque comprende las siguientes etapas: a) adaptar un buje para que en su manto externo disponga de al menos una canal rectangular, de poca profundidad, y adaptar un golillón de buje para que comprenda una cavidad, donde en dicha canal rectangular se ubica al menos un módulo de medición y donde en dicha cavidad del golillón se ubica al menos un módulo de adquisición, donde dicho al menos un módulo de medición comprende al menos tres chips ubicados en una placa electrónica única, que pueden tener geometría diversa y realizan mediciones periódicas diarias de al menos 2 parámetros seleccionados de: desgaste/espesor del buje, un chip capacitivo y un chip contador digital; y temperatura del buje, un chip de medición de temperatura, que permite la realización de una compensación térmica para ajustar las mediciones provenientes de dicho chip capacitivo, eliminado la dependencia de la temperatura que genera distorsión en las mismas, y así, aumentar el grado de confianza en las mediciones, al menos una probeta testigo que se proyecta desde dicha placa electrónica única, a través de un conductor flexible formando un ángulo variable entre 0 y 180e, preferentemente en un ángulo de 90e, que permiten obtener mediciones de variaciones del desgaste del buje ya que se desgasta en forma solidaria a éste, y que están sometidas a variaciones térmicas en el rango de -15°C hasta 85°C, durante la operación del buje, teniendo dicha al menos una probeta testigo, propiedades/características eléctricas que varían a medida que disminuye su longitud, incluyendo la capacitancia; y líneas de conducción eléctricas propias, en una tarjeta electrónica que conecta eléctricamente las partes entre sí, comprendiendo dicha probeta testigo en su superficie al menos dos capas, una capa externa que comprende al menos un condensador de desgaste (19), y una capa interna que comprende al menos un condensador de referencia (20), donde la primera capa externa puede opcionalmente alternar su ubicación con la segunda capa interna, donde el condensador de desgaste (19) permite medir la capacitancia de la probeta testigo conforme la misma se desgasta, mientras del condensador de referencia (20) se obtienen mediciones que permiten corregir la medición de desgaste en la probeta testigo según sea el efecto de la temperatura, y donde el condenador de desgaste comprende dos cables conductores o dos pistas conductoras enfrentadas de manera intercalada en forma de peine, y el condensador de referencia se diferencia del condensador de desgaste sólo en que tiene un largo menor, una placa electrónica única que comprende los componentes antes descritos, de geometría esencialmente rectangular alargada y plana, flexo-rígida y multicapas, teniendo una primera zona o zona de flexión, de material flexible, preferentemente seleccionado de poliamida, que puede ser flectada sin generar daño en las conexiones eléctricas presentes sobre dicha placa electrónica única, mientras la segunda zona opuesta a dicha primera zona, es de material semi-rígido, preferentemente seleccionado de FR4, que puede ser ligeramente flectada sin dañar las conexiones eléctricas presentes sobre dicha placa electrónica única, y en un extremo, un conector hembra para conexión de circuitos planos flexibles, y donde un circuito electrónico comprende a dicho chip capacitivo que recibe y procesa las mediciones de capacitancia provenientes de dicha al menos una probeta testigo y se ubica inmediatamente antes del comienzo de la zona flexible de dicha placa electrónica única; dicho chip contador que recibe y procesa el conteo de las líneas conductoras eléctricas interrumpidas/cortadas que conectan dicho chip contador con dicha probeta testigo, y se ubica inmediatamente antes del comienzo de la zona flexible de dicha al menos una probeta testigo, donde cada línea conductora eléctrica es un nivel que corresponde a un cable/conductor que va desde una probeta testigo al chip de conteo, donde el número de niveles puede variar según se requiera, y preferentemente, el número de niveles es 32, y dichos niveles se ubican en dicha probeta testigo, y además comprende un chip de medición de temperatura que se ubica en el centro de dicha placa electrónica única, y mide la temperatura en el centro del manto exterior del buje, y cuya información es usada para la compensación térmica de la medición capacitiva, y también comprende componentes electrónicos pasivos seleccionados de condensadores, resistencias, inductancias, entre otros, de bajo perfil y de dimensiones reducidas, y dicho al menos un módulo de adquisición tiene un código identificador individual único (ID) que permite identificar y registrar el buje en una red local, inalámbrica, conectada a un servidor, el cual puede estar o no conectado a Internet, y comprende un conjunto de indicadores lumínicos con patrones y colores que permite visualizar una conexión exitosa con dicho módulo de medición, donde dichos indicadores lumínicos pueden ser de emisión lumínica permanente o intermitente, preferentemente un conjunto de luces LED RGB, y son visibles desde el extremo abierto del golillón; un microcontrolador (MCU) que administra/controla la realización de dichas mediciones periódicas diarias de dicho módulo de medición, incluyendo los errores provenientes del módulo de medición u otros periféricos, y en general, la ejecución de tareas de los componentes restantes de este módulo, una tarjeta de memoria que almacena la información/datos de dichas mediciones periódicas diarias de dicho módulo de medición, así como también cualquier error proveniente del mismo u otros periféricos, incluyendo chips, tales como, chips RF, chips para la administración de energía, chips para el control de luces LED RGB, entre otros, seleccionada preferentemente de una memoria de tarjeta microSD, un circuito integrado/chip que mantiene comunicación intermitente o continua con dicho medio receptor para enviarle/transmitirle inalámbricamente dicha información/datos acumulados de dichas mediciones periódicas diarias y dichos errores provenientes de dicho módulo de medición, que permite una comunicación de radiofrecuencia mediante el uso de protocolos Bluetooth Low Energy y Lora a 2.4 GHz, un circuito integrado/chip que administra/controla, el suministro de energía desde una fuente de energía seleccionada de al menos 2 baterías, controlado por dicho microcontrolador, y que suministra energía tanto al módulo de adquisición como a dicho del módulo de medición, evitando así un consumo excesivo cuando dicho módulo de adquisición y dicho módulo de medición no están en uso, favoreciendo una autonomía energética de al menos dos años, al menos una antena que permite la comunicación inalámbrica con dicho medio receptor, y una carcasa protectora que aloja a cada uno de los componentes antes descritos, protegiéndolos del polvo y agua, teniendo una geometría de paralelepípedo, de caras principalmente planas y lisas, lo que permite su fácil desplazamiento por la cavidad o vaciado del golillón, y en la posición final de instalación, se encuentra embebida al interior del golillón, siendo visible sólo por el extremo superior de vaciado del golillón, protegiéndolo del exterior, por ejemplo, de las rocas que puedan golpear la oreja del balde, y conectada en un adaptador; y un adaptador para ambientes de altas vibraciones que soportan temperaturas de hasta 125eC, que se selecciona de una placa flexo-rígida seleccionada de poliamida y FR4, que une dicho módulo de medición y dicho módulo de adquisición, conectando en el extremo flexible, con dicho módulo de medición, mientras en el otro extremo rígido, es conectado a dicho módulo de adquisición mediante un conector vertical, b) preparar una curva de valores de compensación de capacitancia de las probetas testigos en función de las mediciones del chip de medición de temperatura del módulo de medición; c) determinar el valor del desgaste del buje a partir de las mediciones de capacitancia de la probeta testigo del módulo de medición, compensando térmicamente según los valores de compensación de la curva obtenida en la etapa b), d) determinar la temperatura del buje a partir de las mediciones del chip de medición de temperatura, y e) establecer el nivel del valor del desgaste del buje acumulado en el tiempo según los valores del desgaste determinado en c) acumulado en el tiempo. 10. A remote, autonomous, real-time monitoring method of bushing wear installed in a mining machine, preferably in a bucket ear of a mining machine, using the system described above, characterized in that it comprises the following stages: a) adapt a bushing so that in its external layer it has at least one shallow rectangular channel, and adapt a bushing swivel so that it includes a cavity, where at least one measurement module is located in said rectangular channel and where In said screw cavity, at least one acquisition module is located, where said at least one measurement module comprises at least three chips located on a single electronic board, which can have different geometry and perform daily periodic measurements of at least 2 selected parameters. of: bushing wear/thickness, a capacitive chip and a digital counter chip; and hub temperature, a temperature measurement chip, which allows thermal compensation to be carried out to adjust the measurements coming from said capacitive chip, eliminating the dependence on temperature that generates distortion in them, and thus, increasing the degree of confidence in the measurements, at least one control specimen that is projected from said single electronic board, through a flexible conductor forming a variable angle between 0 and 180 e , preferably at an angle of 90 e , which allow to obtain measurements of variations of the wear of the bushing since it wears in solidarity with it, and which are subjected to thermal variations in the range of -15°C to 85°C, during the operation of the bushing, having said at least one witness test, properties/characteristics electric currents that vary as their length decreases, including capacitance; and their own electrical conduction lines, on an electronic card that electrically connects the parts to each other, said test piece comprising at least two layers on its surface, an external layer that comprises at least one wear capacitor (19), and an internal layer comprising at least one reference capacitor (20), where the first outer layer can optionally alternate its location with the second inner layer, where the wear capacitor (19) makes it possible to measure the capacitance of the witness specimen as it wears out, while from the reference condenser (20) measurements are obtained that make it possible to correct the measurement of wear in the witness specimen depending on the effect of temperature, and where the wear condenser comprises two conductive cables or two conductive tracks facing each other in an interleaved manner. of comb, and the reference capacitor differs from the wear capacitor only in that it has a shorter length, a plate and unique electronic system that comprises the components described above, with an essentially elongated and flat rectangular geometry, flexo-rigid and multilayer, having a first zone or zone of flexion, made of flexible material, preferably selected from polyamide, which can be flexed without causing damage to the electric connections present on said single electronic board, while the second zone opposite said first zone is made of semi-rigid material, preferably selected from FR4, which can be slightly bent without damaging the electrical connections present on said single electronic board, and at one end , a female connector for connection of flat flexible circuits, and where an electronic circuit comprises said capacitive chip that receives and processes the capacitance measurements coming from said at least one test tube and is located immediately before the beginning of the flexible zone of said single electronic board; said counter chip that receives and processes the count of the interrupted/cut electrical conductive lines that connect said counter chip with said witness probe, and is located immediately before the beginning of the flexible zone of said at least one witness probe, where each conductive line electrical is a level that corresponds to a cable/conductor that goes from a witness sample to the counting chip, where the number of levels can vary as required, and preferably, the number of levels is 32, and said levels are located in said witness specimen, and also comprises a temperature measurement chip that is located in the center of said single electronic board, and measures the temperature in the center of the outer mantle of the bushing, and whose information is used for thermal compensation of the capacitive measurement , and also includes passive electronic components selected from capacitors, resistors, inductances, among others, with low profile and reduced dimensions. as, and said at least one acquisition module has a unique individual identifier code (ID) that allows the hub to be identified and registered in a local, wireless network, connected to a server, which may or may not be connected to the Internet, and comprises a set of light indicators with patterns and colors that allows visualizing a successful connection with said measurement module, where said light indicators can be of permanent or intermittent light emission, preferably a set of RGB LED lights, and are visible from the open end of the golillion; a microcontroller (MCU) that manages/controls the performance of said daily periodic measurements of said measurement module, including errors coming from the measurement module or other peripherals, and in general, the execution of tasks of the remaining components of this module, a memory card that stores the information/data of said daily periodic measurements of said measurement module, as well as any errors coming from it or other peripherals, including chips, such as RF chips, chips for power management, chips for controlling RGB LED lights, among others, preferably selected from a microSD card memory, an integrated circuit/chip that maintains intermittent or continuous communication with said receiving medium to wirelessly send/transmit said information/ accumulated data of said daily periodic measurements and said errors coming from said measurement module, which allows a radio frequency communication through the use of Bluetooth Low Energy and Lora protocols at 2.4 GHz, an integrated circuit/chip that manages/controls, the supply of power from a selected power source of at least 2 batteries, controlled by said microcontroller, and supplying power to both the acquisition module and said measurement module, thus avoiding excessive consumption when said acquisition module and said measurement module are not in use, favoring an energy autonomy of at least two years, at least We have an antenna that allows wireless communication with said receiving medium, and a protective casing that houses each of the components described above, protecting them from dust and water, having a parallelepiped geometry, with mainly flat and smooth faces, which allows its easy movement through the cavity or emptying of the screw, and in the final installation position, it is embedded inside the screw, being visible only from the upper end of the screw, protecting it from the outside, for example, from rocks that can hit the ear of the bucket, and connected in an adapter; and an adapter for high vibration environments that withstand temperatures of up to 125 ° C, which is selected from a flexo-rigid plate selected from polyamide and FR4, which joins said measurement module and said acquisition module, connecting at the flexible end, with said measurement module, while at the other rigid end, it is connected to said acquisition module by means of a vertical connector, b) preparing a curve of capacitance compensation values of the control specimens based on the measurements of the measurement chip of measurement module temperature; c) determine the value of the bushing wear from the capacitance measurements of the test piece of the measurement module, thermally compensating according to the compensation values of the curve obtained in stage b), d) determining the temperature of the bushing a from the measurements of the temperature measurement chip, and e) establishing the level of the wear value of the bushing accumulated in time according to the wear values determined in c) accumulated in time.
11 . El método de la reivindicación 10 caracterizado porque comprende activar medios de alarmas ya sea visuales, auditivos o ambos, ya sea porque se ha alcanzado un desgaste riesgoso del buje, es decir, el buje tiene un grosor/espesor inferior a 6 mm; o una temperatura riesgosa en el buje, es decir, el buje ha alcanzado una temperatura superior a 85eC, entre otras, y opcionalmente, donde dichos medios de alarmas se seleccionan de medios de alarmas que envían/transmiten al usuario, un mensaje de correo electrónico de notificación, un mensaje visual o auditivo con despliegue en la pantalla de un dispositivo inalámbrico seleccionado de un computador portátil, teléfono móvil, una Tablet, entre otros, donde dicho mensaje auditivo se seleccionada de una bocina/sirena, un mensaje de audio, entre otras, y donde dicho mensaje visual se selecciona de una señal lumínica fija o intermitente, entre otras, y donde dichos mensajes de alarmas se actualizan automática y periódicamente. eleven . The method of claim 10, characterized in that it comprises activating alarm means, either visual, auditory or both, either because a risky wear of the bushing has been reached, that is, the bushing has a thickness/thickness of less than 6 mm; or a dangerous temperature in the bushing, that is, the bushing has reached a temperature higher than 85 ° C, among others, and optionally, where said alarm means are selected from alarm means that send/transmit to the user, a warning message. notification email, a visual or audio message displayed on the screen of a wireless device selected from a laptop, mobile phone, tablet, among others, where said audio message is selected from a horn/siren, an audio message , among others, and where said visual message is selected from a fixed or flashing light signal, among others, and where said alarm messages are updated automatically and periodically.
12. El método de la reivindicación 10 caracterizado porque dicha probeta testigo comprende en su superficie, adicionalmente, al menos una tercera capa interna y una cuarta capa interna complementarias que juntas forman los distintos niveles de líneas de conducción (21 , 22) que permiten medir complementariamente el desgaste de la probeta. 12. The method of claim 10, characterized in that said test piece comprises on its surface, additionally, at least a third internal layer and a complementary fourth internal layer that together form the different levels of conduction lines (21, 22) that allow measuring additionally the wear of the test piece.
13. El método de la reivindicación 10 caracterizado porque dicha probeta testigo comprende en su superficie, además al menos una capa complementaria adicional comprendiendo circuitos que complementan las líneas de conducción, y que se puede ubicar inmediatamente antes o a continuación de la bicapa de una primera capa externa de condensador de desgaste y una segunda capa de condensador de referencia o entre dicha primera capa externa de condensador de desgaste y dicha segunda capa interna de condensador de referencia.13. The method of claim 10, characterized in that said test piece comprises on its surface, in addition, at least one additional complementary layer comprising circuits that complement the conduction lines, and that can be located immediately before or after the bilayer of a first layer. wear capacitor outer layer and a second reference capacitor layer or between said first outer wear capacitor layer and said second inner reference capacitor layer.
14. El método de la reivindicación 10 caracterizado porque después de la etapa b), comprende adicionalmente la etapa f), preparar una curva de valores de desgaste de buje en función de las mediciones del chip de contador digital; g) determinar el valor del desgaste del buje a partir de las mediciones del chip contador digital del módulo de medición según la curva obtenida en la etapa f); y h) establecer el nivel del valor del desgaste del buje acumulado en el tiempo según los valores del desgaste determinado en f) acumulado en el tiempo, para complementar la etapa e). 14. The method of claim 10, characterized in that after step b), it further comprises step f), preparing a curve of bushing wear values as a function of the measurements of the digital counter chip; g) determining the bushing wear value from the measurements of the digital counter chip of the measurement module according to the curve obtained in step f); and h) establishing the level of the wear value of the bushing accumulated over time according to the wear values determined in f) accumulated over time, to complement stage e).
PCT/CL2022/050025 2021-06-04 2022-03-22 Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment WO2022251980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3221356A CA3221356A1 (en) 2021-06-04 2022-03-22 Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL1477-2021 2021-06-04
CL2021001477A CL2021001477A1 (en) 2021-06-04 2021-06-04 Kit, system and method for remote, autonomous, real-time monitoring of wear in earthmoving machine bushings, preferably in mining shovel bucket ears

Publications (1)

Publication Number Publication Date
WO2022251980A1 true WO2022251980A1 (en) 2022-12-08

Family

ID=80444596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050025 WO2022251980A1 (en) 2021-06-04 2022-03-22 Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment

Country Status (3)

Country Link
CA (1) CA3221356A1 (en)
CL (1) CL2021001477A1 (en)
WO (1) WO2022251980A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152802A1 (en) * 2012-04-13 2013-10-17 Aktiebolaget Skf Bushing wear sensing device
WO2013152807A1 (en) * 2012-04-13 2013-10-17 Aktiebolaget Skf Bushing wear sensing device
US20150081166A1 (en) * 2014-11-21 2015-03-19 Caterpillar Inc. Wear monitoring system for a track roller
US20160221618A1 (en) * 2015-02-02 2016-08-04 Caterpillar Inc. Wear sensing device for a carrier roller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152802A1 (en) * 2012-04-13 2013-10-17 Aktiebolaget Skf Bushing wear sensing device
WO2013152807A1 (en) * 2012-04-13 2013-10-17 Aktiebolaget Skf Bushing wear sensing device
US20150081166A1 (en) * 2014-11-21 2015-03-19 Caterpillar Inc. Wear monitoring system for a track roller
US20160221618A1 (en) * 2015-02-02 2016-08-04 Caterpillar Inc. Wear sensing device for a carrier roller

Also Published As

Publication number Publication date
CA3221356A1 (en) 2022-12-08
CL2021001477A1 (en) 2021-11-26

Similar Documents

Publication Publication Date Title
AU2018263818B2 (en) Method and system for component wear monitoring
CA2993410C (en) Wear sensor and the corresponding wear element, assembly and use
US10302510B2 (en) Wireless axial load cell and sensor assembly
US9453854B2 (en) Vibration sensor
US20170254051A1 (en) Wireless sensor network for detecting equipment failure
JP2015215226A (en) State detection device
CN114258638B (en) Track drive, track shoe, track link, chassis assembly and vehicle
EP4158222B1 (en) Chain pin assembly
US20150323435A1 (en) Containment integrity sensor device
WO2022251980A1 (en) Kit, system and method for real-time, autonomous remote monitoring of wear in a bushing of earth-moving equipment
US11592409B2 (en) Method and system for slurry pipe liner wear monitoring
WO2012122587A1 (en) Wear sensor
EP3247320B1 (en) A method for fastening an electronic unit to a nappy
CN114929568B (en) Monitoring system for belt chassis
WO2013116954A1 (en) Online electronic wear-sensor bolt comprising a device having a transducer and an anti-vibration part that includes a cpu, an antistatic material and an rf transmitter
CN115046647A (en) Train axle temperature wireless detection system
AU2023254955A1 (en) Conveyor Pulley Lagging Wear Monitoring System
EP4177140A1 (en) Track link assembly
KR20240047760A (en) Strain sensor apparatus
AU2022228140A1 (en) Temperature sensor device, undercarriage assembly and temperature monitoring system of at least one undercarriage component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 003206-2023

Country of ref document: PE

Ref document number: 3221356

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814669

Country of ref document: EP

Kind code of ref document: A1