WO2022249631A1 - 船舶監視装置、船舶監視方法、及びプログラム - Google Patents

船舶監視装置、船舶監視方法、及びプログラム Download PDF

Info

Publication number
WO2022249631A1
WO2022249631A1 PCT/JP2022/009935 JP2022009935W WO2022249631A1 WO 2022249631 A1 WO2022249631 A1 WO 2022249631A1 JP 2022009935 W JP2022009935 W JP 2022009935W WO 2022249631 A1 WO2022249631 A1 WO 2022249631A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
collision risk
data
display
monitoring device
Prior art date
Application number
PCT/JP2022/009935
Other languages
English (en)
French (fr)
Inventor
和也 中川
大輔 藤岡
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to CN202280033827.5A priority Critical patent/CN117280395A/zh
Priority to EP22810912.0A priority patent/EP4350665A1/en
Priority to JP2023524014A priority patent/JPWO2022249631A1/ja
Publication of WO2022249631A1 publication Critical patent/WO2022249631A1/ja
Priority to US18/518,694 priority patent/US20240096221A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/937Radar or analogous systems specially adapted for specific applications for anti-collision purposes of marine craft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • the present invention relates to a ship monitoring device, a ship monitoring method, and a program.
  • Patent Document 1 a radar image in the PPI (Plan Position Indicator) format, together with images of other ships existing around the own ship, is a dangerous area where there is a risk of collision with other ships if the own ship enters. is disclosed.
  • PPI Plan Position Indicator
  • a ship object representing another ship and a collision risk area representing the risk of collision with another ship are often displayed apart from each other. It is difficult to know which vessel object the risk area relates to.
  • the present invention has been made in view of the above problems, and its main object is to provide a ship monitoring device, a ship monitoring method, and a program that facilitate understanding of the relationship between a ship object and a collision risk area. to do.
  • a ship monitoring apparatus includes a designation reception unit that receives designation of a position within an image displayed on a display unit; a first data acquisition unit that acquires data; a second data acquisition unit that acquires a plurality of second vessel data representing positions and velocities of a plurality of second vessels; and the first vessel and each of the second vessels a risk area calculator for calculating a collision risk area in which the collision risk is greater than or equal to a predetermined value; and a display control unit that displays the ship object corresponding to the designated collision risk area in a distinguishable manner from the other ship objects when the designation of the collision risk area is accepted. This makes it easy to grasp the relationship between the ship object and the collision risk area.
  • the display control unit may identify and display by displaying an information display object including ship information in association with the ship object corresponding to the specified collision risk area. According to this, identification of the vessel object corresponding to the designated collision risk area becomes easy, and also vessel information can be grasped.
  • the display control unit may distinguish and display the ship object corresponding to the designated collision risk area by making the display mode of the ship object different from that of the other ship objects. This facilitates identification of the ship object corresponding to the designated collision risk area.
  • the display control unit when a position where the collision risk area and another object overlap is specified, the display control unit performs identification display of the ship object corresponding to the collision risk area and display of the other object. Predetermined one of predetermined processing associated with designation may be executed. According to this, it is possible to prevent processing conflicts.
  • the display control unit when a position where the collision risk area and another object overlap is specified, the display control unit does not perform identification display of the vessel object corresponding to the collision risk area, Predetermined processing associated with designation of other objects may be executed. According to this, it is possible to give priority to designation of other objects over collision risk areas which are displayed in a relatively wide range and which can be designated at other positions.
  • the other object is the ship object
  • the predetermined process accompanying the designation of the other object is a process of displaying an information display object containing ship information in association with the designated ship object. There may be. According to this, it is possible to prevent processing conflict when a position where the collision risk area and the ship object overlap is specified.
  • the display control unit displays, in the image, an echo object representing an area having a predetermined echo intensity or more based on echo data generated by a radar mounted on the first ship,
  • the object may be the echo object
  • the predetermined process accompanying the specification of the other object may be a process of registering the specified echo object as a tracking target. According to this, it is possible to prevent processing conflicts when a position where the collision risk area and the echo object overlap is specified.
  • the display control unit identifies and displays the vessel object corresponding to the collision risk area when a position where the collision risk area and another object overlap is specified in the first specification mode. and when a position where the collision risk area and the other object overlap is specified in the second specification mode, a predetermined process accompanying specification of the other object may be performed. According to this, it is possible to execute both processes by changing the specification mode.
  • the display control unit determines the degree of collision risk among the plurality of ship objects, the distance from the designated position, One ship object may be identified and displayed based on the distance from the first ship or the degree of hindrance to navigation of the first ship. According to this, it is possible to identify and display one ship object determined based on a predetermined condition.
  • the display control unit may identify and display the plurality of ship objects corresponding to the specified plurality of the collision risk areas. good. This makes it possible to identify and display all related ship objects.
  • the first data may include the position of the first vessel detected by a GNSS (Global Navigation Satellite System) receiver mounted on the first vessel.
  • the second data may include the position and speed of the second vessel detected by a radar mounted on the first vessel.
  • the second data may include the position and speed of the second vessel detected by an AIS (Automatic Identification System) mounted on the first vessel.
  • GNSS Global Navigation Satellite System
  • AIS Automatic Identification System
  • the first data generator generates first ship data representing the position and speed of the first ship
  • the second data generator generates a plurality of second ships.
  • generating a plurality of second vessel data representing the positions and velocities of the first vessel data and the plurality of second vessel data, and based on the first vessel data and the plurality of second vessel data, the risk of collision between the first vessel and each of the second vessels
  • a collision risk area equal to or greater than a predetermined value is calculated
  • a display unit displays a plurality of ship objects representing the plurality of second vessels and an image in which the collision risk area is arranged at corresponding positions, and the collision risk area is specified. If so, the ship object corresponding to the designated collision risk area is displayed so as to be distinguished from the other ship objects. This makes it easy to grasp the relationship between the ship object and the collision risk area.
  • a program acquires first vessel data representing the position and velocity of a first vessel, and acquires a plurality of second vessel data representing the positions and velocities of a plurality of second vessels. calculating, based on the first ship data and the plurality of second ship data, a collision risk region in which the risk of collision between the first ship and each of the second ships is greater than or equal to a predetermined value; displaying, on a display unit, an image in which a plurality of ship objects representing the second ship and the collision risk area are arranged at corresponding positions; and when the collision risk area is designated, the designated collision risk area. distinguishing and displaying the ship object corresponding to from the other ship objects. This makes it easy to grasp the relationship between the ship object and the collision risk area.
  • FIG. 4 is a diagram showing an example of a display image; It is a figure which shows the procedure example of the ship monitoring method.
  • FIG. 4 is a diagram showing an example of a display image;
  • FIG. 4 is a diagram showing an example of a display image;
  • It is a figure which shows the example of the content of a process.
  • It is a figure which shows the example of the content of a process.
  • FIG. 4 is a diagram showing an example of a display image;
  • FIG. 1 is a block diagram showing a configuration example of a ship monitoring system 100. As shown in FIG. A ship monitoring method is implemented in the ship monitoring system 100 .
  • the ship monitoring system 100 is a system that is mounted on a ship and monitors surrounding ships.
  • the ship on which the ship monitoring system 100 is installed is an example of the first ship, and will be referred to as "own ship” in the following description.
  • ships existing around the own ship are examples of the second ship, and are referred to as “other ships” in the following description.
  • speed is a vector quantity representing speed and direction (so-called ship speed vector), and "speed” is a scalar quantity.
  • the ship monitoring system 100 includes a ship monitoring device 1, a display unit 2, a radar 3, an AIS 4, a GNSS receiver 5, a gyrocompass 6, an ECDIS 7, and an alarm unit 8. These devices are connected to a network N such as a LAN, and are capable of network communication with each other.
  • a network N such as a LAN
  • the ship monitoring device 1 is a computer including a CPU, RAM, ROM, non-volatile memory, input/output interface, and the like.
  • the CPU of the ship monitoring device 1 executes information processing according to a program loaded from the ROM or nonvolatile memory to the RAM.
  • the program may be supplied via an information storage medium such as an optical disk or memory card, or may be supplied via a communication network such as the Internet or LAN.
  • the display unit 2 is, for example, a display device with a touch sensor.
  • the touch sensor detects a position within the screen indicated by a finger or the like.
  • the indicated position may be input by a trackball or the like instead of the touch sensor.
  • the radar 3 emits radio waves around its own ship, receives the reflected waves, and generates echo data based on the received signals.
  • the radar 3 also identifies the target from the echo data and generates target tracking data (TT data) representing the position and speed of the target.
  • TT data target tracking data
  • the AIS (Automatic Identification System) 4 receives AIS data from other ships around the ship or from land control. Not limited to AIS, VDES (VHF Data Exchange System) may be used. AIS data includes the positions and velocities of other ships.
  • VDES VHF Data Exchange System
  • the GNSS receiver 5 detects the position of the own ship based on radio waves received from the GNSS (Global Navigation Satellite System).
  • the gyrocompass 6 detects the bearing of the own ship.
  • a GPS compass may be used instead of the gyro compass.
  • the ECDIS (Electronic Chart Display and Information System) 7 acquires the ship's position from the GNSS receiver 5 and displays the ship's position on the electronic chart.
  • the ECDIS 7 also displays the scheduled route of the own ship on the electronic chart.
  • a GNSS plotter may be used.
  • the alarm unit 8 issues an alarm when there is a risk of the own ship colliding with another ship.
  • the alarm unit 8 may issue an alarm by display, or may issue an alarm by sound or light, for example.
  • the display warning may be given on the display unit 2 . That is, the display unit 2 may also serve as the alarm unit 8 .
  • the ship monitoring device 1 is an independent device in this embodiment, it is not limited to this, and may be integrated with other devices such as the ECDIS 7 . That is, the functional units of the ship monitoring device 1 may be implemented by other devices.
  • the display unit 2 is also an independent device, but the display unit is not limited to this, and a display unit of another device such as the ECDIS 7 may be used as the display unit 2 for displaying the display image generated by the ship monitoring device 1. good too.
  • the GNSS receiver 5 and the ECDIS 7 are examples of a first data generation unit, and generate own ship data representing the position and speed of the own ship. Specifically, the GNSS receiver 5 detects the position of the own ship, and the ECDIS 7 detects the speed of the own ship from the time change of the position of the own ship.
  • the speed of the own ship may be detected based on the bearing of the own ship detected by the gyrocompass 6 and the speed of the own ship detected by a speedometer (not shown).
  • the radar 3 or AIS 4 is an example of a second data generation unit, and generates other ship data representing the position and speed of another ship.
  • the TT data generated by the radar 3 corresponds to other ship data.
  • AIS data generated by the AIS 4 also corresponds to other ship data.
  • FIG. 2 is a diagram showing an example of the other ship management database constructed in the memory of the ship monitoring device 1.
  • FIG. Other ship data generated by the radar 3 or AIS 4 is registered in the other ship management database.
  • the other ship management database includes fields such as "other ship identifier”, "position”, “speed”, and “azimuth”.
  • the position and direction of the other ship detected by the radar 3 are converted into the same coordinate system as GNSS.
  • FIG. 3 is a diagram showing a configuration example of the ship monitoring device 1 according to the embodiment.
  • the ship monitoring device 1 includes an own ship data acquisition unit 11, an other ship data acquisition unit 12, a risk area calculation unit 13, a display control unit 14, a coordinate information storage unit 15, a designation reception unit 17, a coordinate information acquisition unit 18, and a process A selection unit 19 is provided.
  • the coordinate information accumulation unit 15 is secured in the memory of the ship monitoring device 1 as an area for holding display images to be displayed on the display device 2 .
  • the own ship data acquisition unit 11 acquires own ship data representing the position and speed of the own ship from the GNSS receiver 5 or the like.
  • the own ship data acquisition unit 11 is an example of a first data acquisition unit, and the own ship data is an example of first ship data.
  • the other ship data acquisition unit 12 acquires other ship data representing the position and speed of the other ship from the radar 3 or AIS 4.
  • the other ship data acquisition unit 12 is an example of a second data acquisition unit, and the other ship data is an example of second ship data.
  • the risk area calculation unit 13 calculates the risk of collision between the own ship and each of the other ships based on the own ship data and a plurality of other ship data, and calculates the collision risk area where the risk of collision is greater than or equal to a predetermined value.
  • the collision risk area is, for example, OZT (Obstacle Zone by Target).
  • OZT collision risk area
  • PAD Predict Area of Danger
  • DAC angerous Area of Collision
  • FIG. 4 is a diagram showing an example of collision risk calculation.
  • the risk area calculation unit 13 assumes that own ship CS changes course in an arbitrary direction and crosses the predicted course R of other ship CO, based on the predicted positions of own ship CS and other ship CO at each time point, Among the predicted courses R of the other ships CO, a risk range L where the risk of collision between the own ship CS and the other ships CO is equal to or greater than a threshold is specified.
  • the calculation of the predicted position of the own ship CS is performed under the assumption that the own ship CS maintains its speed and navigates in any direction at its current position.
  • the magnitude of the own ship speed vector of own ship CS is constant
  • the direction of the own ship speed vector changes to an arbitrary direction at the reference point of time, and after that, the direction of the own ship's speed vector changes to a constant direction. It is assumed to continue navigation from own ship position. Therefore, the predicted position of own ship CS at each time point is on a concentric circle centered on the own ship position at the reference time point.
  • the radius of the circle is represented by the product of the elapsed time from the reference time and the magnitude of the own ship's speed vector.
  • the predicted position of own ship CS at each point in time is represented by a plurality of concentric circles calculated at each of a plurality of discrete points in time.
  • the predicted position of own ship CS at each point in time may be represented by an equation of a circle including the elapsed time from the reference point in time.
  • the predicted position of the own ship CS is calculated under the assumption that the speed of the own ship CS is constant. May be treated as a variable that changes. That is, the speed of the own ship CS may not be constant as long as the predicted position of the own ship CS can be obtained according to the elapsed time from the reference time. For example, the speed of own ship CS may gradually increase or decrease over time.
  • the predicted position of the other ship CO is calculated on the assumption that the other ship CO will maintain its speed from its current position. That is, it is assumed that the other ship CO has a constant magnitude and direction of the other ship's speed vector and continues to navigate from the position of the other ship at the reference time. Therefore, the predicted position of the other ship CO at each time is on a straight line extending the speed vector of the other ship and passing through the position of the other ship at the reference time.
  • the predicted position of the other ship's CO at each point in time is represented by a plurality of discrete points lined up on a straight line calculated for each of the plurality of discrete points in time.
  • the predicted position of the other ship CO at each time point may be represented by a linear function passing through the position of the other ship CO at the reference time point.
  • the predicted position of the other ship CO is calculated on the assumption that the speed of the other ship CO is constant. It may be treated as a variable that changes with time. That is, the speed of the other ship CO does not have to be constant as long as the predicted position of the other ship CO can be obtained according to the elapsed time from the reference time. For example, the speed of the other ship CO may gradually increase or decrease over time. Also, the other ship CO may change course in a predetermined direction, or may turn at a predetermined ROT (Rate of Turn).
  • ROT Rate of Turn
  • the risk area calculation unit 13 calculates the separation distance between the predicted position of the own ship CS and the predicted position of the other ship CO at each time point, and calculates the risk of collision based on the separation distance and ship size. As described above, the predicted position of own ship CS at a certain point in time is represented by a circle. The separation distance is calculated by extracting the closest position to the predicted position of the other ship CO.
  • the risk area calculation unit 13 determines that the risk of collision is equal to or greater than the threshold.
  • the risk range L in which the risk of collision is equal to or greater than the threshold is specified.
  • the rear end LR of the risk range L is a position where the front end of the caution area P of the own ship abuts the point representing the predicted position of the other ship CO.
  • the front end LF of the risk range L is a position where the rear end of the caution area P of the own ship abuts the point representing the predicted position of the other ship CO.
  • the risk area calculation unit 13 may calculate, for example, an area of the own ship CS or a caution area P set around the own ship CS, and an area of the other ship CO or a caution area set around the other ship CO. and overlap, the risk of collision may be greater than or equal to the threshold. For example, when the separation distance between the point representing the predicted position of the own ship CS and the point representing the predicted position of the other ship CO is equal to or less than the threshold, the risk area calculation unit 13 determines that the risk of collision is equal to or greater than the threshold. good too.
  • the display control unit 14 A display image DM is generated and output to the coordinate information storage unit 15 .
  • the display image DM held in the coordinate information storage unit 15 is transmitted to the display unit 2 and displayed on the screen of the display unit 2 .
  • FIG. 5 is a diagram showing an example of the display image DM.
  • the display image DM is an image showing the positional relationship between the own ship and other ships.
  • the own ship object SS representing the own ship and the other ship objects OS1 and OS2 representing the other ships are arranged at positions within the image corresponding to the actual positions.
  • the other ship object OS1 based on AIS4 is displayed in a triangle, for example, and the other ship object OS2 based on Radar 3 is displayed in a circle, for example.
  • vector lines VS, V1, V2 representing velocity vectors are added to the own ship object SS and the other ship objects OS1, OS2.
  • the predicted courses R1 and R2 of the other ships calculated based on the data of the other ships are displayed.
  • OZT2 is displayed as the collision risk area.
  • the predicted courses R1 and OZT1 are related to the other ship object OS1
  • the predicted courses R2 and OZT2 are related to the other ship object OS2.
  • OZT1 and OZT2 are displayed in the risk range L (see FIG. 4) specified by the risk range calculation unit 13.
  • OZT1 and OZT2 have a shape extending in the same direction as the forecasted courses R1 and R2 of the other ships with a predetermined width, for example, a rounded rectangular shape with semicircles at both ends.
  • the OZT1 and OZT2 are not limited to this, and may be, for example, elliptical or polygonal.
  • Echo object E based on the echo data acquired from the radar 3 is also displayed in the display image DM.
  • Echo object E represents an area where the echo intensity is greater than or equal to a predetermined value.
  • the echo object E indicates the existence of a target candidate such as another ship.
  • the display image DM the planned route of the ship and its surrounding nautical charts obtained from the ECDIS 7 may be further displayed.
  • FIG. 6 is a diagram showing a procedure example of a ship monitoring method realized by the ship monitoring device 1.
  • FIG. The figure mainly shows the processing when the designation of the position in the display image DM is received among the processing executed by the ship monitoring apparatus 1 .
  • the processing is implemented by the designation reception unit 17, the coordinate information acquisition unit 18, the processing selection unit 19, and the display control unit 14 included in the ship monitoring device 1 (see FIG. 3).
  • the designation receiving unit 17 determines whether or not designation of a position within the display image DM has been received (S11).
  • a position in the display image DM is represented by two-dimensional coordinates.
  • the designation of the position in the display image DM may be input from a touch sensor provided on the display unit 2, or may be input from a trackball, mouse, or the like for operating the cursor on the screen of the display unit 2. good too.
  • the coordinate information obtaining unit 18 obtains the coordinate information of the designated position within the display image DM from the coordinate information storage unit 15 (S12 ).
  • the coordinate information includes information such as the type of object existing at the designated position.
  • the processing selection unit 19 determines whether an object exists at the specified position (S13), and further determines whether there are multiple objects (S14). If only one object exists at the designated position (S13: YES, S14: NO), the display control unit 14 executes predetermined processing associated with the designation of the one object and displays it (S16).
  • the process selection unit 19 selects a predetermined process from among the predetermined processes associated with the designation of the plurality of objects. One process is selected (S15), and the display control unit 14 executes and displays the selected process (S16).
  • the display control unit 14 displays the other ship object OS1 corresponding to the specified OZT1. Display identification.
  • the display control unit 14 displays the information display object IF including ship information in association with the other ship object OS1 corresponding to the specified OZT1, and changes the display mode of the other ship object OS1 to another ship object OS1. By making it different from the ship object OS2, the other ship object OS1 is identified and displayed.
  • the identification display may be performed by only one of the display of the information display object IF and the change of the display mode of the other ship object OS1.
  • the information display object IF includes information such as identification code, ship name, position, course, speed, and destination. These information are extracted from AIS data, for example.
  • the display mode of the other ship object OS1 is preferably changed to, for example, a more conspicuous color or brightness (so-called highlight display). Moreover, it is preferable to change not only the other ship object OS1 but also the OZT1, the predicted course R1, and the vector line V1 in a similar manner to emphasize the relationship between the designated OZT1 and the other ship object OS1.
  • FIGS. 8 and 9 are diagrams for explaining examples of cursor positions C1 to C6 in the display image DM and their corresponding processing contents.
  • Cursor positions C1 to C3 indicate positions where a plurality of objects overlap.
  • Cursor positions C4 to C6 indicate positions where only one object exists.
  • the cursor position C4 is a position where only OZT1 exists, and when this position is specified, the display control unit 14 executes other ship identification display. That is, the display control unit 14 identifies and displays the other ship object OS1 corresponding to the designated OZT1, as shown in FIG.
  • the cursor position C5 is a position where only the echo object E exists, and when this position is specified, the display control unit 14 executes echo tracking capture. Specifically, the display control unit 14 registers the designated echo object E as a tracking target, and accordingly displays a new circular other ship object at the designated position.
  • the cursor position C6 is a position where only the other ship object OS2 exists, and when this position is specified, the display control unit 14 executes ship information display. Specifically, the display control unit 14 displays an information display object IF (see FIG. 7) including ship information in association with the other ship object OS2.
  • the cursor position C1 is the position where the echo object E and the OZT2 overlap, and when this position is specified, the display control unit 14 executes a predetermined one of echo tracking capture and other ship identification display.
  • echo tracking acquisition is performed, but the present invention is not limited to this, and other ship identification display may be performed. Not limited to this, both echo tracking acquisition and other ship identification display may be performed in parallel.
  • Cursor position C2 is a position where echo object E, OZT1, and OZT2 overlap, and when this position is designated, display control unit 14 executes a predetermined one of echo tracking capture and other ship identification display. do.
  • echo tracking acquisition is performed, but the present invention is not limited to this, and other ship identification display may be performed.
  • the other ship identification display when the position where the two OZT1 and OZT2 overlap is specified will be described later. Not limited to this, both echo tracking acquisition and other ship identification display may be performed in parallel.
  • the cursor position C3 is a position where the other ship object OS3 and OZT2 overlap, and when this position is specified, the display control unit 14 executes a predetermined one of ship information display and other ship identification display. .
  • ship information display is executed, but the present invention is not limited to this, and other ship identification display may be executed. Not limited to this, both ship information display and other ship identification display may be performed in parallel.
  • OZT1 and OZT2 are often displayed in a wider range than the other ship object OS3 or the echo object E, and it is easy to specify a position where the other ship object OS3 or the echo object E does not overlap.
  • the processing related to the other ship object OS3 or the echo object E is given priority.
  • different processes may be selected according to the manner of specifying the position. For example, at cursor positions C1 and C2, echo tracking acquisition is performed when the cursor is clicked, and other ship identification display is performed when the cursor is over. At the cursor position C3, ship information display is executed when clicked, and other ship identification display is executed when the cursor is over.
  • cursor position C4 nothing is executed when clicked, and other ship identification display is executed when the cursor is over.
  • cursor position C5 echo-tracking capture is performed on click and nothing is performed on cursor-over.
  • cursor position C6 vessel information is displayed when clicked, and nothing is performed when the cursor is over.
  • the display control unit 14 determines the degree of collision risk from the plurality of other ship objects OS1 and OS2.
  • One other ship object CS1 determined according to the distance from the position ZL, the distance from the own ship object SS, or the degree of hindrance to the navigation of the own ship is identified and displayed.
  • the degree of collision risk for example, of the other ship objects OS1 and OS2, the one with the higher collision risk at the designated position ZL is selected.
  • the collision risk is calculated so as to become higher as the other ship CO is closer to the own ship CS at the time of the calculation shown in FIG. 4 above. Therefore, the central portion of the risk range L has a higher collision risk than both ends.
  • the one with the shorter distance from the specified position ZL is selected from among the other ship objects OS1 and OS2.
  • the one that is farther from the specified position ZL may be selected.
  • the distance from the own ship object SS for example, of the other ship objects OS1 and OS2, the one closer to the own ship object SS is selected.
  • this angle range is not limited to 360 degrees, and may be a predetermined angle range in front of the own ship.
  • the display control unit 14 identifies and displays the other ship objects OS1 and OS2 corresponding to all of the specified OZT1 and OZT2. good too.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】船舶オブジェクトと衝突リスク領域との関係を把握することが容易な船舶監視装置を提供する。 【解決手段】船舶監視装置は、表示部に表示された画像内の位置の指定を受付ける指定受付部と、第1船舶の位置及び速度を表す第1船舶データを取得する第1データ取得部と、複数の第2船舶の位置及び速度を表す複数の第2船舶データを取得する第2データ取得部と、第1船舶データ及び複数の第2船舶データに基づいて、第1船舶と各々の第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出するリスク領域算出部と、複数の第2船舶を表す複数の船舶オブジェクト及び衝突リスク領域を画像内の対応する位置に配置して表示し、衝突リスク領域の指定を受付けた場合に、指定された衝突リスク領域に対応する船舶オブジェクトを他の船舶オブジェクトと識別表示する表示制御部とを備える。

Description

船舶監視装置、船舶監視方法、及びプログラム
 本発明は、船舶監視装置、船舶監視方法、及びプログラムに関する。
 特許文献1には、PPI(Plan Position Indicator)形式のレーダー映像に、自船の周囲に存在する他船の映像とともに、自船が進入するとその他船との衝突の危険が生じるであろう危険領域を表示する技術が開示されている。
特開2000-128073号公報
 ところで、他船を表す船舶オブジェクトと、その他船との衝突のリスクを表す衝突リスク領域とは、互いに離れて表示されることが多いため、画像内に複数の船舶オブジェクトが表示される場合、衝突リスク領域がどの船舶オブジェクトに関するか把握することが困難である。
 本発明は、上記課題に鑑みてなされたものであり、その主な目的は、船舶オブジェクトと衝突リスク領域との関係を把握することが容易な、船舶監視装置、船舶監視方法、及びプログラムを提供することにある。
 上記課題を解決するため、本発明の一の態様の船舶監視装置は、表示部に表示された画像内の位置の指定を受付ける指定受付部と、第1船舶の位置及び速度を表す第1船舶データを取得する第1データ取得部と、複数の第2船舶の位置及び速度を表す複数の第2船舶データを取得する第2データ取得部と、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出するリスク領域算出部と、複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を前記画像内の対応する位置に配置して表示し、前記衝突リスク領域の指定を受付けた場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示する表示制御部と、を備える。これによると、船舶オブジェクトと衝突リスク領域との関係を把握することが容易となる。
 上記態様において、前記表示制御部は、指定された前記衝突リスク領域に対応する前記船舶オブジェクトに関連付けて船舶情報を含む情報表示オブジェクトを表示することで識別表示してもよい。これによると、指定された衝突リスク領域に対応する船舶オブジェクトの識別が容易となる上、船舶情報の把握も可能となる。
 上記態様において、前記表示制御部は、指定された前記衝突リスク領域に対応する前記船舶オブジェクトの表示態様を他の前記船舶オブジェクトと異ならせることで識別表示してもよい。これによると、指定された衝突リスク領域に対応する船舶オブジェクトの識別が容易となる。
 上記態様において、前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示と、前記他のオブジェクトの指定に伴う所定の処理との予め定められた一方を実行してもよい。これによると、処理の競合を防ぐことが可能となる。
 上記態様において、前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示を実行せずに、前記他のオブジェクトの指定に伴う所定の処理を実行してもよい。これによると、比較的広い範囲に表示され、他の位置での指定も可能な衝突リスク領域よりも、他のオブジェクトの指定を優先させることが可能となる。
 上記態様において、前記他のオブジェクトは、前記船舶オブジェクトであり、前記他のオブジェクトの指定に伴う所定の処理は、指定された前記船舶オブジェクトに関連付けて船舶情報を含む情報表示オブジェクトを表示する処理であってもよい。これによると、衝突リスク領域と船舶オブジェクトとが重なった位置が指定された場合の処理の競合を防ぐことが可能となる。
 上記態様において、前記表示制御部は、前記第1船舶に搭載されたレーダーにより生成されたエコーデータに基づいて、エコー強度が所定以上の領域を表すエコーオブジェクトを前記画像内に表示し、前記他のオブジェクトは、前記エコーオブジェクトであり、前記他のオブジェクトの指定に伴う所定の処理は、指定された前記エコーオブジェクトを追尾対象として登録する処理であってもよい。これによると、衝突リスク領域とエコーオブジェクトとが重なった位置が指定された場合の処理の競合を防ぐことが可能となる。
 上記態様において、前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が第1の指定態様で指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示を実行し、前記衝突リスク領域と前記他のオブジェクトとが重なった位置が第2の指定態様で指定された場合に、前記他のオブジェクトの指定に伴う所定の処理を実行してもよい。これによると、指定態様を変えることで両方の処理を実行させることが可能となる。
 上記態様において、前記表示制御部は、複数の前記衝突リスク領域が重なった位置が指定された場合に、複数の前記船舶オブジェクトのうちの、衝突のリスクの度合い、指定された位置からの距離、前記第1船舶からの距離、又は前記第1船舶の航行を妨げる度合いに基づいて決定される1つの前記船舶オブジェクトを識別表示してもよい。これによると、所定の条件に基づいて決定される1つの船舶オブジェクトを識別表示することが可能となる。
 上記態様において、前記表示制御部は、複数の前記衝突リスク領域が重なった位置が指定された場合に、指定された複数の前記衝突リスク領域に対応する複数の前記船舶オブジェクトを識別表示してもよい。これによると、関係する全ての船舶オブジェクトを識別表示することが可能となる。
 上記態様において、前記第1データは、前記第1船舶に搭載されたGNSS(Global Navigation Satellite System)受信機により検出された前記第1船舶の位置を含んでもよい。また、前記第2データは、前記第1船舶に搭載されたレーダーにより検出された前記第2船舶の位置及び速度を含んでもよい。また、前記第2データは、前記第1船舶に搭載されたAIS(Automatic Identification System)により検出された前記第2船舶の位置及び速度を含んでもよい。
 また、本発明の他の態様の船舶監視方法は、第1データ生成部により、第1船舶の位置及び速度を表す第1船舶データを生成し、第2データ生成部により、複数の第2船舶の位置及び速度を表す複数の第2船舶データを生成し、前記第1船舶データ及び複数の前記第2船舶データに基づいて、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出し、表示部により、複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を対応する位置に配置した画像を表示し、前記衝突リスク領域が指定された場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示する。これによると、船舶オブジェクトと衝突リスク領域との関係を把握することが容易となる。
 また、本発明の他の態様のプログラムは、第1船舶の位置及び速度を表す第1船舶データを取得すること、複数の第2船舶の位置及び速度を表す複数の第2船舶データを取得すること、前記第1船舶データ及び複数の前記第2船舶データに基づいて、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出すること、複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を対応する位置に配置した画像を表示部に表示すること、及び前記衝突リスク領域が指定された場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示すること、をコンピュータに実行させる。これによると、船舶オブジェクトと衝突リスク領域との関係を把握することが容易となる。
船舶監視システムの構成例を示す図である。 他船管理データベースの例を示す図である。 船舶監視装置の構成例を示す図である。 衝突リスクの計算例を示す図である。 表示用画像の例を示す図である。 船舶監視方法の手順例を示す図である。 表示用画像の例を示す図である。 表示用画像の例を示す図である。 処理内容の例を示す図である。 処理内容の例を示す図である。 表示用画像の例を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、船舶監視システム100の構成例を示すブロック図である。船舶監視方法は、船舶監視システム100において実現される。船舶監視システム100は、船舶に搭載され、周囲に存在する船舶を監視するためのシステムである。
 船舶監視システム100が搭載された船舶は、第1船舶の例であり、以下の説明では「自船」という。また、自船の周囲に存在する船舶は、第2船舶の例であり、以下の説明では「他船」という。
 また、以下の説明において、「速度」は速さと方位を表すベクトル量(いわゆる、船速ベクトル)であるとし、「速さ」はスカラー量であるとする。
 船舶監視システム100は、船舶監視装置1、表示部2、レーダー3、AIS4、GNSS受信機5、ジャイロコンパス6、ECDIS7、及び警報部8を備えている。これらの機器は、例えばLAN等のネットワークNに接続されており、相互にネットワーク通信が可能である。
 船舶監視装置1は、CPU、RAM、ROM、不揮発性メモリ、及び入出力インターフェース等を含むコンピュータである。船舶監視装置1のCPUは、ROM又は不揮発性メモリからRAMにロードされたプログラムに従って情報処理を実行する。
 プログラムは、例えば光ディスク又はメモリカード等の情報記憶媒体を介して供給されてもよいし、例えばインターネット又はLAN等の通信ネットワークを介して供給されてもよい。
 表示部2は、例えばタッチセンサ付き表示装置である。タッチセンサは、指等による画面内の指示位置を検出する。タッチセンサに限らず、トラックボール等により指示位置が入力されてもよい。
 レーダー3は、自船の周囲に電波を発するとともにその反射波を受信し、受信信号に基づいてエコーデータを生成する。また、レーダー3は、エコーデータから物標を識別し、物標の位置及び速度を表す物標追跡データ(TTデータ)を生成する。
 AIS(Automatic Identification System)4は、自船の周囲に存在する他船又は陸上の管制からAISデータを受信する。AISに限らず、VDES(VHF Data Exchange System)が用いられてもよい。AISデータは、他船の位置及び速度等を含んでいる。
 GNSS受信機5は、GNSS(Global Navigation Satellite System)から受信した電波に基づいて自船の位置を検出する。ジャイロコンパス6は、自船の方位を検出する。ジャイロコンパスに限らず、GPSコンパスが用いられてもよい。
 ECDIS(Electronic Chart Display and Information System)7は、GNSS受信機5から自船の位置を取得し、電子海図上に自船の位置を表示する。また、ECDIS7は、電子海図上に自船の予定航路も表示する。ECDISに限らず、GNSSプロッタが用いられてもよい。
 警報部8は、自船が他船と衝突するリスクがある場合に警報を発報する。警報部8は、例えば表示による警報を行ってもよいし、音又は光による警報を行ってもよい。表示による警報は、表示部2において行われてもよい。すなわち、表示部2が警報部8を兼ねてもよい。
 本実施形態において、船舶監視装置1は独立した装置であるが、これに限らず、ECDIS7等の他の装置と一体であってもよい。すなわち、船舶監視装置1の機能部が他の装置で実現されてもよい。
 また、表示部2も独立した装置であるが、これに限らず、ECDIS7等の他の装置の表示部が、船舶監視装置1により生成された表示用画像を表示する表示部2として用いられてもよい。
 本実施形態において、GNSS受信機5及びECDIS7は、第1データ生成部の例であり、自船の位置及び速度を表す自船データを生成する。具体的には、GNSS受信機5が自船の位置を検出するとともに、ECDIS7が自船の位置の時間変化から自船の速度を検出する。
 これに限らず、自船の速度は、ジャイロコンパス6により検出される自船の方位と、不図示の船速計により検出される自船の速さとに基づいて検出されてもよい。
 また、レーダー3又はAIS4は、第2データ生成部の例であり、他船の位置及び速度を表す他船データを生成する。具体的には、レーダー3により生成されるTTデータが他船データに相当する。また、AIS4により生成されるAISデータも他船データに相当する。
 図2は、船舶監視装置1のメモリに構築される他船管理データベースの例を示す図である。他船管理データベースには、レーダー3又はAIS4により生成された他船データが登録される。
 他船管理データベースは、「他船識別子」、「位置」、「速さ」、及び「方位」等のフィールドを含んでいる。なお、レーダー3により検出される他船の位置及び方位は、GNSSと同じ座標系に変換される。
 図3は、実施形態に係る船舶監視装置1の構成例を示す図である。船舶監視装置1は、自船データ取得部11、他船データ取得部12、リスク領域算出部13、表示制御部14、座標情報蓄積部15、指定受付部17、座標情報取得部18、及び処理選択部19を備えている。
 これらの機能部は、船舶監視装置1のCPUがプログラムに従って情報処理を実行することにより実現される。座標情報蓄積部15は、表示装置2に表示する表示用画像を保持する領域として、船舶監視装置1のメモリ内に確保される。
 自船データ取得部11は、GNSS受信機5等から、自船の位置及び速度を表す自船データを取得する。自船データ取得部11は第1データ取得部の例であり、自船データは第1船舶データの例である。
 他船データ取得部12は、レーダー3又はAIS4から、他船の位置及び速度を表す他船データを取得する。他船データ取得部12は第2データ取得部の例であり、他船データは第2船舶データの例である。
 リスク領域算出部13は、自船データ及び複数の他船データに基づいて、自船と各々の他船とが衝突するリスクを算出し、衝突のリスクが所定以上となる衝突リスク領域を算出する。衝突リスク領域は、例えばOZT(Obstacle Zone by Target)である。
 以下では、衝突リスク領域としてOZTを算出する例を説明するが、OZTに限らず、例えばPAD(Predict Area of Danger)又はDAC(Dangerous Area of Collision)等が用いられてもよい。
 図4は、衝突リスクの計算例を示す図である。リスク領域算出部13は、自船CSが任意の方向に変針して他船COの予測針路Rを横切ると仮定したときの、各時点の自船CS及び他船COの予測位置に基づいて、他船COの予測針路Rのうちの、自船CSと他船COが衝突するリスクが閾値以上となるリスク範囲Lを特定する。
 自船CSの予測位置の算出は、自船CSが速さを維持しつつ現在位置で任意の方向に変針して航行するとの仮定のもとで行われる。すなわち、自船CSは、自船船速ベクトルの大きさは一定である一方、自船船速ベクトルの向きは基準時点で任意の方向に変針し、それ以後は一定の方向で、基準時点の自船位置から航行を継続すると仮定される。したがって、各時点における自船CSの予測位置は、基準時点の自船位置を中心とする同心円上に存在する。円の半径は、基準時点からの経過時間と自船船速ベクトルの大きさとの積で表される。
 各時点における自船CSの予測位置は、離散的な複数の時点のそれぞれについて算出された複数の同心円で表される。これに限らず、各時点における自船CSの予測位置は、基準時点からの経過時間を含む円の式で表されてもよい。
 本実施形態では、自船CSの速さが一定であるとの仮定のもとで自船CSの予測位置が算出されたが、これに限らず、自船CSの速さは時間に応じて変化する変数として扱われてもよい。すなわち、基準時点からの経過時間に応じた自船CSの予測位置が求められるのであれば、自船CSの速さは一定でなくてもよい。例えば、自船CSの速さは時間の経過とともに徐々に増加又は減少してもよい。
 他船COの予測位置の算出は、他船COが現在位置から速度を維持して航行するとの仮定のもとで行われる。すなわち、他船COは、他船船速ベクトルの大きさ及び向きが一定で、基準時点の他船位置から航行を継続すると仮定される。したがって、各時点における他船COの予測位置は、基準時点の他船位置を通る、他船船速ベクトルを延長した直線上に存在する。
 各時点における他船COの予測位置は、離散的な複数の時点のそれぞれについて算出された、直線上に並ぶ離散的な複数の点で表される。これに限らず、各時点における他船COの予測位置は、基準時点の他船位置を通る一次関数で表されてもよい。
 本実施形態では、他船COの速度が一定であるとの仮定のもとに他船COの予測位置が算出されたが、これに限らず、他船COの速さ及び方向の少なくとも一方が時間に応じて変化する変数として扱われてもよい。すなわち、基準時点からの経過時間に応じた他船COの予測位置が求められるのであれば、他船COの速度は一定でなくてもよい。例えば、他船COの速さは時間の経過とともに徐々に増加又は減少してもよい。また、他船COは所定の方向に変針してもよいし、所定のROT(Rate of Turn)で旋回してもよい。
 リスク領域算出部13は、各時点における自船CSの予測位置と他船COの予測位置との離隔距離を算出し、離隔距離及び船舶サイズに基づいて衝突のリスクを算出する。上述したように、或る時点の自船CSの予測位置は円で表されるので、リスク領域算出部13は、或る時点の自船CSの予測位置を表す円の中から、同時点の他船COの予測位置に最も近い位置を抽出して、離隔距離を算出する。
 リスク領域算出部13は、例えば自船CSの領域若しくは自船CSの周囲に設定される警戒領域Pと、他船COの予測位置を表す点とが重複する場合に、衝突のリスクが閾値以上であるとして、衝突のリスクが閾値以上のリスク範囲Lを特定する。例えば、リスク範囲Lの後端LRは、自船の警戒領域Pの前端が他船COの予測位置を表す点に当接する位置となる。リスク範囲Lの前端LFは、自船の警戒領域Pの後端が他船COの予測位置を表す点に当接する位置となる。
 これに限らず、リスク領域算出部13は、例えば自船CSの領域若しくは自船CSの周囲に設定される警戒領域Pと、他船COの領域若しくは他船COの周囲に設定される警戒領域とが重複する場合に、衝突のリスクが閾値以上であるとしてもよい。また、リスク領域算出部13は、例えば自船CSの予測位置を表す点と他船COの予測位置を表す点との離隔距離が閾値以下である場合に、衝突のリスクが閾値以上であるとしてもよい。
 図3の説明に戻る。表示制御部14は、自船データ取得部11により取得された自船データ、他船データ取得部12により取得された他船データ、及びリスク領域算出部13により算出された衝突リスク領域に基づいて表示用画像DMを生成し、座標情報蓄積部15に出力する。座標情報蓄積部15に保持された表示用画像DMは、表示部2に送信され、表示部2の画面に表示される。
 図5は、表示用画像DMの例を示す図である。表示用画像DMは、自船と他船の位置関係を示す画像である。表示用画像DMには、自船を表す自船オブジェクトSS及び他船を表す他船オブジェクトOS1,OS2が、実位置に対応する画像内の位置に配置されている。
 他船オブジェクトOS1,OS2のうち、AIS4に基づく他船オブジェクトOS1は例えば三角形で表示され、レーダー3に基づく他船オブジェクトOS2は例えば円形で表示される。また、自船オブジェクトSS及び他船オブジェクトOS1,OS2には、速度ベクトルを表すベクトル線VS,V1,V2が付加される。
 表示用画像DMには、他船データに基づいて算出された他船の予測針路R1,R2が表示されるとともに、予測針路R1,R2上には、リスク領域算出部13により算出されたOZT1,OZT2が衝突リスク領域として表示される。図の例では、予測針路R1及びOZT1は他船オブジェクトOS1に関連し、予測針路R2及びOZT2は他船オブジェクトOS2に関連する。
 OZT1,OZT2は、リスク領域算出部13により特定されたリスク範囲L(図4参照)に表示される。OZT1,OZT2は、所定の幅で他船の予測針路R1,R2と同方向に延びた形状、例えば両端が半円の角丸長方形状を有している。これに限らず、OZT1,OZT2は、例えば楕円形状又は多角形状等であってもよい。
 表示用画像DMには、レーダー3から取得されるエコーデータに基づくエコーオブジェクトEも表示される。エコーオブジェクトEは、エコー強度が所定以上の領域を表す。すなわち、エコーオブジェクトEは、他船等の物標候補の存在を示す。また、表示用画像DMには、ECDIS7から取得される自船の予定航路及び周囲の海図がさらに表示されてもよい。
 図6は、船舶監視装置1において実現される船舶監視方法の手順例を示す図である。同図は、船舶監視装置1が実行する処理のうちの、表示用画像DM内の位置の指定を受付けた場合の処理について主に示している。同処理は、船舶監視装置1に含まれる指定受付部17、座標情報取得部18、処理選択部19、及び表示制御部14によって実現される(図3参照)。
 まず、指定受付部17は、表示用画像DM内の位置の指定を受付けたか否か判定する(S11)。表示用画像DM内の位置は、2次元座標で表される。表示用画像DM内の位置の指定は、表示部2に設けられたタッチセンサから入力されてもよいし、表示部2の画面内のカーソルを操作するためのトラックボール又はマウス等から入力されてもよい。
 表示用画像DM内の位置の指定を受付けると(S12:YES)、座標情報取得部18は、表示用画像DM内の指定された位置の座標情報を、座標情報蓄積部15から取得する(S12)。座標情報は、指定された位置に存在するオブジェクトの種類の情報などを含んでいる。
 次に、処理選択部19は、指定された位置にオブジェクトが存在するか否か(S13)、さらにオブジェクトが複数であるか否か判定する(S14)。指定された位置に1つのオブジェクトのみが存在する場合(S13:YES、S14:NO)、表示制御部14は、当該1つのオブジェクトの指定に伴う所定の処理を実行し、表示する(S16)。
 一方、指定された位置に複数のオブジェクトが存在する場合には(S13:YES、S14:YES)、処理選択部19は、当該複数のオブジェクトの指定に伴う所定の処理の中から、予め定められた1つの処理を選択し(S15)、表示制御部14は、選択された処理を実行し、表示する(S16)。
 例えば図7に示すように、1つのOZT1が指定された場合、すなわち指定された位置に1つのOZT1のみが存在する場合、表示制御部14は、指定されたOZT1に対応する他船オブジェクトOS1を識別表示する。
 具体的には、表示制御部14は、指定されたOZT1に対応する他船オブジェクトOS1に関連付けて船舶情報を含む情報表示オブジェクトIFを表示するとともに、当該他船オブジェクトOS1の表示態様を別の他船オブジェクトOS2と異ならせることで、当該他船オブジェクトOS1を識別表示する。これに限らず、情報表示オブジェクトIFの表示及び他船オブジェクトOS1の表示態様の変更の一方のみで識別表示を行ってもよい。
 情報表示オブジェクトIFには、例えば、識別符号、船名、位置、針路、速力、目的地などの情報が含まれる。これらの情報は、例えばAISデータから抽出される。
 他船オブジェクトOS1の表示態様は、例えば、より目立ちやすい色又は明るさ等に変更されることが好ましい(いわゆるハイライト表示)。また、他船オブジェクトOS1だけでなく、OZT1、予測針路R1、及びベクトル線V1の表示態様も同様に変更して、指定されたOZT1と他船オブジェクトOS1の関連性を強調することが好ましい。
 図8及び図9は、表示用画像DM内のカーソル位置C1~C6とそれらに対応する処理内容との例を説明するための図である。カーソル位置C1~C3は、複数のオブジェクトが重なっている位置を示している。カーソル位置C4~C6は、1つのオブジェクトのみが存在する位置を示している。
 カーソル位置C4はOZT1のみが存在する位置であり、この位置が指定された場合、表示制御部14は他船識別表示を実行する。すなわち、表示制御部14は、上記図7で示したように、指定されたOZT1に対応する他船オブジェクトOS1を識別表示する。
 カーソル位置C5はエコーオブジェクトEのみが存在する位置であり、この位置が指定された場合、表示制御部14はエコー追尾捕捉を実行する。具体的には、表示制御部14は、指定されたエコーオブジェクトEを追尾対象として登録し、これに伴い、指定された位置に新たな円形の他船オブジェクトを表示する。
 カーソル位置C6は他船オブジェクトOS2のみが存在する位置であり、この位置が指定された場合、表示制御部14は船舶情報表示を実行する。具体的には、表示制御部14は、他船オブジェクトOS2に関連付けて船舶情報を含む情報表示オブジェクトIF(図7参照)を表示する。
 カーソル位置C1はエコーオブジェクトEとOZT2とが重なった位置であり、この位置が指定された場合、表示制御部14は、エコー追尾捕捉と他船識別表示の予め定められた一方を実行する。本例ではエコー追尾捕捉が実行されるが、これに限らず、他船識別表示が実行されてもよい。これに限らず、エコー追尾捕捉と他船識別表示の両方が並行して行われてもよい。
 カーソル位置C2はエコーオブジェクトEとOZT1とOZT2とが重なった位置であり、この位置が指定された場合、表示制御部14は、エコー追尾捕捉と他船識別表示の予め定められた1つを実行する。本例ではエコー追尾捕捉が実行されるが、これに限らず、他船識別表示が実行されてもよい。2つのOZT1,OZT2が重なった位置が指定された場合の他船識別表示については後述する。これに限らず、エコー追尾捕捉と他船識別表示の両方が並行して行われてもよい。
 カーソル位置C3は他船オブジェクトOS3とOZT2とが重なった位置であり、この位置が指定された場合、表示制御部14は、船舶情報表示と他船識別表示との予め定められた一方を実行する。本例では船舶情報表示が実行されるが、これに限らず、他船識別表示が実行されてもよい。これに限らず、船舶情報表示と他船識別表示の両方が並行して行われてもよい。
 OZT1及びOZT2は、他船オブジェクトOS3又はエコーオブジェクトEと比べて広い範囲に表示されることが多く、他船オブジェクトOS3又はエコーオブジェクトEが重なっていない位置を指定することが容易であるため、OZT1又はOZT2と他船オブジェクトOS3又はエコーオブジェクトEとが重なった位置では、他船オブジェクトOS3又はエコーオブジェクトEに係る処理が優先されることが好ましい。
 上記図9の例に限らず、例えば図10に示すように、位置の指定態様に応じて互いに異なる処理が選択されてもよい。例えば、カーソル位置C1,C2では、クリック時にエコー追尾捕捉が実行され、カーソルオーバー時に他船識別表示が実行される。カーソル位置C3では、クリック時に船舶情報表示が実行され、カーソルオーバー時に他船識別表示が実行される。
 また、カーソル位置C4では、クリック時に何も実行されず、カーソルオーバー時に他船識別表示が実行される。カーソル位置C5では、クリック時にエコー追尾捕捉が実行され、カーソルオーバー時に何も実行されない。カーソル位置C6では、クリック時に船舶情報表示が実行され、カーソルオーバー時に何も実行されない。
 なお、図11に示すように、複数のOZT1,OZT2が重なった位置ZLが指定された場合には、表示制御部14は、複数の他船オブジェクトOS1,OS2から、衝突リスクの度合い、指定された位置ZLからの距離、自船オブジェクトSSからの距離、又は自船の航行を妨げる度合いに応じて決定される1つの他船オブジェクトCS1を識別表示する。
 衝突リスクの度合いについては、例えば、他船オブジェクトOS1,OS2のうち、指定された位置ZLにおける衝突リスクが高い方が選択される。衝突リスクは、上記図4に示した計算時に、他船COが自船CSに近いほど高くなるように計算される。このため、リスク範囲Lの中央部は両端部と比べて衝突リスクが高くなる。
 指定された位置ZLからの距離については、例えば、他船オブジェクトOS1,OS2のうち、指定された位置ZLからの距離が近い方が選択される。又は、指定された位置ZLからの距離が遠い方(すなわち、船速が高い方)が選択されてもよい。自船オブジェクトSSからの距離については、例えば、他船オブジェクトOS1,OS2のうち、自船オブジェクトSSからの距離が近い方が選択される。
 自船の航行を妨げる度合いについては、例えば、他船オブジェクトOS1,OS2のうち、自船オブジェクトSSを中心とする360度の範囲内でOZT1,OZT2が占める割合が多い方が選択される。また、この角度範囲は360度に限らず、自船前方となる所定角度範囲としてもよい。
 これに限らず、表示制御部14は、複数のOZT1,OZT2が重なった位置ZLが指定された場合に、指定された全てのOZT1,OZT2に対応する他船オブジェクトOS1,OS2を識別表示してもよい。
 以上、本発明の実施形態について説明したが、本発明は以上に説明した実施形態に限定されるものではなく、種々の変更が当業者にとって可能であることはもちろんである。
1 船舶監視装置、2 表示部、3 レーダー、4 AIS、5 GNSS受信機、6 ジャイロコンパス、7 ECDIS、8 警報部、11 自船データ取得部、12 他船データ取得部、13 リスク領域算出部、14 表示制御部、15 座標情報蓄積部、17 指定受付部、18 座標情報取得部、19 処理選択部、100 船舶監視システム

Claims (15)

  1.  表示部に表示された画像内の位置の指定を受付ける指定受付部と、
     第1船舶の位置及び速度を表す第1船舶データを取得する第1データ取得部と、
     複数の第2船舶の位置及び速度を表す複数の第2船舶データを取得する第2データ取得部と、
     前記第1船舶データ及び複数の前記第2船舶データに基づいて、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出するリスク領域算出部と、
     複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を前記画像内の対応する位置に配置して表示し、前記衝突リスク領域の指定を受付けた場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示する表示制御部と、
     を備える、船舶監視装置。
  2.  前記表示制御部は、指定された前記衝突リスク領域に対応する前記船舶オブジェクトに関連付けて船舶情報を含む情報表示オブジェクトを表示することで識別表示する、
     請求項1に記載の船舶監視装置。
  3.  前記表示制御部は、指定された前記衝突リスク領域に対応する前記船舶オブジェクトの表示態様を他の前記船舶オブジェクトと異ならせることで識別表示する、
     請求項1に記載の船舶監視装置。
  4.  前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示と、前記他のオブジェクトの指定に伴う所定の処理との一方を実行する、
     請求項1ないし3の何れかに記載の船舶監視装置。
  5.  前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示を実行せずに、前記他のオブジェクトの指定に伴う所定の処理を実行する、
     請求項1ないし3の何れかに記載の船舶監視装置。
  6.  前記他のオブジェクトは、前記船舶オブジェクトであり、
     前記他のオブジェクトの指定に伴う所定の処理は、指定された前記船舶オブジェクトに関連付けて船舶情報を含む情報表示オブジェクトを表示する処理である、
     請求項4または5に記載の船舶監視装置。
  7.  前記表示制御部は、前記第1船舶に搭載されたレーダーにより生成されたエコーデータに基づいて、エコー強度が所定以上の領域を表すエコーオブジェクトを前記画像内に表示し、
     前記他のオブジェクトは、前記エコーオブジェクトであり、
     前記他のオブジェクトの指定に伴う所定の処理は、指定された前記エコーオブジェクトを追尾対象として登録する処理である、
     請求項4または5に記載の船舶監視装置。
  8.  前記表示制御部は、前記衝突リスク領域と他のオブジェクトとが重なった位置が第1の指定態様で指定された場合に、前記衝突リスク領域に対応する前記船舶オブジェクトの識別表示を実行し、前記衝突リスク領域と前記他のオブジェクトとが重なった位置が第2の指定態様で指定された場合に、前記他のオブジェクトの指定に伴う所定の処理を実行する、
     請求項1ないし3の何れかに記載の船舶監視装置。
  9.  前記表示制御部は、複数の前記衝突リスク領域が重なった位置が指定された場合に、複数の前記船舶オブジェクトのうちの、衝突のリスクの度合い、指定された位置からの距離、前記第1船舶からの距離、又は前記第1船舶の航行を妨げる度合いに基づいて決定される1つの前記船舶オブジェクトを識別表示する、
     請求項1ないし3の何れかに記載の船舶監視装置。
  10.  前記表示制御部は、複数の前記衝突リスク領域が重なった位置が指定された場合に、指定された複数の前記衝突リスク領域に対応する複数の前記船舶オブジェクトを識別表示する、
     請求項1ないし3の何れかに記載の船舶監視装置。
  11.  前記第1データは、前記第1船舶に搭載されたGNSS(Global Navigation Satellite System)受信機により検出された前記第1船舶の位置を含む、
     請求項1ないし10の何れかに記載の船舶監視装置。
  12.  前記第2データは、前記第1船舶に搭載されたレーダーにより検出された前記第2船舶の位置及び速度を含む、
     請求項1ないし11の何れかに記載の船舶監視装置。
  13.  前記第2データは、前記第1船舶に搭載されたAIS(Automatic Identification System)により検出された前記第2船舶の位置及び速度を含む、
     請求項1ないし12の何れかに記載の船舶監視装置。
  14.  第1データ生成部により、第1船舶の位置及び速度を表す第1船舶データを生成し、
     第2データ生成部により、複数の第2船舶の位置及び速度を表す複数の第2船舶データを生成し、
     前記第1船舶データ及び複数の前記第2船舶データに基づいて、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出し、
     表示部により、複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を対応する位置に配置した画像を表示し、
     前記衝突リスク領域が指定された場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示する、
     船舶監視方法。
  15.  第1船舶の位置及び速度を表す第1船舶データを取得すること、
     複数の第2船舶の位置及び速度を表す複数の第2船舶データを取得すること、
     前記第1船舶データ及び複数の前記第2船舶データに基づいて、前記第1船舶と各々の前記第2船舶とが衝突するリスクが所定以上となる衝突リスク領域を算出すること、
     複数の前記第2船舶を表す複数の船舶オブジェクト及び前記衝突リスク領域を対応する位置に配置した画像を表示部に表示すること、及び
     前記衝突リスク領域が指定された場合に、指定された前記衝突リスク領域に対応する前記船舶オブジェクトを他の前記船舶オブジェクトと識別表示すること、
     をコンピュータに実行させるためのプログラム。
PCT/JP2022/009935 2021-05-26 2022-03-08 船舶監視装置、船舶監視方法、及びプログラム WO2022249631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280033827.5A CN117280395A (zh) 2021-05-26 2022-03-08 船舶监视装置、船舶监视方法以及程序
EP22810912.0A EP4350665A1 (en) 2021-05-26 2022-03-08 Ship monitoring device, ship monitoring method, and program
JP2023524014A JPWO2022249631A1 (ja) 2021-05-26 2022-03-08
US18/518,694 US20240096221A1 (en) 2021-05-26 2023-11-24 Ship monitoring device, ship monitoring method and a non-transitory computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-088608 2021-05-26
JP2021088608 2021-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/518,694 Continuation-In-Part US20240096221A1 (en) 2021-05-26 2023-11-24 Ship monitoring device, ship monitoring method and a non-transitory computer-readable medium

Publications (1)

Publication Number Publication Date
WO2022249631A1 true WO2022249631A1 (ja) 2022-12-01

Family

ID=84228628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009935 WO2022249631A1 (ja) 2021-05-26 2022-03-08 船舶監視装置、船舶監視方法、及びプログラム

Country Status (5)

Country Link
US (1) US20240096221A1 (ja)
EP (1) EP4350665A1 (ja)
JP (1) JPWO2022249631A1 (ja)
CN (1) CN117280395A (ja)
WO (1) WO2022249631A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246998A (ja) * 1994-03-08 1995-09-26 Tokimec Inc 船舶用航行支援装置
JP2000128073A (ja) 1998-10-27 2000-05-09 Japan Radio Co Ltd 自動衝突予防援助装置
JP2017054215A (ja) * 2015-09-08 2017-03-16 古野電気株式会社 情報表示装置及び情報表示方法
WO2017204075A1 (ja) * 2016-05-26 2017-11-30 古野電気株式会社 信号処理装置及びレーダ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246998A (ja) * 1994-03-08 1995-09-26 Tokimec Inc 船舶用航行支援装置
JP2000128073A (ja) 1998-10-27 2000-05-09 Japan Radio Co Ltd 自動衝突予防援助装置
JP2017054215A (ja) * 2015-09-08 2017-03-16 古野電気株式会社 情報表示装置及び情報表示方法
WO2017204075A1 (ja) * 2016-05-26 2017-11-30 古野電気株式会社 信号処理装置及びレーダ装置

Also Published As

Publication number Publication date
CN117280395A (zh) 2023-12-22
EP4350665A1 (en) 2024-04-10
JPWO2022249631A1 (ja) 2022-12-01
US20240096221A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
US6208284B1 (en) Radar augmented TCAS
CN102759726B (zh) 信息显示装置以及信息显示方法
US20120274504A1 (en) Information display device, information display method, and radar apparatus
US8319679B2 (en) Systems and methods for predicting locations of weather relative to an aircraft
WO2021132437A1 (ja) 船舶の航行支援システムにおける管理サーバ、船舶の航行支援方法、及び船舶の航行支援プログラム
WO2022113610A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
KR20150002763A (ko) 전자 해도 정보 표시 장치 및 전자 해도 정보 표시 방법
WO2022249631A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
WO2022091646A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022230332A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
EP4234385A1 (en) Ship monitoring system, ship monitoring method, information processing device, and program
WO2022264550A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP6139193B2 (ja) レーダ表示装置
WO2022249632A1 (ja) 船舶監視装置、船舶監視方法、及びプログラム
EP4105911A1 (en) Ship navigation assistance system, ship navigation assistance method, ship navigation assistance device, and program
WO2022239401A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022239402A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP2022170012A (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP2022170015A (ja) 操船支援システム、操船支援方法、情報処理装置、及びプログラム
WO2022234712A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022102323A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2022113606A1 (ja) 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
JP7489289B2 (ja) 航路演算装置
WO2023276307A1 (ja) 画像生成装置、船舶情報表示方法、及びプログラム
JP2023076126A (ja) 物標情報表示装置、物標情報表示方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524014

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280033827.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022810912

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810912

Country of ref document: EP

Effective date: 20240102